WorldWideScience

Sample records for biological processes ranging

  1. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  2. Range Process Simulation Tool

    Science.gov (United States)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  3. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  4. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  5. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  6. Physical and biological factors determining the effective proton range

    International Nuclear Information System (INIS)

    Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Scholz, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita

    2013-01-01

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam

  7. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  8. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  9. Finite Range Decomposition of Gaussian Processes

    CERN Document Server

    Brydges, C D; Mitter, P K

    2003-01-01

    Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0

  10. Stochastic processes and long range dependence

    CERN Document Server

    Samorodnitsky, Gennady

    2016-01-01

    This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...

  11. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard

    2017-01-01

    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  12. PERMITTIVITY RESEARCH OF BIOLOGICAL SOLUTIONS IN GIGAHERTZ FREQUENCY RANGE

    Directory of Open Access Journals (Sweden)

    Anton S. Demin

    2017-07-01

    Full Text Available Subject of Research. We present results of permittivity research in gigahertz frequency range for saline and glucose solutions used in medical practice. Experiment results are substantiated theoretically on the basis of Debye-Cole model. Method. Researches have been carried out on blood plasma of healthy donor, water, normal saline and glucose solutions with different concentration from 3 to 12 mmol/l. Experiments have been performed by an active nearfield method based on measuring the impedance of a plane air-liquid boundary with open end of coaxial waveguide in the frequency range from 1 to 12 GHz. Measurement results have been processed with the use of vector analyzer computer system from Rohde & Schwarz. Transmittance spectra have been determined by means of IR-spectrometer from TENZOR-Bruker. Main Results. Simulation results have shown good agreement between the experimental results and the model, as well as the choice of the main parameters of the Debye-Cole model in the studied frequency range for all media. It has been shown that the range of 3-6 GHz can be considered as the main one in the development of diagnostic sensors for the non-invasive analysis of the glucose concentration in the human blood. Practical Relevance. Electrodynamic models of test fluid replacing human blood give the possibility to simulate the sensor basic characteristics for qualitative and quantitative estimation of glucose concentration in human blood and can be used to create an experimental sample of a non- invasive glucometer.

  13. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  14. Site remediation using biological processes

    International Nuclear Information System (INIS)

    Lei, J.; Sansregret, J.L.; Cyr, B.; Pouliot, Y.

    1995-01-01

    The main process used in the bioremediation of contaminated sites is the microbial degradation and mineralization of pollutants. The bioengineering processes developed and applied by the company to optimize the microbial degradation are described and full scale case studies are reviewed. In each case, the site characteristics (type of contaminants, nature of soil, geographic location, etc.) and the results obtained are presented. The selected projects cover different bioremediation techniques (biopile, bioventing and air sparging), different contaminants (PAH, PCP, hydrocarbons) and different types of industrial sites (former gas work plant, petroleum depot, refinery, etc.)

  15. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  16. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  17. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  18. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, K.; Cecal, A.; Craciun, I.

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatmen from radioactive waste, namely from uranium. The process dor sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plants cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor in the second stage - Spirulina platensis . After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions by the biomass of plants cultivated in the sewage

  19. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, Karin; Cecal, Alexandru; Craciun, Iftimie Ionel; Rudic, Valeriu; Gulea, Aurelian; Cepoi, Liliana

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatment from radioactive waste, namely from uranium. The process for sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plant cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor and in the second stage - Spirulina platensis. After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions accumulation by the biomass of plants cultivated in the sewage.

  20. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  1. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  2. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  3. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  4. Diffusion processes and related topics in biology

    CERN Document Server

    Ricciardi, Luigi M

    1977-01-01

    These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol­ ogy and neurobiology literature. While the subject may be classical, the nov­ elty here lies in the approach and point of view, particularly in the applica­ tions such as the approach to the neuronal firing problem and its related dif­ fusion approximations. It is a ple...

  5. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  6. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario

    2005-01-01

    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  7. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  8. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  9. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  10. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  11. Mixing and Processing of Complex Biological Fluids

    National Research Council Canada - National Science Library

    Liepmann, Dorian

    2003-01-01

    ... of microfluidic control on the makeup and molecular structure of biological fluids. For this project, we focused on two critical fluids that are biologically significant and that are of critical importance to DoD...

  12. Biological processes for mitigation of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, John R. [California Univ., Dept. of Plant and Microbial Biology, Berkeley, CA (United States)

    1999-07-01

    Biological processes driven by photosynthesis cycle through the atmosphere well over an order of magnitude more CO{sub 2} than is currently emitted from the combustion of fossils fuels. Already human activities control and appropriate almost half the primary photosynthetic productivity of the planet. Better management of natural and man-made ecosystems affords many opportunities for mitigation of greenhouse gases, through sink enhancements, source reduction and substitution of fossil fuels with biofuels. Biofuels can be recovered from most organic wastes, from agricultural and forestry residues, and from biomass produced solely for energy use. However, the currently low costs of fossil fuels limits the market for biofuels. Accounting for the greenhouse mitigation value of biofuels would significantly increase their contribution to world fuel suppliers, estimated to be currently equivalent to about 15% of fossil fuel usage. Another limiting factor in expanding the use of biofuels is the relatively low solar energy conversion efficiencies of photosynthesis. Currently well below 1% of solar energy is converted into biomass energy even by intensive agricultural or forestry systems, with peak conversion efficiencies about 2 to 3% for sugar cane or microalgae cultures. One approach to increase photosynthetic efficiencies, being developed at the University of California Berkeley, is to reduce the amount of light-gathering chlorophyll in microalgae and higher plants. This would reduce mutual shading and also increase photosynthetic efficiencies under full sunlight intensities. Estimates of the potential of photosynthetic greenhouse mitigation processes vary widely. However, even conservative estimates for biofuels substituting for fossil fuels project the potential to reduce a large fraction of current increases in atmospheric CO{sub 2} levels. Biofuels production will require integration with existing agronomic, forestry and animal husbandry systems, and improved

  13. Topographic laser ranging and scanning principles and processing

    CERN Document Server

    Shan, Jie

    2008-01-01

    A systematic, in-depth introduction to theories and principles of Light Detection and Ranging (LiDAR) technology is long overdue, as it is the most important geospatial data acquisition technology to be introduced in recent years. An advanced discussion, this text fills the void.Professionals in fields ranging from geology, geography and geoinformatics to physics, transportation, and law enforcement will benefit from this comprehensive discussion of topographic LiDAR principles, systems, data acquisition, and data processing techniques. The book covers ranging and scanning fundamentals, and broad, contemporary analysis of airborne LiDAR systems, as well as those situated on land and in space. The authors present data collection at the signal level in terms of waveforms and their properties; at the system level with regard to calibration and georeferencing; and at the data level to discuss error budget, quality control, and data organization. They devote the bulk of the book to LiDAR data processing and inform...

  14. A study on the ranges of low energy ions in biological samples and its mechanism of biological effects

    International Nuclear Information System (INIS)

    Lu Ting; Xie Liqing; Li Junping; Xia Ji

    1993-01-01

    The seeds of wheat and bean are irradiated by iron ion beam with energy 100 keV. The RBS spectra of the samples are observed and the ranges and distributions of the iron ions in the wheat and bean are calculated theoretically by means of Monte Carlo method. The results of theory and experiment are compared and the mechanism of biological effects induced by ion is discussed

  15. Fundamental host range of Leptoypha hospita (Hemiptera: Tingidae), a potential biological control agent of Chinese privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun

    2016-01-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...

  16. The dielectric constant and its role in the long range coherence in biological systems

    International Nuclear Information System (INIS)

    Paul, R.; Chatterjee, R.

    1984-01-01

    An expression for the dielectric constant has been derived, for the Froehlich model of long-range coherence in biological cells. These theoretical expressions are employed to interpret the observed rouleaux formation of red blood cells (erythrocytes). It is concluded that this unusual behaviour of the erythrocytes can be interpreted satisfactorilly by the extended Froehlich model developed by us. (Author) [pt

  17. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  18. Charge equilibrium processes of energetic incident ions and their range

    International Nuclear Information System (INIS)

    Kawagoshi, Hiroshi; Karashima, Shosuke; Watanabe, Tsutomu.

    1984-01-01

    The charge state of energetic ions passing through a certain matter is varied by charge-exchange processes. A rate equation for charge fraction is given by using electron loss and capture cross sections in collision with a target atom under idealized condition. We solved the rate equation of the charge-exchange process of a single electron in a form of linear coupled differential equation. Our calcuiation for the range of ion were carried out for He, Ne and Ar ions passing through an atomic hydrogen gas target. We discuss the charge states of the projectile in relation to a local charge balance consituting a state of charge equilibrium in the target. (author)

  19. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  20. Linear response in the nonequilibrium zero range process

    International Nuclear Information System (INIS)

    Maes, Christian; Salazar, Alberto

    2014-01-01

    We explore a number of explicit response formulæ around the boundary driven zero range process to changes in the exit and entrance rates. In such a nonequilibrium regime kinetic (and not only thermodynamic) aspects make a difference in the response. Apart from a number of formal approaches, we illustrate a general decomposition of the linear response into entropic and frenetic contributions, the latter being realized from changes in the dynamical activity at the boundaries. In particular in this way one obtains nonlinear modifications to the Green–Kubo relation. We end by bringing some general remarks about the situation where that nonequilibrium response remains given by the (equilibrium) Kubo formula such as for the density profile in the boundary driven Lorentz gas

  1. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.

    Science.gov (United States)

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo

    2018-04-17

    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply

  2. Integrated biological, chemical and physical processes kinetic ...

    African Journals Online (AJOL)

    ... for C and N removal, only gas and liquid phase processes were considered for this integrated model. ... kLA value for the aeration system, which affects the pH in the anoxic and aerobic reactors through CO2 gas exchange. ... Water SA Vol.

  3. Ecological and evolutionary processes at expanding range margins.

    Science.gov (United States)

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  4. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  5. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  6. Comparing ecohydrological processes in alien vs. native ranges: perspectives from the endangered shrub Myricaria germanica

    Science.gov (United States)

    Michielon, Bruno; Campagnaro, Thomas; Porté, Annabel; Hoyle, Jo; Picco, Lorenzo; Sitzia, Tommaso

    2017-04-01

    Comparing the ecology of woody species in their alien and native ranges may provide interesting insights for theoretical ecology, invasion biology, restoration ecology and forestry. The literature which describes the biological evolution of successful plant invaders is rich and increasing. However, no general theories have been developed about the geomorphic settings which may limit or favour the alien woody species expansion along rivers. The aim of this contribution is to explore the research opportunities in the comparison of ecohydrological processes occurring in the alien vs. the native ranges of invasive tree and shrub species along the riverine corridor. We use the endangered shrub Myricaria germanica as an example. Myricaria germanica is an Euro-Asiatic pioneer species that, in the native range, develops along natural rivers, wide and dynamic. These conditions are increasingly limited by anthropogenic constraints in most European rivers. This species has been recently introduced in New Zealand, where it is spreading in some natural rivers of the Canterbury region (South Island). We present the current knowledge about the natural and anthropogenic factors influencing this species in its native range. We compare this information with the current knowledge about the same factors influencing M. germanica invasiveness and invasibility of riparian habitats in New Zealand. We stress the need to identify potential factors which could drive life-traits and growing strategies divergence which may hinder the application to the alien ranges of existing ecohydrological knowledge from native ranges. Moreover, the pattern of expansion of the alien range of species endangered in their native ranges opens new windows for research.

  7. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  8. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  9. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  10. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  11. Resolving the range ambiguity in OFDR using digital signal processing

    International Nuclear Information System (INIS)

    Riesen, Nicolas; Lam, Timothy T-Y; Chow, Jong H

    2014-01-01

    A digitally range-gated variant of optical frequency domain reflectometry is demonstrated which overcomes the beat note ambiguity when sensing beyond a single frequency sweep. The range-gating is achieved using a spread spectrum technique involving time-stamping of the optical signal using high-frequency pseudorandom phase modulation. The reflections from different sections of fiber can then be isolated in the time domain by digitally inverting the phase modulation using appropriately-delayed copies of the pseudorandom noise code. Since the technique overcomes the range ambiguity in OFDR, it permits high sweep repetition rates without sacrificing range, thus allowing for high-bandwidth sensing over long lengths of fiber. This is demonstrated for the case of quasi-distributed sensing. (paper)

  12. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  13. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  14. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  15. Biologic phosphorus elimination - influencing parameters, boundary conditions, process optimation

    International Nuclear Information System (INIS)

    Dai Xiaohu.

    1992-01-01

    This paper first presents a systematic study of the basic process of biologic phosphorus elimination as employed by the original 'Phoredox (Main Stream) Process'. The conditions governing the process and the factors influencing its performance were determined by trial operation. A stationary model was developed for the purpose of modelling biologic phosphorus elimination in such a main stream process and optimising the dimensioning. The validity of the model was confirmed by operational data given in the literature and by operational data from the authors' own semitechnical-scale experimental plant. The model permits simulation of the values to be expected for effluent phosphorus and phosphate concentrations for given influent data and boundary conditions. It is thus possible to dimension a plant for accomodation of the original Phoredox (Main Stream) Process or any similar phosphorus eliminating plant that is to work according to the principle of the main stream process. (orig./EF) [de

  16. Northwest range-plant symbols adapted to automatic data processing.

    Science.gov (United States)

    George A. Garrison; Jon M. Skovlin

    1960-01-01

    Many range technicians, agronomists, foresters, biologists, and botanists of various educational institutions and government agencies in the Northwest have been using a four-letter symbol list or code compiled 12 years ago from records of plants collected by the U.S. Forest Service in Oregon and Washington, This code has served well as a means of entering plant names...

  17. Efficient processing of 3-sided range queries with probabilistic guarantees

    DEFF Research Database (Denmark)

    Kaporis, Alexis; Papadopoulos, Apostolos; Sioutas, Spyros

    2010-01-01

    This work studies the problem of 2-dimensional searching for the 3-sided range query of the form [a, b] x (-∞, c] in both main and external memory, by considering a variety of input distributions. A dynamic linear main memory solution is proposed, which answers 3-sided queries in O(log n + t) worst...

  18. The Range of Microbial Risks in Food Processing

    NARCIS (Netherlands)

    Zwietering, M.H.; Straver, J.M.; Asselt, van E.D.

    2016-01-01

    Foodborne illnesses can be caused by a wide range of microorganisms. Data analysis can help to determine which microorganisms give the highest contribution to the number of foodborne illnesses. This helps to decide which pathogen(s) to focus on in order to reduce the number of illnesses. The same

  19. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  20. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  1. Geographical ranges in macroecology: Processes, patterns and implications

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe

    , are distributed over the entire Earth. Species’ ranges are one of the basic units of the science of macroecology, which deals with patterns in the distribution of life on Earth. An example of such patterns is the large geographic variation in species richness between areas. These patterns are closely linked...... for this relationship. In going through the mechanisms, I distinguish between ‘structural’ causes, such as differences between the niches of species; and ‘dynamic’ causes, such as dispersal of individuals among populations. A central conclusion is that both of these types of mechanisms contribute to creating...... group includes a popularly written book chapter, where the causes and consequences of the spatial distribution of organisms are introduced more generally. The second group consists of several papers investigating the link between ranges and richness patterns. Variation in species richness is probably...

  2. Pitch range variations improve cognitive processing of audio messages

    OpenAIRE

    Rodero Antón, Emma; Potter, Rob F.; Prieto Vives, Pilar, 1965-

    2017-01-01

    This study explores the effect of different speaker intonation strategies in audio messages on attention, autonomic arousal, and memory. An experiment was conducted in which participants listened to 16 radio commercials produced to vary in pitch range across sentences. Dependent variables were self-reported effectiveness and adequacy, psychophysiological arousal and attention, immediate word recall and recognition of information. Results showed that messages conveyed with pitch variations ach...

  3. Ecological and evolutionary processes at expanding range margins

    OpenAIRE

    Thomas, C.D.; Bodsworth, E.J.; Wilson, R.J.; Simmons, A.D.; Davies, Z.G.; Musche, M.; Conradt, L.

    2001-01-01

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded\\ud rapidly in association with recent climate warming3±10. We examined four insect species that have expanded their geographical\\ud ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety ...

  4. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-29

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.

  5. Automation of data processing | G | African Journal of Range and ...

    African Journals Online (AJOL)

    Data processing can be time-consuming when experiments with advanced designs are employed. This, coupled with a shortage of research workers, necessitates automation. It is suggested that with automation the first step is to determine how the data must be analysed. The second step is to determine what programmes ...

  6. Improving the effectiveness of detailed processing by dynamic control of processing with high sports range

    Directory of Open Access Journals (Sweden)

    Yu.V. Shapoval

    2017-12-01

    Full Text Available In this article the possibility of increasing the efficiency of the processing of parts with a diameter of up to 20 mm is analyzed, namely: vibration resistance of the cutting process at pinching due to cutting speed control in the processing, forecasting and selection of rotational frequencies, which ensure the stability of the processing system, controlling the dynamics of the process of displacement of the additional mass. The method of investigation of vibration processes during the sharpening is developed. As a result of the processing of experimental data, it was found that when an oscillatory motion is applied to the spindle rotation, the overall level of oscillation decreases, which is reflected on the quality of the treated surface. The choice of a previously known spindle rotation frequency range at which the lowest value of the oscillation amplitude of the instrument is observed in the radial direction to the detail part, allows you to increase the processing efficiency while maintaining the drawing requirements for roughness by increasing the spindle rotational speed. The combination of the node of the own forms of oscillation and the cutting zone, by dynamically controlling the fluctuations of the lathe armature due to the increase of the inertia characteristics of the machine and the reduction of the oscillation amplitude of the tool, can improve the accuracy of machining and roughness of the processed surface of the component at higher spindle speeds.

  7. DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD

    Science.gov (United States)

    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  8. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  9. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  10. Sandia solidification process: a broad range aqueous waste solidification method

    International Nuclear Information System (INIS)

    Lynch, R.W.; Dosch, R.G.; Kenna, B.T.; Johnstone, J.K.; Nowak, E.J.

    1976-01-01

    New ion-exchange materials of the hydrous oxide type were developed for solidifying aqueous radioactive wastes. These materials have the general formula M[M'/sub x/O/sub y/H/sub z/]/sub n/, where M is an exchangeable cation of charge +n and M' may be Ti; Nb; Zr, or Ta. Affinities for polyvalent cations were found to be very high and ion-exchange capacities large (e.g., 4.0--4.5 meq/g for NaTi 2 O 5 H depending on moisture content). The effectiveness of the exchangers for solidifying high-level waste resulting from reprocessing light-water reactor fuel was demonstrated in small-scale tests. Used in conjunction with anion exchange resin, these materials reduced test solution radioactivity from approximately 0.2 Ci/ml to as low as approximately 2 nCi/ml. The residual radioactivity was almost exclusively due to 106 Ru and total α-activity was only a few pCi/ml. Alternative methods of consolidating the solidified waste were evaluated using nonradioactive simulants. Best results were obtained by pressure-sintering which yielded essentially fully dense ceramics, e.g., titanate/titania ceramics with bulk density as high as 4.7 g/cm 3 , waste oxide content as high as 1.2 g/cm 3 , and leach resistance comparable to good borosilicate glass. Based on the above results, a baseline process for solidifying high-level waste was defined and approximate economic analyses indicated costs were not prohibitive. Additional tests have demonstrated that, if desired, operating conditions could be modified to allow recovery of radiocesium (and perhaps other isotopes) during solidification of the remaining constituents of high-level waste. Preliminary tests have also shown that these materials offer promise for treating tank-stored neutralized wastes

  11. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  12. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  13. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Complete Host Range Testing on Common Reed with Potential Biological Control Agents and Investigation into Biological Control for Flowering Rush

    Science.gov (United States)

    2016-07-01

    CR-16-5 v Preface This report was prepared by Drs. Patrick Häfliger and Hariet Hinz, Centre for Agriculture and Bioscience International (CABI...through Cornell University, the Washington Department of Agriculture , the Washington Department of Ecology, the Washington Department of Natural...capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). American Journal of Botany 92:495–502. Dieckmann, L. 1983

  15. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  16. Influence of different natural physical fields on biological processes

    Science.gov (United States)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  17. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  18. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  19. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  20. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Balakin, A V; Evdokimov, M G; Ozheredov, I A; Sapozhnikov, D A; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Esaulkov, M N; Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-07-31

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis. (laser biophotonics)

  1. Continuous downstream processing for high value biological products: A Review.

    Science.gov (United States)

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  2. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  3. Host range of Secusio extensa (Lepidoptera: Arctiidae), and potential for biological control of Senecio madagascariensis (Asteraceae)

    Science.gov (United States)

    M. M. Ramadan; K. T. Murai; T. Johnson

    2010-01-01

    Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar...

  4. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  5. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  6. Assessment of the Biological Treatability of Black Tea Processing ...

    African Journals Online (AJOL)

    The anaerobic degradability of tea beverage processing effluent was assessed using a stationary upflow anaerobic filter. The filter, with an active column of 1.2m height, inner diameter of 100 mm and filled with rock as the attachment medium was operated at room temperature ranging between 20-250C throughout the ...

  7. A finite element simulation of biological conversion processes in landfills.

    Science.gov (United States)

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A finite element simulation of biological conversion processes in landfills

    International Nuclear Information System (INIS)

    Robeck, M.; Ricken, T.; Widmann, R.

    2011-01-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  9. Adoption: biological and social processes linked to adaptation.

    Science.gov (United States)

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  10. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    Science.gov (United States)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  11. Synthesis of 1-indanones with a broad range of biological activity

    Directory of Open Access Journals (Sweden)

    Marika Turek

    2017-03-01

    Full Text Available This comprehensive review describes methods for the preparation of 1-indanones published in original and patent literature from 1926 to 2017. More than 100 synthetic methods utilizing carboxylic acids, esters, diesters, acid chlorides, ketones, alkynes, alcohols etc. as starting materials, have been performed. This review also covers the most important studies on the biological activity of 1-indanones and their derivatives which are potent antiviral, anti-inflammatory, analgesic, antimalarial, antibacterial and anticancer compounds. Moreover, they can be used in the treatment of neurodegenerative diseases and as effective insecticides, fungicides and herbicides.

  12. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  13. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Strandberg, G.W.; Parrott, J.R. Jr.

    1978-01-01

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m 3 must be reduced to 1 g/m 3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m 3 , where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  14. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  15. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  16. The decline of cisco Coregonus artedi at its southern range extent: Stock biology and management implications

    OpenAIRE

    Honsey, Andrew E.

    2014-01-01

    The cisco Coregonus artedi is distributed throughout northern North America and is relegated to coldwater, oligotrophic systems. Populations of cisco located at the species' southern range extent, including northern Indiana and southern Michigan, have drastically declined over the past century, seemingly due to a combination of climate warming and exacerbation of hypolimnetic hypoxic conditions via intensive land-use and resulting increases in nutrient loading. Apart from their decline, infor...

  17. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus

    Science.gov (United States)

    Gorički, Špela; Stanković, David; Snoj, Aleš; Kuntner, Matjaž; Jeffery, William R.; Trontelj, Peter; Pavićević, Miloš; Grizelj, Zlatko; Năpăruş-Aljančič, Magdalena; Aljančič, Gregor

    2017-03-01

    Europe’s obligate cave-dwelling amphibian Proteus anguinus inhabits subterranean waters of the north-western Balkan Peninsula. Because only fragments of its habitat are accessible to humans, this endangered salamander’s exact distribution has been difficult to establish. Here we introduce a quantitative real time polymerase chain reaction-based environmental DNA (eDNA) approach to detect the presence of Proteus using water samples collected from karst springs, wells or caves. In a survey conducted along the southern limit of its known range, we established a likely presence of Proteus at seven new sites, extending its range to Montenegro. Next, using specific molecular probes to discriminate the rare black morph of Proteus from the closely related white morph, we detected its eDNA at five new sites, thus more than doubling the known number of sites. In one of these we found both black and white Proteus eDNA together. This finding suggests that the two morphs may live in contact with each other in the same body of groundwater and that they may be reproductively isolated species. Our results show that the eDNA approach is suitable and efficient in addressing questions in biogeography, evolution, taxonomy and conservation of the cryptic subterranean fauna.

  18. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  19. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Processing biological literature with customizable Web services supporting interoperable formats.

    Science.gov (United States)

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk. © The Author(s) 2014. Published by Oxford University Press.

  1. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.

    2014-06-01

    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  2. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.

    2006-01-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  3. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  4. Advances in downstream processing of biologics - Spectroscopy: An emerging process analytical technology.

    Science.gov (United States)

    Rüdt, Matthias; Briskot, Till; Hubbuch, Jürgen

    2017-03-24

    Process analytical technologies (PAT) for the manufacturing of biologics have drawn increased interest in the last decade. Besides being encouraged by the Food and Drug Administration's (FDA's) PAT initiative, PAT promises to improve process understanding, reduce overall production costs and help to implement continuous manufacturing. This article focuses on spectroscopic tools for PAT in downstream processing (DSP). Recent advances and future perspectives will be reviewed. In order to exploit the full potential of gathered data, chemometric tools are widely used for the evaluation of complex spectroscopic information. Thus, an introduction into the field will be given. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents

    Science.gov (United States)

    Mierczyk, Z.; Kopczyński, K.; Zygmunt, M.; Wojtanowski, J.; Młynczak, J.; Gawlikowski, A.; Młodzianko, A.; Piotrowski, W.; Gietka, A.; Knysak, P.; Drozd, T.; Muzal, M.; Kaszczuk, M.; Ostrowski, R.; Jakubaszek, M.

    2011-06-01

    LIDAR system for real-time standoff detection of bio-agents is presented and preliminary experimental results are discussed. The detection approach is based on two independent physical phenomena: (1) laser induced fluorescence (LIF), (2) depolarization resulting from elastic scattering on non-spherical particles. The device includes three laser sources, two receiving telescopes, depolarization component and spectral signature analyzing spectrograph. It was designed to provide the stand-off detection capability at ranges from 200 m up to several kilometers. The system as a whole forms a mobile platform for vehicle or building installation. Additionally, it's combined with a scanning mechanics and advanced software, which enable to conduct the semi-automatic monitoring of a specified space sector. For fluorescence excitation, 3-rd (355 nm) and 4-th (266 nm) harmonics of Nd:YAG pulsed lasers are used. They emit short (~6 ns) pulses with the repetition rate of 20 Hz. Collecting optics for fluorescence echo detection and spectral content analysis includes 25 mm diameter f/4 Newton telescope, Czerny Turner spectrograph and 32-channel PMT. Depending on the grating applied, the spectral resolution from 20 nm up to 3 nm per channel can be achieved. The system is also equipped with an eye-safe (1.5 μm) Nd:YAG OPO laser for elastic backscattering/depolarization detection. The optical echo signal is collected by Cassegrain telescope with aperture diameter of 12.5 mm. Depolarization detection component based on polarizing beam-splitter serves as the stand-off particle-shape analyzer, which is very valuable in case of non-spherical bio-aerosols sensing.

  6. Crowdsourcing and curation: perspectives from biology and natural language processing.

    Science.gov (United States)

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie; Kyrpides, Nikos; Islamaj Doğan, Rezarta; Cohen, Kevin Bretonnel

    2016-01-01

    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging 'the crowd'; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9-11, 2015). The session consisted of four short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.Database URL: http://www.mitre.org/publications/technical-papers/crowdsourcing-and-curation-perspectives. © The Author(s) 2016. Published by Oxford University Press.

  7. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  8. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  9. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  10. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  11. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  12. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  13. Dense range images from sparse point clouds using multi-scale processing

    NARCIS (Netherlands)

    Do, Q.L.; Ma, L.; With, de P.H.N.

    2013-01-01

    Multi-modal data processing based on visual and depth/range images has become relevant in computer vision for 3D reconstruction applications such as city modeling, robot navigation etc. In this paper, we generate highaccuracy dense range images from sparse point clouds to facilitate such

  14. Irradiation of biological molecules (DNA and RNA bases) by proton impact in the velocity range of the Bragg peak (20-150 keV/amu)

    International Nuclear Information System (INIS)

    Tabet, J.

    2007-11-01

    The aim of this work was to study the ionization of DNA and RNA base molecules by proton impact at energies between 20 and 150 keV/amu. The experiments developed over the course of this project made it possible not only to study the fragmentation of uracil, thymine, adenine, and cytosine, but also to measure absolute cross sections for different ionization processes initiated by proton interactions with these important biological molecules. Firstly, the experimental system enabled the contributions of two key ionization processes to be separated: direct ionization and electron capture. The corresponding mass spectra were measured and analyzed on an event-by-event basis. For uracil, the branching ratios for these two processes were measured as function of the projectile velocity. Secondly, we have developed a system to measure absolute cross sections for the electron capture process. The production rate of neutral atoms compared to protons was measured for the four biological molecules: uracil, cytosine, thymine, and adenine at different vaporization temperatures. This production rate varies as a function of the thickness of the target jet traversed by the protons. Accordingly, a deposit experiment was developed in order to characterize the density of molecules in the targeted gas jets. Theoretical and experimental study of the total effusion and density-profile of the gaseous molecular beams enabled us to deduce the thickness of the target jets traversed by the protons. Thus it was possible to determine absolute cross sections for the ionization of each of the four isolated biological molecules by 80 keV protons impact. To our knowledge, this work provides the first experimental absolute cross sections for DNA and RNA base ionization processes initiated by proton impact in the velocity range corresponding to the Bragg peak. (author)

  15. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  16. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education

    Science.gov (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  17. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Thiruvengadathan, Rajagopalan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Korampally, Venumadhav; Ghosh, Arkasubhra; Chanda, Nripen

    2013-01-01

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  18. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  19. Order of current variance and diffusivity in the rate one totally asymmetric zero range process

    NARCIS (Netherlands)

    Balázs, M.; Komjáthy, J.

    2008-01-01

    We prove that the variance of the current across a characteristic is of order t 2/3 in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order t 1/3. This is a step towards proving universality of this scaling behavior in the class of one-dimensional

  20. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    International Nuclear Information System (INIS)

    Cole, Z.; Roos, P.A.; Berg, T.; Kaylor, B.; Merkel, K.D.; Babbitt, W.R.; Reibel, R.R.

    2007-01-01

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier

  1. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Z. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)]. E-mail: cole@s2corporation.com; Roos, P.A. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Berg, T. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Kaylor, B. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Merkel, K.D. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Reibel, R.R. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)

    2007-11-15

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier.

  2. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation

    Directory of Open Access Journals (Sweden)

    Xuejiao Wen

    2018-05-01

    Full Text Available Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  3. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation.

    Science.gov (United States)

    Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi

    2018-05-07

    Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  4. Use of a cocktail of spin traps for fingerprinting large range of free radicals in biological systems.

    Science.gov (United States)

    Marchand, Valérie; Charlier, Nicolas; Verrax, Julien; Buc-Calderon, Pedro; Levêque, Philippe; Gallez, Bernard

    2017-01-01

    It is well established that the formation of radical species centered on various atoms is involved in the mechanism leading to the development of several diseases or to the appearance of deleterious effects of toxic molecules. The detection of free radical is possible using Electron Paramagnetic Resonance (EPR) spectroscopy and the spin trapping technique. The classical EPR spin-trapping technique can be considered as a "hypothesis-driven" approach because it requires an a priori assumption regarding the nature of the free radical in order to select the most appropriate spin-trap. We here describe a "data-driven" approach using EPR and a cocktail of spin-traps. The rationale for using this cocktail was that it would cover a wide range of biologically relevant free radicals and have a large range of hydrophilicity and lipophilicity in order to trap free radicals produced in different cellular compartments. As a proof-of-concept, we validated the ability of the system to measure a large variety of free radicals (O-, N-, C-, or S- centered) in well characterized conditions, and we illustrated the ability of the technique to unambiguously detect free radical production in cells exposed to chemicals known to be radical-mediated toxic agents.

  5. MRI Proton Density Fat Fraction Is Robust Across the Biologically Plausible Range of Triglyceride Spectra in Adults With Nonalcoholic Steatohepatitis

    Science.gov (United States)

    Hong, Cheng William; Mamidipalli, Adrija; Hooker, Jonathan C.; Hamilton, Gavin; Wolfson, Tanya; Chen, Dennis H.; Dehkordy, Soudabeh Fazeli; Middleton, Michael S.; Reeder, Scott B.; Loomba, Rohit; Sirlin, Claude B.

    2017-01-01

    Background Proton density fat fraction (PDFF) estimation requires spectral modeling of the hepatic triglyceride (TG) signal. Deviations in the TG spectrum may occur, leading to bias in PDFF quantification. Purpose To investigate the effects of varying six-peak TG spectral models on PDFF estimation bias. Study Type Retrospective secondary analysis of prospectively acquired clinical research data. Population Forty-four adults with biopsy-confirmed nonalcoholic steatohepatitis. Field Strength/Sequence Confounder-corrected chemical-shift-encoded 3T MRI (using a 2D multiecho gradient-recalled echo technique with magnitude reconstruction) and MR spectroscopy. Assessment In each patient, 61 pairs of colocalized MRI-PDFF and MRS-PDFF values were estimated: one pair used the standard six-peak spectral model, the other 60 were six-peak variants calculated by adjusting spectral model parameters over their biologically plausible ranges. MRI-PDFF values calculated using each variant model and the standard model were compared, and the agreement between MRI-PDFF and MRS-PDFF was assessed. Statistical Tests MRS-PDFF and MRI-PDFF were summarized descriptively. Bland–Altman (BA) analyses were performed between PDFF values calculated using each variant model and the standard model. Linear regressions were performed between BA biases and mean PDFF values for each variant model, and between MRI-PDFF and MRS-PDFF. Results Using the standard model, mean MRS-PDFF of the study population was 17.9±8.0% (range: 4.1–34.3%). The difference between the highest and lowest mean variant MRI-PDFF values was 1.5%. Relative to the standard model, the model with the greatest absolute BA bias overestimated PDFF by 1.2%. Bias increased with increasing PDFF (P hepatic fat content, PDFF estimation is robust across the biologically plausible range of TG spectra. Although absolute estimation bias increased with higher PDFF, its magnitude was small and unlikely to be clinically meaningful. Level of

  6. Biological features produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Mendez Ribo, Macarena; Pedersen, David Bue

    2017-01-01

    of micro biological features by Additive Manufacturing (AM) processes. The study characterizes the additive manufacturing processes for polymeric micro part productions using the vat photopolymerization method. A specifically designed vat photopolymerization AM machine suitable for precision printing...

  7. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  8. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    Science.gov (United States)

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  9. Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    KAUST Repository

    Isakova, Anna

    2018-05-17

    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.

  10. Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    KAUST Repository

    Isakova, Anna; Karuthedath, Safakath; Arnold, Thomas; Howse, Jonathan; Topham, Paul D.; Toolan, Daniel Thomas William; Laquai, Fré dé ric; Lü er, Larry

    2018-01-01

    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.

  11. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  12. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  13. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  14. Behaviour of radionuclides in biological and non-biological processes at very low concentrations

    International Nuclear Information System (INIS)

    Sinnaeve, J.; Frissel, M.J.; Klugt, N. van der; Geijn, S.C. van de.

    1980-01-01

    Four experiments using a 'biological exchange column', i.e. a cut papyrus stem were carried out. Prior to the passage of the labelled solution containing 250 μCi 137 Cs.l -1 , and 1 μCi 134 Cs.l -1 , the exchange sites of the stem were protonated. Two treatments were carried out, the first with 10 -4 M stable caesium in the labelled solution and the second with 10 -4 M potassium. After detection of the front of activity half way up the stem, 5 cm segments of the stem were cut and counted. (Auth.)

  15. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    International Nuclear Information System (INIS)

    Martin, C.; Manzanares, P.

    1994-01-01

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  16. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    Science.gov (United States)

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  17. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  18. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  19. Two-way feedback between biology and deep Earth processes

    DEFF Research Database (Denmark)

    Sleep, Norman; Bird, Dennis K.; Pope, Emily Catherine

    The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean...... was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition...... of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth...

  20. Describing long-range charge-separation processes with subsystem density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany); Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, 73 Warren St., Newark, New Jersey 07102 (United States)

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.

  1. Describing long-range charge-separation processes with subsystem density-functional theory

    International Nuclear Information System (INIS)

    Solovyeva, Alisa; Neugebauer, Johannes; Pavanello, Michele

    2014-01-01

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states

  2. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  3. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  4. Facilitating a More Efficient Commercial Review Process for Pediatric Drugs and Biologics

    Directory of Open Access Journals (Sweden)

    Ryan D. Rykhus

    2017-12-01

    Full Text Available Over the past two decades, the biopharmaceutical industry has seen unprecedented expansion and innovation in concert with significant technological advancements. While the industry has experienced marked growth, the regulatory system in the United States still operates at a capacity much lower than the influx of new drug and biologic candidates. As a result, it has become standard for months or even years of waiting for commercial approval by the U.S. Food and Drug Administration. These regulatory delays have generated a system that stifles growth and innovation due to the exorbitant costs associated with awaiting approval from the nation’s sole regulatory agency. The recent re-emergence of diseases that impact pediatric demographics represents one particularly acute reason for developing a regulatory system that facilitates a more efficient commercial review process. Herein, we present a range of initiatives that could represent early steps toward alleviating the delays in approving life-saving therapeutics.

  5. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  6. Mistaking geography for biology: inferring processes from species distributions.

    Science.gov (United States)

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    Science.gov (United States)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  8. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  9. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  10. Applications of Structural Biology and Bioinformatics in the Investigation of Oxidative Stress-Related Processes

    NARCIS (Netherlands)

    Bersch, Beate; Groves, Matthew; Johann, Klare; Torda, Andrew; Ortiz, Dario; Laher, I.

    2014-01-01

    Reactive oxygen species (ROS)-mediated dysfunction of certain biological processes is implicated in different diseases in humans, including cardiovascular, cancer, or neurodegenerative disorders. Not only human cells and tissues are affected by ROS but also all other biological systems, including

  11. Conserving forest biological diversity: How the Montreal Process helps achieve sustainability

    Science.gov (United States)

    Mark Nelson; Guy Robertson; Kurt. Riitters

    2015-01-01

    Forests support a variety of ecosystems, species and genes — collectively referred to as biological diversity — along with important processes that tie these all together. With the growing recognition that biological diversity contributes to human welfare in a number of important ways such as providing food, medicine and fiber (provisioning services...

  12. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    Science.gov (United States)

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  13. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  14. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  15. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  16. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  17. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    International Nuclear Information System (INIS)

    Petrov, E.G.; Teslenko, V.I.

    2010-01-01

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X 3 receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  18. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, E.G., E-mail: epetrov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street, 14-b, UA-03680 Kiev (Ukraine); Teslenko, V.I. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street, 14-b, UA-03680 Kiev (Ukraine)

    2010-10-05

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X{sub 3} receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  19. Unity and disunity in evolutionary sciences: process-based analogies open common research avenues for biology and linguistics.

    Science.gov (United States)

    List, Johann-Mattis; Pathmanathan, Jananan Sylvestre; Lopez, Philippe; Bapteste, Eric

    2016-08-20

    For a long time biologists and linguists have been noticing surprising similarities between the evolution of life forms and languages. Most of the proposed analogies have been rejected. Some, however, have persisted, and some even turned out to be fruitful, inspiring the transfer of methods and models between biology and linguistics up to today. Most proposed analogies were based on a comparison of the research objects rather than the processes that shaped their evolution. Focusing on process-based analogies, however, has the advantage of minimizing the risk of overstating similarities, while at the same time reflecting the common strategy to use processes to explain the evolution of complexity in both fields. We compared important evolutionary processes in biology and linguistics and identified processes specific to only one of the two disciplines as well as processes which seem to be analogous, potentially reflecting core evolutionary processes. These new process-based analogies support novel methodological transfer, expanding the application range of biological methods to the field of historical linguistics. We illustrate this by showing (i) how methods dealing with incomplete lineage sorting offer an introgression-free framework to analyze highly mosaic word distributions across languages; (ii) how sequence similarity networks can be used to identify composite and borrowed words across different languages; (iii) how research on partial homology can inspire new methods and models in both fields; and (iv) how constructive neutral evolution provides an original framework for analyzing convergent evolution in languages resulting from common descent (Sapir's drift). Apart from new analogies between evolutionary processes, we also identified processes which are specific to either biology or linguistics. This shows that general evolution cannot be studied from within one discipline alone. In order to get a full picture of evolution, biologists and linguists need to

  20. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  1. Growth performance of free-range village chickens fed dehydrated processed food waste

    Directory of Open Access Journals (Sweden)

    Hossein, S.

    2015-06-01

    Full Text Available The effect of dehydrated processed food waste (DPFW inclusion in the diets on the growth performance (feed intake, body weight gain, body weight change and feed conversion ratio of free-range village chickens was investigated. Food waste collected from 20 different restaurants of Universiti Putra Malaysia Serdang Selangor was processed into DPFW containing 89.3% dry matter, 16% crude protein, 7.1% crude fat, 3.7% crude fiber, 7.4% crude ash, 3.07% NaCl, 1.56% Ca, 0.87% phosphorous and 4053 kcal/kg GE. A total of of 180 village chickens of the Arabian breed were randomly allocated into four dietary treatments of 0 (control, 20, 40 and 60% DPFW for 5-9 week grower and 10-14 week finisher periods with three replicates (15 birds for each replicate. The results showed that the highest feed intake in grower and finisher phases was observed in the control group by 634.0 g and 2,722.1 g, respectively, while the lowest was in 60% DPFW with 586.3 g for grower and 2,542.6 g for finisher phases (P0.05. Body weight gain and body weight change declined linearly with increasing levels of DPFW of more than 20% in the village chicken diets during both grower and finisher rearing phases. FAR increased (P0.05. In conclusion it seems that the dehydrated processed food waste could substitute 20% of formulated feed in grower and finisher phases of free-range village chickens without any adverse effects on growth performance.

  2. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  3. Chemical and Biological Defense: DOD Needs Consistent Policies and Clear Processes to Address the Survivability of Weapon Systems Against Chemical and Biological Threats

    National Research Council Canada - National Science Library

    2006-01-01

    DOD, joint, and military service weapon system acquisition policies inconsistently address and do not establish a clear process for considering and testing system chemical and biological survivability...

  4. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  5. Cognitive processing load across a wide range of listening conditions: insights from pupillometry.

    Science.gov (United States)

    Zekveld, Adriana A; Kramer, Sophia E

    2014-03-01

    The pupil response to speech masked by interfering speech was assessed across an intelligibility range from 0% to 99% correct. In total, 37 participants aged between 18 and 36 years and with normal hearing were included. Pupil dilation was largest at intermediate intelligibility levels, smaller at high intelligibility, and slightly smaller at very difficult levels. Participants who reported that they often gave up listening at low intelligibility levels had smaller pupil dilations in these conditions. Participants who were good at reading masked text had relatively large pupil dilation when intelligibility was low. We conclude that the pupil response is sensitive to processing load, and possibly reflects cognitive overload in difficult conditions. It seems affected by methodological aspects and individual abilities, but does not reflect subjective ratings. Copyright © 2014 Society for Psychophysiological Research.

  6. Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF Method

    Directory of Open Access Journals (Sweden)

    Chen Xiaolong

    2018-04-01

    Full Text Available To meet the urgent demand of low-observable moving target detection in complex environments, a novel method of Frequency Diverse Array (FDA radar signal processing method based on Space-Rang-Doppler Focusing (SRDF is proposed in this paper. The current development status of the FDA radar, the design of the array structure, beamforming, and joint estimation of distance and angle are systematically reviewed. The extra degrees of freedom provided by FDA radar are fully utilizsed, which include the Degrees Of Freedom (DOFs of the transmitted waveform, the location of array elements, correlation of beam azimuth and distance, and the long dwell time, which are also the DOFs in joint spatial (angle, distance, and frequency (Doppler dimensions. Simulation results show that the proposed method has the potential of improving target detection and parameter estimation for weak moving targets in complex environments and has broad application prospects in clutter and interference suppression, moving target refinement, etc..

  7. Fluctuations and pseudo long range dependence in network flows: A non-stationary Poisson process model

    International Nuclear Information System (INIS)

    Yu-Dong, Chen; Li, Li; Yi, Zhang; Jian-Ming, Hu

    2009-01-01

    In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain power-law between the mean flux (activity) (F i ) of the i-th node and its variance σ i as σ i α (F i ) α . Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaling phenomenon. (general)

  8. Homonuclear long-range correlation spectra from HMBC experiments by covariance processing.

    Science.gov (United States)

    Schoefberger, Wolfgang; Smrecki, Vilko; Vikić-Topić, Drazen; Müller, Norbert

    2007-07-01

    We present a new application of covariance nuclear magnetic resonance processing based on 1H--13C-HMBC experiments which provides an effective way for establishing indirect 1H--1H and 13C--13C nuclear spin connectivity at natural isotope abundance. The method, which identifies correlated spin networks in terms of covariance between one-dimensional traces from a single decoupled HMBC experiment, derives 13C--13C as well as 1H--1H spin connectivity maps from the two-dimensional frequency domain heteronuclear long-range correlation data matrix. The potential and limitations of this novel covariance NMR application are demonstrated on two compounds: eugenyl-beta-D-glucopyranoside and an emodin-derivative. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Real-time image processing of TOF range images using a reconfigurable processor system

    Science.gov (United States)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  10. Matrix product representation of the stationary state of the open zero range process

    Science.gov (United States)

    Bertin, Eric; Vanicat, Matthieu

    2018-06-01

    Many one-dimensional lattice particle models with open boundaries, like the paradigmatic asymmetric simple exclusion process (ASEP), have their stationary states represented in the form of a matrix product, with matrices that do not explicitly depend on the lattice site. In contrast, the stationary state of the open 1D zero-range process (ZRP) takes an inhomogeneous factorized form, with site-dependent probability weights. We show that in spite of the absence of correlations, the stationary state of the open ZRP can also be represented in a matrix product form, where the matrices are site-independent, non-commuting and determined from algebraic relations resulting from the master equation. We recover the known distribution of the open ZRP in two different ways: first, using an explicit representation of the matrices and boundary vectors; second, from the sole knowledge of the algebraic relations satisfied by these matrices and vectors. Finally, an interpretation of the relation between the matrix product form and the inhomogeneous factorized form is proposed within the framework of hidden Markov chains.

  11. Simulation study on characteristics of long-range interaction in randomly asymmetric exclusion process

    Science.gov (United States)

    Zhao, Shi-Bo; Liu, Ming-Zhe; Yang, Lan-Ying

    2015-04-01

    In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long-range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α, β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 41274109 and 11104022), the Fund for Sichuan Youth Science and Technology Innovation Research Team (Grant No. 2011JTD0013), and the Creative Team Program of Chengdu University of Technology.

  12. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  13. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  14. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.

    Science.gov (United States)

    Segner, Helmut

    2011-10-01

    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  15. PROCESSING OF UAV BASED RANGE IMAGING DATA TO GENERATE DETAILED ELEVATION MODELS OF COMPLEX NATURAL STRUCTURES

    Directory of Open Access Journals (Sweden)

    T. K. Kohoutek

    2012-07-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are more and more used in civil areas like geomatics. Autonomous navigated platforms have a great flexibility in flying and manoeuvring in complex environments to collect remote sensing data. In contrast to standard technologies such as aerial manned platforms (airplanes and helicopters UAVs are able to fly closer to the object and in small-scale areas of high-risk situations such as landslides, volcano and earthquake areas and floodplains. Thus, UAVs are sometimes the only practical alternative in areas where access is difficult and where no manned aircraft is available or even no flight permission is given. Furthermore, compared to terrestrial platforms, UAVs are not limited to specific view directions and could overcome occlusions from trees, houses and terrain structures. Equipped with image sensors and/or laser scanners they are able to provide elevation models, rectified images, textured 3D-models and maps. In this paper we will describe a UAV platform, which can carry a range imaging (RIM camera including power supply and data storage for the detailed mapping and monitoring of complex structures, such as alpine riverbed areas. The UAV platform NEO from Swiss UAV was equipped with the RIM camera CamCube 2.0 by PMD Technologies GmbH to capture the surface structures. Its navigation system includes an autopilot. To validate the UAV-trajectory a 360° prism was installed and tracked by a total station. Within the paper a workflow for the processing of UAV-RIM data is proposed, which is based on the processing of differential GNSS data in combination with the acquired range images. Subsequently, the obtained results for the trajectory are compared and verified with a track of a UAV (Falcon 8, Ascending Technologies carried out with a total station simultaneously to the GNSS data acquisition. The results showed that the UAV's position using differential GNSS could be determined in the centimetre to the decimetre

  16. Simulation and Analysis of Complex Biological Processes: an Organisation Modelling Perspective

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2005-01-01

    This paper explores how the dynamics of complex biological processes can be modelled and simulated as an organisation of multiple agents. This modelling perspective identifies organisational structure occurring in complex decentralised processes and handles complexity of the analysis of the dynamics

  17. Molecular comparison of cattle fever ticks from native and introduced ranges with insights into optimal search areas for classical biological control agents

    Science.gov (United States)

    Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks could complement existing control strategies for this livestock pest in the transboundary region between Mexico and Texas. DNA fingerprinting tools were used to compare ...

  18. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  19. A broad pH range and processive chitinase from a metagenome library

    Directory of Open Access Journals (Sweden)

    S.S. Thimoteo

    Full Text Available Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine linked β(1-4 present in the exoskeleton of crustaceans, insects, nematodes and fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil was functionally screened for chitinase activity leading to the isolation and identification of a chitinase gene named metachi18A. The metachi18A gene was subcloned and overexpressed in Escherichia coli BL21 and the MetaChi18A chitinase was purified by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family 18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C. Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to 9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low concentrations of colloidal chitin, indicating a possible conformational change to lead the chitin chain from the chitin-binding to the catalytic domain. The observed stability and activity of MetaChi18A over a wide range of conditions suggest that this chitinase, now characterized, may be suitable for application in the industrial processing of chitin.

  20. Biology and host range of Tecmessa elegans (Lepidoptera: Notodontidae), a leaf-feeding moth evaluated as a potential biological control agent for Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    Science.gov (United States)

    Oleiro, Marina; Mc Kay, Fernando; Wheeler, Gregory S

    2011-06-01

    During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.

  1. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    Science.gov (United States)

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  2. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  3. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  4. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    Science.gov (United States)

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  5. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  6. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    Science.gov (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be

  8. Local contrast-enhanced MR images via high dynamic range processing.

    Science.gov (United States)

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  9. The application of membrane technology for reuse of process water and minimisation of waste water in a textile washing range

    NARCIS (Netherlands)

    van t Hul, J.P.; Racz, I.G.; Reith, T.

    1997-01-01

    Recycling of process streams and reduction of waste disposal using membrane technology in a continuous textile washing process after dyeing with reactive dyes have been investigated theoretically. A mathematical process model of a conventional open-width washing range has been extended by membrane

  10. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  11. Image enhancement circuit using nonlinear processing curve and constrained histogram range equalization

    NARCIS (Netherlands)

    Cvetkovic, S.D.; With, de P.H.N.; Panchanathan, S.; Vasudev, B.

    2004-01-01

    For real-time imaging in surveillance applications, image fidelity is of primary importance to ensure customer confidence. The obtained image fidelity is a result from amongst others dynamic range expansion and video signal enhancement. The dynamic range of the signal needs adaptation, because the

  12. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  13. Fixation and utilization of CO2 by biological and/or chemical processes

    International Nuclear Information System (INIS)

    Hiromichi, N.

    1994-01-01

    This paper presents the carbon dioxide fixation and utilisation by biological and/or chemical processes. It presents research objectives and program contents for the effective fixation of carbon dioxide by micro-organism and its hydrogenation. (TEC). 5 figs., 2 tabs

  14. Investigation of the Nature of Metaconceptual Processes of Pre-Service Biology Teachers

    Science.gov (United States)

    Yuruk, Nejla; Selvi, Meryem; Yakisan, Mehmet

    2017-01-01

    Purpose of Study: The aim of this study is to investigate the nature of pre-service biology teachers' metaconceptual processes that were active as they participated in metaconceptual teaching activities. Methods: Several instructional activities, including poster drawing, concept mapping, group and class discussions, and journal writing, were…

  15. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  16. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  17. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Science.gov (United States)

    Drier, Yotam; Domany, Eytan

    2011-03-14

    The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  18. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Directory of Open Access Journals (Sweden)

    Yotam Drier

    2011-03-01

    Full Text Available The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  19. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Science.gov (United States)

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  20. Radiation biology using synchrotron radiation. In relation to radiation chemistry as an initial process

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1995-01-01

    Radiation biology using synchrotron radiation have been investigated, focusing on the mechanism of the formation of molecular damage. This paper introduces recent outcome of these studies. First, the process from imparted energy to the formation of molecular damage is outlined. The previous studies can be largely categorized as dealing with (1) biological effects of inner-shell ionization on elements composing the living body and (2) X-ray energy dependence of biological effects. Bromine and phosphorus are used as elements for the study of inner-cell ionization. In the study on lethal effects of monochromatic soft X-rays on the BrdUMP-incorporated yeast cells, Auger enhancement was found to occur. The first report on the effects of K-shell absorption of cellular phosphorus atoms has revealed that biological effects on cellular lethality and genetic changes was enhanced by 40%. Plasmid DNA and oligonucleotide have been used to study biological effects of vacuum ultraviolet rays to monochromatic soft X-ray, which makes it possible to study strand breaks. Because experimental production of energy required for the formation of double strand breaks has become possible, synchrotron radiation plays a very important role in radiation biological studies. Finally, future issues are presented. (N.K.)

  1. Modelling biological processes in WWTP; Modelado de procesos biologicos en las EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Carpes, G.

    2009-07-01

    Biological technologies by active sludges are the most used in wastewater treatments. Multiple variants are affected in the characterization of this process, like wastewater treatment plant (WWTP) design, features and concentration of sludge, dissolved oxygen concentration and characteristics of the wastewater, including temperature and nutrients. Mathematical formula applied to WWTP modelling are presented to design its operation and to test the most important parameters, too. It is necessary to optimize the process in WWTP. (Author) 19 refs.

  2. A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen Pasteuria ramosa in Daphnia.

    Science.gov (United States)

    Ebert, Dieter; Duneau, David; Hall, Matthew D; Luijckx, Pepijn; Andras, Jason P; Du Pasquier, Louis; Ben-Ami, Frida

    2016-01-01

    The infection process of many diseases can be divided into series of steps, each one required to successfully complete the parasite's life and transmission cycle. This approach often reveals that the complex phenomenon of infection is composed of a series of more simple mechanisms. Here we demonstrate that a population biology approach, which takes into consideration the natural genetic and environmental variation at each step, can greatly aid our understanding of the evolutionary processes shaping disease traits. We focus in this review on the biology of the bacterial parasite Pasteuria ramosa and its aquatic crustacean host Daphnia, a model system for the evolutionary ecology of infectious disease. Our analysis reveals tremendous differences in the degree to which the environment, host genetics, parasite genetics and their interactions contribute to the expression of disease traits at each of seven different steps. This allows us to predict which steps may respond most readily to selection and which steps are evolutionarily constrained by an absence of variation. We show that the ability of Pasteuria to attach to the host's cuticle (attachment step) stands out as being strongly influenced by the interaction of host and parasite genotypes, but not by environmental factors, making it the prime candidate for coevolutionary interactions. Furthermore, the stepwise approach helps us understanding the evolution of resistance, virulence and host ranges. The population biological approach introduced here is a versatile tool that can be easily transferred to other systems of infectious disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    Science.gov (United States)

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  4. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  5. Formal Process Modeling to Improve Human Decision-Making in Test and Evaluation Acoustic Range Control

    Science.gov (United States)

    2017-09-01

    MODELING TO IMPROVE HUMAN DECISION-MAKING DURING TEST AND EVALUATION RANGE CONTROL by William Carlson September 2017 Thesis Advisor...the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...MAKING DURING TEST AND EVALUATION RANGE CONTROL 5. FUNDING NUMBERS 6. AUTHOR(S) William Carlson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  6. Biclustering with Flexible Plaid Models to Unravel Interactions between Biological Processes.

    Science.gov (United States)

    Henriques, Rui; Madeira, Sara C

    2015-01-01

    Genes can participate in multiple biological processes at a time and thus their expression can be seen as a composition of the contributions from the active processes. Biclustering under a plaid assumption allows the modeling of interactions between transcriptional modules or biclusters (subsets of genes with coherence across subsets of conditions) by assuming an additive composition of contributions in their overlapping areas. Despite the biological interest of plaid models, few biclustering algorithms consider plaid effects and, when they do, they place restrictions on the allowed types and structures of biclusters, and suffer from robustness problems by seizing exact additive matchings. We propose BiP (Biclustering using Plaid models), a biclustering algorithm with relaxations to allow expression levels to change in overlapping areas according to biologically meaningful assumptions (weighted and noise-tolerant composition of contributions). BiP can be used over existing biclustering solutions (seizing their benefits) as it is able to recover excluded areas due to unaccounted plaid effects and detect noisy areas non-explained by a plaid assumption, thus producing an explanatory model of overlapping transcriptional activity. Experiments on synthetic data support BiP's efficiency and effectiveness. The learned models from expression data unravel meaningful and non-trivial functional interactions between biological processes associated with putative regulatory modules.

  7. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    Science.gov (United States)

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.

  8. Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture.

    Science.gov (United States)

    Baquero, Fernando

    2017-11-01

    Transmission is a basic process in biology and evolution, as it communicates different biological entities within and across hierarchical levels (from genes to holobionts) both in time and space. Vertical descent, replication, is transmission of information across generations (in the time dimension), and horizontal descent is transmission of information across compartments (in the space dimension). Transmission is essentially a communication process that can be studied by analogy of the classic information theory, based on 'emitters', 'messages' and 'receivers'. The analogy can be easily extended to the triad 'emigration', 'migration' and 'immigration'. A number of causes (forces) determine the emission, and another set of causes (energies) assures the reception. The message in fact is essentially constituted by 'meaningful' biological entities. A DNA sequence, a cell and a population have a semiotic dimension, are 'signs' that are eventually recognized (decoded) and integrated by receiver biological entities. In cis-acting or unenclosed transmission, the emitters and receivers correspond to separated entities of the same hierarchical level; in trans-acting or embedded transmission, the information flows between different, but frequently nested, hierarchical levels. The result (as in introgressive events) is constantly producing innovation and feeding natural selection, influencing also the evolution of transmission processes. This review is based on the concepts presented at the André Lwoff Award Lecture in the FEMS Microbiology Congress in Maastricht in 2015. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.

    1995-01-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  10. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  11. Improvement of range spatial resolution of medical ultrasound imaging by element-domain signal processing

    Science.gov (United States)

    Hasegawa, Hideyuki

    2017-07-01

    The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).

  12. The weathering and transformation process of lead in China's shooting ranges.

    Science.gov (United States)

    Li, Yeling; Zhu, Yongbing; Zhao, Sanping; Liu, Xiaodong

    2015-09-01

    Corroding steel-core bullets from three shooting ranges in different climate zones of China were collected. Multiple technical methods (EMPA, SEM, XRD, and ICP-OES) were applied to investigate the structure, morphology, and weathering product of this type of bullet in China to analyze the weathering mechanisms in different types of soils. A scanning electron microscope (SEM) was used to view the morphology and microstructure of corrosion layers. On the corroded lead layer surface, unevenness, micro cracks, and spallation were usually present. Around the micro cracks, many types of euhedral and subhedral crystals of the secondary products of lead were formed, most of which were composed of cerussite (PbCO3), while hydrocerussite (Pb3(CO3)2(OH)2) was predominant in the bullet collected from the humid environment. X-ray power diffraction (XRD) results show that the secondary weathering products in the three shooting range soils are clearly different. In the Fangyan shooting range, which has a neutral and semi-arid soil, the lead weathering product was mainly hydrocerussite (Pb3(CO3)2(OH)2), while no substantial amount of crystal phase of lead compound could be found in acidic, damp soils from the Fenghuang shooting range, possibly due to the enhanced dissolution and mobilization of lead compounds at lower pH and higher content of organic matter in the soil. In hot and arid environment of the Baicheng shooting range, cerussite might have undergone thermal decomposition, thus generating shannonite (Pb2O(CO3)). These results indicate that the formation of secondary Pb minerals is largely affected by the climatic zone or the soil properties, which may have implications for range management practices.

  13. Manycore processing of repeated range queries over massive moving objects observations

    DEFF Research Database (Denmark)

    Lettich, Francesco; Orlando, Salvatore; Silvestri, Claudio

    2014-01-01

    decomposition and allows to tackle effectively a broad range of spatial object distributions, even those very skewed. Also, to deal with the architectural peculiarities and limitations of the GPUs, we adopt non-trivial GPU data structures that avoid the need of locked memory accesses and favour coalesced memory...... accesses, thus enhancing the overall memory throughput. To the best of our knowledge this is the first work that exploits GPUs to efficiently solve repeated range queries over massive sets of continuously moving objects, characterized by highly skewed spatial distributions. In comparison with state...

  14. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    Science.gov (United States)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  15. Acquisition And Processing Of Range Data Using A Laser Scanner-Based 3-D Vision System

    Science.gov (United States)

    Moring, I.; Ailisto, H.; Heikkinen, T.; Kilpela, A.; Myllyla, R.; Pietikainen, M.

    1988-02-01

    In our paper we describe a 3-D vision system designed and constructed at the Technical Research Centre of Finland in co-operation with the University of Oulu. The main application fields our 3-D vision system was developed for are geometric measurements of large objects and manipulator and robot control tasks. It seems to be potential in automatic vehicle guidance applications, too. The system has now been operative for about one year and its performance has been extensively tested. Recently we have started a field test phase to evaluate its performance in real industrial tasks and environments. The system consists of three main units: the range finder, the scanner and the computer. The range finder is based on the direct measurement of the time-of-flight of a laser pulse. The time-interval between the transmitted and the received light pulses is converted into a continuous analog voltage, which is amplified, filtered and offset-corrected to produce the range information. The scanner consists of two mirrors driven by moving iron galvanometers. This system is controlled by servo amplifiers. The computer unit controls the scanner, transforms the measured coordinates into a cartesian coordinate system and serves as a user interface and postprocessing environment. Methods for segmenting the range image into a higher level description have been developed. The description consists of planar and curved surfaces and their features and relations. Parametric surface representations based on the Ferguson surface patch are studied, too.

  16. Effect of thermal processing on retinol levels of free-range and caged hen eggs.

    Science.gov (United States)

    Ramalho, Héryka M M; Santos, Videanny V A; Medeiros, Vanessa P Q; Silva, Keith H D; Dimenstein, Roberto

    2006-01-01

    Purpose Eggs are a food item of high nutritional value, a source of vitamin A and readily accessible to the general population. Methods This paper analysed the effect of cooking on the retinol levels of free-range and caged hen eggs, using high performance liquid chromatography (HPLC). The retinol levels of hen and quail eggs were also compared. Results The raw egg yolk retinol concentrations of free-range and caged hen eggs were 476.53+/-39.44 and 474.93+/-41.10 microg/100 g and cooked egg yolk concentrations were 393.53+/-24.74 and 379.01+/-30.78 microg/100 g, respectively; quail egg concentration was 636.56+/-32.71 microg retinol/100 g. No significant difference was found between the retinol of free-range and caged hen egg yolks; however, cooking diminished retinol levels, causing a loss of 17 and 20% in the free-range and caged hen egg yolks, respectively. Quail egg retinol concentration was significantly higher than that of the hens. Conclusion The retinol found in 100 g of hen and quail egg yolks could supply around 42 and 70.7% of the vitamin A requirements of an adult man, and is accordingly considered an excellent source of this vitamin.

  17. Simultaneous Range-Velocity Processing and SNR Analysis of AFIT’s Random Noise Radar

    Science.gov (United States)

    2012-03-22

    reducing the overall processing time. Two computers, equipped with NVIDIA ® GPUs, were used to process the col- 45 lected data. The specifications for each...gather the results back to the CPU. Another company , AccelerEyes®, has developed a product called Jacket® that claims to be better than the parallel...Number of Processing Cores 4 8 Processor Speed 3.33 GHz 3.07 GHz Installed Memory 48 GB 48 GB GPU Make NVIDIA NVIDIA GPU Model Tesla 1060 Tesla C2070 GPU

  18. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  19. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes

    Science.gov (United States)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive

  20. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    Science.gov (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Directory of Open Access Journals (Sweden)

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  2. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  3. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    Science.gov (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  4. 'TISUCROMA': A Software for Color Processing of Biological Tissue's Images

    International Nuclear Information System (INIS)

    Arista Romeu, Eduardo J.; La Rosa Vazquez, Jose Manuel de; Valor, Alma; Stolik, Suren

    2016-01-01

    In this work a software intended to plot and analyze digital image RGB histograms from normal and abnormal regions of biological tissue. The obtained RGB histograms from each zone can be used to show the image in only one color or the mixture of some of them. The Software was developed in Lab View to process the images in a laptop. Some medical application examples are shown. (Author)

  5. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429 ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.576, year: 2016

  6. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  7. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  8. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk

    2015-01-01

    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  9. Posttranslational modifications of desmin and their implication in biological processes and pathologies.

    Science.gov (United States)

    Winter, Daniel L; Paulin, Denise; Mericskay, Mathias; Li, Zhenlin

    2014-01-01

    Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

  10. Symposium on intermediate-range atmospheric-transport processes and technology assessment

    International Nuclear Information System (INIS)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution

  11. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly

    OpenAIRE

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Springer, Ramit Ravona; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (

  12. Innovative biological systems for anaerobic treatment of grain and food processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, P M

    1986-09-01

    The application of two innovative fixed film and suspended growth anaerobic biological systems to the treatment of grain and food processing wastewaters is discussed. A fluidized bed fixed film system and a suspended growth membrane system are described. The technical and economic factors dictating which system is selected for treatment of a specific industrial wastewater are discussed. Case history results from successful operation of full-scale, demonstration, and pilot-scale systems treating respectively, soy whey, cheese whey, and wheat flour processing wastewaters are presented.

  13. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  14. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  15. Ten good reasons to consider biological processes in prevention and intervention research.

    Science.gov (United States)

    Beauchaine, Theodore P; Neuhaus, Emily; Brenner, Sharon L; Gatzke-Kopp, Lisa

    2008-01-01

    Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology x Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention.

  16. Ten good reasons to consider biological processes in prevention and intervention research

    Science.gov (United States)

    BEAUCHAINE, THEODORE P.; NEUHAUS, EMILY; BRENNER, SHARON L.; GATZKE-KOPP, LISA

    2009-01-01

    Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology×Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention. PMID:18606030

  17. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.

    1997-01-01

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  18. Pipeline defect prediction using long range ultrasonic testing and intelligent processing

    International Nuclear Information System (INIS)

    Dino Isa; Rajprasad Rajkumar

    2009-01-01

    This paper deals with efforts to improve nondestructive testing (NDT) techniques by using artificial intelligence in detecting and predicting pipeline defects such as cracks and wall thinning. The main emphasis here will be on the prediction of corrosion type defects rather than just detection after the fact. Long range ultrasonic testing will be employed, where a ring of piezoelectric transducers are used to generate torsional guided waves. Various defects such as cracks as well as corrosion under insulation (CUI) will be simulated on a test pipe. The machine learning algorithm known as the Support Vector Machine (SVM) will be used to predict and classify transducer signals using regression and large margin classification. Regression results show that the SVM is able to accurately predict future defects based on trends of previous defect. The classification performance was also exceptional showing a facility to detect defects at different depths as well as for distinguishing closely spaced defects. (author)

  19. Boundary driven Kawasaki process with long-range interaction: dynamical large deviations and steady states

    International Nuclear Information System (INIS)

    Mourragui, Mustapha; Orlandi, Enza

    2013-01-01

    A particle system with a single locally-conserved field (density) in a bounded interval with different densities maintained at the two endpoints of the interval is under study here. The particles interact in the bulk through a long-range potential parametrized by β⩾0 and evolve according to an exclusion rule. It is shown that the empirical particle density under the diffusive scaling solves a quasilinear integro-differential evolution equation with Dirichlet boundary conditions. The associated dynamical large deviation principle is proved. Furthermore, when β is small enough, it is also demonstrated that the empirical particle density obeys a law of large numbers with respect to the stationary measures (hydrostatic). The macroscopic particle density solves a non-local, stationary, transport equation. (paper)

  20. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  1. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Survey of biological processes for odor reduction; Kartlaeggning och studie av biologiska processer foer luktreduktion

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Rosell, Lars [SP Technical Research Inst. of Sweden, Boraas (Sweden); Hall, Gunnar [SIK Swedish Inst. for Food and Biotechnology, Gothenburg (Sweden)

    2009-09-15

    This project aims to characterize chemical and subsequently odor emissions from a digester plant located closed to Boraas in Sweden (Boraas Energi och Miljoe AB). The digestion produces mainly 2 by-products, biogas and high quality organic biofertilizer. Biogas is a renewable source of electrical and heat energy and subsequently digester have a promising future. Unfortunately, release of unpleasant odours is one of the problems that may limit development of the technique as odours strongly influence the level of acceptance of the neighbours. The number of complaints due to odours depends mostly, upon the degree of odour release, the weather condition and plant environment (which influence the risks for spreading out), and the tolerance of the neighbours. These parameters are strongly variable. Many processes inside the plant distributed on a large surface may contribute to odour release. Chemical emissions were studied, in this project, by extensive sampling inside the plant. Results were then evaluated regarding risk for odour releases. The goal was to suggest controls and routines to limit releases. The conditions leading to the higher risks for odour emissions were studied by performing sampling at different periods of the year and subsequently different weather conditions. At first, places for measurement were chosen together with personal of the plant. Three zones are considered to mainly contribute to the odour emissions: the landfill region, the cisterns region and the leaching lake region. Totally 13 places were studied with regard to odour and chemical emissions under 2008-2009 at different weather conditions. Some results from a previous project (2007) are also presented here. Results show that the spreading out of can be maintained to an acceptable level as long as the plant is functioning without disturbances. The early stages of the treatment of waste should be confined in locals with closed doors to avoid spreading out of odours. Through controlled

  3. How to measure atomic diffusion processes in the sub-nanometer range

    International Nuclear Information System (INIS)

    Schmidt, H.; Gupta, M.; Gutberlet, T.; Stahn, J.; Bruns, M.

    2008-01-01

    Self-diffusion of the atomic constituents in the solid state is a fundamental transport process that controls various materials properties. With established methods of diffusivity determination it is only possible to measure diffusion processes on a length scale down to 10 nm at corresponding diffusivities of 10 -23 m 2 s -1 . However, for complex materials like amorphous or nano-structured solids the given values are often not sufficient for a proper characterization. Consequently, it is necessary to detect diffusion length well below 1 nm. Here, we present the method of neutron reflectometry on isotope multilayers. For two model systems, an amorphous semiconductor and an amorphous metallic alloy, the efficiency of this method is demonstrated to detect minimum diffusion lengths of only 0.6-0.7 nm. It is further shown that diffusivities can be derived which are more than two orders of magnitude lower than those obtainable with conventional methods. Prospects of this method in order to solve actual kinetic problems in materials science are given

  4. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  5. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  6. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process.

    Science.gov (United States)

    Wei, Z S; Li, H Q; He, J C; Ye, Q H; Huang, Q R; Luo, Y W

    2013-10-01

    A bench scale system integrated with a non-thermal plasma (NTP) and a biotricking filtration (BTF) unit for the treatment of gases containing dimethyl sulfide (DMS) was investigated. DMS removal efficiency in the integrated system was up to 96%. Bacterial communities in the BTF were assessed by PCR-DGGE, which play the dominant role in the biological processes of metabolism, sulfur oxidation, sulfate-reducing and carbon oxidation. The addition of ozone from NTP made microbial community in BTF more complicated and active for DMS removal. The NTP oxidize DMS to simple compounds such as methanol and carbonyl sulfide; the intermediate organic products and DMS are further oxidized to sulfate, carbon dioxide, water vapors by biological degradation. These results show that NTP-BTF is achievable and open new possibilities for applying the integrated with NTP and BTF to odour gas treatment. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Process of Argumentation in High School Biology Class: A Qualitative Analysis

    Science.gov (United States)

    Ramli, M.; Rakhmawati, E.; Hendarto, P.; Winarni

    2017-02-01

    Argumentation skill can be nurtured by designing a lesson in which students are provided with the opportunity to argue. This research aims to analyse argumentation process in biology class. The participants were students of three biology classes from different high schools in Surakarta Indonesia. One of the classroom was taught by a student teacher, and the rest were instructed by the assigned teachers. Through a classroom observation, oral activities were noted, audio-recorded and video-taped. Coding was done based on the existence of claiming-reasoning-evidence (CRE) process by McNeill and Krajcik. Data was analysed qualitatively focusing on the role of teachers to initiate questioning to support argumentation process. The lesson design of three were also analysed. The result shows that pedagogical skill of teachers to support argumentation process, such as skill to ask, answer, and respond to students’ question and statements need to be trained intensively. Most of the argumentation found were only claiming, without reasoning and evidence. Teachers have to change the routine of mostly posing open-ended questions to students, and giving directly a correct answer to students’ questions. Knowledge and skills to encourage student to follow inquiry-based learning have to be acquired by teachers.

  8. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  9. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    Science.gov (United States)

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  10. Development of biology student worksheets to facilitate science process skills of student

    Science.gov (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  11. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  12. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.).

    Science.gov (United States)

    Bean, Dan W; Dalin, Peter; Dudley, Tom L

    2012-07-01

    In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on postrelease evolution of beneficial life history traits. In this study, we measure the evolution of critical day length for diapause induction (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America 7 years after introduction, and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site, decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control.

  14. Physical processes affecting turbidity in a tidal marsh across a range of time scales

    Science.gov (United States)

    Arnold, W.; Poindexter, C.

    2016-12-01

    The direction of net suspended sediment flux, whether into or out of a tidal marsh, can determine whether a marsh is aggrading or eroding. Measuring net suspended sediment fluxes or attributing trends in these fluxes to a particular physical processes is challenging because suspended sediment concentrations are highly variable in time. We used singular spectrum analysis for time series with missing data (SSAM) to observe the relative effects on turbidity of physical processes occurring on different time scales at the Rush Ranch Open Space Preserve. This Preserve covers the largest contiguous area of full-tidal marsh remaining within Suisun Bay, the eastern most subembayment of San Francisco Bay. A long-term monitoring station at First Mallard Slough within the Preserve measures turbidity. Our analysis of of this turbidity record isolated the contribution to total variance from different tides and from annual cycles of San Francisco Bay freshwater inflow, sediment deposition and wind-driven sediment resuspension. Surprisingly, the contribution from diurnal and semidiurnal tidal constituents (30%) was smaller than the contribution from annual cycles of freshwater inflow, sediment deposition and resuspension (38%). This result contrasts with the original implementation of SSAM to suspended sediment concentration, which was conducted in the central San Francisco Bay. This previous work indicated a significant yet smaller contribution (13%) to total suspended sediment concentration variance from annual cycles (Schoellhamer, D. H., 2002, Continental Shelf Research., 22, 1857-1866). The reason for the contrast relates in part to the location of the First Mallard Slough more than 10 km along the tidal channel network from Suisun Bay. At this location, the lowest frequency variation in suspended sediment is accentuated. Annual peaks in turbidity at First Mallard depend not only on spring and summer wind-driven resuspension of sediment in San Pablo Bay but also its co

  15. Automation of the radiological survey process: USRADS ultrasonic ranging and data system

    International Nuclear Information System (INIS)

    Berven, B.A.; Blair, M.S.; Little, C.A.

    1987-01-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) serves as the Inclusion Survey Contractor (ISC) in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action project (UMTRAP). The ISC is to identify properties in the vicinity of 24 inactive uranium mill sites suspected of having 226 Ra-bearing uranium mill tailings by-product material originating from the processing of uranium ore contamination. Mobile gamma scanning was the primary method used to identify these properties. Once identified, the ISC conducts an inclusion survey. This survey performs sufficient radiological measurements to determine if uranium mill tailing contamination is present, and, if so, if it is in excess of relevant Environmental Protection Agency (EPA) criteria. Radon emanating from 226 Ra is the primary pathway of exposure to human occupants at these sites. EPA criteria focus on controlling 226 Ra concentration in soil. The concentration of 226 Ra in soil can be measured directly by soil sampling and subsequent gamma spectrographic analysis of the sample, or by direct measurement of the gamma exposure rate at the soil surface using portable instrumentation in the field. In both methods, the concentration of 226 Ra is inferred by examining the frequency of gamma emission of 214 Bi, a radioactive decay product in the 238 U decay chain

  16. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    Science.gov (United States)

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P process effect (F = 22.2, P process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P process effect (F = 72, P process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values are clearly higher. These higher levels are due to the very significant

  17. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  18. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  19. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.

    2009-01-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  20. Computer-Based Support of Decision Making Processes during Biological Incidents

    Directory of Open Access Journals (Sweden)

    Karel Antos

    2010-04-01

    Full Text Available The paper describes contextual analysis of a general system that should provide a computerized support of decision making processes related to response operations in case of a biological incident. This analysis is focused on information systems and information resources perspective and their integration using appropriate tools and technology. In the contextual design the basic modules of BioDSS system are suggested and further elaborated. The modules deal with incident description, scenarios development and recommendation of appropriate countermeasures. Proposals for further research are also included.

  1. Pb, Cd, Cu and Zn biogeochemical behaviour and biological transfer processes in the Northwestern Mediterranean

    International Nuclear Information System (INIS)

    Nicolas, E.; Marty, J.C.; Miquel, J.C.; Fowler, S.W.

    1999-01-01

    Cd, Pb, Cu and Zn concentrations were determined in planktonic organisms (Salps, copepods), their associated faecal pellets and in particles collected at 200 and 2000 m depth in sediment traps moored in the Ligurian Sea. Al and P were also measured and taken as tracers of lithogenic and biogenic components, respectively. The aim of this work was to determine the fluxes of trace metals in the Ligurian Sea and their variations with depth, and to to assess the biogeochemical behaviour of elements having, for some of them, an anthropogenic origin, by the study of biologically-mediated uptake and removal processes

  2. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...... if the convergence, driven by the dilution rate, was slow (from 15 to 60 days). The propagation of the measurement noise and a bias in the estimation of glycogen and PHA could be the result of the high condition number of one of the matrices used in the algorithm of the asymptotic observer for the aerated tanks....

  3. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.

    2009-01-01

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  4. Theoretical considerations concerning the effect of relativistic velocities on the rate of biological processes.

    Science.gov (United States)

    Heneine, I F

    1997-06-01

    Theoretical considerations were advanced on the reaction rate of biological systems in a rocket accelerated at fractional levels of the velocity of light. The values of mass increase in reacting molecules and length contraction of space under these relativistic velocities attained by the hypothetical rocket were inserted in equations of the absolute reaction rate theory. The equations employed were for the frequency of collisions, and for the internal kinetic energy of molecular reactions. Results of both sets of equations indicated that reduction of reaction rates were correlated to the mass increase. This would imply a general slowing of all chemical, biochemical and biological processes taking place. A human would suffer a related decrease in metabolic rate. Contrary to what is generally accepted, the biological aging of the space traveler under velocities bearable by humans, namely under 0.50c, would follow a pace very similar to that of an observer remaining in the resting frame of reference. With increased increments of the velocity, the space traveler would display a more intense lowering of the metabolic rate, with signs and symptoms comparable to body core hypothermia. Metabolic rates at insufficient levels to maintain the vital functions would be attained at 0.70c and higher, leading swiftly to coma and death. The presence of an endocrine dysfunction such as hypothyroidism or obesity in the space traveler would aggravate the signs and symptoms. Space travel at efficient velocities would be unbearable for a warm-blooded animal.

  5. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  6. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    Science.gov (United States)

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  7. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  8. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    Science.gov (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly.

    Science.gov (United States)

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Ravona Springer, Ramit; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (levels may have an impact on cognitive function.

  10. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective

    International Nuclear Information System (INIS)

    Leibbrandt, N.H.; Knoetze, J.H.; Goergens, J.F.

    2011-01-01

    The technical performance of lignocellulosic enzymatic hydrolysis and fermentation versus pyrolysis processes for sugarcane bagasse was evaluated, based on currently available technology. Process models were developed for bioethanol production from sugarcane bagasse using three different pretreatment methods, i.e. dilute acid, liquid hot water and steam explosion, at various solid concentrations. Two pyrolysis processes, namely fast pyrolysis and vacuum pyrolysis, were considered as alternatives to biological processing for the production of biofuels from sugarcane bagasse. For bioethanol production, a minimum of 30% solids in the pretreatment reactor was required to render the process energy self-sufficient, which led to a total process energy demand equivalent to roughly 40% of the feedstock higher heating value. Both vacuum pyrolysis and fast pyrolysis could be operated as energy self-sufficient if 45% of the produced char from fast pyrolysis is used to fuel the process. No char energy is required to fuel the vacuum pyrolysis process due to lower process energy demands (17% compared to 28% of the feedstock higher heating value). The process models indicated that effective process heat integration can result in a 10-15% increase in all process energy efficiencies. Process thermal efficiencies between 52 and 56% were obtained for bioethanol production at pretreatment solids at 30% and 50%, respectively, while the efficiencies were 70% for both pyrolysis processes. The liquid fuel energy efficiency of the best bioethanol process is 41%, while that of crude bio-oil production before upgrading is 67% and 56% via fast and vacuum pyrolysis, respectively. Efficiencies for pyrolysis processes are expected to decrease by up to 15% should upgrade to a transportation fuel of equivalent quality to bioethanol be taken into consideration. -- Highlights: → Liquid biofuels can be produced via lignocellulosic enzymatic hydrolysis and fermentation or pyrolysis. → A minimum of

  11. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  12. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  13. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  14. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  15. Development of a LC-MS/MS Method for the Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates in a Range of Biological Matrices

    Directory of Open Access Journals (Sweden)

    Omar Al Kadhi

    2017-01-01

    Full Text Available It is now well-established that perturbations in the tricarboxylic acid (TCA cycle play an important role in the metabolic transformation occurring in cancer including that of the prostate. A method for simultaneous qualitative and quantitative analysis of TCA cycle intermediates in body fluids, tissues, and cultured cell lines of human origin was developed using a common C18 reversed-phase column by LC-MS/MS technique. This LC-MS/MS method for profiling TCA cycle intermediates offers significant advantages including simple and fast preparation of a wide range of human biological samples. The analytical method was validated according to the guideline of the Royal Society of Chemistry Analytical Methods Committee. The limits of detection were below 60 nM for most of the TCA intermediates with the exception of lactic and fumaric acids. The calibration curves of all TCA analytes showed linearity with correlation coefficients r2>0.9998. Recoveries were >95% for all TCA analytes. This method was established taking into consideration problems and limitations of existing techniques. We envisage that its application to different biological matrices will facilitate deeper understanding of the metabolic changes in the TCA cycle from in vitro, ex vivo, and in vivo studies.

  16. Effects of age, replicative lifespan and growth rate of human nucleus pulposus cells on selecting age range for cell-based biological therapies for degenerative disc diseases.

    Science.gov (United States)

    Lee, J S; Lee, S M; Jeong, S W; Sung, Y G; Lee, J H; Kim, K W

    2016-07-01

    Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.

  17. A novel theory: biological processes mostly involve two types of mediators, namely general and specific mediators Endogenous small radicals such as superoxide and nitric oxide may play a role of general mediator in biological processes.

    Science.gov (United States)

    Mo, Jian

    2005-01-01

    A great number of papers have shown that free radicals as well as bioactive molecules can play a role of mediator in a wide spectrum of biological processes, but the biological actions and chemical reactivity of the free radicals are quite different from that of the bioactive molecules, and that a wide variety of bioactive molecules can be easily modified by free radicals due to having functional groups sensitive to redox, and the significance of the interaction between the free radicals and the bioactive molecules in biological processes has been confirmed by the results of some in vitro and in vivo studies. Based on these evidence, this article presented a novel theory about the mediators of biological processes. The essentials of the theory are: (a) mediators of biological processes can be classified into general and specific mediators; the general mediators include two types of free radicals, namely superoxide and nitric oxide; the specific mediators include a wide variety of bioactive molecules, such as specific enzymes, transcription factors, cytokines and eicosanoids; (b) a general mediator can modify almost any class of the biomolecules, and thus play a role of mediator in nearly every biological process via diverse mechanisms; a specific mediator always acts selectively on certain classes of the biomolecules, and may play a role of mediator in different biological processes via a same mechanism; (c) biological processes are mostly controlled by networks of their mediators, so the free radicals can regulate the last consequence of a biological process by modifying some types of the bioactive molecules, or in cooperation with these bioactive molecules; the biological actions of superoxide and nitric oxide may be synergistic or antagonistic. According to this theory, keeping the integrity of these networks and the balance between the free radicals and the bioactive molecules as well as the balance between the free radicals and the free radical scavengers

  18. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  19. Processing of biological waste. Ecological efficiency and potential; Behandlung von Bioabfaellen. Oekoeffizienz und Potenziale

    Energy Technology Data Exchange (ETDEWEB)

    Pitschke, Thorsten; Peche, Rene; Tronecker, Dieter; Kreibe, Siegfried [bifa Umweltinstitut GmbH, Augsburg (Germany)

    2013-07-01

    The sustainable usage of biological wastes has to be focused on the targets protection of resources and minimization of environmental impact. The only focus on the energy inventory is not sufficient. The following recommendations are summarized: separated bio-waste collection is usually more eco-efficient; the optimized bio-waste processing should be available according to the biodegradability; anaerobic degradation for biogas production and subsequent aerobic degradation of the fermentation product for compost can be combined; low-emission operational standards should be mandatory, innovation and investment should be promoted b reliable boundary conditions; ecological aspects should be equivalent to low-cost considerations; regulatory measures should be implemented for separated bio-waste collection and processing.

  20. Signal processing for molecular and cellular biological physics: an emerging field.

    Science.gov (United States)

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  1. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.

    2014-01-01

    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  2. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research.

  3. Wavelet data processing of micro-Raman spectra of biological samples

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  4. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  5. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    Science.gov (United States)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  6. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  7. Experimental investigation about attachment processes of atoms and ions in the size range < 0.1 μm

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Mercer, T.T.

    1977-01-01

    Results of an investigation of the attachment process of atoms and ion in the size range between 0.009 to 4 μm on a particle or droplet surface are presented. It is again shown that the experimental values are adequately predicted by the diffusion attachment theory under gas kinetic consideration, if the sticking probability of Rn and Tn decay products is S = 1. 12 references

  8. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    Pitt, W.W.; Hancher, C.W.; Patton, B.D.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO 3 - and as large as 2000 m 3 /day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 g N(NO 3 - ) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  9. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  11. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  12. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  13. Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival processing.

    Science.gov (United States)

    Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    2013-10-01

    Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Open Water Processes of the San Francisco Estuary: From Physical Forcing to Biological Responses

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer

    2004-02-01

    Full Text Available This paper reviews the current state of knowledge of the open waters of the San Francisco Estuary. This estuary is well known for the extent to which it has been altered through loss of wetlands, changes in hydrography, and the introduction of chemical and biological contaminants. It is also one of the most studied estuaries in the world, with much of the recent research effort aimed at supporting restoration efforts. In this review I emphasize the conceptual foundations for our current understanding of estuarine dynamics, particularly those aspects relevant to restoration. Several themes run throughout this paper. First is the critical role physical dynamics play in setting the stage for chemical and biological responses. Physical forcing by the tides and by variation in freshwater input combine to control the movement of the salinity field, and to establish stratification, mixing, and dilution patterns throughout the estuary. Many aspects of estuarine dynamics respond to interannual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of fish and shrimp varies positively with flow, although the mechanisms behind these relationships are largely unknown. The second theme is the importance of time scales in determining the degree of interaction between dynamic processes. Physical effects tend to dominate when they operate at shorter time scales than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions can be seen, for example, in the response of phytoplankton blooms, with characteristic time scales of days, to stratification events occurring during neap tides. The third theme is the key role of introduced species in all estuarine habitats; particularly noteworthy are introduced waterweeds and fishes in the tidal freshwater reaches of the estuary, and introduced clams there and in brackish water. The

  15. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG

    International Nuclear Information System (INIS)

    Merkel, K.D.; Krishna Mohan, R.; Cole, Z.; Chang, T.; Olson, A.; Babbitt, W.R.

    2004-01-01

    An optical device is described and demonstrated that uses a spatial-spectral holographic material to perform coherent signal processing operations on analog, high-bandwidth optical signals with large time-bandwidth-products. Signal processing is performed as the material records the coherent spectral interference (or cross-power spectrum) of modulated optical signals as a spatial-spectral population grating between electronic transition states. Multiple exposures of processing pulse sequences are integrated with increasing grating strength. The device, coined as the Spatial-Spectral Coherent Holographic Integrating Processor (or S 2 -CHIP), is described as currently envisioned for a broadband, mid-to-high pulse repetition frequency range-Doppler radar signal processing system. Experiments were performed in Tm:YAG (0.1 at% at 5 K) to demonstrate time delay variation, integration dynamics, and effects of coding as applied to a radar range processor. These demonstrations used baseband modulation with a 1 gigabit per second (GPBS) bit rate and code length of 512 bits (512 ns), where delays up to 1.0 μs were resolved with greater than a 40 dB peak to RMS sidelobe ratio after 800 processing shots. Multi-GHz processing was demonstrated using a bit rate of 2.5 GBPS (baseband modulation) and code length of 2048 bits (819.2 ns). Processing of double-sideband modulated signals on a radio frequency (RF) carrier was demonstrated, where 512 bit, 1.0 GBPS codes were modulated on a 1.75 GHz carrier and then modulated on the optical carrier

  16. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds.

    Science.gov (United States)

    Rammsayer, Thomas; Ulrich, Rolf

    2011-05-01

    The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.

  17. Long-Range Reduced Predictive Information Transfers of Autistic Youths in EEG Sensor-Space During Face Processing.

    Science.gov (United States)

    Khadem, Ali; Hossein-Zadeh, Gholam-Ali; Khorrami, Anahita

    2016-03-01

    The majority of previous functional/effective connectivity studies conducted on the autistic patients converged to the underconnectivity theory of ASD: "long-range underconnectivity and sometimes short-rang overconnectivity". However, to the best of our knowledge the total (linear and nonlinear) predictive information transfers (PITs) of autistic patients have not been investigated yet. Also, EEG data have rarely been used for exploring the information processing deficits in autistic subjects. This study is aimed at comparing the total (linear and nonlinear) PITs of autistic and typically developing healthy youths during human face processing by using EEG data. The ERPs of 12 autistic youths and 19 age-matched healthy control (HC) subjects were recorded while they were watching upright and inverted human face images. The PITs among EEG channels were quantified using two measures separately: transfer entropy with self-prediction optimality (TESPO), and modified transfer entropy with self-prediction optimality (MTESPO). Afterwards, the directed differential connectivity graphs (dDCGs) were constructed to characterize the significant changes in the estimated PITs of autistic subjects compared with HC ones. By using both TESPO and MTESPO, long-range reduction of PITs of ASD group during face processing was revealed (particularly from frontal channels to right temporal channels). Also, it seemed the orientation of face images (upright or upside down) did not modulate the binary pattern of PIT-based dDCGs, significantly. Moreover, compared with TESPO, the results of MTESPO were more compatible with the underconnectivity theory of ASD in the sense that MTESPO showed no long-range increase in PIT. It is also noteworthy that to the best of our knowledge it is the first time that a version of MTE is applied for patients (here ASD) and it is also its first use for EEG data analysis.

  18. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  20. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    Science.gov (United States)

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  1. Comprehension of complex biological processes by analytical methods: how far can we go using mass spectrometry?

    International Nuclear Information System (INIS)

    Gerner, C.

    2013-01-01

    Comprehensive understanding of complex biological processes is the basis for many biomedical issues of great relevance for modern society including risk assessment, drug development, quality control of industrial products and many more. Screening methods provide means for investigating biological samples without research hypothesis. However, the first boom of analytical screening efforts has passed and we again need to ask whether and how to apply screening methods. Mass spectrometry is a modern tool with unrivalled analytical capacities. This applies to all relevant characteristics of analytical methods such as specificity, sensitivity, accuracy, multiplicity and diversity of applications. Indeed, mass spectrometry qualifies to deal with complexity. Chronic inflammation is a common feature of almost all relevant diseases challenging our modern society; these diseases are apparently highly diverse and include arteriosclerosis, cancer, back pain, neurodegenerative diseases, depression and other. The complexity of mechanisms regulating chronic inflammation is the reason for the practical challenge to deal with it. The presentation shall give an overview of capabilities and limitations of the application of this analytical tool to solve critical questions with great relevance for our society. (author)

  2. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  3. Novel MBR_based main stream biological nutrient removal process: high performance and microbial community.

    Science.gov (United States)

    Zhang, Chuanyi; Xu, Xinhai; Zhao, Kuixia; Tang, Lianggang; Zou, Siqi; Yuan, Limei

    2018-02-01

    For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A 2 N-MBR and A 2 NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L -1 . However, the two-sludge systems (A 2 N-MBR and A 2 NO-MBR) had an obvious advantage over the A 2 /O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A 2 /O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A 2 N-MBR and A 2 NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A 2 /O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.

  4. Birth/birth-death processes and their computable transition probabilities with biological applications.

    Science.gov (United States)

    Ho, Lam Si Tung; Xu, Jason; Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2018-03-01

    Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.

  5. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.

    2015-01-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  6. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  7. Evaluation of the physicochemical properties of coffee chaff when subjected to a biological treatment and its potential impact as a raw material in subsequent biological processes or thermochemical

    International Nuclear Information System (INIS)

    Valverde Camacho, Edgar

    2014-01-01

    An investigation is carried out using white rot fungi in coffee pulp to study the impact on the physicochemical properties. The use of brushwood in thermochemical processes, biochemists is evaluated for later use and production of energy or any product with added value. The strain is selected by growth in Petri dishes and fresh pulp is then inoculated with a strain of Trametes versicolor and Pleurotus ostreatus one. Each treatment was maintained in growth for seven weeks . The measurement of each of the response variables used were subsequently performed to characterize the fresh pulp, including: concentration of cellulose, hemicellulose, lignin, extractables total polyphenols, total ash, moisture, combustion heat and thermal gravimetric analysis. Measurements in the fresh pulp and brushwood-fungal matrix is performed at the end of treatment. An impact on the concentration of extractable total polyphenols is obtained with an apparent reduction of 87.7% in the treated Pult with Trametes versicolor and 80.5% in the treated with Pleurotus ostreatus, with regard to the fresh brushwood. Lignin concentration was affected; however, errors were found in the analytical method associated with the presence of the fungus in the analysis, leading to erroneous readings in the measurement parameter. Thermogravimetric analysis have allowed to observe a change in the whole matrix microorganism-brushwood. The biological treatment has generated a positive impact on the region pyrolysis at temperatures in the range of 150 to 400 degrees centigrade, improving processes of decomposition. Both treatments have shown a stabilization of the thermolysis in the region of temperatures above 400 degrees centigrade. The impact on a larger scale of the pre-treatment is evaluated on the gasification process, specifically on the production of tars has been necessary for field tests in a pilot team and in the same way for the case of enzymatic fermentation. Tests of ergosterol concentration and

  8. Comparative biology approaches for charged particle exposures and cancer development processes

    Science.gov (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We

  9. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...

  10. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    Science.gov (United States)

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  11. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  12. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  13. Biological impact of preschool music classes on processing speech in noise.

    Science.gov (United States)

    Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina

    2013-10-01

    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    Science.gov (United States)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  15. Biological treatment processes for PCB contaminated soil at a site in Newfoundland

    International Nuclear Information System (INIS)

    Punt, M.; Cooper, D.; Velicogna, D.; Mohn, W.; Reimer, K.; Parsons, D.; Patel, T.; Daugulis, A.

    2002-01-01

    SAIC Canada is conducting a study under the direction of a joint research and development contract between Public Works and Government Services Canada and Environment Canada to examine the biological options for treating PCB contaminated soil found at a containment cell at a former U.S. Military Base near Stephenville, Newfoundland. In particular, the study examines the feasibility of using indigenous microbes for the degradation of PCBs. The first phase of the study involved the testing of the microbes in a bioreactor. The second phase, currently underway, involves a complete evaluation of possible microbes for PCB degradation. It also involves further study into the biological process options for the site. Suitable indigenous and non-indigenous microbes for PCB dechlorination and biphenyl degradation are being identified and evaluated. In addition, the effectiveness and economics of microbial treatment in a conventional bioreactor is being evaluated. The conventional bioreactor used in this study is the two-phase partitioning bioreactor (TPPB) using a biopile process. Results thus far will be used to help Public Works and Government Services Canada to choose the most appropriate remedial technology. Preliminary results suggest that the use of soil classification could reduce the volume of soil requiring treatment. The soil in the containment cell contains microorganisms that could grow in isolation on biphenyl, naphthalene and potentially Aroclor 1254. Isolated native microbes were inoculated in the TPPB for growth. The TPPB was also run successfully under anaerobic conditions. Future work will involve lab-scale evaluation of microbes for PCB dechlorination and biphenyl degradation using both indigenous and non-indigenous microbes. The next phase of study may also involve field-scale demonstration of treatment methods. 2 refs., 3 tabs., 5 figs

  16. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  17. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  18. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    Science.gov (United States)

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.

  19. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.

    Science.gov (United States)

    Hummel, Jonathan; Pagkaliwangan, Mark; Gjoka, Xhorxhi; Davidovits, Terence; Stock, Rick; Ransohoff, Thomas; Gantier, Rene; Schofield, Mark

    2018-01-17

    The biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation. In this study, the cost of goods of Pall Life Science's integrated, continuous bioprocessing (ICB) platform is modeled, along with that of purification processes in stainless-steel and SU batch formats. All three models include costs associated with downstream processing only. Evaluation of the models across a broad range of clinical and commercial scenarios reveal that the cost savings gained by switching from stainless-steel to SU batch processing are often amplified by continuous operation. The continuous platform exhibits the lowest cost of goods across 78% of all scenarios modeled here, with the SU batch process having the lowest costs in the rest of the cases. The relative savings demonstrated by the continuous process are greatest at the highest feed titers and volumes. These findings indicate that existing and imminent continuous technologies and equipment can become key enablers for more cost effective manufacturing of biopharmaceuticals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  1. Quantification of chemical and physical processes influencing ozone during long-range transport using a trajectory ensemble

    Directory of Open Access Journals (Sweden)

    M. Cain

    2012-08-01

    Full Text Available During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3 into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution.

    The results show that the net chemical processing (Δ O3chem over the whole simulation is greater than net physical processing (Δ O3phys in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport or production (an upper tropospheric biomass burning case. However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases.

    Processing is quantified using a Lagrangian

  2. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  3. Host Range Testing of Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae) for Use in Classical Biological Control of Diaphorina citri (Hemiptera: Liviidae) in California.

    Science.gov (United States)

    Bistline-East, Allison; Pandey, Raju; Kececi, Mehmet; Hoddle, Mark S

    2015-06-01

    Host range tests for Diaphorencyrtus aligarhensis (Shafee, Alam, & Agarwal) (Hymenoptera: Encyrtidae), an endoparasitoid of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), sourced from Punjab Pakistan, were conducted in quarantine at the University of California, Riverside, CA. Seven nontarget psyllid species representing four psyllid families were exposed to mated D. aligarhensis females in four different treatment types: 1) short sequential no-choice treatments, 2) prolonged sequential no-choice treatments, 3) prolonged no-choice static treatments, and 4) choice treatments. Selection of nontarget psyllid species was based on phylogenetic proximity to D. citri, likelihood of being encountered by D. aligarhensis in the prospective release areas in California, and psyllid species in biological control of invasive weeds. D. aligarhensis exhibited high host affinity to D. citri, and only parasitized one nontarget species, the pestiferous potato psyllid, Bactericera cockerelli (Sulc), at low levels (citri. Results presented here suggest D. aligarhensis poses minimal risk to nontarget psyllid species in California. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Resistance Upset Welding of ODS Steel Fuel Claddings—Evaluation of a Process Parameter Range Based on Metallurgical Observations

    Directory of Open Access Journals (Sweden)

    Fabien Corpace

    2017-08-01

    Full Text Available Resistance upset welding is successfully applied to Oxide Dispersion Strengthened (ODS steel fuel cladding. Due to the strong correlation between the mechanical properties and the microstructure of the ODS steel, this study focuses on the consequences of the welding process on the metallurgical state of the PM2000 ODS steel. A range of process parameters is identified to achieve operative welding. Characterizations of the microstructure are correlated to measurements recorded during the welding process. The thinness of the clad is responsible for a thermal unbalance, leading to a higher temperature reached. Its deformation is important and may lead to a lack of joining between the faying surfaces located on the outer part of the join which can be avoided by increasing the dissipated energy or by limiting the clad stick-out. The deformation and the temperature reached trigger a recrystallization phenomenon in the welded area, usually combined with a modification of the yttrium dispersion, i.e., oxide dispersion, which can damage the long-life resistance of the fuel cladding. The process parameters are optimized to limit the deformation of the clad, preventing the compactness defect and the modification of the nanoscale oxide dispersion.

  5. Extending the Range of Organic Compounds that Can Be Destroyed Using the Process of Adsorption Coupled with Electrochemical Regeneration - 13054

    International Nuclear Information System (INIS)

    Brown, Nigel; Lodge, Mike; Hilton, Linda; Adams, Alex; Vaudey, Claire-Emilie; Toulemonde, Valerie

    2013-01-01

    The nuclear industry is not a provider of oils and solvents but uses them in motors, equipment and even in chemical processes to extract valuable products. Currently, for old and contaminated oils and solvents, techniques still exist, such as incineration, but not all the oils and solvents are compatible with this technique because the activities of some components inside the oils are too high to be accepted at the incineration facility. For these oils, an alternative technique needs to be found for treatment. A process developed for water treatment using a technique of adsorption coupled with electrochemical regeneration has been investigated to assess its capability to treat these organic wastes. One of the strengths of the process is its flexibility and adaptation to different compositions of oils. This point is important because, in the AREVA case, there are a lot of small volumes of old oils which need to be re-characterized. It takes time and money to do it especially when oils are contaminated; this is one reason why the technique is interesting to investigate. Tests have been performed with different oils coming from different sites to test the feasibility. Results demonstrate the destruction of a range of organics with regeneration energy requirements of 13.4 - 68.7 kWh/l and offer confidence for the future potential of the process. (authors)

  6. Extending the Range of Organic Compounds that Can Be Destroyed Using the Process of Adsorption Coupled with Electrochemical Regeneration - 13054

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nigel; Lodge, Mike; Hilton, Linda; Adams, Alex [Arvia Technology Ltd, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4, 4FS (United Kingdom); Vaudey, Claire-Emilie [AREVA CL BU, AREVA BUA STMI ZAC de Courcelle 1 route de la Noue 91196 Gif-sur-Yvette (France); Toulemonde, Valerie [AREVA DRD, Tour AREVA, 1, place Jean Millier, 92084 Paris La Defense Cedex (France)

    2013-07-01

    The nuclear industry is not a provider of oils and solvents but uses them in motors, equipment and even in chemical processes to extract valuable products. Currently, for old and contaminated oils and solvents, techniques still exist, such as incineration, but not all the oils and solvents are compatible with this technique because the activities of some components inside the oils are too high to be accepted at the incineration facility. For these oils, an alternative technique needs to be found for treatment. A process developed for water treatment using a technique of adsorption coupled with electrochemical regeneration has been investigated to assess its capability to treat these organic wastes. One of the strengths of the process is its flexibility and adaptation to different compositions of oils. This point is important because, in the AREVA case, there are a lot of small volumes of old oils which need to be re-characterized. It takes time and money to do it especially when oils are contaminated; this is one reason why the technique is interesting to investigate. Tests have been performed with different oils coming from different sites to test the feasibility. Results demonstrate the destruction of a range of organics with regeneration energy requirements of 13.4 - 68.7 kWh/l and offer confidence for the future potential of the process. (authors)

  7. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  8. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  9. Using X-ray microbeam diffraction to study the long-range internal stresses in aluminum processed by ECAP

    International Nuclear Information System (INIS)

    Lee, I-Fang; Phan, Thien Q.; Levine, Lyle E.; Tischler, Jonathan Z.; Geantil, Peter T.; Huang, Yi; Langdon, Terence G.; Kassner, Michael E.

    2013-01-01

    Aluminum alloy 1050 was processed by equal-channel angular pressing (ECAP) using a single pass (equivalent uniaxial strain of about 0.88). Long-range internal stresses (LRISs) were assessed in the grain/subgrain interiors using X-ray microbeam diffraction to measure the spacing of {5 3 1} planes, with normals oriented approximately +27.3°, +4.9° and −17.5° off the pressing (axial) direction. The results are consistent with mechanical analysis that suggests the maximum tensile plastic-strain after one pass is expected for +22.5°, roughly zero along the pressing axis, and maximum compressive strain for the −67.5° direction. The magnitude of the measured maximum compressive long-range internal stress is about 0.13σ a (applied stress) in low-dislocation regions within the grain/subgrain interiors. This work is placed in the context of earlier work where convergent beam electron diffraction was used to analyze LRISs in close proximity to the deformation-induced boundaries. The results are complementary and the measured stresses are consistent with a composite model for long-range internal stresses

  10. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  11. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    Science.gov (United States)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  12. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Science.gov (United States)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  13. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  14. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  15. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  17. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Science.gov (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  18. Application of a biological process for decontamination of soils in the far north

    International Nuclear Information System (INIS)

    Pouliot, Y.; Sansregret, J.-L.

    1994-01-01

    The site of a diesel-fuelled power station in the extreme north of Quebec (62 degree latitude) was contaminated with hydrocarbons. The site was characterized by typical Arctic conditions: presence of permafrost, limited land transport facilities, restricted availability of machinery and equipment, and scarcity of skilled labor and specialized services. To remediate the site, it was decided to excavate the contaminated soil and subject it to a biological treatment process. The soil was piled on an impermeable base inside of the old power station building and the following parameters were controlled in order to optimize the biodegradation of the hydrocarbons: temperature, humidity, pH, presence of hydrocarbon degrading microorganisms, and concentrations of oxygen, nitrogen, and phosphorus in the soil. Samples were analyzed to monitor the performance of the biodegradation process. In less than 12 weeks, of treatment, an inital hydrocarbon content estimated at 6,400 mg/kg of oils and greases was reduced to 750 mg/kg, corresponding to a level acceptable for residential areas. Indigenous microorganisms capable of degrading hydrocarbons were already present in the native soil in sufficient quantity, and their performance improved when the soil conditions were optimized. 1 fig., 3 tabs

  19. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen : A laboratory batch study

    NARCIS (Netherlands)

    Wang, F.; van Halem, D.; Liu, G.; Lekkerkerker-Teunissen, K.; van der Hoek, J.P.

    2017-01-01

    H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on

  20. Evaluation of the processing of dry biological ferment for gamma radiation

    International Nuclear Information System (INIS)

    Sabundjian, Ingrid Traete

    2007-01-01

    The developed work had with objectives to demonstrate if it had alteration in the growth of UFC in plate and in the viability of yeasts and total bacteria when dry biological ferment was dealt with by different doses to gamma radiation and under different times storage, to determine the D10 dose for total bacteria and yeasts in this product and to analyzed the processing of this product it promoted some benefit without causing unfeasibility of exactly. The different samples of dry biological ferment had been irradiated at IPEN in a Gammacell - 220 source at 0.5; 1; 2 and 3 kGy doses (dose rate of 3.51 kGy/h). This procedure referring samples to each dose of radiation had been after destined to the microbiological analysis and the test of viability while excessively the samples had been stored the ambient temperature (23 degree C). The increase of the dose of radiation caused a reduction in the counting of yeasts growth, of total bacteria growth and also in the frequency of viable yeast cells, demonstrated by FDA-EB fluorescent method. Beyond of radiation the storage time also it influenced in counting reduction of total bacteria and reduction of frequency of viable cells. According with the analysis of simple linear regression, the dose of radiation necessary to eliminate 90% of the yeast population was between 1.10 and 2.23 kGy and for the bacterial population varied between 2.31 and 2.95 kGy. These results demonstrated clearly the negative points of the application of ionizing radiation in dry biological ferment; therefore the interval of D10 found for total bacteria is superior to found for yeasts. Being thus, the use of this resource for the improvement of the product quality becomes impracticable, since to reduce significantly the bacterial population necessarily we have that to diminish the population of yeasts. With yeasts reduction of we will go significantly to modify the quality and the viability of product. (author)

  1. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.

  2. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    approach, outlines the major findings and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder. PMID:17391014

  3. Assessing potential modifications to the activated sludge process to improve simultaneous removal of a diverse range of micropollutants.

    Science.gov (United States)

    Petrie, Bruce; McAdam, Ewan J; Lester, John N; Cartmell, Elise

    2014-10-01

    It is proposed that wastewater treatment facilities meet legislated discharge limits for a range of micropollutants. However, the heterogeneity of these micropollutants in wastewaters make removal difficult to predict since their chemistry is so diverse. In this study, a range of organic and inorganic micropollutants known to be preferentially removed via different mechanisms were selected to challenge the activated sludge process (ASP) and determine its potential to achieve simultaneous micropollutant removal. At a fixed hydraulic retention time (HRT) of 8 h, the influence of an increase in solids retention time (SRT) on removal was evaluated. Maximum achievable micropollutant removal was recorded for all chemicals (estrogens, nonylphenolics and metals) at the highest SRT studied (27 days). Also, optimisation of HRT by extension to 24 h further augmented organic biodegradation. Most notable was the enhancement in removal of the considerably recalcitrant synthetic estrogen 17α-ethinylestradiol which increased to 65 ± 19%. Regression analysis indicates that this enhanced micropollutant behaviour is ostensibly related to the concomitant reduction in food: microorganism ratio. Interestingly, extended HRT also initiated nonylphenol biodegradation which has not been consistently observed previously in real wastewaters. However, extending HRT increased the solubilisation of particulate bound metals, increasing effluent aqueous metals concentrations (i.e., 0.45 μm filtered) by >100%. This is significant as only the aqueous metal phase is to be considered for environmental compliance. Consequently, identification of an optimum process condition for generic micropollutant removal is expected to favour a more integrated approach where upstream process unit optimisation (i.e., primary sedimentation) is demanded to reduce loading of the particle bound metal phase onto the ASP, thereby enabling longer HRT in the ASP to be considered for optimum removal of organic

  4. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    Science.gov (United States)

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  5. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators.

    Science.gov (United States)

    Cox, Sam L; Orgeret, Florian; Gesta, Mathieu; Rodde, Charles; Heizer, Isaac; Weimerskirch, Henri; Guinet, Christophe

    2018-01-01

    Biologging technologies are changing the way in which the marine environment is observed and monitored. However, because device retrieval is typically required to access the high-resolution data they collect, their use is generally restricted to those animals that predictably return to land. Data abstraction and transmission techniques aim to address this, although currently these are limited in scope and do not incorporate, for example, acceleration measurements which can quantify animal behaviours and movement patterns over fine-scales.In this study, we present a new method for the collection, abstraction and transmission of accelerometer data from free-ranging marine predators via the Argos satellite system. We test run the technique on 20 juvenile southern elephant seals Mirounga leonina from the Kerguelen Islands during their first months at sea following weaning. Using retrieved archival data from nine individuals that returned to the colony, we compare and validate abstracted transmissions against outputs from established accelerometer processing procedures.Abstracted transmissions included estimates, across five segments of a dive profile, of time spent in prey catch attempt (PrCA) behaviours, swimming effort and pitch. These were then summarised and compared to archival outputs across three dive phases: descent, bottom and ascent. Correlations between the two datasets were variable but generally good (dependent on dive phase, marginal R 2 values of between .45 and .6 to >.9) and consistent between individuals. Transmitted estimates of PrCA behaviours and swimming effort were positively biased to those from archival processing.Data from this study represent some of the first remotely transmitted quantifications from accelerometers. The methods presented and analysed can be used to provide novel insight towards the behaviours and movements of free-ranging marine predators, such as juvenile southern elephant seals, from whom logger retrieval is challenging

  6. Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence

    Science.gov (United States)

    Pohorille, Andrew

    2012-01-01

    above background was evolved in vitro. This enzyme does not look like any contemporary protein. It is very flexible and its structure is kept together just by a single salt bridge between a charged residue and a coordinating zinc. A similar picture emerges from studies of simple transmembrane channels that mimic those in ancestral cells. Again, they are extremely flexible and do not form a conventional pore. Yet, they efficiently mediate ion transport. Studies on simple proteins that are on-going in several laboratories hold promise of revealing crucial links between chemical and biological catalysis and other ubiquitous cell functions. Interaction between composition, growth and division of protobiologically relevant vesicles and metabolic reactions that they encapsulate is an example of coupling between simple functions that promotes reproduction and evolution. Recent studies have demonstrated possible mechanisms by which vesicles might have evolved their composition from fatty acids to phospholipids, thus facilitating a number of new cellular functions. Conversely, it has been also demonstrated that an encapsulated metabolism might drive vesicle division. These are, again, examples of processes that might have driven the transition from chemistry to biology.

  7. Biological monitoring of benzene exposure for process operators during ordinary activity in the upstream petroleum industry.

    Science.gov (United States)

    Bråtveit, Magne; Kirkeleit, Jorunn; Hollund, Bjørg Eli; Moen, Bente E

    2007-07-01

    This study characterized the exposure of crude oil process operators to benzene and related aromatics during ordinary activity and investigated whether the operators take up benzene at this level of exposure. We performed the study on a fixed, integrated oil and gas production facility on Norway's continental shelf. The study population included 12 operators and 9 referents. We measured personal exposure to benzene, toluene, ethylbenzene and xylene during three consecutive 12-h work shifts using organic vapour passive dosimeter badges. We sampled blood and urine before departure to the production facility (pre-shift), immediately after the work shift on Day 13 of the work period (post-shift) and immediately before the following work shift (pre-next shift). We also measured the exposure to hydrocarbons during short-term tasks by active sampling using Tenax tubes. The arithmetic mean exposure over the 3 days was 0.042 ppm for benzene (range ethylbenzene and 0.03 ppm for xylene. Full-shift personal exposure was significantly higher when the process operators performed flotation work during the shift versus other tasks. Work in the flotation area was associated with short-term (6-15 min) arithmetic mean exposure to benzene of 1.06 ppm (range 0.09-2.33 ppm). The concentrations of benzene in blood and urine did not differ between operators and referents at any time point. When we adjusted for current smoking in regression analysis, benzene exposure was significantly associated with the post-shift concentration of benzene in blood (P = 0.01) and urine (P = 0.03), respectively. Although these operators perform tasks with relatively high short-term exposure to benzene, the full-shift mean exposure is low during ordinary activity. Some evidence indicates benzene uptake within this range of exposure.

  8. Fundamental host range of Pseudophilothrips ichini s.l. (Thysanoptera: Phlaeothripidae): a candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    Science.gov (United States)

    Cuda, J P; Medal, J C; Gillmore, J L; Habeck, D H; Pedrosa-Macedo, J H

    2009-12-01

    Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is a non-native perennial woody plant that is one of the most invasive weeds in Florida, Hawaii, and more recently California and Texas. This plant was introduced into Florida from South America as a landscape ornamental in the late 19th century, eventually escaped cultivation, and now dominates entire ecosystems in south-central Florida. Recent DNA studies have confirmed two separate introductions of S. terebinthifolius in Florida, and there is evidence of hybridization. A thrips, Pseudophilothrips ichini s.l. (Hood) (Thysanoptera: Phlaeothripidae), is commonly found attacking shoots and flowers of S. terebinthifolius in Brazil. Immatures and occasionally adults form large aggregations on young terminal growth (stems and leaves) of the plant. Feeding damage by P. ichini s.l. frequently kills new shoots, which reduces vigor and restricts growth of S. terebinthifolius. Greenhouse and laboratory host range tests with 46 plant species in 18 families and 10 orders were conducted in Paraná, Brazil, and Florida. Results of no-choice, paired-choice, and multiple-choice tests indicated that P. ichini s.l. is capable of reproducing only on S. terebinthifolius and possibly Schinus molle L., an ornamental introduced into California from Peru that has escaped cultivation and is considered invasive. Our results showed that P. ichini s.l. posed minimal risk to mature S. molle plants or the Florida native Metopium toxiferum L. Krug and Urb. In May 2007, the federal interagency Technical Advisory Group for Biological Control Agents of Weeds (TAG) concluded P. ichini s.l. was sufficiently host specific to recommend its release from quarantine.

  9. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I.; Lambri, O.A.; Bozzano, P.B.; Garcia, J.A.; Celauro, C.A.

    2008-01-01

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement

  10. Effect of decimeter range waves in combination with drug electroaerosols on immunoinflammatory processes during chronic nonspecific lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ayrapetova, N.S.; Tkachenko, A.F.

    An attempt was made to optimize the therapy of chronic nonspecific pulmonary diseases using a combination of decimeter range waves (DRW) and broncholytic electroaerosols. The electroaerosols penetrate rapidly deep into the lungs up to the aveoli, combining the action of an electric charge with the pharmaceutical effect. In all, 232 patients were studied (94.8% with chronic bronchitis, 5.2% with chronic pneumonia) manifesting an active inflammatory process, disturbance of the immune status and diminished glucocorticoid activity. After 15 procedures of combined therapy, 88.5% of the patients showed improvement in their clinical status; 65.4% of the control group (receiving only the electroaerosol) also showed improvement. In this combined therapy, the antiinflammatory and immunosuppressive effect were achieved due to the action of DRW; the electroaerosols had a positive effect on the function state of the cardiorespiratory system. 11 references.

  11. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)

    2008-10-15

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.

  12. Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145-1330 keV

    International Nuclear Information System (INIS)

    Manjunathaguru, V; Umesh, T K

    2006-01-01

    A semi-empirical relation which can be used to determine the total attenuation cross sections of samples containing H, C, N and O in the energy range 145-1332 keV has been derived based on the total attenuation cross sections of several sugars, amino acids and fatty acids. The cross sections have been measured by performing transmission experiments in a narrow beam good geometry set-up by employing a high-resolution hyperpure germanium detector at seven energies of biological importance such as 145.4 keV, 279.2 keV, 514 keV, 661.6 keV, 1115.5 keV, 1173.2 keV and 1332.1 keV. The semi-empirical relation can reproduce the experimental values within 1-2%. The total attenuation cross sections of five elements carbon, aluminium, titanium, copper and zirconium measured in the same experimental set-up at the energies mentioned above have been used in a new matrix method to evaluate the effective atomic numbers and the effective electron densities of samples such as cholesterol, fatty acids, sugars and amino acids containing H, C, N and O atoms from their effective atomic cross sections. The effective atomic cross sections are the total attenuation cross sections divided by the total number of atoms of all types in a particular sample. Further, a quantity called the effective atomic weight was defined as the ratio of the molecular weight of a sample to the total number of atoms of all types in it. The variation of the effective atomic number was systematically studied with respect to the effective atomic weight and a new semi-empirical relation for Z eff has been evolved. It is felt that this relation can be very useful to determine the effective atomic number of any sample having H, C, N and O atoms in the energy range 145-1332 keV irrespective of its chemical structure

  13. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  14. Biological effects of ion implantation on processing tomato and eggplant seed

    International Nuclear Information System (INIS)

    Mao Peihong; Zeng Xianxian; Jin Xiang

    2004-01-01

    The seed of processing tomato '87-5' (Lycopersicon esculentum Mill) were implanted by the low energy nitrogen ion (N + ) with 6 different doses. The rate of emergence was little reduced in M1 generation, but the fruiting number per plant was increased and it's maturing earlier 20 days than the control. The precocity, disease resistance and stronger growth vigor were shown in M2 generation. Experimental results of two years showed that, according to synthetic analysis in factors such as precocity, disease resistance, high yield and quality, the N + dose of 6 x 10 16 cm -2 (60 times of pulse) for tomato seed '87-5' had been proved to have notable biological effects on M1 and M2 generation. The seed of eggplant 'Wuyeqie' (Solanum melongena L.) was also implanted by the low energy nitrogen ion (N + ) with 2 different doses. Multi-vertical channel fruits were obtained in variable M1 generation, which liked the pomelo without peel. The seed of these variable eggplants was taken and planted in the next year. The meaningful variable fruits, the characters of disease-resistance, purple-peel, small-navel, lantern-form, large-scale, etc. were obtained in beneficial M2 generation. The biggest single-fruit weight reached 1.53 kg, providing valuable germplasm resource for breeding. (authors)

  15. BioModels Database: a repository of mathematical models of biological processes.

    Science.gov (United States)

    Chelliah, Vijayalakshmi; Laibe, Camille; Le Novère, Nicolas

    2013-01-01

    BioModels Database is a public online resource that allows storing and sharing of published, peer-reviewed quantitative, dynamic models of biological processes. The model components and behaviour are thoroughly checked to correspond the original publication and manually curated to ensure reliability. Furthermore, the model elements are annotated with terms from controlled vocabularies as well as linked to relevant external data resources. This greatly helps in model interpretation and reuse. Models are stored in SBML format, accepted in SBML and CellML formats, and are available for download in various other common formats such as BioPAX, Octave, SciLab, VCML, XPP and PDF, in addition to SBML. The reaction network diagram of the models is also available in several formats. BioModels Database features a search engine, which provides simple and more advanced searches. Features such as online simulation and creation of smaller models (submodels) from the selected model elements of a larger one are provided. BioModels Database can be accessed both via a web interface and programmatically via web services. New models are available in BioModels Database at regular releases, about every 4 months.

  16. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  17. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter.

    Science.gov (United States)

    Fan, Li; Ni, Jinren; Wu, Yanjun; Zhang, Yongyong

    2009-03-15

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD(Cr) removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD(Cr) was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m(-3)d(-1) when the total HRT was 43.4h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD(Cr) removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  18. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)], E-mail: nijinren@iee.pku.edu.cn; Wu Yanjun; Zhang Yongyong [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2009-03-15

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD{sub Cr} removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD{sub Cr} was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m{sup -3} d{sup -1} when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD{sub Cr} removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  19. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    International Nuclear Information System (INIS)

    Fan Li; Ni Jinren; Wu Yanjun; Zhang Yongyong

    2009-01-01

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD Cr removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD Cr was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m -3 d -1 when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD Cr removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp

  20. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa

    2018-03-06

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer polyhydroxybutyrate (PHB). Using the same medium in both stages, first, acetic acid is produced (3.2 g L−1) by Acetobacterium woodii from 5.2 L gas-mixture of CO2:H2 (15:85 v/v) under elevated pressure (≥2.0 bar) to increase H2-solubility in water. Second, acetic acid is converted to PHB (3 g L−1 acetate into 0.5 g L−1 PHB) by Ralstonia eutropha H16. The efficiencies and space-time yields were evaluated, and our data show the conversion of CO2 into PHB with a 33.3% microbial cell content (percentage of the ratio of PHB concentration to cell concentration) after 217 h. Collectively, our results provide a resourceful platform for future optimization and commercialization of a Bio-GTL for PHB production.

  1. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Feasibility of a two-stage biological aerated filter for depth processing of electroplating-wastewater.

    Science.gov (United States)

    Liu, Bo; Yan, Dongdong; Wang, Qi; Li, Song; Yang, Shaogui; Wu, Wenfei

    2009-09-01

    A "two-stage biological aerated filter" (T-SBAF) consisting of two columns in series was developed to treat electroplating-wastewater. Due to the low BOD/CODcr values of electroplating-wastewater, "twice start-up" was employed to reduce the time for adaptation of microorganisms, a process that takes up of 20 days. Under steady-state conditions, the removal of CODcr and NH(4)(+)-N increased first and then decreased while the hydraulic loadings increased from 0.75 to 1.5 m(3) m(-2) h(-1). The air/water ratio had the same influence on the removal of CODcr and NH(4)(+)-N when increasing from 3:1 to 6:1. When the hydraulic loadings and air/water ratio were 1.20 m(3) m(-2) h(-1) and 4:1, the optimal removal of CODcr, NH(4)(+)-N and total-nitrogen (T-N) were 90.13%, 92.51% and 55.46%, respectively. The effluent steadily reached the wastewater reuse standard. Compared to the traditional BAF, the period before backwashing of the T-SBAF could be extended to 10days, and the recovery time was considerably shortened.

  3. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR process

    Directory of Open Access Journals (Sweden)

    Ying Hui Ong

    2016-01-01

    Full Text Available An enhanced biological phosphorus removal (EBPR process operated at a relatively high temperature, 28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study investigated its microbial community through fluorescent in situ hybridization (FISH and clone library generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter-polyphosphate accumulating organisms (PAOs than Candidatus ‘Competibacter phosphatis’ (Competibacter-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%, Actinobacteria (13.7%, Bacteroidetes (9.8%, Firmicutes (2.94%, Planctomycetes (1.96%, and Acidobacteria (1.47%. Accumulibacter are the only recognized PAOs revealed by the clone library. Both the clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for the phosphorus removal in this long-term EBPR at relatively high temperature.

  4. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    Science.gov (United States)

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  5. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2005-05-01

    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  6. Biological and geochemical processes involved during denitrification in Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Ollivier, P.; Parmentier, M.; Joulian, C.; Pauwels, H.; Albrecht, A.

    2012-01-01

    Document available in extended abstract form only. The clay-rich Callovo-Oxfordian (COx) formation has been selected for the disposal of medium and high level, long-lived radioactive waste. After waste cell closure and degradation of package some intermediate-level waste will release nitrate. The latter is likely to diffuse into the surrounding environment (engineered barriers and geological host formation) and interact with a variety compounds present in the barrier components and the rocks. These interactions may result in modification of chemical conditions and impact storage conditions and radionuclide retention. Our work is focused on the understanding of the fate of nitrates released during and after degradation of waste package. We developed a coupled approach considering both geochemical and biological processes of nitrate reduction to simulate reactions occurring at the interface of the engineered barrier and the clay-rich COx formation. Laboratory experiments have been carried out in order to acquire data on kinetics of denitrification coupled with a molecular approach using enzymatic and metabolic activities as a tool for an accurate estimation of biomass. Denitrification has been monitored in a synthetic solution comparable to COx pore water supplemented with acetate and nitrate and amended with a heterotrophic denitrifying strain, Pseudomonas mandelii. Several conditions are applied considering different acetate/nitrate ratios in the presence or absence of COx clay. Before the beginning of experiments, the headspace is flushed with N 2 gas to remove oxygen from flasks. Acetylene is used to stop denitrification reaction after the production of N 2 O gas and thus avoid the formation of N 2 gas. Two successive redox reactions are thus expected to occur in experiments. Samples are regularly collected to analyze physical and chemical parameters as well as biological parameters. Biomass is estimated and monitored using both optical microscopy and

  7. Atypical biological motion kinematics are represented by complementary lower-level and top-down processes during imitation learning.

    Science.gov (United States)

    Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2016-01-01

    Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching.

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. © 2016 G. Marbach-Ad and C. H. Rietschel. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus)

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Stott, Jeffrey L.; Waters, Shannon C.; Atwood, Todd C.

    2015-01-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.

  10. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  11. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus).

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A Keith; Stott, Jeffrey; Waters, Shannon; Atwood, Todd

    2015-10-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans. Published by Elsevier B.V.

  12. Biological Carbon Dioxide Assimilation Process Using Marine Phytoplankton Tetraselmis suecica and Bivalve Perna viridis

    Directory of Open Access Journals (Sweden)

    Sirichai Dharmvanij

    2012-01-01

    Full Text Available The Biological CO2 assimilation process using marine phytoplankton and marine bivalve was evaluated by carbon assimilation of the green mussel Perna viridis fed with Tetraselmis suecica under laboratory condition. Incorporation of carbon dioxide into phytoplankton biomass was performed through aeration. The experiment consisted of three treatments i.e. mussels without feeding (Control, mussels fed with T. suecica cultured with air (Treatment 1: T-Air, and mussels fed with T. suecica cultured with 1.5% CO2 in air (Treatment 2: T-CO2. The results showed that growth of mussels in T-Air and T-CO2 was 22.4 ± 4.0 mg/individual/day and 28.9 ± 12.3 mg/individual/day, respectively, which was significantly higher than control (mussels without feeding. Growth of mussels in T-Air was significantly lower than in T-CO2. Carbon content in shell (15.59 ± 0.57 % D.W. and meat (38.28 ± 1.72 % D.W. of mussels fed with aerated T. suecica (T-Air was significantly higher than that found in mussels fed with 1.5% CO2 T. suecica (14.2 ± 0.47 and 36.61± 0.43 % D.W. in shell and in meat, respectively (p≤0.05. With T-Air, 1.95±0.27 and 9.36±1.24% of carbon from T. suecica cells was assimilated into shell and meat of the mussel, respectively, while in T-CO2 , carbon assimilation from T. suecica cells in shell and meat was 2.19±0.55 and 11.22±2.76% respectively.

  13. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. PMID:27856550

  14. Fast or slow-foods? Describing natural variations in oral processing characteristics across a wide range of Asian foods.

    Science.gov (United States)

    Forde, C G; Leong, C; Chia-Ming, E; McCrickerd, K

    2017-02-22

    The structural properties of foods have a functional role to play in oral processing behaviours and sensory perception, and also impact on meal size and the experience of fullness. This study adopted a new approach by using behavioural coding analysis of eating behaviours to explore how a range of food textures manifest as the microstructural properties of eating and expectations of fullness. A selection of 47 Asian foods were served in fixed quantities to a panel of participants (N = 12) and their eating behaviours were captured via web-camera recordings. Behavioural coding analysis was completed on the recordings to extract total bites, chews and swallows and cumulative time of the food spent in the mouth. From these measurements a series of microstructural properties including average bite size (g), chews per bite, oro-sensory exposure time (seconds) and average eating rate (g min -1 ) were derived per food. The sensory and macronutrient properties of each food were correlated with the microstructure of eating to compare the differences in eating behaviour on a gram for gram basis. There were strong relationships between the perceived food textural properties and its eating behaviours and a food's total water content was the best predictor of its eating rate. Foods that were eaten at a slower eating rate, with smaller bites and more chews per bite were rated as higher in the expected fullness. These relationships are important as oral processing behaviours and beliefs about the potential satiating value of food influence portion decisions and moderate meal size. These data support the idea that naturally occurring differences in the food structure and texture could be used to design meals that slow the rate of eating and maximise fullness.

  15. Biological processes in the water column of the South Atlantic bight

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhoefer, G.A.; Yoder, J.A.

    1980-01-31

    Progress is reported on research conducted during 1979 on the biological oceanography of the South Atlantic Bight. The presentation consists of a number of published articles and abstracts of oral presentations. (ACR)

  16. Stability-based sorting: The forgotten process behind (not only) biological evolution.

    Science.gov (United States)

    Toman, Jan; Flegr, Jaroslav

    2017-12-21

    Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in

  17. Biological, psychological and social processes that explain celebrities' influence on patients' health-related behaviors.

    Science.gov (United States)

    Hoffman, Steven J; Tan, Charlie

    2015-01-01

    Celebrities can have substantial influence as medical advisors. However, their impact on public health is equivocal: depending on the advice's validity and applicability, celebrity engagements can benefit or hinder efforts to educate patients on evidence-based practices and improve their health literacy. This meta-narrative analysis synthesizes multiple disciplinary insights explaining the influence celebrities have on people's health-related behaviors. Systematic searches of electronic databases BusinessSource Complete, Communication & Mass Media Complete, Humanities Abstracts, ProQuest Political Science, PsycINFO, PubMed, and Sociology Abstracts were conducted. Retrieved articles were used to inform a conceptual analysis of the possible processes accounting for the substantial influence celebrities may have as medical advisors. Fourteen mechanisms of celebrity influence were identified. According to the economics literature, celebrities distinguish endorsed items from competitors and can catalyze herd behavior. Marketing studies tell us that celebrities' characteristics are transferred to endorsed products, and that the most successful celebrity advisors are those viewed as credible, a perception they can create with their success. Neuroscience research supports these explanations, finding that celebrity endorsements activate brain regions involved in making positive associations, building trust and encoding memories. The psychology literature tells us that celebrity advice conditions people to react positively toward it. People are also inclined to follow celebrities if the advice matches their self-conceptions or if not following it would generate cognitive dissonance. Sociology explains how celebrities' advice spreads through social networks, how their influence is a manifestation of people's desire to acquire celebrities' social capital, and how they affect the ways people acquire and interpret health information. There are clear and deeply rooted biological

  18. The teach-learning process of high school students: a case of Educational Biology for teachers formation

    OpenAIRE

    Marisa Laporta Chudo; Maria Cecília Sonzogno

    2007-01-01

    Objective. To analyze the teach-learning process of high school students, in the scope of Educational Biology. To plan and to develop a methodology with lesson strategies that facilitate the learning. To analyze, in the students vision, the positive and negative points in the process. Method. A research was developed -- of which had participated students of the first semester of the Pedagogy of a high school private institution in São Paulo city -- of the type action-research, with increased ...

  19. Mathematical computer simulation of the process of ultrasound interaction with biological medium

    International Nuclear Information System (INIS)

    Yakovleva, T.; Nassiri, D.; Ciantar, D.

    1996-01-01

    The aim of the paper is to study theoretically the interaction of ultrasound irradiation with biological medium and the peculiarities of ultrasound scattering by inhomogeneities of biological tissue, which can be represented by fractal structures. This investigation has been used for the construction of the computer model of three-dimensional ultrasonic imaging system what gives the possibility to define more accurately the pathological changes in such a tissue by means of its image analysis. Poster 180. (author)

  20. Biological and Psychosocial Processes in the Development of Children’s Appetitive Traits: Insights from Developmental Theory and Research

    Directory of Open Access Journals (Sweden)

    Catherine G. Russell

    2018-05-01

    Full Text Available There has been increasing concern expressed about children’s food intakes and dietary patterns. These are closely linked to children’s appetitive traits (such as disinhibited eating and food fussiness/neophobia. Research has examined both biological and psychosocial correlates or predictors of these traits. There has been less focus on possible processes or mechanisms associated with children’s development of these traits and research that links biological and psychosocial factors. There is an absence of research that links biological and psychosocial factors. In the present article, we outline a model intended to facilitate theory and research on the development of appetitive traits. It is based on scholarship from developmental theory and research and incorporates biological factors such as genetic predispositions and temperament as well as psychosocial factors in terms of parent cognitions, feeding styles and feeding practices. Particular attention is directed to aspects such as emotional eating and feeding, self-regulation of energy intake, and non-shared family environments. We highlight the opportunity for longitudinal research that examines bidirectional, transactional and cascade processes and uses a developmental framework. The model provides a basis for connecting the biological foundations of appetitive traits to system-level analysis in the family. Knowledge generated through the application of the model should lead to more effective prevention and intervention initiatives.

  1. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    Directory of Open Access Journals (Sweden)

    Lemke Ney

    2009-09-01

    Full Text Available Abstract Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing

  2. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Bartłomiej Wysocki

    2016-03-01

    Full Text Available Nowadays, post-surgical or post-accidental bone loss can be substituted by custom-made scaffolds fabricated by additive manufacturing (AM methods from metallic powders. However, the partially melted powder particles must be removed in a post-process chemical treatment. The aim of this study was to investigate the effect of the chemical polishing with various acid baths on novel scaffolds’ morphology, porosity and mechanical properties. In the first stage, Magics software (Materialise NV, Leuven, Belgium was used to design a porous scaffolds with pore size equal to (A 200 µm, (B 500 µm and (C 200 + 500 µm, and diamond cell structure. The scaffolds were fabricated from commercially pure titanium powder (CP Ti using a SLM50 3D printing machine (Realizer GmbH, Borchen, Germany. The selective laser melting (SLM process was optimized and the laser beam energy density in range of 91–151 J/mm3 was applied to receive 3D structures with fully dense struts. To remove not fully melted titanium particles the scaffolds were chemically polished using various HF and HF-HNO3 acid solutions. Based on scaffolds mass loss and scanning electron (SEM observations, baths which provided most uniform surface cleaning were proposed for each porosity. The pore and strut size after chemical treatments was calculated based on the micro-computed tomography (µ-CT and SEM images. The mechanical tests showed that the treated scaffolds had Young’s modulus close to that of compact bone. Additionally, the effect of pore size of chemically polished scaffolds on cell retention, proliferation and differentiation was studied using human mesenchymal stem cells. Small pores yielded higher cell retention within the scaffolds, which then affected their growth. This shows that in vitro cell performance can be controlled to certain extent by varying pore sizes.

  3. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Wysocki, Bartłomiej; Idaszek, Joanna; Szlązak, Karol; Strzelczyk, Karolina; Brynk, Tomasz; Kurzydłowski, Krzysztof J; Święszkowski, Wojciech

    2016-03-15

    Nowadays, post-surgical or post-accidental bone loss can be substituted by custom-made scaffolds fabricated by additive manufacturing (AM) methods from metallic powders. However, the partially melted powder particles must be removed in a post-process chemical treatment. The aim of this study was to investigate the effect of the chemical polishing with various acid baths on novel scaffolds' morphology, porosity and mechanical properties. In the first stage, Magics software (Materialise NV, Leuven, Belgium) was used to design a porous scaffolds with pore size equal to (A) 200 µm, (B) 500 µm and (C) 200 + 500 µm, and diamond cell structure. The scaffolds were fabricated from commercially pure titanium powder (CP Ti) using a SLM50 3D printing machine (Realizer GmbH, Borchen, Germany). The selective laser melting (SLM) process was optimized and the laser beam energy density in range of 91-151 J/mm³ was applied to receive 3D structures with fully dense struts. To remove not fully melted titanium particles the scaffolds were chemically polished using various HF and HF-HNO₃ acid solutions. Based on scaffolds mass loss and scanning electron (SEM) observations, baths which provided most uniform surface cleaning were proposed for each porosity. The pore and strut size after chemical treatments was calculated based on the micro-computed tomography (µ-CT) and SEM images. The mechanical tests showed that the treated scaffolds had Young's modulus close to that of compact bone. Additionally, the effect of pore size of chemically polished scaffolds on cell retention, proliferation and differentiation was studied using human mesenchymal stem cells. Small pores yielded higher cell retention within the scaffolds, which then affected their growth. This shows that in vitro cell performance can be controlled to certain extent by varying pore sizes.

  4. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes

    Science.gov (United States)

    Allard, M.; Vincent, W. F.; Lemay, M.

    2012-12-01

    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  5. ANALYTICAL MODEL OF A DIFFERENTIAL METHOD FOR RECEIVING AND PROCESSING SIGNALS OF THE INFRARED RANGE OF WAVELENGTHS

    Directory of Open Access Journals (Sweden)

    N. S. Akinshin

    2017-01-01

    Full Text Available One of the classic methods to improve the noise immunity of passive detection of infrared wavelength range (IKSO is a differential inclusion of pyrocatechol, placed at some distance. An analytical model of a differential method of receiving infrared radiation from moving objects is introduced. A comparison with experimental results for moving objects of different types is made. Differential inclusion of sensors can be used not only to compensate the external interference, but also to determine the boundaries of a temporary "slot", inside which the movable object is most likely to be detected. The temporal boundaries are used for the decision making about the type and parameters of the movable object in complexional device of object classification.The principle of operation of ikso, which is to record signals with diversity of pyrocatechol into the appropriate memory registers and output detection of the differential signal envelope. Subsequently, from the memory registers portions of a recording signal posted pyrocatechol are selected which are later processed to determine the temporal provisions of minimum minimore and maximum maximore. The direction of movement of the object abeam is determined by the delay or advance of the extrema of the signals of one sensor relative to another within a given temporal "slot".It is shown that aggregation should be the following – the tool with a maximum radius of the zone of sensitivity should be active and the basic, but if there is a more reliable piece of information about the detected object which can implement a more refined classification of the object (for example, a group of people, wheeled vehicles-tracked vehicles, etc.. The conclusion is made about the advantages of differential option to include spaced sensors.The results can be used in the development of infrared wavelengths passive detection in the conceptual design phase.

  6. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  7. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  8. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    International Nuclear Information System (INIS)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.

    1983-01-01

    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg 2+ as HgCl 2 ) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg 0 ) were found, while the overwhelming amount of HgCl 2 had not reacted. (orig.) [de

  9. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    Science.gov (United States)

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  12. Biological Mesh Implants for Abdominal Hernia Repair: US Food and Drug Administration Approval Process and Systematic Review of Its Efficacy.

    Science.gov (United States)

    Huerta, Sergio; Varshney, Anubodh; Patel, Prachi M; Mayo, Helen G; Livingston, Edward H

    2016-04-01

    Expensive biological mesh materials are increasingly used to reinforce abdominal wall hernia repairs. The clinical and cost benefit of these materials are unknown. To review the published evidence on the use of biological mesh materials and to examine the US Food and Drug Administration (FDA) approval history for these devices. Search of multiple electronic databases (Ovid, MEDLINE, EMBASE, Cochrane Systematic Reviews, Cochrane Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, and Cochrane National Health Service Economic Evaluation Database) to identify articles published between 1948 and June 30, 2015, on the use of biological mesh materials used to reinforce abdominal wall hernia repair. Keywords searched included surgical mesh, abdominal hernia, recurrence, infection, fistula, bioprosthesis, biocompatible materials, absorbable implants, dermis, and collagen. The FDA online database for 510(k) clearances was reviewed for all commercially available biological mesh materials. The median national price for mesh materials was established by a benchmarking query through several Integrated Delivery Network and Group Purchasing Organization tools. Of 274 screened articles, 20 met the search criteria. Most were case series that reported results of convenience samples of patients at single institutions with a variety of clinical problems. Only 3 of the 20 were comparative studies. There were no randomized clinical trials. In total, outcomes for 1033 patients were described. Studies varied widely in follow-up time, operative technique, meshes used, and patient selection criteria. Reported outcomes and clinical outcomes, such as fistula formation and infection, were inconsistently reported across studies. Conflicts of interest were not reported in 16 of the 20 studies. Recurrence rates ranged from 0% to 80%. All biological mesh devices were approved by the FDA based on substantial equivalence to a group of nonbiological predicate

  13. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys

    International Nuclear Information System (INIS)

    Hudson, D.; Smith, G.D.W.; Gault, B.

    2011-01-01

    Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate. -- Research Highlights: → Realistic simulated mass spectra were generated so as to reproduce experimental data with a perfectly determined composition. → Several metrics were tested against these simulated mass spectra to determine an optimal methodology for ranging mass peaks in atom probe tomography. Systematic automated ranging provides a significant reduction in the deviation between true and measured concentrations compared to manual ranging by multiple users on the same data. → Experimental datasets were subsequently investigated, and Fe has been shown to be distributed as a random solid solution within the matrix of 'as-received' recrystallised ZIRLO, a zirconium alloy.

  14. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan

    2015-04-01

    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  15. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Science.gov (United States)

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision

  16. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  17. Pseudorandom numbers: evolutionary models in image processing, biology, and nonlinear dynamic systems

    Science.gov (United States)

    Yaroslavsky, Leonid P.

    1996-11-01

    We show that one can treat pseudo-random generators, evolutionary models of texture images, iterative local adaptive filters for image restoration and enhancement and growth models in biology and material sciences in a unified way as special cases of dynamic systems with a nonlinear feedback.

  18. Treatment of acid and sulphate-rich effluents in an integrated biological/chemical process

    CSIR Research Space (South Africa)

    Maree, JP

    2004-04-01

    Full Text Available .4 g SO4/(l.d). The rate of biological sulphate removal was found to be directly related to the square root of sulphate, COD and VSS concentrations respectively, and inversely proportional to sulphide concentration. The practical value of simultaneous...

  19. A Parallel Distributed Processing Approach to Behavior and Biology in Schizophrenia

    Science.gov (United States)

    1989-10-01

    delusions) and the other that reflects dopamine underactivity (negative symptoms - e.g., avolition, amotivation and withdrawal). Several authors have... amotivation . While both may be related to frontal lobe Behavior and Biology in Schizophrenia Cohen and Servan-Schreiber 32 deficits, the models in their

  20. Neuropsychiatric Model of Biological and Psychological Processes in the Remission of Delusions and Auditory Hallucinations

    NARCIS (Netherlands)

    van der Gaag, M.

    2006-01-01

    This selective review combines cognitive models and biological models of psychosis into a tentative integrated neuropsychiatric model. The aim of the model is to understand better, how pharmacotherapy and cognitive-behavior therapy come forward as partners in the treatment of psychosis and play

  1. StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes

    NARCIS (Netherlands)

    T.R. Maarleveld (Timo); B.G. Olivier (Brett); F.J. Bruggeman (Frank)

    2013-01-01

    htmlabstractSingle-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models

  2. Radio-Wave Tomography of Inhomogeneities in Biological Media with Multi-Frequency Sounding in the Range 2-8 GHZ

    Directory of Open Access Journals (Sweden)

    Shipilov Sergey

    2018-01-01

    Full Text Available In this paper, a method for detecting and mapping inhomogeneities in biological tissues using the radio-wave tomosynthesis method is presented. The proposed method of radio-wave tomosynthesis allows us to calculate the three-dimensional distribution of the permittivity of the space under study and, thereby, to detect tissue inhomogeneities and to determine their location and size. Due to their harmlessness for humans, these methods are suitable for dynamic observation of changes in the size of formation, in contrast to x-ray methods, for which regular doses of ionizing radiation are contraindicated. Therefore, the development of non-invasive methods for the search for inhomogeneities in biological media based on radio-wave sounding, which makes it possible to identify pathological formations, is now very relevant.

  3. A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate-nitrite-nitric oxide pathway in the gut.

    Science.gov (United States)

    Rocha, Bárbara S; Nunes, Carla; Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2014-08-01

    Dietary polyphenols are complex, natural compounds with recognized health benefits. Initially attractive to the biomedical area due to their in vitro antioxidant properties, the biological implications of polyphenols are now known to be far from their acute ability to scavenge free radicals but rather to modulate redox signaling pathways. Actually, it is now recognized that dietary polyphenols are extensively metabolized in vivo and that the chemical, biophysical and biological properties of their metabolites are, in most cases, quite different from the ones of the parent molecules. Hence, the study of the metabolic, absorptive and signaling pathways of both phenolics and derivatives has become a major issue. In this paper we propose a short-cut for the systemic effects of polyphenols in connection with nitric oxide (˙NO) biology. This free radical is a ubiquitous signaling molecule with pivotal functions in vivo. It is produced through an enzymatic pathway and also through the reduction of dietary nitrate and nitrite in the human stomach. At acidic gastric pH, dietary polyphenols, in the form they are conveyed in foods and at high concentration, not only promote nitrite reduction to ˙NO but also embark in a complex network of chemical reactions to produce higher nitrogen oxides with signaling functions, namely by inducing post-translational modifications. Modified endogenous molecules, such as nitrated proteins and lipids, acquire important physiological functions. Thus, local and systemic effects of ˙NO such as modulation of vascular tone, mucus production in the gut and protection against ischemia-reperfusion injury are, in this sense, triggered by dietary polyphenols. Evidence to support the signaling and biological effects of polyphenols by modulation of the nitrate-nitrite-NO pathway will be herein provided and discussed. General actions of polyphenols encompassing absorption and metabolism in the intestine/liver are short-cut via the production of

  4. Chemical and biological effects of heavy distillate recycle in the SRC-II process

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Pelroy, R.A.; Anderson, R.P.; Freel, J.

    1983-12-01

    Recent work from the Merriam Laboratory continuous coal liquefaction units shows that heavy distillate from the SRC-II process can be recycled to extinction, and hence a distillate product boiling entirely below 310/sup 0/C (590/sup 0/F) (or other selected boiling points) is feasible. In these runs distillate yield was not reduced; gas make was unaffected; and hydrogen consumption was increased only slightly, in keeping with the generally higher hydrogen content of lighter end products. Total distillate yield (C/sub 5/-590/sup 0/F) was 56 wt %, MAF coal in runs with subbituminous coal from the Amax Belle Ayr mine. Product endpoint is well below 371/sup 0/C (700/sup 0/F), the temperature above which coal distillates appear to become genotoxic; and the product was shown to be free of mutagenic activity in the Ames test. Chemical analyses showed both the < 270/sup 0/C (< 518/sup 0/F) and the < 310/sup 0/C (< 590/sup 0/F) distillates to be essentially devoid of several reference polycyclic compounds known to be carcinogenic in laboratory animals. Tests for tumorigenic or carcinogenic activity were not carried out on these materials. However, a comparison of chemical data from the Merriam heavy distillate samples with data on the other SRC-II distillates where carcinogenesis or tumorigenesis data is available leads to the expectation that < 371/sup 0/C (< 700/sup 0/F) materials from the Merriam Laboratory will have greatly reduced tumorigenic and carcinogenic activity in skin painting tests. Other studies suggest the product should be more readily upgraded than full-range (C/sub 5/-900/sup 0/F) distillate.

  5. Processes Influencing Ozone Levels in Alaskan Forest Fires Plumes during Long-Range Transport over the North Atlantic

    Science.gov (United States)

    Real, E.; Law, K. S.; Wienzierl, B.; Fiebig, M.; Petzold, A.; Wild, O.; Methven, J.; Arnold, S.; Stohl, A.; Huntrieser, H.; hide

    2006-01-01

    A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by 3 different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, is used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data, and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume is investigated using in-situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18 percent in O3 production and 24 percent in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume towards Europe. The predicted O3 changes are very dependent on temperature changes during transport, and also, on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutants level in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume are also compared in order to evaluate the photochemistry in the model. Observed slopes changed from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is

  6. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Siti Aishah Hashim; Zulkafli Ghazali; Khairul Zaman Dahlan; Ismail Yaziz

    2005-01-01

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  7. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  8. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  11. Biological processes for environmental control of effluent streams in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Hancher, C.W.; Strandberg, G.W.; Scott, C.D.

    1978-01-01

    Nitrates and radioactive heavy metals need to be removed from aqueous effluent streams in the fuel cycle. Biological methods are being developed for reducing nitrate or nitrite to N 2 gas and for decreasing dissolved metal concentration to less than 1 g/m 3 . Fluidized-bed denitrification bioreactors are being tested. Removal of uranium from solution by Saccharomyces cerevisiae and Pseudomonas aeruginosa was studied

  12. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  14. BIOLOGY STUDENTS’ TEACHER OPINIONS ABOUT THE INTEGRATION OF ICT INTO THE LEARNING AND TEACHING PROCESS

    Directory of Open Access Journals (Sweden)

    Andreja Špernjak

    2014-05-01

    Full Text Available Biology laboratory work can be performed in various ways, even using information and communication technologies (ICT. Whether a teacher incorporates it into laboratory work is related to different factors, but educators can influence students’ beliefs about the value of ICT through their pedagogical practice. In our study, student teachers of biology gave opinions on how successfully university professors use ICT in the classroom, where they acquired most knowledge about ICT and their attitude towards using of ICT in laboratory work. Student teachers were critical about the knowledge and usage of ICT of university professors in class. During their student teachers mostly failed to acquire knowledge about ICT and practice in incorporating it into daily routines. These results will be presented to our university professors, at which time we will suggest how they could use ICT more effectively in daily practice because, on the one hand, they are responsible for students teacher attitudes and for the level of student teacher knowledge, while, on the others, they precipitate indirectly in forming the pupils’ attitudes and determining the level of the pupils’ knowledge of ICT. The study was done on 85 student teachers of biology. Attitudes toward ICT are statistically significant by gender.

  15. The Cotesia sesamiae story: insight into host-range evolution in a Hymenoptera parasitoid and implication for its use in biological control programs.

    Science.gov (United States)

    Kaiser, L; Dupas, S; Branca, A; Herniou, E A; Clarke, C W; Capdevielle Dulac, C; Obonyo, J; Benoist, R; Gauthier, J; Calatayud, P A; Silvain, J F; Le Ru, B P

    2017-12-01

    This review covers nearly 20 years of studies on the ecology, physiology and genetics of the Hymenoptera Cotesia sesamiae, an African parasitoid of Lepidoptera that reduces populations of common maize borers in East and South Africa. The first part of the review presents studies based on sampling of C. sesamiae from maize crops in Kenya. From this agrosystem including one host plant and three main host borer species, studies revealed two genetically differentiated populations of C. sesamiae species adapted to their local host community, and showed that their differentiation involved the joint evolution of virulence genes and sensory mechanisms of host acceptance, reinforced by reproductive incompatibility due to Wolbachia infection status and natural inbreeding. In the second part, we consider the larger ecosystem of wild Poales plant species hosting many Lepidoptera stem borer species that are potential hosts for C. sesamiae. The hypothesis of other host-adapted C. sesamiae populations was investigated based on a large sampling of stem borer larvae on various Poales across sub-Saharan Africa. The sampling provided information on the respective contribution of local hosts, biogeography and Wolbachia in the genetic structure of C. sesamiae populations. Molecular evolution analyses highlighted that several bracovirus genes were under positive selection, some of them being under different selection pressure in C. sesamiae populations adapted to different hosts. This suggests that C. sesamiae host races result from co-evolution acting at the local scale on different bracovirus genes. The third part considers the mechanisms driving specialization. C. sesamiae host races are more or less host-specialized. This character is crucial for efficient and environmentally-safe use of natural enemies for biological control of pests. One method to get an insight in the evolutionary stability of host-parasite associations is to characterize the phylogenetic relationships between

  16. Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling.

    Science.gov (United States)

    Kornecki, Martin; Strube, Jochen

    2018-03-16

    Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R² ≥ 0.97) between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R² ≥ 0.92). Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R² ≥ 0.96) glucose concentration based on online cell

  17. Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling

    Directory of Open Access Journals (Sweden)

    Martin Kornecki

    2018-03-01

    Full Text Available Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP; however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT initiative, initiated by the American Food and Drug Administration (FDA, aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS or principal component analysis (PCA, it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm and ex-situ Raman spectroscopy (785 nm measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R2 ≥ 0.97 between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R2 ≥ 0.92. Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R2 ≥ 0.96 glucose concentration based on online cell

  18. Control of a Biological Nitrogen Removal Process in an Intensified Single Reactor Configuration

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2013-01-01

    The nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remains a challenging problem. In this contribution, a new process oriented approach is used to develop, evaluate and benchmark control strategies to ensure stable operation...

  19. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quality transformation of dissolved organic carbon during water transit through lakes: contrasting controls by photochemical and biological processes

    Science.gov (United States)

    Berggren, Martin; Klaus, Marcus; Panneer Selvam, Balathandayuthabani; Ström, Lena; Laudon, Hjalmar; Jansson, Mats; Karlsson, Jan

    2018-01-01

    Dissolved organic carbon (DOC) may be removed, transformed, or added during water transit through lakes, resulting in changes in DOC composition and pigmentation (color). However, the process-based understanding of these changes is incomplete, especially for headwater lakes. We hypothesized that because heterotrophic bacteria preferentially consume noncolored DOC, while photochemical processing removes colored fractions, the overall changes in DOC color upon water passage through a lake depend on the relative importance of these two processes, accordingly. To test this hypothesis we combined laboratory experiments with field studies in nine boreal lakes, assessing both the relative importance of different DOC decay processes (biological or photochemical) and the loss of color during water transit time (WTT) through the lakes. We found that influence from photo-decay dominated changes in DOC quality in the epilimnia of relatively clear headwater lakes, resulting in systematic and selective net losses of colored DOC. However, in highly pigmented brown-water lakes (absorbance at 420 nm > 7 m-1) biological processes dominated, and there was no systematic relationship between color loss and WTT. Moreover, in situ data and dark experiments supported our hypothesis on the selective microbial removal of nonpigmented DOC, mainly of low molecular weight, leading to persistent water color in these highly colored lakes. Our study shows that brown headwater lakes may not conform to the commonly reported pattern of the selective removal of colored constituents in freshwaters, as DOC can show a sustained degree of pigmentation upon transit through these lakes.

  1. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    Science.gov (United States)

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  2. Collection and processing of information in biological kinetics studies with radioactive tracers

    International Nuclear Information System (INIS)

    Remy, J.; Lafuma, J.

    1968-01-01

    The authors present an automatic method for the collection and treatment of information in biological kinetics experiments using radioactive tracers. The recording are made without any time constant on magnetic tape. The information recorded is sampled by a 400 channel multi-scale analyzer and transferred to punched cards. The digital analysis is done by an I.B.M. computer. The method is illustrated by an example: the hepatic fixation of colloidal gold in the pig. Its advantages and requirements are discussed. In the appendix are given the FORTRAN texts for two programmes used in treating the example presented. (authors) [fr

  3. Composting of biological waste. Processes and utilisation; Bioabfallkompostierung. Verfahren und Verwertung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for procesing and utilisation of biological waste by means of composting and spreading on agricultural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises all three reports. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die genannten drei Teilberichte. (orig./SR)

  4. Body size and geographic range do not explain long term variation in fish populations: a Bayesian phylogenetic approach to testing assembly processes in stream fish assemblages.

    Directory of Open Access Journals (Sweden)

    Stephen J Jacquemin

    Full Text Available We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010 local scale population variation of fishes in West Fork White River (Indiana, USA. The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.

  5. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  6. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  7. Criterion 1: Conservation of biological diversity - Indicator 8: The number of forest dependent species that occupy a small portion of their former range

    Science.gov (United States)

    Curtis H. Flather; Carolyn Hull Sieg; Michael S. Knowles; Jason McNees

    2003-01-01

    This indicator measures the portion of a species' historical distribution that is currently occupied as a surrogate measure of genetic diversity. Based on data for 1,642 terrestrial animals associated with forests, most species (88 percent) were found to fully occupy their historic range - at least as measured by coarse state-level occurrence patterns. Of the 193...

  8. Landscape biology of western white pine: implications for conservation of a widely-distributed five-needle pine at its southern range limit

    Science.gov (United States)

    Patricia Maloney; Andrew Eckert; Detlev Vogler; Camille Jensen; Annette Delfino Mix; David Neale

    2016-01-01

    Throughout much of the range of western white pine, Pinus monticola Dougl., timber harvesting, fire exclusion and the presence of Cronartium ribicola J. C. Fisch., the white pine blister rust (WPBR) pathogen, have led to negative population and genetic consequences. To address these interactions, we examined population dynamics...

  9. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    Science.gov (United States)

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of Fenton Oxidation Process Coupled with Biological Treatment for the Removal of Reactive Black 5 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Pegah Bahmani

    2013-06-01

    Full Text Available Biodegradation of azo dyes is difficult due to their complex structures and low BOD to COD ratios. In the present study, the efficiency of using Fenton’s reagent (H2O2 + Fe2+ as a pretreatment process to enhance microbial transformation of reactive black 5 (RB5 in an aqueous system was evaluated. The RB5 with an initial concentration of 250 mg/L was decolorized up to 90% in 60 h by using a bacterial consortium. Fenton’s reagent at a Fe2+ concentration of 0.5 mM and H2O2 concentration of 2.9 mM (molar ratio, 1:5.8 was most effective for decolorization at pH = 3.0. The extent of RB5 removal by the combined Fenton–biotreatment was about 2 times higher than that of biotreatment alone. The production of some aromatic amines intermediates implied partial mineralization of the RB5 in Fenton treatment alone; in addition, decreasing of GC-MS peaks suggested that dearomatization occurred in Fenton-biological process. Fenton pretreatment seems to be a cost–effective option for the biotreatment of azo dyes, due mainly to the lower doses of chemicals, lower sludge generation, and saving of time. Our results demonstrated positive effects of inoculating bacterial consortium which was capable of dye biodegradation with a Fenton’s pretreatment step as well as the benefits of low time required for the biological process. In addition, the potential of field performance of Fenton-biological process because of using bacterial consortium is an other positive effect of it.

  11. Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis.

    Directory of Open Access Journals (Sweden)

    Clemens D Cohen

    Full Text Available BACKGROUND: Diabetic nephropathy (DN is a complex and chronic metabolic disease that evolves into a progressive fibrosing renal disorder. Effective transcriptomic profiling of slowly evolving disease processes such as DN can be problematic. The changes that occur are often subtle and can escape detection by conventional oligonucleotide DNA array analyses. METHODOLOGY/PRINCIPAL FINDINGS: We examined microdissected human renal tissue with or without DN using Affymetrix oligonucleotide microarrays (HG-U133A by standard Robust Multi-array Analysis (RMA. Subsequent gene ontology analysis by Database for Annotation, Visualization and Integrated Discovery (DAVID showed limited detection of biological processes previously identified as central mechanisms in the development of DN (e.g. inflammation and angiogenesis. This apparent lack of sensitivity may be associated with the gene-oriented averaging of oligonucleotide probe signals, as this includes signals from cross-hybridizing probes and gene annotation that is based on out of date genomic data. We then examined the same CEL file data using a different methodology to determine how well it could correlate transcriptomic data with observed biology. ChipInspector (CI is based on single probe analysis and de novo gene annotation that bypasses probe set definitions. Both methods, RMA and CI, used at default settings yielded comparable numbers of differentially regulated genes. However, when verified by RT-PCR, the single probe based analysis demonstrated reduced background noise with enhanced sensitivity and fewer false positives. CONCLUSIONS/SIGNIFICANCE: Using a single probe based analysis approach with de novo gene annotation allowed an improved representation of the biological processes linked to the development and progression of DN. The improved analysis was exemplified by the detection of Wnt signaling pathway activation in DN, a process not previously reported to be involved in this disease.

  12. How to use molecular biology tools for the study of the anaerobic digestion process?

    NARCIS (Netherlands)

    Cabezas, Angela; Araujo, de Juliana Calabria; Callejas, Cecilia; Galès, Amandine; Hamelin, Jérôme; Marone, Antonella; Machado de Sousa, Diana; Trably, Eric; Etchebehere, Claudia

    2015-01-01

    Anaerobic digestion is used with success for the treatment of solid waste, urban and industrial effluents with a concomitant energy production. The process is robust and stable, but the complexity of the microbial community involved in the process is not yet fully comprehensive. Nowadays, the

  13. Processing Biological Gender and Number Information during Chinese Pronoun Resolution: ERP Evidence for Functional Differentiation

    Science.gov (United States)

    Xu, Xiaodong; Jiang, Xiaoming; Zhou, Xiaolin

    2013-01-01

    There have been a number of behavioral and neural studies on the processing of syntactic gender and number agreement information, marked by different morpho-syntactic features during sentence comprehension. By using the event-related potential (ERP) technique, the present study investigated whether the processing of semantic gender information and…

  14. Attenuation process of the longitudinal phonon mode in a TeO2 crystal in the 20-GHz range

    Science.gov (United States)

    Ohno, S.; Sonehara, T.; Tatsu, E.; Koreeda, A.; Saikan, S.

    2017-06-01

    We experimentally investigated the hypersonic attenuation process of a longitudinal mode (L-mode) sound wave in TeO2 from room temperature to a lower temperature using Brillouin scattering and impulsive stimulated thermal scattering (ISTS) measurements. For precise measurement of the Brillouin linewidth at low temperatures, whereby the mean free path of the phonon becomes longer than the sample length, it is indispensable that the phonon should propagate along the phonon-resonance direction. To figure out the suitable direction, we defined two indices characterizing a degree of phonon divergence and a purity of propagation direction. The best direction that we found from these indices is [110] direction in TeO2, and it was used to discuss the temperature and frequency dependences of Brillouin spectra. We extracted the temperature dependence of the attenuation rate of T4 from the modulated Brillouin spectra due to the phonon resonance below Debye temperature. The frequency dependence ω1 of the hypersonic attenuation was also estimated from the polarization dependence of the Brillouin linewidth. Theoretically, it predicted that the L-mode phonon attenuation at low temperatures in TeO2 is a result of Herring's process, which shows the attenuation behavior of ω2T3 . The ω1T4 dependence is not allowed in Herring's process but is allowed by the L +L →L process, which has been considered to be forbidden so far. We evaluated the thermal phonon lifetime using ISTS and established that it was finite even at 20 K, thereby allowing the L +L →L process. Therefore, we conclude that the L +L →L process dominates the attenuation of an L-mode phonon in TeO2 in the low-temperature region.

  15. Host range testing of Tamarixia radiata (Hymenoptera: Eulophidae) sourced from the Punjab of Pakistan for classical biological control of Diaphorina citri (Hemiptera: Liviidae: Euphyllurinae: Diaphorinini) in California.

    Science.gov (United States)

    Hoddle, Mark S; Pandey, Raju

    2014-02-01

    ABSTRACT Tests evaluating the host range of Tamarixia radiata (Waterson) (Hymenoptera: Eulophidae), a parasitoid of the pestiferous Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), sourced from the Punjab of Pakistan, were conducted in quarantine at the University of California, Riverside, CA. Seven nontarget psyllid species (five native and two self-introduced species) representing five families were exposed to T radiata under the following three different exposure scenarios: 1) sequential no-choice tests, 2) static no-choice tests, and 3) choice tests. Nontarget species were selected for testing based on the following criteria: 1) taxonomic relatedness to the target, D. citri; 2) native psyllids inhabiting native host plants related to citrus that could release volatiles attractive to T. radiata; 3) native psyllids with a high probability of occurrence in native vegetation surrounding commercial citrus groves that could be encountered by T. radiata emigrating from D. citri-infested citrus orchards; 4) a common native pest psyllid species; and 5) a beneficial psyllid attacking a noxious weed. The results of host range testing were unambiguous; T radiata exhibited a narrow host range and high host specificity, with just one species of nontarget psyllid, the abundant native pest Bactericera cockerelli Sulc, being parasitized at low levels (citri poses negligible environmental risk.

  16. Information support of the processes of organizational management of the earth’s biological resources

    Directory of Open Access Journals (Sweden)

    Ovezgheldyiev А.О.

    2016-04-01

    Full Text Available The paper offers the classification of information and a brief description of all major organizations, institutions and communities involved in the study or solving problems of global warming, the preservation of the environment and ecology of the Earth's biosphere. All the organizations, institutions and communities are organized by statuses: international, regional, national, and others. Their information description specifies the name in Ukrainian and English languages, internet addresses, the number of member states, the location of the headquarters, the purpose and main activities, as well as the condition and status of relations with Ukraine. It is proposed to create a unified information database of all these agencies on the status of biological resources of our planet Earth. We considered the principal Ukraine's problems in biodiversity conservation and environmental protection for now.

  17. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  18. Strengths and Limitations of the Education, Health and Care Plan Process from a Range of Professional and Family Perspectives

    Science.gov (United States)

    Sales, Niaomi; Vincent, Kerry

    2018-01-01

    The introduction of a new Special Educational Needs and Disability (SEND) Code of Practice in 2015 marked one of the most significant reforms to the SEND statutory assessment process in England since its introduction over 30 years ago. This article presents the findings of a small-scale study that aimed to identify the extent to which the reforms…

  19. Interrelationships between Working Memory, Processing Speed, and Language Development in the Age Range 2-4 Years

    Science.gov (United States)

    Newbury, Jayne; Klee, Thomas; Stokes, Stephanie F.; Moran, Catherine

    2016-01-01

    Purpose: This study explored associations between working memory and language in children aged 2-4 years. Method: Seventy-seven children aged 24-30 months were assessed on tests measuring language, visual cognition, verbal working memory (VWM), phonological short-term memory (PSTM), and processing speed. A standardized test of receptive and…

  20. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    Science.gov (United States)

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  1. Respirometry applied for biological nitrogen removal process; Aplicacion de la respirometria al tratamiento biologico para la eliminacion del nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2004-07-01

    In waste water treatment plants, the Biological Nitrogen Removal (BNR) has acquired a fundamental importance. The BNR processes are Nitrification ( aerobic) and Denitrification (anoxic). Since both processes are carried on living microorganisms, a lack of their bioactivity information might cause serious confusion about their control criteria and following up purposes. For this reason, the Re spirometry applied to those processes has reached an important role by getting an essential information in a timely manner through respiration rate measurements in static and dynamic modes and applications such as AUR (Ammonium Uptake Rate), Nitrification Capacity. RBCOD (Readily Biodegradable COD) as well as AUR related to SRT (Sludge age), RBCOD related to NUR (Specific Nitrate Uptake Rate) and others. By other side in this article we have introduced a not very well known applications related to denitrification, about the methanol acclimatization and generated bioactivity. (Author) 6 refs.

  2. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A B; Skammelsen Schmidt, A

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  3. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    International Nuclear Information System (INIS)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates 'losses' of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation

  4. Export Controls: Controls Over the Export Licensing Process for Chemical and Biological Items

    National Research Council Canada - National Science Library

    2005-01-01

    .... foreign policy should read this report. The report discusses the effectiveness of the DoD review process for export license applications and updates to Federal export regulations to prevent the proliferation of items that could pose...

  5. Influence of Prolonged Storage Process, Pasteurization, and Heat Treatment on Biologically-active Human Milk Proteins

    Directory of Open Access Journals (Sweden)

    Jih-Chin Chang

    2013-12-01

    Conclusion: Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status.

  6. Nuclear techniques used in study of biological processes in Sinapis alba culture

    International Nuclear Information System (INIS)

    Giosanu, D.; Fleancu, M.

    2001-01-01

    The aim of the present paper is to study different nuclear techniques, in particular the influence of gamma radiation upon germination, growth and respiration processes in Sinapis alba culture. The dependence of these phenomena on dose of gamma irradiation was studied. Research was done on dry seeds of mustard (Sinapis alba).The doses of gamma irradiation were: 20 krad, 40 krad, 60 krad, 80 krad and 100 krad.The subsequent evolution of the irradiated samples was compared with the evolution of an unirradiated (control) samples. The irradiation was done evenly, in a single phase. The treatment of the dry seeds of mustard with gamma radiation determined a diminution of energy of germination. So, the energy of germination was 57 - 73% in gamma treated batches and 81% in the control batch. Thus, the faculty of germination decreases from 92% (in the control batch) to 83% in the irradiated batches. Growth process (length of roots and hypocotyl) was also studied. For 100 krad gamma irradiation the rate of this process was lower than that of the control batch, both in the first and the four day of irradiation. The inhibition effect manifested on germination and growth processes for gamma treated dry seeds of mustard is determined by the modification in the membrane permeability. The intensity of respiration process in the irradiated lots was lower than that of the control lot. The inhibition effect manifested by respiration process following gamma irradiation could be explained by the enzymatic activity of mustard seeds. (authors)

  7. On the selection and validation of biological treatment processes. The GDF experience; Le choix et la validation des procedes de traitement biologique. L`experience de GDF

    Energy Technology Data Exchange (ETDEWEB)

    Druelle, V. [Gaz de France (GDF), 75 - Paris (France)

    1996-12-31

    The biological treatment process was selected by Gaz de France (GDF), the French national gas utility, for the de-pollution of an old gas works where the main pollutants are coal tars containing polycyclic aromatic hydrocarbons. Microorganism-based biological treatment techniques may involve bio-reactors, static ground knolls (where oxygen is brought through drains) and dynamic knolls (where oxygenation is carried out by turning up the soil). Issues on sampling, sorting, process testing, site preparation, process control, etc. are reviewed

  8. On the selection and validation of biological treatment processes. The GDF experience; Le choix et la validation des procedes de traitement biologique. L`experience de GDF

    Energy Technology Data Exchange (ETDEWEB)

    Druelle, V [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    The biological treatment process was selected by Gaz de France (GDF), the French national gas utility, for the de-pollution of an old gas works where the main pollutants are coal tars containing polycyclic aromatic hydrocarbons. Microorganism-based biological treatment techniques may involve bio-reactors, static ground knolls (where oxygen is brought through drains) and dynamic knolls (where oxygenation is carried out by turning up the soil). Issues on sampling, sorting, process testing, site preparation, process control, etc. are reviewed

  9. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    Science.gov (United States)

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Landscape Biology of Western White Pine: Implications for Conservation of a Widely-Distributed Five-Needle Pine at Its Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Patricia E. Maloney

    2016-04-01

    Full Text Available Throughout much of the range of western white pine, Pinus monticola Dougl., timber harvesting, fire exclusion and the presence of Cronartium ribicola J. C. Fisch., the white pine blister rust (WPBR pathogen, have led to negative population and genetic consequences. To address these interactions, we examined population dynamics and genetic diversity in 10 populations of western white pine in upper montane forests of the Lake Tahoe Basin. We documented negative population trends for three of the 10 populations. These populations exhibited low estimated growth rates (λ, moderate to high incidences of WPBR and mountain pine beetle (MPB, and high levels of mortality. In contrast, seven populations appear to be stable (λ ≥ 1.0, with low to moderate disease and insect incidence, and evidence for genetic resistance to WPBR. Genetic diversity (HE for a set of 160 single nucleotide polymorphisms was in the range of 0.245–0.272 across populations, and population-specific estimates of FST ranged from 0.0062 to 0.0244. Allele frequency of the Cr2 gene, which confers complete resistance to C. ribicola in western white pine, was low, averaging 0.009 for all populations sampled. However, a low frequency of pollen receptors (i.e., susceptible maternal parents pollinated by a local resistant parent was found in nine of 10 populations. A moderate and negative relationship was found between the frequency of pollen receptors in a population and the incidence of WPBR (r2 = 0.32. In the context of an introduced pathogen, climate driven outbreaks of MPB, fire exclusion, and prolonged drought, conservation and management strategies are warranted for this species in the Lake Tahoe Basin and likely other locations in California. These strategies include gene conservation of western white pine, WPBR resistance screening, and forest restoration treatments.

  12. Portable pulse X-ray micro and nanosecond range apparatus for studying fast-going processes in opaque media

    International Nuclear Information System (INIS)

    Goganov, D.A.; Komyak, N.I.; Pelix, E.A.

    Pulse X-radiography (X-ray flash duration in the order of 10 -6 -10 -9 sec) is the principal method for studying fast-going processes in opaque media by serial and parallel radiographic imaging. Description is given and main features are outlined of pulse X-ray apparatus IRA-4b, 5b, 6b producing X-radiation flashes from 0.3 μsec to 10-20 nsec in duration

  13. High-throughput microfluidics automated cytogenetic processing for effectively lowering biological process time and aid triage during radiation accidents

    International Nuclear Information System (INIS)

    Ramakumar, Adarsh

    2016-01-01

    Nuclear or radiation mass casualties require individual, rapid, and accurate dose-based triage of exposed subjects for cytokine therapy and supportive care, to save life. Radiation mass casualties will demand high-throughput individual diagnostic dose assessment for medical management of exposed subjects. Cytogenetic techniques are widely used for triage and definitive radiation biodosimetry. Prototype platform to demonstrate high-throughput microfluidic micro incubation to support the logistics of sample in miniaturized incubators from the site of accident to analytical labs has been developed. Efforts have been made, both at the level of developing concepts and advanced system for higher throughput in processing the samples and also implementing better and efficient methods of logistics leading to performance of lab-on-chip analyses. Automated high-throughput platform with automated feature extraction, storage, cross platform data linkage, cross platform validation and inclusion of multi-parametric biomarker approaches will provide the first generation high-throughput platform systems for effective medical management, particularly during radiation mass casualty events

  14. Divergence of host range and biological properties between natural isolate and full-length infectious cDNA clone of the Beet mild yellowing virus 2ITB.

    Science.gov (United States)

    Klein, Elodie; Brault, Véronique; Klein, Delphine; Weyens, Guy; Lefèbvre, Marc; Ziegler-Graff, Véronique; Gilmer, David

    2014-01-01

    Plant infection by poleroviruses is restricted to phloem tissues, preventing any classical leaf rub inoculation with viral RNA or virions. Efficient virus inoculation to plants is achieved by viruliferous aphids that acquire the virus by feeding on infected plants. The use of promoter-driven infectious cDNA is an alternative means to infect plants and allows reverse genetic studies to be performed. Using Beet mild yellowing virus isolate 2ITB (BMYV-2ITB), we produced a full-length infectious cDNA clone of the virus (named BMYV-EK) placed under the control of the T7 RNA polymerase and the Cauliflower mosaic virus 35S promoters. Infectivity of the engineered BMYV-EK virus was assayed in different plant species and compared with that of the original virus. We showed that in vitro- or in planta-derived transcripts were infectious in protoplasts and in whole plants. Importantly, the natural aphid vector Myzus persicae efficiently transmitted the viral progeny produced in infected plants. By comparing agroinoculation and aphid infection in a host range assay, we showed that the engineered BMYV-EK virus displayed a similar host range to BMYV-2ITB, except for Nicotiana benthamiana, which proved to be resistant to systemic infection with BMYV-EK. Finally, both the BMYV-EK P0 and the full-length clone were able to strongly interfere with post-transcriptional gene silencing. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  15. Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media

    International Nuclear Information System (INIS)

    Perlovich, German L.; Ryzhakov, Alex M.; Strakhova, Nadezda N.; Kazachenko, Vladimir P.; Schaper, Klaus-Jürgen; Raevsky, Oleg A.

    2014-01-01

    Highlights: • Solubility processes of some sulfonamide isomers in water and 1-octanol were investigated. • Transfer processes from water to 1-octanol were evaluated by analysis of enthalpic and entropic terms. • Impact of various substituents in phenyl rings on solubility and transfer processes was studied. -- Abstract: The thermodynamic aspects of solubility processes of sulfonamides (SAs) with the general structures 4-NH 2 –C 6 H 4 –SO 2 NH–C 6 H 2 (R 1 )(R 2 )-R 3 (R 1 = 2-CH 3 , 2-Cl; R 2 = 4-CH 3 , 4-Cl; R 3 =5-H, 5-Cl), 4-NH 2 -2-Cl–C 6 H 3 –SO 2 NH–C 6 H 3 (R 1 )-R 2 (R 1 = 2-H, 2-Cl; R 2 = 4-H, 4-Cl) and 4-NH 2 -2-CH 3 –C 6 H 3 –SO 2 NH–C 6 H 3 (R 1 )-R 2 (R 1 = 2-H, 2-Cl, 2-NO 2 ; R 2 = 4-H, 4-Cl) in water and 1-octanol (as phases modeling various drug delivery pathways) were studied using the isothermal saturation method. For the sulfonamides with various substituents in phenyl rings the processes of transfer from water to 1-octanol were studied by a diagram method combined with analysis of enthalpic and entropic terms. Distinguishing between enthalpy and entropy, as is possible through the present approach, leads to the insight that the contribution of these terms is different for different molecules (entropy- or enthalpy-determined). Thus, in contrast to the interpretation of only the Gibbs energy of transfer (extensively used for pharmaceuticals in the form of the partition coefficient, logP), the analysis of thermodynamic functions of the transfer process provides additional mechanistic information. This may be important for further evaluation of the physiological distribution of drug molecules and may provide a better understanding of biopharmaceutical properties of drugs

  16. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  17. Bioinformatics strategies in life sciences: from data processing and data warehousing to biological knowledge extraction.

    Science.gov (United States)

    Thiele, Herbert; Glandorf, Jörg; Hufnagel, Peter

    2010-05-27

    With the large variety of Proteomics workflows, as well as the large variety of instruments and data-analysis software available, researchers today face major challenges validating and comparing their Proteomics data. Here we present a new generation of the ProteinScape bioinformatics platform, now enabling researchers to manage Proteomics data from the generation and data warehousing to a central data repository with a strong focus on the improved accuracy, reproducibility and comparability demanded by many researchers in the field. It addresses scientists; current needs in proteomics identification, quantification and validation. But producing large protein lists is not the end point in Proteomics, where one ultimately aims to answer specific questions about the biological condition or disease model of the analyzed sample. In this context, a new tool has been developed at the Spanish Centro Nacional de Biotecnologia Proteomics Facility termed PIKE (Protein information and Knowledge Extractor) that allows researchers to control, filter and access specific information from genomics and proteomic databases, to understand the role and relationships of the proteins identified in the experiments. Additionally, an EU funded project, ProDac, has coordinated systematic data collection in public standards-compliant repositories like PRIDE. This will cover all aspects from generating MS data in the laboratory, assembling the whole annotation information and storing it together with identifications in a standardised format.

  18. Bioinformatics Strategies in Life Sciences: From Data Processing and Data Warehousing to Biological Knowledge Extraction

    Directory of Open Access Journals (Sweden)

    Thiele Herbert

    2010-03-01

    Full Text Available With the large variety of Proteomics workflows, as well as the large variety of instruments and data-analysis software available, researchers today face major challenges validating and comparing their Proteomics data. Here we present a new generation of the ProteinScapeTM bioinformatics platform, now enabling researchers to manage Proteomics data from the generation and data warehousing to a central data repository with a strong focus on the improved accuracy, reproducibility and comparability demanded by many researchers in the field. It addresses scientists` current needs in proteomics identification, quantification and validation. But producing large protein lists is not the end point in Proteomics, where one ultimately aims to answer specific questions about the biological condition or disease model of the analyzed sample. In this context, a new tool has been developed at the Spanish Centro Nacional de Biotecnologia Proteomics Facility termed PIKE (Protein information and Knowledge Extractor that allows researchers to control, filter and access specific information from genomics and proteomic databases, to understand the role and relationships of the proteins identified in the experiments. Additionally, an EU funded project, ProDac, has coordinated systematic data collection in public standards-compliant repositories like PRIDE. This will cover all aspects from generating MS data in the laboratory, assembling the whole annotation information and storing it together with identifications in a standardised format.

  19. Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process.

    Science.gov (United States)

    Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben

    2015-12-01

    For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.

  20. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    Science.gov (United States)

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  1. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    Science.gov (United States)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. ASSESMENT OF THE BIOLOGICAL AND PROCESSING POTENTIAL OF THE ‘ANEMONA’ BRUGNON CULTIVAR

    Directory of Open Access Journals (Sweden)

    Gheorghe Lamureanu

    2013-12-01

    Full Text Available The nectarines are the species with a proper development in the soils and climaticconditions of Romania. There are a number of studies regarding the breding and extension ofnew cultivars. The objectives of the nectarine and brugnon breding were: the productivity of the tres, the quality of fruit, the period of the ripening of the fruit and the later’s size, form, colour, flavour, sugar content, taste and other characteristics. This paper presents the new brugnon ‘Anemona’ cultivar, which was created by researchers from the Research Station for Fruit- Growing Constanta, presenting the phenological, biological and market features as wel. Observations, measurements and determinations were caried out in order to establish the productivity, the fruit quality and the readines for procesing as jam, stewed fruit and nectar. The obtained results reveal the fact that the ‘Anemona’ cultivar is semi-tardy, reaching maturity in the period July 24th - August 1th. The blosoming period begins at the end of March and ends betwen the 18th and the 25th of April, lasting 2 days. The ‘Anemona’ is a vigorous cultivar, with the thicknes of the trunk of 29 cm and the vigour score of 25 at the age of 1. The average fruit production is about 28 kg/tre, meaning that it is a productive cultivar. The quality of the fruit is high, with a very good readines for procesing as jam, confiture, stewed fruit and nectar.

  3. Influence of SiO2 and graphene oxide nanoparticles on efficiency of biological removal process.

    Science.gov (United States)

    Esmaeili-Faraj, Seyyed Hamid; Nasr Esfahany, Mohsen

    2017-11-01

    The effects of the presence of synthesized silica (SS) and exfoliated graphene oxide (EGO) on the removal of sulfide ion with activated sludge (AS) are experimentally investigated. The maximum removal efficiency of sulfide ion for AS without nanoparticles, and the samples with SS and EGO nanoparticles were 81%, 88% and 79%, respectively. Moreover, the maximum elimination capacity (EC max ) for the bioreactor with SS-nanoparticles is 7542 mg/L s, while the EC max of AS and EGO samples were 7075 and 6625 mg/L s, respectively. Two filamentous microbial strains as Gram-negative and Gram-positive bacteria are discerned that removed sulfide ion in the presence of nanoparticles. The measurement of mixture liquor volatile suspended solid that indicates the biomass growth rate during the test shows that the bioreactor containing SS-nanoparticles has more biomass content than the other samples. Our findings indicate that SS-nanoparticles with 0.1% wt. concentration in the bioreactor have no negative effects on the efficiency of the biological removal of sulfide and the presence of SS-nanoparticles even enhances the performance of the bioreactor. On the other side, a bioreactor with EGO nanosheets, as highly antibacterial nanoparticles, with 0.02% wt. concentration significantly influences the microbial growth and reduces sulfide removal efficiency.

  4. Destruction of explosives in groundwater and process water using photocatalytic and biological methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodacy, P.J.; Leslie, P.K.; Prairie, M.R. [and others

    1996-04-01

    The environmentally safe destruction of pinkwater is a significant problem that requires a multidisciplinary approach to solve. We have investigated the application of advanced oxidation processes, including the use of both UV light source and laser technologies. The reactions were run under both oxidizing and reducing atmospheres. Aerobic and anaerobic biotreatments were examined as both pre- and post-treatments to the oxidation processes. The toxicity of the wastewater at various stages of treatment was determined. Membrane preconcentration schemes were examined to determine their effectiveness as part of the total pinkwater treatment scheme.

  5. Biological nitrate removal processes from drinking water supply-a review.

    Science.gov (United States)

    Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali

    2013-12-19

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.

  6. Welcome to Processes—A New Open Access Journal on Chemical and Biological Process Technology

    Directory of Open Access Journals (Sweden)

    Michael A. Henson

    2012-11-01

    Full Text Available As the result of remarkable technological progress, this past decade has witnessed considerable advances in our ability to manipulate natural and engineered systems, particularly at the molecular level. These advancements offer the potential to revolutionize our world through the development of novel soft and hard materials and the construction of new cellular platforms for chemical and pharmaceutical synthesis. For these technologies to truly impact society, the development of process technology that will enable effective large-scale production is essential. Improved processes are also needed for more established technologies in chemical and biochemical manufacturing, as these industries face ever increasing competitive pressure that mandates continuous improvement. [...

  7. 1991 Second international symposium on the biological processing of coal: Proceedings

    International Nuclear Information System (INIS)

    1991-09-01

    This symposium was held to aid in the advancement of science and technology in the area of coal bioprocessing by facilitating the exchange of technical information and offering a forum for open discussion and review. The symposium was complemented by four workshops which introduced the attendees to the fundamentals of genetic, mass ampersand energy balances, process ampersand economic analysis, and advanced analytical techniques as they pertain to bioprocessing of coal. Eleven countries were represented, as were numerous universities, national laboratories, federal agencies and corporations. Topics discussed include desulfurization, coal dissolution, gene cloning, and enzyme activity. Individual projects are processed separately on the databases

  8. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  9. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  10. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich-Carlson model

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, Hasan [Ondokuz Mayis University, Department of Physics, Faculty of Sciences and Arts, Samsun (Turkey); Bentabet, Abdelouahab [Bordj Bou Arreridj University, LCVRN, SNVSTU Faculty, El Anasser (Algeria)

    2017-05-15

    In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C{sub 2}H{sub 6} (ethane), C{sub 4}H{sub 10} (butane), C{sub 6}H{sub 14} (hexane) C{sub 8}H{sub 18} (octane), C{sub 5}H{sub 5}N{sub 5} (adenine) and C{sub 5}H{sub 5}N{sub 5}O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855-1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date. (orig.)

  11. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Vasilescu, Ecaterina; Drob, Paula [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cinca, Ion, E-mail: ion_cinca@hotmail.com [Faculty of Material Science and Engineering, Politehnica University, Spl. Independentei 313, 060042 Bucharest (Romania); Vasilescu, Cora; Anastasescu, Mihai [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, Valentina [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Drob, Silviu Iulian [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2014-05-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances.

  12. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-01-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances

  13. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  14. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.).

    Science.gov (United States)

    Bean, Daniel W; Dudley, Tom L; Keller, Julie C

    2007-02-01

    The leaf beetle Diorhabda elongata Brullé subspecies deserticola Chen, collected in northwestern China, has been released in the western United States to control tamarisk (Tamarix spp.). While beetle establishment and saltcedar defoliation have been noted at northern study sites, this species has not established at latitudes south of the 38th parallel. Critical daylength for diapause induction was measured in the laboratory and ranged between 14 h 50 min to 15 h 08 min, depending on temperature, and adults were shown to cease reproduction and enter diapause at daylengths of 14 h 30 min or less. Critical daylength in the field was measured at approximately 14 h 39 min and occurred 13 d before 50% of the population reached diapause. South of 36 degrees 20' N, the longest days of the year are shorter than 14 h 39 min, making the beetles univoltine in the southern United States. North of 36 degrees 20' N, a window of reproductive activity opens 13 d after the critical daylength is reached in the spring and closes 13 d after it is passed in the summer, allowing at least a partial second summer generation. It is predicted that south of the 38th parallel, premature diapause will increase mortality and disrupt synchrony between the life cycle of the beetle and host plant availability. This could hinder establishment and help explain the failure of this population south of the 38th parallel, providing a rationale for testing other populations of D. elongata in the southern range of Tamarix in North America.

  15. Applicability of Montreal Process Criterion 1 - conservation of biological diversity - to rangeland sustainability

    Science.gov (United States)

    Curtis H. Flather; Carolyn Hull Sieg

    2000-01-01

    Nine indicators of biodiversity conservation have been defined by the nations participating in the Montreal Process for assessing sustainability of temperate and boreal forests. Five of these indicators address compositional and spatial diversity of ecosystems; two address species diversity; and two are indirect measures of genetic diversity. Our objective was to...

  16. Interaction of electromagnetic energy with biological material - relation to food processing

    NARCIS (Netherlands)

    Ponne, C.T.; Bartels, P.V.

    1995-01-01

    For food scientists and technologists, the interaction of electromagnetic energy with enzymes, microorganisms and other food compounds is important in optimizing process efficiency and/or product quality. To be able to implement research findings on interaction of electromagnetic energy with matter;

  17. Understanding a Basic Biological Process: Expert and Novice Models of Meiosis.

    Science.gov (United States)

    Kindfield, Ann C. H.

    The results of a study of the meiosis models utilized by individuals at varying levels of expertise while reasoning about the process of meiosis are presented. Based on these results, the issues of sources of misconceptions/difficulties and the construction of a sound understanding of meiosis are discussed. Five individuals from each of three…

  18. Brief Report: Biological Sound Processing in Children with Autistic Spectrum Disorder

    Science.gov (United States)

    Lortie, Melissa; Proulx-Bégin, Léa; Saint-Amour, Dave; Cousineau, Dominique; Théoret, Hugo; Lepage, Jean-François

    2017-01-01

    There is debate whether social impairments in autism spectrum disorder (ASD) are truly domain-specific, or if they reflect generalized deficits in lower-level cognitive processes. To solve this issue, we used auditory-evoked EEG responses to assess novelty detection (MMN component) and involuntary attentional orientation (P3 component) induced by…

  19. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    Science.gov (United States)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  20. Application of Wavelet-Based Tools to Study the Dynamics of Biological Processes

    DEFF Research Database (Denmark)

    Pavlov, A. N.; Makarov, V. A.; Mosekilde, Erik

    2006-01-01

    The article makes use of three different examples (sensory information processing in the rat trigeminal complex, intracellular interaction in snail neurons and multimodal dynamics in nephron autoregulation) to demonstrate how modern approaches to time-series analysis based on the wavelet-transfor...

  1. Priorities for modeling biological processes in climates altered by nuclear war

    International Nuclear Information System (INIS)

    Detling, J.K.; Kercher, J.R.; Post, W.M.; Cowles, S.W.; Harwell, M.A.

    1987-01-01

    This document describes research that has been accomplished or currently models the effects of reduced light and temperature on terrestrial systems. We shall divide the systems to be studied into cultivated lands and uncultivated lands. The cultivated class consists of monoculture systems in which the individual plants belong to the same age and size class. The systems in the uncultivated class consist of uneven age, multi-species assemblies of interacting plants and animals. The uncultivated class ranges from minimally managed systems, e.g., rangelands and some forests, to completely unmanaged wildlands. For the cultivated case, the variable of concern is the annual yield of the crop under consideration. The models should be able to estimate percent yield loss as a function of reductions of light and temperature. The models should be accurate for the range of environments predicted for the growing season immediately following or during which the hypothetical nuclear exchange occurs. The models should be able to estimate yield loss in any subsequent year for which climatic conditions still differ significantly from normal. For the uncultivated case, the modelling program needs to be able to predict the effects on individual plants much the same as in the cultivated case; but in addition, the modelling program will have the task of estimating the effect that these changes in individual organisms will have at higher levels of organization, i.e., on populations, communities, and regional distributions of species. 25 refs., 1 tab

  2. Biologically active filters - An advanced water treatment process for contaminants of emerging concern.

    Science.gov (United States)

    Zhang, Shuangyi; Gitungo, Stephen W; Axe, Lisa; Raczko, Robert F; Dyksen, John E

    2017-05-01

    With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  4. Gamma-ray multiplicity measurements for the determination of the initial angular momentum ranges in normal and fast fission processes

    International Nuclear Information System (INIS)

    El Masri, Y.; Steckmeyer, J.C.; Martin, V.; Bizard, G.; Brou, R.; Laville, J.L.; Regimbart, R.; Tamain, B.; Peter, J.

    1990-01-01

    Gamma-ray multiplicities (first and second moments) have been measured, in the 220 MeV 20 Ne+ nat Re and 315 meV 40 Ar+ 165 Ho reactions, as a function of fission fragment masses and centre-of-mass total kinetic energies. The two reactions lead to the same fusion nucleus, 205 At, at the same excitation energy (167 MeV). The experimental critical angular momentum for the fission process in the Ne+Re system (91±3) ℎ is close to I Bf=0 (∝80 ℎ) while in the Ar+Ho reaction this critical angular momentum (136±4) ℎ is much larger than I Bf=0 value, favoring the occurrence of the fast fission process. The observed widths of the fission fragment mass distribution: (42±2) u in the Ne+Re system and (56±4) u in the Ar+Ho reaction strengthen this hypothesis. For both compound nucleus fission and fast fission components in Ar+Ho, the total spin values obtained in absolute magnitude and in their dependence on the mass asymmetry are well described by assuming rigid rotation of the fissioning complex and statistical excitation of some collective rotational modes such as 'Bending' and 'Wriggling' according to the Schmitt-Pacheco model. These modes, however, are not all fully excited, their degrees of excitation are approximately the same for both fission components. From theoretical estimates of equilibration times, one anticipates the 'Tilting' mode to be by far the last to be excited, and from its non-excitation in the present data together with the excitation of bending and wriggling, a time interval of about 10 -21 s to 2x10 -20 s can be derived for the reaction time of both normal fission and fast fission. (orig./HSI)

  5. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  6. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  7. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. I. Biological model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...

  8. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  9. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  10. Pilot scale evaluation of biological and pressure clarification processes for the removal of high level of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Yannoni, C.C.; Kinsley, B.P. [Fay, Spofford & Thorndike, Inc., Burlington, MA (United States); Marston, T.R. [Connecticut Water Company, Clinton, CT (United States)

    1996-11-01

    Iron and manganese originating from groundwater supplies have a long history of causing consumer complaints in water distribution systems. Although iron and manganese are not public health concerns, they are a major concern from an aesthetic standpoint. The elevated awareness of consumers in regard to the quality of drinking water, an increase in regulations requiring additional treatment and the cost associated with developing new sources of supply, has required many utilities to implement improvements to existing facilities. Historical water quality data collected from the Connecticut Water Company`s (CWC) Westbrook Well revealed an increasing trend in iron and manganese concentrations. As a result, the existing greensand filtration facility located at the well, provides insufficient removal rates and inefficient operating cycles. Variations in operating procedures were not successful in correcting these problems. A water treatment feasibility study recommended evaluation of biological and pressure clarification processes to reduce iron (9 mg/l) and manganese (1.5 mg/l) levels below the secondary maximum contaminant levels of 0.30 and 0.05 mg/l, respectively. Assessment of these processes was accomplished through the construction and operation of a 5 gallon per minute (gpm) capacity pilot plant at the Westbrook Water Treatment Plant. Application of biological treatment for iron removal was then piloted on the existing full-scale treatment facility.

  11. The Treatment of Low Level Radioactive Liquid Waste Containing Detergent by Biological Activated Sludge Process

    International Nuclear Information System (INIS)

    Zainus Salimin

    2002-01-01

    The treatment of low level radioactive liquid waste containing persil detergent from laundry operation of contaminated clothes by activated sludge process has been done, for alternative process replacing the existing treatment by evaporation. The detergent concentration in water solution from laundry operation is 14.96 g/l. After rinsing operation of clothes and mixing of laundry water solution with another liquid waste, the waste water solution contains about ≤ 1.496 g/l of detergent and 10 -3 Ci/m 3 of Cs-137 activity. The simulation waste having equivalent activity of Cs-137 10 -3 Ci/m 3 , detergent content (X) 1.496, 0.748, 0.374, 0.187, 0.1496 and 0.094 g/l on BOD value respectively 186, 115, 71, 48, 19, and 16 ppm was processed by activated sludge in reactor of 18.6 l capacity on ambient temperature. It is used Super Growth Bacteria (SGB) 102 and SGB 104, nitrogen and phosphor nutrition, and aeration. The result show that bacteria of SGB 102 and SGB 104 were able to degrade the persil detergent for attaining standard quality of water release category B in which BOD values 6 ppm. It was need 30 hours for X ≤ 0.187 g/l, 50 hours for 0.187 < X ≤ 0.374 g/l, 75 hours for 0.374 < X ≤ 0.748, and 100 hours for 0.748 < X ≤ 1.496 g/l. On the initial period the bacteria of SGB 104 interact most quickly to degrade the detergent comparing SGB 102. Biochemical oxidation process decontaminate the solution on the decontamination factor of 350, Cs-137 be concentrate in sludge by complexing with the bacteria wall until the activity of solution be become very low. (author)

  12. High performance biological process for waste water treatment proven in operation

    International Nuclear Information System (INIS)

    Timm, C.; Wienands, H.; Brauch, G.; Schlaeger, M.

    1993-01-01

    A BIOMEMBRAT plant has been in operation for over one year at the Thor Chemie GmbH facility at Speyer, Germany. The process is particularly suitable for waste water with a high organic content and with degradation-resistant components or high nitrogen contents. This article presents the operating results obtained so far with the waste water treatment plant and the operator's experience. (orig.) [de

  13. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol

    OpenAIRE

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-01-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. P...

  14. INFLUENCE OF INORGANIC COMPOUNDS ON THE PROCESS OF PHOTOCATALYSIS OF BIOLOGICALLY ACTIVE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek

    2017-07-01

    Full Text Available Constant increase in concentration of organic micropollutants in the water environment influences the development of methods for their effective elimination from various matrices released into aquatic ecosystems. One of widely described in literature processes for the decomposition of hardly-biodegradable pollutants is the process of heterogeneous photocatalysis. The paper presents the influence of inorganic substances on the decomposition of polycyclic aromatic hydrocarbons (anthracene and benzo[a]pyrene, industrial admixtures - octylphenol and pharmaceutical compounds - diclofenac in the photocatalysis process conducted in the presence of TiO2. It has been shown that the presence of Cl- ions did not affect the photochemical reaction of the micropollutant decomposition. Whereas, the presence of CO3(2-, SO4(2- and HPO4(2- ions inhibited the decolonization of octylphenol and diclofenac, while the degradation efficiency of anthracene and benzo[a]pyrene was reduced only by the presence of CO3(2- and HCO3- anions. The photooxidation of micropollutants in solutions containing Al(3+ oraz Fe(3+ cations proceeded with a much lower efficiency than that for solution without inorganic compounds. The analysis of the kinetics of the photocatalytic decomposition of selected micropollutants show a decrease in the reaction rate constant and an increase in their half-life due to the blocking of theactive semiconductor centers by inorganic compounds. In addition,the toxicological analysis inducated the generation of micropollutant oxidation by-products, which aggravate the quality of treated aqueous solutions.

  15. SU-E-T-760: Tolerance Design for Site-Specific Range in Proton Patient QA Process Using the Six Sigma Model

    International Nuclear Information System (INIS)

    Lah, J; Shin, D; Kim, G

    2015-01-01

    Purpose: To show how tolerance design and tolerancing approaches can be used to pr