WorldWideScience

Sample records for biological processes over-represented

  1. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  2. Atypical biological motion kinematics are represented by complementary lower-level and top-down processes during imitation learning.

    Science.gov (United States)

    Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2016-01-01

    Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Detection of Locally Over-Represented GO Terms in Protein-Protein Interaction Networks

    Science.gov (United States)

    LAVALLÉE-ADAM, MATHIEU; COULOMBE, BENOIT; BLANCHETTE, MATHIEU

    2015-01-01

    High-throughput methods for identifying protein-protein interactions produce increasingly complex and intricate interaction networks. These networks are extremely rich in information, but extracting biologically meaningful hypotheses from them and representing them in a human-readable manner is challenging. We propose a method to identify Gene Ontology terms that are locally over-represented in a subnetwork of a given biological network. Specifically, we propose several methods to evaluate the degree of clustering of proteins associated to a particular GO term in both weighted and unweighted PPI networks, and describe efficient methods to estimate the statistical significance of the observed clustering. We show, using Monte Carlo simulations, that our best approximation methods accurately estimate the true p-value, for random scale-free graphs as well as for actual yeast and human networks. When applied to these two biological networks, our approach recovers many known complexes and pathways, but also suggests potential functions for many subnetworks. Online Supplementary Material is available at www.liebertonline.com. PMID:20377456

  4. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  5. Representative process sampling - in practice

    DEFF Research Database (Denmark)

    Esbensen, Kim; Friis-Pedersen, Hans Henrik; Julius, Lars Petersen

    2007-01-01

    Didactic data sets representing a range of real-world processes are used to illustrate "how to do" representative process sampling and process characterisation. The selected process data lead to diverse variogram expressions with different systematics (no range vs. important ranges; trends and....../or periodicity; different nugget effects and process variations ranging from less than one lag to full variogram lag). Variogram data analysis leads to a fundamental decomposition into 0-D sampling vs. 1-D process variances, based on the three principal variogram parameters: range, sill and nugget effect...

  6. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  7. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  8. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  9. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  10. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  11. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  12. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  13. Facilitating a More Efficient Commercial Review Process for Pediatric Drugs and Biologics

    Directory of Open Access Journals (Sweden)

    Ryan D. Rykhus

    2017-12-01

    Full Text Available Over the past two decades, the biopharmaceutical industry has seen unprecedented expansion and innovation in concert with significant technological advancements. While the industry has experienced marked growth, the regulatory system in the United States still operates at a capacity much lower than the influx of new drug and biologic candidates. As a result, it has become standard for months or even years of waiting for commercial approval by the U.S. Food and Drug Administration. These regulatory delays have generated a system that stifles growth and innovation due to the exorbitant costs associated with awaiting approval from the nation’s sole regulatory agency. The recent re-emergence of diseases that impact pediatric demographics represents one particularly acute reason for developing a regulatory system that facilitates a more efficient commercial review process. Herein, we present a range of initiatives that could represent early steps toward alleviating the delays in approving life-saving therapeutics.

  14. Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)

    Science.gov (United States)

    Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.

    2018-05-01

    A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.

  15. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    Science.gov (United States)

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  16. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  17. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard

    2017-01-01

    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  18. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  19. Atmospheric processes over complex terrain

    Science.gov (United States)

    Banta, Robert M.; Berri, G.; Blumen, William; Carruthers, David J.; Dalu, G. A.; Durran, Dale R.; Egger, Joseph; Garratt, J. R.; Hanna, Steven R.; Hunt, J. C. R.

    1990-06-01

    A workshop on atmospheric processes over complex terrain, sponsored by the American Meteorological Society, was convened in Park City, Utah from 24 vto 28 October 1988. The overall objective of the workshop was one of interaction and synthesis--interaction among atmospheric scientists carrying out research on a variety of orographic flow problems, and a synthesis of their results and points of view into an assessment of the current status of topical research problems. The final day of the workshop was devoted to an open discussion on the research directions that could be anticipated in the next decade because of new and planned instrumentation and observational networks, the recent emphasis on development of mesoscale numerical models, and continual theoretical investigations of thermally forced flows, orographic waves, and stratified turbulence. This monograph represents an outgrowth of the Park City Workshop. The authors have contributed chapters based on their lecture material. Workshop discussions indicated interest in both the remote sensing and predictability of orographic flows. These chapters were solicited following the workshop in order to provide a more balanced view of current progress and future directions in research on atmospheric processes over complex terrain.

  20. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  1. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  2. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  3. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  4. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  5. The biology of cultural conflict.

    Science.gov (United States)

    Berns, Gregory S; Atran, Scott

    2012-03-05

    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives-how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour-but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment.

  6. UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.

    Science.gov (United States)

    Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun

    2017-11-14

    With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.

  7. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes

    International Nuclear Information System (INIS)

    Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril D.

    2012-01-01

    As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. Under environmentally relevant NM loadings and biomass concentrations, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). Carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO 2 (>95% removal) or aqueous fullerenes (nC 60 ; >95% removal). Experiments conducted over 4 months with daily loadings of nC 60 showed that nC 60 removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent.

  8. [Anxiety in a representative sample of the Spanish population over 50 years-old].

    Science.gov (United States)

    Carreira Capeáns, Cecilia; Facal, David

    Anxiety is common throughout the ageing process. The objective of this study is to estimate the prevalence of anxiety in a representative sample of the Spanish population over 50 years-old. The data of this study come from the Pilot Study developed within the Longitudinal Ageing Study in Spain (ELES), in which a representative sample of the non-institutionalised Spanish population was evaluated. An analysis was performed on the data of 1086 people who answered the question «I am now going to read a list with a series of diseases or health problems. I would like you to tell me if your doctor has diagnosed any of them». The tools used were a questionnaire consisting of 218 questions, along with standardised tests, such as the Spanish version of the Mini-Mental State Examination. Anxiety was reported to have been diagnosed at some time in 14.3% of the sample. The prevalence was higher in women than in men (77.8 vs. 22.2%), decreasing with age, and related to different chronic diseases. The results show that the prevalence of anxiety throughout the lifespan is noticeable in people over 50 years, and should be taken into account, especially in the female population and in those with chronic diseases. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  10. Biclustering with Flexible Plaid Models to Unravel Interactions between Biological Processes.

    Science.gov (United States)

    Henriques, Rui; Madeira, Sara C

    2015-01-01

    Genes can participate in multiple biological processes at a time and thus their expression can be seen as a composition of the contributions from the active processes. Biclustering under a plaid assumption allows the modeling of interactions between transcriptional modules or biclusters (subsets of genes with coherence across subsets of conditions) by assuming an additive composition of contributions in their overlapping areas. Despite the biological interest of plaid models, few biclustering algorithms consider plaid effects and, when they do, they place restrictions on the allowed types and structures of biclusters, and suffer from robustness problems by seizing exact additive matchings. We propose BiP (Biclustering using Plaid models), a biclustering algorithm with relaxations to allow expression levels to change in overlapping areas according to biologically meaningful assumptions (weighted and noise-tolerant composition of contributions). BiP can be used over existing biclustering solutions (seizing their benefits) as it is able to recover excluded areas due to unaccounted plaid effects and detect noisy areas non-explained by a plaid assumption, thus producing an explanatory model of overlapping transcriptional activity. Experiments on synthetic data support BiP's efficiency and effectiveness. The learned models from expression data unravel meaningful and non-trivial functional interactions between biological processes associated with putative regulatory modules.

  11. Dynamic neuronal ensembles: Issues in representing structure change in object-oriented, biologically-based brain models

    Energy Technology Data Exchange (ETDEWEB)

    Vahie, S.; Zeigler, B.P.; Cho, H. [Univ. of Arizona, Tucson, AZ (United States)

    1996-12-31

    This paper describes the structure of dynamic neuronal ensembles (DNEs). DNEs represent a new paradigm for learning, based on biological neural networks that use variable structures. We present a computational neural element that demonstrates biological neuron functionality such as neurotransmitter feedback absolute refractory period and multiple output potentials. More specifically, we will develop a network of neural elements that have the ability to dynamically strengthen, weaken, add and remove interconnections. We demonstrate that the DNE is capable of performing dynamic modifications to neuron connections and exhibiting biological neuron functionality. In addition to its applications for learning, DNEs provide an excellent environment for testing and analysis of biological neural systems. An example of habituation and hyper-sensitization in biological systems, using a neural circuit from a snail is presented and discussed. This paper provides an insight into the DNE paradigm using models developed and simulated in DEVS.

  12. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  13. Embedding a State Space Model Into a Markov Decision Process

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren

    2011-01-01

    In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...

  14. Processes, data structures, and apparatuses for representing knowledge

    Science.gov (United States)

    Hohimer, Ryan E [West Richland, WA; Thomson, Judi R [Guelph, CA; Harvey, William J [Richland, WA; Paulson, Patrick R [Pasco, WA; Whiting, Mark A [Richland, WA; Tratz, Stephen C [Richland, WA; Chappell, Alan R [Seattle, WA; Butner, R Scott [Richland, WA

    2011-09-20

    Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

  15. Fault detection in processes represented by PLS models using an EWMA control scheme

    KAUST Repository

    Harrou, Fouzi

    2016-10-20

    Fault detection is important for effective and safe process operation. Partial least squares (PLS) has been used successfully in fault detection for multivariate processes with highly correlated variables. However, the conventional PLS-based detection metrics, such as the Hotelling\\'s T and the Q statistics are not well suited to detect small faults because they only use information about the process in the most recent observation. Exponentially weighed moving average (EWMA), however, has been shown to be more sensitive to small shifts in the mean of process variables. In this paper, a PLS-based EWMA fault detection method is proposed for monitoring processes represented by PLS models. The performance of the proposed method is compared with that of the traditional PLS-based fault detection method through a simulated example involving various fault scenarios that could be encountered in real processes. The simulation results clearly show the effectiveness of the proposed method over the conventional PLS method.

  16. Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao.

    Science.gov (United States)

    Liu, Zhi; Li, Yunhe; Zhao, Jie; Chen, Xiuping; Jian, Guiliang; Peng, Yufa; Qi, Fangjun

    2012-01-01

    Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.

  17. Cultural and biological factors modulate spatial biases over development.

    Science.gov (United States)

    Girelli, Luisa; Marinelli, Chiara Valeria; Grossi, Giuseppe; Arduino, Lisa S

    2017-11-01

    Increasing evidence supports the contribution of both biological and cultural factors to visuospatial processing. The present study adds to the literature by exploring the interplay of perceptual and linguistic mechanisms in determining visuospatial asymmetries in adults (Experiment 1) and children (Experiment 2). In particular, pre-schoolers (3 and 5 year-olds), school-aged children (8 year-old), and adult participants were required to bisect different types of stimuli, that is, lines, words, and figure strings. In accordance with the literature, results yielded a leftward bias for lines and words and a rightward bias for figure strings, in adult participants. More critically, different biases were found for lines, words, and figure strings in children as a function of age, reflecting the impact of both cultural and biological factors on the processing of different visuospatial materials. Specifically, an adult-like pattern of results emerged only in the older group of children (8 year-old), but not in pre-schoolers. Results are discussed in terms of literacy, reading habits exposure, and biological maturation.

  18. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  19. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  20. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    Science.gov (United States)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  1. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  2. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  3. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  4. Enterprise Systems Implementations: Organizational Influence Processes for Corporate User Representatives

    DEFF Research Database (Denmark)

    Nielsen, Peter Axel; Nordheim, Stig

    2008-01-01

    -depth, interpretive study from the oil industry, where we analyze a case of innovative integration of an ECM system with collaboration technologies. The data collection has been longitudinal. The data analysis has been performed through the perspective of organizational influence processes. The main finding concerns...... an organizational role as corporate user representative to deal with the scale and complexities of implementation. A single person was particularly influential in the role. At the outset a user representative had to perform upward influence processes from a lower formal position. This is impeding...

  5. The determination of the botanical origin in honeys with over-represented pollen: combination of melissopalynological, sensory and physicochemical analysis.

    Science.gov (United States)

    Rodopoulou, Maria-Anna; Tananaki, Chrysoula; Dimou, Maria; Liolios, Vasilios; Kanelis, Dimitrios; Goras, Georgios; Thrasyvoulou, Andreas

    2018-05-01

    Pollen analysis of honey is the basic method for the determination of its botanical origin. However, the presence of over-represented pollen in honeys may lead the analysis to false results. This can be more severe if this pollen is present in unifloral under-represented honeys of commercial importance (e.g. thyme honey). In the present study, we investigated the abundance of over-represented pollen grains on several quality characteristics in honey samples. In particular, we mixed honeys characterised as over-represented, specifically chestnut and eucalyptus, with thyme honeys in different analogies, and we also analysed the melissopalynological, organoleptic, physicochemical (water content, electrical conductivity, colour) and volatile characteristics of the blends. The most sensitive parameters were the microscopic characteristics, followed by the organoleptic ones. Blends of thyme honey with an originally low percentage of thyme pollen were the most influenced and could not be characterised as unifloral regarding their melissopalynological characteristics, even when they were mixed with small quantities of honeys with over-represented pollen (i.e. 5%). The present study confirms that, in the case of presence of over-represented pollen in honeys, pollen analysis alone cannot give trustworthy results for the determination of the botanical origin, even though their exclusion during pollen analysis, when they are present in percentages of up to 30%, could provide more accurate results. Consequently, pollen analysis should also be combined with the other analyses, especially in honeys with under-represented and over-represented pollens, to give safer results for the botanical characterisation of honeys. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  7. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  8. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    Science.gov (United States)

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com © The Author(s) 2015. Published by Oxford University Press.

  9. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  11. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  12. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  13. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Representing vision and blindness.

    Science.gov (United States)

    Ray, Patrick L; Cox, Alexander P; Jensen, Mark; Allen, Travis; Duncan, William; Diehl, Alexander D

    2016-01-01

    There have been relatively few attempts to represent vision or blindness ontologically. This is unsurprising as the related phenomena of sight and blindness are difficult to represent ontologically for a variety of reasons. Blindness has escaped ontological capture at least in part because: blindness or the employment of the term 'blindness' seems to vary from context to context, blindness can present in a myriad of types and degrees, and there is no precedent for representing complex phenomena such as blindness. We explore current attempts to represent vision or blindness, and show how these attempts fail at representing subtypes of blindness (viz., color blindness, flash blindness, and inattentional blindness). We examine the results found through a review of current attempts and identify where they have failed. By analyzing our test cases of different types of blindness along with the strengths and weaknesses of previous attempts, we have identified the general features of blindness and vision. We propose an ontological solution to represent vision and blindness, which capitalizes on resources afforded to one who utilizes the Basic Formal Ontology as an upper-level ontology. The solution we propose here involves specifying the trigger conditions of a disposition as well as the processes that realize that disposition. Once these are specified we can characterize vision as a function that is realized by certain (in this case) biological processes under a range of triggering conditions. When the range of conditions under which the processes can be realized are reduced beyond a certain threshold, we are able to say that blindness is present. We characterize vision as a function that is realized as a seeing process and blindness as a reduction in the conditions under which the sight function is realized. This solution is desirable because it leverages current features of a major upper-level ontology, accurately captures the phenomenon of blindness, and can be

  15. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  16. Developmental Origins of Biological Explanations: The case of infants' internal property bias.

    Science.gov (United States)

    Taborda-Osorio, Hernando; Cheries, Erik W

    2017-10-01

    People's explanations about the biological world are heavily biased toward internal, non-obvious properties. Adults and children as young as 5 years of age find internal properties more causally central than external features for explaining general biological processes and category membership. In this paper, we describe how this 'internal property bias' may be grounded in two different developmental precursors observed in studies with infants: (1) an early understanding of biological agency that is apparent in infants' reasoning about animals, and (2) the acquisition of kind-based representations that distinguish between essential and accidental properties, spanning from animals to artifacts. We argue that these precursors may support the progressive construction of the notion of biological kinds and explanations during childhood. Shortly after their first year of life, infants seem to represent the internal properties of animates as more central and identity-determining that external properties. Over time, this skeletal notion of biological kinds is integrated into diverse explanations about kind membership and biological processes, with an increasingly better understanding of the causal role of internal properties.

  17. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  18. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  19. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.

    Science.gov (United States)

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo

    2018-04-17

    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply

  20. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    Science.gov (United States)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  1. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  2. Markov LIMID processes for representing and solving renewal problems

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Kristensen, Anders Ringgaard; Nilsson, Dennis

    2014-01-01

    to model a Markov Limid Process, where each TemLimid represents a macro action. Algorithms are presented to find optimal plans for a sequence of such macro actions. Use of algorithms is illustrated based on an extended version of an example from pig production originally used to introduce the Limid concept...

  3. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  4. The mainstream is not electable: when vision triumphs over representativeness in leader emergence and effectiveness.

    Science.gov (United States)

    Halevy, Nir; Berson, Yair; Galinsky, Adam D

    2011-07-01

    Theories of visionary leadership propose that groups bestow leadership on exceptional group members. In contrast, social identity perspectives claim that leadership arises, in part, from a person's ability to be seen as representative of the group. Integrating these perspectives, the authors propose that effective leaders often share group members' perspectives concerning the present, yet offer a unique and compelling vision for the group's future. In addition, although intergroup contexts may increase the value of representativeness, the authors predict that vision dominates representativeness in single-group situations characterized by high levels of collective stress (e.g., a natural disaster). Five studies demonstrated that visionary leaders (those who offer novel solutions to their group's predicament) attract more followers, promote group identification and intrinsic motivation, mobilize collective action, and effectively regulate group members' emotions and reactions to crises compared to representative leaders. The authors discuss when, why, and how vision triumphs over representativeness in leader emergence and effectiveness. © 2011 by the Society for Personality and Social Psychology, Inc

  5. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  6. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  7. The Feasibility of Systems Thinking in Biology Education

    Science.gov (United States)

    Boersma, Kerst; Waarlo, Arend Jan; Klaassen, Kees

    2011-01-01

    Systems thinking in biology education is an up and coming research topic, as yet with contrasting feasibility claims. In biology education systems thinking can be understood as thinking backward and forward between concrete biological objects and processes and systems models representing systems theoretical characteristics. Some studies claim that…

  8. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education

    Science.gov (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  9. Comparing cost and process performance of activated sludge (AS) and biological aerated filters (BAF) over ten years of full sale operation.

    Science.gov (United States)

    Hansen, R; Thogersen, T; Rogalla, F

    2007-01-01

    In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler

  10. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-29

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.

  11. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  12. Cognitive load privileges memory-based over data-driven processing, not group-level over person-level processing.

    Science.gov (United States)

    Skorich, Daniel P; Mavor, Kenneth I

    2013-09-01

    In the current paper, we argue that categorization and individuation, as traditionally discussed and as experimentally operationalized, are defined in terms of two confounded underlying dimensions: a person/group dimension and a memory-based/data-driven dimension. In a series of three experiments, we unconfound these dimensions and impose a cognitive load. Across the three experiments, two with laboratory-created targets and one with participants' friends as the target, we demonstrate that cognitive load privileges memory-based over data-driven processing, not group- over person-level processing. We discuss the results in terms of their implications for conceptualizations of the categorization/individuation distinction, for the equivalence of person and group processes, for the ultimate 'purpose' and meaningfulness of group-based perception and, fundamentally, for the process of categorization, broadly defined. © 2012 The British Psychological Society.

  13. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  14. OWL Reasoning Framework over Big Biological Knowledge Network

    Science.gov (United States)

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076

  15. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  16. Biologic phosphorus elimination - influencing parameters, boundary conditions, process optimation

    International Nuclear Information System (INIS)

    Dai Xiaohu.

    1992-01-01

    This paper first presents a systematic study of the basic process of biologic phosphorus elimination as employed by the original 'Phoredox (Main Stream) Process'. The conditions governing the process and the factors influencing its performance were determined by trial operation. A stationary model was developed for the purpose of modelling biologic phosphorus elimination in such a main stream process and optimising the dimensioning. The validity of the model was confirmed by operational data given in the literature and by operational data from the authors' own semitechnical-scale experimental plant. The model permits simulation of the values to be expected for effluent phosphorus and phosphate concentrations for given influent data and boundary conditions. It is thus possible to dimension a plant for accomodation of the original Phoredox (Main Stream) Process or any similar phosphorus eliminating plant that is to work according to the principle of the main stream process. (orig./EF) [de

  17. Allostatic load and biological anthropology.

    Science.gov (United States)

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American

  18. Biological processes for mitigation of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, John R. [California Univ., Dept. of Plant and Microbial Biology, Berkeley, CA (United States)

    1999-07-01

    Biological processes driven by photosynthesis cycle through the atmosphere well over an order of magnitude more CO{sub 2} than is currently emitted from the combustion of fossils fuels. Already human activities control and appropriate almost half the primary photosynthetic productivity of the planet. Better management of natural and man-made ecosystems affords many opportunities for mitigation of greenhouse gases, through sink enhancements, source reduction and substitution of fossil fuels with biofuels. Biofuels can be recovered from most organic wastes, from agricultural and forestry residues, and from biomass produced solely for energy use. However, the currently low costs of fossil fuels limits the market for biofuels. Accounting for the greenhouse mitigation value of biofuels would significantly increase their contribution to world fuel suppliers, estimated to be currently equivalent to about 15% of fossil fuel usage. Another limiting factor in expanding the use of biofuels is the relatively low solar energy conversion efficiencies of photosynthesis. Currently well below 1% of solar energy is converted into biomass energy even by intensive agricultural or forestry systems, with peak conversion efficiencies about 2 to 3% for sugar cane or microalgae cultures. One approach to increase photosynthetic efficiencies, being developed at the University of California Berkeley, is to reduce the amount of light-gathering chlorophyll in microalgae and higher plants. This would reduce mutual shading and also increase photosynthetic efficiencies under full sunlight intensities. Estimates of the potential of photosynthetic greenhouse mitigation processes vary widely. However, even conservative estimates for biofuels substituting for fossil fuels project the potential to reduce a large fraction of current increases in atmospheric CO{sub 2} levels. Biofuels production will require integration with existing agronomic, forestry and animal husbandry systems, and improved

  19. Challenges of analysing suspected over exposed subjects using biological dosimetry at Sri Ramachandra University

    International Nuclear Information System (INIS)

    Vijayalakshimi, J.; Venkatachalam, P.; Solomon, F.D. Paul

    2016-01-01

    Biological dosimetry based on the analysis of dicentric chromosomes has become a routine component of the radiological protection programmes and has a valuable role to contribute in suspected over exposed subjects who perform diagnostic and therapeutic procedures. The Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, has been involved in the standardization of chromosomal aberration analysis as a biological dosimeter for investigating accidental ionising radiation exposure since 1998. Our laboratory has been accredited since 2007 by Atomic Energy Regulatory Board. The initial process was to establish the in vitro dose response curve for various type of low LET ionizing radiation. Since accreditation, a total of 61 subjects have been referred to Sri Ramachandra University from SRRC, Kalpakkam. Brief social/medical history and informed consent are being obtained prior to blood samplings. The dose estimates expressed in sievert (Sv) measured by Thermoluminescence badges was in the range of 0.05-2779.05 mSv. Chromosomal aberration assay was used for analysis which allows direct detection of aberration in peripheral blood lymphocytes. The test was performed as per the standard operating protocol on peripheral blood lymphocyte. Currently the dose response curve for the automated scoring process in under way and we hope to improve upon quality and turnaround time using the automation available. Future challenge would be to establish an in vitro dose response curve with automated scoring technique and developing inter-laboratory comparison of dose response generated using automation

  20. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. PMID:27856550

  1. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  2. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, K.; Cecal, A.; Craciun, I.

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatmen from radioactive waste, namely from uranium. The process dor sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plants cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor in the second stage - Spirulina platensis . After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions by the biomass of plants cultivated in the sewage

  3. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, Karin; Cecal, Alexandru; Craciun, Iftimie Ionel; Rudic, Valeriu; Gulea, Aurelian; Cepoi, Liliana

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatment from radioactive waste, namely from uranium. The process for sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plant cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor and in the second stage - Spirulina platensis. After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions accumulation by the biomass of plants cultivated in the sewage.

  4. Brian hears: online auditory processing using vectorization over channels.

    Science.gov (United States)

    Fontaine, Bertrand; Goodman, Dan F M; Benichoux, Victor; Brette, Romain

    2011-01-01

    The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in "Brian Hears," a library for the spiking neural network simulator package "Brian." This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations.

  5. Process of making decisions on loan currency: Influence of representativeness on information processing and coherence with consumption motives

    Directory of Open Access Journals (Sweden)

    Anđelković Dragan

    2016-01-01

    Full Text Available Rationality of decision maker is often reduced by heuristics and biases, and also by different types of external stimuli. In decision-making process individuals simplify phases of information selection and information processing by using heuristics, simple rules which are focused on one aspect of complex problem and ignore other aspects, and in that way 'speed up' decision-making process. This method of making decisions, although efficient in making simple decisions, can lead to mistakes in probability assessment and diminish rationality of decision maker. In that way it can influence drastically on transaction outcome for which decision is being made. The subject of this study is influence of representativeness heuristic on making financial decisions by individuals, and influence of consumption motives on stereotypical elements in information processing phase. Study was conducted by determining attitudes of respondents toward currencies, and then by conducting experiments with aim of analyzing method of making decisions on loan currency. Aim of study was determining whether and to what extent representativeness influence choice of currency in process of making loan decisions. Results of conducted behavioral experiments show that respondents, opposite to rational model, do not asses probability by processing available information and in accordance with their preferences, but by comparing decision objects with other objects which have same attributes, showing in that way moderate positive correlation between stereotypical attitudes and choice of loan currency. Experiments have shown that instrumental motive significantly influence representativeness heuristics, that is, individuals are prone to process information with diminished influence of stereotypical attitudes caused by external stimuli, in situations where there is no so called 'hedonistic decision-making'. Respondents have been making more efficient decisions if they had motive which does

  6. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  7. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  8. Aging in a Relativistic Biological Space-Time

    Directory of Open Access Journals (Sweden)

    Davide Maestrini

    2018-05-01

    Full Text Available Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of “biological space-time” in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.

  9. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  10. Mathematical computer simulation of the process of ultrasound interaction with biological medium

    International Nuclear Information System (INIS)

    Yakovleva, T.; Nassiri, D.; Ciantar, D.

    1996-01-01

    The aim of the paper is to study theoretically the interaction of ultrasound irradiation with biological medium and the peculiarities of ultrasound scattering by inhomogeneities of biological tissue, which can be represented by fractal structures. This investigation has been used for the construction of the computer model of three-dimensional ultrasonic imaging system what gives the possibility to define more accurately the pathological changes in such a tissue by means of its image analysis. Poster 180. (author)

  11. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching.

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. © 2016 G. Marbach-Ad and C. H. Rietschel. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  14. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  15. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  16. Using semantics for representing experimental protocols.

    Science.gov (United States)

    Giraldo, Olga; García, Alexander; López, Federico; Corcho, Oscar

    2017-11-13

    An experimental protocol is a sequence of tasks and operations executed to perform experimental research in biological and biomedical areas, e.g. biology, genetics, immunology, neurosciences, virology. Protocols often include references to equipment, reagents, descriptions of critical steps, troubleshooting and tips, as well as any other information that researchers deem important for facilitating the reusability of the protocol. Although experimental protocols are central to reproducibility, the descriptions are often cursory. There is the need for a unified framework with respect to the syntactic structure and the semantics for representing experimental protocols. In this paper we present "SMART Protocols ontology", an ontology for representing experimental protocols. Our ontology represents the protocol as a workflow with domain specific knowledge embedded within a document. We also present the S ample I nstrument R eagent O bjective (SIRO) model, which represents the minimal common information shared across experimental protocols. SIRO was conceived in the same realm as the Patient Intervention Comparison Outcome (PICO) model that supports search, retrieval and classification purposes in evidence based medicine. We evaluate our approach against a set of competency questions modeled as SPARQL queries and processed against a set of published and unpublished protocols modeled with the SP Ontology and the SIRO model. Our approach makes it possible to answer queries such as Which protocols use tumor tissue as a sample. Improving reporting structures for experimental protocols requires collective efforts from authors, peer reviewers, editors and funding bodies. The SP Ontology is a contribution towards this goal. We build upon previous experiences and bringing together the view of researchers managing protocols in their laboratory work. Website: https://smartprotocols.github.io/ .

  17. Quantum mechanics formalism for biological evolution

    International Nuclear Information System (INIS)

    Bianconi, Ginestra; Rahmede, Christoph

    2012-01-01

    Highlights: ► Biological evolution is an off-equilibrium process described by path integrals over phylogenies. ► The phylogenies are sums of linear lineages for asexual populations. ► For sexual populations, each lineage is a tree and the path integral is given by a sum over these trees. ► Quantum statistics describe the stationary state of biological populations in simple cases. - Abstract: We study the evolution of sexual and asexual populations in fitness landscapes compatible with epistatic interactions. We find intriguing relations between the mathematics of biological evolution and quantum mechanics formalism. We give the general structure of the evolution of sexual and asexual populations which is in general an off-equilibrium process that can be expressed by path integrals over phylogenies. These phylogenies are the sum of linear lineages for asexual populations. For sexual populations, instead, each lineage is a tree of branching ratio two and the path integral describing the evolving population is given by a sum over these trees. Finally we show that the Bose–Einstein and the Fermi–Dirac distributions describe the stationary state of biological populations in simple cases.

  18. Influence of different natural physical fields on biological processes

    Science.gov (United States)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  19. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  20. Brand I Feel Slovenia: Inclusion of the Key Areas’ Representatives in the Branding Process

    Directory of Open Access Journals (Sweden)

    Maja Konecnik Ruzzier

    2011-12-01

    Full Text Available The paper presents the part of the process of I feel Slovenia brand developmentin which we investigated 707 respondents from key stakeholdergroups. Respondents were representatives of all key stakeholdergroups in the country who, along with the other two target groups (opinionleaders and local inhabitants, represented the most importantstakeholders in the process of country brand development. A strongagreement regarding brand identity elements is evident from researchresults, which imply that identity elements shared by representativesfrom different internal stakeholder groups should form the basis of astrong country brand. Such brand foundation represents a strong preconditionfor a country brand, which could through hard and systematicwork become a strong and successful brand.

  1. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  2. Diffusion processes and related topics in biology

    CERN Document Server

    Ricciardi, Luigi M

    1977-01-01

    These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol­ ogy and neurobiology literature. While the subject may be classical, the nov­ elty here lies in the approach and point of view, particularly in the applica­ tions such as the approach to the neuronal firing problem and its related dif­ fusion approximations. It is a ple...

  3. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  4. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  5. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-12-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the observed data fields (E-OBS data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  6. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  7. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  8. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario

    2005-01-01

    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  9. The Importance of Representing Certain Key Vegetation Canopy Processes Explicitly in a Land Surface Model

    Science.gov (United States)

    Napoly, A.; Boone, A. A.; Martin, E.; Samuelsson, P.

    2015-12-01

    Land surface models are moving to more detailed vegetation canopy descriptions in order to better represent certain key processes, such as Carbon dynamics and snowpack evolution. Since such models are usually applied within coupled numerical weather prediction or spatially distributed hydrological models, these improvements must strike a balance between computational cost and complexity. The consequences of simplified or composite canopy approaches can be manifested in terms of increased errors with respect to soil temperatures, estimates of the diurnal cycle of the turbulent fluxes or snow canopy interception and melt. Vegetated areas and particularly forests are modeled in a quite simplified manner in the ISBA land surface model. However, continuous developments of surface processes now require a more accurate description of the canopy. A new version of the the model now includes a multi energy balance (MEB) option to explicitly represent the canopy and the forest floor. It will be shown that certain newly included processes such as the shading effect of the vegetation, the explicit heat capacity of the canopy, and the insulating effect of the forest floor turn out to be essential. A detailed study has been done for four French forested sites. It was found that the MEB option significantly improves the ground heat flux (RMSE decrease from 50W/m2 to 10W/m2 on average) and soil temperatures when compared against measurements. Also the sensible heat flux calculation was improved primarily owing to a better phasing with the solar insulation owing to a lower vegetation heat capacity. However, the total latent heat flux is less modified compared to the classical ISBA simulation since it is more related to water uptake and the formulation of the stomatal resistance (which are unchanged). Next, a benchmark over 40 Fluxnet sites (116 cumulated years) was performed and compared with results from the default composite soil-vegetation version of ISBA. The results show

  10. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  11. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  12. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  13. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  14. Knowledge environments representing molecular entities for the virtual physiological human.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  15. Advances in downstream processing of biologics - Spectroscopy: An emerging process analytical technology.

    Science.gov (United States)

    Rüdt, Matthias; Briskot, Till; Hubbuch, Jürgen

    2017-03-24

    Process analytical technologies (PAT) for the manufacturing of biologics have drawn increased interest in the last decade. Besides being encouraged by the Food and Drug Administration's (FDA's) PAT initiative, PAT promises to improve process understanding, reduce overall production costs and help to implement continuous manufacturing. This article focuses on spectroscopic tools for PAT in downstream processing (DSP). Recent advances and future perspectives will be reviewed. In order to exploit the full potential of gathered data, chemometric tools are widely used for the evaluation of complex spectroscopic information. Thus, an introduction into the field will be given. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  17. A novel theory: biological processes mostly involve two types of mediators, namely general and specific mediators Endogenous small radicals such as superoxide and nitric oxide may play a role of general mediator in biological processes.

    Science.gov (United States)

    Mo, Jian

    2005-01-01

    A great number of papers have shown that free radicals as well as bioactive molecules can play a role of mediator in a wide spectrum of biological processes, but the biological actions and chemical reactivity of the free radicals are quite different from that of the bioactive molecules, and that a wide variety of bioactive molecules can be easily modified by free radicals due to having functional groups sensitive to redox, and the significance of the interaction between the free radicals and the bioactive molecules in biological processes has been confirmed by the results of some in vitro and in vivo studies. Based on these evidence, this article presented a novel theory about the mediators of biological processes. The essentials of the theory are: (a) mediators of biological processes can be classified into general and specific mediators; the general mediators include two types of free radicals, namely superoxide and nitric oxide; the specific mediators include a wide variety of bioactive molecules, such as specific enzymes, transcription factors, cytokines and eicosanoids; (b) a general mediator can modify almost any class of the biomolecules, and thus play a role of mediator in nearly every biological process via diverse mechanisms; a specific mediator always acts selectively on certain classes of the biomolecules, and may play a role of mediator in different biological processes via a same mechanism; (c) biological processes are mostly controlled by networks of their mediators, so the free radicals can regulate the last consequence of a biological process by modifying some types of the bioactive molecules, or in cooperation with these bioactive molecules; the biological actions of superoxide and nitric oxide may be synergistic or antagonistic. According to this theory, keeping the integrity of these networks and the balance between the free radicals and the bioactive molecules as well as the balance between the free radicals and the free radical scavengers

  18. A theory of biological relativity: no privileged level of causation.

    Science.gov (United States)

    Noble, Denis

    2012-02-06

    Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of 'biological relativity' and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined.

  19. From Fertilization to Birth: Representing Development in High School Biology Textbooks

    Science.gov (United States)

    Wellner, Karen L.

    Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature of science, and human embryos, technology, and society (HETS). I then interpreted how embryos and fetuses have been socially constructed for students. I also examined the use of Haeckel's embryo drawings to support recapitulation and evolutionary theory. Textbooks revealed that publication of Haeckel's drawings was influenced by evolutionists and anti-evolutionists in the 1930s, 1960s, and the 1990s. Haeckel's embryos continue to persist in textbooks because they "safely" illustrate similarities between embryos and are rarely discussed in enough detail to understand comparative embryology's role in the support of evolution. Certain events coincided with changes in how embryos were presented: (a) the growth of the American Medical Association (AMA) and an increase in birth rates (1950s); (b) the Biological Sciences Curriculum Study (BSCS) and public acceptance of birth control methods (1960s); (c) Roe vs. Wade (1973); (d) in vitro fertilization and Lennart Nilsson's photographs (1970s); (e) prenatal technology and fetocentrism (1980s); and (f) genetic engineering and Science-Technology-Society (STS) curriculum (1980s and 1990s). By the end of the twentieth century, changing conceptions, research practices, and technologies all combined to transform the nature of biological development. Human embryos went from a highly descriptive, static, and private object to that of sometimes contentious public figure. I contend that an ignored source for helping move embryos into the public realm is schoolbooks. Throughout the 1900s, authors and publishers accomplished this by placing biology textbook embryos and

  20. Iterated Process Analysis over Lattice-Valued Regular Expressions

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    We present an iterated approach to statically analyze programs of two processes communicating by message passing. Our analysis operates over a domain of lattice-valued regular expressions, and computes increasingly better approximations of each process's communication behavior. Overall the work e...... extends traditional semantics-based program analysis techniques to automatically reason about message passing in a manner that can simultaneously analyze both values of variables as well as message order, message content, and their interdependencies.......We present an iterated approach to statically analyze programs of two processes communicating by message passing. Our analysis operates over a domain of lattice-valued regular expressions, and computes increasingly better approximations of each process's communication behavior. Overall the work...

  1. Conserving forest biological diversity: How the Montreal Process helps achieve sustainability

    Science.gov (United States)

    Mark Nelson; Guy Robertson; Kurt. Riitters

    2015-01-01

    Forests support a variety of ecosystems, species and genes — collectively referred to as biological diversity — along with important processes that tie these all together. With the growing recognition that biological diversity contributes to human welfare in a number of important ways such as providing food, medicine and fiber (provisioning services...

  2. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Miguel O. [NASA Goddard Space Flight Center; Schaaf, Crystal [Boston University; Woodcock, Curtis E. [Boston University; Strahler, Alan [Boston University; Yang, Xiaoyuan [Boston University; Braswell, Rob H. [Complex Systems Research Center, Durham, NH; Curtis, Peter [Ohio State University, The, Columbus; Davis, Kenneth J. [Pennsylvania State University; Dragoni, Danilo [Indiana University; Goulden, Michael L. [University of California, Irvine; Gu, Lianhong [ORNL; Hollinger, David Y [ORNL; Meyers, Tilden P. [NOAA, Oak Ridge, TN; Wilson, Tim B. [NOAA; Munger, J. William [Harvard University; Wofsy, Steve [Harvard University; Privette, Jeffrey L. [NOAA; Richardson, Andrew D. [Harvard University

    2009-11-01

    A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel.

  3. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Satoru Koda

    2017-11-01

    Full Text Available We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX model with a group smoothly clipped absolute deviation (SCAD method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  4. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  5. Biological features produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Mendez Ribo, Macarena; Pedersen, David Bue

    2017-01-01

    of micro biological features by Additive Manufacturing (AM) processes. The study characterizes the additive manufacturing processes for polymeric micro part productions using the vat photopolymerization method. A specifically designed vat photopolymerization AM machine suitable for precision printing...

  6. Thinking processes of Filipino teachers representation of schema of some biology topics: Its effects to the students conceptual understanding

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This study is a qualitative-quantitative research, where the main concern is to investigate Content knowledge representation of Filipino Teachers in their schema (proposition, linear ordering and imagery) of some biology topics. The five biology topics includes: Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics. The study focuses on the six (6) biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and three (3) under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilizes interpretative case-study method, bracketing method, and concept analysis for qualitative part. For quantitative, it uses a nonparametric statistical tool, Kendall's Tau to determine congruence of students and teachers' concept maps and paired t-test for testing the significant differences of pre-and post-instruction concept maps to determine the effects of students' conceptual understanding before and after the teacher's representation of their schema that requires the teachers' thinking processes. The data were cross-validated with two or more techniques used in the study. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. Results indicate that the teacher utilize six methods to construct meaning of concepts, three methods of representing classification, four methods to represent relationships, seven methods to represent transformation and three methods to represent causation in planning and implementing the lessons. They often modify definitions in the textbook and express these in lingua franca to be better understood by the students. Furthermore, the teachers' analogs given to student are sometimes far

  7. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  8. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  9. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  10. Processing biological literature with customizable Web services supporting interoperable formats.

    Science.gov (United States)

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk. © The Author(s) 2014. Published by Oxford University Press.

  11. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  12. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    Science.gov (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Simulation and Analysis of Complex Biological Processes: an Organisation Modelling Perspective

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2005-01-01

    This paper explores how the dynamics of complex biological processes can be modelled and simulated as an organisation of multiple agents. This modelling perspective identifies organisational structure occurring in complex decentralised processes and handles complexity of the analysis of the dynamics

  14. Follow-on biologics: competition in the biopharmaceutical marketplace.

    Science.gov (United States)

    Devine, Joshua W; Cline, Richard R; Farley, Joel F

    2006-01-01

    To describe the implications of a follow-on biologic approval process with focus on current stakeholders, implications of the status quo, and recommendations for future policy. A search using Medline, International Pharmaceutical Abstracts, Med Ad News, F-D-C Reports/Pink Sheets, and Google index directories was conducted with terms such as biologic, biopharmaceutical, generic, and follow-on. Articles pertaining to the follow-on biologic debate. By the authors. Over the past decade, the biopharmaceutical market has experienced substantial growth in the number of product approvals and sales. In contrast with prescription medications, biologic agents currently lack an abbreviated regulatory approval process. Evidence from the Drug Price Competition and Patent Term Restoration Act of 1984 suggests that reducing barriers to generic competition in the pharmaceutical market successfully increases generic market penetration and reduces overall prices to consumers. Although scientific and regulatory dissimilarities between biopharmaceuticals and other medications exist, a follow-on biologic approval process has the potential to play an important role in containing growth in pharmaceutical spending. In addition to biopharmaceutical and generic biopharmaceutical manufacturers, stakeholders with a vested interest in this debate include individual consumers who continue to bear the burden of spending increases in the pharmaceutical market. The debate over a follow-on process likely will be difficult as parties seek a balance between incentives for biopharmaceutical innovation, consumer safety, and affordability of existing biologic products.

  15. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    Science.gov (United States)

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  16. Analysis of Mental Processes Represented in Models of Artificial Consciousness

    Directory of Open Access Journals (Sweden)

    Luana Folchini da Costa

    2013-12-01

    Full Text Available The Artificial Consciousness concept has been used in the engineering area as being an evolution of the Artificial Intelligence. However, consciousness is a complex subject and often used without formalism. As a main contribution, in this work one proposes an analysis of four recent models of artificial consciousness published in the engineering area. The mental processes represented by these models are highlighted and correlations with the theoretical perspective of cognitive psychology are made. Finally, considerations about consciousness in such models are discussed.

  17. Building a Model of Employee Training through Holistic Analysis of Biological, Psychological, and Sociocultural Factors

    Science.gov (United States)

    Schenck, Andrew

    2015-01-01

    While theories of adult learning and motivation are often framed as being either biological, psychological, or sociocultural, they represent a more complex, integral process. To gain a more holistic perspective of this process, a study was designed to concurrently investigate relationships between a biological factor (age), psychological factors…

  18. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  20. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  1. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.

    Science.gov (United States)

    Segner, Helmut

    2011-10-01

    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  2. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  3. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  4. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  5. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  6. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  7. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Science.gov (United States)

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  8. Can we manage for biological diversity in the absence of science?

    Science.gov (United States)

    Trauger, D.L.; Hall, R.J.

    1995-01-01

    Conservation of biological diversity is dependent on sound scientific information about underlying ecological processes. Current knowledge of the composition, distribution, abundance and life cycles of most species of plants and animals is incomplete, insufficient, unreliable, or nonexistent. Contemporary managers are also confronted with additional levels of complexity related to varying degrees of knowledge and understanding about interactions of species and ecosystems. Consequently, traditional species-oriented management schemes may have unintended consequences and ecosystem-oriented management initiatives may fail in the face of inadequate or fragmentary information on the structure, function, and dynamics of biotic communities and ecological systems. Nevertheless, resource managers must make decisions and manage based on the best biological information currently available. Adaptive resource management may represent a management paradigm that allows managers to learn something about the species or systems that they are managing while they are managing, but potential pitfalls lurk for such approaches. In addition to lack of control over the primary physical, chemical, and ecological processes, managers also lack control over social, economic, and political parameters affecting resource management options. Moreover, appropriate goals may be difficult to identify and criteria for determining success may be elusive. Some management responsibilities do not lend themselves to adaptive strategies. Finally, the lessons learned from adaptive management are usually obtained from a highly situational context that may limit applicability in a wider range of situations or undermine confidence that problems and solutions were properly diagnosed and addressed. Several scenarios are critically examined where adaptive management approaches may be inappropriate or ineffective and where management for biological diversity may be infeasible or inefficient without a sound

  9. Radionuclide biological half-life values for terrestrial and aquatic wildlife

    International Nuclear Information System (INIS)

    Beresford, N.A.; Beaugelin-Seiller, K.; Burgos, J.; Cujic, M.; Fesenko, S.; Kryshev, A.; Pachal, N.; Real, A.; Su, B.S.; Tagami, K.; Vives i Batlle, J.; Vives-Lynch, S.; Wells, C.; Wood, M.D.

    2015-01-01

    The equilibrium concentration ratio is typically the parameter used to estimate organism activity concentrations within wildlife dose assessment tools. Whilst this is assumed to be fit for purpose, there are scenarios such as accidental or irregular, fluctuating, releases from licensed facilities when this might not be the case. In such circumstances, the concentration ratio approach may under- or over-estimate radiation exposure depending upon the time since the release. To carrying out assessments for such releases, a dynamic approach is needed. The simplest and most practical option is representing the uptake and turnover processes by first-order kinetics, for which organism- and element-specific biological half-life data are required. In this paper we describe the development of a freely available international database of radionuclide biological half-life values. The database includes 1907 entries for terrestrial, freshwater, riparian and marine organisms. Biological half-life values are reported for 52 elements across a range of wildlife groups (marine = 9, freshwater = 10, terrestrial = 7 and riparian = 3 groups). Potential applications and limitations of the database are discussed. - Highlights: • 1907 biological half-life values have been collated for wildlife species. • Data cover 52 elements. • 27 marine, freshwater, riparian and terrestrial organisms are included.

  10. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Thomassen, Mads; Riley, Caroline H

    2012-01-01

    The recent discovery of the Janus activating kinase 2 V617F mutation in most patients with polycythemia vera (PV) and half of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF) has favored the hypothesis of a biological continuum from ET over PV to PMF. We performed gene...... with biological relevant overlaps between the different entities. Moreover, the analysis separates Janus activating kinase 2-negative ET patients from Janus activating kinase 2-positive ET patients. Functional annotation analysis demonstrates that clusters of gene ontology terms related to inflammation, immune...... system, apoptosis, RNA metabolism, and secretory system were the most significantly deregulated terms in the three different disease groups. Our results yield further support for the hypothesis of a biological continuum originating from ET over PV to PMF. Functional analysis suggests an important...

  11. A Chado case study: an ontology-based modular schema for representing genome-associated biological information.

    Science.gov (United States)

    Mungall, Christopher J; Emmert, David B

    2007-07-01

    A few years ago, FlyBase undertook to design a new database schema to store Drosophila data. It would fully integrate genomic sequence and annotation data with bibliographic, genetic, phenotypic and molecular data from the literature representing a distillation of the first 100 years of research on this major animal model system. In developing this new integrated schema, FlyBase also made a commitment to ensure that its design was generic, extensible and available as open source, so that it could be employed as the core schema of any model organism data repository, thereby avoiding redundant software development and potentially increasing interoperability. Our question was whether we could create a relational database schema that would be successfully reused. Chado is a relational database schema now being used to manage biological knowledge for a wide variety of organisms, from human to pathogens, especially the classes of information that directly or indirectly can be associated with genome sequences or the primary RNA and protein products encoded by a genome. Biological databases that conform to this schema can interoperate with one another, and with application software from the Generic Model Organism Database (GMOD) toolkit. Chado is distinctive because its design is driven by ontologies. The use of ontologies (or controlled vocabularies) is ubiquitous across the schema, as they are used as a means of typing entities. The Chado schema is partitioned into integrated subschemas (modules), each encapsulating a different biological domain, and each described using representations in appropriate ontologies. To illustrate this methodology, we describe here the Chado modules used for describing genomic sequences. GMOD is a collaboration of several model organism database groups, including FlyBase, to develop a set of open-source software for managing model organism data. The Chado schema is freely distributed under the terms of the Artistic License (http

  12. DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD

    Science.gov (United States)

    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  13. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process.

    Science.gov (United States)

    Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng

    2016-03-01

    A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.

  14. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  15. Guidelines to improve airport preparedness against chemical and biological terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Donna M.; Price, Phillip N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Gordon, Susanna P.; Gadgil, Ashok (Lawrence Berkeley National Laboratory, Berkeley, CA)

    2005-05-01

    Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.

  16. The use of information theory in evolutionary biology.

    Science.gov (United States)

    Adami, Christoph

    2012-05-01

    Information is a key concept in evolutionary biology. Information stored in a biological organism's genome is used to generate the organism and to maintain and control it. Information is also that which evolves. When a population adapts to a local environment, information about this environment is fixed in a representative genome. However, when an environment changes, information can be lost. At the same time, information is processed by animal brains to survive in complex environments, and the capacity for information processing also evolves. Here, I review applications of information theory to the evolution of proteins and to the evolution of information processing in simulated agents that adapt to perform a complex task. © 2012 New York Academy of Sciences.

  17. Open Water Processes of the San Francisco Estuary: From Physical Forcing to Biological Responses

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer

    2004-02-01

    Full Text Available This paper reviews the current state of knowledge of the open waters of the San Francisco Estuary. This estuary is well known for the extent to which it has been altered through loss of wetlands, changes in hydrography, and the introduction of chemical and biological contaminants. It is also one of the most studied estuaries in the world, with much of the recent research effort aimed at supporting restoration efforts. In this review I emphasize the conceptual foundations for our current understanding of estuarine dynamics, particularly those aspects relevant to restoration. Several themes run throughout this paper. First is the critical role physical dynamics play in setting the stage for chemical and biological responses. Physical forcing by the tides and by variation in freshwater input combine to control the movement of the salinity field, and to establish stratification, mixing, and dilution patterns throughout the estuary. Many aspects of estuarine dynamics respond to interannual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of fish and shrimp varies positively with flow, although the mechanisms behind these relationships are largely unknown. The second theme is the importance of time scales in determining the degree of interaction between dynamic processes. Physical effects tend to dominate when they operate at shorter time scales than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions can be seen, for example, in the response of phytoplankton blooms, with characteristic time scales of days, to stratification events occurring during neap tides. The third theme is the key role of introduced species in all estuarine habitats; particularly noteworthy are introduced waterweeds and fishes in the tidal freshwater reaches of the estuary, and introduced clams there and in brackish water. The

  18. Biological and geophysical feedbacks with fire in the Earth system

    Science.gov (United States)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  19. Culture, Urbanism and Changing Human Biology.

    Science.gov (United States)

    Schell, L M

    2014-04-03

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia.

  20. Birth/birth-death processes and their computable transition probabilities with biological applications.

    Science.gov (United States)

    Ho, Lam Si Tung; Xu, Jason; Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2018-03-01

    Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.

  1. Biological treatment of sludge digester liquids.

    Science.gov (United States)

    van Loosdrecht, M C M; Salem, S

    2006-01-01

    Nitrogen removal in side stream processes offers a good potential for upgrading wastewater treatment plants (WWTPs) that need to meet stricter effluent standards. Removing nutrients from these internal process flows significantly reduces the N-load to the main treatment plant. These internal flows mainly result from the sludge processing and have a high temperature and a high concentration of ammonia. Therefore, the required reactor volumes as well as the required aerobic SRT are small. Generally, biological treatment processes are more economical and preferred over physical-chemical processes. Recently, several biological treatment processes have been introduced for sludge water treatment. These processes are available now on the activated sludge market (e.g. SHARON, ANAMMOX and BABE processes). The technologies differ in concept and in the limitations guiding the application of these processes for upgrading WWTPs. This paper reviews and compares different biological alternatives for nitrogen removal in side streams. The limitations for selecting a technology from the available ones in the activated sludge market are noted and analysed. It is stressed that the choice for a certain process is based on more aspects than pure process engineering arguments.

  2. "A mission-driven discipline": the growth of conservation biology.

    Science.gov (United States)

    Meine, Curt; Soulé, Michael; Noss, Reed E

    2006-06-01

    Conservation biology emerged in the mid-1980s, drawing on established disciplines and integrating them in pursuit of a coherent goal: the protection and perpetuation of the Earth's biological diversity. Opportunistic in its borrowing and application of knowledge, conservation biology had its roots within the established biological sciences and resource management disciplines but has continually incorporated insights from the empirical experience of resource managers, from the social sciences and humanities, and from diverse cultural sources. The Society for Conservation Biology (SCB) has represented the field's core constituency, while expanding that constituency in keeping with the field's integrative spirit. Conservation Biology has served as SCB's flagship publication, promoting research, dialog, debate, and application of the field's essential concepts. Over the last 20 years the field, SCB, and the journal have evolved to meet changing conservation needs, to explore gaps in our knowledge base, to incorporate new information from related fields, to build professional capacity, and to provide expanded opportunities for international participation. In turn, the field, SCB, and journal have prompted change in related fields, organizations, and publications. In its dedication to advancing the scientific foundations of biodiversity conservation and placing that science at the service of society in a world whose variety, wildness, and beauty we care for conservation biology represents both a continuation and radical reconfiguration of the traditional relationship between science and conservation.

  3. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    Science.gov (United States)

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-08-29

    Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential

  4. Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture.

    Science.gov (United States)

    Baquero, Fernando

    2017-11-01

    Transmission is a basic process in biology and evolution, as it communicates different biological entities within and across hierarchical levels (from genes to holobionts) both in time and space. Vertical descent, replication, is transmission of information across generations (in the time dimension), and horizontal descent is transmission of information across compartments (in the space dimension). Transmission is essentially a communication process that can be studied by analogy of the classic information theory, based on 'emitters', 'messages' and 'receivers'. The analogy can be easily extended to the triad 'emigration', 'migration' and 'immigration'. A number of causes (forces) determine the emission, and another set of causes (energies) assures the reception. The message in fact is essentially constituted by 'meaningful' biological entities. A DNA sequence, a cell and a population have a semiotic dimension, are 'signs' that are eventually recognized (decoded) and integrated by receiver biological entities. In cis-acting or unenclosed transmission, the emitters and receivers correspond to separated entities of the same hierarchical level; in trans-acting or embedded transmission, the information flows between different, but frequently nested, hierarchical levels. The result (as in introgressive events) is constantly producing innovation and feeding natural selection, influencing also the evolution of transmission processes. This review is based on the concepts presented at the André Lwoff Award Lecture in the FEMS Microbiology Congress in Maastricht in 2015. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  6. Models with Men and Women: Representing Gender in Dynamic Modeling of Social Systems.

    Science.gov (United States)

    Palmer, Erika; Wilson, Benedicte

    2018-04-01

    Dynamic engineering models have yet to be evaluated in the context of feminist engineering ethics. Decision-making concerning gender in dynamic modeling design is a gender and ethical issue that is important to address regardless of the system in which the dynamic modeling is applied. There are many dynamic modeling tools that operationally include the female population, however, there is an important distinction between females and women; it is the difference between biological sex and the social construct of gender, which is fluid and changes over time and geography. The ethical oversight in failing to represent or misrepresenting gender in model design when it is relevant to the model purpose can have implications for model validity and policy model development. This paper highlights this gender issue in the context of feminist engineering ethics using a dynamic population model. Women are often represented in this type of model only in their biological capacity, while lacking their gender identity. This illustrative example also highlights how language, including the naming of variables and communication with decision-makers, plays a role in this gender issue.

  7. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  8. Current technologies for biological treatment of textile wastewater--a review.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  9. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations.

    Science.gov (United States)

    Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-05-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.

  10. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  11. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    Science.gov (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    Science.gov (United States)

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were

  13. Monitoring and controlling the biological purification process in a waste water treatment plant using a respirometry analyser; Vigilancia y control del proceso de la depuracion biologica en una EDAR por medio de un analizador de respirometria

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J. E.

    2004-07-01

    In a waste water biological treatment, we have to take into account that the activated sludge is a living and breathing process, and a lack of bioactivity information might cause serious confusion about control criteria on the biological reactor. For this reason, to get bioactivity information in a timely manner through the respiration analysis would be a real breakthrough in better process control. Therefore, to identify the respiration rates and calculate their derived parameters represents the guidelines of respirometry and can be considered as the most sensitive variables on the basis of which activated sludge process theory can be validated. (Author)

  14. Applications of Structural Biology and Bioinformatics in the Investigation of Oxidative Stress-Related Processes

    NARCIS (Netherlands)

    Bersch, Beate; Groves, Matthew; Johann, Klare; Torda, Andrew; Ortiz, Dario; Laher, I.

    2014-01-01

    Reactive oxygen species (ROS)-mediated dysfunction of certain biological processes is implicated in different diseases in humans, including cardiovascular, cancer, or neurodegenerative disorders. Not only human cells and tissues are affected by ROS but also all other biological systems, including

  15. Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground?

    Science.gov (United States)

    Skene, Keith R.

    2017-11-01

    This paper addresses a key issue confronting ecological and evolutionary biology, namely the challenge of a cohesive approach to these fields given significant differences in the concepts and foundations of their study. Yet these two areas of scientific research are paramount in terms addressing the spatial and temporal dynamics and distribution of diversity, an understanding of which is needed if we are to resolve the current crisis facing the biosphere. The importance of understanding how nature responds to change is now of essential rather than of metaphysical interest as our planet struggles with increasing anthropogenic damage. Ecology and evolutionary biology can no longer remain disjointed. While some progress has been made in terms of synthetic thinking across these areas, this has often been in terms of bridge building, where thinking in one aspect is extended over to the other side. We review these bridges and the success or otherwise of such efforts. This paper then suggests that in order to move from a descriptive to a mechanistic understanding of the biosphere, we may need to re-evaluate our approach to the studies of ecology and evolutionary biology, finding a common denominator that will enable us to address the critical issues facing us, particularly in terms of understanding what drives change, what determines tempo and how communities function. Common ground, we argue, is essential if we are to comprehend how resilience operates in the natural world and how diversification can counter increasing extinction rates. This paper suggests that thermodynamics may provide a bridge between ecology and evolutionary biology, and that this will enable us to move forward with otherwise intractable problems.

  16. Representing Development

    DEFF Research Database (Denmark)

    Representing Development presents the different social representations that have formed the idea of development in Western thinking over the past three centuries. Offering an acute perspective on the current state of developmental science and providing constructive insights into future pathways, ...

  17. Semantic Complex Event Processing over End-to-End Data Flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi [University of Southern California; Simmhan, Yogesh; Prasanna, Viktor K.

    2012-04-01

    Emerging Complex Event Processing (CEP) applications in cyber physical systems like SmartPower Grids present novel challenges for end-to-end analysis over events, flowing from heterogeneous information sources to persistent knowledge repositories. CEP for these applications must support two distinctive features - easy specification patterns over diverse information streams, and integrated pattern detection over realtime and historical events. Existing work on CEP has been limited to relational query patterns, and engines that match events arriving after the query has been registered. We propose SCEPter, a semantic complex event processing framework which uniformly processes queries over continuous and archived events. SCEPteris built around an existing CEP engine with innovative support for semantic event pattern specification and allows their seamless detection over past, present and future events. Specifically, we describe a unified semantic query model that can operate over data flowing through event streams to event repositories. Compile-time and runtime semantic patterns are distinguished and addressed separately for efficiency. Query rewriting is examined and analyzed in the context of temporal boundaries that exist between event streams and their repository to avoid duplicate or missing results. The design and prototype implementation of SCEPterare analyzed using latency and throughput metrics for scenarios from the Smart Grid domain.

  18. An updated synthesis of the observed and projected impacts of climate change on the chemical, physical and biological processes in the oceans

    Directory of Open Access Journals (Sweden)

    Ella Louise Howes

    2015-06-01

    Full Text Available The 5th Assessment Report (AR5 of the Intergovernmental Panel on Climate Change (IPCC states with very high certainty that anthropogenic emissions have caused measurable changes in the physical ocean environment. These changes are summarized with special focus on those that are predicted to have the strongest, most direct effects on ocean biological processes; namely, ocean warming and associated phenomena (including stratification and sea level rise as well as deoxygenation and ocean acidification. The biological effects of these changes are then discussed for microbes (including phytoplankton, plants, animals, warm and cold-water corals, and ecosystems. The IPCC AR5 highlighted several areas related to both the physical and biological processes that required further research. As a rapidly developing field, there have been many pertinent studies published since the cut off dates for the AR5, which have increased our understanding of the processes at work. This study undertook an extensive review of recently published literature to update the findings of the AR5 and provide a synthesized review on the main issues facing future oceans. The level of detail provided in the AR5 and subsequent work provided a basis for constructing projections of the state of ocean ecosystems in 2100 under two the Representative Concentration Pathways RCP4.5 and 8.5. Finally the review highlights notable additions, clarifications and points of departure from AR5 provided by subsequent studies.

  19. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  20. Export Controls: Controls Over the Export Licensing Process for Chemical and Biological Items

    National Research Council Canada - National Science Library

    2005-01-01

    .... foreign policy should read this report. The report discusses the effectiveness of the DoD review process for export license applications and updates to Federal export regulations to prevent the proliferation of items that could pose...

  1. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  2. Biological and Climate Controls on North Atlantic Marine Carbon Dynamics Over the Last Millennium: Insights From an Absolutely Dated Shell-Based Record From the North Icelandic Shelf

    Science.gov (United States)

    Reynolds, D. J.; Hall, I. R.; Scourse, J. D.; Richardson, C. A.; Wanamaker, A. D.; Butler, P. G.

    2017-12-01

    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era, there is a pressing need to construct long-term records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the past biological and climate controls on the carbon isotopic (δ13Cshell) composition of the North Icelandic shelf waters over the last millennium, derived from the shells of the long-lived marine bivalve mollusk Arctica islandica. Variability in the annually resolved δ13Cshell record is dominated by multidecadal variability with a negative trend (-0.003 ± 0.002‰ yr-1) over the industrial era (1800-2000 Common Era). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13Cshell record with Contemporaneous proxy archives, over the last millennium, and instrumental data over the twentieth century, highlights that both biological (primary production) and physical environmental factors, such as relative shifts in the proportion of Subpolar Mode Waters and Arctic Intermediate Waters entrained onto the North Icelandic shelf, atmospheric circulation patterns associated with the winter North Atlantic Oscillation, and sea surface temperature and salinity of the subpolar gyre, are the likely mechanisms that contribute to natural variations in seawater δ13C variability on the North Icelandic shelf. Contrasting δ13C fractionation processes associated with these biological and physical mechanisms likely cause the attenuated marine Suess effect signal at this locality.

  3. The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean

    Science.gov (United States)

    Matthias-Maser, Sabine; Brinkmann, Jutta; Schneider, Wilhelm

    The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel "METEOR" crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class ( r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.

  4. Biological aspects of chondrosarcoma: Leaps and hurdles.

    Science.gov (United States)

    Mery, Benoîte; Espenel, Sophie; Guy, Jean-Baptiste; Rancoule, Chloé; Vallard, Alexis; Aloy, Marie-Thérèse; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2018-06-01

    Chondrosarcomas are characterized by their chemo- and radioresistance leading to a therapeutic surgical approach which remains the only available treatment with a 10-year survival between 30% and 80% depending on the grade. Non-surgical treatments are under investigation and rely on an accurate biological understanding of drug resistance mechanisms. Novel targeted therapy which represents a new relevant therapeutic approach will open new treatment options by targeting several pathways responsible for processes of proliferation and invasion. Survival pathways such as PI3K, AKT, mTOR and VEGF have been shown to be involved in proliferation of chondrosarcoma cells and antiapoptotic proteins may also play a relevant role. Other proteins such as p53 or COX2 have been identified as potential new targets. This review provides an insight into the biological substantial treatment challenges of CHS and focuses on improving our understanding of CH biology through an overview of major signaling pathways that could represent targets for new therapeutic approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population.

    Science.gov (United States)

    Wilson, Kristy J; Rigakos, Bessie

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology, Scientific Process Flowchart Assessment (SPFA), consisted of a prompt and rubric that was designed to assess students' understanding of the scientific process. Forty flowcharts representing a multidisciplinary group without intervention and 26 flowcharts representing pre- and postinstruction were evaluated over five dimensions: connections, experimental design, reasons for doing science, nature of science, and interconnectivity. Pre to post flowcharts showed a statistically significant improvement in the number of items and ratings for the dimensions. Comparison of the terms used and connections between terms on student flowcharts revealed an enhanced and more nuanced understanding of the scientific process, especially in the areas of application to society and communication within the scientific community. We propose that SPFA can be used in a variety of circumstances, including in the determination of what curricula or interventions would be useful in a course or program, in the assessment of curriculum, or in the evaluation of students performing research projects. © 2016 K. J. Wilson and B. Rigakos. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  7. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  9. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  10. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Stefano Serafin

    2018-03-01

    Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.

  11. Microfinance Participation, Control Over Resources, and Justification of IPV: Results From a Nationally Representative Sample of Women.

    Science.gov (United States)

    Murshid, Nadine Shaanta

    2016-04-13

    A high percentage of men and women are purported to justify intimate partner violence (IPV) in countries that are steeped in patriarchy even in the presence of programs such as microfinance that aim to address gender equity. This article examines two assertions that emerge from the literature on microfinance and its potential for positive outcomes for women who participate in it: (a) Microfinance participation is associated with reduced justification of IPV, and (b) microfinance participants with control over their own resources are less likely to justify IPV when compared with microfinance participants who do not have control over their resources. Couples data from a nationally representative survey, the Bangladesh Demographic and Health Survey, were used in the present study. Propensity score matching and logistic regression analyses were conducted to reveal that (a) microfinance participation was not associated with justification of IPV and that (b) women who participated in microfinance were less likely to justify IPV when they had no control over their resources. Implications for practitioners and policymakers are discussed. © The Author(s) 2016.

  12. A generic algorithm for layout of biological networks.

    Science.gov (United States)

    Schreiber, Falk; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2009-11-12

    Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  13. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  14. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    Science.gov (United States)

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.

  15. Bayesian integration of position and orientation cues in perception of biological and non-biological dynamic forms

    Directory of Open Access Journals (Sweden)

    Steven Matthew Thurman

    2014-02-01

    Full Text Available Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic

  16. Process of Argumentation in High School Biology Class: A Qualitative Analysis

    Science.gov (United States)

    Ramli, M.; Rakhmawati, E.; Hendarto, P.; Winarni

    2017-02-01

    Argumentation skill can be nurtured by designing a lesson in which students are provided with the opportunity to argue. This research aims to analyse argumentation process in biology class. The participants were students of three biology classes from different high schools in Surakarta Indonesia. One of the classroom was taught by a student teacher, and the rest were instructed by the assigned teachers. Through a classroom observation, oral activities were noted, audio-recorded and video-taped. Coding was done based on the existence of claiming-reasoning-evidence (CRE) process by McNeill and Krajcik. Data was analysed qualitatively focusing on the role of teachers to initiate questioning to support argumentation process. The lesson design of three were also analysed. The result shows that pedagogical skill of teachers to support argumentation process, such as skill to ask, answer, and respond to students’ question and statements need to be trained intensively. Most of the argumentation found were only claiming, without reasoning and evidence. Teachers have to change the routine of mostly posing open-ended questions to students, and giving directly a correct answer to students’ questions. Knowledge and skills to encourage student to follow inquiry-based learning have to be acquired by teachers.

  17. ‘Can Simple Biological Systems be Built from Standardized Interchangeable Parts?’:Negotiating Biology and Engineering in a Synthetic Biology Competition

    OpenAIRE

    Frow, Emma; Calvert, Jane

    2013-01-01

    Synthetic biology represents a recent attempt to bring engineering principles and practices to working with biology. In practice, the nature of the relationship between engineering and biology in synthetic biology is a subject of ongoing debate. The disciplines of biology and engineering are typically seen to involve differentways of knowing and doing, and to embody different assumptions and objectives. Tensions between these approaches are playing out as the field of synthetic biology is bei...

  18. Posttranslational modifications of desmin and their implication in biological processes and pathologies.

    Science.gov (United States)

    Winter, Daniel L; Paulin, Denise; Mericskay, Mathias; Li, Zhenlin

    2014-01-01

    Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

  19. Novel MBR_based main stream biological nutrient removal process: high performance and microbial community.

    Science.gov (United States)

    Zhang, Chuanyi; Xu, Xinhai; Zhao, Kuixia; Tang, Lianggang; Zou, Siqi; Yuan, Limei

    2018-02-01

    For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A 2 N-MBR and A 2 NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L -1 . However, the two-sludge systems (A 2 N-MBR and A 2 NO-MBR) had an obvious advantage over the A 2 /O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A 2 /O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A 2 N-MBR and A 2 NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A 2 /O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.

  20. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Science.gov (United States)

    Drier, Yotam; Domany, Eytan

    2011-03-14

    The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  1. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Directory of Open Access Journals (Sweden)

    Yotam Drier

    2011-03-01

    Full Text Available The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  2. Multidimensional process discovery

    NARCIS (Netherlands)

    Ribeiro, J.T.S.

    2013-01-01

    Typically represented in event logs, business process data describe the execution of process events over time. Business process intelligence (BPI) techniques such as process mining can be applied to get strategic insight into business processes. Process discovery, conformance checking and

  3. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  4. Chromosomal analysis and application of biological dosimetry in two cases of apparent over exposure

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2002-01-01

    The gamma radiation calibration curve of 60 Co is used which was generated in the ININ Laboratory of Biology to calculate the exposure dose of two workers whose dosemeters marked values above of the limit allowed. The analysis indicates that in a first case, the aberrations frequency corresponded to the basal value, therefore there is not over exposure. The aberrations frequency of the second case is lightly above to the basal value and therefore the probability favors to what the physical dosimetry indicates. (Author)

  5. Ultra-processed food purchases in Norway: a quantitative study on a representative sample of food retailers.

    Science.gov (United States)

    Solberg, Siri Løvsjø; Terragni, Laura; Granheim, Sabrina Ionata

    2016-08-01

    To identify the use of ultra-processed foods - vectors of salt, sugar and fats - in the Norwegian diet through an assessment of food sales. Sales data from a representative sample of food retailers in Norway, collected in September 2005 (n 150) and September 2013 (n 170), were analysed. Data consisted of barcode scans of individual food item purchases, reporting type of food, price, geographical region and retail concept. Foods were categorized as minimally processed, culinary ingredients, processed products and ultra-processed. Indicators were share of purchases and share of expenditure on food categories. Six geographical regions in Norway. The barcode data included 296 121 observations in 2005 and 501 938 observations in 2013. Ultra-processed products represented 58·8 % of purchases and 48·8 % of expenditure in 2013. Minimally processed foods accounted for 17·2 % of purchases and 33·0 % of expenditure. Every third purchase was a sweet ultra-processed product. Food sales changed marginally in favour of minimally processed foods and in disfavour of processed products between 2005 and 2013 (χ 2 (3)=203 195, Pprocessed products accounted for the majority of food sales in Norway, indicating a high consumption of such products. This could be contributing to rising rates of overweight, obesity and non-communicable diseases in the country, as findings from other countries indicate. Policy measures should aim at decreasing consumption of ultra-processed products and facilitating access (including economic) to minimally processed foods.

  6. Recent activities of the Seismology Division Early Career Representative(s)

    Science.gov (United States)

    Agius, Matthew; Van Noten, Koen; Ermert, Laura; Mai, P. Martin; Krawczyk, CharLotte

    2016-04-01

    The European Geosciences Union is a bottom-up-organisation, in which its members are represented by their respective scientific divisions, committees and council. In recent years, EGU has embarked on a mission to reach out for its numerous 'younger' members by giving awards to outstanding young scientists and the setting up of Early Career Scientists (ECS) representatives. The division representative's role is to engage in discussions that concern students and early career scientists. Several meetings between all the division representatives are held throughout the year to discuss ideas and Union-wide issues. One important impact ECS representatives have had on EGU is the increased number of short courses and workshops run by ECS during the annual General Assembly. Another important contribution of ECS representatives was redefining 'Young Scientist' to 'Early Career Scientist', which avoids discrimination due to age. Since 2014, the Seismology Division has its own ECS representative. In an effort to more effectively reach out for young seismologists, a blog and a social media page dedicated to seismology have been set up online. With this dedicated blog, we'd like to give more depth to the average browsing experience by enabling young researchers to explore various seismology topics in one place while making the field more exciting and accessible to the broader community. These pages are used to promote the latest research especially of young seismologists and to share interesting seismo-news. Over the months the pages proved to be popular, with hundreds of views every week and an increased number of followers. An online survey was conducted to learn more about the activities and needs of early career seismologists. We present the results from this survey, and the work that has been carried out over the last two years, including detail of what has been achieved so far, and what we would like the ECS representation for Seismology to achieve. Young seismologists are

  7. The fetal programming of telomere biology hypothesis: an update.

    Science.gov (United States)

    Entringer, Sonja; de Punder, Karin; Buss, Claudia; Wadhwa, Pathik D

    2018-03-05

    Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'. © 2018 The Author(s).

  8. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    Science.gov (United States)

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  9. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    Science.gov (United States)

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  10. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  11. Unity and disunity in evolutionary sciences: process-based analogies open common research avenues for biology and linguistics.

    Science.gov (United States)

    List, Johann-Mattis; Pathmanathan, Jananan Sylvestre; Lopez, Philippe; Bapteste, Eric

    2016-08-20

    For a long time biologists and linguists have been noticing surprising similarities between the evolution of life forms and languages. Most of the proposed analogies have been rejected. Some, however, have persisted, and some even turned out to be fruitful, inspiring the transfer of methods and models between biology and linguistics up to today. Most proposed analogies were based on a comparison of the research objects rather than the processes that shaped their evolution. Focusing on process-based analogies, however, has the advantage of minimizing the risk of overstating similarities, while at the same time reflecting the common strategy to use processes to explain the evolution of complexity in both fields. We compared important evolutionary processes in biology and linguistics and identified processes specific to only one of the two disciplines as well as processes which seem to be analogous, potentially reflecting core evolutionary processes. These new process-based analogies support novel methodological transfer, expanding the application range of biological methods to the field of historical linguistics. We illustrate this by showing (i) how methods dealing with incomplete lineage sorting offer an introgression-free framework to analyze highly mosaic word distributions across languages; (ii) how sequence similarity networks can be used to identify composite and borrowed words across different languages; (iii) how research on partial homology can inspire new methods and models in both fields; and (iv) how constructive neutral evolution provides an original framework for analyzing convergent evolution in languages resulting from common descent (Sapir's drift). Apart from new analogies between evolutionary processes, we also identified processes which are specific to either biology or linguistics. This shows that general evolution cannot be studied from within one discipline alone. In order to get a full picture of evolution, biologists and linguists need to

  12. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  13. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  14. Wavelet data processing of micro-Raman spectra of biological samples

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  15. Web-Based Learning Enhancements: Video Lectures through Voice-Over PowerPoint in a Majors-Level Biology Course

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.

    2009-01-01

    This study is an experimental introduction of web-based lecture delivery into a majors-level introductory biology course. Web-based delivery, achieved through the use of prerecorded Voice-Over PowerPoint video lectures, was introduced on a limited basis to an experimental section while a control group, with the same instructor, received standard…

  16. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics

    CERN Document Server

    2014-01-01

    Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...

  17. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  18. Adoption: biological and social processes linked to adaptation.

    Science.gov (United States)

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  19. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  20. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  1. Biology and hemodynamics of aneurismal vasculopathies

    International Nuclear Information System (INIS)

    Pereira, Vitor Mendes; Brina, Olivier; Gonzalez, Ana Marcos; Narata, Ana Paula; Ouared, Rafik; Karl-Olof, Lovblad

    2013-01-01

    Aneurysm vasculopathies represents a group of vascular disorders that share a common morphological diagnosis: a vascular dilation, the aneurysm. They can have a same etiology and a different clinical presentation or morphology, or have different etiology and very similar anatomical geometry. The biology of the aneurysm formation is a complex process that will be a result of an endogenous predisposition and epigenetic factors later on including the intracranial hemodynamics. We describe the biology of saccular aneurysms, its growth and rupture, as well as, current concepts of hemodynamics derived from application of computational flow dynamics on patient specific vascular models. Furthermore, we describe different aneurysm phenotypes and its extremely variability on morphological and etiological presentation

  2. Skill Assessment in Ocean Biological Data Assimilation

    Science.gov (United States)

    Gregg, Watson W.; Friedrichs, Marjorie A. M.; Robinson, Allan R.; Rose, Kenneth A.; Schlitzer, Reiner; Thompson, Keith R.; Doney, Scott C.

    2008-01-01

    There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in the free-run model, data, and the assimilation model, which uses Data assimilation information from both the flee-run model and the data. Intercom parison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.

  3. A mechano-biological model of multi-tissue evolution in bone

    Science.gov (United States)

    Frame, Jamie; Rohan, Pierre-Yves; Corté, Laurent; Allena, Rachele

    2017-12-01

    Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes involves in different ways the permanent or transient formation of different tissue types, namely bone, cartilage and fibrous tissues. The tissue evolution in specific circumstances such as bone remodeling and fracturing healing is currently able to be modeled. Nevertheless, it remains challenging to predict which tissue types and organization can develop without any a priori assumptions. In particular, the role of mechano-biological coupling in this selective tissue evolution has not been clearly elucidated. In this work, a multi-tissue model has been created which simultaneously describes the evolution of bone, cartilage and fibrous tissues. The coupling of the biological and mechanical factors involved in tissue formation has been modeled by defining two different tissue states: an immature state corresponding to the early stages of tissue growth and representing cell clusters in a weakly neo-formed Extra Cellular Matrix (ECM), and a mature state corresponding to well-formed connective tissues. This has allowed for the cellular processes of migration, proliferation and apoptosis to be described simultaneously with the changing ECM properties through strain driven diffusion, growth, maturation and resorption terms. A series of finite element simulations were carried out on idealized cantilever bending geometries. Starting from a tissue composition replicating a mid-diaphysis section of a long bone, a steady-state tissue formation was reached over a statically loaded period of 10,000 h (60 weeks). The results demonstrated that bone formation occurred in regions which are optimally physiologically strained. In two additional 1000 h bending simulations both cartilaginous and fibrous tissues were shown to form under specific geometrical and loading

  4. GrEMBOSS: EMBOSS over the EELA GRID

    International Nuclear Information System (INIS)

    Bonavides-Martinez, C.; Murrieta-Leon, E.; Verleyen, J.; Zayas-Lagunas, R.; Hernandez-Alvarez, A.; Rodriguez-Bahena, R.; Valverde, J. R.; Branger, P. A.; Sarachu, M.

    2007-01-01

    With the growth of genome databases and the implied complexity for processing such information within bioinformatics research, there is a need for computing power and massive storage facilities which can be provided by Grid infrastructures. EMBOSS is a free Open Source sequence analysis package specially developed for the needs of the bioinformatics and molecular biology user community. This work describes the deployment of EMBOSS over the EELA and EGEE Grids, both gLite middle ware-based infrastructures. This work is focused on rewriting the I/O EMBOSS libraries (AJAX) to use the GFAL from the LCG/EGEE middle ware. This library allows the use of files registered on the catalog service which are contained in the storage elements of a Grid. Submitting a job into a Grid is not an intuitive task. This work also describes an ad hoc mechanism to allow bioinformaticians to concentrate on the EMBOSS command, instead of acquiring advanced knowledge about Grid usage. The results obtained so far demonstrate the functionality of GrEMBOSS, and represent an efficient and viable alternative for gridifying other bioinformatics applications. (Author)

  5. GrEMBOSS: EMBOSS over the EELA GRID

    Energy Technology Data Exchange (ETDEWEB)

    Bonavides-Martinez, C.; Murrieta-Leon, E.; Verleyen, J.; Zayas-Lagunas, R.; Hernandez-Alvarez, A.; Rodriguez-Bahena, R.; Valverde, J. R.; Branger, P. A.; Sarachu, M.

    2007-07-01

    With the growth of genome databases and the implied complexity for processing such information within bioinformatics research, there is a need for computing power and massive storage facilities which can be provided by Grid infrastructures. EMBOSS is a free Open Source sequence analysis package specially developed for the needs of the bioinformatics and molecular biology user community. This work describes the deployment of EMBOSS over the EELA and EGEE Grids, both gLite middle ware-based infrastructures. This work is focused on rewriting the I/O EMBOSS libraries (AJAX) to use the GFAL from the LCG/EGEE middle ware. This library allows the use of files registered on the catalog service which are contained in the storage elements of a Grid. Submitting a job into a Grid is not an intuitive task. This work also describes an ad hoc mechanism to allow bioinformaticians to concentrate on the EMBOSS command, instead of acquiring advanced knowledge about Grid usage. The results obtained so far demonstrate the functionality of GrEMBOSS, and represent an efficient and viable alternative for gridifying other bioinformatics applications. (Author)

  6. Modeling biochemical transformation processes and information processing with Narrator.

    Science.gov (United States)

    Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner

    2007-03-27

    Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is

  7. Fixation and utilization of CO2 by biological and/or chemical processes

    International Nuclear Information System (INIS)

    Hiromichi, N.

    1994-01-01

    This paper presents the carbon dioxide fixation and utilisation by biological and/or chemical processes. It presents research objectives and program contents for the effective fixation of carbon dioxide by micro-organism and its hydrogenation. (TEC). 5 figs., 2 tabs

  8. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  9. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Science.gov (United States)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  10. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  11. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  12. Influence of basin-scale and mesoscale physical processes on biological productivity in the Bay of Bengal during the summer monsoon

    Science.gov (United States)

    Muraleedharan, K. R.; Jasmine, P.; Achuthankutty, C. T.; Revichandran, C.; Dinesh Kumar, P. K.; Anand, P.; Rejomon, G.

    2007-03-01

    Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July-August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m -3), low surface primary production (2.55 mg C m -3 day -1) and low zooplankton biovolume (0.14 ml m -3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO 3-N > 8.2 μM, PO 4-P > 0.8 μM, SiO 4-Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a - 0.25 mg m -3, PP - 9.23 mg C m -3 day -1), and mesozooplankton biovolume (1.12 ml m -3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of

  13. Coupling of Petri Net Models of the Mycobacterial Infection Process and Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Rafael V. Carvalho

    2015-04-01

    Full Text Available Computational and mathematical modeling is important in support of a better understanding of complex behavior in biology. For the investigation of biological systems, researchers have used computers to construct, verify, and validate models that describe the mechanisms behind biological processes in multi-scale representations. In this paper we combine Petri net models that represent the mycobacterial infection process and innate immune response at various levels of organization, from molecular interaction to granuloma dissemination. In addition to the conventional graphical representation of the Petri net, the outcome of the model is projected onto a 3D model representing the zebrafish embryo. In this manner we provide a visualization of the process in a simulation framework that portrays the infection in the living system.

  14. METHANE STEAM REACTION OVER NICKEL CATALYSTS IN THE HYNOL PROCESS

    Science.gov (United States)

    The report discusses the reaction of methane-steam over nickel catalysts in the Hynol process, a process that uses biomass and natural gas as feedstocks to maximize methanol yields and minimize greenhouse gas emissions. EPA's APPCD has established a laboratory in which to conduct...

  15. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.

    Science.gov (United States)

    Losko, Sascha; Heumann, Klaus

    2017-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  16. Links between Iron Fertilization and Biological Pump Efficiency in the Bering Sea Over the Last 3.5 Myrs

    Science.gov (United States)

    Bartoli, G. L.; Studer, A. S.; Martinez Garcia, A.; Haug, G. H.

    2011-12-01

    The Bering Sea is one of the major sink of atmospheric CO2 today, due to the efficiency of its biological pump, despite a limitation by iron. Here we present records of iron fertilization by aeolian dust deposition (n-alkane concentration) and phytoplankton nutrient consumption (diatom-bound δ15N record) over the last 3.5 Myrs in the southwestern Bering Sea at Site U1341 drilled during IODP Expedition 323. During the Pliocene Epoch, when sea surface temperatures were 3-4°C warmer than today and sea-ice cover was reduced, the biological pump efficiency during glacial and interglacial stages was minimal, similar to Quaternary interglacials. Low iron deposition and weaker surface water stratification resulting in higher nutrient inputs contributed to reduce the biological pump efficiency until 1.5 Ma. After the intensification of glacial conditions in the Bering Sea and the increase in sea-ice cover and iron inputs, the biological pump efficiency progressively increased, reaching values similar to Quaternary glacials after the mid-Pleistocene transition.

  17. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.

    1995-01-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  18. Mixing and Processing of Complex Biological Fluids

    National Research Council Canada - National Science Library

    Liepmann, Dorian

    2003-01-01

    ... of microfluidic control on the makeup and molecular structure of biological fluids. For this project, we focused on two critical fluids that are biologically significant and that are of critical importance to DoD...

  19. A finite element simulation of biological conversion processes in landfills

    International Nuclear Information System (INIS)

    Robeck, M.; Ricken, T.; Widmann, R.

    2011-01-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  20. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  2. Deciphering cancer heterogeneity: the biological space

    Directory of Open Access Journals (Sweden)

    Stephanie eRoessler

    2014-04-01

    Full Text Available Most lethal solid tumors including hepatocellular carcinoma (HCC are considered incurable due to extensive heterogeneity in clinical presentation and tumor biology. Tumor heterogeneity may result from different cells of origin, patient ethnicity, etiology, underlying disease and diversity of genomic and epigenomic changes which drive tumor development. Cancer genomic heterogeneity thereby impedes treatment options and poses a significant challenge to cancer management. Studies of the HCC genome have revealed that although various genomic signatures identified in different HCC subgroups share a common prognosis, each carries unique molecular changes which are linked to different sets of cancer hallmarks whose misregulation has been proposed by Hanahan and Weinberg to be essential for tumorigenesis. We hypothesize that these specific sets of cancer hallmarks collectively occupy different tumor biological space representing the misregulation of different biological processes. In principle, a combination of different cancer hallmarks can result in new convergent molecular networks that are unique to each tumor subgroup and represent ideal druggable targets. Due to the ability of the tumor to adapt to external factors such as treatment or changes in the tumor microenvironment, the tumor biological space is elastic. Our ability to identify distinct groups of cancer patients with similar tumor biology who are most likely to respond to a specific therapy would have a significant impact on improving patient outcome. It is currently a challenge to identify a particular hallmark or a newly emerged convergent molecular network for a particular tumor. Thus, it is anticipated that the integration of multiple levels of data such as genomic mutations, somatic copy number aberration, gene expression, proteomics, and metabolomics, may help us grasp the tumor biological space occupied by each individual, leading to improved therapeutic intervention and outcome.

  3. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  4. Scipion web tools: Easy to use cryo-EM image processing over the web.

    Science.gov (United States)

    Conesa Mingo, Pablo; Gutierrez, José; Quintana, Adrián; de la Rosa Trevín, José Miguel; Zaldívar-Peraza, Airén; Cuenca Alba, Jesús; Kazemi, Mohsen; Vargas, Javier; Del Cano, Laura; Segura, Joan; Sorzano, Carlos Oscar S; Carazo, Jose María

    2018-01-01

    Macromolecular structural determination by Electron Microscopy under cryogenic conditions is revolutionizing the field of structural biology, interesting a large community of potential users. Still, the path from raw images to density maps is complex, and sophisticated image processing suites are required in this process, often demanding the installation and understanding of different software packages. Here, we present Scipion Web Tools, a web-based set of tools/workflows derived from the Scipion image processing framework, specially tailored to nonexpert users in need of very precise answers at several key stages of the structural elucidation process. © 2017 The Protein Society.

  5. Multi-level and hybrid modelling approaches for systems biology.

    Science.gov (United States)

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  6. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  7. Mapping of courses on vector biology and vector-borne diseases systems: time for a worldwide effort

    Science.gov (United States)

    Casas, Jérôme; Lazzari, Claudio; Insausti, Teresita; Launois, Pascal; Fouque, Florence

    2016-01-01

    Major emergency efforts are being mounted for each vector-borne disease epidemiological crisis anew, while knowledge about the biology of arthropods vectors is dwindling slowly but continuously, as is the number of field entomologists. The discrepancy between the rates of production of knowledge and its use and need for solving crises is widening, in particular due to the highly differing time spans of the two concurrent processes. A worldwide web based search using multiple key words and search engines of onsite and online courses in English, Spanish, Portuguese, French, Italian and German concerned with the biology of vectors identified over 140 courses. They are geographically and thematically scattered, the vast majority of them are on-site, with very few courses using the latest massive open online course (MOOC) powerfulness. Over two third of them is given in English and Western Africa is particularity poorly represented. The taxonomic groups covered are highly unbalanced towards mosquitoes. A worldwide unique portal to guide students of all grades and levels of expertise, in particular those in remote locations, is badly needed. This is the objective a new activity supported by the Special Programme for Research and Training in Tropical Diseases (TDR). PMID:27759770

  8. Googling trends in conservation biology.

    Science.gov (United States)

    Proulx, Raphaël; Massicotte, Philippe; Pépino, Marc

    2014-02-01

    Web-crawling approaches, that is, automated programs data mining the internet to obtain information about a particular process, have recently been proposed for monitoring early signs of ecosystem degradation or for establishing crop calendars. However, lack of a clear conceptual and methodological framework has prevented the development of such approaches within the field of conservation biology. Our objective was to illustrate how Google Trends, a freely accessible web-crawling engine, can be used to track changes in timing of biological processes, spatial distribution of invasive species, and level of public awareness about key conservation issues. Google Trends returns the number of internet searches that were made for a keyword in a given region of the world over a defined period. Using data retrieved online for 13 countries, we exemplify how Google Trends can be used to study the timing of biological processes, such as the seasonal recurrence of pollen release or mosquito outbreaks across a latitudinal gradient. We mapped the spatial extent of results from Google Trends for 5 invasive species in the United States and found geographic patterns in invasions that are consistent with their coarse-grained distribution at state levels. From 2004 through 2012, Google Trends showed that the level of public interest and awareness about conservation issues related to ecosystem services, biodiversity, and climate change increased, decreased, and followed both trends, respectively. Finally, to further the development of research approaches at the interface of conservation biology, collective knowledge, and environmental management, we developed an algorithm that allows the rapid retrieval of Google Trends data. © 2013 Society for Conservation Biology.

  9. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    Science.gov (United States)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  10. [The Biology of Learning].

    Science.gov (United States)

    Campo-Cabal, Gerardo

    2012-01-01

    The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. Investigation of the Nature of Metaconceptual Processes of Pre-Service Biology Teachers

    Science.gov (United States)

    Yuruk, Nejla; Selvi, Meryem; Yakisan, Mehmet

    2017-01-01

    Purpose of Study: The aim of this study is to investigate the nature of pre-service biology teachers' metaconceptual processes that were active as they participated in metaconceptual teaching activities. Methods: Several instructional activities, including poster drawing, concept mapping, group and class discussions, and journal writing, were…

  12. Fault detection in processes represented by PLS models using an EWMA control scheme

    KAUST Repository

    Harrou, Fouzi; Nounou, Mohamed N.; Nounou, Hazem N.

    2016-01-01

    with that of the traditional PLS-based fault detection method through a simulated example involving various fault scenarios that could be encountered in real processes. The simulation results clearly show the effectiveness of the proposed method over the conventional PLS

  13. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  14. Mathematical manipulative models: in defense of "beanbag biology".

    Science.gov (United States)

    Jungck, John R; Gaff, Holly; Weisstein, Anton E

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.

  15. Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes.

    Science.gov (United States)

    Tusé, Daniel; Tu, Tiffany; McDonald, Karen A

    2014-01-01

    Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems), and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product.

  16. Manufacturing Economics of Plant-Made Biologics: Case Studies in Therapeutic and Industrial Enzymes

    Directory of Open Access Journals (Sweden)

    Daniel Tusé

    2014-01-01

    Full Text Available Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems, and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product.

  17. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Thiruvengadathan, Rajagopalan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Korampally, Venumadhav; Ghosh, Arkasubhra; Chanda, Nripen

    2013-01-01

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  18. Neural processing of intentional biological motion in unaffected siblings of children with autism spectrum disorder: an fMRI study.

    Science.gov (United States)

    Ahmed, Alex A; Vander Wyk, Brent C

    2013-12-01

    Despite often showing behaviorally typical levels of social cognitive ability, unaffected siblings of children with autism spectrum disorder have been found to show similar functional and morphological deficits within brain regions associated with social processing. They have also been reported to show increased activation to biological motion in these same regions, such as the posterior superior temporal sulcus (pSTS), relative to both children with autism and control children. It has been suggested that this increased activation may represent a compensatory reorganization of these regions as a result of the highly heritable genetic influence of autism. However, the response patterns of unaffected siblings in the domain of action perception are unstudied, and the phenomenon of compensatory activation has not yet been replicated. The present study used functional magnetic resonance imaging to determine the neural responses to intentional biological actions in 22 siblings of children with autism and 22 matched controls. The presented actions were either congruent or incongruent with the actor's emotional cue. Prior studies reported that typically developing children and adults, but not children with autism, show increased activation to incongruent actions (relative to congruent), within the pSTS and dorsolateral prefrontal cortex. We report that unaffected siblings did not show a compensatory response, or a preference for incongruent over congruent trials, in any brain region. Moreover, interaction analyses revealed a sub-region of the pSTS in which control children showed an incongruency preference to a significantly greater degree than siblings, which suggests a localized deficit in siblings. A sample of children with autism also did not show differential activation in the pSTS, providing further evidence that it is an area of selective disruption in children with autism and siblings. While reduced activation to both conditions was unique to the autism sample

  19. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  20. Modelling biological processes in WWTP; Modelado de procesos biologicos en las EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Carpes, G.

    2009-07-01

    Biological technologies by active sludges are the most used in wastewater treatments. Multiple variants are affected in the characterization of this process, like wastewater treatment plant (WWTP) design, features and concentration of sludge, dissolved oxygen concentration and characteristics of the wastewater, including temperature and nutrients. Mathematical formula applied to WWTP modelling are presented to design its operation and to test the most important parameters, too. It is necessary to optimize the process in WWTP. (Author) 19 refs.

  1. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project.

    Science.gov (United States)

    Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H

    2004-06-01

    Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.

  2. Chemical and Biological Defense: DOD Needs Consistent Policies and Clear Processes to Address the Survivability of Weapon Systems Against Chemical and Biological Threats

    National Research Council Canada - National Science Library

    2006-01-01

    DOD, joint, and military service weapon system acquisition policies inconsistently address and do not establish a clear process for considering and testing system chemical and biological survivability...

  3. Ten good reasons to consider biological processes in prevention and intervention research.

    Science.gov (United States)

    Beauchaine, Theodore P; Neuhaus, Emily; Brenner, Sharon L; Gatzke-Kopp, Lisa

    2008-01-01

    Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology x Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention.

  4. Ten good reasons to consider biological processes in prevention and intervention research

    Science.gov (United States)

    BEAUCHAINE, THEODORE P.; NEUHAUS, EMILY; BRENNER, SHARON L.; GATZKE-KOPP, LISA

    2009-01-01

    Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology×Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention. PMID:18606030

  5. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  6. The Representatives of Amelanchier Medik. Genus in Ukraine

    Directory of Open Access Journals (Sweden)

    Opalko Anatoliy Ivanovich

    2015-04-01

    Full Text Available The information on fruit and decorative value, honey and medicinal properties of the genus Amelanchier Medik. is generalized. Their biological characteristics, chemical composition and palatability traits of the fruit, the ways of consumption and processing, including drying, preparing juices, syrups, jams, candied fruit jellies, confiture, and fruit wine are specified. The environmental adaptability and effectiveness of using juneberry for phytomelioration are mentioned. Several versions of the origin of the genus Amelanchier name and interpretation of its specific epithets are described. The controversial issues of the genus Amelanchier system were discussed from the classical and molecular genetic approaches. The attention is focused on two main aspects of views on the place of the genus Amelanchier representatives of the family Rosaceae Juss. within the particular subfamily, namely the subfamily Pyroideae Burnett (Maloideae S. Weber or the subfamily Amygdaloideae Arn., which indicates the necessity for further comparative morphological and molecular genetic studies of the family Rosaceae. The directions of evolution, habitat and invasive ability of some species of the genus Amelanchier are characterised. The list of the genus Amelanchier representatives cultivated in Ukraine is given.

  7. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    Science.gov (United States)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  8. A finite element simulation of biological conversion processes in landfills.

    Science.gov (United States)

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Multidimensional epidemic thresholds in diffusion processes over interdependent networks

    International Nuclear Information System (INIS)

    Salehi, Mostafa; Siyari, Payam; Magnani, Matteo; Montesi, Danilo

    2015-01-01

    Highlights: •We propose a new concept of multidimensional epidemic threshold for interdependent networks. •We analytically derive and numerically illustrate the conditions for multilayer epidemics. •We study the evolution of infection density and diffusion dynamics. -- Abstract: Several systems can be modeled as sets of interdependent networks where each network contains distinct nodes. Diffusion processes like the spreading of a disease or the propagation of information constitute fundamental phenomena occurring over such coupled networks. In this paper we propose a new concept of multidimensional epidemic threshold characterizing diffusion processes over interdependent networks, allowing different diffusion rates on the different networks and arbitrary degree distributions. We analytically derive and numerically illustrate the conditions for multilayer epidemics, i.e., the appearance of a giant connected component spanning all the networks. Furthermore, we study the evolution of infection density and diffusion dynamics with extensive simulation experiments on synthetic and real networks

  10. An overview of surface radiance and biology studies in FIFE

    Science.gov (United States)

    Blad, B. L.; Schimel, D. S.

    1992-01-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurements of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and photosynthetically active radiation relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  11. An overview of surface radiance and biology studies in FIFE

    Science.gov (United States)

    Blad, B. L.; Schimel, D. S.

    1992-11-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurement of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability of spectral reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and PAR relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  12. The JCSG high-throughput structural biology pipeline

    International Nuclear Information System (INIS)

    Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wooley, John; Wüthrich, Kurt; Wilson, Ian A.

    2010-01-01

    The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years and has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe. The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years. The JCSG has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe, as well as making substantial inroads into structural coverage of an entire organism. Targets are processed through an extensive combination of bioinformatics and biophysical analyses to efficiently characterize and optimize each target prior to selection for structure determination. The pipeline uses parallel processing methods at almost every step in the process and can adapt to a wide range of protein targets from bacterial to human. The construction, expansion and optimization of the JCSG gene-to-structure pipeline over the years have resulted in many technological and methodological advances and developments. The vast number of targets and the enormous amounts of associated data processed through the multiple stages of the experimental pipeline required the development of variety of valuable resources that, wherever feasible, have been converted to free-access web-based tools and applications

  13. cPath: open source software for collecting, storing, and querying biological pathways

    Directory of Open Access Journals (Sweden)

    Gross Benjamin E

    2006-11-01

    Full Text Available Abstract Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.

  14. Biological effects on the source of geoneutrinos

    DEFF Research Database (Denmark)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik Thorleif

    2013-01-01

    its bulk earth value of similar to 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine...

  15. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    Directory of Open Access Journals (Sweden)

    Lemke Ney

    2009-09-01

    Full Text Available Abstract Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing

  16. Modeling biochemical transformation processes and information processing with Narrator

    Directory of Open Access Journals (Sweden)

    Palfreyman Niall M

    2007-03-01

    Full Text Available Abstract Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs, which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a

  17. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  18. Development of biology student worksheets to facilitate science process skills of student

    Science.gov (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  19. Using biological indices to classify schizophrenia and other psychotic patients.

    Science.gov (United States)

    Sponheim, S R; Iacono, W G; Thuras, P D; Beiser, M

    2001-07-01

    Although classification of mental disorders using more than clinical description would be desirable, there is scant evidence that available laboratory tests (i.e. biological indices) would provide more valid classifications than current diagnostic systems (e.g. DSM-IV). We used cluster analysis of four biological variables to classify 163 psychotic patients and 83 nonpsychiatric comparison subjects. Analyses revealed a three-cluster solution with the first cluster reflecting electrodermal deviance, the second cluster representing nondeviant biological function, and the third cluster reflecting increased nailfold plexus visibility and ocular motor dysfunction. To assess the construct validity of proband clusters we examined ocular motor performance in 156 first-degree relatives as a function of proband cluster membership. First-degree relatives of third cluster probands exhibited worse ocular motor performance than relatives of other cluster probands. Additionally, better classification sensitivity and specificity were obtained for the relatives when they were grouped by proband cluster than by proband DSM-IV diagnosis. When a single proband characteristic (i.e. eyetracking performance) was used to group relatives, classification sensitivity and specificity failed to significantly increase over grouping by proband DSM-IV diagnosis. Multivariate biologically defined clusters may offer an advantage over DSM-IV classification when examining nosology and etiology of psychotic disorders.

  20. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  1. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.

    2009-01-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  2. Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity

    DEFF Research Database (Denmark)

    Green, Sara; Serban, Maria; Scholl, Raphael

    2018-01-01

    of biological networks using tools from graph theory to the application of dynamical systems theory to understand the behavior of complex biological systems. We show how network approaches support and extend traditional mechanistic strategies but also offer novel strategies for dealing with biological...... strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from the investigation of organizational properties...

  3. Innovative biological systems for anaerobic treatment of grain and food processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, P M

    1986-09-01

    The application of two innovative fixed film and suspended growth anaerobic biological systems to the treatment of grain and food processing wastewaters is discussed. A fluidized bed fixed film system and a suspended growth membrane system are described. The technical and economic factors dictating which system is selected for treatment of a specific industrial wastewater are discussed. Case history results from successful operation of full-scale, demonstration, and pilot-scale systems treating respectively, soy whey, cheese whey, and wheat flour processing wastewaters are presented.

  4. The biological effects of ozone on representative members of five groups of animal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, D.C.; Zee, Y.C.; Osebold, J.W.

    1982-04-01

    In an effort to establish the biological relevance of the reactions of ozone with soluble proteins and lipid bilayer membrane systems, representative viruses from five major virus groups were exposed to moderate concentrations of ozone. The virus suspensions were exposed at 37/sup 0/C to 0.00, 0.16, and 0.64 ppm ozone in the gas phase. The ozone reacted with the virus suspensions as a thin film of fluid on the surface of a rotating culture bottle as the gas was drawn through the bottle at a flow rate of 2 liters/min. The three enveloped viruses tested exhibited different susceptibilities to ozone inactivation which correlated with their thermolability in the absence of ozone. The order of susceptibility to ozone inactivation of the enveloped viruses was vesicular stomatitis virus (VSV) (Rhabdoviridae) > influenza A virus (WSN strain) (Orthomyxoviridae) > infectious bovine rhinotracheitis virus (IBRV) (Herpesviridae). The inactivation reactions of the enveloped viruses with ozone showed pseudo-first-order kinetics. A simple reaction model was used to derive a reaction rate expression from which rate constrants and reaction stoichiometry were estimated. In contrast to the enveloped viruses, the two nonenveloped viruses examined were relatively resistant to ozone inactivation. Polio virus type I (Picornaviridae) was found to be completely resistant to ozone inactivation after 60 hr exposure to either ozone concentration, while infectious canine hepatitis virus (Adenoviridae) showed only slight inactivation after exposure to 0.64 ppm ozone for 66 hr. The significance of these results with regard to the reactions of ozone with cell membranes and other components is discussed.

  5. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  6. Computer-Based Support of Decision Making Processes during Biological Incidents

    Directory of Open Access Journals (Sweden)

    Karel Antos

    2010-04-01

    Full Text Available The paper describes contextual analysis of a general system that should provide a computerized support of decision making processes related to response operations in case of a biological incident. This analysis is focused on information systems and information resources perspective and their integration using appropriate tools and technology. In the contextual design the basic modules of BioDSS system are suggested and further elaborated. The modules deal with incident description, scenarios development and recommendation of appropriate countermeasures. Proposals for further research are also included.

  7. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    Science.gov (United States)

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  8. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  9. Continuous downstream processing for high value biological products: A Review.

    Science.gov (United States)

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  10. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    Science.gov (United States)

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  11. A Powerful Toolkit for Synthetic Biology: Over 3.8 Billion Years of Evolution

    Science.gov (United States)

    Rothschild, Lynn J.

    2010-01-01

    The combination of evolutionary with engineering principles will enhance synthetic biology. Conversely, synthetic biology has the potential to enrich evolutionary biology by explaining why some adaptive space is empty, on Earth or elsewhere. Synthetic biology, the design and construction of artificial biological systems, substitutes bio-engineering for evolution, which is seen as an obstacle. But because evolution has produced the complexity and diversity of life, it provides a proven toolkit of genetic materials and principles available to synthetic biology. Evolution operates on the population level, with the populations composed of unique individuals that are historical entities. The source of genetic novelty includes mutation, gene regulation, sex, symbiosis, and interspecies gene transfer. At a phenotypic level, variation derives from regulatory control, replication and diversification of components, compartmentalization, sexual selection and speciation, among others. Variation is limited by physical constraints such as diffusion, and chemical constraints such as reaction rates and membrane fluidity. While some of these tools of evolution are currently in use in synthetic biology, all ought to be examined for utility. A hybrid approach of synthetic biology coupled with fine-tuning through evolution is suggested

  12. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429 ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.576, year: 2016

  13. Life’s a Gas: A Thermodynamic Theory of Biological Evolution

    Directory of Open Access Journals (Sweden)

    Keith R. Skene

    2015-07-01

    Full Text Available This paper outlines a thermodynamic theory of biological evolution. Beginning with a brief summary of the parallel histories of the modern evolutionary synthesis and thermodynamics, we use four physical laws and processes (the first and second laws of thermodynamics, diffusion and the maximum entropy production principle to frame the theory. Given that open systems such as ecosystems will move towards maximizing dispersal of energy, we expect biological diversity to increase towards a level, Dmax, representing maximum entropic production (Smax. Based on this theory, we develop a mathematical model to predict diversity over the last 500 million years. This model combines diversification, post-extinction recovery and likelihood of discovery of the fossil record. We compare the output of this model with that of the observed fossil record. The model predicts that life diffuses into available energetic space (ecospace towards a dynamic equilibrium, driven by increasing entropy within the genetic material. This dynamic equilibrium is punctured by extinction events, which are followed by restoration of Dmax through diffusion into available ecospace. Finally we compare and contrast our thermodynamic theory with the MES in relation to a number of important characteristics of evolution (progress, evolutionary tempo, form versus function, biosphere architecture, competition and fitness.

  14. gProcess and ESIP Platforms for Satellite Imagery Processing over the Grid

    Science.gov (United States)

    Bacu, Victor; Gorgan, Dorian; Rodila, Denisa; Pop, Florin; Neagu, Gabriel; Petcu, Dana

    2010-05-01

    The Environment oriented Satellite Data Processing Platform (ESIP) is developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) co-funded by the European Commission through FP7 [1]. The gProcess Platform [2] is a set of tools and services supporting the development and the execution over the Grid of the workflow based processing, and particularly the satelite imagery processing. The ESIP [3], [4] is build on top of the gProcess platform by adding a set of satellite image processing software modules and meteorological algorithms. The satellite images can reveal and supply important information on earth surface parameters, climate data, pollution level, weather conditions that can be used in different research areas. Generally, the processing algorithms of the satellite images can be decomposed in a set of modules that forms a graph representation of the processing workflow. Two types of workflows can be defined in the gProcess platform: abstract workflow (PDG - Process Description Graph), in which the user defines conceptually the algorithm, and instantiated workflow (iPDG - instantiated PDG), which is the mapping of the PDG pattern on particular satellite image and meteorological data [5]. The gProcess platform allows the definition of complex workflows by combining data resources, operators, services and sub-graphs. The gProcess platform is developed for the gLite middleware that is available in EGEE and SEE-GRID infrastructures [6]. gProcess exposes the specific functionality through web services [7]. The Editor Web Service retrieves information on available resources that are used to develop complex workflows (available operators, sub-graphs, services, supported resources, etc.). The Manager Web Service deals with resources management (uploading new resources such as workflows, operators, services, data, etc.) and in addition retrieves information on workflows. The Executor Web Service manages the execution of the instantiated workflows

  15. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  17. Radiation biology using synchrotron radiation. In relation to radiation chemistry as an initial process

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1995-01-01

    Radiation biology using synchrotron radiation have been investigated, focusing on the mechanism of the formation of molecular damage. This paper introduces recent outcome of these studies. First, the process from imparted energy to the formation of molecular damage is outlined. The previous studies can be largely categorized as dealing with (1) biological effects of inner-shell ionization on elements composing the living body and (2) X-ray energy dependence of biological effects. Bromine and phosphorus are used as elements for the study of inner-cell ionization. In the study on lethal effects of monochromatic soft X-rays on the BrdUMP-incorporated yeast cells, Auger enhancement was found to occur. The first report on the effects of K-shell absorption of cellular phosphorus atoms has revealed that biological effects on cellular lethality and genetic changes was enhanced by 40%. Plasmid DNA and oligonucleotide have been used to study biological effects of vacuum ultraviolet rays to monochromatic soft X-ray, which makes it possible to study strand breaks. Because experimental production of energy required for the formation of double strand breaks has become possible, synchrotron radiation plays a very important role in radiation biological studies. Finally, future issues are presented. (N.K.)

  18. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  19. Delay of hair regrowth in mice as a possible biological dosimeter on the skin in cases of over-exposure

    International Nuclear Information System (INIS)

    Bessho, Y.; Kusama, T.

    1993-01-01

    In cases of partial body over-exposure, the dose estimation is often impossible without considerable error. The dose-effect relationship on the delay of hair regrowth and reduction in hair length of mice after irradiation were examined to investigate the possibility of hair growth as a biological dosimeter. Hairs on the dorsum skin of mice were shaved. Shaved areas were irradiated with a Sr-90/Y-90 β-ray source in the early anagen or midanagen stage of the hair cycle. Skin doses were from 0.5 Gy to 10 Gy. The time of hair regrowth and the length of hair was examined with the scaling loupe. The delay of hair regrowth was dose dependent, fitting the L-Q function. Reduction in hair length was less dose dependent. These findings were supported by the histological observations of mitosis and pycnosis in hair matrix cells. Dose estimation functions were derived from the dose-effect relationship curves. Hair regrowth delay is thought to be a sensitive biological dosimeter which can be applied as early as a few days after over-exposure. (4 figs.)

  20. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  1. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk

    2015-01-01

    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  2. Representing culture in interstellar messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological and cultural models.

  3. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan

    2015-04-01

    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  4. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Science.gov (United States)

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision

  5. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  6. Eating style, overeating and weight gain. A prospective 2-year follow-up study in a representative Dutch sample.

    Science.gov (United States)

    van Strien, Tatjana; Herman, C Peter; Verheijden, Marieke W

    2012-12-01

    This study examined which individuals are particularly at risk for developing overweight and whether there are behavioral lifestyle factors that may attenuate this susceptibility. A prospective study with a 2-year follow-up was conducted in a sample representative of the general population of The Netherlands (n=590). Body mass change (self-reported) was assessed in relation to overeating and change in physical activity (both self-reported), dietary restraint, emotional eating, and external eating, as assessed by the Dutch Eating Behavior Questionnaire. There was a consistent main (suppressive) effect of increased physical activity on BMI change. Only emotional eating and external eating moderated the relation between overeating and body mass change. However, the interaction effect of external eating became borderline significant with Yes or No meaningful weight gain (weight gain >3%) as dependent variable. It was concluded that whilst increasing physical activity may attenuate weight gain, particularly high emotional eaters seem at risk for developing overweight, because overconsumption seems to be more strongly related to weight gain in people with high degrees of emotional eating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Data warehousing in molecular biology.

    Science.gov (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  8. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  9. [Application of microelectronics CAD tools to synthetic biology].

    Science.gov (United States)

    Madec, Morgan; Haiech, Jacques; Rosati, Élise; Rezgui, Abir; Gendrault, Yves; Lallement, Christophe

    2017-02-01

    Synthetic biology is an emerging science that aims to create new biological functions that do not exist in nature, based on the knowledge acquired in life science over the last century. Since the beginning of this century, several projects in synthetic biology have emerged. The complexity of the developed artificial bio-functions is relatively low so that empirical design methods could be used for the design process. Nevertheless, with the increasing complexity of biological circuits, this is no longer the case and a large number of computer aided design softwares have been developed in the past few years. These tools include languages for the behavioral description and the mathematical modelling of biological systems, simulators at different levels of abstraction, libraries of biological devices and circuit design automation algorithms. All of these tools already exist in other fields of engineering sciences, particularly in microelectronics. This is the approach that is put forward in this paper. © 2017 médecine/sciences – Inserm.

  10. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  11. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  12. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    Science.gov (United States)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  13. Altered brain processing of decision-making in healthy first-degree biological relatives of suicide completers.

    Science.gov (United States)

    Ding, Y; Pereira, F; Hoehne, A; Beaulieu, M-M; Lepage, M; Turecki, G; Jollant, F

    2017-08-01

    Suicidal behavior is heritable, with the transmission of risk being related to the transmission of vulnerability traits. Previous studies suggest that risky decision-making may be an endophenotype of suicide. Here, we aimed at investigating brain processing of decision-making in relatives of suicide completers in order to shed light on heritable mechanisms of suicidal vulnerability. Seventeen healthy first-degree biological relatives of suicide completers with no personal history of suicidal behavior, 16 relatives of depressed patients without any personal or family history of suicidal behavior, and 19 healthy controls were recruited. Functional 3 T magnetic resonance imaging scans were acquired while participants underwent the Iowa Gambling Task, an economic decision-making test. Whole-brain analyses contrasting activations during risky vs safe choices were conducted with AFNI and FSL. Individuals with a family history of suicide in comparison to control groups showed altered contrasts in left medial orbitofrontal cortex, and right dorsomedial prefrontal cortex. This pattern was different from the neural basis of familial depression. Moreover, controls in comparison to relatives showed increased contrast in several regions including the post-central gyrus, posterior cingulate and parietal cortices, and cerebellum (culmen) in familial suicide; and inferior parietal, temporal, occipital, anteromedial and dorsolateral prefrontal cortices, and cerebellum (vermis) in familial depression. These findings most likely represent a complex combination of vulnerability and protective mechanisms in relatives. They also support a significant role for deficient risk processing, and ventral and dorsal prefrontal cortex functioning in the suicidal diathesis.

  14. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR process

    Directory of Open Access Journals (Sweden)

    Ying Hui Ong

    2016-01-01

    Full Text Available An enhanced biological phosphorus removal (EBPR process operated at a relatively high temperature, 28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study investigated its microbial community through fluorescent in situ hybridization (FISH and clone library generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter-polyphosphate accumulating organisms (PAOs than Candidatus ‘Competibacter phosphatis’ (Competibacter-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%, Actinobacteria (13.7%, Bacteroidetes (9.8%, Firmicutes (2.94%, Planctomycetes (1.96%, and Acidobacteria (1.47%. Accumulibacter are the only recognized PAOs revealed by the clone library. Both the clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for the phosphorus removal in this long-term EBPR at relatively high temperature.

  15. Volcano Relation for the Deacon Process over Transition-Metal Oxides

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Hansen, Heine Anton

    2010-01-01

    We establish an activity relation for the heterogeneous catalytic oxidation of HCI (the Deacon Process) over rutile transition-metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps...

  16. Kidney transplantation process in Brazil represented in business process modeling notation.

    Science.gov (United States)

    Peres Penteado, A; Molina Cohrs, F; Diniz Hummel, A; Erbs, J; Maciel, R F; Feijó Ortolani, C L; de Aguiar Roza, B; Torres Pisa, I

    2015-05-01

    Kidney transplantation is considered to be the best treatment for people with chronic kidney failure, because it improves the patients' quality of life and increases their length of survival compared with patients undergoing dialysis. The kidney transplantation process in Brazil is defined through laws, decrees, ordinances, and resolutions, but there is no visual representation of this process. The aim of this study was to analyze official documents to construct a representation of the kidney transplantation process in Brazil with the use of business process modeling notation (BPMN). The methodology for this study was based on an exploratory observational study, document analysis, and construction of process diagrams with the use of BPMN. Two rounds of validations by specialists were conducted. The result includes the kidney transplantation process in Brazil representation with the use of BPMN. We analyzed 2 digital documents that resulted in 2 processes with 45 total of activities and events, 6 organizations involved, and 6 different stages of the process. The constructed representation makes it easier to understand the rules for the business of kidney transplantation and can be used by the health care professionals involved in the various activities within this process. Construction of a representation with language appropriate for the Brazilian lay public is underway. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Adding a little reality to building ontologies for biology.

    Directory of Open Access Journals (Sweden)

    Phillip Lord

    Full Text Available BACKGROUND: Many areas of biology are open to mathematical and computational modelling. The application of discrete, logical formalisms defines the field of biomedical ontologies. Ontologies have been put to many uses in bioinformatics. The most widespread is for description of entities about which data have been collected, allowing integration and analysis across multiple resources. There are now over 60 ontologies in active use, increasingly developed as large, international collaborations. There are, however, many opinions on how ontologies should be authored; that is, what is appropriate for representation. Recently, a common opinion has been the "realist" approach that places restrictions upon the style of modelling considered to be appropriate. METHODOLOGY/PRINCIPAL FINDINGS: Here, we use a number of case studies for describing the results of biological experiments. We investigate the ways in which these could be represented using both realist and non-realist approaches; we consider the limitations and advantages of each of these models. CONCLUSIONS/SIGNIFICANCE: From our analysis, we conclude that while realist principles may enable straight-forward modelling for some topics, there are crucial aspects of science and the phenomena it studies that do not fit into this approach; realism appears to be over-simplistic which, perversely, results in overly complex ontological models. We suggest that it is impossible to avoid compromise in modelling ontology; a clearer understanding of these compromises will better enable appropriate modelling, fulfilling the many needs for discrete mathematical models within computational biology.

  18. Future Projection of Droughts over South Korea Using Representative Concentration Pathways (RCPs

    Directory of Open Access Journals (Sweden)

    Byung Sik Kim

    2014-01-01

    Full Text Available The Standardized Precipitation Index (SPI, a method widely used to analyze droughts related to climate change, does not consider variables related to temperature and is limited because it cannot consider changes in hydrological balance, such as evapotranspiration from climate change. If we were to consider only the future increase in precipitation from climate change, droughts may decrease. However, because usable water can diminish from an increase in evapotranspiration, it is important to research on projected droughts considering the amount of evapotranspiration along with projecting and evaluating potential droughts considering the impact of climate change. As such, this study evaluated the occurrence of droughts using the Standardized Precipitation Evapotranspiration Index (SPEI as a newly conceptualized drought index that is similar to SPI but includes the temperature variability. We extracted simulated future precipitation and temperature data (2011 - 2099 from the Representative Concentration Pathway (RCP climate change scenario of IPCC AR5 to evaluate the impact of future climate change on the occurrence of droughts of South Korea. We analyzed the ratio of evapotranspiration to precipitation of meteorological observatories nationwide. In addition, we calculated the SPEI related to drought in the process to evaluate the future occurrence of droughts of South Korea. To confirm validity of SPEI results, extreme indices were analyzed. This resulted in the notion that as we go further into the future, the precipitation increases. But because of an increase in evapotranspiration also from a rise in temperature and continued dryness, the severity of droughts is projected to exacerbate.

  19. Predicting Translation Initiation Rates for Designing Synthetic Biology

    International Nuclear Information System (INIS)

    Reeve, Benjamin; Hargest, Thomas; Gilbert, Charlie; Ellis, Tom

    2014-01-01

    In synthetic biology, precise control over protein expression is required in order to construct functional biological systems. A core principle of the synthetic biology approach is a model-guided design and based on the biological understanding of the process, models of prokaryotic protein production have been described. Translation initiation rate is a rate-limiting step in protein production from mRNA and is dependent on the sequence of the 5′-untranslated region and the start of the coding sequence. Translation rate calculators are programs that estimate protein translation rates based on the sequence of these regions of an mRNA, and as protein expression is proportional to the rate of translation initiation, such calculators have been shown to give good approximations of protein expression levels. In this review, three currently available translation rate calculators developed for synthetic biology are considered, with limitations and possible future progress discussed.

  20. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  1. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  2. Will the Convention on Biological Diversity put an end to biological control?

    NARCIS (Netherlands)

    Lenteren, van J.C.; Cock, M.J.W.; Brodeur, J.; Barratt, B.I.P.; Bigler, F.; Bolckmans, K.; Haas, F.; Mason, P.G.; Parra, J.R.P.

    2011-01-01

    Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to

  3. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  4. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  5. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  6. From bricolage to BioBricks™: Synthetic biology and rational design.

    Science.gov (United States)

    Lewens, Tim

    2013-12-01

    Synthetic biology is often described as a project that applies rational design methods to the organic world. Although humans have influenced organic lineages in many ways, it is nonetheless reasonable to place synthetic biology towards one end of a continuum between purely 'blind' processes of organic modification at one extreme, and wholly rational, design-led processes at the other. An example from evolutionary electronics illustrates some of the constraints imposed by the rational design methodology itself. These constraints reinforce the limitations of the synthetic biology ideal, limitations that are often freely acknowledged by synthetic biology's own practitioners. The synthetic biology methodology reflects a series of constraints imposed on finite human designers who wish, as far as is practicable, to communicate with each other and to intervene in nature in reasonably targeted and well-understood ways. This is better understood as indicative of an underlying awareness of human limitations, rather than as expressive of an objectionable impulse to mastery over nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Biology of Healthy Aging and Longevity.

    Science.gov (United States)

    Carmona, Juan José; Michan, Shaday

    2016-01-01

    As human life expectancy is prolonged, age-related diseases are thriving. Aging is a complex multifactorial process of molecular and cellular decline that affects tissue function over time, rendering organisms frail and susceptible to disease and death. Over the last decades, a growing body of scientific literature across different biological models, ranging from yeast, worms, flies, and mice to primates, humans and other long-lived animals, has contributed greatly towards identifying conserved biological mechanisms that ward off structural and functional deterioration within living systems. Collectively, these data offer powerful insights into healthy aging and longevity. For example, molecular integrity of the genome, telomere length, epigenetic landscape stability, and protein homeostasis are all features linked to "youthful" states. These molecular hallmarks underlie cellular functions associated with aging like mitochondrial fitness, nutrient sensing, efficient intercellular communication, stem cell renewal, and regenerative capacity in tissues. At present, calorie restriction remains the most robust strategy for extending health and lifespan in most biological models tested. Thus, pathways that mediate the beneficial effects of calorie restriction by integrating metabolic signals to aging processes have received major attention, such as insulin/insulin growth factor-1, sirtuins, mammalian target of rapamycin, and 5' adenosine monophosphate-activated protein kinase. Consequently, small-molecule targets of these pathways have emerged in the impetuous search for calorie restriction mimetics, of which resveratrol, metformin, and rapamycin are the most extensively studied. A comprehensive understanding of the molecular and cellular mechanisms that underlie age-related deterioration and repair, and how these pathways interconnect, remains a major challenge for uncovering interventions to slow human aging while extending molecular and physiological youthfulness

  8. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  9. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  10. [Patient identification errors and biological samples in the analytical process: Is it possible to improve patient safety?].

    Science.gov (United States)

    Cuadrado-Cenzual, M A; García Briñón, M; de Gracia Hills, Y; González Estecha, M; Collado Yurrita, L; de Pedro Moro, J A; Fernández Pérez, C; Arroyo Fernández, M

    2015-01-01

    Patient identification errors and biological samples are one of the problems with the highest risk factor in causing an adverse event in the patient. To detect and analyse the causes of patient identification errors in analytical requests (PIEAR) from emergency departments, and to develop improvement strategies. A process and protocol was designed, to be followed by all professionals involved in the requesting and performing of laboratory tests. Evaluation and monitoring indicators of PIEAR were determined, before and after the implementation of these improvement measures (years 2010-2014). A total of 316 PIEAR were detected in a total of 483,254 emergency service requests during the study period, representing a mean of 6.80/10,000 requests. Patient identification failure was the most frequent in all the 6-monthly periods assessed, with a significant difference (Perrors. However, we must continue working with this strategy, promoting a culture of safety for all the professionals involved, and trying to achieve the goal that 100% of the analytical and samples are properly identified. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  11. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  12. Biological treatment of potato processing wastewater for red pigment production by immobilized cells of UV-irradiated monascus sp. in repeated batch

    International Nuclear Information System (INIS)

    Khalaf, S.A.

    2004-01-01

    Potato processing wastewater (PPW) was collected and analyzed for biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen and starch content. A fungal strain isolated from PPW identified as Monascus sp. PPW was evaluated for its ability to grow and produce red pigment, biomass and reduce the starch content of the ,PPW. Active UV-irradiated isolate of the above strain was obtained by exposing the parent strain to UV-radiation and coded Monascus. sp. PPW-UV7 and used as immobilized cell system for PPW treatment process in repeated batch fermentation. The immobilized cells (in sponge cubes) were able to reduce COD by about 85.7 %, with biomass production of 9.22 gl+ l and over productivity of red pigment of 2.6 gl+ 1 after 8 days fermentation (2 batches). The immobilized cells showed stability and viability for 8 batches (32 days) during the process treatment

  13. From Biology to Quality (BQ)

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Ingerslev, Hans-Christian

    2011-01-01

    “Quality is never an accident; it is always the result of high intention, sincere effort, intelligent direction and skilful execution; it represents the wise choice of many alternatives.” (William A. Foster) The quality of fish meat is dependent upon a wide range of biological and non-biological ...

  14. Managing conflict over biological control: the case of strawberry guava in Hawaii

    Science.gov (United States)

    Tracy Johnson

    2016-01-01

    Biological control researchers commonly avoid targets with potential for high conflict, but for certain highly damaging invaders with no viable management alternatives, it may be necessary to consider biological control even when it is likely to generate conflict. Discussed here is a case study, strawberry guava (Psidium cattleianum Sabine...

  15. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  16. Gamma processes and peaks-over-threshold distributions for time-dependent reliability

    International Nuclear Information System (INIS)

    Noortwijk, J.M. van; Weide, J.A.M. van der; Kallen, M.J.; Pandey, M.D.

    2007-01-01

    In the evaluation of structural reliability, a failure is defined as the event in which stress exceeds a resistance that is liable to deterioration. This paper presents a method to combine the two stochastic processes of deteriorating resistance and fluctuating load for computing the time-dependent reliability of a structural component. The deterioration process is modelled as a gamma process, which is a stochastic process with independent non-negative increments having a gamma distribution with identical scale parameter. The stochastic process of loads is generated by a Poisson process. The variability of the random loads is modelled by a peaks-over-threshold distribution (such as the generalised Pareto distribution). These stochastic processes of deterioration and load are combined to evaluate the time-dependent reliability

  17. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma

    OpenAIRE

    Krepler, Clemens; Sproesser, Katrin; Brafford, Patricia; Beqiri, Marilda; Garman, Bradley; Xiao, Min; Shannan, Batool; Watters, Andrea; Perego, Michela; Zhang, Gao; Vultur, Adina; Yin, Xiangfan; Liu, Qin; Anastopoulos, Ioannis N; Wubbenhorst, Bradley

    2017-01-01

    Summary: Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological he...

  18. Should over-treatment of axial spondyloarthritis with biologics remain a concern after the issue of the new ASAS criteria? Data from REGISPONSERBIO (Spanish Register of Biological Therapy in Spondyloarthritides).

    Science.gov (United States)

    Moreno, Mireia; Gratacós, Jordi; Navarro-Compán, Victoria; de Miguel, Eugenio; Font, Pilar; Clavaguera, Teresa; Linares, Luis Francisco; Joven, Beatriz; Juanola, Xavier

    2018-05-08

    To study whether disease status at treatment initiation has changed after the issue of the ASAS classification criteria. REGISPONSERBIO registers patients with axial spondyloarthritis (axSpA) on biological treatment since 2013. It includes patients starting biological treatment (incident) or already on biological therapies (prevalent). Patients in both groups were compared in terms of: age at disease onset and at treatment start, disease duration, gender, HLA-B27, body mass index (BMI), BASDAI, BASFI, C-reactive protein, ESR, metrological data, ASQoL, WAPAI, extra-articular manifestations, comorbidities, radiological study, type of biological treatment and concomitant treatments. 256 patients were included, of whom 174 (65%) were already on biologic therapy. Compared to incident patients, prevalent patients started treatment with longer disease duration (15 vs. 8.6 years; p<0.001), a higher proportion of them were men (83% vs. 67%; p=0.01), a smaller proportion of them showed non-radiographic axial spondylarthritis (nr-axSpA)(17% vs. 32%; p<0.01), and a higher proportion had HLAB27 (85% vs. 73%; p=0.02). There were no statistically significant differences in terms of disease activity, degree of disability, quality of life, or prevalence of extra-articular manifestations. Data suggest that, after the issue of the new classification criteria for SpA, biological therapy is being administered earlier than previously in SpA patients and in a higher proportion of patients with nr-axSpA. However, this change in prescribing profile, apparently, has not caused an over-treatment, as patients do not seem to have a lower disease burden than prior to the issue of the criteria.

  19. The process of maternal role attainment over the first year.

    Science.gov (United States)

    Mercer, R T

    1985-01-01

    A study of the process of maternal role attainment in three age groups (15 to 19 years, 20 to 29 years, and 30 to 42 years) over the first year of motherhood found that the role attainment behaviors of feelings of love for the baby, gratification in the maternal role, observed maternal behavior, and self-reported ways of handling irritating child behaviors did not show a positive linear increase over the year. Behaviors peaked at 4 months postbirth, but declined at 8 months. Interview data suggested that the challenges of the infant's developmental behaviors at 8 and 12 months contributed to feelings of role incompetency. Although age groups functioned at different levels, their patterns of behaviors over the year did not vary, except for gratification in the role, indicating that the maternal role presented similar challenges for all women. There were no significant differences by maternal age in role strain or self-image as a mother over the year.

  20. Biologics in spine arthrodesis.

    Science.gov (United States)

    Kannan, Abhishek; Dodwad, Shah-Nawaz M; Hsu, Wellington K

    2015-06-01

    Spine fusion is a tool used in the treatment of spine trauma, tumors, and degenerative disorders. Poor outcomes related to failure of fusion, however, have directed the interests of practitioners and scientists to spinal biologics that may impact fusion at the cellular level. These biologics are used to achieve successful arthrodesis in the treatment of symptomatic deformity or instability. Historically, autologous bone grafting, including iliac crest bong graft harvesting, had represented the gold standard in spinal arthrodesis. However, due to concerns over potential harvest site complications, supply limitations, and associated morbidity, surgeons have turned to other bone graft options known for their osteogenic, osteoinductive, and/or osteoconductive properties. Current bone graft selection includes autograft, allograft, demineralized bone matrix, ceramics, mesenchymal stem cells, and recombinant human bone morphogenetic protein. Each pose their respective advantages and disadvantages and are the focus of ongoing research investigating the safety and efficacy of their use in the setting of spinal fusion. Rh-BMP2 has been plagued by issues of widespread off-label use, controversial indications, and a wide range of adverse effects. The risks associated with high concentrations of exogenous growth factors have led to investigational efforts into nanotechnology and its application in spinal arthrodesis through the binding of endogenous growth factors. Bone graft selection remains critical to successful fusion and favorable patient outcomes, and orthopaedic surgeons must be educated on the utility and limitations of various biologics in the setting of spine arthrodesis.

  1. 1991 Second international symposium on the biological processing of coal: Proceedings

    International Nuclear Information System (INIS)

    1991-09-01

    This symposium was held to aid in the advancement of science and technology in the area of coal bioprocessing by facilitating the exchange of technical information and offering a forum for open discussion and review. The symposium was complemented by four workshops which introduced the attendees to the fundamentals of genetic, mass ampersand energy balances, process ampersand economic analysis, and advanced analytical techniques as they pertain to bioprocessing of coal. Eleven countries were represented, as were numerous universities, national laboratories, federal agencies and corporations. Topics discussed include desulfurization, coal dissolution, gene cloning, and enzyme activity. Individual projects are processed separately on the databases

  2. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    Science.gov (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  3. Biological Indicators in Studies of Earthquake Precursors

    Science.gov (United States)

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the

  4. Identifying optimal models to represent biochemical systems.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Biochemical systems involving a high number of components with intricate interactions often lead to complex models containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system. Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an "optimal" reduced model from a large model to represent biochemical systems by combining a reduction method and a model discrimination method. The former assures that the reduced model contains only those components that are important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model examples. We show that in both cases the core is substantially smaller than the full model.

  5. Signal processing for molecular and cellular biological physics: an emerging field.

    Science.gov (United States)

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  6. It’s Personal: Biology Instructors Prioritize Personal Evidence over Empirical Evidence in Teaching Decisions

    Science.gov (United States)

    Andrews, Tessa C.; Lemons, Paula P.

    2015-01-01

    Despite many calls for undergraduate biology instructors to incorporate active learning into lecture courses, few studies have focused on what it takes for instructors to make this change. We sought to investigate the process of adopting and sustaining active-learning instruction. As a framework for our research, we used the innovation-decision model, a generalized model of how individuals adopt innovations. We interviewed 17 biology instructors who were attempting to implement case study teaching and conducted qualitative text analysis on interview data. The overarching theme that emerged from our analysis was that instructors prioritized personal experience—rather than empirical evidence—in decisions regarding case study teaching. We identified personal experiences that promote case study teaching, such as anecdotal observations of student outcomes, and those that hinder case study teaching, such as insufficient teaching skills. By analyzing the differences between experienced and new case study instructors, we discovered that new case study instructors need support to deal with unsupportive colleagues and to develop the skill set needed for an active-learning classroom. We generated hypotheses that are grounded in our data about effectively supporting instructors in adopting and sustaining active-learning strategies. We also synthesized our findings with existing literature to tailor the innovation-decision model. PMID:25713092

  7. A Unifying Theory of Biological Function.

    Science.gov (United States)

    van Hateren, J H

    2017-01-01

    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism's fitness, and modulates the organism's variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories.

  8. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  9. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    Directory of Open Access Journals (Sweden)

    Bianca Ivanescu

    2015-01-01

    Full Text Available Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation.

  10. The relative importance of physical and biological energy in landscape evolution

    Science.gov (United States)

    Turowski, J. M.; Schwanghart, W.

    2017-12-01

    Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary

  11. An Approach to Represent and Communicate Product or System Design Ideas at the Fuzzy-Front End of the Design Process

    NARCIS (Netherlands)

    Opiyo, E.Z.

    2016-01-01

    The primary challenge underscored and dealt with was how to represent the product’s or system’s use environment and processes and to communicate ideas and envisaged use contexts effectively at the fuzzy-front early stages of the design process. The work focused specifically on complex products or

  12. A new strategy to deliver synthetic protein drugs: self-reproducible biologics using minicircles.

    Science.gov (United States)

    Yi, Hyoju; Kim, Youngkyun; Kim, Juryun; Jung, Hyerin; Rim, Yeri Alice; Jung, Seung Min; Park, Sung-Hwan; Ju, Ji Hyeon

    2014-08-05

    Biologics are the most successful drugs used in anticytokine therapy. However, they remain partially unsuccessful because of the elevated cost of their synthesis and purification. Development of novel biologics has also been hampered by the high cost. Biologics are made of protein components; thus, theoretically, they can be produced in vivo. Here we tried to invent a novel strategy to allow the production of synthetic drugs in vivo by the host itself. The recombinant minicircles encoding etanercept or tocilizumab, which are synthesized currently by pharmaceutical companies, were injected intravenously into animal models. Self-reproduced etanercept and tocilizumab were detected in the serum of mice. Moreover, arthritis subsided in mice that were injected with minicircle vectors carrying biologics. Self-reproducible biologics need neither factory facilities for drug production nor clinical processes, such as frequent drug injection. Although this novel strategy is in its very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics.

  13. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Towards an integrated model of floodplain hydrology representing feedbacks and anthropogenic effects

    Science.gov (United States)

    Andreadis, K.; Schumann, G.; Voisin, N.; O'Loughlin, F.; Tesfa, T. K.; Bates, P.

    2017-12-01

    The exchange of water between hillslopes, river channels and floodplain can be quite complex and the difficulty in capturing the mechanisms behind it is exacerbated by the impact of human activities such as irrigation and reservoir operations. Although there has been a vast body of work on modeling hydrological processes, most of the resulting models have been limited with regards to aspects of the coupled human-natural system. For example, hydrologic models that represent processes such as evapotranspiration, infiltration, interception and groundwater dynamics often neglect anthropogenic effects or do not adequately represent the inherently two-dimensional floodplain flow. We present an integrated modeling framework that is comprised of the Variable Infiltration Capacity (VIC) hydrology model, the LISFLOOD-FP hydrodynamic model, and the Water resources Management (WM) model. The VIC model solves the energy and water balance over a gridded domain and simulates a number of hydrologic features such as snow, frozen soils, lakes and wetlands, while also representing irrigation demand from cropland areas. LISFLOOD-FP solves an approximation of the Saint-Venant equations to efficiently simulate flow in river channels and the floodplain. The implementation of WM accommodates a variety of operating rules in reservoirs and withdrawals due to consumptive demands, allowing the successful simulation of regulated flow. The models are coupled so as to allow feedbacks between their corresponding processes, therefore providing the ability to test different hypotheses about the floodplain hydrology of large-scale basins. We test this integrated framework over the Zambezi River basin by simulating its hydrology from 2000-2010, and evaluate the results against remotely sensed observations. Finally, we examine the sensitivity of streamflow and water inundation to changes in reservoir operations, precipitation and temperature.

  15. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  16. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques.

    Science.gov (United States)

    Volokhov, Dmitriy V; Graham, Laurie J; Brorson, Kurt A; Chizhikov, Vladimir E

    2011-01-01

    Mycoplasmas, particularly species of the genera Mycoplasma and Acholeplasma, are known to be occasional microbial contaminants of cell cultures that produce biologics. This presents a serious concern regarding the risk of mycoplasma contamination for research laboratories and commercial facilities developing and manufacturing cell-derived biological and biopharmaceutical products for therapeutic use. Potential undetected contamination of these products or process intermediates with mycoplasmas represents a potential safety risk for patients and a business risk for producers of biopharmaceuticals. To minimize these risks, monitoring for adventitious agents, such as viruses and mycoplasmas, is performed during the manufacture of biologics produced in cell culture substrates. The "gold standard" microbiological assay, currently recommended by the USP, EP, JP and the US FDA, for the mycoplasma testing of biologics, involves the culture of viable mycoplasmas in broth, agar plates and indicator cells. Although the procedure enables highly efficient mycoplasma detection in cell substrates and cell-derived products, the overall testing strategy is time consuming (a minimum of 28 days) and requires skilled interpretation of the results. The long time period required for these conventional assays does not permit their use for products with short shelf-lives or for timely 'go/no-go' decisions during routine in-process testing. PCR methodology has existed for decades, however PCR based and other alternative methods for mycoplasma detection have only recently been considered for application to biologics manufacture. The application of alternative nucleic acid-based, enzyme-based and/or recombinant cell-culture methods, particularly in combination with efficient sample preparation procedures, could provide advantages over conventional microbiological methods in terms of analytical throughput, simplicity, and turnaround time. However, a challenge to the application of alternative

  17. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    Science.gov (United States)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  18. Dietary Polyphenols and Their Biological Significance

    Directory of Open Access Journals (Sweden)

    Hongxiang Lou

    2007-09-01

    Full Text Available Dietary polyphenols represent a wide variety of compounds that occur in fruits,vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. They aremostly derivatives and/or isomers of flavones, isoflavones, flavonols, catechins andphenolic acids, and possess diverse biological properties such as antioxidant, antiapoptosis,anti-aging, anticarcinogen, anti-inflammation, anti-atherosclerosis, cardiovascularprotection, improvement of the endothelial function, as well as inhibition of angiogenesisand cell proliferation activity. Most of these biological actions have been attributed to theirintrinsic reducing capabilities. They may also offer indirect protection by activatingendogenous defense systems and by modulating cellular signaling processes such asnuclear factor-kappa B (NF-кB activation, activator protein-1(AP-1 DNA binding,glutathione biosynthesis, phosphoinositide 3 (PI3-kinase/protein kinase B (Akt pathway,mitogen-activated protein kinase (MAPK proteins [extracellular signal-regulated proteinkinase (ERK, c-jun N-terminal kinase (JNK and P38 ] activation, and the translocationinto the nucleus of nuclear factor erythroid 2 related factor 2 (Nrf2. This paper covers themost recent literature on the subject, and describes the biological mechanisms of action andprotective effects of dietary polyphenols.

  19. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    Science.gov (United States)

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    Science.gov (United States)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.

    2012-04-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  1. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  2. 42 CFR 409.13 - Drugs and biologicals.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Drugs and biologicals. 409.13 Section 409.13 Public... § 409.13 Drugs and biologicals. (a) Except as specified in paragraph (b) of this section, Medicare pays for drugs and biologicals as inpatient hospital or inpatient CAH services only if— (1) They represent...

  3. An overview of bioinformatics methods for modeling biological pathways in yeast.

    Science.gov (United States)

    Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin

    2016-03-01

    The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Biology technology, and innovation in high school curriculum

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Rodrigues de Amorim

    1998-01-01

    Full Text Available Based on frameworks that propose the contextualization of science education centered in the science/technology/ society relationships, and on the belief that the teacher has a fundamental role on the curriculum innovation processes, this paper describes and analyses different elements of the pedagogical practice of teachers of the city of Campinas/SP, in the perspective of outlining an overview regarding the already existing biology and technology relationship. It focuses in a detailed way the conceptions of the relationships between biology and technology present in the instructional materials used or produced by teachers, describing and discussing the wide range spectrum of identified possibilities. It also emphasizes the approaches to biology and technology relationships identified by interviewing the teachers, being them similar or not to those found in the instructional materials. Indicators of the existence of a problematic theory and practice association, in which the theoretical elements (science are hierarchically superior to the practical elements (technology, were detected. This kind of association should constitute a focus of attention in the construction of innovative proposals for the biology curriculum, since science classroom discussions regarding technology – in their ethical, aesthetical, epistemological, and marketing aspects – represent an important path to dimension the biological knowledge in the capitalist contemporary society.

  5. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  6. BioFed: federated query processing over life sciences linked open data.

    Science.gov (United States)

    Hasnain, Ali; Mehmood, Qaiser; Sana E Zainab, Syeda; Saleem, Muhammad; Warren, Claude; Zehra, Durre; Decker, Stefan; Rebholz-Schuhmann, Dietrich

    2017-03-15

    Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all the meaningful information. Suggested solutions are based on query federation approaches, which require the submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information. BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life science domain. The efficient cataloguing approach of the federated query processing system 'BioFed', the triple pattern wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates data from newly identified public endpoints for federated access. Basic provenance information is linked to the retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major and very popular data sources (e.g., Dugbank, Sider). BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life science data. It facilitates efficient query generation for data access and provides basic provenance information in combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the

  7. Extended consolidation of scaling laws of potentials covering over the representative tandem-mirror operations in GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.

    2002-01-01

    (i) A verification of our novel proposal of extended consolidation of the two major theories of Cohen's potential formation and Pastukhov's potential effectiveness is carried out by the use of a novel experimental mode with central ECH. The validity of the proposal provides a roadmap of bridging and combining two present representative modes in GAMMA 10 for upgrading to hot-ion plasmas with high potentials. (ii) A novel efficient scaling of ion-confining potential formation due to plug ECH with barrier ECH is constructed as the extension over the IAEA 2000 scaling with plug ECH alone. The combination of the physics scaling of (i) with the externally controllable power scaling of (ii) provides a scalable way for future tandem-mirror researches. The importance of the validity of the present consolidation is highlighted by a possibility of the extended capability inherent in Pastukhov's prediction of requiring 30 kV potentials for a fusion Q of unity with an application of Cohen's potential formation method. (author)

  8. Rosen's (M,R) system in process algebra.

    Science.gov (United States)

    Gatherer, Derek; Galpin, Vashti

    2013-11-17

    Robert Rosen's Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen's fundamental objections to computational systems biology. We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties.

  9. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  10. Evaluation of the published biological bases for regulations concerning non-coherent light

    International Nuclear Information System (INIS)

    Sykes, S.M.; Bockstahler, L.; Felten, R.; Hellman, K.; Jacobson, E.; Krell, K.; Lytle, C.D.; Waxler, M.; Withrow, T.; Zaremba, T.

    1981-01-01

    The development of an information base of light-induced bioeffects data to support regulatory activities is a continuing process. Though standards covering the three spectral regions of light, ultraviolet (UV), visible, and infrared (IR), currently exist, attempts must regularly be made to assess the adequacy of these standards with respect to currently available biological information. In order to establish a starting point for these reassessments, the biological effects of light considered in establishing the standards must first be determined. Using this information, the strengths and weaknesses of each standard can be evaluated, and particularly important areas of future research can be determined. This document analyzes current standards covering non-coherent light with respect to the biological effects considered in their adoption. The current standards covering non-coherent light are based on few biological endpoints. The ACGIH standard for ultraviolet considers only skin erythema and eye keratitis; the visible light standard considers only retinal damage; and the infrared standard considers only lens cataracts. Clearly, other biological effects need to be considered. But any standard represents a state-of-the-art estimate of maximum allowable exposure levels, and while there is considerable qualitative information on many additional biological effects of light, there is little quantitative information. Without this information it is difficult either to incorporate these effects into the regulatory process or to determine if the current standards are adequate to cover them

  11. Slowly Shifting a Culture of Teaching in Higher Education: A Case Study of Biology Instructors' Micro-Processes of Collaborative Inquiry into Teaching and Learning

    Science.gov (United States)

    Neuwald, Anuschka

    The Vision and Change reports (American Association for the Advancement of Science, 2011, 2013) have identified a need for change in undergraduate biology education, emphasizing student learning of content knowledge and competencies. Missing from this report and larger efforts to improve undergraduate education (Brainard, 2007; Henderson et al., 2011; Sunal et al., 2001) are guidelines for how to support instructors' professional learning to change teaching practices. I am exploring one possible support structure by studying a group of seven biology instructors that are engaged in a collaborative process over two semesters. This process is modeled after Lesson Study (Lewis et al., 2006), a form of cyclical inquiry-based professional learning activities. The purpose of this qualitative case study is to examine the micro-processes of this collaboration and how these micro-processes afford and limit the ability to change one's teaching practices. Wenger's (1998) concept of "community of practice" provides a theoretical framework for data analysis. I view an instructor's professional learning as social and situated, involving negotiation of new meanings, boundaries, and participation as part of an on-going collaboration. Data analysis shows that negotiation of meaning, characterized by friction and dissonance, is a normal part of the micro-processes of collaborative group work. There are three friction points that are intertwined and influence each other: 1) rhythmic ebb and flow of negotiation about a common professional goal for the instructors and a common learning goal for undergraduates in biology, 2) pressure of time to produce an outcome, and 3) grappling with collective agency, authority and capacity. I argue that these friction points are necessary and important for understanding the micro-processes of negotiation in a collaborative process. Furthermore, this study contributes to literature examining how the use of collaborative processes that are often

  12. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  13. oPOSSUM: integrated tools for analysis of regulatory motif over-representation

    Science.gov (United States)

    Ho Sui, Shannan J.; Fulton, Debra L.; Arenillas, David J.; Kwon, Andrew T.; Wasserman, Wyeth W.

    2007-01-01

    The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM/ PMID:17576675

  14. Has patients' involvement in the decision-making process changed over time?

    NARCIS (Netherlands)

    Brink-Muinen, A. van den; Dulmen, A.M. van; Haes, H.C.J.M. de; Visser, A.P.; Schellevis, F.G.; Bensing, J.M.

    2006-01-01

    Objective: To get insight into the changes over time of patients' involvement in the decision-making process, and into the factors contributing to patients' involvement and general practitioners' (GPs) communication related to the Medical Treatment Act (MTA) Issues: information about treatment,

  15. Has patients’ involvement in the decision-making process changed over time?

    NARCIS (Netherlands)

    Brink-Muinen, A. van den; Dulmen, S.M. van; Haes, H.C.J.M. de; Visser, A.P.; Schellevis, F.G.; Bensing, J.

    2006-01-01

    Objective To get insight into the changes over time of patients’ involvement in the decision-making process, and into the factors contributing to patients’ involvement and general practitioners’ (GPs) communication related to the Medical Treatment Act (MTA) issues: information about treatment,

  16. Poststroke Trajectories: The Process of Recovery Over the Longer Term Following Stroke.

    Science.gov (United States)

    Hawkins, Rebecca J; Jowett, Adam; Godfrey, Mary; Mellish, Kirste; Young, John; Farrin, Amanda; Holloway, Ivana; Hewison, Jenny; Forster, Anne

    2017-01-01

    We adopted a grounded theory approach to explore the process of recovery experienced by stroke survivors over the longer term who were living in the community in the United Kingdom, and the interacting factors that are understood to have shaped their recovery trajectories. We used a combination of qualitative methods. From the accounts of 22 purposively sampled stroke survivors, four different recovery trajectories were evident: (a) meaningful recovery, (b) cycles of recovery and decline, (c) ongoing disruption, (d) gradual, ongoing decline. Building on the concept of the illness trajectory, our findings demonstrate how multiple, interacting factors shape the process and meaning of recovery over time. Such factors included conception of recovery and meanings given to the changing self, the meanings and consequences of health and illness experiences across the life course, loss, sense of agency, and enacting relationships. Awareness of the process of recovery will help professionals better support stroke survivors.

  17. Human evolution, life history theory, and the end of biological reproduction.

    Science.gov (United States)

    Last, Cadell

    2014-01-01

    Throughout primate history there have been three major life history transitions towards increasingly delayed sexual maturation and biological reproduction, as well as towards extended life expectancy. Monkeys reproduce later and live longer than do prosimians, apes reproduce later and live longer than do monkeys, and humans reproduce later and live longer than do apes. These life history transitions are connected to increased encephalization. During the last life history transition from apes to humans, increased encephalization co-evolved with increased dependence on cultural knowledge for energy acquisition. This led to a dramatic pressure for more energy investment in growth over current biological reproduction. Since the industrial revolution socioeconomic development has led to even more energy being devoted to growth over current biological reproduction. I propose that this is the beginning of an ongoing fourth major primate life history transition towards completely delayed biological reproduction and an extension of the evolved human life expectancy. I argue that the only fundamental difference between this primate life history transition and previous life history transitions is that this transition is being driven solely by cultural evolution, which may suggest some deeper evolutionary transition away from biological evolution is already in the process of occurring.

  18. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  19. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  20. Standard Biological Parts Knowledgebase

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.

    2011-01-01

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  1. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  2. Efficient Bayesian estimates for discrimination among topologically different systems biology models.

    Science.gov (United States)

    Hagen, David R; Tidor, Bruce

    2015-02-01

    A major effort in systems biology is the development of mathematical models that describe complex biological systems at multiple scales and levels of abstraction. Determining the topology-the set of interactions-of a biological system from observations of the system's behavior is an important and difficult problem. Here we present and demonstrate new methodology for efficiently computing the probability distribution over a set of topologies based on consistency with existing measurements. Key features of the new approach include derivation in a Bayesian framework, incorporation of prior probability distributions of topologies and parameters, and use of an analytically integrable linearization based on the Fisher information matrix that is responsible for large gains in efficiency. The new method was demonstrated on a collection of four biological topologies representing a kinase and phosphatase that operate in opposition to each other with either processive or distributive kinetics, giving 8-12 parameters for each topology. The linearization produced an approximate result very rapidly (CPU minutes) that was highly accurate on its own, as compared to a Monte Carlo method guaranteed to converge to the correct answer but at greater cost (CPU weeks). The Monte Carlo method developed and applied here used the linearization method as a starting point and importance sampling to approach the Bayesian answer in acceptable time. Other inexpensive methods to estimate probabilities produced poor approximations for this system, with likelihood estimation showing its well-known bias toward topologies with more parameters and the Akaike and Schwarz Information Criteria showing a strong bias toward topologies with fewer parameters. These results suggest that this linear approximation may be an effective compromise, providing an answer whose accuracy is near the true Bayesian answer, but at a cost near the common heuristics.

  3. OSMOSE experiment representativity studies.

    Energy Technology Data Exchange (ETDEWEB)

    Aliberti, G.; Klann, R.; Nuclear Engineering Division

    2007-10-10

    The OSMOSE program aims at improving the neutronic predictions of advanced nuclear fuels through measurements in the MINERVE facility at the CEA-Cadarache (France) on samples containing the following separated actinides: Th-232, U-233, U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-243, Cm-244 and Cm-245. The goal of the experimental measurements is to produce a database of reactivity-worth measurements in different neutron spectra for the separated heavy nuclides. This database can then be used as a benchmark for integral reactivity-worth measurements to verify and validate reactor analysis codes and integral cross-section values for the isotopes tested. In particular, the OSMOSE experimental program will produce very accurate sample reactivity-worth measurements for a series of actinides in various spectra, from very thermalized to very fast. The objective of the analytical program is to make use of the experimental data to establish deficiencies in the basic nuclear data libraries, identify their origins, and provide guidelines for nuclear data improvements in coordination with international programs. To achieve the proposed goals, seven different neutron spectra can be created in the MINERVE facility: UO2 dissolved in water (representative of over-moderated LWR systems), UO2 matrix in water (representative of LWRs), a mixed oxide fuel matrix, two thermal spectra containing large epithermal components (representative of under-moderated reactors), a moderated fast spectrum (representative of fast reactors which have some slowing down in moderators such as lead-bismuth or sodium), and a very hard spectrum (representative of fast reactors with little moderation from reactor coolant). The different spectra are achieved by changing the experimental lattice within the MINERVE reactor. The experimental lattice is the replaceable central part of MINERVE, which establishes the spectrum at the sample location. This configuration

  4. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Science.gov (United States)

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  5. Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

    Directory of Open Access Journals (Sweden)

    John K. Tsotsos

    2017-08-01

    Full Text Available Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987 and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.

  6. Cognition and biology: perspectives from information theory.

    Science.gov (United States)

    Wallace, Rodrick

    2014-02-01

    The intimate relation between biology and cognition can be formally examined through statistical models constrained by the asymptotic limit theorems of communication theory, augmented by methods from statistical mechanics and nonequilibrium thermodynamics. Cognition, often involving submodules that act as information sources, is ubiquitous across the living state. Less metabolic free energy is consumed by permitting crosstalk between biological information sources than by isolating them, leading to evolutionary exaptations that assemble shifting, tunable cognitive arrays at multiple scales, and levels of organization to meet dynamic patterns of threat and opportunity. Cognition is thus necessary for life, but it is not sufficient: An organism represents a highly patterned outcome of path-dependent, blind, variation, selection, interaction, and chance extinction in the context of an adequate flow of free energy and an environment fit for development. Complex, interacting cognitive processes within an organism both record and instantiate those evolutionary and developmental trajectories.

  7. Thermostability of biological systems: fundamentals, challenges, and quantification.

    Science.gov (United States)

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.

  8. Systems theoretic analysis of the central dogma of molecular biology: some recent results.

    Science.gov (United States)

    Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin

    2010-03-01

    This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.

  9. Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features

    International Nuclear Information System (INIS)

    Calabrese, Edward J.

    2013-01-01

    The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30–60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying “upstream” mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response. -- Highlights: •The hormetic stimulation is at maximum 30–60% greater than control responses. •Hormesis is a measure of biological performance and plasticity. •The hormetic response is evolutionary based and highly generalizable. -- This paper provides a biologically based explanation for the generalizability/quantitative features of the hormetic dose response, representing a fundamental contribution to the field

  10. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    Science.gov (United States)

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.

    1997-01-01

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  12. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  13. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  14. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  15. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  16. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    Science.gov (United States)

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  17. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    Science.gov (United States)

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  18. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.

    2006-01-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  19. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  20. Biological and Psychosocial Processes in the Development of Children’s Appetitive Traits: Insights from Developmental Theory and Research

    Directory of Open Access Journals (Sweden)

    Catherine G. Russell

    2018-05-01

    Full Text Available There has been increasing concern expressed about children’s food intakes and dietary patterns. These are closely linked to children’s appetitive traits (such as disinhibited eating and food fussiness/neophobia. Research has examined both biological and psychosocial correlates or predictors of these traits. There has been less focus on possible processes or mechanisms associated with children’s development of these traits and research that links biological and psychosocial factors. There is an absence of research that links biological and psychosocial factors. In the present article, we outline a model intended to facilitate theory and research on the development of appetitive traits. It is based on scholarship from developmental theory and research and incorporates biological factors such as genetic predispositions and temperament as well as psychosocial factors in terms of parent cognitions, feeding styles and feeding practices. Particular attention is directed to aspects such as emotional eating and feeding, self-regulation of energy intake, and non-shared family environments. We highlight the opportunity for longitudinal research that examines bidirectional, transactional and cascade processes and uses a developmental framework. The model provides a basis for connecting the biological foundations of appetitive traits to system-level analysis in the family. Knowledge generated through the application of the model should lead to more effective prevention and intervention initiatives.

  1. Computational biology and bioinformatics in Nigeria.

    Science.gov (United States)

    Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-04-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  2. Computational biology and bioinformatics in Nigeria.

    Directory of Open Access Journals (Sweden)

    Segun A Fatumo

    2014-04-01

    Full Text Available Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  3. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  4. A comprehensive tool for measuring mammographic density changes over time.

    Science.gov (United States)

    Eriksson, Mikael; Li, Jingmei; Leifland, Karin; Czene, Kamila; Hall, Per

    2018-06-01

    Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.

  5. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research.

  7. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    Science.gov (United States)

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P process effect (F = 22.2, P process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P process effect (F = 72, P process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values are clearly higher. These higher levels are due to the very significant

  8. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    Science.gov (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Directory of Open Access Journals (Sweden)

    Peleg Rider

    2016-01-01

    Full Text Available Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.

  10. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Directory of Open Access Journals (Sweden)

    Afnizanfaizal Abdullah

    Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  11. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Science.gov (United States)

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  12. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  13. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  14. An Approach to Represent and Communicate Product or System Design Ideas at the Fuzzy-Front End of the Design Process

    Directory of Open Access Journals (Sweden)

    Eliab Z. Opiyo

    2016-01-01

    Full Text Available The primary challenge underscored and dealt with was how to represent the product’s or system’s use environment and processes and to communicate ideas and envisaged use contexts effectively at the fuzzy-front early stages of the design process. The work focused specifically on complex products or systems with physical, software and/or cyber components, and the question was how to represent, e.g., the operations of the product or system and the interactions between the user and the product or system betimes in the period between when an opportunity for a new product or system is first considered, and when the idea is judged to be ready to enter formal development. Several approaches are currently being used to express and to communicate ideas at the conceptualization, embodiment, and detail design stages of the design process, but none of them address the challenge described above. We therefore adapted and extended the abstract prototyping concept to allow for total representation of ideas, as well as of use environments and processes early on. Extended abstract prototyping (Ext-AP entails using combinations of low and high-fidelity prototyping techniques to create cognitive virtual representations, which represent and help designers to express ideas and use contexts—namely, what complex product or system would be like, and how its users would interact with it. Real-world product development case studies have been used to demonstrate how the Ext-AP technique can be put into practice. One of the main observations from the application case studies is that the Ext-AP technique enabled the subjects to express ideas and use contexts more effectively early on. In addition, the extended abstract prototypes (Ext-APs offered a low cost, yet effective solution for expressing ideas, representing concepts and using contexts, and allowed the subjects to think divergently, make associations, easily and quickly construct, combine, and evaluate

  15. Using biological networks to improve our understanding of infectious diseases

    Directory of Open Access Journals (Sweden)

    Nicola J. Mulder

    2014-08-01

    Full Text Available Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.

  16. Delay of hair regrowth in mice as a possible biological dosimeter on the skin in case of over exposure

    International Nuclear Information System (INIS)

    Bessho, Yuko; Kusama, Tomoko

    1998-01-01

    The delay of hair regrowth of mice after irradiation was examined to investigate its possibility as a biological dosimeter in the cases of localized over exposure. Hairs on the dorsal skin of mice were shaved and irradiated with a 90 Sr/ 90 Y β-ray source in early anagen or midanagen stage of hair cycle. Skin doses were 0.5-10 Gy and 1-4 Gy, respectively. Hair regrowth was observed with a scaling loupe. Hair regrowth delay was dose dependent, fitting the linear-quadratic function and the linear function according to the stages of hair. Histological observations indicated that the hair matrix cells death was the main cause of hair regrowth delay in the midanagen stage. Dose estimation functions, derived from the dose-effect relationship curves, could be applied for the dosimetry of the skin over exposure. It could detect a dose over 1 Gy, and as early as a few days after the exposure. (author)

  17. The Netherlands Cohort Study−Meat Investigation Cohort; a population-based cohort over-represented with vegetarians, pescetarians and low meat consumers.

    Science.gov (United States)

    Gilsing, Anne M J; Weijenberg, Matty P; Goldbohm, R Alexandra; Dagnelie, Pieter C; van den Brandt, Piet A; Schouten, Leo J

    2013-11-29

    Vegetarian diets have been associated with lower risk of chronic disease, but little is known about the health effects of low meat diets and the reliability of self-reported vegetarian status. We aimed to establish an analytical cohort over-represented with vegetarians, pescetarians and 1 day/week meat consumers, and to describe their lifestyle and dietary characteristics. In addition, we were able to compare self-reported vegetarians with vegetarians whose status has been confirmed by their response on the extensive food frequency questionnaire (FFQ). Embedded within the Netherlands Cohort Study (n = 120,852; including 1150 self-reported vegetarians), the NLCS-Meat Investigation Cohort (NLCS-MIC) was defined by combining all FFQ-confirmed-vegetarians (n = 702), pescetarians (n = 394), and 1 day/week meat consumers (n = 1,396) from the total cohort with a random sample of 2-5 days/week- and 6-7 days/week meat consumers (n = 2,965 and 5,648, respectively). Vegetarians, pescetarians, and 1 day/week meat consumers had more favorable dietary intakes (e.g., higher fiber/vegetables) and lifestyle characteristics (e.g. lower smoking rates) compared to regular meat consumers in both sexes. Vegetarians adhered to their diet longer than pescetarians and 1 day/week meat consumers. 75% of vegetarians with a prevalent cancer at baseline had changed to this diet after diagnosis. 50% of self-reported vegetarians reported meat or fish consumption on the FFQ. Although the misclassification that occurred in terms of diet and lifestyle when merely relying on self-reporting was relatively small, the impact on associations with disease risk remains to be studied. We established an analytical cohort over-represented with persons at the lower end of the meat consumption spectrum which should facilitate prospective studies of major cancers and causes of death using ≥20.3 years of follow-up.

  18. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Rieman, Bruce; Dunham, Jason B.; Clayton, James

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions. Two solutions have been proposed to guide management in the face of that uncertainty: the use of “natural variability” in key environmental patterns, processes, or disturbance as a reference; and the retention of some areas as essentially unmanaged reserves to conserve and represent as much biological diversity as possible. Both concepts are scale dependent because dominant processes or patterns that might be referenced will change with scale. Context and linkages across scales may be as important in structuring biological systems as conditions within habitats used by individual organisms. Both ideas view the physical environment as a template for expression, maintenance, and evolution of ecological diversity. To conserve or restore a diverse physical template it will be important to recognize the ecologically important differences in physical characteristics and processes among streams or watersheds that we might attempt to mimic in management or represent in conservation or restoration reserves.

  19. Mistaking geography for biology: inferring processes from species distributions.

    Science.gov (United States)

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    Science.gov (United States)

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  1. Mining rare associations between biological ontologies.

    Science.gov (United States)

    Benites, Fernando; Simon, Svenja; Sapozhnikova, Elena

    2014-01-01

    The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  2. Mining rare associations between biological ontologies.

    Directory of Open Access Journals (Sweden)

    Fernando Benites

    Full Text Available The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  3. Biological and geochemical processes involved during denitrification in Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Ollivier, P.; Parmentier, M.; Joulian, C.; Pauwels, H.; Albrecht, A.

    2012-01-01

    geochemical and biological variations observed in the experiments, biogeochemical modeling is carried out using the geochemical software PHREEQC. The present work builds upon two previous studies done at BRGM: the formulation of a COx pore water model and the creation of a kinetic biological denitrification model the latter. Because of the large uncertainties on the estimation of biomass based on the classic optical microscopy method, the quantification of NarG gene is used for biogeochemical modeling. To account for the observed presence of two nitrate reduction products, two sets of kinetic parameters are used to correctly represent experimental data: one in the early stage of experiments and another for the rest of experiments. Bacterial growth is modeled using acetate and nitrate as carbon and nitrogen sources. Calculated bacterial concentrations are in good agreement with NarG gene data. The calculated mass-balance indicates that about 40% of the carbon from acetate is used for anabolism and 60% for catabolism. Although, some discrepancies are still present between modeled and experimental pH evolution, the model is able to reproduce important changes such as the decrease of dissolved calcium in experiment with COx. This drop in Ca is explained by calcite precipitation and to a lesser extent by cation exchange. Experiments are still ongoing. It appears that nitrate is still decreasing. Further work should be done. In this study, we use acetate but other electron donors such as H 2 need to be investigated. Also, the synthetic solution representative of COx pore water is amended with Pseudomonas mandelii. Other bacteria should be considered. Finally, it would be interesting to work on the quantification of bacterial messenger RNA. Our preliminary tests show that this approach may provide more precise information on the biomass fraction actively involved in denitrification process. The next step could be to work with a consortium of bacteria

  4. Elaboration over a discourse facilitates retrieval in sentence processing

    Directory of Open Access Journals (Sweden)

    Melissa eTroyer

    2016-03-01

    the predicted interaction between ART/MRT scores and Cue condition at the retrieval region, though ART/MRT interacted with Cue condition in other locations in the sentence. In sum, we found that providing more elaborative information over the course of a text can facilitate retrieval for referents, consistent with a framework in which referential elaboration over a discourse and not just local linguistic information directly impacts information retrieval during sentence processing.

  5. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  6. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  7. The use of biologically based cancer risk models in radiation epidemiology

    International Nuclear Information System (INIS)

    Krewski, D.; Zielinski, J.M.; Hazelton, W.D.; Garner, M.J.; Moolgavkar, S.H.

    2003-01-01

    Biologically based risk projection models for radiation carcinogenesis seek to describe the fundamental biological processes involved in neoplastic transformation of somatic cells into malignant cancer cells. A validated biologically based model, whose parameters have a direct biological interpretation, can also be used to extrapolate cancer risks to different exposure conditions with some confidence. In this article, biologically based models for radiation carcinogenesis, including the two-stage clonal expansion (TSCE) model and its extensions, are reviewed. The biological and mathematical bases for such models are described, and the implications of key model parameters for cancer risk assessment examined. Specific applications of versions of the TSCE model to important epidemiologic datasets are discussed, including the Colorado uranium miners' cohort; a cohort of Chinese tin miners; the lifespan cohort of atomic bomb survivors in Hiroshima and Nagasaki; and a cohort of over 200,000 workers included in the National Dose Registry (NDR) of Canada. (author)

  8. Biological effects of deuterium - depleted water

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  9. Biological causal links on physiological and evolutionary time scales.

    Science.gov (United States)

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  10. National Aeronautics and Space Administration Biological Specimen Repository

    Science.gov (United States)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  11. Collaborating with consumer and community representatives in health and medical research in Australia: results from an evaluation

    Directory of Open Access Journals (Sweden)

    Bartu Anne E

    2011-05-01

    Full Text Available Abstract Objective To collaborate with consumer and community representatives in the Alcohol and Pregnancy Project from 2006-2008 http://www.ichr.uwa.edu.au/alcoholandpregnancy and evaluate researchers' and consumer and community representatives' perceptions of the process, context and impact of consumer and community participation in the project. Methods We formed two reference groups and sought consumer and community representatives' perspectives on all aspects of the project over a three year period. We developed an evaluation framework and asked consumer and community representatives and researchers to complete a self-administered questionnaire at the end of the project. Results Fifteen researchers (93.8% and seven (53.8% consumer and community representatives completed a questionnaire. Most consumer and community representatives agreed that the process and context measures of their participation had been achieved. Both researchers and consumer and community representatives identified areas for improvement and offered suggestions how these could be improved for future research. Researchers thought consumer and community participation contributed to project outputs and outcomes by enhancing scientific and ethical standards, providing legitimacy and authority, and increasing the project's credibility and participation. They saw it was fundamental to the research process and acknowledged consumer and community representatives for their excellent contribution. Consumer and community representatives were able to directly influence decisions about the research. They thought that consumer and community participation had significant influence on the success of project outputs and outcomes. Conclusions Consumer and community participation is an essential component of good research practice and contributed to the Alcohol and Pregnancy Project by enhancing research processes, outputs and outcomes, and this participation was valued by community and

  12. Collaborating with consumer and community representatives in health and medical research in Australia: results from an evaluation.

    Science.gov (United States)

    Payne, Janet M; D'Antoine, Heather A; France, Kathryn E; McKenzie, Anne E; Henley, Nadine; Bartu, Anne E; Elliott, Elizabeth J; Bower, Carol

    2011-05-14

    To collaborate with consumer and community representatives in the Alcohol and Pregnancy Project from 2006-2008 http://www.ichr.uwa.edu.au/alcoholandpregnancy and evaluate researchers' and consumer and community representatives' perceptions of the process, context and impact of consumer and community participation in the project. We formed two reference groups and sought consumer and community representatives' perspectives on all aspects of the project over a three year period. We developed an evaluation framework and asked consumer and community representatives and researchers to complete a self-administered questionnaire at the end of the project. Fifteen researchers (93.8%) and seven (53.8%) consumer and community representatives completed a questionnaire. Most consumer and community representatives agreed that the process and context measures of their participation had been achieved. Both researchers and consumer and community representatives identified areas for improvement and offered suggestions how these could be improved for future research. Researchers thought consumer and community participation contributed to project outputs and outcomes by enhancing scientific and ethical standards, providing legitimacy and authority, and increasing the project's credibility and participation. They saw it was fundamental to the research process and acknowledged consumer and community representatives for their excellent contribution. Consumer and community representatives were able to directly influence decisions about the research. They thought that consumer and community participation had significant influence on the success of project outputs and outcomes. Consumer and community participation is an essential component of good research practice and contributed to the Alcohol and Pregnancy Project by enhancing research processes, outputs and outcomes, and this participation was valued by community and consumer representatives and researchers. The National Health and

  13. On Representing Instance Changes in Adaptive Process Management Systems.

    NARCIS (Netherlands)

    Rinderle, S.B.; Kreher, U; Lauer, M.; Dadam, P.; Reichert, M.U.

    2006-01-01

    By separating the process logic from the application code process management systems (PMS) offer promising perspectives for automation and management of business processes. However, the added value of PMS strongly depends on their ability to support business process changes which can affect the

  14. Animated-simulation modeling facilitates clinical-process costing.

    Science.gov (United States)

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making.

  15. Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis.

    Directory of Open Access Journals (Sweden)

    Clemens D Cohen

    Full Text Available BACKGROUND: Diabetic nephropathy (DN is a complex and chronic metabolic disease that evolves into a progressive fibrosing renal disorder. Effective transcriptomic profiling of slowly evolving disease processes such as DN can be problematic. The changes that occur are often subtle and can escape detection by conventional oligonucleotide DNA array analyses. METHODOLOGY/PRINCIPAL FINDINGS: We examined microdissected human renal tissue with or without DN using Affymetrix oligonucleotide microarrays (HG-U133A by standard Robust Multi-array Analysis (RMA. Subsequent gene ontology analysis by Database for Annotation, Visualization and Integrated Discovery (DAVID showed limited detection of biological processes previously identified as central mechanisms in the development of DN (e.g. inflammation and angiogenesis. This apparent lack of sensitivity may be associated with the gene-oriented averaging of oligonucleotide probe signals, as this includes signals from cross-hybridizing probes and gene annotation that is based on out of date genomic data. We then examined the same CEL file data using a different methodology to determine how well it could correlate transcriptomic data with observed biology. ChipInspector (CI is based on single probe analysis and de novo gene annotation that bypasses probe set definitions. Both methods, RMA and CI, used at default settings yielded comparable numbers of differentially regulated genes. However, when verified by RT-PCR, the single probe based analysis demonstrated reduced background noise with enhanced sensitivity and fewer false positives. CONCLUSIONS/SIGNIFICANCE: Using a single probe based analysis approach with de novo gene annotation allowed an improved representation of the biological processes linked to the development and progression of DN. The improved analysis was exemplified by the detection of Wnt signaling pathway activation in DN, a process not previously reported to be involved in this disease.

  16. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  17. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Siti Aishah Hashim; Zulkafli Ghazali; Khairul Zaman Dahlan; Ismail Yaziz

    2005-01-01

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  18. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  19. Versatile and on-demand biologics co-production in yeast.

    Science.gov (United States)

    Cao, Jicong; Perez-Pinera, Pablo; Lowenhaupt, Ky; Wu, Ming-Ru; Purcell, Oliver; de la Fuente-Nunez, Cesar; Lu, Timothy K

    2018-01-08

    Current limitations to on-demand drug manufacturing can be addressed by technologies that streamline manufacturing processes. Combining the production of two or more drugs into a single batch could not only be useful for research, clinical studies, and urgent therapies but also effective when combination therapies are needed or where resources are scarce. Here we propose strategies to concurrently produce multiple biologics from yeast in single batches by multiplexing strain development, cell culture, separation, and purification. We demonstrate proof-of-concept for three biologics co-production strategies: (i) inducible expression of multiple biologics and control over the ratio between biologic drugs produced together; (ii) consolidated bioprocessing; and (iii) co-expression and co-purification of a mixture of two monoclonal antibodies. We then use these basic strategies to produce drug mixtures as well as to separate drugs. These strategies offer a diverse array of options for on-demand, flexible, low-cost, and decentralized biomanufacturing applications without the need for specialized equipment.

  20. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.

    2014-06-01

    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  1. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gabriel Timm [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Giacobbo, Alexandre [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Santos Chiaramonte, Edson Abel dos [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Rodrigues, Marco Antônio Siqueira [Universidade FEEVALE, ICET, RS 239, 2755, CEP 93352-000 Novo Hamburgo, RS (Brazil); Meneguzzi, Alvaro [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil)

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  2. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    International Nuclear Information System (INIS)

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos; Rodrigues, Marco Antônio Siqueira; Meneguzzi, Alvaro; Bernardes, Andréa Moura

    2015-01-01

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm −2 , 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment

  3. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  4. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  5. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  6. An algorithm for automated layout of process description maps drawn in SBGN.

    Science.gov (United States)

    Genc, Begum; Dogrusoz, Ugur

    2016-01-01

    Evolving technology has increased the focus on genomics. The combination of today's advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  7. THE ASSESSMENT OF BIOLOGICAL MARKERS IN PATIENTS WITH PREECLAMPSIA WHEN AN INFLAMMATORY PROCESS APPEARS

    Directory of Open Access Journals (Sweden)

    Eduard Crauciuc

    2015-07-01

    Full Text Available Preeclampsia represents a pathological state that is specific to regnancy, is characterized by high blood pressure de novo and significant proteinuria and appears after 20 weeks of pregnancy. The continuously increasing mortality caused by preeclampsia in our country totally justifies the fact that all efforts are directed towards primary and secondary prevention of the disease and underlines the necessity of urgent intervention at population level, together withthe implementation of a screening programme that is able to reduce the impact of this condition on the mother and the baby. The cases were gathered between 2003 and 2014. The patients were selected by studying the observation charts of the pregnant women hospitalized in ”Cuza Vodă” Clinical Hospital of Obstetrics and Gynecology Iaşi, having a pregnancy over 20 weeks, who came for a specialized consult and who were harvested CRP, without an infectious context or prematurely and spontaneously ruptured membranes. The comparison of the lab markers for the pregnantwomen with severe preeclampsia, depending on the plasmatic level of CRP over 12 mg/l, showed significantly higher values of fibrinogen, LDH, GOT, GPT, serum blood urea nitrogen, creatinine and urine proteins, while the mean number of white cells was significantly reduced (p<0,05. The study confirms the change in the inflammatory process markers, the hepatic and kidney function, associated with a high plasmatic level of CRP for pregnant women with severe preeclampsia.

  8. Experiences with preventive procedures application in the process of beer production in Czech Republic

    OpenAIRE

    Jana Kotovicová; František Toman; Magdalena Vaverková

    2011-01-01

    Food-processing industry is an intriguing field regarding prevention procedures application. All food-processing operations have common fundamental spheres of problems – wastewater polluted by organic substances, solid waste of biological origin and losses during source material processing. Beer production process is a representative of food-processing sphere. The brewing industry has an ancient tradition and is still a dynamic sector open to new developments in technology and scientific prog...

  9. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability.

    Science.gov (United States)

    Liu, J; Lei, L; Ye, F; Zhou, Y; Younis, Heba G R; Zhao, G

    2018-01-24

    Self-aggregates of octenylsuccinate oat β-glucan (A OSG ) have been verified as nanocapsules to load curcumin, a representative of hydrophobic phytochemicals. This study primarily investigated the stability of curcumin-loaded A OSG s over food processing, storage and digestive fluids. Curcumin in A OSG s showed better stability over storage and thermal treatment than its free form. Curcumin loaded in A OSGs stored at 4 °C in the dark exhibited higher stability than that at higher temperatures or exposed to light. Approximately 18% of curcumin was lost after five freeze-thaw cycles. Curcumin in A OSG was more stable than its free form in mimetic intestinal fluids, attesting to the effective protection of A OSG for curcumin over digestive environments. When curcumin-loaded A OSG travelled across mimetic gastric and intestinal fluids, curcumin was tightly accommodated in the capsule, while it rapidly escaped as the capsule reached the colon. Interestingly, the curcumin loaded in A OSG generated higher values of C max and area under the curve than did its free counterpart. These observations showed that A OSG is a powerful vehicle for stabilizing hydrophobic phytochemicals in food processing and storage, facilitating their colon-targeted delivery and enhancing their bioavailability.

  10. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Science.gov (United States)

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  11. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  12. The Up-Flow Biological Aerated Filter (UFBAF) process in treating mixed (urban and industrial) sewage. Its performance in a pilot plant; Proceso de biofiltracion Up-Flow Biological Aerated Filter-UFBAF para el tratamiento de aguas residuales mixtas (urbanas e industriales). Rendimientos en planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Up-Flow Biological Aerated Filter (UFBAF) process is a variant on the conventional activated sludge process. It is based on a greater sludge density, as the sludge sticks to expanded clay balls of between 3 and 6 mm in diameter. A trial of this process was conducted using a pilot plant whose main components were a bio filter for eliminating organic matter and a single layer filter for eliminating the solids left over from the bio filter. the effluent employed in the trial was waste water that had been pretreated by sieving and primary decanting. The main object of these trials was to determine the capacity and limits of the treatment in eliminating organic matter under overload conditions in order to determine the recovery time required to return to normal operation. (Author) 3 refs.

  13. The biology of deception: emotion and morphine.

    Science.gov (United States)

    Stefano, G B; Fricchione, G L

    1995-01-01

    The biology of deception suggests that denial-like processes are at the core of the cognitive coping. In this regard, with cognitive ability, one associates or assumes that this process occurs by way of a 'rational' mind. Such a detailed cognitive process as being rational would also lead, counter intuitively, to inactivity and or major delays in conclusion reaching. Thus, our perceived rationality may also be a deceptive behavioral response. Of equal noteworthyness, man is also 'emotional'. We surmise that emotion represents the pre-cognitive short-cut to overcome this potential for excessive rationality. In this light, we may explain certain psychiatric disorders such as obsessive-compulsive behavior as emotional extremes dealing with cognitive habits used to bind anxiety operating most probably at the pre-cognitive level. Given recent discoveries in neuroimmunology and an understanding of naturally occurring morphine as both an immune and neurological down-regulatory substance we hypothesize that abnormalities associated with emotional extremes may be due, in part, to morphinergic imbalances.

  14. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Micro-separation toward systems biology.

    Science.gov (United States)

    Liu, Bi-Feng; Xu, Bo; Zhang, Guisen; Du, Wei; Luo, Qingming

    2006-02-17

    Current biology is experiencing transformation in logic or philosophy that forces us to reevaluate the concept of cell, tissue or entire organism as a collection of individual components. Systems biology that aims at understanding biological system at the systems level is an emerging research area, which involves interdisciplinary collaborations of life sciences, computational and mathematical sciences, systems engineering, and analytical technology, etc. For analytical chemistry, developing innovative methods to meet the requirement of systems biology represents new challenges as also opportunities and responsibility. In this review, systems biology-oriented micro-separation technologies are introduced for comprehensive profiling of genome, proteome and metabolome, characterization of biomolecules interaction and single cell analysis such as capillary electrophoresis, ultra-thin layer gel electrophoresis, micro-column liquid chromatography, and their multidimensional combinations, parallel integrations, microfabricated formats, and nano technology involvement. Future challenges and directions are also suggested.

  16. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology

    Science.gov (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.

    2013-01-01

    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  17. 'TISUCROMA': A Software for Color Processing of Biological Tissue's Images

    International Nuclear Information System (INIS)

    Arista Romeu, Eduardo J.; La Rosa Vazquez, Jose Manuel de; Valor, Alma; Stolik, Suren

    2016-01-01

    In this work a software intended to plot and analyze digital image RGB histograms from normal and abnormal regions of biological tissue. The obtained RGB histograms from each zone can be used to show the image in only one color or the mixture of some of them. The Software was developed in Lab View to process the images in a laptop. Some medical application examples are shown. (Author)

  18. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...... if the convergence, driven by the dilution rate, was slow (from 15 to 60 days). The propagation of the measurement noise and a bias in the estimation of glycogen and PHA could be the result of the high condition number of one of the matrices used in the algorithm of the asymptotic observer for the aerated tanks....

  19. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  20. Representative process sampling for reliable data analysis

    DEFF Research Database (Denmark)

    Julius, Lars Petersen; Esbensen, Kim

    2005-01-01

    (sampling variances) can be reduced greatly however, and sampling biases can be eliminated completely, by respecting a simple set of rules and guidelines provided by TOS. A systematic approach for description of process heterogeneity furnishes in-depth knowledge about the specific variability of any 1-D lot...

  1. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Biological standards for the Knowledge-Based BioEconomy: What is at stake.

    Science.gov (United States)

    de Lorenzo, Víctor; Schmidt, Markus

    2018-01-25

    The contribution of life sciences to the Knowledge-Based Bioeconomy (KBBE) asks for the transition of contemporary, gene-based biotechnology from being a trial-and-error endeavour to becoming an authentic branch of engineering. One requisite to this end is the need for standards to measure and represent accurately biological functions, along with languages for data description and exchange. However, the inherent complexity of biological systems and the lack of quantitative tradition in the field have largely curbed this enterprise. Fortunately, the onset of systems and synthetic biology has emphasized the need for standards not only to manage omics data, but also to increase reproducibility and provide the means of engineering living systems in earnest. Some domains of biotechnology can be easily standardized (e.g. physical composition of DNA sequences, tools for genome editing, languages to encode workflows), while others might be standardized with some dedicated research (e.g. biological metrology, operative systems for bio-programming cells) and finally others will require a considerable effort, e.g. defining the rules that allow functional composition of biological activities. Despite difficulties, these are worthy attempts, as the history of technology shows that those who set/adopt standards gain a competitive advantage over those who do not. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Results of efforts by the Convention on Biological Diversity to describe ecologically or biologically significant marine areas.

    Science.gov (United States)

    Bax, Nicholas J; Cleary, Jesse; Donnelly, Ben; Dunn, Daniel C; Dunstan, Piers K; Fuller, Mike; Halpin, Patrick N

    2016-06-01

    In 2004, Parties to the Convention on Biological Diversity (CBD) addressed a United Nations (UN) call for area-based planning, including for marine-protected areas that resulted in a global effort to describe ecologically or biologically significant marine areas (EBSAs). We summarized the results, assessed their consistency, and evaluated the process developed by the Secretariat of the CBD to engage countries and experts in 9 regional workshops held from 2011 to 2014. Experts from 92 countries and 79 regional or international bodies participated. They considered 250 million km(2) of the world's ocean area (two-thirds of the total). The 204 areas they examined in detail differed widely in area (from 5.5 km(2) to 11.1 million km(2) ). Despite the initial focus of the CBD process on areas outside national jurisdiction, only 31 of the areas examined were solely outside national jurisdiction. Thirty-five extended into national jurisdictions, 137 were solely within national jurisdictions, and 28 included the jurisdictions of more than 1 country (1 area lacked precise boundaries). Data were sufficient to rank 88-99% of the areas relative to each of the 7 criteria for EBSAs agreed to previously by Parties to the CBD. The naturalness criterion ranked high for a smaller percentage of the EBSAs (31%) than other criteria (51-70%), indicating the difficulty in finding relatively undisturbed areas in the ocean. The highly participatory nature of the workshops, including easy and consistent access to the relevant information facilitated by 2 technical teams, contributed to the workshop participants success in identifying areas that could be ranked relative to most criteria and areas that extend across jurisdictional boundaries. The formal recognition of workshop results by the Conference of Parties to the CBD resulted in these 204 areas being identified as EBSAs by the 196 Parties. They represent the only suite of marine areas recognized by the international community for their

  4. THE EFFECTS OF USING EDMODO IN BIOLOGY EDUCATION ON STUDENTS’ ATTITUDES TOWARDS BIOLOGY AND ICT

    Directory of Open Access Journals (Sweden)

    Veronika Végh

    2017-10-01

    Full Text Available ICT has gained a vital role within education, helping to facilitate the teaching-learning process. This paper examines the efficacy of the Edmodo interface within biology education in high schools. Two 10th grade classes were studied for a one semester period. Both classes followed the same curriculum, however Edmodo usage was compulsory for the experimental class. Anonymous pre-and post-test questionnaires were filled out by the students and statistically analyzed. The research included 58 students; 34 females and 24 males. Over the course of the semester, the experimental group developed increased feelings of importance towards Biology, whereas no change was observed in the control group. At the end of the semester, the experimental group scores leant favorable towards the positive impact of Edmodo use in the classroom, in comparison to the control group. These results show a positive impact of using Edmodo in the classroom, as a facilitative tool, to improve student comprehension in the participating Hungarian students.

  5. Learning from biology: synthetic lipoproteins for drug delivery.

    Science.gov (United States)

    Huang, Huang; Cruz, William; Chen, Juan; Zheng, Gang

    2015-01-01

    Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. © 2014 Wiley Periodicals, Inc.

  6. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    Science.gov (United States)

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  7. TF-finder: A software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base

    Directory of Open Access Journals (Sweden)

    Cui Xiaoqi

    2010-08-01

    Full Text Available Abstract Background Identification of transcription factors (TFs involved in a biological process is the first step towards a better understanding of the underlying regulatory mechanisms. However, due to the involvement of a large number of genes and complicated interactions in a gene regulatory network (GRN, identification of the TFs involved in a biology process remains to be very challenging. In reality, the recognition of TFs for a given a biological process can be further complicated by the fact that most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation except for small conserved domains. This poses a significant challenge for identification of the exact TFs involved or ranking the importance of a set of TFs to a process of interest. Therefore, new methods for recognizing novel TFs are desperately needed. Although a plethora of methods have been developed to infer regulatory genes using microarray data, it is still rare to find the methods that use existing knowledge base in particular the validated genes known to be involved in a process to bait/guide discovery of novel TFs. Such methods can replace the sometimes-arbitrary process of selection of candidate genes for experimental validation and significantly advance our knowledge and understanding of the regulation of a process. Results We developed an automated software package called TF-finder for recognizing TFs involved in a biological process using microarray data and existing knowledge base. TF-finder contains two components, adaptive sparse canonical correlation analysis (ASCCA and enrichment test, for TF recognition. ASCCA uses positive target genes to bait TFS from gene expression data while enrichment test examines the presence of positive TFs in the outcomes from ASCCA. Using microarray data from salt and water stress experiments, we showed TF-finder is very efficient in recognizing

  8. Representing macropore flow at the catchment scale: a comparative modeling study

    Science.gov (United States)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  9. A review of research on common biological agents and their impact on environment

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.

    2009-01-01

    Biological agents are unique class of microorganisms which can be used to produce the disease in large populations of humans, animals and plants. If used for hostile purposes, any disease-causing microorganism could be considered a weapon. The use of biological agents is not a new concept and history is replete with examples of biological weapon use. Before the twenty century, biological warfare took on three main forms by deliberate poisoning of food and water with infectious material, use of microorganisms or toxins in some form of weapon system, and use of biologically inoculated fabrics. Four kinds of biological warfare agents are bacteria, viruses, rickettsiae, fungi. These are distinguished by being living organisms, that reproduce within their host victims, who then become contagious with a deadly multiplier effect, bacteria, viruses, or fungi or toxin found in nature can be used to kill or injure people. Biological agents may be used for an isolated assassination, as well as to cause incapacitation or death to thousands. These biological agents represent a dangerous military threat because they are alive, and are therefore unpredictable and uncontrollable once released. The act of bioterrorism can range from a simple hoax to the actual use of biological weapons. Biological agents have the potential to make an environment more dangerous over time. If the environment is contaminated, a long-term threat to the population could be created. This paper discusses common biological agents, their mode of action in living organisms and possible impact on the environment. (author)

  10. Biologically-transformed zinc and its availability for bioaccumulation by marine organisms

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.

    1980-01-01

    Zinc which occurs in sea water as a trace element exists in several different stable or meta-stable forms in the aquatic environment. One of them is ''complexed'' form which is relatively stable. Radiotracer studies were carried out to investigate the mode of formation of the complexed zinc fraction and to find whether this fraction once formed by biological means is available for accumulation by marine biota. Sea water solutions used in the experiments were filtered through double 0.45 μm Millipore filters. Chelex-100 resin which quantitatively removes zinc from sea water was used to measure the relative degree of binding of different species of 65 Zn formed by association with marine organisms. 65 Zn in exometabolites from living animals represented in this case by shrimp (Lymata seticaudata), influence of organic detritus represented in this case by dead shrimp on the conversion of different forms of zinc and bioavailability of biologically processed 65 Zn were studied. It was observed that: (1) living and dead marine animals can produce a soluble species of complexed, possibly organically bound, zinc, (2) uptake of this species is reduced relative to that of the ionic form indicating that zinc which has passed through biological cycles may be less available for bioaccumulation than zinc which has been directly introduced into the marine environment in inorganic forms. (M.G.B.)

  11. The Priority of Listening Comprehension over Speaking in the Language Acquisition Process

    Science.gov (United States)

    Xu, Fang

    2011-01-01

    By elaborating the definition of listening comprehension, the characteristic of spoken discourse, the relationship between STM and LTM and Krashen's comprehensible input, the paper puts forward the point that the priority of listening comprehension over speaking in the language acquisition process is very necessary.

  12. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks

    Science.gov (United States)

    Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C.; Pepper, John W.

    2017-01-01

    Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of “cancer” and for why this convergent condition becomes life-threatening. PMID:28148564

  13. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks.

    Science.gov (United States)

    Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C; Pepper, John W

    2017-02-01

    Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of "cancer" and for why this convergent condition becomes life-threatening. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Molecular eyes: proteins that transform light into biological information

    NARCIS (Netherlands)

    Kennis, J.T.M.; Mathes, T.

    2013-01-01

    Most biological photoreceptors are protein/cofactor complexes that induce a physiological reaction upon absorption of a photon. Therefore, these proteins represent signal converters that translate light into biological information. Researchers use this property to stimulate and study various

  15. The teach-learning process of high school students: a case of Educational Biology for teachers formation

    OpenAIRE

    Marisa Laporta Chudo; Maria Cecília Sonzogno

    2007-01-01

    Objective. To analyze the teach-learning process of high school students, in the scope of Educational Biology. To plan and to develop a methodology with lesson strategies that facilitate the learning. To analyze, in the students vision, the positive and negative points in the process. Method. A research was developed -- of which had participated students of the first semester of the Pedagogy of a high school private institution in São Paulo city -- of the type action-research, with increased ...

  16. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  17. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  18. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective

    International Nuclear Information System (INIS)

    Leibbrandt, N.H.; Knoetze, J.H.; Goergens, J.F.

    2011-01-01

    The technical performance of lignocellulosic enzymatic hydrolysis and fermentation versus pyrolysis processes for sugarcane bagasse was evaluated, based on currently available technology. Process models were developed for bioethanol production from sugarcane bagasse using three different pretreatment methods, i.e. dilute acid, liquid hot water and steam explosion, at various solid concentrations. Two pyrolysis processes, namely fast pyrolysis and vacuum pyrolysis, were considered as alternatives to biological processing for the production of biofuels from sugarcane bagasse. For bioethanol production, a minimum of 30% solids in the pretreatment reactor was required to render the process energy self-sufficient, which led to a total process energy demand equivalent to roughly 40% of the feedstock higher heating value. Both vacuum pyrolysis and fast pyrolysis could be operated as energy self-sufficient if 45% of the produced char from fast pyrolysis is used to fuel the process. No char energy is required to fuel the vacuum pyrolysis process due to lower process energy demands (17% compared to 28% of the feedstock higher heating value). The process models indicated that effective process heat integration can result in a 10-15% increase in all process energy efficiencies. Process thermal efficiencies between 52 and 56% were obtained for bioethanol production at pretreatment solids at 30% and 50%, respectively, while the efficiencies were 70% for both pyrolysis processes. The liquid fuel energy efficiency of the best bioethanol process is 41%, while that of crude bio-oil production before upgrading is 67% and 56% via fast and vacuum pyrolysis, respectively. Efficiencies for pyrolysis processes are expected to decrease by up to 15% should upgrade to a transportation fuel of equivalent quality to bioethanol be taken into consideration. -- Highlights: → Liquid biofuels can be produced via lignocellulosic enzymatic hydrolysis and fermentation or pyrolysis. → A minimum of

  19. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  20. Representing idioms: syntactic and contextual effects on idiom processing.

    Science.gov (United States)

    Holsinger, Edward

    2013-09-01

    Recent work on the processing of idiomatic expressions argues against the idea that idioms are simply big words. For example, hybrid models of idiom representation, originally investigated in the context of idiom production, propose a priority of literal computation, and a principled relationship between the conceptual meaning of an idiom, its literal lemmas and its syntactic structure. We examined the predictions of the hybrid representation hypothesis in the domain of idiom comprehension. We conducted two experiments to examine the role of syntactic, lexical and contextual factors on the interpretation of idiomatic expressions. Experiment I examines the role of syntactic compatibility and lexical compatibility on the real-time processing of potentially idiomatic strings. Experiment 2 examines the role of contextual information on idiom processing and how context interacts with lexical information during processing. We find evidence that literal computation plays a causal role in the retrieval of idiomatic meaning and that contextual, lexical and structural information influence the processing of idiomatic strings at early stages during processing, which provide support for the hybrid model of idiom representation in the domain of idiom comprehension.

  1. Comparative biology approaches for charged particle exposures and cancer development processes

    Science.gov (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We

  2. Investigating cholesterol metabolism and ageing using a systems biology approach.

    Science.gov (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2017-08-01

    CVD accounted for 27 % of all deaths in the UK in 2014, and was responsible for 1·7 million hospital admissions in 2013/2014. This condition becomes increasingly prevalent with age, affecting 34·1 and 29·8 % of males and females over 75 years of age respectively in 2011. The dysregulation of cholesterol metabolism with age, often observed as a rise in LDL-cholesterol, has been associated with the pathogenesis of CVD. To compound this problem, it is estimated by 2050, 22 % of the world's population will be over 60 years of age, in culmination with a growing resistance and intolerance to pre-existing cholesterol regulating drugs such as statins. Therefore, it is apparent research into additional therapies for hypercholesterolaemia and CVD prevention is a growing necessity. However, it is also imperative to recognise this complex biological system cannot be studied using a reductionist approach; rather its biological uniqueness necessitates a more integrated methodology, such as that offered by systems biology. In this review, we firstly discuss cholesterol metabolism and how it is affected by diet and the ageing process. Next, we describe therapeutic strategies for hypercholesterolaemia, and finally how the systems biology paradigm can be utilised to investigate how ageing interacts with complex systems such as cholesterol metabolism. We conclude by emphasising the need for nutritionists to work in parallel with the systems biology community, to develop novel approaches to studying cholesterol metabolism and its interaction with ageing.

  3. A Lean Six Sigma Analysis of Student In-Processing

    Science.gov (United States)

    2012-12-01

    improvements. 4. Lt Justin Whipple : NPS Student Services representative, primary stakeholder and key source of implementation and control. xvi THIS...Internet connections took over a week. The entire move process took two weeks and had to be scheduled around required check-in procedures . CPT Johnson...processing procedure which represents, as such, a very important stakeholder. They are, however, a type 4 mixed blessing stakeholder. Although they

  4. Behavioral processes underlying the decline of narcissists' popularity over time.

    Science.gov (United States)

    Leckelt, Marius; Küfner, Albrecht C P; Nestler, Steffen; Back, Mitja D

    2015-11-01

    Following a dual-pathway approach to the social consequences of grandiose narcissism, we investigated the behavioral processes underlying (a) the decline of narcissists' popularity in social groups over time and (b) how this is differentially influenced by the 2 narcissism facets admiration and rivalry. In a longitudinal laboratory study, participants (N = 311) first provided narcissism self-reports using the Narcissistic Personality Inventory and the Narcissistic Admiration and Rivalry Questionnaire, and subsequently interacted with each other in small groups in weekly sessions over the course of 3 weeks. All sessions were videotaped and trained raters coded participants' behavior during the interactions. Within the sessions participants provided mutual ratings on assertiveness, untrustworthiness, and likability. Results showed that (a) over time narcissists become less popular and (b) this is reflected in an initially positive but decreasing effect of narcissistic admiration as well as an increasing negative effect of narcissistic rivalry. As hypothesized, these patterns of results could be explained by means of 2 diverging behavioral pathways: The negative narcissistic pathway (i.e., arrogant-aggressive behavior and being seen as untrustworthy) plays an increasing role and is triggered by narcissistic rivalry, whereas the relevance of the positive narcissistic pathway (i.e., dominant-expressive behavior and being seen as assertive) triggered by narcissistic admiration decreases over time. These findings underline the utility of a behavioral pathway approach for disentangling the complex effects of personality on social outcomes. (c) 2015 APA, all rights reserved).

  5. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  6. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  7. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  8. Diagnosis of dynamic process over rainband of landfall typhoon

    International Nuclear Information System (INIS)

    Ling-Kun, Ran; Wen-Xia, Yang; Yan-Li, Chu

    2010-01-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed. (geophysics, astronomy and astrophysics)

  9. Diagnosis of dynamic process over rainband of landfall typhoon

    Science.gov (United States)

    Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li

    2010-07-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.

  10. Sewer Processes

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    Since the first edition was published over a decade ago, advancements have been made in the design, operation, and maintenance of sewer systems, and new problems have emerged. For example, sewer processes are now integrated in computer models, and simultaneously, odor and corrosion problems caused...... by hydrogen sulfide and other volatile organic compounds, as well as other potential health issues, have caused environmental concerns to rise. Reflecting the most current developments, Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, Second Edition, offers the reader updated...... and valuable information on the sewer as a chemical and biological reactor. It focuses on how to predict critical impacts and control adverse effects. It also provides an integrated description of sewer processes in modeling terms. This second edition is full of illustrative examples and figures, includes...

  11. [Difficulties of the negotiation process of the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the application of biology and medicine (and a call for its adhesion)].

    Science.gov (United States)

    de Alba Ulloa, Jessica

    2012-01-01

    Making an attempt to frame the controversial topic of bioethics within international law and with the aim of watching over the society, the Council of Europe elaborated the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the application of biology and medicine. The instrument, which came into force 12 years ago, is opened to all countries but only 29 states have ratified it. This legal document represents the base of a universal legislation on the subject. The present article examines the origin of the Convention, its process and evolution. It analyses the intense debates with regard to the human dignity, the freedom of science, the beginning of life, among others; equally it explores the interests at stake within the convention, whether political, moral, scientific, and economic, at the moment of its draft and in the present. Finally, the article analyses the possibility of the adoption of the Convention by the Mexican government. It concludes on the effectiveness of the international law of bioethics, and calls for the need that the Convention be used as a base for universal legislation.

  12. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  13. Processing of biological waste. Ecological efficiency and potential; Behandlung von Bioabfaellen. Oekoeffizienz und Potenziale

    Energy Technology Data Exchange (ETDEWEB)

    Pitschke, Thorsten; Peche, Rene; Tronecker, Dieter; Kreibe, Siegfried [bifa Umweltinstitut GmbH, Augsburg (Germany)

    2013-07-01

    The sustainable usage of biological wastes has to be focused on the targets protection of resources and minimization of environmental impact. The only focus on the energy inventory is not sufficient. The following recommendations are summarized: separated bio-waste collection is usually more eco-efficient; the optimized bio-waste processing should be available according to the biodegradability; anaerobic degradation for biogas production and subsequent aerobic degradation of the fermentation product for compost can be combined; low-emission operational standards should be mandatory, innovation and investment should be promoted b reliable boundary conditions; ecological aspects should be equivalent to low-cost considerations; regulatory measures should be implemented for separated bio-waste collection and processing.

  14. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  15. EXTRACTING SPATIOTEMPORAL OBJECTS FROM RASTER DATA TO REPRESENT PHYSICAL FEATURES AND ANALYZE RELATED PROCESSES

    Directory of Open Access Journals (Sweden)

    J. A. Zollweg

    2017-10-01

    Full Text Available Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don’t see millions of cubes of atmosphere; we see a thunderstorm ‘object’. Temporally, we don’t see the properties of those individual cubes changing, we see the thunderstorm as a whole evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of relevant spatiotemporal objects, thereby matching the human brain’s perception of the world. This presentation reveals an efficient algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA’s High-Resolution Rapid Refresh v2 (HRRRv2 data stream.

  16. Extracting Spatiotemporal Objects from Raster Data to Represent Physical Features and Analyze Related Processes

    Science.gov (United States)

    Zollweg, J. A.

    2017-10-01

    Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don't see millions of cubes of atmosphere; we see a thunderstorm `object'. Temporally, we don't see the properties of those individual cubes changing, we see the thunderstorm as a whole evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of relevant spatiotemporal objects, thereby matching the human brain's perception of the world. This presentation reveals an efficient algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA's High-Resolution Rapid Refresh v2 (HRRRv2) data stream.

  17. Fungal biology and agriculture: revisiting the field

    Science.gov (United States)

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  18. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    Science.gov (United States)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  20. Evaluation of combustion experiments conducted during the research and development project ``Mechanical-biological waste conditioning in combination with thermal processing of partial waste fractions``; Auswertung der Verbrennungsversuche zum Forschungs- und Entwicklungsvorhaben ``mechanisch-biologische Restmuellbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen``

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.; Lohf, A.; Herr, C. [Institut WAR, Darmstadt (Germany)

    1998-12-31

    The technical code on municipal waste makes specific demands on waste to be deposited at landfills which can only be met if mechanical-biological conditioning of waste as well as thermal processing of partial waste fractions are continued also in the future. But waste that has undergone mechanical or mechanical-biological conditioning presents different combustion properties from those of unconditioned waste. In this second stage of the research project, the thermal processability of waste having undergone mechanical or mechanical-biological conditioning was studied. Together with the results from the first project stage, where the throughput represented exclusively mechanically conditioned material, the results of the latter measuring campaigns comprehensively demonstrate possibilities for the thermal processing of partial waste fractions having undergone biological-mechanical conditioning, and inform on changes in plant performance. (orig.) [Deutsch] Um die in der TA-Siedlungsabfall an den abzulagernden Restmuell gestellten Deponieeingangsbedingungen zu erfuellen, muss neben einer mechanisch-biologischen Aufbereitung bei Teilfraktionen auch weiterhin eine thermische Behandlung eingeplant werden. Die Verbrennungseigenschaften von mechanisch oder mechanisch-biologisch vorbehandeltem Restmuell weichen allerdings von denen von unbehandeltem Restmuell ab. In dieser zweiten Projektphase des Forschungsvorhabens wurde eine Untersuchung bezueglich der thermischen Behandelbarkeit von mechanisch und auch biologisch vorbehandeltem Muell durchgefuehrt. Die Ergebnisse der Messkampagnen bilden zusammen mit den Ergebnissen der ersten Projektphase, in der ausschliesslich mechanisch vorbehandeltes Material durchgesetzt wurde, eine umfassende Darstellung ueber Moeglichkeiten und veraenderte Anlagenverhalten bei der thermischen Behandlung von Teilfraktionen aus der biologisch-mechanisch Vorbehandlung. (orig.)