WorldWideScience

Sample records for biological process affected

  1. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  2. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  3. Suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by bulking

    International Nuclear Information System (INIS)

    Montaya Martinez, T.; Zornoza Zornoza, A.; Granell Munoz, P.; Fayos, G.; Fajarddo, V.; Zorrilla, F.; Alonso Molina, J. L.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Martinez Francisco, F. J.

    2009-01-01

    This work demonstrates the suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by the overabundance of the filamentous bacteria (Thiothrix-021N). This technique was used to establish the chlorine dosage according to the observed damages on cellular membranes of both, floc-forming bacteria as well as filamentous bacteria. To identify the filamentous bacteria responsible for the macro-structural alteration of the flocs, several criteria were, met, including morphologic characteristics as well as conventional microbiological stains: Gram, Neisser and polyhydroxy alkanoates. FISH was used to confirm the obtained results, providing a definitive identification of the filamentous bacteria responsible for the alteration. (Author) 11 refs

  4. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  5. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  6. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  7. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  8. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  9. Does biological relatedness affect child survival?

    Directory of Open Access Journals (Sweden)

    2003-05-01

    Full Text Available Objective: We studied child survival in Rakai, Uganda where many children are fostered out or orphaned. Methods: Biological relatedness is measured as the average of the Wright's coefficients between each household member and the child. Instrumental variables for fostering include proportion of adult males in household, age and gender of household head. Control variables include SES, religion, polygyny, household size, child age, child birth size, and child HIV status. Results: Presence of both parents in the household increased the odds of survival by 28%. After controlling for the endogeneity of child placement decisions in a multivariate model we found that lower biological relatedness of a child was associated with statistically significant reductions in child survival. The effects of biological relatedness on child survival tend to be stronger for both HIV- and HIV+ children of HIV+ mothers. Conclusions: Reductions in the numbers of close relatives caring for children of HIV+ mothers reduce child survival.

  10. Biological sex affects the neurobiology of autism

    Science.gov (United States)

    Lombardo, Michael V.; Suckling, John; Ruigrok, Amber N. V.; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C. L.; Craig, Michael C.; Murphy, Declan G. M.; Bullmore, Edward T.; Baron-Cohen, Simon

    2013-01-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the ‘extreme male brain’ theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P males with autism. How differences in neuroanatomy relate to the similarities in cognition between males and females with autism remains to be understood. Future research should stratify by biological sex to reduce

  11. Working night shifts affects surgeons' biological rhythm

    DEFF Research Database (Denmark)

    Amirian, Ilda; Andersen, Lærke T; Rosenberg, Jacob

    2015-01-01

    BACKGROUND: Chronic sleep deprivation combined with work during the night is known to affect performance and compromise residents' own safety. The aim of this study was to examine markers of circadian rhythm and the sleep-wake cycle in surgeons working night shifts. METHODS: Surgeons were monitor...

  12. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  13. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    Science.gov (United States)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    (estimated to be 1 g apatite/mL). Carbonates (as NaHCO3 or CaCO3) were used to buffer the protons produced upon polyP hydrolytic degradation to Pi, releasing Ca+2, increasing apatite saturation for precipitation. Initial Ca:P ratios (by EDS) was 1, suggesting the formation of Ca-PO4 minerals. XRD results identified Na-Ca- carbonate phases, & hydroxyapatite & carbonated apatite, & residual carbonate reagent. Further optimization of this biological apatite precipitation system will be presented. 1 Kornberg, A., Ann Rev Biochem 1999 (68) 89 2 Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The Biochemistry of Inorganic Polyphosphates. Chichester, England, John Wiley & Sons, Ltd. 3 Blake, R. E., O’Neil, J.R., and Surov, A. Am J Sci 2005 (305) 596 4 Heersche, J. N. M. et al. (1990) Bone Regulatory Factors; Plenum Press: New York 5 Omelon et al., PLoS ONE 2009 4(5), e5634

  14. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard

    2017-01-01

    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  15. [Factors affecting biological removal of iron and manganese in groundwater].

    Science.gov (United States)

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  16. Site remediation using biological processes

    International Nuclear Information System (INIS)

    Lei, J.; Sansregret, J.L.; Cyr, B.; Pouliot, Y.

    1995-01-01

    The main process used in the bioremediation of contaminated sites is the microbial degradation and mineralization of pollutants. The bioengineering processes developed and applied by the company to optimize the microbial degradation are described and full scale case studies are reviewed. In each case, the site characteristics (type of contaminants, nature of soil, geographic location, etc.) and the results obtained are presented. The selected projects cover different bioremediation techniques (biopile, bioventing and air sparging), different contaminants (PAH, PCP, hydrocarbons) and different types of industrial sites (former gas work plant, petroleum depot, refinery, etc.)

  17. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  18. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  19. Affective processing in bilingual speakers: disembodied cognition?

    Science.gov (United States)

    Pavlenko, Aneta

    2012-01-01

    A recent study by Keysar, Hayakawa, and An (2012) suggests that "thinking in a foreign language" may reduce decision biases because a foreign language provides a greater emotional distance than a native tongue. The possibility of such "disembodied" cognition is of great interest for theories of affect and cognition and for many other areas of psychological theory and practice, from clinical and forensic psychology to marketing, but first this claim needs to be properly evaluated. The purpose of this review is to examine the findings of clinical, introspective, cognitive, psychophysiological, and neuroimaging studies of affective processing in bilingual speakers in order to identify converging patterns of results, to evaluate the claim about "disembodied cognition," and to outline directions for future inquiry. The findings to date reveal two interrelated processing effects. First-language (L1) advantage refers to increased automaticity of affective processing in the L1 and heightened electrodermal reactivity to L1 emotion-laden words. Second-language (L2) advantage refers to decreased automaticity of affective processing in the L2, which reduces interference effects and lowers electrodermal reactivity to negative emotional stimuli. The differences in L1 and L2 affective processing suggest that in some bilingual speakers, in particular late bilinguals and foreign language users, respective languages may be differentially embodied, with the later learned language processed semantically but not affectively. This difference accounts for the reduction of framing biases in L2 processing in the study by Keysar et al. (2012). The follow-up discussion identifies the limits of the findings to date in terms of participant populations, levels of processing, and types of stimuli, puts forth alternative explanations of the documented effects, and articulates predictions to be tested in future research.

  20. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, K.; Cecal, A.; Craciun, I.

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatmen from radioactive waste, namely from uranium. The process dor sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plants cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor in the second stage - Spirulina platensis . After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions by the biomass of plants cultivated in the sewage

  1. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, Karin; Cecal, Alexandru; Craciun, Iftimie Ionel; Rudic, Valeriu; Gulea, Aurelian; Cepoi, Liliana

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatment from radioactive waste, namely from uranium. The process for sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plant cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor and in the second stage - Spirulina platensis. After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions accumulation by the biomass of plants cultivated in the sewage.

  2. Affect intensity and processing fluency of deterrents.

    Science.gov (United States)

    Holman, Andrei

    2013-01-01

    The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.

  3. Affective processes in human-automation interactions.

    Science.gov (United States)

    Merritt, Stephanie M

    2011-08-01

    This study contributes to the literature on automation reliance by illuminating the influences of user moods and emotions on reliance on automated systems. Past work has focused predominantly on cognitive and attitudinal variables, such as perceived machine reliability and trust. However, recent work on human decision making suggests that affective variables (i.e., moods and emotions) are also important. Drawing from the affect infusion model, significant effects of affect are hypothesized. Furthermore, a new affectively laden attitude termed liking is introduced. Participants watched video clips selected to induce positive or negative moods, then interacted with a fictitious automated system on an X-ray screening task At five time points, important variables were assessed including trust, liking, perceived machine accuracy, user self-perceived accuracy, and reliance.These variables, along with propensity to trust machines and state affect, were integrated in a structural equation model. Happiness significantly increased trust and liking for the system throughout the task. Liking was the only variable that significantly predicted reliance early in the task. Trust predicted reliance later in the task, whereas perceived machine accuracy and user self-perceived accuracy had no significant direct effects on reliance at any time. Affective influences on automation reliance are demonstrated, suggesting that this decision-making process may be less rational and more emotional than previously acknowledged. Liking for a new system may be key to appropriate reliance, particularly early in the task. Positive affect can be easily induced and may be a lever for increasing liking.

  4. Chemical and biological factors affecting bioavailability of contaminants in seawater

    International Nuclear Information System (INIS)

    Knezovich, J.P.

    1992-09-01

    This paper discusses the influence that salinity has on the bioavailability of the two largest classes of contaminants, trace metals and organic compounds will be discussed. Although data on contaminant toxicity will be used to draw inferences about chemical availability, this discussion will focus on the properties that contaminants are likely to exhibit in waters of varying salinities. In addition, information on physiological changes that are affected by salinity will be used to illustrate how biological effects can alter the apparent availability of contaminants

  5. Integrated biological, chemical and physical processes kinetic ...

    African Journals Online (AJOL)

    ... for C and N removal, only gas and liquid phase processes were considered for this integrated model. ... kLA value for the aeration system, which affects the pH in the anoxic and aerobic reactors through CO2 gas exchange. ... Water SA Vol.

  6. Neuroimaging of affect processing in schizophrenia

    International Nuclear Information System (INIS)

    Habel, U.; Kircher, T.; Schneider, F.

    2005-01-01

    Functional imaging of normal and dysfunctional emotional processes is an important tool for a better understanding of the pathophysiology of affective symptoms in schizophrenia patients. These symptoms are still poorly characterized with respect to their neural correlates. Comparisons of cerebral activation during emotional paradigms offered the possibility for a better characterization of cerebral dysfunctions during emotional processing in schizophrenia. Abnormal activation patterns reveal a complex dysfunctional subcortical-cortical network. This is modulated by respective genotypes as well as psycho- and pharmacotherapy. (orig.) [de

  7. Stress modulation of cognitive and affective processes

    Science.gov (United States)

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  8. Factors affecting medication-order processing time.

    Science.gov (United States)

    Beaman, M A; Kotzan, J A

    1982-11-01

    The factors affecting medication-order processing time at one hospital were studied. The order processing time was determined by directly observing the time to process randomly selected new drug orders on all three work shifts during two one-week periods. An order could list more than one drug for an individual patient. The observer recorded the nature, location, and cost of the drugs ordered, as well as the time to process the order. The time and type of interruptions also were noted. The time to process a drug order was classified as six dependent variables: (1) total time, (2) work time, (3) check time, (4) waiting time I--time from arrival on the dumbwaiter until work was initiated, (5) waiting time II--time between completion of the work and initiation of checking, and (6) waiting time III--time after the check was completed until the order left on the dumbwaiter. The significant predictors of each of the six dependent variables were determined using stepwise multiple regression. The total time to process a prescription order was 58.33 +/- 48.72 minutes; the urgency status of the order was the only significant determinant of total time. Urgency status also significantly predicted the three waiting-time variables. Interruptions and the number of drugs on the order were significant determinants of work time and check time. Each telephone interruption increased the work time by 1.72 minutes. While the results of this study cannot be generalized to other institutions, pharmacy managers can use the method of determining factors that affect medication-order processing time to identify problem areas in their institutions.

  9. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  10. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  11. Diffusion processes and related topics in biology

    CERN Document Server

    Ricciardi, Luigi M

    1977-01-01

    These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol­ ogy and neurobiology literature. While the subject may be classical, the nov­ elty here lies in the approach and point of view, particularly in the applica­ tions such as the approach to the neuronal firing problem and its related dif­ fusion approximations. It is a ple...

  12. Crop production in salt affected soils: A biological approach

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K A [National Inst. for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan)

    1995-01-01

    Plant are susceptible to various stresses, affecting growth productivity. Among the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a result, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known to confer salt tolerance into crop plants. (Abstract Truncated)

  13. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  14. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario

    2005-01-01

    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  15. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  16. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  17. Mixing and Processing of Complex Biological Fluids

    National Research Council Canada - National Science Library

    Liepmann, Dorian

    2003-01-01

    ... of microfluidic control on the makeup and molecular structure of biological fluids. For this project, we focused on two critical fluids that are biologically significant and that are of critical importance to DoD...

  18. Adoption: biological and social processes linked to adaptation.

    Science.gov (United States)

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  19. Biological processes for mitigation of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, John R. [California Univ., Dept. of Plant and Microbial Biology, Berkeley, CA (United States)

    1999-07-01

    Biological processes driven by photosynthesis cycle through the atmosphere well over an order of magnitude more CO{sub 2} than is currently emitted from the combustion of fossils fuels. Already human activities control and appropriate almost half the primary photosynthetic productivity of the planet. Better management of natural and man-made ecosystems affords many opportunities for mitigation of greenhouse gases, through sink enhancements, source reduction and substitution of fossil fuels with biofuels. Biofuels can be recovered from most organic wastes, from agricultural and forestry residues, and from biomass produced solely for energy use. However, the currently low costs of fossil fuels limits the market for biofuels. Accounting for the greenhouse mitigation value of biofuels would significantly increase their contribution to world fuel suppliers, estimated to be currently equivalent to about 15% of fossil fuel usage. Another limiting factor in expanding the use of biofuels is the relatively low solar energy conversion efficiencies of photosynthesis. Currently well below 1% of solar energy is converted into biomass energy even by intensive agricultural or forestry systems, with peak conversion efficiencies about 2 to 3% for sugar cane or microalgae cultures. One approach to increase photosynthetic efficiencies, being developed at the University of California Berkeley, is to reduce the amount of light-gathering chlorophyll in microalgae and higher plants. This would reduce mutual shading and also increase photosynthetic efficiencies under full sunlight intensities. Estimates of the potential of photosynthetic greenhouse mitigation processes vary widely. However, even conservative estimates for biofuels substituting for fossil fuels project the potential to reduce a large fraction of current increases in atmospheric CO{sub 2} levels. Biofuels production will require integration with existing agronomic, forestry and animal husbandry systems, and improved

  20. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts.

    Directory of Open Access Journals (Sweden)

    Guang-Lei Gao

    Full Text Available BACKGROUND: Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust, as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05; and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R(2 = 0.494∼0.955, P<0.01. CONCLUSIONS/SIGNIFICANCE: Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions.

  1. Do Social Ties Affect Our Health? Exploring the Biology of Relationships

    Science.gov (United States)

    ... Do Social Ties Affect Our Health? Exploring the Biology of Relationships En español Send us your comments ... neighbors, or others, social connections can influence our biology and well-being. Wide-ranging research suggests that ...

  2. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  3. Applications of Structural Biology and Bioinformatics in the Investigation of Oxidative Stress-Related Processes

    NARCIS (Netherlands)

    Bersch, Beate; Groves, Matthew; Johann, Klare; Torda, Andrew; Ortiz, Dario; Laher, I.

    2014-01-01

    Reactive oxygen species (ROS)-mediated dysfunction of certain biological processes is implicated in different diseases in humans, including cardiovascular, cancer, or neurodegenerative disorders. Not only human cells and tissues are affected by ROS but also all other biological systems, including

  4. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  5. Positive affect improves working memory: implications for controlled cognitive processing.

    Science.gov (United States)

    Yang, Hwajin; Yang, Sujin; Isen, Alice M

    2013-01-01

    This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.

  6. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  7. Pricing scheme choice: how process affects outcome

    Czech Academy of Sciences Publication Activity Database

    Shestakova, Natalia

    2010-01-01

    Roč. 20, č. 2 (2010), s. 99-129 ISSN 1211-3298 R&D Projects: GA MŠk(CZ) LC542 Institutional research plan: CEZ:MSM0021620846 Keywords : choice process * heuristics * price discrimination Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp411.pdf

  8. The radiotherapy affects the cognitive processes

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Researchers from the medical center of the free university of Amsterdam report that the radiotherapy can hinder the cognitive functions of patients affected by cerebral tumors treated after a surgery. Even low dose radiation could contribute in their opinion, to the progressive cognitive decline of patients suffering of low grade gliomas, the most commune cerebral tumor. To get these conclusions, 65 patients, whom half of them received a radiotherapy, had a neurological and psychological evaluation twelve years after their treatment. Results: 53% of patients treated by radiotherapy present disorders of attention, memory, execution and speed of information treatment against 27% of these ones that received an only surgery. The researchers conclude to the necessity to take into account this risk in the choice of treatment, or even to avoid radiotherapy in this precise case. (N.C.)

  9. Cow biological type affects ground beef colour stability.

    Science.gov (United States)

    Raines, Christopher R; Hunt, Melvin C; Unruh, John A

    2009-12-01

    To determine the effects of cow biological type on colour stability of ground beef, M. semimembranosus from beef-type (BSM) and dairy-type (DSM) cows was obtained 5d postmortem. Three blends (100% BSM, 50% BSM+50% DSM, 100% DSM) were adjusted to 90% and 80% lean points using either young beef trim (YBT) or beef cow trim (BCT), then packaged in high oxygen (High-O(2); 80% O(2)) modified atmosphere (MAP). The BSM+YBT patties had the brightest colour initially, but discoloured rapidly. Although DSM+BCT patties had the darkest colour initially, they discoloured least during display. Metmyoglobin reducing ability of ground DSM was up to fivefold greater than ground BSM, and TBARS values of BSM was twofold greater than DSM by the end of display (4d). Though initially darker than beef cow lean, dairy cow lean has a longer display colour life and may be advantageous to retailers using High-O(2) MAP.

  10. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  11. Elaboration Likelihood and the Counseling Process: The Role of Affect.

    Science.gov (United States)

    Stoltenberg, Cal D.; And Others

    The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…

  12. Borderline personality disorder and childhood trauma: exploring the affected biological systems and mechanisms.

    Science.gov (United States)

    Cattane, Nadia; Rossi, Roberta; Lanfredi, Mariangela; Cattaneo, Annamaria

    2017-06-15

    According to several studies, the onset of the Borderline Personality Disorder (BPD) depends on the combination between genetic and environmental factors (GxE), in particular between biological vulnerabilities and the exposure to traumatic experiences during childhood. We have searched for studies reporting possible alterations in several biological processes and brain morphological features in relation to childhood trauma experiences and to BPD. We have also looked for epigenetic mechanisms as they could be mediators of the effects of childhood trauma in BPD vulnerability. We prove the role of alterations in Hypothalamic-Pituitary-Adrenal (HPA) axis, in neurotrasmission, in the endogenous opioid system and in neuroplasticity in the childhood trauma-associated vulnerability to develop BPD; we also confirm the presence of morphological changes in several BPD brain areas and in particular in those involved in stress response. Not so many studies are available on epigenetic changes in BPD patients, although these mechanisms are widely investigated in relation to stress-related disorders. A better comprehension of the biological and epigenetic mechanisms, affected by childhood trauma and altered in BPD patients, could allow to identify "at high risk" subjects and to prevent or minimize the development of the disease later in life.

  13. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    Science.gov (United States)

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  15. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C [ORNL; Begoli, Edmon [ORNL; Jose, Ajith [Missouri University of Science and Technology; Griffin, Christopher [Pennsylvania State University

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  16. Monkeys preferentially process body information while viewing affective displays.

    Science.gov (United States)

    Bliss-Moreau, Eliza; Moadab, Gilda; Machado, Christopher J

    2017-08-01

    Despite evolutionary claims about the function of facial behaviors across phylogeny, rarely are those hypotheses tested in a comparative context-that is, by evaluating how nonhuman animals process such behaviors. Further, while increasing evidence indicates that humans make meaning of faces by integrating contextual information, including that from the body, the extent to which nonhuman animals process contextual information during affective displays is unknown. In the present study, we evaluated the extent to which rhesus macaques (Macaca mulatta) process dynamic affective displays of conspecifics that included both facial and body behaviors. Contrary to hypotheses that they would preferentially attend to faces during affective displays, monkeys looked for longest, most frequently, and first at conspecifics' bodies rather than their heads. These findings indicate that macaques, like humans, attend to available contextual information during the processing of affective displays, and that the body may also be providing unique information about affective states. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  18. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  19. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  20. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  1. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  2. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  3. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  4. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  5. Guidelines for Affective Signal Processing (ASP): From lab to life

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    This article presents the rationale behind ACII2009’s special session: Guidelines for Affective Signal Processing (ASP): From lab to life. Although affect is embraced by both science and engineering, its recognition has not reached a satisfying level. Through a concise overview of ASP and the

  6. Biologic phosphorus elimination - influencing parameters, boundary conditions, process optimation

    International Nuclear Information System (INIS)

    Dai Xiaohu.

    1992-01-01

    This paper first presents a systematic study of the basic process of biologic phosphorus elimination as employed by the original 'Phoredox (Main Stream) Process'. The conditions governing the process and the factors influencing its performance were determined by trial operation. A stationary model was developed for the purpose of modelling biologic phosphorus elimination in such a main stream process and optimising the dimensioning. The validity of the model was confirmed by operational data given in the literature and by operational data from the authors' own semitechnical-scale experimental plant. The model permits simulation of the values to be expected for effluent phosphorus and phosphate concentrations for given influent data and boundary conditions. It is thus possible to dimension a plant for accomodation of the original Phoredox (Main Stream) Process or any similar phosphorus eliminating plant that is to work according to the principle of the main stream process. (orig./EF) [de

  7. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  8. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  9. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  10. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-29

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.

  11. Unintentionality of affective attention across visual processing stages

    Directory of Open Access Journals (Sweden)

    Andero eUusberg

    2013-12-01

    Full Text Available Affective attention involves bottom-up perceptual selection that prioritizes motivationally significant stimuli. To clarify the extent to which this process is automatic, we investigated the dependence of affective attention on the intention to process emotional meaning. Affective attention was manipulated by presenting IAPS images with variable arousal and intentionality by requiring participants to make affective and non-affective evaluations. Polytomous rather than binary decisions were required from the participants in order to elicit relatively deep emotional processing. The temporal dynamics of prioritized processing were assessed using Early Posterior Negativity (EPN, 175-300 ms as well as P3-like (P3, 300 – 500 ms and Slow Wave (SW, 500 – 1500 ms portions of the Late Positive Potential. All analysed components were differentially sensitive to stimulus categories suggesting that they indeed reflect distinct stages of motivational significance encoding. The intention to perceive emotional meaning had no effect on EPN, an additive effect on P3, and an interactive effect on SW. We concluded that affective attention went from completely unintentional during the EPN to partially unintentional during P3 and SW where top-down signals, respectively, complemented and modulated bottom-up differences in stimulus prioritization. The findings were interpreted in light of two-stage models of visual perception by associating the EPN with large-capacity initial relevance detection and the P3 as well as SW with capacity-limited consolidation and elaboration of affective stimuli.

  12. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  13. Student perceptions of their biology teacher's interpersonal teaching behaviors and student achievement and affective learning outcomes

    Science.gov (United States)

    Smith, Wade Clay, Jr.

    The primary goals of this dissertation were to determine the relationships between interpersonal teaching behaviors and student achievement and affective learning outcomes. The instrument used to collect student perceptions of teacher interpersonal teaching behaviors was the Questionnaire on Teacher Interactions (QTI). The instrument used to assess student affective learning outcomes was the Biology Student Affective Instrument (BSAI). The interpersonal teaching behavior data were collected using students as the observers. 111 students in an urban influenced, rural high school answered the QTI and BSAI in September 1997 and again in April 1998. At the same time students were pre and post tested using the Biology End of Course Examination (BECE). The QTI has been used primarily in European and Oceanic areas. The instrument was also primarily used in educational stratified environment. This was the first time the BSAI was used to assess student affective learning outcomes. The BECE is a Texas normed cognitive assessment test and it is used by Texas schools districts as the end of course examination in biology. The interpersonal teaching behaviors model was tested to ascertain if predictive power in the USA and in a non-stratified educational environment. Findings indicate that the QTI is an adequate predictor of student achievement in biology. The results were not congruent with the non-USA data and results, this indicates that the QTI is a society/culturally sensitive instrument and the instrument needs to be normed to a particular society/culture before it is used to affect teachers' and students' educational environments.

  14. DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD

    Science.gov (United States)

    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  15. Modelling biological processes in WWTP; Modelado de procesos biologicos en las EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Carpes, G.

    2009-07-01

    Biological technologies by active sludges are the most used in wastewater treatments. Multiple variants are affected in the characterization of this process, like wastewater treatment plant (WWTP) design, features and concentration of sludge, dissolved oxygen concentration and characteristics of the wastewater, including temperature and nutrients. Mathematical formula applied to WWTP modelling are presented to design its operation and to test the most important parameters, too. It is necessary to optimize the process in WWTP. (Author) 19 refs.

  16. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  17. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    OpenAIRE

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgressi...

  18. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  19. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  20. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  1. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    Science.gov (United States)

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  2. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits.

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T; Ritter, Ashlyn D; Yilmaz, L Safak; Rosebrock, Adam P; Caudy, Amy A; Walhout, Albertha J M

    2014-02-13

    Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here, we used an interspecies systems biology approach with Caenorhabditis elegans and two of its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal's gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development, and reduces fertility but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid, preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  5. Factors affecting the periapical healing process of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Roberto Holland

    Full Text Available Abstract Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing, the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient that affect the outcome of root canal treatment prediction.

  6. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  7. Exploring the nature of facial affect processing deficits in schizophrenia

    NARCIS (Netherlands)

    Wout, Mascha van 't; Aleman, Andre; Kessels, Roy P. C.; Cahn, Wiepke; Haan, Edward H. F. de; Kahn, Rene S.

    2007-01-01

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as

  8. Exploring the nature of facial affect processing deficits in schizophrenia.

    NARCIS (Netherlands)

    Wout, M. van 't; Aleman, A.; Kessels, R.P.C.; Cahn, W.; Haan, E.H.F. de; Kahn, R.S.

    2007-01-01

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as

  9. Political Expertise and Affect: Effects on News Processing.

    Science.gov (United States)

    Hsu, Mei-Ling; Price, Vincent

    1993-01-01

    Investigates interactions between political expertise and affect in shaping cognitive strategies people employ in forming reactions to newspaper stories. Finds that, in processing the news articles, political experts produced a greater number of thoughts and a larger share of arguments than did novices. Observes no predicted main effects of…

  10. Electrophysiological differences in the processing of affective information in words and pictures.

    Science.gov (United States)

    Hinojosa, José A; Carretié, Luis; Valcárcel, María A; Méndez-Bértolo, Constantino; Pozo, Miguel A

    2009-06-01

    It is generally assumed that affective picture viewing is related to higher levels of physiological arousal than is the reading of emotional words. However, this assertion is based mainly on studies in which the processing of either words or pictures has been investigated under heterogenic conditions. Positive, negative, relaxing, neutral, and background (stimulus fragments) words and pictures were presented to subjects in two experiments under equivalent experimental conditions. In Experiment 1, neutral words elicited an enhanced late positive component (LPC) that was associated with an increased difficulty in discriminating neutral from background stimuli. In Experiment 2, high-arousing pictures elicited an enhanced early negativity and LPC that were related to a facilitated processing for these stimuli. Thus, it seems that under some circumstances, the processing of affective information captures attention only with more biologically relevant stimuli. Also, these data might be better interpreted on the basis of those models that postulate a different access to affective information for words and pictures.

  11. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  12. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

    Directory of Open Access Journals (Sweden)

    Elisa González-Domínguez

    2017-09-01

    Full Text Available The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord. includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological

  13. Influence of different natural physical fields on biological processes

    Science.gov (United States)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  14. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  15. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  16. How biological (fish) noise affects the performance of shallow water passive array system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.; Haris, K.; Vijayakumar, K.; Sundar, D.; Luis, R.A.A.; Mahanty, M.M.; Latha, G.

    =UTF-8 How biological (fish) noise affects the performance of shallow water passive array system William Fernandes, Bishwajit Chakraborty, K. Haris, K. Vijaykumar, D. Sundar, R.A.A. Luis CSIR-National Institute of Oceanography, Dona Paula... source distribution as well as the environmental parameters (i.e., water depth, sound speed profile, and seafloor properties). In a waveguide bounded by sea surface and seabed, multipath propagation prevails and the spatial structure of the noise...

  17. Electrophysiological differences in the processing of affect misattribution.

    Directory of Open Access Journals (Sweden)

    Yohei Hashimoto

    Full Text Available The affect misattribution procedure (AMP was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target are presented, following an emotional stimulus (known as the prime. Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing-whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP. In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes.

  18. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  19. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  20. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Science.gov (United States)

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  1. Biosphere processes affecting environmnetal impacts of hazardous wastes

    International Nuclear Information System (INIS)

    Watkins, B.; Broderick, M.

    1991-01-01

    ANS Consultants Limited has reviewed and assessed a number of biosphere processes which affect the environmental impact of hazardous waste disposal. Processes examined have included the long-term effects of climate change on biosphere characteristics and the transport of toxic materials in food chains; the role of soil animals and plants roots in cycling elements from depth to the soil surface; volatisation mechanisms; the transport of elements in soil with particular reference to erosion and resuspension; mechanisms for foliar contamination via irrigation waters; and organic matter decomposition in varying environmental conditions. (au)

  2. The Biology of Behavior: The Attachments and Affects of Adjudicated Youth.

    Science.gov (United States)

    Boss, Marion Sutherland; Masiker-Nickel, Pamela

    1997-01-01

    Two teacher-trainers and counselors of adjudicated youth explain how to help young people develop both new thinking processes and responsible, prosocial behaviors. Emphasizes the importance of youth understanding the biological and biographical sources of their responses to stress. (MKA)

  3. Smokers exhibit biased neural processing of smoking and affective images.

    Science.gov (United States)

    Oliver, Jason A; Jentink, Kade G; Drobes, David J; Evans, David E

    2016-08-01

    There has been growing interest in the role that implicit processing of drug cues can play in motivating drug use behavior. However, the extent to which drug cue processing biases relate to the processing biases exhibited to other types of evocative stimuli is largely unknown. The goal of the present study was to determine how the implicit cognitive processing of smoking cues relates to the processing of affective cues using a novel paradigm. Smokers (n = 50) and nonsmokers (n = 38) completed a picture-viewing task, in which participants were presented with a series of smoking, pleasant, unpleasant, and neutral images while engaging in a distractor task designed to direct controlled resources away from conscious processing of image content. Electroencephalogram recordings were obtained throughout the task for extraction of event-related potentials (ERPs). Smokers exhibited differential processing of smoking cues across 3 different ERP indices compared with nonsmokers. Comparable effects were found for pleasant cues on 2 of these indices. Late cognitive processing of smoking and pleasant cues was associated with nicotine dependence and cigarette use. Results suggest that cognitive biases may extend across classes of stimuli among smokers. This raises important questions about the fundamental meaning of cognitive biases, and suggests the need to consider generalized cognitive biases in theories of drug use behavior and interventions based on cognitive bias modification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Continuous downstream processing for high value biological products: A Review.

    Science.gov (United States)

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  5. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  6. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  7. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  8. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.

    1995-01-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  9. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  10. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.

    Science.gov (United States)

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo

    2018-04-17

    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply

  11. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  12. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  13. Two-way feedback between biology and deep Earth processes

    DEFF Research Database (Denmark)

    Sleep, Norman; Bird, Dennis K.; Pope, Emily Catherine

    The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean...... was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition...... of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth...

  14. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  15. Social and nonsocial affective processing in schizophrenia - An ERP study.

    Science.gov (United States)

    Okruszek, Ł; Wichniak, A; Jarkiewicz, M; Schudy, A; Gola, M; Jednoróg, K; Marchewka, A; Łojek, E

    2016-09-01

    Despite social cognitive dysfunction that may be observed in patients with schizophrenia, the knowledge about social and nonsocial affective processing in schizophrenia is scant. The aim of this study was to examine neurophysiological and behavioural responses to neutral and negative stimuli with (faces, people) and without (animals, objects) social content in schizophrenia. Twenty-six patients with schizophrenia (SCZ) and 21 healthy controls (HC) completed a visual oddball paradigm with either negative or neutral pictures from the Nencki Affective Picture System (NAPS) as targets while EEG was recorded. Half of the stimuli within each category presented social content (faces, people). Negative stimuli with social content produced lower N2 amplitude and higher mean LPP than any other type of stimuli in both groups. Despite differences in behavioural ratings and alterations in ERP processing of affective stimuli (lack of EPN differentiation, decreased P3 to neutral stimuli) SCZ were still able to respond to specific categories of stimuli similarly to HC. The pattern of results suggests that with no additional emotion-related task demands patients with schizophrenia may present similar attentional engagement with negative social stimuli as healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A finite element simulation of biological conversion processes in landfills.

    Science.gov (United States)

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. A finite element simulation of biological conversion processes in landfills

    International Nuclear Information System (INIS)

    Robeck, M.; Ricken, T.; Widmann, R.

    2011-01-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  18. Processes Affecting Groundwater Quality in the La Digue Aquifer, Seychelles

    Energy Technology Data Exchange (ETDEWEB)

    Alcindor, A. [Public Utilities Corporation, Victoria (Seychelles); Sacchi, E. [Dipartimento di Scienze della Terra e dell' ambiente, Universita di Pavia (Italy); Taigbenu, A. E. [University of the Witwatersrand, Johannesburg (South Africa)

    2013-07-15

    This paper presents the results obtained by the public utilities corporation (PUC), within the framework of an IAEA TC project, which aims to evaluate the potential of the la digue aquifer. Several monitoring activities and hydrochemical and isotopic surveys have been conducted. Results indicate the presence of brackish water at shallow depths, and low redox potentials, attesting to the presence of H{sub 2}S and heavy metals. Groundwater quality is affected by the concomitant presence of different adverse factors, namely aquifer characteristics, hydrogeology, and anthropogenic pressure. In addition, seawater penetrates the river course during high tides and infiltrates through the recharge area of the aquifer that is close to the actual pumping station. The positioning of non return high tide gates, an easy and low cost intervention, could enhance groundwater quality. The understanding of the main processes affecting groundwater quality helped in the identification of areas favourable for new wells, located at higher elevations. (author)

  19. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    Science.gov (United States)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  20. Synchronous contextual irregularities affect early scene processing: replication and extension.

    Science.gov (United States)

    Mudrik, Liad; Shalgi, Shani; Lamy, Dominique; Deouell, Leon Y

    2014-04-01

    Whether contextual regularities facilitate perceptual stages of scene processing is widely debated, and empirical evidence is still inconclusive. Specifically, it was recently suggested that contextual violations affect early processing of a scene only when the incongruent object and the scene are presented a-synchronously, creating expectations. We compared event-related potentials (ERPs) evoked by scenes that depicted a person performing an action using either a congruent or an incongruent object (e.g., a man shaving with a razor or with a fork) when scene and object were presented simultaneously. We also explored the role of attention in contextual processing by using a pre-cue to direct subjects׳ attention towards or away from the congruent/incongruent object. Subjects׳ task was to determine how many hands the person in the picture used in order to perform the action. We replicated our previous findings of frontocentral negativity for incongruent scenes that started ~ 210 ms post stimulus presentation, even earlier than previously found. Surprisingly, this incongruency ERP effect was negatively correlated with the reaction times cost on incongruent scenes. The results did not allow us to draw conclusions about the role of attention in detecting the regularity, due to a weak attention manipulation. By replicating the 200-300 ms incongruity effect with a new group of subjects at even earlier latencies than previously reported, the results strengthen the evidence for contextual processing during this time window even when simultaneous presentation of the scene and object prevent the formation of prior expectations. We discuss possible methodological limitations that may account for previous failures to find this an effect, and conclude that contextual information affects object model selection processes prior to full object identification, with semantic knowledge activation stages unfolding only later on. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Management options for food production systems affected by a nuclear accident. Task 7: biological treatment of contaminated milk

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Marchant, J.K.; Woodman, R.F.M.; Wilkins, B.T.; Mercer, J.A.

    2003-01-01

    In the event of a nuclear accident affecting the UK, regulation of contamination in the foodchain would involve both the Food Standards Agency (FSA) and the Environment Agency (EA). Restrictions would be based on intervention levels imposed by the Council of the European Communities (often referred to as Council Food Intervention Levels, CFILs). FSA would be responsible for preventing commercial foodstuffs with concentrations of radionuclides above the CFILs from entering the foodchain, while EA would regulate the storage and disposal of the waste food. Milk is particularly important in this respect because it is produced continually in large quantities in many parts of the UK. An evaluation of various options for the management of waste foodstuffs has been carried out by NRPB, with support from FSA and its predecessor, the Ministry of Agriculture, Fisheries and Food, and EA. This report describes an evaluation of the practicability of one of those options, namely the biological treatment of contaminated milk. Whole milk has a high content of organic matter and in consequence a high biochemical oxygen demand (BOD) and chemical oxygen demand (COD). If not disposed of properly, releases of whole milk into the environment can have a substantial detrimental effect because of the high BOD. Biological treatments are therefore potentially an attractive management option because the fermentation by bacteria reduces the BOD in the resultant liquid effluent. The objectives of this study were as follows: a. To compile information about the options available for the biological treatment of milk; b. To establish the legal position; c. To assess practicability in terms of technical feasibility, capacity, cost, environmental and radiological impacts and acceptability; d. To assess the radiation doses that might be received by process operators, contractors, farmers and the general public from the biological treatment of contaminated milk. The radionuclides of interest were 131II

  2. Commentary: cognitive-affective mechanisms and processes in autobiographical memory.

    Science.gov (United States)

    Conway, Martin A

    2003-03-01

    This commentary highlights some of the interesting points to emerge from the preceding papers about the self, social, and directive functions of autobiographical memory. Additionally some cognitive functions are also considered and especially the way in which autobiographical memory supports, constrains, and maintains the goals of the self. Directions for future research into the self, social, directive, and cognitive-affective functions and processes of autobiographical memory are reviewed. Emphasis is placed on future research into the function of autobiographical memory in representations of attachment.

  3. Major hydrogeochemical processes in an Acid Mine Drainage affected estuary

    International Nuclear Information System (INIS)

    Asta, Maria P.; Calleja, Maria Ll.; Pérez-López, Rafael; Auqué, Luis F.

    2015-01-01

    Highlights: • Mixing of acid riverine water with alkaline seawater was studied in an estuary. • Combination of data and geochemical tools allowed modeling the water mixing. • The main geochemical processes were identified and for the first time quantified. • Water chemistry is the result of mixing, dissolution-precipitation and sorption. • Main reactions: gypsum and calcite dissolution and Al and Fe solids precipitation. - Abstract: This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion–ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH) 3 ); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn)

  4. Affective reactions and context-dependent processing of negations

    Directory of Open Access Journals (Sweden)

    Enrico Rubaltelli

    2008-12-01

    Full Text Available Three experiments demonstrate how the processing of negations is contingent on the evaluation context in which the negative information is presented. In addition, the strategy used to process the negations induced different affective reactions toward the stimuli, leading to inconsistency of preference. Participants were presented with stimuli described by either stating the presence of positive features (explicitly positive alternative or negating the presence of negative features (non-negative alternative. Alternatives were presented for either joint (JE or separate evaluation (SE. Experiment 1 showed that the non-negative stimuli were judged less attractive than the positive ones in JE but not in SE. Experiment 2 revealed that the non-negative stimuli induced a less clear and less positive feeling when they were paired with explicitly positive stimuli rather than evaluated separately. Non-negative options were also found less easy to judge than the positive ones in JE but not in SE. Finally, Experiment 3 showed that people process negations using two different models depending on the evaluation mode. Through a memory task, we found that in JE people process the non-negative attributes as negations of negative features, whereas in SE they directly process the non-negative attributes as positive features.

  5. Extraversion and reward-related processing: probing incentive motivation in affective priming tasks.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Ode, Scott

    2010-10-01

    Based on an incentive motivation theory of extraversion (Depue & Collins, 1999), it was hypothesized that extraverts (relative to introverts) would exhibit stronger positive priming effects in affective priming tasks, whether involving words or pictures. This hypothesis was systematically supported in four studies involving 229 undergraduates. In each of the four studies, and in a subsequent combined analysis, extraversion was positively predictive of positive affective priming effects, but was not predictive of negative affective priming effects. The results bridge an important gap in the literature between biological and trait models of incentive motivation and do so in a way that should be informative to subsequent efforts to understand the processing basis of extraversion as well as incentive motivation. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  6. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  7. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    Science.gov (United States)

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Affective and executive network processing associated with persuasive antidrug messages.

    Science.gov (United States)

    Ramsay, Ian S; Yzer, Marco C; Luciana, Monica; Vohs, Kathleen D; MacDonald, Angus W

    2013-07-01

    Previous research has highlighted brain regions associated with socioemotional processes in persuasive message encoding, whereas cognitive models of persuasion suggest that executive brain areas may also be important. The current study aimed to identify lateral prefrontal brain areas associated with persuasive message viewing and understand how activity in these executive regions might interact with activity in the amygdala and medial pFC. Seventy adolescents were scanned using fMRI while they watched 10 strongly convincing antidrug public service announcements (PSAs), 10 weakly convincing antidrug PSAs, and 10 advertisements (ads) unrelated to drugs. Antidrug PSAs compared with nondrug ads more strongly elicited arousal-related activity in the amygdala and medial pFC. Within antidrug PSAs, those that were prerated as strongly persuasive versus weakly persuasive showed significant differences in arousal-related activity in executive processing areas of the lateral pFC. In support of the notion that persuasiveness involves both affective and executive processes, functional connectivity analyses showed greater coactivation between the lateral pFC and amygdala during PSAs known to be strongly (vs. weakly) convincing. These findings demonstrate that persuasive messages elicit activation in brain regions responsible for both emotional arousal and executive control and represent a crucial step toward a better understanding of the neural processes responsible for persuasion and subsequent behavior change.

  9. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  10. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  11. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    Science.gov (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Strandberg, G.W.; Parrott, J.R. Jr.

    1978-01-01

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m 3 must be reduced to 1 g/m 3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m 3 , where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  13. The Musical Emotional Bursts: A validated set of musical affect bursts to investigate auditory affective processing.

    Directory of Open Access Journals (Sweden)

    Sébastien ePaquette

    2013-08-01

    Full Text Available The Musical Emotional Bursts (MEB consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear and neutrality. These musical bursts were designed to be the musical analogue of the Montreal Affective Voices (MAV – a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 sec improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (n:40 or a clarinet (n:40. The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, nonlinguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli (30 stimuli x 4 [3 emotions + neutral] x 2 instruments by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task; 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80 was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0% and fearful or sad violin (88.0% each MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems.

  14. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  15. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Processing biological literature with customizable Web services supporting interoperable formats.

    Science.gov (United States)

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk. © The Author(s) 2014. Published by Oxford University Press.

  17. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.

    2014-06-01

    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  18. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.

    2006-01-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  19. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  20. Advances in downstream processing of biologics - Spectroscopy: An emerging process analytical technology.

    Science.gov (United States)

    Rüdt, Matthias; Briskot, Till; Hubbuch, Jürgen

    2017-03-24

    Process analytical technologies (PAT) for the manufacturing of biologics have drawn increased interest in the last decade. Besides being encouraged by the Food and Drug Administration's (FDA's) PAT initiative, PAT promises to improve process understanding, reduce overall production costs and help to implement continuous manufacturing. This article focuses on spectroscopic tools for PAT in downstream processing (DSP). Recent advances and future perspectives will be reviewed. In order to exploit the full potential of gathered data, chemometric tools are widely used for the evaluation of complex spectroscopic information. Thus, an introduction into the field will be given. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  2. Posttranslational modifications of desmin and their implication in biological processes and pathologies.

    Science.gov (United States)

    Winter, Daniel L; Paulin, Denise; Mericskay, Mathias; Li, Zhenlin

    2014-01-01

    Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

  3. Crowdsourcing and curation: perspectives from biology and natural language processing.

    Science.gov (United States)

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie; Kyrpides, Nikos; Islamaj Doğan, Rezarta; Cohen, Kevin Bretonnel

    2016-01-01

    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging 'the crowd'; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9-11, 2015). The session consisted of four short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.Database URL: http://www.mitre.org/publications/technical-papers/crowdsourcing-and-curation-perspectives. © The Author(s) 2016. Published by Oxford University Press.

  4. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  5. Language cannot be reduced to biology: perspectives from neuro-developmental disorders affecting language learning.

    Science.gov (United States)

    Vasanta, D

    2005-02-01

    The study of language knowledge guided by a purely biological perspective prioritizes the study of syntax. The essential process of syntax is recursion--the ability to generate an infinite array of expressions from a limited set of elements. Researchers working within the biological perspective argue that this ability is possible only because of an innately specified genetic makeup that is specific to human beings. Such a view of language knowledge may be fully justified in discussions on biolinguistics, and in evolutionary biology. However, it is grossly inadequate in understanding language-learning problems, particularly those experienced by children with neurodevelopmental disorders such as developmental dyslexia, Williams syndrome, specific language impairment and autism spectrum disorders. Specifically, syntax-centered definitions of language knowledge completely ignore certain crucial aspects of language learning and use, namely, that language is embedded in a social context; that the role of envrironmental triggering as a learning mechanism is grossly underestimated; that a considerable extent of visuo-spatial information accompanies speech in day-to-day communication; that the developmental process itself lies at the heart of knowledge acquisition; and that there is a tremendous variation in the orthographic systems associated with different languages. All these (socio-cultural) factors can influence the rate and quality of spoken and written language acquisition resulting in much variation in phenotypes associated with disorders known to have a genetic component. Delineation of such phenotypic variability requires inputs from varied disciplines such as neurobiology, neuropsychology, linguistics and communication disorders. In this paper, I discuss published research that questions cognitive modularity and emphasises the role of the environment for understanding linguistic capabilities of children with neuro-developmental disorders. The discussion pertains

  6. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  7. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  8. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  10. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    Directory of Open Access Journals (Sweden)

    Susan J Cunningham

    Full Text Available Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh = 35.5 °C and the common fiscal Lanius collaris (T(thresh = 33 °C. We used these T(thresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh, in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh technique as a conservation tool.

  11. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  12. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education

    Science.gov (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  13. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  14. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  15. Cognitive structure and the affective domain: on knowing and feeling in biology

    Science.gov (United States)

    Thompson, Tressa L.; Mintzes, Joel J.

    2002-06-01

    This cross-age study explored the structural complexity and propositional validity of knowledge about and attitudes toward sharks, and the relationships among knowledge and attitudes. Responses were elicited from a convenience sample of students (5th, 8th and 11th grade, and college level) and senior citizens (n = 238). All subjects constructed a concept map on sharks and responded to a Likert-type attitude inventory. Based on the work of Novak and Gowin (Leaning How to Learn, Cambridge University Press, 1984), concept maps were scored for frequencies of non-redundant concepts and scientifically valid relationships, levels of hierarchy, incidence of branching and number of crosslinks. The attitude inventory, emerging from Kellert's (The Value of Life: Biological Diversity and Human Society, Island Press, 1996) work, generated subscale scores on four affective dimensions: scientific, naturalistic, moralistic and utilitarian/negative. Significant differences were found among subject groups on all knowledge structure variables and attitudinal dimensions. Gender differences were documented on three of four attitude subscales. A series of simple, mulitiple and canonical correlations revealed moderately strong relationships between knowledge structure variables and attitudinal dimensions. The pattern of these relationships supports conservation education efforts and instructional practices that encourage meaningful learning, knowledge restructuring and conceptual change (Mintzes et al., Assessing Science Understanding: A Human Constructivist View, Academic Press, 2000).

  16. Alternation of cowpea genotypes affects the biology of Callosobruchus maculatus (fabr. (Coleoptera: Bruchidae

    Directory of Open Access Journals (Sweden)

    Lima Marcileyne Pessôa Leite de

    2004-01-01

    Full Text Available Callosobruchus maculatus (Fabr. is an important pest in stored cowpea, Vigna unguiculata (L. Walp., with ample distribution in tropical and subtropical regions. The effect of alternation of cowpea genotypes, susceptible (S and resistant (R, on the biology of (C. maculatus was studied after four generations. A no-choice test was carried out in a completely randomized design, factorial scheme, with five treatments, four host combinations (RR, RS, SR and SS and five replications. Each replication consisted of 30 grains of each genotype infested by two insect couples. The number of eggs per female was not different within or between combinations, evidencing that the genotypes and their alternation did not affect C. maculatus fecundity. Egg viability, however, varied between genotypes and between combinations. In combination RR, the longest duration of the immature stage was verified for genotype IT89KD-245; in addition, all genotypes presented the smallest survival for the same stage, resulting in a higher mortality of the pest. The resistance index categorized combination RR as moderately resistant for genotypes IT89KD-245, BR14-Mulato and BR17-Gurguéia, and as susceptible (S only for IT89KD-260, demonstrating that these combinations were not very adequate for the development of C. maculatus, a fact that was confirmed by the better performance of the pest on the genotype from combination SS, and because of a reduction in its performance when it returned to resistant genotypes.

  17. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  18. Does the different mowing regime affect soil biological activity and floristic composition of thermophilous Pieniny meadow?

    Science.gov (United States)

    Józefowska, Agnieszka; Zaleski, Tomasz; Zarzycki, Jan

    2016-04-01

    The study area was located in the Pieniny National Park in the Carpathian Mountain (Southern Poland). About 30% of Park's area is covered by meadows. The climax stage of this area is forest. Therefore extensive use is indispensable action to keep semi-natural grassland such as termophilous Pieniny meadows, which are characterized by a very high biodiversity. The purpose of this research was to answer the question, how the different way of mowing: traditional scything (H), and mechanical mowing (M) or abandonment of mowing (N) effect on the biological activity of soil. Soil biological activity has been expressed by microbial and soil fauna activity. Microbial activity was described directly by count of microorganisms and indirectly by enzymatic activity (dehydrogenase - DHA) and the microbial biomass carbon content (MBC). Enchytraeidae and Lumbricidae were chosen as representatives of soil fauna. Density and species diversity of this Oligochaeta was determined. Samples were collected twice in June (before mowing) and in September (after mowing). Basic soil properties, such as pH value, organic carbon and nitrogen content, moisture and temperature, were determined. Mean count of vegetative bacteria forms, fungi and Actinobacteria was higher in H than M and N. Amount of bacteria connected with nitrification and denitrification process and Clostridium pasteurianum was the highest in soil where mowing was discontinued 11 years ago. The microbial activity measured indirectly by MBC and DHA indicated that the M had the highest activity. The soil biological activity in second term of sampling had generally higher activity than soil collected in June. That was probably connected with highest organic carbon content in soil resulting from mowing and the end of growing season. Higher earthworm density was in mowing soil (220 and 208 individuals m-2 in H and M respectively) compare to non-mowing one (77 ind. m-2). The density of Enchytraeidae was inversely, the higher density

  19. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  20. Influences of Witnessed Affect on Information Processing in Children.

    Science.gov (United States)

    Bugental, Daphne Blunt; And Others

    1992-01-01

    Autonomic responses of 5- to 10-year-old children were measured while the children watched a videotape in which a doctor and child expressed negative, neutral, or positive affect. For 5- and 6-year-old children, autonomic responses were greatest while watching, and errors in subsequent memory tasks greatest after watching, the negative affect…

  1. Affect and Persuasion: Effects on Motivation for Information Processing.

    Science.gov (United States)

    Leach, Mark M; Stoltenberg, Cal D.

    The relationship between mood and information processing, particularly when reviewing the Elaboration Likelihood Model of persuasion, lacks conclusive evidence. This study was designed to investigate the hypothesis that information processing would be greater for mood-topic congruence than non mood-topic congruence. Undergraduate students (N=216)…

  2. Drying process strongly affects probiotics viability and functionalities.

    Science.gov (United States)

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Attention affects visual perceptual processing near the hand.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  4. Biological features produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Mendez Ribo, Macarena; Pedersen, David Bue

    2017-01-01

    of micro biological features by Additive Manufacturing (AM) processes. The study characterizes the additive manufacturing processes for polymeric micro part productions using the vat photopolymerization method. A specifically designed vat photopolymerization AM machine suitable for precision printing...

  5. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  6. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    Science.gov (United States)

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  7. Process Formulations And Curing Conditions That Affect Saltstone Properties

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  8. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...

  9. Dynamic modelling of processes in rivers affected by precipitation runoff

    DEFF Research Database (Denmark)

    Jacobsen, Judith L.

    1997-01-01

    In this thesis, models for the dynamics of oxygen and organic matter in receiving waters (such as rivers and creeks), which are affected by rain, are developed. A time series analysis framework is used, but presented with special emphasis on continuous time state space models. Also, the concept o....... In most models, precipitation in the form of rain have been included to study the impact from this. Finally, the future and industrial perspectives are presented, along with a list of suggestions for future research related to the subjects considered in this thesis....

  10. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  11. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  12. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  13. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  14. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  15. Social Process Variables Affecting Reading Performance in Delayed Readers.

    Science.gov (United States)

    Lorton, Mary; Kukuk, Christopher

    1978-01-01

    Examines the relationship between 14 social process variables and the reading performances of 180 slow learners, ages 7-15. Finds that two of those factors (brith trauma and being held back in school) emerge as predictors of reading comprehension, word recognition, and spelling. (RL)

  16. Key Process Parameters Affecting Performance of Electro-Coagulation.

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Tito, Duarte Novaes

    2017-01-01

    Roč. 117, JUL (2017), s. 106-112 ISSN 0255-2701 R&D Projects: GA TA ČR TA04020130 Institutional support: RVO:67985858 Keywords : electrocoagulation * dosing concentration * current density Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.234, year: 2016

  17. Stimulus Characteristics Affect Humor Processing in Individuals with Asperger Syndrome

    Science.gov (United States)

    Samson, Andrea C.; Hegenloh, Michael

    2010-01-01

    The present paper aims to investigate whether individuals with Asperger syndrome (AS) show global humor processing deficits or whether humor comprehension and appreciation depends on stimulus characteristics. Non-verbal visual puns, semantic and Theory of Mind cartoons were rated on comprehension, funniness and the punchlines were explained. AS…

  18. Behaviour of radionuclides in biological and non-biological processes at very low concentrations

    International Nuclear Information System (INIS)

    Sinnaeve, J.; Frissel, M.J.; Klugt, N. van der; Geijn, S.C. van de.

    1980-01-01

    Four experiments using a 'biological exchange column', i.e. a cut papyrus stem were carried out. Prior to the passage of the labelled solution containing 250 μCi 137 Cs.l -1 , and 1 μCi 134 Cs.l -1 , the exchange sites of the stem were protonated. Two treatments were carried out, the first with 10 -4 M stable caesium in the labelled solution and the second with 10 -4 M potassium. After detection of the front of activity half way up the stem, 5 cm segments of the stem were cut and counted. (Auth.)

  19. Psychometric Characteristics of the EEAA (Scale of Affective Strategies in the Learning Process)

    Science.gov (United States)

    Villardón-Gallego, Lourdes; Yániz, Concepción

    2014-01-01

    Introduction: Affective strategies for coping with affective states linked to the learning process may be oriented toward controlling emotions or toward controlling motivation. Both types affect performance, directly and indirectly. The objective of this research was to design an instrument for measuring the affective strategies used by university…

  20. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    International Nuclear Information System (INIS)

    Martin, C.; Manzanares, P.

    1994-01-01

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  1. The radiotherapy affects the cognitive processes; La radiotherapie affecte la cognition

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-10-15

    Researchers from the medical center of the free university of Amsterdam report that the radiotherapy can hinder the cognitive functions of patients affected by cerebral tumors treated after a surgery. Even low dose radiation could contribute in their opinion, to the progressive cognitive decline of patients suffering of low grade gliomas, the most commune cerebral tumor. To get these conclusions, 65 patients, whom half of them received a radiotherapy, had a neurological and psychological evaluation twelve years after their treatment. Results: 53% of patients treated by radiotherapy present disorders of attention, memory, execution and speed of information treatment against 27% of these ones that received an only surgery. The researchers conclude to the necessity to take into account this risk in the choice of treatment, or even to avoid radiotherapy in this precise case. (N.C.)

  2. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  3. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  4. Infiltration and runoff generation processes in fire-affected soils

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  5. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  6. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  7. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    Science.gov (United States)

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  8. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores.

    Directory of Open Access Journals (Sweden)

    Lorea Flores

    Full Text Available Habitat complexity can influence predation rates (e.g. by providing refuge but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants, in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants; and 3. as the spatial configuration of structures (measured as fractal dimension. The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology. We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, 'habitat complexity' by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems.

  9. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  10. Suprasegmental information affects processing of talking faces at birth.

    Science.gov (United States)

    Guellai, Bahia; Mersad, Karima; Streri, Arlette

    2015-02-01

    From birth, newborns show a preference for faces talking a native language compared to silent faces. The present study addresses two questions that remained unanswered by previous research: (a) Does the familiarity with the language play a role in this process and (b) Are all the linguistic and paralinguistic cues necessary in this case? Experiment 1 extended newborns' preference for native speakers to non-native ones. Given that fetuses and newborns are sensitive to the prosodic characteristics of speech, Experiments 2 and 3 presented faces talking native and nonnative languages with the speech stream being low-pass filtered. Results showed that newborns preferred looking at a person who talked to them even when only the prosodic cues were provided for both languages. Nonetheless, a familiarity preference for the previously talking face is observed in the "normal speech" condition (i.e., Experiment 1) and a novelty preference in the "filtered speech" condition (Experiments 2 and 3). This asymmetry reveals that newborns process these two types of stimuli differently and that they may already be sensitive to a mismatch between the articulatory movements of the face and the corresponding speech sounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara

    2012-03-30

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion. © 2012 SETAC.

  12. From neurons to epidemics: How trophic coherence affects spreading processes

    Science.gov (United States)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  13. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  14. Mistaking geography for biology: inferring processes from species distributions.

    Science.gov (United States)

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  16. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  17. Assessment of the Biological Treatability of Black Tea Processing ...

    African Journals Online (AJOL)

    The anaerobic degradability of tea beverage processing effluent was assessed using a stationary upflow anaerobic filter. The filter, with an active column of 1.2m height, inner diameter of 100 mm and filled with rock as the attachment medium was operated at room temperature ranging between 20-250C throughout the ...

  18. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days.

    Science.gov (United States)

    Grifoni, D; Zipoli, G; Sabatini, F; Messeri, G; Bacci, L

    2013-12-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photokeratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process.

  19. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days

    International Nuclear Information System (INIS)

    Grifoni, D.; Zipoli, G.; Sabatini, F.; Messeri, G.; Bacci, L.

    2013-01-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photo-keratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process. (authors)

  20. Preliminary investigation of processes that affect source term identification

    International Nuclear Information System (INIS)

    Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.

    1991-09-01

    Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ( 3 H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total 3 H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon et al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use 3 H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily 3 H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the 3 H discharge from SWSA 5 to streams is increasing or decreasing

  1. Drugs affecting prelamin A processing: Effects on heterochromatin organization

    International Nuclear Information System (INIS)

    Mattioli, Elisabetta; Columbaro, Marta; Capanni, Cristina; Santi, Spartaco; Maraldi, Nadir M.; D'Apice, M. Rosaria; Novelli, Giuseppe; Riccio, Massimo; Squarzoni, Stefano; Foisner, Roland; Lattanzi, Giovanna

    2008-01-01

    Increasing interest in drugs acting on prelamin A has derived from the finding of prelamin A involvement in severe laminopathies. Amelioration of the nuclear morphology by inhibitors of prelamin A farnesylation has been widely reported in progeroid laminopathies. We investigated the effects on chromatin organization of two drugs inhibiting prelamin A processing by an ultrastructural and biochemical approach. The farnesyltransferase inhibitor FTI-277 and the non-peptidomimetic drug N-acetyl-S-farnesyl-L-cysteine methylester (AFCMe) were administered to cultured control human fibroblasts for 6 or 18 h. FTI-277 interferes with protein farnesylation causing accumulation of non-farnesylated prelamin A, while AFCMe impairs the last cleavage of the lamin A precursor and is expected to accumulate farnesylated prelamin A. FTI-277 caused redistribution of heterochromatin domains at the nuclear interior, while AFCMe caused loss of heterochromatin domains, increase of nuclear size and nuclear lamina thickening. At the biochemical level, heterochromatin-associated proteins and LAP2α were clustered at the nuclear interior following FTI-277 treatment, while they were unevenly distributed or absent in AFCMe-treated nuclei. The reported effects show that chromatin is an immediate target of FTI-277 and AFCMe and that dramatic remodeling of chromatin domains occurs following treatment with the drugs. These effects appear to depend, at least in part, on the accumulation of prelamin A forms, since impairment of prelamin A accumulation, here obtained by 5-azadeoxycytidine treatment, abolishes the chromatin effects. These results may be used to evaluate downstream effects of FTIs or other prelamin A inhibitors potentially useful for the therapy of laminopathies

  2. Conserving forest biological diversity: How the Montreal Process helps achieve sustainability

    Science.gov (United States)

    Mark Nelson; Guy Robertson; Kurt. Riitters

    2015-01-01

    Forests support a variety of ecosystems, species and genes — collectively referred to as biological diversity — along with important processes that tie these all together. With the growing recognition that biological diversity contributes to human welfare in a number of important ways such as providing food, medicine and fiber (provisioning services...

  3. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  4. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  5. The Development and Application of Affective Assessment in an Upper-Level Cell Biology Course

    Science.gov (United States)

    Kitchen, Elizabeth; Reeve, Suzanne; Bell, John D.; Sudweeks, Richard R.; Bradshaw, William S.

    2007-01-01

    This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student…

  6. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  7. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Czech Academy of Sciences Publication Activity Database

    Domazet Jurašin, D.; Ćurlin, M.; Capjak, I.; Crnković, T.; Lovrić, M.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 7, 15 Feb (2016), s. 246-262 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : biological fluids * colloidal stability * maghemite Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.127, year: 2016

  8. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability

    NARCIS (Netherlands)

    Mia, S.; van Groeningen, J.W.; Van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, Liesje; Jeffery, S.

    2014-01-01

    Increased biological nitrogen fixation (BNF) by legumes has been reported following biochar application to soils, but the mechanisms behind this phenomenon remain poorly elucidated. We investigated the effects of different biochar application rates on BNF in red clover (Trifolium pratense L.). Red

  9. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  10. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    International Nuclear Information System (INIS)

    Petrov, E.G.; Teslenko, V.I.

    2010-01-01

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X 3 receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  11. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, E.G., E-mail: epetrov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street, 14-b, UA-03680 Kiev (Ukraine); Teslenko, V.I. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street, 14-b, UA-03680 Kiev (Ukraine)

    2010-10-05

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X{sub 3} receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  12. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  13. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  14. The Affective Brain : Novel insights into the biological mechanisms of motivation and emotion

    NARCIS (Netherlands)

    Schutter, D.J.L.G.

    2003-01-01

    Affective neuroscience is a new emerging doctrine in the brain sciences, which studies the neurobiological correlates of motivation and emotion. The research reported in this thesis starts with discussing empirical studies on the lateralized involvement of the prefrontal cortex in

  15. Chemical and Biological Defense: DOD Needs Consistent Policies and Clear Processes to Address the Survivability of Weapon Systems Against Chemical and Biological Threats

    National Research Council Canada - National Science Library

    2006-01-01

    DOD, joint, and military service weapon system acquisition policies inconsistently address and do not establish a clear process for considering and testing system chemical and biological survivability...

  16. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  17. Affect of different ICT processing parameters to the quality of tomograms

    International Nuclear Information System (INIS)

    Zhou Jiang; Sun Lingxia; Ye Yunchang

    2009-01-01

    The quality of ICT tomograms is affected by detecting processing parameters and image processing methods besides the performances of ICT systems. Optimal processing parameters and image processing methods can promote not only the quality of tomogram but also the resolution. Some research work was carried out about processing parameters and image processing methods including choice of collimator, filter, false color composite image. And some examples were given in this paper, which can provide the ICT analyst with reference. (authors)

  18. He throws like a girl (but only when he's sad): emotion affects sex-decoding of biological motion displays.

    Science.gov (United States)

    Johnson, Kerri L; McKay, Lawrie S; Pollick, Frank E

    2011-05-01

    Gender stereotypes have been implicated in sex-typed perceptions of facial emotion. Such interpretations were recently called into question because facial cues of emotion are confounded with sexually dimorphic facial cues. Here we examine the role of visual cues and gender stereotypes in perceptions of biological motion displays, thus overcoming the morphological confounding inherent in facial displays. In four studies, participants' judgments revealed gender stereotyping. Observers accurately perceived emotion from biological motion displays (Study 1), and this affected sex categorizations. Angry displays were overwhelmingly judged to be men; sad displays were judged to be women (Studies 2-4). Moreover, this pattern remained strong when stimuli were equated for velocity (Study 3). We argue that these results were obtained because perceivers applied gender stereotypes of emotion to infer sex category (Study 4). Implications for both vision sciences and social psychology are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  20. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  1. Facial affect processing and depression susceptibility: cognitive biases and cognitive neuroscience.

    Science.gov (United States)

    Bistricky, Steven L; Ingram, Rick E; Atchley, Ruth Ann

    2011-11-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal experience, cognition, and social behavior. We therefore review the burgeoning depressive facial affect processing literature and examine its potential for integrating disciplines, theories, and research. In particular, we evaluate studies in which information processing or cognitive neuroscience paradigms were used to assess facial affect processing in depressed and depression-susceptible populations. Most studies have assessed and supported cognitive models. This research suggests that depressed and depression-vulnerable groups show abnormal facial affect interpretation, attention, and memory, although findings vary based on depression severity, comorbid anxiety, or length of time faces are viewed. Facial affect processing biases appear to correspond with distinct neural activity patterns and increased depressive emotion and thought. Biases typically emerge in depressed moods but are occasionally found in the absence of such moods. Indirect evidence suggests that childhood neglect might cultivate abnormal facial affect processing, which can impede social functioning in ways consistent with cognitive-interpersonal and interpersonal models. However, reviewed studies provide mixed support for the social risk model prediction that depressive states prompt cognitive hypervigilance to social threat information. We recommend prospective interdisciplinary research examining whether facial affect processing abnormalities promote-or are promoted by-depressogenic attachment experiences, negative thinking, and social dysfunction.

  2. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.

    Science.gov (United States)

    Segner, Helmut

    2011-10-01

    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  3. Simulation and Analysis of Complex Biological Processes: an Organisation Modelling Perspective

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2005-01-01

    This paper explores how the dynamics of complex biological processes can be modelled and simulated as an organisation of multiple agents. This modelling perspective identifies organisational structure occurring in complex decentralised processes and handles complexity of the analysis of the dynamics

  4. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    Energy Technology Data Exchange (ETDEWEB)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.

    2009-07-01

    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  5. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    International Nuclear Information System (INIS)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.

    2009-01-01

    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  6. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  7. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells.

    Science.gov (United States)

    Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela

    2016-07-01

    More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.

  8. The Biological Nature of Geochemical Proxies: algal symbionts affect coral skeletal chemistry

    Science.gov (United States)

    Owens, K.; Cohen, A. L.; Shimizu, N.

    2001-12-01

    The strontium-calcium ratio (Sr/Ca) of reef coral skeleton is an important ocean temperature proxy that has been used to address some particularly controversial climate change issues. However, the paleothermometer has sometimes proven unreliable and there are indications that the temperature-dependence of Sr/Ca in coral aragonite is linked to the photosynthetic activity of algal symbionts (zooxanthellae) in coral tissue. We examined the effect of algal symbiosis on skeletal chemistry using Astrangia danae, a small colonial temperate scleractinian that occurs naturally with and without zooxanthellae. Live symbiotic (deep brown) and asymbiotic (white) colonies of similar size were collected in Woods Hole where water temperatures fluctuate seasonally between -2oC and 23oC. We used a microbeam technique (Secondary Ion Mass Spectrometry) and a 30 micron diameter sampling beam to construct high-resolution Sr/Ca profiles, 2500 microns long, down the growth axes of the outer calical (thecal) walls. Profiles generated from co-occuring symbiotic and asymbiotic colonies are remarkably different despite their exposure to identical water temperatures. Symbiotic coral Sr/Ca displays four large-amplitude annual cycles with high values in the winter, low values in the summer and a temperature dependence similar to that of tropical reef corals. By comparison, Sr/Ca profiles constructed from asymbiotic coral skeleton display little variability over the same time period. Asymbiont Sr/Ca is relatively insensitive to the enormous temperature changes experienced over the year; the temperature dependence is similar to that of nighttime skeletal deposits in tropical reef corals and non-biological aragonite precipitates. We propose that the large variations in skeletal Sr/Ca observed in all symbiont-hosting coral species are not related to SST variability per se but are driven primarily by large seasonal variations in skeletal calcification rate associated with symbiont photosynthesis. Our

  9. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  10. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  11. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    Science.gov (United States)

    Jacobs, Arthur M.; Võ, Melissa L.-H.; Briesemeister, Benny B.; Conrad, Markus; Hofmann, Markus J.; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only “cold” information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such “hot” reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies. PMID:26089808

  12. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  13. Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.

    Science.gov (United States)

    Keil, Andreas

    2006-01-01

    Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.

  14. Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults.

    Science.gov (United States)

    Sebastian, Catherine L; Fontaine, Nathalie M G; Bird, Geoffrey; Blakemore, Sarah-Jayne; Brito, Stephane A De; McCrory, Eamon J P; Viding, Essi

    2012-01-01

    Theory of Mind (ToM) is the ability to attribute thoughts, intentions and beliefs to others. This involves component processes, including cognitive perspective taking (cognitive ToM) and understanding emotions (affective ToM). This study assessed the distinction and overlap of neural processes involved in these respective components, and also investigated their development between adolescence and adulthood. While data suggest that ToM develops between adolescence and adulthood, these populations have not been compared on cognitive and affective ToM domains. Using fMRI with 15 adolescent (aged 11-16 years) and 15 adult (aged 24-40 years) males, we assessed neural responses during cartoon vignettes requiring cognitive ToM, affective ToM or physical causality comprehension (control). An additional aim was to explore relationships between fMRI data and self-reported empathy. Both cognitive and affective ToM conditions were associated with neural responses in the classic ToM network across both groups, although only affective ToM recruited medial/ventromedial PFC (mPFC/vmPFC). Adolescents additionally activated vmPFC more than did adults during affective ToM. The specificity of the mPFC/vmPFC response during affective ToM supports evidence from lesion studies suggesting that vmPFC may integrate affective information during ToM. Furthermore, the differential neural response in vmPFC between adult and adolescent groups indicates developmental changes in affective ToM processing.

  15. Study of individual and group affective processes in the crew of a simulated mission to Mars: Positive affectivity as a valuable indicator of changes in the crew affectivity

    Science.gov (United States)

    Poláčková Šolcová, Iva; Lačev, Alek; Šolcová, Iva

    2014-07-01

    The success of a long-duration space mission depends on various technical demands as well as on the psychological (cognitive, affective, and motivational) adaptation of crewmembers and the quality of interactions within the crew. We examined the ways crewmembers of a 520-day simulated spaceflight to Mars (held in the Institute for Biomedical Problems, in Moscow) experienced and regulated their moods and emotions. Results show that crewmembers experienced predominantly positive emotions throughout their 520-day isolation and the changes in mood of the crewmembers were asynchronous and balanced. The study suggests that during the simulation, crewmembers experienced and regulated their emotions differently than they usually do in their everyday life. In isolation, crewmembers preferred to suppress and neutralize their negative emotions and express overtly only emotions with positive valence. Although the affective processes were almost invariable throughout the simulation, two periods of time when the level of positive emotions declined were identified. Regarding the findings, the paper suggests that changes in positive affectivity could be a more valuable indicator of human experience in demanding but professional environments than changes in negative affectivity. Finally, the paper discusses the phenomenology of emotions during a real space mission.

  16. The Biological Rhythms Interview of Assessment in Neuropsychiatry in patients with bipolar disorder: correlation with affective temperaments and schizotypy

    Directory of Open Access Journals (Sweden)

    Ewa Dopierala

    Full Text Available Objective: To assess the relationship of biological rhythms, evaluated by the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN, with affective temperaments and schizotypy. Methods: The BRIAN assessment, along with the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire (TEMPS-A and the Oxford-Liverpool Inventory for Feelings and Experiences (O-LIFE, was administered to 54 patients with remitted bipolar disorder (BD and 54 healthy control (HC subjects. Results: The TEMPS-A cyclothymic temperament correlated positively and the hyperthymic temperament correlated negatively with BRIAN scores in both the BD and HC groups, although the correlation was stronger in BD subjects. Depressive temperament was associated with BRIAN scores in BD but not in HC; conversely, the irritable temperament was associated with BRIAN scores in HC, but not in BD. Several positive correlations between BRIAN scores and the schizotypal dimensions of the O-LIFE were observed in both BD and HC subjects, especially with cognitive disorganization and less so with unusual experiences and impulsive nonconformity. A correlation with introversion/anhedonia was found only in BD subjects. Conclusion: Cyclothymic and depressive temperaments predispose to disturbances of biological rhythms in BD, while a hyperthymic temperament can be protective. Similar predispositions were also found for all schizotypal dimensions, mostly for cognitive disorganization.

  17. About the significance of biological factors affecting pregnancy a married couple

    Directory of Open Access Journals (Sweden)

    V. V. Yarman

    2013-01-01

    Full Text Available A brief review of the literature analysis of the importance and interdependence of the main factors influencing the occurrence of pregnancy as a pair in the treatment of infertility, such as the woman's age, ovarian reserve, the semen of a man and the duration of infertility. The review also presents the data concerning the practical implications of sexual constitution and sexual maturation in men and women in the pubertal period. When evaluating male fertility invariably significant factor in the prediction of pregnancy are, impregnating ability to ejaculate. Infertility is more common in males with delayed development in the pubertal period with a weak type of sexual constitution. Results of treatment of male infertility, the dynamics of the semen and pregnancy of the couple on the background of pathogenetic therapy correlates with the type of sexual constitution. Widely deployed discussion about the existence of the male equivalent of female menopause mainly concerns the problems of men's sexual health. Of exceptional importance for the prediction of treatment of infertility has ovarian reserve, which is closely associated with age women. Formation of menstrual function occurs in the pubertal period of sexual development, in this age of menarche is the leading symptom of type of sexual constitution of women that do not change throughout the life hereafter. The presence of menstrual function and even ovulation does not reflect the reproductive capacity of women. Insufficient information content of the chronological age of a woman, as an indicator of the reproductive capacity of ovarian dictates the necessity of the development of tests that determine individual biological age of a woman, perhaps connected with the type of sexual constitution. In this regard, the study of sexual constitution partners is of great scientific and practical interest.

  18. About the significance of biological factors affecting pregnancy a married couple

    Directory of Open Access Journals (Sweden)

    V. V. Yarman

    2014-11-01

    Full Text Available A brief review of the literature analysis of the importance and interdependence of the main factors influencing the occurrence of pregnancy as a pair in the treatment of infertility, such as the woman's age, ovarian reserve, the semen of a man and the duration of infertility. The review also presents the data concerning the practical implications of sexual constitution and sexual maturation in men and women in the pubertal period. When evaluating male fertility invariably significant factor in the prediction of pregnancy are, impregnating ability to ejaculate. Infertility is more common in males with delayed development in the pubertal period with a weak type of sexual constitution. Results of treatment of male infertility, the dynamics of the semen and pregnancy of the couple on the background of pathogenetic therapy correlates with the type of sexual constitution. Widely deployed discussion about the existence of the male equivalent of female menopause mainly concerns the problems of men's sexual health. Of exceptional importance for the prediction of treatment of infertility has ovarian reserve, which is closely associated with age women. Formation of menstrual function occurs in the pubertal period of sexual development, in this age of menarche is the leading symptom of type of sexual constitution of women that do not change throughout the life hereafter. The presence of menstrual function and even ovulation does not reflect the reproductive capacity of women. Insufficient information content of the chronological age of a woman, as an indicator of the reproductive capacity of ovarian dictates the necessity of the development of tests that determine individual biological age of a woman, perhaps connected with the type of sexual constitution. In this regard, the study of sexual constitution partners is of great scientific and practical interest.

  19. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  20. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    Science.gov (United States)

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  1. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  2. Attachment affects social information processing: Specific electrophysiological effects of maternal stimuli.

    Science.gov (United States)

    Wu, Lili; Gu, Ruolei; Zhang, Jianxin

    2016-01-01

    Attachment is critical to each individual. It affects the cognitive-affective processing of social information. The present study examines how attachment affects the processing of social information, specifically maternal information. We assessed the behavioral and electrophysiological responses to maternal information (compared to non-specific others) in a Go/No-go Association Task (GNAT) with 22 participants. The results illustrated that attachment affected maternal information processing during three sequential stages of information processing. First, attachment affected visual perception, reflected by enhanced P100 and N170 elicited by maternal information as compared to others information. Second, compared to others, mother obtained more attentional resources, reflected by faster behavioral response to maternal information and larger P200 and P300. Finally, mother was evaluated positively, reflected by shorter P300 latency in a mother + good condition as compared to a mother + bad condition. These findings indicated that the processing of attachment-relevant information is neurologically differentiated from other types of social information from an early stage of perceptual processing to late high-level processing.

  3. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    Science.gov (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Relation between facial affect recognition and configural face processing in antipsychotic-free schizophrenia.

    Science.gov (United States)

    Fakra, Eric; Jouve, Elisabeth; Guillaume, Fabrice; Azorin, Jean-Michel; Blin, Olivier

    2015-03-01

    Deficit in facial affect recognition is a well-documented impairment in schizophrenia, closely connected to social outcome. This deficit could be related to psychopathology, but also to a broader dysfunction in processing facial information. In addition, patients with schizophrenia inadequately use configural information-a type of processing that relies on spatial relationships between facial features. To date, no study has specifically examined the link between symptoms and misuse of configural information in the deficit in facial affect recognition. Unmedicated schizophrenia patients (n = 30) and matched healthy controls (n = 30) performed a facial affect recognition task and a face inversion task, which tests aptitude to rely on configural information. In patients, regressions were carried out between facial affect recognition, symptom dimensions and inversion effect. Patients, compared with controls, showed a deficit in facial affect recognition and a lower inversion effect. Negative symptoms and lower inversion effect could account for 41.2% of the variance in facial affect recognition. This study confirms the presence of a deficit in facial affect recognition, and also of dysfunctional manipulation in configural information in antipsychotic-free patients. Negative symptoms and poor processing of configural information explained a substantial part of the deficient recognition of facial affect. We speculate that this deficit may be caused by several factors, among which independently stand psychopathology and failure in correctly manipulating configural information. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  5. Changes in attentional processing and affective reactivity in pregnancy and postpartum

    Directory of Open Access Journals (Sweden)

    Gollan JK

    2014-11-01

    Full Text Available Jackie K Gollan, Laina Rosebrock, Denada Hoxha, Katherine L Wisner Asher Center for the Study and Treatment of Depressive Disorders, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA Abstract: The aim of this review is to provide an overview of the research in attentional processing and affective reactivity in pregnancy and postpartum to inform future research. Numerous changes occur in attentional processing and affective reactivity across the childbearing period. This review focuses on the definition and methods of measuring attentional processing and affective reactivity. We discuss research studies that have examined the changes in these two processes during the perinatal phases of pregnancy and postpartum, with and without depression and anxiety. We evaluate the importance of using multiple levels of measurement, including physiological and neuroimaging techniques, to study these processes via implicit and explicit tasks. Research that has identified regions of brain activation using functional magnetic resonance imaging as well as other physiological assessments is integrated into the discussion. The importance of using sophisticated methodological techniques in future studies, such as multiple mediation models, for the purpose of elucidating mechanisms of change during these processes in pregnancy and postpartum is emphasized. We conclude with a discussion of the effect of these processes on maternal psychological functioning and infant outcomes. These processes support a strategy for individualizing treatment for pregnant and postpartum women suffering from depression and anxiety. Keywords: attentional processing, emotion, affective reactivity, depression, pregnancy, postpartum

  6. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells

    International Nuclear Information System (INIS)

    Kuehne, M.; Rothkamm, K.; Loebrich, M.

    2002-01-01

    In an attempt to investigate the effect of radiation quality, dose and specific repair pathways on correct and erroneous rejoining of DNA double strand breaks (DSBs), an assay was applied that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionising radiation. While substantial misrejoining occurs in mammalian cells after high acute irradiation doses, decreasing misrejoining frequencies were observed in dose fractionation experiments with X rays. In line with this finding, continuous irradiation with gamma rays at low dose rate leads to non detectable misrejoining. This indicates that the probability for a DSB to be misrejoined decreases drastically when DSBs are separated in time and space. The same dose fractionation approach was applied to determine DSB misrejoining after a particle exposure. In contrast to the results with X rays, there was no significant decrease in DSB misrejoining with increasing fractionation. This suggests that DSB misrejoining after a irradiation is not significantly affected by a separation of particle tracks. To identify the enzymatic pathways that are involved in DSB misrejoining, cell lines deficient in non-homologous end-joining (NHEJ) were examined. After high X ray doses, DSB misrejoining is considerable reduced in NHEJ mutants. Low dose rate experiments show elevated DSB misrejoining in NHEJ mutants compared with wild-type cells. The authors propose that NHEJ serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space. (author)

  7. Thinking back about a positive event: The impact of processing style on positive affect

    Directory of Open Access Journals (Sweden)

    Sabine eNelis

    2015-03-01

    Full Text Available The manner in which individuals recall an autobiographical positive life event has affective consequences. Two studies addressed the processing styles during positive memory recall in a non-clinical sample. Participants retrieved a positive memory which was self-generated (Study 1, n = 70 or experimenter-chosen (i.e., academic achievement, Study 2, n = 159, followed by the induction of one of three processing styles (between-subjects: In Study 1, a ‘concrete/imagery’ vs. ‘abstract/verbal’ processing style was compared. In Study 2, a ‘concrete/imagery’, ‘abstract/verbal’, and ‘comparative/verbal’ processing style were compared. The processing of a personal memory in a concrete/imagery-based way led to a larger increase in positive affect compared to abstract/verbal processing in Study 1, as well as compared to comparative/verbal thinking in Study 2. Results of Study 2 further suggest that it is making unfavourable verbal comparisons that may hinder affective benefits to positive memories (rather then general abstract/verbal processing per se. The comparative/verbal thinking style failed to lead to improvements in positive affect, and with increasing levels of depressive symptoms it had a more negative impact on change in positive affect. We found no evidence that participant’s tendency to have dampening thoughts in response to positive affect in daily life contributed to the affective impact of positive memory recall. The results support the potential for current trainings in boosting positive memories and mental imagery, and underline the search for parameters that determine at times deleterious outcomes of abstract/verbal memory processing in the face of positive information.

  8. Loneliness in late-life depression: structural and functional connectivity during affective processing.

    Science.gov (United States)

    Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C

    2016-09-01

    Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.

  9. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  10. Gender effects in alcohol dependence: an fMRI pilot study examining affective processing.

    Science.gov (United States)

    Padula, Claudia B; Anthenelli, Robert M; Eliassen, James C; Nelson, Erik; Lisdahl, Krista M

    2015-02-01

    Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Fearful Condition-The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition-AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. Copyright © 2015 by the Research Society on Alcoholism.

  11. A Pontine Region is a Neural Correlate of the Human Affective Processing Network

    Directory of Open Access Journals (Sweden)

    Tatia M.C. Lee

    2015-11-01

    Full Text Available The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.

  12. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  13. Fixation and utilization of CO2 by biological and/or chemical processes

    International Nuclear Information System (INIS)

    Hiromichi, N.

    1994-01-01

    This paper presents the carbon dioxide fixation and utilisation by biological and/or chemical processes. It presents research objectives and program contents for the effective fixation of carbon dioxide by micro-organism and its hydrogenation. (TEC). 5 figs., 2 tabs

  14. Investigation of the Nature of Metaconceptual Processes of Pre-Service Biology Teachers

    Science.gov (United States)

    Yuruk, Nejla; Selvi, Meryem; Yakisan, Mehmet

    2017-01-01

    Purpose of Study: The aim of this study is to investigate the nature of pre-service biology teachers' metaconceptual processes that were active as they participated in metaconceptual teaching activities. Methods: Several instructional activities, including poster drawing, concept mapping, group and class discussions, and journal writing, were…

  15. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  16. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  17. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Science.gov (United States)

    Drier, Yotam; Domany, Eytan

    2011-03-14

    The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  18. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Directory of Open Access Journals (Sweden)

    Yotam Drier

    2011-03-01

    Full Text Available The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  19. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Science.gov (United States)

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  20. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Radiation biology using synchrotron radiation. In relation to radiation chemistry as an initial process

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1995-01-01

    Radiation biology using synchrotron radiation have been investigated, focusing on the mechanism of the formation of molecular damage. This paper introduces recent outcome of these studies. First, the process from imparted energy to the formation of molecular damage is outlined. The previous studies can be largely categorized as dealing with (1) biological effects of inner-shell ionization on elements composing the living body and (2) X-ray energy dependence of biological effects. Bromine and phosphorus are used as elements for the study of inner-cell ionization. In the study on lethal effects of monochromatic soft X-rays on the BrdUMP-incorporated yeast cells, Auger enhancement was found to occur. The first report on the effects of K-shell absorption of cellular phosphorus atoms has revealed that biological effects on cellular lethality and genetic changes was enhanced by 40%. Plasmid DNA and oligonucleotide have been used to study biological effects of vacuum ultraviolet rays to monochromatic soft X-ray, which makes it possible to study strand breaks. Because experimental production of energy required for the formation of double strand breaks has become possible, synchrotron radiation plays a very important role in radiation biological studies. Finally, future issues are presented. (N.K.)

  2. The mechanism of valence-space metaphors: ERP evidence for affective word processing.

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations

  3. The Mechanism of Valence-Space Metaphors: ERP Evidence for Affective Word Processing

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say “feeling down” or “cheer up” in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding

  4. Important processes affecting the release and migration of radionuclides from a deep geological repository

    International Nuclear Information System (INIS)

    Barátová, Dana; Nečas, Vladimír

    2017-01-01

    The processes that affect significantly the transport of contaminants through the near field and far field of a deep geological repository of spent nuclear fuel were studied. The processes can be generally divided into (i) processes related to the release of radionuclides from the spent nuclear fuel; (ii) processes related to the radionuclide transport mechanisms (such as advection and diffusion); and (iii) processes affecting the rate of radionuclide migration through the multi-barrier repository system. A near-field and geosphere model of an unspecified geological repository sited in a crystalline rock is also described. Focus of the treatment is on the effects of the different processes on the activity flow of the major safety-relevant radionuclides. The activity flow was simulated for one spent fuel cask by using the GoldSim simulation tool. (orig.)

  5. Quantitative evaluation of the effect of parameters affecting biological and physicochemical phosphate removal from wastewaters in a Multi-Soil-Layering system

    Directory of Open Access Journals (Sweden)

    Khaoula LAMZOURI

    2017-09-01

    Full Text Available Wastewater disposal is a serious problem in Moroccan rural area. Discharged with high levels of phosphorus and nitrogen can result in eutrophication of receiving waters. Biological processes are the most adapted alternative to the needs of these areas, such as the Multi-Soil-Layering (MSL system. The process of rural wastewater treatment by MSL, which is an innovative system used for the first time in Morocco, was studied by modelling the relationships between a set of environmental factors and total phosphorus removed, based upon 153 sampling. Three MSL pilot plants, constructed in three 36 cm × 30 cm × 65 cm plastic boxes, were continuously fed with domestic wastewater, with different hydraulic loading rate (HLR of 250, 500 and 1000 l/m2/day. This study was to investigate and quantify the effect of parameters affecting biological and physico-chemical phosphate removal from wastewaters in this system, using neural networks (NNs and multiple regression analysis (MRA. The results show the influence of the hydraulic loading rate (HLR, Hydrogen potential (pH, phosphorus load (PL, nitrite (NO2--N, Dissolved Oxygen (DO, Biochemical Oxygen Demand (BOD5, and the Nitrate-nitrogen (NO3–-N in the phosphorus removal with a contribution of 36, 16, 15, 12, 9, 7 and 6% respectively.

  6. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  7. On whether mirror neurons play a significant role in processing affective prosody.

    Science.gov (United States)

    Ramachandra, Vijayachandra

    2009-02-01

    Several behavioral and neuroimaging studies have indicated that both right and left cortical structures and a few subcortical ones are involved in processing affective prosody. Recent investigations have shown that the mirror neuron system plays a crucial role in several higher-level functions such as empathy, theory of mind, language, etc., but no studies so far link the mirror neuron system with affective prosody. In this paper is a speculation that the mirror neuron system, which serves as a common neural substrate for different higher-level functions, may play a significant role in processing affective prosody via its connections with the limbic lobe. Actual research must apply electrophysiological and neuroimaging techniques to assess whether the mirror neuron systems underly affective prosody in humans.

  8. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The importance of biological factors affecting trace metal concentration as revealed from accumulation patterns in co-occurring terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Frederik; Maelfait, Jean-Pierre; Bogaert, Nicolas; Tojal, Catarina; Du Laing, Gijs; Tack, Filip M.G.; Verloo, Marc G

    2004-02-01

    As physicochemical properties of the soil highly influence the bioavailable fraction of a particular trace metal, measured metal body burdens in a particular species are often assumed to be more reliable estimators of the contamination of the biota. To test this we compared the Cd, Cu and Zn content of three spiders (generalist predators) and two amphipods (detritivores), co-occurring in seven tidal marshes along the river Schelde, between each other and with the total metal concentrations and the concentrations of four sequential extractions of the soils. Correlations were significant in only one case and significant sitexspecies interactions for all metals demonstrate that factors affecting metal concentration were species and site specific and not solely determined by site specific characteristics. These results emphasize that site and species specific biological factors might be of the utmost importance in determining the contamination of the biota, at least for higher trophic levels. A hypothetical example clarifies these findings. - Site and species specific biological factors are important in determining contamination of biota.

  10. Merkel Cell Carcinomas Arising in Autoimmune Disease Affected Patients Treated with Biologic Drugs, Including Anti-TNF.

    Science.gov (United States)

    Rotondo, John Charles; Bononi, Ilaria; Puozzo, Andrea; Govoni, Marcello; Foschi, Valentina; Lanza, Giovanni; Gafà, Roberta; Gaboriaud, Pauline; Touzé, Françoise Antoine; Selvatici, Rita; Martini, Fernanda; Tognon, Mauro

    2017-07-15

    Purpose: The purpose of this investigation was to characterize Merkel cell carcinomas (MCC) arisen in patients affected by autoimmune diseases and treated with biologic drugs. Experimental Design: Serum samples from patients with MCC were analyzed for the presence and titer of antibodies against antigens of the oncogenic Merkel cell polyomavirus (MCPyV). IgG antibodies against the viral oncoproteins large T (LT) and small T (ST) antigens and the viral capsid protein-1 were analyzed by indirect ELISA. Viral antigens were recombinant LT/ST and virus-like particles (VLP), respectively. MCPyV DNA sequences were studied using PCR methods in MCC tissues and in peripheral blood mononuclear cells (PBMC). Immunohistochemical (IHC) analyses were carried out in MCC tissues to reveal MCPyV LT oncoprotein. Results: MCPyV DNA sequences identified in MCC tissues showed 100% homology with the European MKL-1 strain. PBMCs from patients tested MCPyV-negative. Viral DNA loads in the three MCC tissues were in the 0.1 to 30 copy/cell range. IgG antibodies against LT/ST were detected in patients 1 and 3, whereas patient 2 did not react to the MCPyV LT/ST antigen. Sera from the three patients with MCC contained IgG antibodies against MCPyV VP1. MCC tissues tested MCPyV LT-antigen-positive in IHC assays, with strong LT expression with diffuse nuclear localization. Normal tissues tested MCPyV LT-negative when employed as control. Conclusions: We investigated three new MCCs in patients affected by rheumatologic diseases treated with biologic drugs, including TNF. A possible cause-effect relationship between pharmacologic immunosuppressive treatment and MCC onset is suggested. Indeed, MCC is associated with MCPyV LT oncoprotein activity. Clin Cancer Res; 23(14); 3929-34. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Biclustering with Flexible Plaid Models to Unravel Interactions between Biological Processes.

    Science.gov (United States)

    Henriques, Rui; Madeira, Sara C

    2015-01-01

    Genes can participate in multiple biological processes at a time and thus their expression can be seen as a composition of the contributions from the active processes. Biclustering under a plaid assumption allows the modeling of interactions between transcriptional modules or biclusters (subsets of genes with coherence across subsets of conditions) by assuming an additive composition of contributions in their overlapping areas. Despite the biological interest of plaid models, few biclustering algorithms consider plaid effects and, when they do, they place restrictions on the allowed types and structures of biclusters, and suffer from robustness problems by seizing exact additive matchings. We propose BiP (Biclustering using Plaid models), a biclustering algorithm with relaxations to allow expression levels to change in overlapping areas according to biologically meaningful assumptions (weighted and noise-tolerant composition of contributions). BiP can be used over existing biclustering solutions (seizing their benefits) as it is able to recover excluded areas due to unaccounted plaid effects and detect noisy areas non-explained by a plaid assumption, thus producing an explanatory model of overlapping transcriptional activity. Experiments on synthetic data support BiP's efficiency and effectiveness. The learned models from expression data unravel meaningful and non-trivial functional interactions between biological processes associated with putative regulatory modules.

  12. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    Science.gov (United States)

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.

  13. Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture.

    Science.gov (United States)

    Baquero, Fernando

    2017-11-01

    Transmission is a basic process in biology and evolution, as it communicates different biological entities within and across hierarchical levels (from genes to holobionts) both in time and space. Vertical descent, replication, is transmission of information across generations (in the time dimension), and horizontal descent is transmission of information across compartments (in the space dimension). Transmission is essentially a communication process that can be studied by analogy of the classic information theory, based on 'emitters', 'messages' and 'receivers'. The analogy can be easily extended to the triad 'emigration', 'migration' and 'immigration'. A number of causes (forces) determine the emission, and another set of causes (energies) assures the reception. The message in fact is essentially constituted by 'meaningful' biological entities. A DNA sequence, a cell and a population have a semiotic dimension, are 'signs' that are eventually recognized (decoded) and integrated by receiver biological entities. In cis-acting or unenclosed transmission, the emitters and receivers correspond to separated entities of the same hierarchical level; in trans-acting or embedded transmission, the information flows between different, but frequently nested, hierarchical levels. The result (as in introgressive events) is constantly producing innovation and feeding natural selection, influencing also the evolution of transmission processes. This review is based on the concepts presented at the André Lwoff Award Lecture in the FEMS Microbiology Congress in Maastricht in 2015. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes

    Science.gov (United States)

    Allard, M.; Vincent, W. F.; Lemay, M.

    2012-12-01

    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  15. Affective priming effects of musical sounds on the processing of word meaning.

    Science.gov (United States)

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  16. Influence of COMT genotype and affective distractors on the processing of self-generated thought.

    Science.gov (United States)

    Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne

    2015-06-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.

  17. The Effect of Positive Mood on Flexible Processing of Affective Information.

    Science.gov (United States)

    Grol, Maud; De Raedt, Rudi

    2017-07-17

    Recent efforts have been made to understand the cognitive mechanisms underlying psychological resilience. Cognitive flexibility in the context of affective information has been related to individual differences in resilience. However, it is unclear whether flexible affective processing is sensitive to mood fluctuations. Furthermore, it remains to be investigated how effects on flexible affective processing interact with the affective valence of information that is presented. To fill this gap, we tested the effects of positive mood and individual differences in self-reported resilience on affective flexibility, using a task switching paradigm (N = 80). The main findings showed that positive mood was related to lower task switching costs, reflecting increased flexibility, in line with previous findings. In line with this effect of positive mood, we showed that greater resilience levels, specifically levels of acceptance of self and life, also facilitated task set switching in the context of affective information. However, the effects of resilience on affective flexibility seem more complex. Resilience tended to relate to more efficient task switching when negative information was preceded by positive information, possibly because the presentation of positive information, as well as positive mood, can facilitate task set switching. Positive mood also influenced costs associated with switching affective valence of the presented information. This latter effect was indicative of a reduced impact of no longer relevant negative information and more impact of no longer relevant positive information. Future research should confirm these effects of individual differences in resilience on affective flexibility, considering the affective valence of the presented information. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Visual and associated affective processing of face information in schizophrenia: A selective review.

    Science.gov (United States)

    Chen, Yue; Ekstrom, Tor

    Perception of facial features is crucial in social life. In past decades, extensive research showed that the ability to perceive facial emotion expression was compromised in schizophrenia patients. Given that face perception involves visual/cognitive and affective processing, the roles of these two processing domains in the compromised face perception in schizophrenia were studied and discussed, but not clearly defined. One particular issue was whether face-specific processing is implicated in this psychiatric disorder. Recent investigations have probed into the components of face perception processes such as visual detection, identity recognition, emotion expression discrimination and working memory conveyed from faces. Recent investigations have further assessed the associations between face processing and basic visual processing and between face processing and social cognitive processing such as Theory of Mind. In this selective review, we discuss the investigative findings relevant to the issues of cognitive and affective association and face-specific processing. We highlight the implications of multiple processing domains and face-specific processes as potential mechanisms underlying compromised face perception in schizophrenia. These findings suggest a need for a domain-specific therapeutic approach to the improvement of face perception in schizophrenia.

  19. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    Science.gov (United States)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  20. Biological, psychological and social processes that explain celebrities' influence on patients' health-related behaviors.

    Science.gov (United States)

    Hoffman, Steven J; Tan, Charlie

    2015-01-01

    Celebrities can have substantial influence as medical advisors. However, their impact on public health is equivocal: depending on the advice's validity and applicability, celebrity engagements can benefit or hinder efforts to educate patients on evidence-based practices and improve their health literacy. This meta-narrative analysis synthesizes multiple disciplinary insights explaining the influence celebrities have on people's health-related behaviors. Systematic searches of electronic databases BusinessSource Complete, Communication & Mass Media Complete, Humanities Abstracts, ProQuest Political Science, PsycINFO, PubMed, and Sociology Abstracts were conducted. Retrieved articles were used to inform a conceptual analysis of the possible processes accounting for the substantial influence celebrities may have as medical advisors. Fourteen mechanisms of celebrity influence were identified. According to the economics literature, celebrities distinguish endorsed items from competitors and can catalyze herd behavior. Marketing studies tell us that celebrities' characteristics are transferred to endorsed products, and that the most successful celebrity advisors are those viewed as credible, a perception they can create with their success. Neuroscience research supports these explanations, finding that celebrity endorsements activate brain regions involved in making positive associations, building trust and encoding memories. The psychology literature tells us that celebrity advice conditions people to react positively toward it. People are also inclined to follow celebrities if the advice matches their self-conceptions or if not following it would generate cognitive dissonance. Sociology explains how celebrities' advice spreads through social networks, how their influence is a manifestation of people's desire to acquire celebrities' social capital, and how they affect the ways people acquire and interpret health information. There are clear and deeply rooted biological

  1. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  2. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes

    Science.gov (United States)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive

  3. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  4. Selective exposure to information: how different modes of decision making affect subsequent confirmatory information processing.

    Science.gov (United States)

    Fischer, Peter; Fischer, Julia; Weisweiler, Silke; Frey, Dieter

    2010-12-01

    We investigated whether different modes of decision making (deliberate, intuitive, distracted) affect subsequent confirmatory processing of decision-consistent and inconsistent information. Participants showed higher levels of confirmatory information processing when they made a deliberate or an intuitive decision versus a decision under distraction (Studies 1 and 2). As soon as participants have a cognitive (i.e., deliberate cognitive analysis) or affective (i.e., intuitive and gut feeling) reason for their decision, the subjective confidence in the validity of their decision increases, which results in increased levels of confirmatory information processing (Study 2). In contrast, when participants are distracted during decision making, they are less certain about the validity of their decision and thus are subsequently more balanced in the processing of decision-relevant information.

  5. The Insider Threat to Cybersecurity: How Group Process and Ignorance Affect Analyst Accuracy and Promptitude

    Science.gov (United States)

    2017-09-01

    McCarthy, J. (1980). Circumscription - A Form of Nonmonotonic Reasoning. Artificial Intelligence , 13, 27–39. McClure, S., Scambray, J., & Kurtz, G. (2012...THREAT TO CYBERSECURITY : HOW GROUP PROCESS AND IGNORANCE AFFECT ANALYST ACCURACY AND PROMPTITUDE by Ryan F. Kelly September 2017...September 2017 3. REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE THE INSIDER THREAT TO CYBERSECURITY : HOW GROUP PROCESS AND

  6. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  7. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    Science.gov (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  8. Harm avoidance in adolescents modulates late positive potentials during affective picture processing.

    Science.gov (United States)

    Zhang, Wenhai; Lu, Jiamei; Ni, Ziyin; Liu, Xia; Wang, Dahua; Shen, Jiliang

    2013-08-01

    Research in adults has shown that individual differences in harm avoidance (HA) modulate electrophysiological responses to affective stimuli. To determine whether HA in adolescents modulates affective information processing, we collected event-related potentials from 70 adolescents while they viewed 90 pictures from the Chinese affective picture system. Multiple regressions revealed that HA negatively predicted late positive potential (LPP) for positive pictures and positively predicted for negative pictures; however, HA did not correlate with LPP for neutral pictures. The results suggest that at the late evaluative stage, high-HA adolescents display attentional bias to negative pictures while low-HA adolescents display attentional bias to negative pictures. Moreover, these dissociable attentional patterns imply that individual differences in adolescents' HA modulate the late selective attention mechanism of affective information. Copyright © 2013. Published by Elsevier Ltd.

  9. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    Science.gov (United States)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  10. Approaching the Affective Factors of Information Seeking: The Viewpoint of the Information Search Process Model

    Science.gov (United States)

    Savolainen, Reijo

    2015-01-01

    Introduction: The article contributes to the conceptual studies of affective factors in information seeking by examining Kuhlthau's information search process model. Method: This random-digit dial telephone survey of 253 people (75% female) living in a rural, medically under-serviced area of Ontario, Canada, follows-up a previous interview study…

  11. Social Information Processing in Children: Specific Relations to Anxiety, Depression, and Affect

    Science.gov (United States)

    Luebbe, Aaron M.; Bell, Debora J.; Allwood, Maureen A.; Swenson, Lance P.; Early, Martha C.

    2010-01-01

    Two studies examined shared and unique relations of social information processing (SIP) to youth's anxious and depressive symptoms. Whether SIP added unique variance over and above trait affect in predicting internalizing symptoms was also examined. In Study 1, 215 youth (ages 8-13) completed symptom measures of anxiety and depression and a…

  12. Affective picture processing and motivational relevance: arousal and valence effects on ERPs in an oddball task.

    Science.gov (United States)

    Briggs, Kate E; Martin, Frances H

    2009-06-01

    There are two dominant theories of affective picture processing; one that attention is more deeply engaged by motivationally relevant stimuli (i.e., stimuli that activate both the appetitive and aversive systems), and two that attention is more deeply engaged by aversive stimuli described as the negativity bias. In order to identify the theory that can best account for affective picture processing, event-related potentials (ERPs) were recorded from 34 participants during a modified oddball paradigm in which levels of stimulus valence, arousal, and motivational relevance were systematically varied. Results were partially consistent with motivated attention models of emotional perception, as P3b amplitude was enhanced in response to highly arousing and motivationally relevant sexual and unpleasant stimuli compared to respective low arousing and less motivationally relevant stimuli. However P3b amplitudes were significantly larger in response to the highly arousing sexual stimuli compared to all other affective stimuli, which is not consistent with either dominant theory. The current study therefore highlights the need for a revised model of affective picture processing and provides a platform for further research investigating the independent effects of sexual arousal on cognitive processing.

  13. Transactional Distance among Open University Students: How Does it Affect the Learning Process?

    Science.gov (United States)

    Kassandrinou, Amanda; Angelaki, Christina; Mavroidis, Ilias

    2014-01-01

    This study examines the presence of transactional distance among students, the factors affecting it, as well as the way it influences the learning process of students in a blended distance learning setting in Greece. The present study involved 12 postgraduate students of the Hellenic Open University (HOU). A qualitative research was conducted,…

  14. Factors Affecting Christian Parents' School Choice Decision Processes: A Grounded Theory Study

    Science.gov (United States)

    Prichard, Tami G.; Swezey, James A.

    2016-01-01

    This study identifies factors affecting the decision processes for school choice by Christian parents. Grounded theory design incorporated interview transcripts, field notes, and a reflective journal to analyze themes. Comparative analysis, including open, axial, and selective coding, was used to reduce the coded statements to five code families:…

  15. 'TISUCROMA': A Software for Color Processing of Biological Tissue's Images

    International Nuclear Information System (INIS)

    Arista Romeu, Eduardo J.; La Rosa Vazquez, Jose Manuel de; Valor, Alma; Stolik, Suren

    2016-01-01

    In this work a software intended to plot and analyze digital image RGB histograms from normal and abnormal regions of biological tissue. The obtained RGB histograms from each zone can be used to show the image in only one color or the mixture of some of them. The Software was developed in Lab View to process the images in a laptop. Some medical application examples are shown. (Author)

  16. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429 ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.576, year: 2016

  17. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  18. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

    Directory of Open Access Journals (Sweden)

    Jörg Servos

    Full Text Available The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to cellular copper depletion and a pleiotropic phenotype with hypopigmentation of the mycelium and the ascospores, affected fertility and increased lifespan by approximately 60% when compared to the wild type. This phenotype is linked to a switch from a copper-dependent standard to an alternative respiration leading to both a reduced generation of reactive oxygen species (ROS and of adenosine triphosphate (ATP. We performed a genome-wide comparative transcriptome analysis of a wild-type strain and the copper-depleted grisea mutant. We unambiguously assigned 9,700 sequences of the transcriptome in both strains to the more than 10,600 predicted and annotated open reading frames of the P. anserina genome indicating 90% coverage of the transcriptome. 4,752 of the transcripts differed significantly in abundance with 1,156 transcripts differing at least 3-fold. Selected genes were investigated by qRT-PCR analyses. Apart from this general characterization we analyzed the data with special emphasis on molecular pathways related to the grisea mutation taking advantage of the available complete genomic sequence of P. anserina. This analysis verified but also corrected conclusions from earlier data obtained by single gene analysis, identified new candidates of factors as part of the cellular copper homeostasis system including target genes of transcription factor GRISEA, and provides a rich reference source of quantitative data for further in detail investigations. Overall, the present study demonstrates the importance of systems biology approaches also in cases were mutations in single genes are analyzed to

  19. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  20. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  1. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  2. The effect of pathological narcissism on interpersonal and affective processes in social interactions.

    Science.gov (United States)

    Wright, Aidan G C; Stepp, Stephanie D; Scott, Lori N; Hallquist, Michael N; Beeney, Joseph E; Lazarus, Sophie A; Pilkonis, Paul A

    2017-10-01

    Narcissism has significant interpersonal costs, yet little research has examined behavioral and affective patterns characteristic of narcissism in naturalistic settings. Here we studied the effect of narcissistic features on the dynamic processes of interpersonal behavior and affect in daily life. We used interpersonal theory to generate transactional models of social interaction (i.e., linkages among perceptions of others' behavior, affect, and one's own behavior) predicted to be characteristic of narcissism. Psychiatric outpatients (N = 102) completed clinical interviews and a 21-day ecological momentary assessment protocol using smartphones. After social interactions (N = 5,781), participants reported on perceptions of their interaction partner's behavior (scored along the dimensions of dominant-submissive and affiliative-quarrelsome), their own affect, and their own behavior. Multilevel structural equation modeling was used to examine dynamic links among behavior and affect across interactions, and the role of narcissism in moderating these links. Results showed that perceptions of others' dominance did not predict dominant behavior, but did predict quarrelsome behavior, and this link was potentiated by narcissism. Furthermore, the link between others' dominance and one's own quarrelsome behavior was mediated by negative affect. Moderated mediation was also found: Narcissism amplified the link between ratings of others' dominance and one's own quarrelsomeness and negative affect. Narcissism did not moderate the link between other dominance and own dominance, nor the link between other affiliation and own affiliation. These results suggest that narcissism is associated with specific interpersonal and affective processes, such that sensitivity to others' dominance triggers antagonistic behavior in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells.

    Science.gov (United States)

    Liu, Yu-xiao; Li, Guo-qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-wen; Zhang, Yi; Li, An-ming

    2015-08-08

    The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response.

  4. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk

    2015-01-01

    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  5. Seattle's minimum wage ordinance did not affect supermarket food prices by food processing category.

    Science.gov (United States)

    Spoden, Amanda L; Buszkiewicz, James H; Drewnowski, Adam; Long, Mark C; Otten, Jennifer J

    2018-06-01

    To examine the impacts of Seattle's minimum wage ordinance on food prices by food processing category. Supermarket food prices were collected for 106 items using a University of Washington Center for Public Health Nutrition market basket at affected and unaffected supermarket chain stores at three times: March 2015 (1-month pre-policy enactment), May 2015 (1-month post-policy enactment) and May 2016 (1-year post-policy enactment). Food items were categorized into four food processing groups, from minimally to ultra-processed. Data were analysed across time using a multilevel, linear difference-in-differences model at the store and price level stratified by level of food processing. Six large supermarket chain stores located in Seattle ('intervention') affected by the policy and six same-chain but unaffected stores in King County ('control'), Washington, USA. One hundred and six food and beverage items. The largest change in average price by food item was +$US 0·53 for 'processed foods' in King County between 1-month post-policy and 1-year post-policy enactment (P food processing level strata in Seattle v. King County stores at 1-month or 1-year post-policy enactment. Supermarket food prices do not appear to be differentially impacted by Seattle's minimum wage ordinance by level of the food's processing. These results suggest that the early implementation of a city-level minimum wage policy does not alter supermarket food prices by level of food processing.

  6. Innovative biological systems for anaerobic treatment of grain and food processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, P M

    1986-09-01

    The application of two innovative fixed film and suspended growth anaerobic biological systems to the treatment of grain and food processing wastewaters is discussed. A fluidized bed fixed film system and a suspended growth membrane system are described. The technical and economic factors dictating which system is selected for treatment of a specific industrial wastewater are discussed. Case history results from successful operation of full-scale, demonstration, and pilot-scale systems treating respectively, soy whey, cheese whey, and wheat flour processing wastewaters are presented.

  7. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  8. Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past.

    Science.gov (United States)

    Ochsner, K N

    2000-06-01

    The author used the remember/know paradigm and the dual process recognition model of A. P. Yonelinas, N. E. A. Kroll, I. Dobbins, M. Lazzara, and R. T. Knight (1998) to study the states of awareness accompanying recognition of affective images and the processes of recollection and familiarity that may underlie them. Results from all experiments showed that (a) negative stimuli tended to be remembered, whereas positive stimuli tended to be known; (b) recollection, but not familiarity, was boosted for negative or highly arousing and, to a lesser extent, positive stimuli; and (c) across experiments, variations in depth of encoding did not influence these patterns. These data suggest that greater recollection for affective events leads them to be more richly experienced in memory, and they are consistent with the idea that the states of remembering and knowing are experientially exclusive, whereas the processes underlying them are functionally independent.

  9. White wine taste and mouthfeel as affected by juice extraction and processing.

    Science.gov (United States)

    Gawel, Richard; Day, Martin; Van Sluyter, Steven C; Holt, Helen; Waters, Elizabeth J; Smith, Paul A

    2014-10-15

    The juice used to make white wine can be extracted using various physical processes that affect the amount and timing of contact of juice with skins. The influence of juice extraction processes on the mouthfeel and taste of white wine and their relationship to wine composition were determined. The amount and type of interaction of juice with skins affected both wine total phenolic concentration and phenolic composition. Wine pH strongly influenced perceived viscosity, astringency/drying, and acidity. Despite a 5-fold variation in total phenolics among wines, differences in bitter taste were small. Perceived viscosity was associated with higher phenolics but was not associated with either glycerol or polysaccharide concentration. Bitterness may be reduced by using juice extraction and handling processes that minimize phenolic concentration, but lowering phenolic concentration may also result in wines of lower perceived viscosity.

  10. Factors Affecting Youth Voice in Decision-Making Processes within Youth Development Programs

    Directory of Open Access Journals (Sweden)

    Todd Tarifa

    2009-12-01

    Full Text Available Results of a study aimed at determining the factors affecting the level of inclusiveness of youth voice in the decision-making process of the 4-H youth development program are discussed in this paper. State and field level 4-H professionals identified potential factors which affect youth voice in the decision-making process. The information gathered was utilized to identify the degree to which youth voice was incorporated in the decision-making process, to better understand how to suit youth’s needs, identify promising practices, and diagnose barriers towards fostering youth voice within the 4-H youth development program. This feature article presents the findings of the study, and discusses potential ramifications and remedies.

  11. Ten good reasons to consider biological processes in prevention and intervention research.

    Science.gov (United States)

    Beauchaine, Theodore P; Neuhaus, Emily; Brenner, Sharon L; Gatzke-Kopp, Lisa

    2008-01-01

    Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology x Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention.

  12. Ten good reasons to consider biological processes in prevention and intervention research

    Science.gov (United States)

    BEAUCHAINE, THEODORE P.; NEUHAUS, EMILY; BRENNER, SHARON L.; GATZKE-KOPP, LISA

    2009-01-01

    Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology×Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention. PMID:18606030

  13. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.

    1997-01-01

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  14. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  15. Selective attention to affective value alters how the brain processes olfactory stimuli.

    Science.gov (United States)

    Rolls, Edmund T; Grabenhorst, Fabian; Margot, Christian; da Silva, Maria A A P; Velazco, Maria Ines

    2008-10-01

    How does selective attention to affect influence sensory processing? In a functional magnetic resonance imaging investigation, when subjects were instructed to remember and rate the pleasantness of a jasmine odor, activations were greater in the medial orbito-frontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the odor. When the subjects were instructed to remember and rate the intensity, activations were greater in the inferior frontal gyrus. These top-down effects occurred not only during odor delivery but started in a preparation period after the instruction before odor delivery, and continued after termination of the odor in a short-term memory period. Thus, depending on the context in which odors are presented and whether affect is relevant, the brain prepares itself, responds to, and remembers an odor differently. These findings show that when attention is paid to affective value, the brain systems engaged to prepare for, represent, and remember a sensory stimulus are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus depending on whether the cognitive demand is for affect-related versus more sensory-related processing may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of olfactory but also of other sensory stimuli.

  16. Self-focused attention affects subsequent processing of positive (but not negative) performance appraisals.

    Science.gov (United States)

    Holzman, Jacob B; Valentiner, David P

    2016-03-01

    Cognitive-behavioral models highlight the conjoint roles of self-focused attention (SFA), post-event processing (PEP), and performance appraisals in the maintenance of social anxiety. SFA, PEP, and biased performance appraisals are related to social anxiety; however, limited research has examined how SFA affects information-processing following social events. The current study examined whether SFA affects the relationships between performance appraisals and PEP following a social event.. 137 participants with high (n = 72) or low (n = 65) social anxiety were randomly assigned to conditions of high SFA or low SFA while engaging in a standardized social performance. Subsequent performance appraisals and PEP were measured. Immediate performance appraisals were not affected by SFA. High levels of SFA led to a stronger, inverse relationship between immediate positive performance appraisals and subsequent negative PEP. High levels of SFA also led to a stronger, inverse relationship between negative PEP and changes in positive performance appraisals.. Future research should examine whether the current findings, which involved a standardized social performance event, extend to interaction events as well as in a clinical sample. These findings suggest that SFA affects the processing of positive information following a social performance event. SFA is particularly important for understanding how negative PEP undermines positive performance appraisals.. Published by Elsevier Ltd.

  17. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  18. Influence of Prolonged Storage Process, Pasteurization, and Heat Treatment on Biologically-active Human Milk Proteins

    Directory of Open Access Journals (Sweden)

    Jih-Chin Chang

    2013-12-01

    Conclusion: Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status.

  19. From ooze to sedimentary rock, the first diagenetic processes affecting the chalk of eastern Denmark

    DEFF Research Database (Denmark)

    Moreau, Julien; Boussaha, Myriam; Nielsen, Lars

    processes operating in the chalk sediments at widely different scales into a single diagenetic model: At Stevns the chalk is affected by an extensive polygonal fault system which is expressed in onshore and offshore seismic profiles. Smaller scale contractional features like deformation bands (hairline...... strongly affect reservoir properties of the chalk both by establishing compartments and vertical connections. A better understanding of these reservoir modifications will be critical for improving the predictive capability of models describing the behaviour of drinking water and hydrocarbons hosted...

  20. Predictors of affect following treatment decision-making for prostate cancer: conversations, cognitive processing, and coping.

    Science.gov (United States)

    Christie, Kysa M; Meyerowitz, Beth E; Giedzinska-Simons, Antoinette; Gross, Mitchell; Agus, David B

    2009-05-01

    Research suggests that cancer patients who are more involved in treatment decision-making (TDM) report better quality of life following treatment. This study examines the association and possible mechanisms between prostate cancer patient's discussions about TDM and affect following treatment. We predicted that the length of time patients spent discussing treatment options with social networks and physicians prior to treatment would predict emotional adjustment after treatment. We further predicted that cognitive processing, coping, and patient understanding of treatment options would mediate this association. Fifty-seven patients completed questionnaires prior to treatment and at 1 and 6 months following treatment completion. Findings from the present study suggest that discussing treatment options with others, prior to beginning treatment for prostate cancer, significantly contributed to improvements in affect 1 and 6 months following treatment. Residualized regression analyses indicated that discussing treatment options with patient's social networks predicted a decrease in negative affect 1 and 6 months following treatment, while discussions with physicians predicted an increase in positive affect 1 month following treatment. Patients who spent more time discussing treatment options with family and friends also reported greater pre-treatment social support and emotional expression. Mediation analyses indicated that these coping strategies facilitated cognitive processing (as measured by a decrease in intrusive thoughts) and that cognitive processing predicted improvement in affect. Greater time spent talking with family and friends about treatment options may provide opportunities for patients to cope with their cancer diagnosis and facilitate cognitive processing, which may improve patient distress over time. Copyright (c) 2008 John Wiley & Sons Ltd.

  1. Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces

    Directory of Open Access Journals (Sweden)

    Devin eDuke

    2014-04-01

    Full Text Available According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift towards a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked.

  2. Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces.

    Science.gov (United States)

    Duke, Devin; Fiacconi, Chris M; Köhler, Stefan

    2014-01-01

    According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know (RK) paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift toward a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked.

  3. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Survey of biological processes for odor reduction; Kartlaeggning och studie av biologiska processer foer luktreduktion

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Rosell, Lars [SP Technical Research Inst. of Sweden, Boraas (Sweden); Hall, Gunnar [SIK Swedish Inst. for Food and Biotechnology, Gothenburg (Sweden)

    2009-09-15

    This project aims to characterize chemical and subsequently odor emissions from a digester plant located closed to Boraas in Sweden (Boraas Energi och Miljoe AB). The digestion produces mainly 2 by-products, biogas and high quality organic biofertilizer. Biogas is a renewable source of electrical and heat energy and subsequently digester have a promising future. Unfortunately, release of unpleasant odours is one of the problems that may limit development of the technique as odours strongly influence the level of acceptance of the neighbours. The number of complaints due to odours depends mostly, upon the degree of odour release, the weather condition and plant environment (which influence the risks for spreading out), and the tolerance of the neighbours. These parameters are strongly variable. Many processes inside the plant distributed on a large surface may contribute to odour release. Chemical emissions were studied, in this project, by extensive sampling inside the plant. Results were then evaluated regarding risk for odour releases. The goal was to suggest controls and routines to limit releases. The conditions leading to the higher risks for odour emissions were studied by performing sampling at different periods of the year and subsequently different weather conditions. At first, places for measurement were chosen together with personal of the plant. Three zones are considered to mainly contribute to the odour emissions: the landfill region, the cisterns region and the leaching lake region. Totally 13 places were studied with regard to odour and chemical emissions under 2008-2009 at different weather conditions. Some results from a previous project (2007) are also presented here. Results show that the spreading out of can be maintained to an acceptable level as long as the plant is functioning without disturbances. The early stages of the treatment of waste should be confined in locals with closed doors to avoid spreading out of odours. Through controlled

  5. Bright versus dim ambient light affects subjective well-being but not serotonin-related biological factors.

    Science.gov (United States)

    Stemer, Bettina; Melmer, Andreas; Fuchs, Dietmar; Ebenbichler, Christoph; Kemmler, Georg; Deisenhammer, Eberhard A

    2015-10-30

    Light falling on the retina is converted into an electrical signal which stimulates serotonin synthesis. Previous studies described an increase of plasma and CNS serotonin levels after bright light exposure. Ghrelin and leptin are peptide hormones which are involved in the regulation of hunger/satiety and are related to serotonin. Neopterin and kynurenine are immunological markers which are also linked to serotonin biosynthesis. In this study, 29 healthy male volunteers were exposed to bright (5000lx) and dim (50lx) light conditions for 120min in a cross-over manner. Subjective well-being and hunger as well as various serotonin associated plasma factors were assessed before and after light exposure. Subjective well-being showed a small increase under bright light and a small decrease under dim light, resulting in a significant interaction between light condition and time. Ghrelin concentrations increased significantly under both light conditions, but there was no interaction between light and time. Correspondingly, leptin decreased significantly under both light conditions. Hunger increased significantly with no light-time interaction. We also found a significant decrease of neopterin, tryptophan and tyrosine levels, but no interaction between light and time. In conclusion, ambient light was affecting subjective well-being rather than serotonin associated biological factors. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  7. Neural bases of different cognitive strategies for facial affect processing in schizophrenia.

    Science.gov (United States)

    Fakra, Eric; Salgado-Pineda, Pilar; Delaveau, Pauline; Hariri, Ahmad R; Blin, Olivier

    2008-03-01

    To examine the neural basis and dynamics of facial affect processing in schizophrenic patients as compared to healthy controls. Fourteen schizophrenic patients and fourteen matched controls performed a facial affect identification task during fMRI acquisition. The emotional task included an intuitive emotional condition (matching emotional faces) and a more cognitively demanding condition (labeling emotional faces). Individual analysis for each emotional condition, and second-level t-tests examining both within-, and between-group differences, were carried out using a random effects approach. Psychophysiological interactions (PPI) were tested for variations in functional connectivity between amygdala and other brain regions as a function of changes in experimental conditions (labeling versus matching). During the labeling condition, both groups engaged similar networks. During the matching condition, schizophrenics failed to activate regions of the limbic system implicated in the automatic processing of emotions. PPI revealed an inverse functional connectivity between prefrontal regions and the left amygdala in healthy volunteers but there was no such change in patients. Furthermore, during the matching condition, and compared to controls, patients showed decreased activation of regions involved in holistic face processing (fusiform gyrus) and increased activation of regions associated with feature analysis (inferior parietal cortex, left middle temporal lobe, right precuneus). Our findings suggest that schizophrenic patients invariably adopt a cognitive approach when identifying facial affect. The distributed neocortical network observed during the intuitive condition indicates that patients may resort to feature-based, rather than configuration-based, processing and may constitute a compensatory strategy for limbic dysfunction.

  8. Searching for Judy: How small mysteries affect narrative processes and memory

    Science.gov (United States)

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how author’s narrative choices, including the introduction of small mysteries, can affect readers’ narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that one type of small mystery—a character introduced without information linking him or her to the story—affects readers’ moment-by-moment processing. For that project, participants read stories that introduced characters by proper name alone (e.g., Judy) or with information connecting the character to the rest of the story (e.g., our principal Judy). In an on-line recognition probe task, responses to the character’s name three lines after his or her introduction were faster when the character had not been introduced with connecting information, suggesting that the character remained accessible awaiting resolution. In the four experiments in this paper, we extended our theoretical analysis of small mysteries. In Experiments 1 and 2, we found evidence that trait information (e.g., daredevil Judy) is not sufficient to connect a character to a text. In Experiments 3 and 4, we provide evidence that the moment-by-moment processing effects of such small mysteries also affect readers’ memory for the stories. We interpret the results in terms of Kintsch’s Construction-Integration model (1988) of discourse processing. PMID:20438273

  9. The growth and photosynthesis of Typha in oil sands process affected material and water

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    Aquatic plants such as cattail contribute substantially to the energy flow in wetlands. Since Typha (cattail) plants acquire and cycle carbon and nutrients through wetlands, their growth and recycling of captured nutrients are an important part of natural, healthy wetland ecosystems. Cattail are pervasive and satisfy many of the criteria to be used as indicators of wetland integrity. This study investigated if cattail growth and carbon accrual were influenced by oil sands process materials (OSPM) such as consolidated tailings (CT). The purpose was to facilitate land reclamation initiatives by evaluating the impact that constituents of oil sands process material have on aquatic plant growth. The study was conducted at Suncor's experimental trenches. Six lined basins were used, of which 3 were filled with natural water and 3 were filled with trench water. Cattail were planted in different growth medium combinations, including CT over CT; soil over soil; soil over CT; and soil over sterilized sand. All leaf lengths and widths were measured along with the photosynthesis of the leaves and root and plant biomass at planting and after 2-years growth. A larger leaf area was observed under oil sands process influence, which may indicate increased carbon accrual above ground. Leaf area data suggested that CT affected plants are quite productive. The study also indicated that oil sands affected water may reduce plant fitness, and therefore could influence the overall oil sands reclamation timelines. Conversely, cattail grown in soil capped process affected material had a much larger leaf area compared to those grown in soil capped sand, most likely due to the higher levels of ammonia in process affected material.

  10. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process.

    Science.gov (United States)

    Wei, Z S; Li, H Q; He, J C; Ye, Q H; Huang, Q R; Luo, Y W

    2013-10-01

    A bench scale system integrated with a non-thermal plasma (NTP) and a biotricking filtration (BTF) unit for the treatment of gases containing dimethyl sulfide (DMS) was investigated. DMS removal efficiency in the integrated system was up to 96%. Bacterial communities in the BTF were assessed by PCR-DGGE, which play the dominant role in the biological processes of metabolism, sulfur oxidation, sulfate-reducing and carbon oxidation. The addition of ozone from NTP made microbial community in BTF more complicated and active for DMS removal. The NTP oxidize DMS to simple compounds such as methanol and carbonyl sulfide; the intermediate organic products and DMS are further oxidized to sulfate, carbon dioxide, water vapors by biological degradation. These results show that NTP-BTF is achievable and open new possibilities for applying the integrated with NTP and BTF to odour gas treatment. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Process of Argumentation in High School Biology Class: A Qualitative Analysis

    Science.gov (United States)

    Ramli, M.; Rakhmawati, E.; Hendarto, P.; Winarni

    2017-02-01

    Argumentation skill can be nurtured by designing a lesson in which students are provided with the opportunity to argue. This research aims to analyse argumentation process in biology class. The participants were students of three biology classes from different high schools in Surakarta Indonesia. One of the classroom was taught by a student teacher, and the rest were instructed by the assigned teachers. Through a classroom observation, oral activities were noted, audio-recorded and video-taped. Coding was done based on the existence of claiming-reasoning-evidence (CRE) process by McNeill and Krajcik. Data was analysed qualitatively focusing on the role of teachers to initiate questioning to support argumentation process. The lesson design of three were also analysed. The result shows that pedagogical skill of teachers to support argumentation process, such as skill to ask, answer, and respond to students’ question and statements need to be trained intensively. Most of the argumentation found were only claiming, without reasoning and evidence. Teachers have to change the routine of mostly posing open-ended questions to students, and giving directly a correct answer to students’ questions. Knowledge and skills to encourage student to follow inquiry-based learning have to be acquired by teachers.

  12. Differential Contribution of Right and Left Amygdala to Affective Information Processing

    Directory of Open Access Journals (Sweden)

    Hans J. Markowitsch

    1999-01-01

    Full Text Available Evidence for a differential involvement of the human left and right amygdala in emotional and cognitive behaviour is reviewed, with a particular emphasis on functional imaging results and case reports on patients with amygdalar damage. The available evidence allows one to conclude that there is definitely a hemisphere specific processing difference between the left and right amygdala. However, between studies the direction of the asymmetry is partly incongruent. In spite of this, the following tentative proposals are made: the left amygdala is more closely related to affective information encoding with a higher affinity to language and to detailed feature extraction, and the right amygdala to affective information retrieval with a higher affinity to pictorial or image-related material. Furthermore, the right amygdala may be more strongly engaged than the left one in a fast, shallow or gross analysis of affect-related information.

  13. Development of biology student worksheets to facilitate science process skills of student

    Science.gov (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  14. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    Science.gov (United States)

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.

  15. Advancing the Assessment of Personality Pathology With the Cognitive-Affective Processing System.

    Science.gov (United States)

    Huprich, Steven K; Nelson, Sharon M

    2015-01-01

    The Cognitive-Affective Processing System (CAPS) is a dynamic and expansive model of personality proposed by Mischel and Shoda (1995) that incorporates dispositional and processing frameworks by considering the interaction of the individual and the situation, and the patterns of variation that result. These patterns of cognition, affect, and behavior are generally defined through the use of if … then statements, and provide a rich understanding of the individual across varying levels of assessment. In this article, we describe the CAPS model and articulate ways in which it can be applied to conceptualizing and assessing personality pathology. We suggest that the CAPS model is an ideal framework that integrates a number of current theories of personality pathology, and simultaneously overcomes a number of limits that have been empirically identified in the past.

  16. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    Science.gov (United States)

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P process effect (F = 22.2, P process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P process effect (F = 72, P process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values are clearly higher. These higher levels are due to the very significant

  17. Integrative processing of touch and affect in social perception: an fMRI study

    Directory of Open Access Journals (Sweden)

    Sjoerd eEbisch

    2016-05-01

    Full Text Available Social perception commonly employs multiple sources of information. The present study aimed at investigating the integrative processing of affective social signals. Task-related and task-free functional magnetic resonance imaging was performed in 26 healthy adult participants during a social perception task concerning dynamic visual stimuli simultaneously depicting facial expressions of emotion and tactile sensations that could be either congruent or incongruent. Confounding effects due to affective valence, inhibitory top-down influences, cross-modal integration, and conflict processing were minimized. The results showed that the perception of congruent, compared to incongruent stimuli, elicited enhanced neural activity in a set of brain regions including left amygdala, bilateral posterior cingulate cortex (PCC, and left superior parietal cortex. These congruency effects did not differ as a function of emotion or sensation. A complementary task-related functional interaction analysis preliminarily suggested that amygdala activity depended on previous processing stages in fusiform gyrus and PCC. The findings provide support for the integrative processing of social information about others' feelings from manifold bodily sources (sensory-affective information in amygdala and PCC. Given that the congruent stimuli were also judged as being more self-related and more familiar in terms of personal experience in an independent sample of participants, we speculate that such integrative processing might be mediated by the linking of external stimuli with self-experience. Finally, the prediction of task-related responses in amygdala by intrinsic functional connectivity between amygdala and PCC during a task-free state implies a neuro-functional basis for an individual predisposition for the integrative processing of social stimulus content.

  18. Does productivity affect profitability in dairy processing industry? Evidence from Slovenia, Croatia and Serbia

    OpenAIRE

    Saša Muminović; Željana Aljinović Barać

    2015-01-01

    This paper provides insights into productivity in dairy processing companies in Slovenia, Croatia and Serbia. The aim is to find out whether EBITDA per employee, as a measure of overall productivity as well as labour and capital productivity and their management positively affect company’s profitability. Literature review shows that this issue was relatively neglected, although increase in productivity is regarded as the most important factor in maintaining a competitive advantage in most dev...

  19. Process parameters affecting the delignification of eucalyptus kraft pulp with peroxyacetic acid

    Directory of Open Access Journals (Sweden)

    Chandranupap, P.

    2004-11-01

    Full Text Available Various process parameters affecting eucalyptus kraft pulp delignification with peroxyacetic acid were investigated. The results showed that pH was an important factor. The delignification rate increased with increasing pH to the value of 6. High delignification rate was obtained when the pulp was chelated with Na4-EDTA prior to the peroxyacetic acid stage. Therefore, delignification reaction rate depends on peroxyacid charge, temperature, pH and metal content of pulp.

  20. Evaluation of regulatory processes affecting nuclear power plant early site approval and standardization

    International Nuclear Information System (INIS)

    1983-12-01

    This report presents the results of a survey and evaluation of existing federal, state and local regulatory considerations affecting siting approval of power plants in the United States. Those factors that may impede early site approval of nuclear power plants are identified, and findings related to the removal of these impediments and the general improvement of the approval process are presented. A brief evaluation of standardization of nuclear plant design is also presented

  1. The relationship between cognitive processing of affective verbal material and the basic personality structure

    Directory of Open Access Journals (Sweden)

    Orlić Ana

    2010-01-01

    Full Text Available The aim of this study was to investigate the relationship between cognitive processing of affective verbal material and the basic personality structure. For the purposes of research a new experiment was created, where affective priming was measured in a lexical decision task. The term affective priming stands for facilitation in recognition of the stimuli that comes after the presentation of stimuli of the same valence. In this experiment, two words were presented on a screen in front of the subject (stimuli-prime and stimuli-target. Those two words were of the same or different affective valence, and the subject's were instructed to respond whether the second word on the screen had a meaning or not. The basic personality structure was defined by the 'Big five' model and the Disintegration model and measured by NEO PI-R and Delta 10 questionnaires. The results of the affective priming experiment indicated a strong effect of positive facilitation and much weaker effect off negative facilitation. Two significant functions were extracted by quasicanonical correlation analysis. The first function showed correlation between the effect of positive facilitation and all of the subscales of Neuroticism, Extraversion and Conscientiousness (NEO PI-R, as well as all sub dimensions of Disintegration (DELTA 10. The second one indicated to a correlation between the negative facilitation effect and some subscales of Neuroticism, Extraversion and Agreeableness (NEO PI-R, as well as all subscales of Disintegration (DELTA 10.

  2. Intrinsic colony conditions affect the provisioning and oviposition process in the stingless bee Melipona scutellaris.

    Science.gov (United States)

    Pereira, R A; Morais, M M; Nascimento, F S; Bego, L R

    2009-01-01

    The cell provisioning and oviposition process (POP) is a unique characteristic of stingless bees (Meliponini), in which coordinated interactions between workers and queen regulate the filling of brood cells with larval resources and subsequent egg laying. Environmental conditions seem to regulate reproduction in stingless bees; however, little is known about how the amount of food affects quantitative sequences of the process. We examined intrinsic variables by comparing three colonies in distinct conditions (strong, intermediate and weak state). We predicted that some of these variables are correlated with temporal events of POP in Melipona scutellaris colonies. The results demonstrated that the strong colony had shorter periods of POP.

  3. The effect of welding line heat-affected-zone on the formability of tube hydroforming process

    Science.gov (United States)

    ChiuHuang, Cheng-Kai; Hsu, Cheng-En; Lee, Ping-Kun

    2016-08-01

    Tube hydroforming has been used as a lightweight design approach to reduce CO2 emission for the automotive industry. For the high strength steel tube, the strength and quality of the welding line is very important for a successful tube hydroforming process. This paper aims to investigate the effect of the welding line's strength and the width of the heat-affected zone on the tube thinning during the hydroforming process. The simulation results show that both factors play an important role on the thickness distribution during the tube expansion.

  4. The effect of welding line heat-affected-zone on the formability of tube hydroforming process

    International Nuclear Information System (INIS)

    ChiuHuang, Cheng-Kai; Hsu, Cheng-En; Lee, Ping-Kun

    2016-01-01

    Tube hydroforming has been used as a lightweight design approach to reduce CO_2 emission for the automotive industry. For the high strength steel tube, the strength and quality of the welding line is very important for a successful tube hydroforming process. This paper aims to investigate the effect of the welding line's strength and the width of the heat-affected zone on the tube thinning during the hydroforming process. The simulation results show that both factors play an important role on the thickness distribution during the tube expansion. (paper)

  5. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  6. TMS Affects Moral Judgment, Showing the Role of DLPFC and TPJ in Cognitive and Emotional Processing

    Directory of Open Access Journals (Sweden)

    Danique eJeurissen

    2014-02-01

    Full Text Available Decision-making involves a complex interplay of emotional responses and reasoning processes. In this study, we use TMS to explore the neurobiological substrates of moral decisions in humans. To examining the effects of TMS on the outcome of a moral-decision, we compare the decision outcome of moral-personal and moral-impersonal dilemmas to each other and examine the differential effects of applying TMS over the right DLPFC or right TPJ. In this comparison, we find that the TMS-induced disruption of the DLPFC during the decision process, affects the outcome of the moral-personal judgment, while TMS-induced disruption of TPJ affects only moral-impersonal conditions. In other words, we find a double-dissociation between DLPFC and TPJ in the outcome of a moral decision. Furthermore, we find that TMS-induced disruption of the DLPFC during non-moral, moral-impersonal, and moral-personal decisions lead to lower ratings of regret about the decision. Our results are in line with the dual-process theory and suggest a role for both the emotional response and cognitive reasoning process in moral judgment. Both the emotional and cognitive processes were shown to be involved in the decision outcome.

  7. TMS affects moral judgment, showing the role of DLPFC and TPJ in cognitive and emotional processing.

    Science.gov (United States)

    Jeurissen, Danique; Sack, Alexander T; Roebroeck, Alard; Russ, Brian E; Pascual-Leone, Alvaro

    2014-01-01

    Decision-making involves a complex interplay of emotional responses and reasoning processes. In this study, we use TMS to explore the neurobiological substrates of moral decisions in humans. To examining the effects of TMS on the outcome of a moral-decision, we compare the decision outcome of moral-personal and moral-impersonal dilemmas to each other and examine the differential effects of applying TMS over the right DLPFC or right TPJ. In this comparison, we find that the TMS-induced disruption of the DLPFC during the decision process, affects the outcome of the moral-personal judgment, while TMS-induced disruption of TPJ affects only moral-impersonal conditions. In other words, we find a double-dissociation between DLPFC and TPJ in the outcome of a moral decision. Furthermore, we find that TMS-induced disruption of the DLPFC during non-moral, moral-impersonal, and moral-personal decisions lead to lower ratings of regret about the decision. Our results are in line with the dual-process theory and suggest a role for both the emotional response and cognitive reasoning process in moral judgment. Both the emotional and cognitive processes were shown to be involved in the decision outcome.

  8. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  9. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.

    2009-01-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  10. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Thiruvengadathan, Rajagopalan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Korampally, Venumadhav; Ghosh, Arkasubhra; Chanda, Nripen

    2013-01-01

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  11. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  12. Gas transport processes in sea ice: How convection and diffusion processes might affect biological imprints, a challenge for modellers

    DEFF Research Database (Denmark)

    Tison, J.-L.; Zhou, Shaola J. G.; Thomas, D. N.

    2012-01-01

    Recent data from a year-round survey of landfast sea ice growth in Barrow (Alaska) have shown how O2/N2 and O2/Ar ratios could be used to pinpoint primary production in sea ice and derive net productivity rates from the temporal evolution of the oxygen concentration at a given depth within the se......, the whole ice cover returns to ice concentrations equivalent to those calculated using gas solubility in water and observed brine volumes, to the exception of the very surface layer, generally for textural reasons....

  13. Computer-Based Support of Decision Making Processes during Biological Incidents

    Directory of Open Access Journals (Sweden)

    Karel Antos

    2010-04-01

    Full Text Available The paper describes contextual analysis of a general system that should provide a computerized support of decision making processes related to response operations in case of a biological incident. This analysis is focused on information systems and information resources perspective and their integration using appropriate tools and technology. In the contextual design the basic modules of BioDSS system are suggested and further elaborated. The modules deal with incident description, scenarios development and recommendation of appropriate countermeasures. Proposals for further research are also included.

  14. Pb, Cd, Cu and Zn biogeochemical behaviour and biological transfer processes in the Northwestern Mediterranean

    International Nuclear Information System (INIS)

    Nicolas, E.; Marty, J.C.; Miquel, J.C.; Fowler, S.W.

    1999-01-01

    Cd, Pb, Cu and Zn concentrations were determined in planktonic organisms (Salps, copepods), their associated faecal pellets and in particles collected at 200 and 2000 m depth in sediment traps moored in the Ligurian Sea. Al and P were also measured and taken as tracers of lithogenic and biogenic components, respectively. The aim of this work was to determine the fluxes of trace metals in the Ligurian Sea and their variations with depth, and to to assess the biogeochemical behaviour of elements having, for some of them, an anthropogenic origin, by the study of biologically-mediated uptake and removal processes

  15. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...... if the convergence, driven by the dilution rate, was slow (from 15 to 60 days). The propagation of the measurement noise and a bias in the estimation of glycogen and PHA could be the result of the high condition number of one of the matrices used in the algorithm of the asymptotic observer for the aerated tanks....

  16. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.

    2009-01-01

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  17. Theoretical considerations concerning the effect of relativistic velocities on the rate of biological processes.

    Science.gov (United States)

    Heneine, I F

    1997-06-01

    Theoretical considerations were advanced on the reaction rate of biological systems in a rocket accelerated at fractional levels of the velocity of light. The values of mass increase in reacting molecules and length contraction of space under these relativistic velocities attained by the hypothetical rocket were inserted in equations of the absolute reaction rate theory. The equations employed were for the frequency of collisions, and for the internal kinetic energy of molecular reactions. Results of both sets of equations indicated that reduction of reaction rates were correlated to the mass increase. This would imply a general slowing of all chemical, biochemical and biological processes taking place. A human would suffer a related decrease in metabolic rate. Contrary to what is generally accepted, the biological aging of the space traveler under velocities bearable by humans, namely under 0.50c, would follow a pace very similar to that of an observer remaining in the resting frame of reference. With increased increments of the velocity, the space traveler would display a more intense lowering of the metabolic rate, with signs and symptoms comparable to body core hypothermia. Metabolic rates at insufficient levels to maintain the vital functions would be attained at 0.70c and higher, leading swiftly to coma and death. The presence of an endocrine dysfunction such as hypothyroidism or obesity in the space traveler would aggravate the signs and symptoms. Space travel at efficient velocities would be unbearable for a warm-blooded animal.

  18. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  19. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    Science.gov (United States)

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  20. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  1. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    Science.gov (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Visual form Cues, Biological Motions, Auditory Cues, and Even Olfactory Cues Interact to Affect Visual Sex Discriminations

    OpenAIRE

    Rick Van Der Zwan; Anna Brooks; Duncan Blair; Coralia Machatch; Graeme Hacker

    2011-01-01

    Johnson and Tassinary (2005) proposed that visually perceived sex is signalled by structural or form cues. They suggested also that biological motion cues signal sex, but do so indirectly. We previously have shown that auditory cues can mediate visual sex perceptions (van der Zwan et al., 2009). Here we demonstrate that structural cues to body shape are alone sufficient for visual sex discriminations but that biological motion cues alone are not. Interestingly, biological motions can resolve ...

  3. Response of the Eastern Mediterranean microbial ecosystem to dust and dust affected by acid processing in the atmosphere

    Directory of Open Access Journals (Sweden)

    Michael David Krom

    2016-08-01

    Full Text Available Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS, which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z, acid treated dust (ZA, dust plus excess N (ZN and acid treated dust with excess N (ZNA during springtime (May 2012 and measured bacterioplankton biomass, metabolic and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 nmoles P mg-1 dust vs. 0.45 nmoles P mg-1 dust, respectively. The increase in chlorophyll, primary and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid

  4. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective

    International Nuclear Information System (INIS)

    Leibbrandt, N.H.; Knoetze, J.H.; Goergens, J.F.

    2011-01-01

    The technical performance of lignocellulosic enzymatic hydrolysis and fermentation versus pyrolysis processes for sugarcane bagasse was evaluated, based on currently available technology. Process models were developed for bioethanol production from sugarcane bagasse using three different pretreatment methods, i.e. dilute acid, liquid hot water and steam explosion, at various solid concentrations. Two pyrolysis processes, namely fast pyrolysis and vacuum pyrolysis, were considered as alternatives to biological processing for the production of biofuels from sugarcane bagasse. For bioethanol production, a minimum of 30% solids in the pretreatment reactor was required to render the process energy self-sufficient, which led to a total process energy demand equivalent to roughly 40% of the feedstock higher heating value. Both vacuum pyrolysis and fast pyrolysis could be operated as energy self-sufficient if 45% of the produced char from fast pyrolysis is used to fuel the process. No char energy is required to fuel the vacuum pyrolysis process due to lower process energy demands (17% compared to 28% of the feedstock higher heating value). The process models indicated that effective process heat integration can result in a 10-15% increase in all process energy efficiencies. Process thermal efficiencies between 52 and 56% were obtained for bioethanol production at pretreatment solids at 30% and 50%, respectively, while the efficiencies were 70% for both pyrolysis processes. The liquid fuel energy efficiency of the best bioethanol process is 41%, while that of crude bio-oil production before upgrading is 67% and 56% via fast and vacuum pyrolysis, respectively. Efficiencies for pyrolysis processes are expected to decrease by up to 15% should upgrade to a transportation fuel of equivalent quality to bioethanol be taken into consideration. -- Highlights: → Liquid biofuels can be produced via lignocellulosic enzymatic hydrolysis and fermentation or pyrolysis. → A minimum of

  5. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  6. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  7. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  8. Conflict Tasks of Different Types Divergently Affect the Attentional Processing of Gaze and Arrow.

    Science.gov (United States)

    Fan, Lingxia; Yu, Huan; Zhang, Xuemin; Feng, Qing; Sun, Mengdan; Xu, Mengsi

    2018-01-01

    The present study explored the attentional processing mechanisms of gaze and arrow cues in two different types of conflict tasks. In Experiment 1, participants performed a flanker task in which gaze and arrow cues were presented as central targets or bilateral distractors. The congruency between the direction of the target and the distractors was manipulated. Results showed that arrow distractors greatly interfered with the attentional processing of gaze, while the processing of arrow direction was immune to conflict from gaze distractors. Using a spatial compatibility task, Experiment 2 explored the conflict effects exerted on gaze and arrow processing by their relative spatial locations. When the direction of the arrow was in conflict with its spatial layout on screen, response times were slowed; however, the encoding of gaze was unaffected by spatial location. In general, processing to an arrow cue is less influenced by bilateral gaze cues but is affected by irrelevant spatial information, while processing to a gaze cue is greatly disturbed by bilateral arrows but is unaffected by irrelevant spatial information. Different effects on gaze and arrow cues by different types of conflicts may reflect two relatively distinct specific modes of the attentional process.

  9. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  10. Association of impaired facial affect recognition with basic facial and visual processing deficits in schizophrenia.

    Science.gov (United States)

    Norton, Daniel; McBain, Ryan; Holt, Daphne J; Ongur, Dost; Chen, Yue

    2009-06-15

    Impaired emotion recognition has been reported in schizophrenia, yet the nature of this impairment is not completely understood. Recognition of facial emotion depends on processing affective and nonaffective facial signals, as well as basic visual attributes. We examined whether and how poor facial emotion recognition in schizophrenia is related to basic visual processing and nonaffective face recognition. Schizophrenia patients (n = 32) and healthy control subjects (n = 29) performed emotion discrimination, identity discrimination, and visual contrast detection tasks, where the emotionality, distinctiveness of identity, or visual contrast was systematically manipulated. Subjects determined which of two presentations in a trial contained the target: the emotional face for emotion discrimination, a specific individual for identity discrimination, and a sinusoidal grating for contrast detection. Patients had significantly higher thresholds (worse performance) than control subjects for discriminating both fearful and happy faces. Furthermore, patients' poor performance in fear discrimination was predicted by performance in visual detection and face identity discrimination. Schizophrenia patients require greater emotional signal strength to discriminate fearful or happy face images from neutral ones. Deficient emotion recognition in schizophrenia does not appear to be determined solely by affective processing but is also linked to the processing of basic visual and facial information.

  11. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  12. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    Science.gov (United States)

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  13. Organizational factors affecting the adoption of diabetes care management processes in physician organizations.

    Science.gov (United States)

    Li, Rui; Simon, Jodi; Bodenheimer, Thomas; Gillies, Robin R; Casalino, Lawrence; Schmittdiel, Julie; Shortell, Stephen M

    2004-10-01

    To describe the extent of adoption of diabetes care management processes in physician organizations in the U.S. and to investigate the organizational factors that affect the adoption of diabetes care management processes. Data are derived from the National Survey of Physician Organizations and the Management of Chronic Illness, conducted in 2000-2001. A total of 1,104 of the 1,590 physician organizations identified responded to the survey. The extent of adoption of four diabetes care management processes is measured by an index consisting of the organization's use of diabetic patient registries, clinical practice guidelines, case management, and physician feedback. The ordinary least-squares model is used to determine the association of organizational characteristics with the adoption of diabetes care management processes in physician organizations. A logistic regression model is used to determine the association of organizational characteristics with the adoption of individual diabetes care management processes. Of the 987 physician organizations studied that treat patients with diabetes, 48% either do not use any or use only one of the four diabetes care management processes. A total of 20% use two care management processes, and 32% use three or four processes. External incentives to improve quality, computerized clinical information systems, and ownership by hospitals or health maintenance organizations are strongly associated with the diabetes care management index and the adoption of individual diabetes care management processes. Policies to encourage external incentives to improve quality and to facilitate the adoption of computerized clinical information technology may promote greater use of diabetes care management processes. Copyright 2004 American Diabetes Association

  14. How Are Distributed Groups Affected by an Imposed Structuring of their Decision-Making Process?

    DEFF Research Database (Denmark)

    Lundell, Anders Lorentz; Hertzum, Morten

    2011-01-01

    Groups often suffer from ineffective communication and decision making. This experimental study compares distributed groups solving a preference task with support from either a communication system or a system providing both communication and a structuring of the decision-making process. Results...... show that groups using the latter system spend more time solving the task, spend more of their time on solution analysis, spend less of their time on disorganized activity, and arrive at task solutions with less extreme preferences. Thus, the type of system affects the decision-making process as well...... as its outcome. Notably, the task solutions arrived at by the groups using the system that imposes a structuring of the decision-making process show limited correlation with the task solutions suggested by the system on the basis of the groups’ explicitly stated criteria. We find no differences in group...

  15. How does context affect intimate relationships? linking external stress and cognitive processes within marriage.

    Science.gov (United States)

    Neff, Lisa A; Karney, Benjamin R

    2004-02-01

    Stressors external to the marriage frequently affect the way spouses evaluate their marital quality. To date, however, understanding of the interplay between external stress and internal relationship processes has been limited in two ways. First, research has generally examined only the short-term consequences of stress. Second, the mechanisms through which external stressors influence relationship outcomes are unclear. This study addressed both limitations by examining relationship cognitions that may mediate the effects of external stress throughout 4 years of marriage. Analyses confirmed that stressful experiences were associated with the trajectory of marital quality overtime. Furthermore, both the content and the organization of spouses' specific relationship cognitions mediated this effect. That is, stress negatively influenced the nature of spouses' marital perceptions as well as the way spouses interpreted and processed those perceptions. These findings draw attention to ways that the context of relationships shapes and constrains relationship processes.

  16. A novel theory: biological processes mostly involve two types of mediators, namely general and specific mediators Endogenous small radicals such as superoxide and nitric oxide may play a role of general mediator in biological processes.

    Science.gov (United States)

    Mo, Jian

    2005-01-01

    A great number of papers have shown that free radicals as well as bioactive molecules can play a role of mediator in a wide spectrum of biological processes, but the biological actions and chemical reactivity of the free radicals are quite different from that of the bioactive molecules, and that a wide variety of bioactive molecules can be easily modified by free radicals due to having functional groups sensitive to redox, and the significance of the interaction between the free radicals and the bioactive molecules in biological processes has been confirmed by the results of some in vitro and in vivo studies. Based on these evidence, this article presented a novel theory about the mediators of biological processes. The essentials of the theory are: (a) mediators of biological processes can be classified into general and specific mediators; the general mediators include two types of free radicals, namely superoxide and nitric oxide; the specific mediators include a wide variety of bioactive molecules, such as specific enzymes, transcription factors, cytokines and eicosanoids; (b) a general mediator can modify almost any class of the biomolecules, and thus play a role of mediator in nearly every biological process via diverse mechanisms; a specific mediator always acts selectively on certain classes of the biomolecules, and may play a role of mediator in different biological processes via a same mechanism; (c) biological processes are mostly controlled by networks of their mediators, so the free radicals can regulate the last consequence of a biological process by modifying some types of the bioactive molecules, or in cooperation with these bioactive molecules; the biological actions of superoxide and nitric oxide may be synergistic or antagonistic. According to this theory, keeping the integrity of these networks and the balance between the free radicals and the bioactive molecules as well as the balance between the free radicals and the free radical scavengers

  17. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  18. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    Science.gov (United States)

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  19. The power of emotional valence – From cognitive to affective processes in reading

    Directory of Open Access Journals (Sweden)

    Ulrike eAltmann

    2012-06-01

    Full Text Available The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1 the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM, and (2 the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a 3 Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simulatiously liked, selectively engaged the medial prefrontal cortex (mPFC, which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  20. The power of emotional valence—from cognitive to affective processes in reading

    Science.gov (United States)

    Altmann, Ulrike; Bohrn, Isabel C.; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M.

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy. PMID:22754519

  1. The power of emotional valence-from cognitive to affective processes in reading.

    Science.gov (United States)

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  2. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  3. Importance of Cognitive and Affective Processes when Working with a Computer

    Directory of Open Access Journals (Sweden)

    Blaž Trbižan

    2013-06-01

    Full Text Available Research Question (RQ: Why and how to measure human emotions when working and learning with a computer? Are machines (computers, robots implementing such binary records, where there is a simulation of cognitive phenomena and their processes, or do they actually reflect, therefore, able to think?Purpose: Show the importance of cognitive and affective processes of computer and ICT usage, both in learning and in daily work tasks.Method: Comparative method, where scientific findings were compared and based on these conclusions were drawn.Results: An individual has an active role and the use of ICT enables, through the processes of reflection and exchanges of views, for an individual to resolve problems and consequently is able to achieve excellent results at both the personal (educational level and in business. In learning and working with computers, individuals needinternal motivation. Internal motivation can be increased with positive affective processes that also positively influence cognitive processes.Organization:Knowledge of generational characteristics is currently becoming a competitive advantage of organizations. Younger generations are growing up with computers and both teachers and managers have to beaware and accommodate their teaching and business processes to the requirements of ICT.Society: In the 21st century we live in a knowledge society that is unconditionally connected and dependent on the development of information technology. Digital literacy is an everyday concept that society also is aware of and training programmes are being offered on computer literacy for all generations.Originality: The paper presents a concise synthesis of research and authors points of views recorded over the last 25 years and these are combined with our own conclusions based on observations.Limitations/Future Research:The fundamental limitation is that this is a comparative research study that compares the views and conclusions of different authors

  4. Processing of biological waste. Ecological efficiency and potential; Behandlung von Bioabfaellen. Oekoeffizienz und Potenziale

    Energy Technology Data Exchange (ETDEWEB)

    Pitschke, Thorsten; Peche, Rene; Tronecker, Dieter; Kreibe, Siegfried [bifa Umweltinstitut GmbH, Augsburg (Germany)

    2013-07-01

    The sustainable usage of biological wastes has to be focused on the targets protection of resources and minimization of environmental impact. The only focus on the energy inventory is not sufficient. The following recommendations are summarized: separated bio-waste collection is usually more eco-efficient; the optimized bio-waste processing should be available according to the biodegradability; anaerobic degradation for biogas production and subsequent aerobic degradation of the fermentation product for compost can be combined; low-emission operational standards should be mandatory, innovation and investment should be promoted b reliable boundary conditions; ecological aspects should be equivalent to low-cost considerations; regulatory measures should be implemented for separated bio-waste collection and processing.

  5. Signal processing for molecular and cellular biological physics: an emerging field.

    Science.gov (United States)

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  6. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.

    2014-01-01

    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  7. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research.

  8. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  9. Wavelet data processing of micro-Raman spectra of biological samples

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  10. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    Science.gov (United States)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  11. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  12. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    Science.gov (United States)

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  14. Plasmalogens Inhibit APP Processing by Directly Affecting γ-Secretase Activity in Alzheimer's Disease

    Science.gov (United States)

    Rothhaar, Tatjana L.; Grösgen, Sven; Haupenthal, Viola J.; Burg, Verena K.; Hundsdörfer, Benjamin; Mett, Janine; Riemenschneider, Matthias; Grimm, Heike S.; Hartmann, Tobias; Grimm, Marcus O. W.

    2012-01-01

    Lipids play an important role as risk or protective factors in Alzheimer's disease (AD). Previously it has been shown that plasmalogens, the major brain phospholipids, are altered in AD. However, it remained unclear whether plasmalogens themselves are able to modulate amyloid precursor protein (APP) processing or if the reduced plasmalogen level is a consequence of AD. Here we identify the plasmalogens which are altered in human AD postmortem brains and investigate their impact on APP processing resulting in Aβ production. All tested plasmalogen species showed a reduction in γ-secretase activity whereas β- and α-secretase activity mainly remained unchanged. Plasmalogens directly affected γ-secretase activity, protein and RNA level of the secretases were unaffected, pointing towards a direct influence of plasmalogens on γ-secretase activity. Plasmalogens were also able to decrease γ-secretase activity in human postmortem AD brains emphasizing the impact of plasmalogens in AD. In summary our findings show that decreased plasmalogen levels are not only a consequence of AD but that plasmalogens also decrease APP processing by directly affecting γ-secretase activity, resulting in a vicious cycle: Aβ reduces plasmalogen levels and reduced plasmalogen levels directly increase γ-secretase activity leading to an even stronger production of Aβ peptides. PMID:22547976

  15. Does radiographic arthrosis correlate with cartilage pathology in Labrador Retrievers affected by medial coronoid process disease?

    Science.gov (United States)

    Farrell, Michael; Heller, Jane; Solano, Miguel; Fitzpatrick, Noel; Sparrow, Tim; Kowaleski, Mike

    2014-02-01

    To compare radiographic elbow arthrosis with arthroscopic cartilage pathology in Labrador retrievers with elbow osteoarthritis secondary to medial coronoid process (MCP) disease. Retrospective epidemiological study. Labrador retrievers (n = 317; 592 elbow joints). Data were collected retrospectively (June 2007-June 2011) to identify Labrador retrievers with thoracic limb lameness and elbow pain, a complete set of elbow radiographs, and a comprehensive arthroscopic surgery report. Each radiograph was scored for osteophytosis on the anconeal process and ulnar subtrochlear sclerosis using a modification of the International Elbow Working Group (IEWG) scoring system. Elbows affected by traumatic MCP fracture, humeral condylar osteochondrosis, or ununited anconeal process were excluded. The arthroscopic report was used to generate a composite cartilage score (CCS; 0 = normal, 1 = mild, 2 = moderate, 3 = severe) for each elbow joint. Ordinal regression analysis was performed to test the relationship between radiographic arthrosis score and CCS. There was a significant relationship between radiographic elbow arthrosis and CCS (P arthrosis can be used to predict the severity of arthroscopic cartilage pathology in Labrador retrievers affected by MCP disease. © Copyright 2014 by The American College of Veterinary Surgeons.

  16. Sorting it out: bedding particle size and nesting material processing method affect nest complexity.

    Science.gov (United States)

    Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N

    2017-04-01

    As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.

  17. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.

    Directory of Open Access Journals (Sweden)

    Massimiliano Conson

    Full Text Available Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS over dorsolateral prefrontal cortex (DLPFC. To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task, and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.

  18. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  19. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  20. Open Water Processes of the San Francisco Estuary: From Physical Forcing to Biological Responses

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer

    2004-02-01

    Full Text Available This paper reviews the current state of knowledge of the open waters of the San Francisco Estuary. This estuary is well known for the extent to which it has been altered through loss of wetlands, changes in hydrography, and the introduction of chemical and biological contaminants. It is also one of the most studied estuaries in the world, with much of the recent research effort aimed at supporting restoration efforts. In this review I emphasize the conceptual foundations for our current understanding of estuarine dynamics, particularly those aspects relevant to restoration. Several themes run throughout this paper. First is the critical role physical dynamics play in setting the stage for chemical and biological responses. Physical forcing by the tides and by variation in freshwater input combine to control the movement of the salinity field, and to establish stratification, mixing, and dilution patterns throughout the estuary. Many aspects of estuarine dynamics respond to interannual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of fish and shrimp varies positively with flow, although the mechanisms behind these relationships are largely unknown. The second theme is the importance of time scales in determining the degree of interaction between dynamic processes. Physical effects tend to dominate when they operate at shorter time scales than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions can be seen, for example, in the response of phytoplankton blooms, with characteristic time scales of days, to stratification events occurring during neap tides. The third theme is the key role of introduced species in all estuarine habitats; particularly noteworthy are introduced waterweeds and fishes in the tidal freshwater reaches of the estuary, and introduced clams there and in brackish water. The

  1. Evaluation of the physicochemical properties of coffee chaff when subjected to a biological treatment and its potential impact as a raw material in subsequent biological processes or thermochemical

    International Nuclear Information System (INIS)

    Valverde Camacho, Edgar

    2014-01-01

    An investigation is carried out using white rot fungi in coffee pulp to study the impact on the physicochemical properties. The use of brushwood in thermochemical processes, biochemists is evaluated for later use and production of energy or any product with added value. The strain is selected by growth in Petri dishes and fresh pulp is then inoculated with a strain of Trametes versicolor and Pleurotus ostreatus one. Each treatment was maintained in growth for seven weeks . The measurement of each of the response variables used were subsequently performed to characterize the fresh pulp, including: concentration of cellulose, hemicellulose, lignin, extractables total polyphenols, total ash, moisture, combustion heat and thermal gravimetric analysis. Measurements in the fresh pulp and brushwood-fungal matrix is performed at the end of treatment. An impact on the concentration of extractable total polyphenols is obtained with an apparent reduction of 87.7% in the treated Pult with Trametes versicolor and 80.5% in the treated with Pleurotus ostreatus, with regard to the fresh brushwood. Lignin concentration was affected; however, errors were found in the analytical method associated with the presence of the fungus in the analysis, leading to erroneous readings in the measurement parameter. Thermogravimetric analysis have allowed to observe a change in the whole matrix microorganism-brushwood. The biological treatment has generated a positive impact on the region pyrolysis at temperatures in the range of 150 to 400 degrees centigrade, improving processes of decomposition. Both treatments have shown a stabilization of the thermolysis in the region of temperatures above 400 degrees centigrade. The impact on a larger scale of the pre-treatment is evaluated on the gasification process, specifically on the production of tars has been necessary for field tests in a pilot team and in the same way for the case of enzymatic fermentation. Tests of ergosterol concentration and

  2. Does productivity affect profitability in dairy processing industry? Evidence from Slovenia, Croatia and Serbia

    Directory of Open Access Journals (Sweden)

    Saša Muminović

    2015-11-01

    Full Text Available This paper provides insights into productivity in dairy processing companies in Slovenia, Croatia and Serbia. The aim is to find out whether EBITDA per employee, as a measure of overall productivity as well as labour and capital productivity and their management positively affect company’s profitability. Literature review shows that this issue was relatively neglected, although increase in productivity is regarded as the most important factor in maintaining a competitive advantage in most developed countries. Results obtained show that comprehensive measure of productivity EBITDA per employee has statistically significant positive impact on company’s profitability, the same as productivity management components labour cost competitiveness and capital productivity.

  3. Selective perception of novel science: how definitions affect information processing about nanotechnology

    Science.gov (United States)

    Kim, Jiyoun; Akin, Heather; Brossard, Dominique; Xenos, Michael; Scheufele, Dietram A.

    2017-05-01

    This study examines how familiarity with an issue—nanotechnology—moderates the effect of exposure to science information on how people process mediated messages about a complex issue. In an online experiment, we provide a nationally representative sample three definitions of nanotechnology (technical, technical applications, and technical risk/benefit definitions). We then ask them to read an article about the topic. We find significant interactions between perceived nano-familiarity and the definition received in terms of how respondents perceive favorable information conveyed in the stimulus. People less familiar with nanotechnology were more significantly affected by the type of definition they received.

  4. Rethinking a Negative Event : The Affective Impact Of Ruminative versus Imagery-Based Processing Of Aversive Autobiographical Memories

    NARCIS (Netherlands)

    Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H

    2017-01-01

    INTRODUCTION: Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories

  5. Rethinking a Negative Event : The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories

    NARCIS (Netherlands)

    Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H

    2017-01-01

    INTRODUCTION: Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories

  6. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  7. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  8. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature

    Science.gov (United States)

    Emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive pest of serious concern in North America. To complement ongoing biological control efforts, Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae), a recently-described specialist parasitoid of ...

  9. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    biological processes affected by IR- and/or UV- induced DNA damage. Conclusion EPIG competed with CLICK and performed better than CAST in extracting patterns from simulated data. EPIG extracted more biological informative patterns and co-expressed genes from both C. elegans and IR/UV-treated human fibroblasts. Using Gene Ontology analysis of the genes in the patterns extracted by EPIG, several key biological categories related to p53-dependent cell cycle control were revealed from the IR/UV data. Among them were mitotic cell cycle, DNA replication, DNA repair, cell cycle checkpoint, and G0-like status transition. EPIG can be applied to data sets from a variety of experimental designs.

  10. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: a pharmacokinetic study.

    Science.gov (United States)

    Martínez-Huélamo, Miriam; Tulipani, Sara; Estruch, Ramón; Escribano, Elvira; Illán, Montserrat; Corella, Dolores; Lamuela-Raventós, Rosa M

    2015-04-15

    Tomato sauce is the most commonly consumed processed tomato product worldwide, but very little is known about how the manufacturing process may affect the phenolic composition and bioavailability after consumption. In a prospective randomised, cross-over intervention study, we analysed the plasma and urinary levels of tomato phenolic compounds and their metabolites after acute consumption of raw tomatoes and tomato sauce, enriched or not with refined olive oil during production. Respectively, eleven and four phenolic metabolites were found in urine and plasma samples. The plasma concentration and urinary excretion of naringenin glucuronide were both significantly higher after the consumption of tomato sauce than raw tomatoes. The results suggest that the mechanical and thermal treatments during tomato sauce manufacture may help to deliver these potentially bioactive phenolics from the food matrix more effectively than the addition of an oil component, thus increasing their bioavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Direct reciprocity in animals: The roles of bonding and affective processes.

    Science.gov (United States)

    Freidin, Esteban; Carballo, Fabricio; Bentosela, Mariana

    2017-04-01

    The presence of direct reciprocity in animals is a debated topic, because, despite its evolutionary plausibility, it is believed to be uncommon. Some authors claim that stable reciprocal exchanges require sophisticated cognition which has acted as a constraint on its evolution across species. In contrast, a more recent trend of research has focused on the possibility that direct reciprocity occurs within long-term bonds and relies on simple as well as more complex affective mechanisms such as emotional book-keeping, rudimentary and higher forms of empathy, and inequity aversion, among others. First, we present evidence supporting the occurrence of long-term reciprocity in the context of existing bonds in social birds and mammals. Second, we discuss the evidence for affective responses which, modulated by bonding, may underlie altruistic behaviours in different species. We conclude that the mechanisms that may underlie reciprocal exchanges are diverse, and that some act in interaction with bonding processes. From simple associative learning in social contexts, through emotional contagion and behavioural mimicry, to empathy and a sense of fairness, widespread and diverse social affective mechanisms may explain why direct reciprocity may not be a rare phenomenon among social vertebrates. © 2015 International Union of Psychological Science.

  12. Statistical and hydrogeochemical approach to study processes that affect groundwater composition in the Ferrara province (Italy)

    Science.gov (United States)

    Di roma, Antonella; Vaccaro, Carmela

    2017-04-01

    The ground water should not be seen only as a reserve for the water supply, but also be protected for its environmental value. Groundwater plays an essential role in the hydrological cycle for which the characterization, pollution prevention, monitoring and restoration are essential in view of the recovery and identification of the water bodies to be submitted to recharge for the adaptation to DM n. 100/2016. Groundwater of Ferrara province presents salinisation problems and pollution of noxious metals that can be mitigated through recharge processes evaluated based on the specific site characteristics. It is essential to know the hydrogeochemical characteristics of different aquifer levels. To do this have been discuss analytical results of groundwater (2014-2015 monitoring phreatic ground water and temporal series from 2003-2015 A1-A2-A3 samples from Emilia Romagna databases). Results showed that in the territory analyzed insist both salinization and refreshening processes. Factor analysis(FA) conducted on samples has divided them into three groups. 1: samples affected by ionic exchange, 2: pH reaction on heavy metal, 3: samples affected by mineralization. The geochemical groundwater facies changed from Ca-HCO3, and NaHCO3 with a small samples group of CaSO4 and through geochemical investigations were observed the reactions that take place in the waters mixing of different composition. The Na excesses are explained by ionic exchange processes. A determinant role is played by ionic exchange between Ca and Na. In this territory is important also the role of CH4 presence which typically rises towards the surface along faults and fractures and influence rise of deep water with different composition. On samples selected from FA Group 1 has been observed an increase of the CEC (Cation exchange capacity). Adsorption-desorption exchanges take place between water and the fine fraction sediment rich in clay minerals. Higher CEC values are found in rich organic substance

  13. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  15. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    Science.gov (United States)

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  16. Comprehension of complex biological processes by analytical methods: how far can we go using mass spectrometry?

    International Nuclear Information System (INIS)

    Gerner, C.

    2013-01-01

    Comprehensive understanding of complex biological processes is the basis for many biomedical issues of great relevance for modern society including risk assessment, drug development, quality control of industrial products and many more. Screening methods provide means for investigating biological samples without research hypothesis. However, the first boom of analytical screening efforts has passed and we again need to ask whether and how to apply screening methods. Mass spectrometry is a modern tool with unrivalled analytical capacities. This applies to all relevant characteristics of analytical methods such as specificity, sensitivity, accuracy, multiplicity and diversity of applications. Indeed, mass spectrometry qualifies to deal with complexity. Chronic inflammation is a common feature of almost all relevant diseases challenging our modern society; these diseases are apparently highly diverse and include arteriosclerosis, cancer, back pain, neurodegenerative diseases, depression and other. The complexity of mechanisms regulating chronic inflammation is the reason for the practical challenge to deal with it. The presentation shall give an overview of capabilities and limitations of the application of this analytical tool to solve critical questions with great relevance for our society. (author)

  17. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  18. Novel MBR_based main stream biological nutrient removal process: high performance and microbial community.

    Science.gov (United States)

    Zhang, Chuanyi; Xu, Xinhai; Zhao, Kuixia; Tang, Lianggang; Zou, Siqi; Yuan, Limei

    2018-02-01

    For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A 2 N-MBR and A 2 NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L -1 . However, the two-sludge systems (A 2 N-MBR and A 2 NO-MBR) had an obvious advantage over the A 2 /O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A 2 /O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A 2 N-MBR and A 2 NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A 2 /O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.

  19. Birth/birth-death processes and their computable transition probabilities with biological applications.

    Science.gov (United States)

    Ho, Lam Si Tung; Xu, Jason; Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2018-03-01

    Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.

  20. Prefrontal cortex executive processes affected by stress in health and disease.

    Science.gov (United States)

    Girotti, Milena; Adler, Samantha M; Bulin, Sarah E; Fucich, Elizabeth A; Paredes, Denisse; Morilak, David A

    2017-07-06

    Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction. Published by Elsevier Inc.

  1. The Effect of Intrinsic Motivation on the Affect and Evaluation of the Creative Process among Fine Arts Students

    Science.gov (United States)

    Stanko-Kaczmarek, Maja

    2012-01-01

    The main aim of this study was to gain a deeper understanding of the effect of intrinsic motivation on affect, subjective evaluation, and the creative process of young artists. Relations between motivation, affect, and evaluation were treated as a dynamic process and measured several times. The unique contribution of this study is that it…

  2. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.

    2015-01-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  3. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  4. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    Science.gov (United States)

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.

  5. Comparative biology approaches for charged particle exposures and cancer development processes

    Science.gov (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We

  6. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    Science.gov (United States)

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  7. Facilitating a More Efficient Commercial Review Process for Pediatric Drugs and Biologics

    Directory of Open Access Journals (Sweden)

    Ryan D. Rykhus

    2017-12-01

    Full Text Available Over the past two decades, the biopharmaceutical industry has seen unprecedented expansion and innovation in concert with significant technological advancements. While the industry has experienced marked growth, the regulatory system in the United States still operates at a capacity much lower than the influx of new drug and biologic candidates. As a result, it has become standard for months or even years of waiting for commercial approval by the U.S. Food and Drug Administration. These regulatory delays have generated a system that stifles growth and innovation due to the exorbitant costs associated with awaiting approval from the nation’s sole regulatory agency. The recent re-emergence of diseases that impact pediatric demographics represents one particularly acute reason for developing a regulatory system that facilitates a more efficient commercial review process. Herein, we present a range of initiatives that could represent early steps toward alleviating the delays in approving life-saving therapeutics.

  8. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  9. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  10. Biological impact of preschool music classes on processing speech in noise.

    Science.gov (United States)

    Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina

    2013-10-01

    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    Science.gov (United States)

    Bennett, Russell L.

    2006-01-01

    The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD) on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma City in 1995 and the use of planes as guided missiles directed into the Pentagon and New York’s Twin Towers in 2001 (9/11) and the tragic incidents involving twenty-three people who were infected and five who died as a result of contact with anthrax-laced mail in the Fall of 2001, have well established that the United States can be attacked by both domestic and international terrorists without warning or provocation. In light of these actions, hospitals have been working vigorously to ensure that they would be “ready” in the event of another terrorist attack to provide appropriate medical care to victims. However, according to a recent United States General Accounting Office (GAO) nationwide survey, our nation’s hospitals still are not prepared to manage mass causalities resulting from chemical or biological WMD. Therefore, there is a clear need for information about current hospital preparedness in order to provide a foundation for systematic planning and broader discussions about relative cost, probable effectiveness, environmental impact and overall societal priorities. Hence, the aim of this research was to examine the current preparedness of hospitals in the State of Mississippi to manage victims of terrorist attacks involving chemical or biological WMD. All acute care hospitals in the State were selected for inclusion in this study. Both quantitative and qualitative methods were utilized for data collection and analysis. Six hypotheses were tested. Using a

  12. The teach-learning process of high school students: a case of Educational Biology for teachers formation

    Directory of Open Access Journals (Sweden)

    Marisa Laporta Chudo

    2007-08-01

    Full Text Available Objective. To analyze the teach-learning process of high school students, in the scope of Educational Biology. To plan and to develop a methodology with lesson strategies that facilitate the learning. To analyze, in the students vision, the positive and negative points in the process. Method. A research was developed -- of which had participated students of the first semester of the Pedagogy of a high school private institution in São Paulo city -- of the type action-research, with increased qualitative character of quantitative instruments; as a way of data collect, had been used questionnaires and field diary; the results had been converted in charts; after that, the data collected by the questionnaires had been analyzed according to the technique of the collective subject analysis. Results. The results had supplied important information to high school teachers reflection about teach-learning process, showing that the used strategies allowed student envolvement and participation, proximity with personal and professional reality, bigger interaction in the interpersonal relations and critical reflection. Conclusions. The theoretical referencial about adult learning, the active methodologies and the interpersonal relationship between professor and pupils, with the analysis of the students vision about the positive and negative points in the teach-learning process, had provided subsidies to believe a methodology and specific didactic strategies for adults and that must contemplate the teachers motivation and the pedagogical communication, including elements like creativity, up to date technician content and formative content to the future profession, experiences exchange, that allow an affective relationship teacher-student, with interaction and dialogue.

  13. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  14. Biological treatment processes for PCB contaminated soil at a site in Newfoundland

    International Nuclear Information System (INIS)

    Punt, M.; Cooper, D.; Velicogna, D.; Mohn, W.; Reimer, K.; Parsons, D.; Patel, T.; Daugulis, A.

    2002-01-01

    SAIC Canada is conducting a study under the direction of a joint research and development contract between Public Works and Government Services Canada and Environment Canada to examine the biological options for treating PCB contaminated soil found at a containment cell at a former U.S. Military Base near Stephenville, Newfoundland. In particular, the study examines the feasibility of using indigenous microbes for the degradation of PCBs. The first phase of the study involved the testing of the microbes in a bioreactor. The second phase, currently underway, involves a complete evaluation of possible microbes for PCB degradation. It also involves further study into the biological process options for the site. Suitable indigenous and non-indigenous microbes for PCB dechlorination and biphenyl degradation are being identified and evaluated. In addition, the effectiveness and economics of microbial treatment in a conventional bioreactor is being evaluated. The conventional bioreactor used in this study is the two-phase partitioning bioreactor (TPPB) using a biopile process. Results thus far will be used to help Public Works and Government Services Canada to choose the most appropriate remedial technology. Preliminary results suggest that the use of soil classification could reduce the volume of soil requiring treatment. The soil in the containment cell contains microorganisms that could grow in isolation on biphenyl, naphthalene and potentially Aroclor 1254. Isolated native microbes were inoculated in the TPPB for growth. The TPPB was also run successfully under anaerobic conditions. Future work will involve lab-scale evaluation of microbes for PCB dechlorination and biphenyl degradation using both indigenous and non-indigenous microbes. The next phase of study may also involve field-scale demonstration of treatment methods. 2 refs., 3 tabs., 5 figs

  15. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  16. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  17. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    Science.gov (United States)

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.

  18. Factors Affecting Ballability of Mixture Iron Ore Concentrates and Iron Oxide Bearing Wastes in Metallurgical Processing

    Directory of Open Access Journals (Sweden)

    Mfon Udo

    2018-05-01

    Full Text Available Iron oxide bearing wastes (IROBEWAS are produced at every segment of processing stage of sinter, molten iron and steel production. They are hard to handle and in many cases are stockpiled only to be a source of environmental pollution but can be balled into pellets. Pellet of good ballability values are transportable and recyclable as they can withstand stress they will encounter without disintegrating back to dust. But ballability is affected by some factors like the grain sizes of the materials, the moisture and binder contents of the ball mix, wettability of the balled materials and the processing perimeters of the granulator. The objective of this research work is to investigate the factors affecting ballability of mixture of iron ore concentrates and iron oxide bearing wastes (IROBEWAS in metallurgical processing. The parameters under consideration were grain size of materials, the moisture contents, the speed of balling disc, IROBEWAS and Bentonite (Binder contents of the balled mix. This was carried out by balling different volume fractions of mix containing iron oxide concentrate and IROBEWAS using a balling disc and testing the resulting balls for green compressive strength using universal testing machine. It was found that the ballability of the mixture of iron ore concentrate and IROBEWAS increases as grain sizes of the materials reduce but increases as the moisture contents and IROBEWAS content increase up to an optimum value of moisture content in the mix before it starts to reduce. The ballability also increases as the speed of the granulator (Balling disc increases within the limit of this work. It was also observed that there was an increase in ballability with slight increase in bentonite content in the mix.

  19. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  20. Breakage or uprooting: How tree death type affects hillslope processes in old-growth temperate forests

    Science.gov (United States)

    Šamonil, Pavel; Daněk, Pavel; Adam, Dušan; Phillips, Jonathan D.

    2017-12-01

    Tree breakage and uprooting are two possible scenarios of tree death that have differing effects on hillslope processes. In this study we aimed to (i) reveal the long-term structure of the biomechanical effects of trees (BETs) in relation to their radial growth and tree death types in four old-growth temperate forests in four different elevation settings with an altitudinal gradient of 152-1105 m a.s.l., (ii) quantify affected areas and soil volumes associated with the studied BETs in reserves, and (iii) derive a general model of the role of BETs in hillslope processes in central European temperate forests. We analyzed the individual dynamics of circa 55,000 trees in an area of 161 ha within four old-growth forests over 3-4 decades. Basal tree censuses established in all sites in the 1970s and repeated tree censuses in the 1990s and 2000s provided detailed information about the radial growth of each tree of DBH ≥ 10 cm as well as about types of tree death. We focused on the quantification of: (i) surviving still-living trees, (ii) new recruits, (iii) standing dead trees, (iv) uprooted trees, and (v) broken trees. Frequencies of phenomena were related to affected areas and volumes of soil using individual statistical models. The elevation contrasts were a significant factor in the structure of BETs. Differences between sites increased from frequencies of events through affected areas to volumes of soil associated with BETs. An average 2.7 m3 ha-1 year-1 was associated with all BETs of the living and dying trees in lowlands, while there was an average of 7.8 m3 ha-1 year-1 in the highest mountain site. Differences were caused mainly by the effects of dying trees. BETs associated with dead trees were 7-8 times larger in the mountains. Effects of dying trees and particularly treethrows represented about 70% of all BETs at both mountain sites, while it was 58% at the highland site and only 32% at the lowland site. Our results show a more significant role of BETs in

  1. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  2. DLPFC implication in memory processing of affective information. A look on anxiety trait contribution

    Directory of Open Access Journals (Sweden)

    Chiara Ferrari

    2011-04-01

    Full Text Available Recent studies suggested to approach to the analysis of the emotions and cognition from an integrating point of view rather than investigate the two constructs per se. In line with this research approach, the present study aims to investigate how emotions can affect memory processes and which cerebral areas are involved in this mechanism. We also aim to understand if and how this processing is influenced by specific personality traits, as anxiety trait. Using a rTMS measure, participants were asked to performance a memory task (a retrieval task composed by verbal material with and without emotional content. Subjects were also assessed for their anxiety trait (high and low anxiety subjects. Our study provided a strong evidence for the influence of the emotional content and personality trait on the memory processes. Secondly, the role of the Left Dorso-Lateral Prefrontal Cortex in emotional memory was pointed out with a specific function of this frontal network in managing the emotional memories.

  3. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins.

    Science.gov (United States)

    Johnson, E M; Schnabelrauch, L S; Sears, B B

    1991-01-01

    Immunoblotting of a chloroplast mutant (pm7) of Oenothera showed that three proteins, cytochrome f and the 23 kDa and 16 kDa subunits of the oxygen-evolving subcomplex of photosystem II, were larger than the corresponding mature proteins of the wild type and, thus, appear to be improperly processed in pm7. The mutant is also chlorotic and has little or no internal membrane development in the plastids. The improperly processed proteins, and other proteins that are completely missing, represent products of both the plastid and nuclear genomes. To test for linkage of these defects, a green revertant of pm7 was isolated from cultures in which the mutant plastids were maintained in a nuclear background homozygous for the plastome mutator (pm) gene. In this revertant, all proteins analyzed co-reverted to the wild-type condition, indicating that a single mutation in a plastome gene is responsible for the complex phenotype of pm7. These results suggest that the defect in pm7 lies in a gene that affects a processing protease encoded in the chloroplast genome.

  4. Similar local and landscape processes affect both a common and a rare newt species.

    Science.gov (United States)

    Denoël, Mathieu; Perez, Amélie; Cornet, Yves; Ficetola, Gentile Francesco

    2013-01-01

    Although rare species are often the focus of conservation measures, more common species may experience similar decline and suffer from the same threatening processes. We tested this hypothesis by examining, through an information-theoretic approach, the importance of ecological processes at multiple scales in the great crested newt Triturus cristatus, regionally endangered and protected in Europe, and the more common smooth newt, Lissotriton vulgaris. Both species were similarly affected by the same processes, i.e. suitability of aquatic and terrestrial components of their habitat at different scales, connectivity among breeding sites, and the presence of introduced fish. T. cristatus depended more on water depth and aquatic vegetation than L. vulgaris. The results show that environmental pressures threaten both common and rare species, and therefore the more widespread species should not be neglected in conservation programs. Because environmental trends are leading to a deterioration of aquatic and terrestrial habitat features required by newt populations, populations of the common species may follow the fate of the rarest species. This could have substantial conservation implications because of the numerical importance of common species in ecosystems and because commonness could be a transient state moving towards rarity. On the other hand, in agreement with the umbrella species concept, targeting conservation efforts on the most demanding species would also protect part of the populations of the most common species.

  5. The indirect effect of emotion dysregulation in terms of negative affect and smoking-related cognitive processes.

    Science.gov (United States)

    Johnson, Adrienne L; McLeish, Alison C

    2016-02-01

    Although negative affect is associated with a number of smoking-related cognitive processes, the mechanisms underlying these associations have yet to be examined. The current study sought to examine the indirect effect of emotion regulation difficulties in terms of the association between negative affect and smoking-related cognitive processes (internal barriers to cessation, negative affect reduction smoking motives, negative affect reduction smoking outcome expectancies). Participants were 126 daily cigarette smokers (70.4% male, Mage=36.5years, SD=13.0; 69.8% Caucasian) who smoked an average of 18.5 (SD=8.7) cigarettes per day and reported moderate nicotine dependence. Formal mediation analyses were conducted using PROCESS to examine the indirect effect of negative affect on internal barriers to cessation and negative affect reduction smoking motives and outcome expectancies through emotion regulation difficulties. After accounting for the effects of gender, daily smoking rate, and anxiety sensitivity, negative affect was indirectly related to internal barriers to cessation and negative affect reduction smoking motives through emotion regulation difficulties. There was no significant indirect effect for negative affect reduction smoking outcome expectancies. These findings suggest that greater negative affect is associated with a desire to smoke to reduce this negative affect and perceptions that quitting smoking will be difficult due to negative emotions because of greater difficulties managing these negative emotions. Thus, emotion regulation difficulties may be an important target for smoking cessation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  7. Conducting longitudinal, process-oriented research with conflict-affected youth: Solving the inevitable challenges.

    Science.gov (United States)

    Dubow, Eric F; Aber, J Lawrence; Betancourt, Theresa S; Cummings, E Mark; Huesmann, L Rowell

    2017-02-01

    The reader might get the impression that the four projects described in this Special Section proceeded in a systematic and predictable way. Of course, those of us engaged in each research project encountered pitfalls and challenges along the way. A main goal of this Special Section is to provide pathways and encouragement for those who may be interested in advancing high-quality research on this topic. In this paper, we describe a set of practical and ethical challenges that we encountered in conducting our longitudinal, process-oriented, and translational research with conflict-affected youth, and we illustrate how problems can be solved with the goal of maintaining the internal and external validity of the research designs. We are hopeful that by describing the challenges of our work, and how we overcame them, which are seldom treated in this or any other literature on research on child development in high-risk contexts, we can offer a realistic and encouraging picture of conducting methodologically sound research in conflict-affected contexts.

  8. He Throws like a Girl (but Only when He's Sad): Emotion Affects Sex-Decoding of Biological Motion Displays

    Science.gov (United States)

    Johnson, Kerri L.; McKay, Lawrie S.; Pollick, Frank E.

    2011-01-01

    Gender stereotypes have been implicated in sex-typed perceptions of facial emotion. Such interpretations were recently called into question because facial cues of emotion are confounded with sexually dimorphic facial cues. Here we examine the role of visual cues and gender stereotypes in perceptions of biological motion displays, thus overcoming…

  9. Critical-Thinking Grudge Match: Biology vs. Chemistry--Examining Factors That Affect Thinking Skill in Nonmajors Science

    Science.gov (United States)

    Quitadamo, Ian J.; Kurtz, Martha J.; Cornell, Caitlyn Nicole; Griffith, Lindsay; Hancock, Julie; Egbert, Brandi

    2011-01-01

    Chemistry students appear to bring significantly higher critical-thinking skill to their nonmajors course than do biology students. Knowing student preconceptions and thinking ability is essential to learning growth and effective teaching. Of the factors investigated, ethnicity and high school physics had the largest impact on critical-thinking…

  10. Organizational Factors that Affect the University-Industry Technology Transfer Processes of a Private University

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2012-02-01

    Full Text Available This case study researched organizational factors that affect the university-industry technology transfer (UITT processes of a private university, chosen by its success and uniqueness in the Brazilian context. Stood out as factors: innovation among pillars of management; valuing of research and intellectual property; qualified students, teachers and managers; multidisciplinary research groups; stability of governing body; performance of the TTO, Technology Management Agency and Technology Park. Difficulties highlighted were: reconciliation of time between activities of professors-researchers, bureaucracy and centralization of administrative and legal support; valuation of research results; approach and negotiation with companies. Among suggestions are: granting greater independence to the structures in charge of UITT and making them self-sustainable; training agents in technology marketing, sale, and negotiation skills.

  11. Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains.

    Science.gov (United States)

    Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker

    2018-02-06

    Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  13. Rethinking a Negative Event: The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories

    Directory of Open Access Journals (Sweden)

    Christien Slofstra

    2017-05-01

    Full Text Available IntroductionRuminative (abstract verbal processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing.MethodsThe affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample (n = 99 using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory.ResultsMain findings were that higher levels of trait (but not state measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing.DiscussionThese results cast doubt

  14. Rethinking a Negative Event: The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories.

    Science.gov (United States)

    Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H

    2017-01-01

    Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing. The affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample ( n  = 99) using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures) was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory. Main findings were that higher levels of trait (but not state) measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal) processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing. These results cast doubt on the hypothesis that ruminative processing of

  15. Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Steven J. Deverel

    2007-05-01

    Full Text Available From 2000 to 2003 we quantified drain flow, drain-and ground-water chemistry and hydrogeologic conditions on Twitchell Island in the Sacramento-San Joaquin Delta. The primary objective was to quantify processes affecting organic carbon concentrations and loads in agricultural drainage water. We collected physical and chemical data in southern and northern areas: TN and TS, respectively. Corn grew in both areas during the spring and summer. The peat soils in the TN area are more decomposed than those in the TS area. Results elucidate processes affecting drain flow and concentrations under varying hydrologic conditions. During May through November, groundwater flows from the permanently saturated zone to drainage ditches, and the resulting average drainage-water quality and dissolved organic carbon (DOC concentration was similar to the groundwater; the median DOC loads in the TN and TS study areas ranged from 9 to 27 g C/ha-day. The major ion chemistry and stable isotope data confirmed that groundwater was the primary source of drainflow. In contrast, during December through April the drainwater is supplied from the shallow, variably saturated soil-zone. The DOC concentrations, major-ion chemistry, and stable isotope data indicate that the shallow-zone water is partially evaporated and oxidized. Higher flows and DOC concentrations during these months result in higher median DOC loads, which ranged from 84 to 280 g C/ha-day. During December through April, increasing groundwater levels in the shallow peat layers and mobilization of organic carbon result in high drain flow and increased trihalomethane precursor concentrations and loads. On a per mass DOC basis, drain water collected during high flow periods is less likely to form THMs than during low flow periods. However, the high flows and subsequent high concentrations contribute to substantially higher trihalomethane precursor and DOC loads.

  16. Factors Affecting the Location of Road Emergency Bases in Iran Using Analytical Hierarchy Process (AHP).

    Science.gov (United States)

    Bahadori, Mohammadkarim; Hajebrahimi, Ahmad; Alimohammadzadeh, Khalil; Ravangard, Ramin; Hosseini, Seyed Mojtaba

    2017-10-01

    To identify and prioritize factors affecting the location of road emergency bases in Iran using Analytical Hierarchy Process (AHP). This was a mixed method (quantitative-qualitative) study conducted in 2016. The participants in this study included the professionals and experts in the field of pre-hospital and road emergency services issues working in the Health Deputy of Iran Ministry of Health and Medical Education, which were selected using purposive sampling method. In this study at first, the factors affecting the location of road emergency bases in Iran were identified using literature review and conducting interviews with the experts. Then, the identified factors were scored and prioritized using the studied professionals and experts' viewpoints through using the analytic hierarchy process (AHP) technique and its related pair-wise questionnaire. The collected data were analyzed using MAXQDA 10.0 software to analyze the answers given to the open question and Expert Choice 10.0 software to determine the weights and priorities of the identified factors. The results showed that eight factors were effective in locating the road emergency bases in Iran from the viewpoints of the studied professionals and experts in the field of pre-hospital and road emergency services issues, including respectively distance from the next base, region population, topography and geographical situation of the region, the volume of road traffic, the existence of amenities such as water, electricity, gas, etc. and proximity to the village, accident-prone sites, University ownership of the base site, and proximity to toll-house. Among the eight factors which were effective in locating the road emergency bases from the studied professionals and experts' perspectives, "distance from the next base" and "region population" were respectively the most important ones which had great differences with other factors.

  17. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    Science.gov (United States)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  18. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Science.gov (United States)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  19. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  20. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  1. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  3. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Science.gov (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  4. Application of a biological process for decontamination of soils in the far north

    International Nuclear Information System (INIS)

    Pouliot, Y.; Sansregret, J.-L.

    1994-01-01

    The site of a diesel-fuelled power station in the extreme north of Quebec (62 degree latitude) was contaminated with hydrocarbons. The site was characterized by typical Arctic conditions: presence of permafrost, limited land transport facilities, restricted availability of machinery and equipment, and scarcity of skilled labor and specialized services. To remediate the site, it was decided to excavate the contaminated soil and subject it to a biological treatment process. The soil was piled on an impermeable base inside of the old power station building and the following parameters were controlled in order to optimize the biodegradation of the hydrocarbons: temperature, humidity, pH, presence of hydrocarbon degrading microorganisms, and concentrations of oxygen, nitrogen, and phosphorus in the soil. Samples were analyzed to monitor the performance of the biodegradation process. In less than 12 weeks, of treatment, an inital hydrocarbon content estimated at 6,400 mg/kg of oils and greases was reduced to 750 mg/kg, corresponding to a level acceptable for residential areas. Indigenous microorganisms capable of degrading hydrocarbons were already present in the native soil in sufficient quantity, and their performance improved when the soil conditions were optimized. 1 fig., 3 tabs

  5. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen : A laboratory batch study

    NARCIS (Netherlands)

    Wang, F.; van Halem, D.; Liu, G.; Lekkerkerker-Teunissen, K.; van der Hoek, J.P.

    2017-01-01

    H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on

  6. Evaluation of the processing of dry biological ferment for gamma radiation

    International Nuclear Information System (INIS)

    Sabundjian, Ingrid Traete

    2007-01-01

    The developed work had with objectives to demonstrate if it had alteration in the growth of UFC in plate and in the viability of yeasts and total bacteria when dry biological ferment was dealt with by different doses to gamma radiation and under different times storage, to determine the D10 dose for total bacteria and yeasts in this product and to analyzed the processing of this product it promoted some benefit without causing unfeasibility of exactly. The different samples of dry biological ferment had been irradiated at IPEN in a Gammacell - 220 source at 0.5; 1; 2 and 3 kGy doses (dose rate of 3.51 kGy/h). This procedure referring samples to each dose of radiation had been after destined to the microbiological analysis and the test of viability while excessively the samples had been stored the ambient temperature (23 degree C). The increase of the dose of radiation caused a reduction in the counting of yeasts growth, of total bacteria growth and also in the frequency of viable yeast cells, demonstrated by FDA-EB fluorescent method. Beyond of radiation the storage time also it influenced in counting reduction of total bacteria and reduction of frequency of viable cells. According with the analysis of simple linear regression, the dose of radiation necessary to eliminate 90% of the yeast population was between 1.10 and 2.23 kGy and for the bacterial population varied between 2.31 and 2.95 kGy. These results demonstrated clearly the negative points of the application of ionizing radiation in dry biological ferment; therefore the interval of D10 found for total bacteria is superior to found for yeasts. Being thus, the use of this resource for the improvement of the product quality becomes impracticable, since to reduce significantly the bacterial population necessarily we have that to diminish the population of yeasts. With yeasts reduction of we will go significantly to modify the quality and the viability of product. (author)

  7. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.

  8. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    approach, outlines the major findings and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder. PMID:17391014

  9. Does residence time affect responses of alien species richness to environmental and spatial processes?

    Directory of Open Access Journals (Sweden)

    Matteo Dainese

    2012-08-01

    Full Text Available One of the most robust emerging generalisations in invasion biology is that the probability of invasion increases with the time since introduction (residence time. We analysed the spatial distribution of alien vascular plant species in a region of north-eastern Italy to understand the influence of residence time on patterns of alien species richness. Neophytes were grouped according to three periods of arrival in the study region (1500–1800, 1800–1900, and > 1900. We applied multiple regression (spatial and non-spatial with hierarchical partitioning to determine the influence of climate and human pressure on species richness within the groups. We also applied variation partitioning to evaluate the relative importance of environmental and spatial processes. Temperature mainly influenced groups with speciesa longer residence time, while human pressure influenced the more recently introduced species, although its influence remained significant in all groups. Partial regression analyses showed that most of the variation explained by the models is attributable to spatially structured environmental variation, while environment and space had small independent effects. However, effects independent of environment decreased, and spatially independent effects increased, from older to the more recent neophytes. Our data illustrate that the distribution of alien species richness for species that arrived recently is related to propagule pressure, availability of novel niches created by human activity, and neutral-based (dispersal limitation processes, while climate filtering plays a key role in the distribution of species that arrived earlier. This study highlights the importance of residence time, spatial structure, and environmental conditions in the patterns of alien species richness and for a better understanding of its geographical variation.

  10. Faces in context: A review and systematization of contextual influences on affective face processing

    Directory of Open Access Journals (Sweden)

    Matthias J Wieser

    2012-11-01

    Full Text Available Facial expressions are of eminent importance for social interaction as they convey information about other individuals’ emotions and social intentions. According to the predominant basic emotion approach, the perception of emotion in faces is based on the rapid, automatic categorization of prototypical, universal expressions. Consequently, the perception of facial expressions has typically been investigated using isolated, decontextualized, static pictures of facial expressions that maximize the distinction between categories. However, in everyday life, an individual’s face is not perceived in isolation, but almost always appears within a situational context, which may arise from other people, the physical environment surrounding the face, as well as multichannel information from the sender. Furthermore, situational context may be provided by the perceiver, including already present social information gained from affective learning and implicit processing biases such as race bias. Thus, the perception of facial expressions is presumably always influenced by contextual variables. In this comprehensive review, we aim at 1 systematizing the contextual variables that may influence the perception of facial expressions and 2 summarizing experimental paradigms and findings that have been used to investigate these influences. The studies reviewed here demonstrate that perception and neural processing of facial expressions are substantially modified by contextual information, including verbal, visual, and auditory information presented together with the face as well as knowledge or processing biases already present in the observer. These findings further challenge the assumption of automatic, hardwired categorical emotion extraction mechanisms predicted by basic emotion theories. Taking into account a recent model on face processing, we discuss where and when these different contextual influences may take place, thus outlining potential avenues in

  11. Early affective processing in patients with acute posttraumatic stress disorder: magnetoencephalographic correlates.

    Directory of Open Access Journals (Sweden)

    Markus Burgmer

    Full Text Available In chronic PTSD, a preattentive neural alarm system responds rapidly to emotional information, leading to increased prefrontal cortex (PFC activation at early processing stages (<100 ms. Enhanced PFC responses are followed by a reduction in occipito-temporal activity during later processing stages. However, it remains unknown if this neuronal pattern is a result of a long lasting mental disorder or if it represents changes in brain function as direct consequences of severe trauma.The present study investigates early fear network activity in acutely traumatized patients with PTSD. It focuses on the question whether dysfunctions previously observed in chronic PTSD patients are already present shortly after trauma exposure. We recorded neuromagnetic activity towards emotional pictures in seven acutely traumatized PTSD patients between one and seven weeks after trauma exposure and compared brain responses to a balanced healthy control sample. Inverse modelling served for mapping sources of differential activation in the brain.Compared to the control group, acutely traumatized PTSD patients showed an enhanced PFC response to high-arousing pictures between 60 to 80 ms. This rapid prefrontal hypervigilance towards arousing pictorial stimuli was sustained during 120-300 ms, where it was accompanied by a reduced affective modulation of occipito-temporal neural processing.Our findings indicate that the hypervigilance-avoidance pattern seen in chronic PTSD is not necessarily a product of an endured mental disorder, but arises as an almost immediate result of severe traumatisation. Thus, traumatic experiences can influence emotion processing strongly, leading to long-lasting changes in trauma network activation and expediting a chronic manifestation of maladaptive cognitive and behavioral symptoms.

  12. Working Memory Load and Negative Picture Processing: Neural and Behavioral Associations With Panic, Social Anxiety, and Positive Affect.

    Science.gov (United States)

    MacNamara, Annmarie; Jackson, T Bryan; Fitzgerald, Jacklynn M; Hajcak, Greg; Phan, K Luan

    2018-04-22

    Internalizing disorders such as anxiety may be characterized by an imbalance between bottom-up (stimulus-driven) and top-down (goal-directed) attention. The late positive potential (LPP) can be used to assess these processes when task-irrelevant negative and neutral pictures are presented within a working memory paradigm. Prior work using this paradigm has found that working memory load reduces the picture-elicited LPP across participants; however, anxious individuals showed a reduced effect of working memory load on the LPP, suggesting increased distractibility. The current study assessed transdiagnostic associations between specific symptom dimensions of anxiety, the LPP, and behavior in a clinically representative, heterogeneous group of 76 treatment-seeking patients with internalizing disorders, who performed a working memory task interspersed with negative and neutral pictures. As expected, negative pictures enhanced the LPP, and working memory load reduced the LPP. Participants with higher social anxiety showed increased LPPs to negative stimuli during early and late portions of picture presentation. Panic symptoms were associated with reduced LPPs to negative pictures compared with neutral pictures as well as a reduced effect of working memory load on the LPP during the late time window. Reduced positive affect was associated with greater behavioral interference from negative pictures. Hypervigilance for negative stimuli was uniquely explained by social anxiety symptoms, whereas panic symptoms were associated with the opposing effect-blunted processing/avoidance of these stimuli. Panic symptoms were uniquely associated with reduced top-down control. Results reveal distinct associations between neural reactivity and anxiety symptom dimensions that transcend traditional diagnostic boundaries. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Advanced image processing methods as a tool to map and quantify different types of biological soil crust

    Science.gov (United States)

    Rodríguez-Caballero, Emilio; Escribano, Paula; Cantón, Yolanda

    2014-04-01

    Biological soil crusts (BSCs) modify numerous soil surface properties and affect many key ecosystem processes. As BSCs are considered one of the most important components of semiarid ecosystems, accurate characterisation of their spatial distribution is increasingly in demand. This paper describes a novel methodology for identifying the areas dominated by different types of BSCs and quantifying their relative cover at subpixel scale in a semiarid ecosystem of SE Spain. The approach consists of two consecutive steps: (i) First, Support Vector Machine (SVM) classification to identify the main ground units, dominated by homogenous surface cover (bare soil, cyanobacteria BSC, lichen BSC, green and dry vegetation), which are of strong ecological relevance. (ii) Spectral mixture analysis (SMA) of the ground units to quantify the proportion of each type of surface cover within each pixel, to correctly characterize the complex spatial heterogeneity inherent to semiarid ecosystems. SVM classification showed very good results with a Kappa coefficient of 0.93%, discriminating among areas dominated by bare soil, cyanobacteria BSC, lichen BSC, green and dry vegetation. Subpixel relative abundance images achieved relatively high accuracy for both types of BSCs (about 80%), whereas general overestimation of vegetation was observed. Our results open the possibility of introducing the effect of presence and of relative cover of BSCs in spatially distributed hydrological and ecological models, and assessment and monitoring aimed at reducing degradation in these areas.

  14. Understanding the local socio-political processes affecting conservation management outcomes in Corbett Tiger Reserve, India.

    Science.gov (United States)

    Rastogi, Archi; Hickey, Gordon M; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  15. Understanding the Local Socio-political Processes Affecting Conservation Management Outcomes in Corbett Tiger Reserve, India

    Science.gov (United States)

    Rastogi, Archi; Hickey, Gordon M.; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  16. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  17. Ageing differentially affects neural processing of different conflict types – an fMRI study

    Directory of Open Access Journals (Sweden)

    Margarethe eKorsch

    2014-04-01

    Full Text Available Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, (e.g. stimulus-stimulus (S-S or stimulus-response (S-R conflicts trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI study, we used a combined Flanker and Stimulus Response Conflict (SRC task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions (caudate nucleus, cingulate gyrus and middle occipital gyrus during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.

  18. Ageing differentially affects neural processing of different conflict types-an fMRI study.

    Science.gov (United States)

    Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred

    2014-01-01

    Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.

  19. Neuroimaging of affect processing in schizophrenia; Funktionelle Bildgebung von emotionalem Verhalten und Erleben bei schizophrenen Patienten

    Energy Technology Data Exchange (ETDEWEB)

    Habel, U. [Universitaetsklinikum Aachen (Germany). Klinik fuer Psychiatrie und Psychotherapie; Universitaetsklinikum, Klinik fuer Psychiatrie und Psychotherapie, Aachen (Germany); Kircher, T.; Schneider, F. [Universitaetsklinikum Aachen (Germany). Klinik fuer Psychiatrie und Psychotherapie

    2005-02-01

    Functional imaging of normal and dysfunctional emotional processes is an important tool for a better understanding of the pathophysiology of affective symptoms in schizophrenia patients. These symptoms are still poorly characterized with respect to their neural correlates. Comparisons of cerebral activation during emotional paradigms offered the possibility for a better characterization of cerebral dysfunctions during emotional processing in schizophrenia. Abnormal activation patterns reveal a complex dysfunctional subcortical-cortical network. This is modulated by respective genotypes as well as psycho- and pharmacotherapy. (orig.) [German] Die funktionell bildgebende Untersuchung emotionaler Prozesse und ihrer Dysfunktionen ist fuer ein besseres Verstaendnis der Pathophysiologie emotionaler Stoerungen wesentlich. Schizophrene Patienten zeigen eine Reihe affektiver Symptome, die klinisch relevant, aber nur unzureichend bzgl. ihrer neurobiologischen Korrelate bekannt sind. Der Vergleich zerebraler Aktivierung zwischen gesunden und schizophrenen Patienten waehrend unterschiedlicher emotionaler Paradigmen hat dazu beigetragen, zerebrale Dysfunktionen naeher zu charakterisieren. So weisen auffaellige Aktivierungsmuster auf eine komplex gestoerte subkortikal-kortikale Netzwerkstruktur hin. Deren Modulation durch genetische Faktoren und durch psycho- wie auch pharmakologische therapeutische Interventionen konnte mittlerweile nachgewiesen werden. (orig.)

  20. Honey Quality as Affected by Handling, Processing and Marketing Channels in Uganda

    Directory of Open Access Journals (Sweden)

    Nabakabya, D.

    2008-01-01

    Full Text Available The factors that affect honey quality in Uganda were surveyed in 120 beekeeping households. Honey was sampled from supermarkets, hawkers and stall markets along four transects across Kampala, the capital. Honey quality parameters assessed were diastase number (DN, free acidity (FA, moisture content (MC, hydroxymethylfurfural (HMF, and water insoluble solids (WIS. Honey was mostly harvested from basket and grass hives. Pressing, boiling and straining were popular honey processing methods. Honey quality was mainly compromised by harvesting immature honey, bad extraction methods and contamination by extraneous materials. Constraints to beekeeping were lack of appropriate equipment (52%, inadequate farmer skills, bad weather and vermin. Honey brands differed (P< 0.05 in DN, most failed the Uganda and Codex Alimentarius standards, and 20% met European Union HMF and DN standards. Correlation was observed between HMF vs. DN (r= 0.94; MC vs. FA (r= 0.56. Supermarket honey (4.65 was more superior (P< 0.05 in DN than stall markets (1.93, and hawkers (2.3. Similarly, WIS levels differed (P< 0.05 between honeys from supermarkets (0.08, stall markets (3.0 and hawkers (3.15. All honeys met MC standards, while DN and WIS were major shortcomings. Farmer training and extension in proper honey harvesting, handling and processing should be strengthened. Quality monitoring at all levels should be emphasized.

  1. Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence

    Science.gov (United States)

    Pohorille, Andrew

    2012-01-01

    above background was evolved in vitro. This enzyme does not look like any contemporary protein. It is very flexible and its structure is kept together just by a single salt bridge between a charged residue and a coordinating zinc. A similar picture emerges from studies of simple transmembrane channels that mimic those in ancestral cells. Again, they are extremely flexible and do not form a conventional pore. Yet, they efficiently mediate ion transport. Studies on simple proteins that are on-going in several laboratories hold promise of revealing crucial links between chemical and biological catalysis and other ubiquitous cell functions. Interaction between composition, growth and division of protobiologically relevant vesicles and metabolic reactions that they encapsulate is an example of coupling between simple functions that promotes reproduction and evolution. Recent studies have demonstrated possible mechanisms by which vesicles might have evolved their composition from fatty acids to phospholipids, thus facilitating a number of new cellular functions. Conversely, it has been also demonstrated that an encapsulated metabolism might drive vesicle division. These are, again, examples of processes that might have driven the transition from chemistry to biology.

  2. INFLUENCE OF INORGANIC COMPOUNDS ON THE PROCESS OF PHOTOCATALYSIS OF BIOLOGICALLY ACTIVE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek

    2017-07-01

    Full Text Available Constant increase in concentration of organic micropollutants in the water environment influences the development of methods for their effective elimination from various matrices released into aquatic ecosystems. One of widely described in literature processes for the decomposition of hardly-biodegradable pollutants is the process of heterogeneous photocatalysis. The paper presents the influence of inorganic substances on the decomposition of polycyclic aromatic hydrocarbons (anthracene and benzo[a]pyrene, industrial admixtures - octylphenol and pharmaceutical compounds - diclofenac in the photocatalysis process conducted in the presence of TiO2. It has been shown that the presence of Cl- ions did not affect the photochemical reaction of the micropollutant decomposition. Whereas, the presence of CO3(2-, SO4(2- and HPO4(2- ions inhibited the decolonization of octylphenol and diclofenac, while the degradation efficiency of anthracene and benzo[a]pyrene was reduced only by the presence of CO3(2- and HCO3- anions. The photooxidation of micropollutants in solutions containing Al(3+ oraz Fe(3+ cations proceeded with a much lower efficiency than that for solution without inorganic compounds. The analysis of the kinetics of the photocatalytic decomposition of selected micropollutants show a decrease in the reaction rate constant and an increase in their half-life due to the blocking of theactive semiconductor centers by inorganic compounds. In addition,the toxicological analysis inducated the generation of micropollutant oxidation by-products, which aggravate the quality of treated aqueous solutions.

  3. Biological effects of radiation and chemical agents with special regard to repair processes

    International Nuclear Information System (INIS)

    Altmann, H.; Wottawa, A.

    1980-01-01

    It is reasonably certain that the introduction or increase of pollutants in the environment can augment mutagenic and carcinogenic effects. These effects are operationally definable, but the genetic organization and the underlying mechanisms of DNA repair, mutagenesis and carcinogenesis are so complex as to make the extrapolation of results from mutagenicity test data to carcinogenicity somewhat uncertain. The subject is reviewed. Recent discoveries in gene organization and expression include overlapping genes in bacteriophages, split genes, processing of RNA and splicing, translocation of genes in eukaryotes, inactivation of the X-chromosome in mammals, etc. Apart from the genetic regulation, plasmids, insertion sequences and mutators can additionally affect mutation frequency. Cancers due to gene mutations, viruses, chemicals and physical agents are known. However, little is known about the epigenetic mechanisms involved. The value of mutagenicity test data is beyond question, but in view of the extraordinary complexities encountered our extrapolations will be more sound if the data have the underpinning of basic information. (author)

  4. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  5. Factors Affecting the Levels of Heavy Metals in Juices Processed with Filter Aids.

    Science.gov (United States)

    Wang, Zhengfang; Jackson, Lauren S; Jablonski, Joseph E

    2017-06-01

    This study investigated factors that may contribute to the presence of arsenic and other heavy metals in apple and grape juices processed with filter aids. Different types and grades of filter aids were analyzed for arsenic, lead, and cadmium with inductively coupled plasma-tandem mass spectrometry. Potential factors affecting the transfer of heavy metals to juices during filtration treatments were evaluated. Effects of washing treatments on removal of heavy metals from filter aids were also determined. Results showed that diatomaceous earth (DE) generally contained a higher level of arsenic than perlite, whereas perlite had a higher lead content than DE. Cellulose contained the lowest level of arsenic among the surveyed filter aids. All samples of food-grade filter aids contained arsenic and lead levels that were below the U.S. Pharmacopeia and National Formulary limits of 10 ppm of total leachable arsenic and lead for food-grade DE filter aids. Two samples of arsenic-rich (>3 ppm) food-grade filter aids raised the level of arsenic in apple and grape juices during laboratory-scale filtration treatments, whereas three samples of low-arsenic (filter aids did not affect arsenic levels in filtered juices. Filtration tests with simulated juices (pH 2.9 to 4.1, Brix [°Bx] 8.2 to 18.1, total suspended solids [TSS] 0.1 to 0.5%) showed that pH or sugar content had no effect on arsenic levels of filtered juices, whereas arsenic content of filtered juice was elevated when higher amounts of filter aid were used for filtration. Authentic unfiltered apple juice (pH 3.6, °Bx 12.9, TSS 0.4%) and grape juice (pH 3.3, °Bx 16.2, TSS 0.05%) were used to verify results obtained with simulated juices. However, body feed ratio did not affect the arsenic content of filtered authentic juices. Washing treatments were effective at reducing arsenic, but not cadmium or lead, concentrations in a DE filter aid. This study identified ways to reduce the amount of arsenic transferred to juices

  6. Biological effects of ion implantation on processing tomato and eggplant seed

    Internatio