WorldWideScience

Sample records for biological pest control

  1. Biological pest control in Mexico.

    Science.gov (United States)

    Williams, Trevor; Arredondo-Bernal, Hugo C; Rodríguez-del-Bosque, Luis A

    2013-01-01

    Mexico is a megadiverse country that forms part of the Mesoamerican biological corridor that connects North and South America. Mexico's biogeographical situation places it at risk from invasive exotic insect pests that enter from the United States, Central America, or the Caribbean. In this review we analyze the factors that contributed to some highly successful past programs involving classical biological control and/or the sterile insect technique (SIT). The present situation is then examined with reference to biological control, including SIT programs, targeted at seven major pests, with varying degrees of success. Finally, we analyze the current threats facing Mexico's agriculture industry from invasive pests that have recently entered the country or are about to do so. We conclude that despite a number of shortcomings, Mexico is better set to develop biological control-based pest control programs, particularly on an area-wide basis, than many other Latin American countries are. Classical and augmentative biological control and SIT-based programs are likely to provide effective and sustainable options for control of native and exotic pests, particularly when integrated into technology packages that meet farmers' needs across the great diversity of production systems in Mexico.

  2. Parasitoids as biological control agents of thrips pests

    NARCIS (Netherlands)

    Loomans, A.J.M.

    2003-01-01

    Keywords: Thysanoptera, Frankliniella occidentalis, Hymenoptera, Ceranisus menes, Ceranisus americensis, biological controlThe thesis presented here is the result of a joint European Research project "Biological Control of Thrips Pests". Specific aims of the project were to collect, evaluate, mass p

  3. A theoretical approach on controlling agricultural pest by biological controls.

    Science.gov (United States)

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  4. Biological pest control in beetle agriculture.

    Science.gov (United States)

    Aanen, Duur K; Slippers, Bernard; Wingfield, Michael J

    2009-05-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics against an antagonist of the beetles' mutualistic fungus. In addition to highlighting the ecological complexity of bark-beetle-microbial symbioses, this work reveals a potential source of novel antibiotics.

  5. Identification and evaluation of Trichogramma parasitoids for biological pest control

    NARCIS (Netherlands)

    Silva, I.M.M.S.

    1999-01-01

    Egg parasitoids of the genus Trichogramma are used as biological control agents against lepidopterous pests. From the 180 species described world-wide, only 5 have large scale application. The development of better methods to select other Trichogramma species/strains is necessary for a more effectiv

  6. Biopesticides: An option for the biological pest control

    Directory of Open Access Journals (Sweden)

    Eusebio Nava Pérez

    2012-09-01

    Full Text Available The indiscriminate use of synthetic pesticides and the problems that its cause to human health, agriculture and the environment is comment, this paper also present general aspects about of biopesticides, and their uses in the biological pest control. By the nature these can be safely used in a sustainable agriculture. An example is the use of botanical pesticides whose active ingredient are the terpenes, alkaloids and phenolics, these have insecticide effects for many agriculture pests; also its are less expensive, are biodegradable and safe for humans and the environment, however havelittle residuality. Microbial pesticides are being introduced successfully to pests control in important crops such as; coffee, sugar cane, beans and corn. These products contain bacteria, fungi, viruses or nematodes. However, few entomopathogenic agents have been developed as effective biocontrol agents, one of them is the bacterium Bacillus thuringiensis (Berlinier for control of armyworm Spodoptera frugiperda (J.E Smith covering about 74% of the market,fungus 10% , viruses 5% and 11% others. Other upstanding case is the use of the fungus Beauveria bassiana (Balsamoagainst bean weevil Acanthoscelides obtectus (Say. Biopesticides have shown that when are used properly in the biological pest control its favor the practice of a sustainable agriculture, with less dependence of chemical insecticides.

  7. "Protected biological control"- Biological pest management in the greenhouse industry

    NARCIS (Netherlands)

    Pilkington, L.J.; Messelink, G.J.; Lenteren, van J.C.; Mottee, Le K.

    2010-01-01

    This paper briefly describes the foundations and characteristics of biological control in protected cropping and what drivers are behind adoption of this management system within this industry. Examining a brief history of biological control in greenhouses and what makes it a successful management s

  8. Models for integrated pest control and their biological implications.

    Science.gov (United States)

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  9. Allee effects in tritrophic food chains: some insights in pest biological control.

    Science.gov (United States)

    Costa, Michel Iskin da S; Dos Anjos, Lucas

    2016-12-01

    Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies.

  10. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  11. Multi-objective evolutionary optimization of biological pest control with impulsive dynamics in soybean crops.

    Science.gov (United States)

    Cardoso, Rodrigo T N; da Cruz, André R; Wanner, Elizabeth F; Takahashi, Ricardo H C

    2009-08-01

    The biological pest control in agriculture, an environment-friendly practice, maintains the density of pests below an economic injury level by releasing a suitable quantity of their natural enemies. This work proposes a multi-objective numerical solution to biological pest control for soybean crops, considering both the cost of application of the control action and the cost of economic damages. The system model is nonlinear with impulsive control dynamics, in order to cope more effectively with the actual control action to be applied, which should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and trustworthy multi-objective genetic algorithm. The results suggest a dual pest control policy, in which the relative price of control action versus the associated additional harvest yield determines the usage of either a low control action strategy or a higher one.

  12. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    OpenAIRE

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two...

  13. Natural biological control of pest mites in Brazilian sun coffee agroecosystems.

    Science.gov (United States)

    Teodoro, Adenir V; Sarmento, Renato A; Rêgo, Adriano S; da Graça S Maciel, Anilde

    2010-06-01

    Coffee is one of the leading commodities in tropical America. Although plantations are usually established under a canopy of trees in most producing countries in the region, Brazilian coffee is mostly produced under full sun conditions. Such simple, single-crop agroecosystems with intensive agrochemical inputs often suffer with pests like mites. Predatory mites of the family Phytoseiidae are the main natural enemies associated with pest mites in the field. However, these beneficial arthropods struggle to survive in intensive agroecosystems such as coffee monocultures due to unfavorable microclimatic conditions, widespread pesticide use, and lack of alternative food (pollen, nectar). Conservation biological control uses a range of management strategies to sustain and enhance populations of indigenous natural enemies such as predatory mites. We discuss here conservation biological control as a strategy to improve biological control of pest mites by native predatory mites in Brazilian coffee monocultures as well as some related patents.

  14. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    Full Text Available Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history, the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard, or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae in 2,528 olive groves in Andalusia (Spain from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  15. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  16. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  17. Effect of non-crop vegetation types on conservation biological control of pests in olive groves.

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  18. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    2013-07-01

    Full Text Available Conservation biological control (CBC is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina and the olive moth (Prays oleae. Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  19. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops.

    Science.gov (United States)

    Hoddle, Mark S; Warner, Keith; Steggall, John; Jetter, Karen M

    2014-12-23

    Advances in scientific disciplines that support classical biological control have provided "new tools" that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting "legacy pests", even if they have been targets of previously unsuccessful biocontrol projects. Examples of "new tools" include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using "new tools" for developing biological control programs for "legacy pests" could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect.

  20. Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent

    DEFF Research Database (Denmark)

    Anato, Florence; Wargui, Rosine; Sinzogan, Antonio

    2015-01-01

    BACKGROUND: Cashew (Anacardium occidentale Linnaeus) is the largest agricultural export product in Benin. However, yields and quality are lost due to inefficient pest control. Weaver ants (Oecophylla spp.) may control pests in this crop as they eat and deter pests. In Benin, cashew pest damages, ...

  1. Early pest development and loss of biological control are associated with urban warming.

    Science.gov (United States)

    Meineke, Emily K; Dunn, Robert R; Frank, Steven D

    2014-11-01

    Climate warming is predicted to cause many changes in ectotherm communities, one of which is phenological mismatch, wherein one species' development advances relative to an associated species or community. Phenological mismatches already lead to loss of pollination services, and we predict that they also cause loss of biological control. Here, we provide evidence that a pest develops earlier due to urban warming but that phenology of its parasitoid community does not similarly advance. This mismatch is associated with greater egg production that likely leads to more pests on trees.

  2. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological......, beetles and moths; (2) Preventative treatment of bulk commodities against weevils (Sitophilus spp.) and storage mites; (3) Preventative application of egg-parasitoids against moths in packaged products. Development of methods for biological control and of mass production of natural enemies...

  3. Biological control through intraguild predation: case studies in pest control, invasive species and range expansion.

    Science.gov (United States)

    Bampfylde, C J; Lewis, M A

    2007-04-01

    Intraguild predation (IGP), the interaction between species that eat each other and compete for shared resources, is ubiquitous in nature. We document its occurrence across a wide range of taxonomic groups and ecosystems with particular reference to non-indigenous species and agricultural pests. The consequences of IGP are complex and difficult to interpret. The purpose of this paper is to provide a modelling framework for the analysis of IGP in a spatial context. We start by considering a spatially homogeneous system and find the conditions for predator and prey to exclude each other, to coexist and for alternative stable states. Management alternatives for the control of invasive or pest species through IGP are presented for the spatially homogeneous system. We extend the model to include movement of predator and prey. In this spatial context, it is possible to switch between alternative stable steady states through local perturbations that give rise to travelling waves of extinction or control. The direction of the travelling wave depends on the details of the nonlinear intraguild interactions, but can be calculated explicitly. This spatial phenomenon suggests means by which invasions succeed or fail, and yields new methods for spatial biological control. Freshwater case studies are used to illustrate the outcomes.

  4. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  6. Integrated Pest Management of Aphis spiraecola (Hemiptera: Aphididae) in clementines: enhancing its biological control

    OpenAIRE

    GOMEZ MARCO, FRANCESC

    2016-01-01

    [EN] Aphis spiraecola Patch. (Hemiptera: Aphididae) is a key pest of clementines. Biological control of A. spiraecola is still poorly known and efforts were based on the use and conservation of parasitoids but it did not success. With all this said, the aims of this thesis were: i) to disentangle the reasons behind the low parasitism of A. spiraecola; ii) to determine when and how predators can control A. spiraecola populations; and, finally, iii) to evaluate whether a ground cover of Poaceae...

  7. The role of transient dynamics in biological pest control: insights from a host-parasitoid community.

    Science.gov (United States)

    Kidd, David; Amarasekare, Priyanga

    2012-01-01

    1. Identifying natural enemies that can maintain pests at low abundances is a priority in biological control. Here, we show that experiments combined with models generate new insights into identifying effective control agents prior to their release in the field. Using a host-parasitoid community (the harlequin bug and its egg parasitoids) as a model system, we report three key findings. 2. The interplay between the host's self-limitation and the parasitoids' saturating functional response causes the long-term (steady-state) outcomes for pest suppression to differ from those of short-term (transient) dynamics. When the bug's self-limitation is moderately strong, the parasitoid with the higher attack rate and conversion efficiency (Ooencyrtus) achieves greater host suppression in the long term, but its longer handling time causes long periods of transient dynamics during which the bug can reach high abundances; when the bug's self-limitation is weak, host fluctuations amplify over time and Ooencyrtus fails at host suppression altogether. In contrast, the parasitoid with the lower attack rate and conversion efficiency but the shorter handling time (Trissolcus) induces only weak transient fluctuations of short duration and can maintain the host at low abundances regardless of the strength of the bug's self-limitation. 3. Release of multiple enemy species can compromise host suppression if an enemy that induces stronger transient fluctuations excludes one that induces weaker fluctuations. For instance, Ooencyrtus excludes Trissolcus despite having a longer handling time because of its higher conversion efficiency. The model correctly predicts the time to exclusion observed in experiments, suggesting that it captures the key biological features of the host-parasitoid interaction. 4. Intraspecific interference reduces long-term pest suppression but improves short-term pest control by reducing the magnitude and duration of transient fluctuations. 5. These results highlight

  8. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  9. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Science.gov (United States)

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  10. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    Directory of Open Access Journals (Sweden)

    Mark S. Hoddle

    2014-12-01

    Full Text Available Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect.

  11. Supplemental control of lepidopterous pests on Bt transgenic sweet corn with biologically-based spray treatments.

    Science.gov (United States)

    Farrar, Robert R; Shepard, B Merle; Shapiro, Martin; Hassell, Richard L; Schaffer, Mark L; Smith, Chad M

    2009-01-01

    Biologically-based spray treatments, including nucleopolyhedroviruses, neem, and spinosad, were evaluated as supplemental controls for the fall armyworm, Spodoptera frugiperda (J. E. Smith), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on transgenic sweet corn, Zea mays (L.) (Poales: Poaceae), expressing a Cry1Ab toxin from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). Overall, transgenic corn supported lower densities of both pests than did nontransgenic corn. Control of the fall armyworm was improved in both whorl-stage and tassel-stage corn by the use of either a nucleopolyhedrovirus or neem, but the greatest improvement was seen with spinosad. Only spinosad consistently reduced damage to ears, which was caused by both pest species. In general, efficacy of the spray materials did not differ greatly between transgenic and nontransgenic corn.

  12. Conservation biological control of pests in the molecular era: new opportunities to address old constraints

    Directory of Open Access Journals (Sweden)

    Gurr eGeoff

    2016-01-01

    Full Text Available ABSTRACTBiological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA and now – in turn – are being overtaken by next generation sequencing (NGS- based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate the plant defence mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles.

  13. Enhancement of biological control agents for use against forest insect pests and diseases through biotechnology

    Science.gov (United States)

    Slavicek, James M.

    1991-01-01

    Research and development efforts in our research group are focused on the generation of more efficacious biological control agents through the techniques of biotechnology for use against forest insect pests and diseases. Effective biological controls for the gypsy moth and for tree fungal wilt pathogens are under development. The successful use of Gypchek, a formulation of the Lymantria dispar nuclear polyhedrosis virus (LdNPV), in gypsy moth control programs has generated considerable interest in that agent. As a consequence of its specificity, LdPNV has negligible adverse ecological impacts compared to most gypsy moth control agents. However, LdNPV is not competitive with other control agents in terms of cost and efficacy. We are investigating several parameters of LdNPV replication and polyhedra production in order to enhance viral potency and efficacy thus mitigating the current disadvantages of LdNPV for gypsy moth control, and have identified LdNPV variants that will facilitate these efforts. Tree endophytic bacteria that synthesize antifungal compounds were identified and an antibiotic compound from one of these bacteria was characterized. The feasibility of developing tree endophytes as biological control agents for tree vascular fungal pathogens is being investigated.

  14. Biological control of pests in protected cultivation: implementation in Latin America and successes in Europe

    NARCIS (Netherlands)

    Bueno, V.H.P.; Lenteren, van J.C.

    2010-01-01

    The area with greenhouse crops is estimated to be around 40,000 hectares in Latin America, of which approximately 60% is occupied with ornamentals. Several pests are responsible for losses in yield or quality of greenhouse crops production and pest control is still mainly by chemicals. However, ther

  15. Conservation Biological Control and Pest Performance in Lawn Turf: Does Mowing Height Matter?

    Science.gov (United States)

    Dobbs, Emily K.; Potter, Daniel A.

    2014-03-01

    With >80 million United States households engaged in lawn and gardening activities, increasing sustainability of lawn care is important. Mowing height is an easily manipulated aspect of lawn management. We tested the hypothesis that elevated mowing of tall fescue lawn grass promotes a larger, more diverse community of arthropod natural enemies which in turn provides stronger biological control services, and the corollary hypothesis that doing so also renders the turf itself less suitable for growth of insect pests. Turf-type tall fescue was mowed low (6.4 cm) or high (10.2 cm) for two growing seasons, natural enemy populations were assessed by vacuum sampling, pitfall traps, and ant baits, and predation and parasitism were evaluated with sentinel prey caterpillars, grubs, and eggs. In addition, foliage-feeding caterpillars and root-feeding scarab grubs were confined in the turf to evaluate their performance. Although some predatory groups (e.g., rove beetles and spiders) were more abundant in high-mowed grass, predation rates were uniformly high because ants, the dominant predators, were similarly abundant regardless of mowing height. Lower canopy temperatures in high-mowed grass were associated with slower growth of grass-feeding caterpillars. Higher lawn mowing reduces fuel consumption and yard waste, and promotes a deep, robust root system that reduces need for water and chemical inputs. Although in this study elevated mowing height did not measurably increase the already-high levels of predation, it did suggest additional ways through which bottom-up effects on insect pest growth might interact with natural enemies to facilitate conservation biological control.

  16. Biological control of thrips pests (Thysanoptera: Thripidae in a commercial greenhouse in Hungary

    Directory of Open Access Journals (Sweden)

    Farkas Péter

    2016-12-01

    Full Text Available Polyphagous thrips, like western flower thrips Frankliniella occidentalis and onion thrips Thrips tabaci, are major pests in various ornamental and vegetable crops in greenhouses throughout the world. In Hungary, both of these polyphagous thrips species frequently cause severe damage in many greenhouse crops, especially in commercial sweet pepper. Chemical control is not always feasible because of certain ecological characteristics of these thrips species. The commercially available phytoseiid predatory mites like Amblyseius swirskii and anthocorid flower bugs like Orius laevigatus are often used simultaneously for the biological control of severe thrips infestation in sweet pepper cultivation in Hungary. Our observations demonstrated that the polyphagous thrips assemblages were effectively controlled by the combined release of natural enemies, despite the fact that the establishment of O. laevigatus did not seem to be successful in the first year. Overall, the thrips population density remained below the economic threshold in both years. However, the low infestation level of thrips suggests that a single predator release strategy could be applied effectively and still maintain the thrips below the damage threshold in greenhouse sweet pepper.

  17. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    Directory of Open Access Journals (Sweden)

    Jonathan R Morris

    Full Text Available Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82% than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.

  18. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    Science.gov (United States)

    Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.

  19. Supplemental food that supports both predator and pest: a risk for biological control?

    Science.gov (United States)

    Leman, Ada; Messelink, Gerben J

    2015-04-01

    Supplemental food sources to support natural enemies in crops are increasingly being tested and used. This is particularly interesting for generalist predators that can reproduce on these food sources. However, a potential risk for pest control could occur when herbivores also benefit from supplemental food sources. In order to optimize biological control, it may be important to select food sources that support predator populations more than herbivore populations. In this study we evaluated the nutritional quality of four types of supplemental food for the generalist predatory mites Amblyseius swirskii Athias-Henriot and Amblydromalus (Typhlodromalus) limonicus (Garman and McGregor), both important thrips predators, and for the herbivore western flower thrips Frankliniella occidentalis Pergande, by assessing oviposition rates. These tests showed that application of corn pollen, cattail pollen or sterilized eggs of Ephestia kuehniella Zeller to chrysanthemum leaves resulted in three times higher oviposition rates of thrips compared to leaves without additional food. None of the tested food sources promoted predatory mites or western flower thrips exclusively. Decapsulated cysts of Artemia franciscana Kellogg were not suitable, whereas cattail pollen was very suitable for both predatory mites and western flower thrips. In addition, we found that the rate of thrips predation by A. swirskii can be reduced by 50 %, when pollen is present. Nevertheless, application of pollen or Ephestia eggs to a chrysanthemum crop still strongly enhanced the biological control of thrips with A. swirskii, both at low and high release densities of predatory mites through the strong numerical response of the predators. Despite these positive results, application in a crop should be approached with caution, as the results may strongly depend on the initial predator-prey ratio, the nutritional quality of the supplemental food source, the species of predatory mites, the distribution of the

  20. Biology and Control of Insect and Related Pests of Livestock in Wyoming. MP-23.

    Science.gov (United States)

    Lloyd, John E.

    This document provides information that a potential insecticide applicator can utilize to safely and effectively control insects and related pests of livestock. The first section of the manual discusses the general methods of preparation and application of insecticides. The second section concerns itself with the recognition of insect problems,…

  1. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Alexandrea Dutka

    2015-11-01

    Full Text Available There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm2 soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

  2. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris.

    Science.gov (United States)

    Dutka, Alexandrea; McNulty, Alison; Williamson, Sally M

    2015-01-01

    There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

  3. Essential oils nanoformulations for stored-product pest control - characterization and biological properties.

    Science.gov (United States)

    Werdin González, Jorge Omar; Gutiérrez, María Mercedes; Ferrero, Adriana Alicia; Fernández Band, Beatriz

    2014-04-01

    The lethal and sublethal activity of poly(ethylene glycol) (PEG) nanoparticles containing essential oils (EO), also the physicochemical characterization, were determined against Tribolium castaneum and Rhizopertha dominica. The 10% ratio EO-PEG nanoparticles showed an average diameter75%; after 6 month of storage their size did not change significantly and the amount of the EOs decreased 25%, approximately. Furthermore, during this period, no chemical derivates were observed. The EOs nanoparticles produced a notable increase of the residual contact toxicity apparently due to the slow and persistent release of the active terpenes. In addition, the nanoformulation enhanced the EO contact toxicity and altered the nutritional physiology of both stored product pest. The results indicated that these novel systems could be used in integrated pest management program for T. castaneum and R. dominica control.

  4. Nonlinear incidence rate of a Pest management SI model with biological and chemical control concern

    Institute of Scientific and Technical Information of China (English)

    JIAO Jian-jun; CHEN Lan-sun

    2007-01-01

    A pest management SI model with impulsive releases of infective pests and spraying pesticides is proposed and investigated. We prove that all solutions of the model are uniformly ultimately bounded. We also obtain the sufficient conditions of globally asymptotic stability periodic solution of pest-extinction and permanence of the model.The approach of combining impulsive releasing infective pests with impulsive spraying pesticides provides reliable tactical basis for the practical pest management.

  5. Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation.

    Science.gov (United States)

    Srinivasu, P D N; Prasad, B S R V

    2010-04-01

    Use of additional food has been widely recognized by experimental scientists as one of the important tools for biological control such as species conservation and pest management. The quality and quantity of additional food supplied to the predators is known to play a vital role in the controllability of the system. The present study is continuation of a previous work that highlights the importance of quality and quantity of the additional food in the dynamics of a predator-prey system in the context of biological control. In this article the controllability of the predator-prey system is analyzed by considering inverse of quality of the additional food as the control variable. Control strategies are offered to steer the system from a given initial state to a required terminal state in a minimum time by formulating Mayer problem of optimal control. It is observed that an optimal strategy is a combination of bang-bang controls and could involve multiple switches. Properties of optimal paths are derived using necessary conditions for Mayer problem. In the light of the results evolved in this work it is possible to eradicate the prey from the eco-system in the minimum time by providing the predator with high quality additional food, which is relevant in the pest management. In the perspective of biological conservation this study highlights the possibilities to drive the state to an admissible interior equilibrium (irrespective of its stability nature) of the system in a minimum time.

  6. Biological monitoring of pyrethroid exposure of pest control workers in Japan.

    Science.gov (United States)

    Wang, Dong; Kamijima, Michihiro; Imai, Ryota; Suzuki, Takayoshi; Kameda, Yohei; Asai, Kazumi; Okamura, Ai; Naito, Hisao; Ueyama, Jun; Saito, Isao; Nakajima, Tamie; Goto, Masahiro; Shibata, Eiji; Kondo, Takaaki; Takagi, Kenji; Takagi, Kenzo; Wakusawa, Shinya

    2007-11-01

    Synthetic pyrethroids such as cypermethrin, deltamethrin and permethrin, which are usually used in pest control operations, are metabolized to 3-phenoxybenzoic acid (3-PBA) and excreted in urine. Though 3-PBA can be used to assess exposure to pyrethroids, there are few reports describing urinary 3-PBA levels in Japan. This study aimed to investigate the seasonal variation of the exposure levels of pyrethroids and the concentration of urinary 3-PBA among pest control operators (PCOs) in Japan. The study subjects were 78 and 66 PCOs who underwent a health examination in December 2004 and in August 2005, respectively. 3-PBA was determined using gas chromatography-mass spectrometry. The geometric mean concentration of urinary 3-PBA in winter (3.9 microg/g creatinine) was significantly lower than in summer (12.2 microg/g creatinine) (p0.05), respectively. A significant association of 3-PBA levels and pyrethroid spraying was thus observed only in winter. In conclusion, the results of the present study show that the exposure level of pyrethroids among PCOs in Japan assessed by monitoring urinary 3-PBA was higher than that reported in the UK but comparable to that in Germany. Further research should be accumulated to establish an occupational reference value in Japan.

  7. Atoms for pest control

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, D.A. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria)) (and others)

    1984-06-01

    Insects cause losses estimated at between 8% and 20% of total production of crops and livestock throughout the world. With the aim of developing technologies which can reduce such losses, the Insect and Pest Control Section of the Joint FAO/IAEA Division actively sponsors projects and conducts research through the Entomology Section of the Agricultural Biotechnology Laboratory at Seibersdorf. In its work, the Section has placed considerable emphasis on the Sterile Insect Technique (SIT). This technique involves the sterilization and release of large numbers of insects of the target species into the area where control is to be achieved. There, the sterile insects mate with the fertile wild insects, which produce no progeny: the technique is thus a highly specific form of ''birth control''. It is being used against a number of pest species in several countries.

  8. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  9. Tsetse flies: their biology and control using area-wide integrated pest management approaches.

    Science.gov (United States)

    Vreysen, Marc J B; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2013-03-01

    Tsetse flies are the cyclical vectors of trypanosomes, the causative agents of 'sleeping sickness' or human African trypanosomosis (HAT) in humans and 'nagana' or African animal trypanosomosis (AAT) in livestock in Sub-saharan Africa. Many consider HAT as one of the major neglected tropical diseases and AAT as the single greatest health constraint to increased livestock production. This review provides some background information on the taxonomy of tsetse flies, their unique way of reproduction (adenotrophic viviparity) making the adult stage the only one easily accessible for control, and how their ecological affinities, their distribution and population dynamics influence and dictate control efforts. The paper likewise reviews four control tactics (sequential aerosol technique, stationary attractive devices, live bait technique and the sterile insect technique) that are currently accepted as friendly to the environment, and describes their limitations and advantages and how they can best be put to practise in an IPM context. The paper discusses the different strategies for tsetse control i.e. localised versus area-wide and focusses thereafter on the principles of area-wide integrated pest management (AW-IPM) and the phased-conditional approach with the tsetse project in Senegal as a recent example. We argue that sustainable tsetse-free zones can be created on Africa mainland provided certain managerial and technical prerequisites are in place.

  10. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    Science.gov (United States)

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry.

  11. The use of compost for the biological pest control. An alternative for pesticides; Utilizacion de compost en el control biologico de plagas. Una alternativa a los plaguicidas quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, J. A.

    2000-07-01

    Traditional methods of controlling pests and diseases using chemical pesticides can provide highly effective pest control but these methods might be damaging to the environment. Compost or other organic matter added to soil has the potential to control many soil borne plant pathogens, therefore they can be used in the sustainable agriculture. The mechanisms of action of compost are not well defined, being a mix of mycoparasitism, antibiotic production and nutrient competition. Our research is focused on the potential action of compost from municipal wastes in the biological control on pest. The addition of organic waste compost improved the biological control against Pythium furthermore raised the organic matter content of an arid soil. The addition of urban waste to the soil also could act long-term against Pythium, reducing the application times. One of the compost fraction more active in biological control are the humic substances. Nowadays, composts cannot be used by themselves to prevent plant pathogens action, it also is needed some pesticide application, but the use of these pesticides can be considerably reduced with the application of compost. (Author)

  12. Recent Advances in Biological Control of Pest Insects by Using Viruses in China

    Institute of Scientific and Technical Information of China (English)

    Xiu-lian SUN; Hui-yin PENG

    2007-01-01

    Insect viruses are attractive as biological control agents and could be a feasible alternative to chemical insecticides in the management of insect infestations. This review describes recent advances in the development of wild-type and genetically modified viruses as insecticides. A new strategy of application of insect viruses in China is reviewed. Also, the assessment of biosafety of genetically modified Helicoverpa armigera Nucleopolyhedovirus (HearNPV) is emphasized as a case-study.

  13. From Asian curiosity to eruptive American pest: Megacopta cribraria (Hemiptera: Plataspidae) and prospects for biological control

    Science.gov (United States)

    The kudzu bug or bean plataspid, Megacopta cribraria (Fabricius), is native to Asia where it appears to be widely distributed (although the taxonomy is not entirely clear), but is infrequently a pest of legumes. This bug appeared in 2009 in the southeastern United States, where it is closely associa...

  14. Before and after Silent Spring: from chemical pesticides to biological control and integrated pest management--Britain, 1945-1980.

    Science.gov (United States)

    Gay, Hannah

    2012-07-01

    The use of chemical pesticides increased considerably after World War II, and ecological damage was noticeable by the late 1940s. This paper outlines some ecological problems experienced during the post-war period in the UK, and in parts of what is now Malaysia. Also discussed is the government's response. Although Rachel Carson's book, Silent Spring (1962), was important in bringing the problems to a wider public, she was not alone in sounding the alarm. Pressure from the public and from British scientists led, among other things, to the founding of the Natural Environment Research Council in 1965. By the 1970s, environmentalism was an important movement, and funding for ecological and environmental research was forthcoming even during the economic recession. Some of the recipients were ecologists working at Imperial College London. Moved by the political climate, and by the evidence of ecological damage, they carried out research on the biological control of insect pests.

  15. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  16. Competition between honeydew producers in an ant-hemipteran interaction may enhance biological control of an invasive pest.

    Science.gov (United States)

    Tena, A; Hoddle, C D; Hoddle, M S

    2013-12-01

    Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an invasive citrus pest in southern California, which secretes honeydew and has the potential to spread a lethal bacterial disease, huanglongbing, of citrus. In urban citrus, Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), also an invasive pest, tends honeydew-producing hemipterans. We used field data to determine whether the mutualistic relationship between L. humile and six established species of honeydew producers may hinder or favor the establishment of D. citri and its biological control with Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae) in citrus via competition or mutualism for ants, respectively. In the field, L. humile and D. citri are engaged in a mutualistic relationship. Ants harvest solid honeydew secreted by psyllid nymphs and tended more than 55% of observed D. citri colonies. Linepithema humile displayed a preference hierarchy when tending honeydew producers infesting citrus. It responded equally or less intensively to D. citri than to other honeydew-producing species. Consequently, the mutualism between L. humile and D. citri was affected by the presence of other honeydew-producing species, and the percentage of D. citri colonies tended by L. humile. The number of ants per D. citri colony also decreased as the number of other honeydew producers increased. Diaphorina citri density was also affected by the presence of other honeydew producers. Both colony size and the number of D. citri nymphs counted per tree decreased as the number of other honeydew producers increased. Our results indicate that competition between honeydew producers for the mutualist ant L. humile may hinder the establishment of D. citri by possibly facilitating increased biological control.

  17. An economic comparison of biological and conventional control strategies for insect pests in cashew and mango plantations in Tanzania

    DEFF Research Database (Denmark)

    George, William Juma; Hella, Joseph; Esbjerg, Lars

    2013-01-01

    This study was undertaken to compare alternative methods of pest control for insect pests in order to determine which methods has the highest efficacy against insect pests and the least detrimental side effects, while maintaining production and profits. The analysis was based on the experimental...... treatment by Tsh. 504 989 and Tsh. 891 297 in cashew and mango plantations. The dominance and MRRanalyses shows that if cashew and mango growers change from conventional agricultural practices to weaver ants, they would earn MRR of 1621% which is above minimum acceptable rate of return (MARR) of 100%. The t...

  18. Training for Certification: Aquatic Pest Control.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial applicators. Weed control, vertebrate pest control, and environmental considerations and restrictions are the three major parts of the document. The weed control section discusses non-pesticide, mechanical, and biological control as…

  19. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].

    Science.gov (United States)

    Sauka, Diego H; Benintende, Graciela B

    2008-01-01

    Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  20. Dynamic models of pest propagation and pest control

    Institute of Scientific and Technical Information of China (English)

    Yin Ming; Lin Zhen-Quan; Ke Jian-Hong

    2011-01-01

    This paper proposes a pest propagation model to investigate the evolution behaviours of pest aggregates.A pest aggregate grows by self-monomer birth,and it may fragment into two smaller ones.The kinetic evolution behaviours of pest aggregates are investigated by the rate equation approach based on the mean-field theory.For a system with a self-birth rate kernel I(k)= Ik and a fragmentation rate kernel L(i,j)= L,we find that the total number M0A(t)and the total mass of the pest aggregates M1A(t)both increase exponentially with time if L≠0.Furthermore,we introduce two catalysis-driven monomer death mechanisms for the former pest propagation model to study the evolution behaviours of pest aggregates under pesticide and natural enemy controlled pest propagation.In the pesticide controlled model with a catalyzed monomer death rate kernel J1(k)= J1k,it is found that only when I pests be killed off.Otherwise,the pest aggregates can survive.In the model of pest control with a natural enemy,a pest aggregate loses one of its individuals and the number of natural enemies increases by one.For this system,we find that no matter how many natural enemies there are at the beginning,pests will be eliminated by them eventually.

  1. Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae)-tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control.

    Science.gov (United States)

    Chailleux, Anaïs; Biondi, Antonio; Han, Peng; Tabone, Elisabeth; Desneux, Nicolas

    2013-12-01

    The South American tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is a major pest that has recently invaded Afro-Eurasia. Biological control, especially by Trichogramma parasitoids, is considered to be promising as a management tool for this pest. However, further development of Trichogramma-based biocontrol strategies would benefit from assessing the impact of released parasitoid offspring on the pest. Under laboratory conditions, we 1) compared the parasitism of five Trichogramma species-strains on the pest-plant system T. absoluta-tomato, and 2) assessed various biological traits of parasitoids, mass-reared on a factitious host (Ephestia kuehniella Zeller), when developing on T. absoluta. In addition, we evaluated the overall efficiency of two specific Trichogramma species when released under greenhouse conditions in combination with a common natural enemy in tomato crop, the predator Macrolophus pygmaeus Rambur. Parasitoids emerging from T. absoluta on tomato showed lower parasitism rates and poor biological traits, for example, wing deformations, reduced longevity, when compared with the control reared on the factitious host. Under greenhouse conditions, the parasitoids that developed on T. absoluta after initial releases contributed little to biological control of T. absoluta, and parasitism tended to be lower when the predator was present. However, a slightly higher T. absoluta control level was achieved by combining the predator and release of the parasitoid Trichogramma achaeae Nagaraja and Nagarkatti. This study shows that Trichogramma parasitoids may not build up populations on the T. absoluta-tomato system, but that Trichogramma parasitoids can be used in combination with M. pygmaeus to enhance biological control of the pest in tomato crops.

  2. Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation.

    Science.gov (United States)

    Srinivasu, P D N; Prasad, B S R V

    2011-10-01

    Necessity to understand the role of additional food as a tool in biological control programs is being increasingly felt, particularly due to its eco-friendly nature. A thorough mathematical analysis in this direction revealed the vital role of quality and quantity of the additional food in the controllability of the predator-prey systems. In this article controllability of the additional food--provided predator-prey system is studied from perspectives of pest eradication and biological conservation. Time optimal paths have been constructed to drive the state of the system to a desired terminal state by choosing quantity of the additional food as control variable. The theory developed in this article has been illustrated by solving problems related to pest eradication and biological conservation.

  3. Biological soil disinfestation : a safe and effective approach for controlling soilborne pests and diseases

    NARCIS (Netherlands)

    Lamers, J.G.; Wanten, P.J.; Blok, W.J.

    2004-01-01

    Biological soil disinfestation (bsd) is an environmentally friendly method to disinfest the soil from soilborne fungi and nematodes. With biological soil disinfestation a green manure crop (40 tonnes per ha) or other green biomass is homogeneously incorporated into the soil layer that has to be disi

  4. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae).

    Science.gov (United States)

    Fischbein, D; Corley, J C

    2015-02-01

    Classical biological control is a key method for managing populations of pests in long-lived crops such as plantation forestry. The execution of biological control programmes in general, as the evaluation of potential natural enemies remains, to a large extent, an empirical endeavour. Thus, characterizing specific cases to determine patterns that may lead to more accurate predictions of success is an important goal of the much applied ecological research. We review the history of introduction, ecology and behaviour of the parasitoid Ibalia leucospoides. The species is a natural enemy of Sirex noctilio, one of the most important pests of pine afforestation worldwide. We use an invasion ecology perspective given the analogy between the main stages involved in classical biological control and the biological invasion processes. We conclude that success in the establishment, a common reason of failure in biocontrol, is not a limiting factor of success by I. leucospoides. A mismatch between the spread capacity of the parasitoid and that of its host could nevertheless affect control at a regional scale. In addition, we suggest that given its known life history traits, this natural enemy may be a better regulator than suppressor of the host population. Moreover, spatial and temporal refuges of the host population that may favour the local persistence of the interaction probably reduce the degree to which S. noctilio population is suppressed by the parasitoid. We emphasize the fact that some of the biological attributes that promote establishment may negatively affect suppression levels achieved. Studies on established non-native pest-parasitoid interactions may contribute to defining selection criteria for classical biological control which may prove especially useful in integrated pest management IPM programmes of invasive forest insects.

  5. Biology, Pest Status, Microbiome and Control of Kudzu Bug (Hemiptera: Heteroptera: Plataspidae): A New Invasive Pest in the U.S.

    Science.gov (United States)

    Dhammi, Anirudh; van Krestchmar, Jaap B; Ponnusamy, Loganathan; Bacheler, Jack S; Reisig, Dominic D; Herbert, Ames; Del Pozo-Valdivia, Alejandro I; Roe, R Michael

    2016-09-16

    Soybean is an important food crop, and insect integrated pest management (IPM) is critical to the sustainability of this production system. In recent years, the introduction into the United States of the kudzu bug currently identified as Megacopta cribraria (F.), poses a threat to soybean production. The kudzu bug was first discovered in the state of Georgia, U.S. in 2009 and since then has spread to most of the southeastern states. Because it was not found in the North American subcontinent before this time, much of our knowledge of this insect comes from research done in its native habitat. However, since the U.S. introduction, studies have been undertaken to improve our understanding of the kudzu bug basic biology, microbiome, migration patterns, host selection and management in its expanding new range. Researchers are not only looking at developing IPM strategies for the kudzu bug in soybean, but also at its unique relationship with symbiotic bacteria. Adult females deposit bacterial packets with their eggs, and the neonates feed on these packets to acquire the bacteria, Candidatus Ishikawaella capsulata. The kudzu bug should be an informative model to study the co-evolution of insect function and behavior with that of a single bacteria species. We review kudzu bug trapping and survey methods, the development of bioassays for insecticide susceptibility, insecticide efficacy, host preferences, impact of the pest on urban environments, population expansion, and the occurrence of natural enemies. The identity of the kudzu bug in the U.S. is not clear. We propose that the kudzu bug currently accepted as M. cribraria in the U.S. is actually Megacopta punctatissima, with more work needed to confirm this hypothesis.

  6. Biology, Pest Status, Microbiome and Control of Kudzu Bug (Hemiptera: Heteroptera: Plataspidae: A New Invasive Pest in the U.S.

    Directory of Open Access Journals (Sweden)

    Anirudh Dhammi

    2016-09-01

    Full Text Available Soybean is an important food crop, and insect integrated pest management (IPM is critical to the sustainability of this production system. In recent years, the introduction into the United States of the kudzu bug currently identified as Megacopta cribraria (F., poses a threat to soybean production. The kudzu bug was first discovered in the state of Georgia, U.S. in 2009 and since then has spread to most of the southeastern states. Because it was not found in the North American subcontinent before this time, much of our knowledge of this insect comes from research done in its native habitat. However, since the U.S. introduction, studies have been undertaken to improve our understanding of the kudzu bug basic biology, microbiome, migration patterns, host selection and management in its expanding new range. Researchers are not only looking at developing IPM strategies for the kudzu bug in soybean, but also at its unique relationship with symbiotic bacteria. Adult females deposit bacterial packets with their eggs, and the neonates feed on these packets to acquire the bacteria, Candidatus Ishikawaella capsulata. The kudzu bug should be an informative model to study the co-evolution of insect function and behavior with that of a single bacteria species. We review kudzu bug trapping and survey methods, the development of bioassays for insecticide susceptibility, insecticide efficacy, host preferences, impact of the pest on urban environments, population expansion, and the occurrence of natural enemies. The identity of the kudzu bug in the U.S. is not clear. We propose that the kudzu bug currently accepted as M. cribraria in the U.S. is actually Megacopta punctatissima, with more work needed to confirm this hypothesis.

  7. Biology, Pest Status, Microbiome and Control of Kudzu Bug (Hemiptera: Heteroptera: Plataspidae): A New Invasive Pest in the U.S.

    Science.gov (United States)

    Dhammi, Anirudh; van Krestchmar, Jaap B.; Ponnusamy, Loganathan; Bacheler, Jack S.; Reisig, Dominic D.; Herbert, Ames; Del Pozo-Valdivia, Alejandro I.; Roe, R. Michael

    2016-01-01

    Soybean is an important food crop, and insect integrated pest management (IPM) is critical to the sustainability of this production system. In recent years, the introduction into the United States of the kudzu bug currently identified as Megacopta cribraria (F.), poses a threat to soybean production. The kudzu bug was first discovered in the state of Georgia, U.S. in 2009 and since then has spread to most of the southeastern states. Because it was not found in the North American subcontinent before this time, much of our knowledge of this insect comes from research done in its native habitat. However, since the U.S. introduction, studies have been undertaken to improve our understanding of the kudzu bug basic biology, microbiome, migration patterns, host selection and management in its expanding new range. Researchers are not only looking at developing IPM strategies for the kudzu bug in soybean, but also at its unique relationship with symbiotic bacteria. Adult females deposit bacterial packets with their eggs, and the neonates feed on these packets to acquire the bacteria, Candidatus Ishikawaella capsulata. The kudzu bug should be an informative model to study the co-evolution of insect function and behavior with that of a single bacteria species. We review kudzu bug trapping and survey methods, the development of bioassays for insecticide susceptibility, insecticide efficacy, host preferences, impact of the pest on urban environments, population expansion, and the occurrence of natural enemies. The identity of the kudzu bug in the U.S. is not clear. We propose that the kudzu bug currently accepted as M. cribraria in the U.S. is actually Megacopta punctatissima, with more work needed to confirm this hypothesis. PMID:27649166

  8. Demonstration and Research Pest Control. Manual 91.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the demonstration and research pest control category. The text discusses pesticide-organism interactions such as penetration, transport, accumulation, and biological magnification. Integrating pesticides…

  9. Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards.

    Science.gov (United States)

    González-Fernández, J J; de la Peña, F; Hormaza, J I; Boyero, J R; Vela, J M; Wong, E; Trigo, M M; Montserrat, M

    2009-10-01

    Ecological communities used in biological pest control are usually represented as three-trophic level food chains with top-down control. However, at least two factors complicate this simple way of characterizing agricultural communities. First, agro-ecosystems are composed of several interacting species forming complicated food webs. Second, the structure of agricultural communities may vary in time. Efficient pest management approaches need to integrate these two factors to generate better predictions for pest control. In this work, we identified the food web components of an avocado agro-ecosystem, and unravelled patterns of co-occurrence and interactions between these components through field and laboratory experiments. This allowed us to predict community changes that would improve the performance of the naturally occurring predators and to test these predictions in field population experiments. Field surveys revealed that the food-web structure and species composition of the avocado community changed in time. In spring, the community was characterized by a linear food chain of Euseius stipulatus, an omnivorous mite, feeding on pollen. In the summer, E. stipulatus and a predatory mite, Neoseiulus californicus, shared a herbivorous mite prey. Laboratory experiments confirmed these trophic interactions and revealed that N. californicus can feed inside the prey nests, whereas E. stipulatus cannot, which may further reduce competition among predators. Finally, we artificially increased the coexistence of the two communities via addition of the non-herbivore food source (pollen) for the omnivore. This led to an increase in predator numbers and reduced populations of the herbivore. Therefore, the presence of pollen is expected to improve pest control in this system.

  10. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): a nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Nansen, Christian; Stokes, Bryan; James, Jacob; Porter, Patrick; Shields, Eilson J; Wheeler, Terry; Meikle, William G

    2013-04-01

    The larger black flour beetles, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), feeds on saprophytic fungi found in gin trash piles and occasionally becomes a nuisance pest in adjacent homes and businesses. The potential of Steinernema carpocapsae 'NY 001,' as a potential control agent of larger black flour beetle under experimental conditions was examined with particular reference to the importance of soil moisture content. Without prospects of insecticides being labeled for control of larger black flour beetle in gin trash, the data presented here support further research into applications of entomopathogenic nematodes underneath gin trash piles as a way to minimize risk of larger black flour beetle populations causing nuisance to nearby homes and businesses.

  11. Microbial control of arthropod pests of tropical tree fruits.

    Science.gov (United States)

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  12. General Pest Control - Industrial. Manual 95.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the general pest control category. The text discusses general, parasitic and miscellaneous pests such as ants, ticks, and spiders; fabric, wood-destroying, and grain pests such as beetles, termites, and…

  13. Optimal Application Timing of Pest Control Tactics in Nonautonomous Pest Growth Model

    Directory of Open Access Journals (Sweden)

    Shujuan Zhang

    2014-01-01

    Full Text Available Considering the effects of the living environment on growth of populations, it is unrealistic to assume that the growth rates of predator and prey are all constants in the models with integrated pest management (IPM strategies. Therefore, a nonautonomous predator-prey system with impulsive effect is developed and investigated in the present work. In order to determine the optimal application timing of IPM tactics, the threshold value which guarantees the stability of pest-free periodic solution has been obtained firstly. The analytical formula of optimal application timings within a given period for different cases has been obtained such that the threshold value is the smallest, which is the most effective in successful pest control. Moreover, extensively numerical investigations have also been confirmed our main results and the biological implications have been discussed in more detail. The main results can guide the farmer to design the optimal pest control strategies.

  14. Spatially optimal habitat management for enhancing natural control of an invasive agricultural pest: soybean aphid

    NARCIS (Netherlands)

    Zhang, W.; Werf, van der W.; Swinton, S.M.

    2010-01-01

    By their direct effects on private profitability, invasive agricultural pests create special incentives for management that set them apart from other categories of invasive species. One attractive nonchemical management approach for agricultural pests relies upon biological control by natural enemie

  15. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): A nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...

  16. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentati

  17. Training for Certification: Demonstration & Research Pest Control.

    Science.gov (United States)

    Mississippi State Univ., State College. Cooperative Extension Service.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on agricultural pest control, this publication includes a full range of topics from uses of pesticides for agricultural animal pest control to the toxicity of common pesticides to fish and bees.…

  18. Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina.

    Science.gov (United States)

    Cladera, Jorge L; Vilardi, Juan C; Juri, Marianela; Paulin, Laura E; Giardini, M Cecilia; Gómez Cendra, Paula V; Segura, Diego F; Lanzavecchia, Silvia B

    2014-01-01

    Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.

  19. Ornamental and Turf Pest Control. Bulletin 764.

    Science.gov (United States)

    Bowyer, Timothy H.; And Others

    This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…

  20. Nitric oxide as a potent fumigant for postharvest pest control

    Science.gov (United States)

    There is a great demand for safe and effective alternative fumigants to replace methyl bromide and other toxic fumigants for pest control. Nitric oxide, a common signal molecule in biological systems, was found to be effective and safe to control insects under ultralow oxygen conditions. Fumigatio...

  1. Industrial and Institutional Pest Control. Sale Publication 4073.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information needed to meet Environmental Protection Agency standards on industrial and institutional pest control, and to help prepare for certification. It gives descriptions and pictures of general insect pests, parasitic pests of man, occasional invaders, wood-destroying pests, stored product pests, vertebrates, and weeds. The…

  2. New Concept of Biological Control:Bio-control Plants Used for Management of Arthropod Pests%害虫生物防治新概念--生物防治植物及创新研究

    Institute of Scientific and Technical Information of China (English)

    肖英方; 毛润乾; 万方浩

    2013-01-01

      在现代农业,特别是有机农业的害虫防治系统中,除有益生物(主要指节肢动物)在害虫防治中发挥关键作用外,一些植物本身也发挥了重要的作用。这些植物包括抗虫植物、诱集植物、拒避植物、杀虫植物、载体植物、养虫植物以及显花(虫媒)植物等,它们是害虫生物防治的重要组成部分,并在害虫生物防治中起着越来越重要的作用。本文根据目前国内外的研究情况,提出一个害虫生物防治植物或简称生防植物(bio-control plant)新概念,并对不同生物防治植物应用及作用机理进行阐述,分析不同生物防治植物未来的发展前景和面临的挑战。%The modern organic agriculture has increasingly become a hot topic worldwide. In general, organic agriculture is complied with organic standards set by national governments and international organizations. The rule does not involve modern synthetic inputs such as synthetic pesticides and chemical fertilizers. With the growing emphasis on the environment and the food safety, the discovery and development of effective biological control approaches, especially in botanically based techniques, such as botanically derived pesticides to manage arthropod pest populations is facing a new challenge. This review is intended to discuss bio-control plants and provide insights of these plants used for potential biological control of arthropod pests in the field of crop protection. As all known, all crops or plants are always attacked by their enemies, i.e. arthropod pests. In most cases, the plant species or diversities within crop ecosystem provide an excellent opportunities for manage pests in organic agricultural production. Under certain circumstances, these crops or plants can rely on their own defense strategies, such as plant physiological and biochemical merits, against arthropod pest population. These plant defense strategies are playing key role in

  3. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Casper Nyamukondiwa

    2012-11-01

    Full Text Available The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  4. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    Science.gov (United States)

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  5. Potential Use of Entomopathogenic Virus Native to Sumatra Island as Biological Control Agent of Setora nitens L. (Lepidoptera:Limacodidae, the Main Pest of Oilpalm

    Directory of Open Access Journals (Sweden)

    Suparman Suparman

    2013-01-01

    Full Text Available Slug caterpillars Setora nitens, have been appearing to be more serious insect pest of oil palm as it might cause frond damages up to 90%. Many effort had been made to control the caterpillars using insecticides but the insects are still existing and causing significant damages to the palm. Microbial insecticide, especially the one developed from indigenous entomopathogenic virus, is a promising method of controlling the insect since its toxicity to non target animals and humans is extremely low. A conventional way of controlling S. nitens using crude sap of infected larvae has been applied in several oil palm plantations in Sumatra Island, but various improvements are required to make the method more effective, efficient, widely acceptable and scientifically justified. A research on the potential use of entomopathogenic virus native to Sumatra Island as biological control agent of slug caterpillar was conducted to comprehend the pathogenicity and virulence of the entomopathogenic virus and to reveal the morphological identify of its particle. The results showed that the use of virus infecting caterpillars to control the insect was quite successful in term of increasing the number of infected caterpillars and reducing the rate of population development in the field. The use of homogenized infected caterpillars to orally infect healty S. nitens caterpillars resulted in the symptoms characteristics to viral infections appeared in all treated caterpillars with various extent of symptom developments. Some caterpillars could spine cocons but failed to release adult moth. Purification of the virus particles from infected caterpillars resulted in the apperarance of white band in the sucrose gradient indicated the presence of viral RNA. Electron microscopic observation showed that the white band in the sucrose gradient contained sphericle shape of virus particles justifying that the agent infecting S. nitens caterpillars is a virus which still need

  6. Chrysomelids American diabroticines Hosts and natural enemies. Biology-feasibility for control of pest species (Crisomelidos Diabroticinos americanos Hospederos y enemigos naturales Biologia y factibili manejo especies plagas

    Science.gov (United States)

    The chrysomelids in the Diabroticites include some of the most important pest species of the American continent. The chemical and management techniques used to date to control them are: crop rotation to prevent re-infection of host crops, especially in the species that display an egg diapause; insec...

  7. Redirect research to control coffee pest

    Science.gov (United States)

    One hundred years ago, one of the most significant biological invasions of an agricultural insect pest in the Americas was initiated. Endemic to Africa, the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae) was accidentally introduced to Brazil in 1913 and years later invaded coff...

  8. 卫生城市病媒生物防治视角下的PCO%The pest control operation of health cities vector-biological control

    Institute of Scientific and Technical Information of China (English)

    齐宏亮

    2013-01-01

    基于有害生物防治业(PCO)的兴起与蓬勃发展,从卫生城市角度总结回顾PCO产业的发展与现状,探讨存在的不足,分析PCO在我国的市场前景及趋势,并提出相应对策.%Based on the booming pest control operation (PCO),the article reviews the history and status of the PCO from the health city perspective,and explore the problems.At the same time,the prospects and trends of PCO in our country are analyzed.Finally,the corresponding strategies are put forward.

  9. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae).

    Science.gov (United States)

    Zhu, Pingyang; Lu, Zhongxian; Heong, Kongluen; Chen, Guihua; Zheng, Xusong; Xu, Hongxing; Yang, Yajun; Nicol, Helen I; Gurr, Geoff M

    2014-01-01

    Ecological engineering for pest management involves the identification of optimal forms of botanical diversity to incorporate into a farming system to suppress pests, by promoting their natural enemies. Whilst this approach has been extensively researched in many temperate crop systems, much less has been done for rice. This paper reports the influence of various plant species on the performance of a key natural enemy of rice planthopper pests, the predatory mirid bug, Cyrtorhinus lividipennis. Survival of adult males and females was increased by the presence of flowering Tagetes erecta, Trida procumbens, Emilia sonchifolia (Compositae), and Sesamum indicum (Pedaliaceae) compared with water or nil controls. All flower treatments resulted in increased consumption of brown plant hopper, Nilaparvata lugens, and for female C. lividipennis, S. indicum was the most favorable. A separate study with a wider range of plant species and varying densities of prey eggs showed that S. indicum most strongly promoted predation by C. lividipennis. Reflecting this, S. indicum gave a relatively high rate of prey search and low prey handling time. On this basis, S. indicum was selected for more detailed studies to check if its potential incorporation into the farming system would not inadvertently benefit Cnaphalocrocis medinalis and Marasmia patnalis, serious Lepidoptera pests of rice. Adult longevity and fecundity of both pests was comparable for S. indicum and water treatments and significantly lower than the honey solution treatment. Findings indicate that S. indicumis well suited for use as an ecological engineering plant in the margins of rice crops. Sesame indicum can be a valuable crop as well as providing benefits to C. lividipennis whilst denying benefit to key pests.

  10. 1976 Commercial Vegetable Pest Control Guide.

    Science.gov (United States)

    MacNab, A. A.; And Others

    This guide contains pest control information for commercial vegetable production. It was prepared for agricultural supply dealers, extension agents, fieldmen, and growers. It gives general precautions, information on seed treatment, growing disease-free seedlings and transplants, general soil insect control, general weed control, and spraying…

  11. Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects.

    Science.gov (United States)

    Zotti, Moises João; Christiaens, Olivier; Rougé, Pierre; Grutzmacher, Anderson Dionei; Zimmer, Paulo Dejalma; Smagghe, Guy

    2012-04-01

    In insects, the process of molting and metamorphosis are mainly regulated by a steroidal hormone 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) that specifically bind to the ecdysone receptor ligand-binding domain (EcR-LBD). Currently, several synthetic non-steroidal ecdysone agonists, including tebufenozide, are commercially available as insecticides. Tebufenozide exerts its activity by binding to the 20E-binding site and thus activating EcR permanently. It appears that subtle differences in the architecture among LBDs may underpin the differential binding affinity of tebufenozide across taxonomic orders. In brief, first we demonstrated the harmlessness of tebufenozide towards Chrysoperla externa (Ce). Then, a molecular analysis of EcR-LBD of two neuropteran insects Chrysoperla carnea and Ce was presented. Finally, we constructed a chrysopid in silico homology model docked ponasterone A (PonA) and tebufenozide into the binding pocket and analyzed the amino acids indentified as critical for binding to PonA and tebufenozide. Due to a restrict extent in the cavity at the bottom of the ecdysone-binding pocket a steric clash occurred upon docking of tebufenozide. The absence of harm biological effect and the docking results suggest that tebufenozide is prevented of any deleterious effects on chrysopids.

  12. Ultrastructure and molecular characterization of the microsporidium, Nosema chrysoperlae sp. nov., from the green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) used for biological pest control.

    Science.gov (United States)

    Bjørnson, S; Steele, T; Hu, Q; Ellis, B; Saito, T

    2013-09-01

    Lacewing larvae are generalist predators that are commercially available for aphid control on a variety of crops in both Europe and North America. Although lacewings are known for their symbiotic association with yeasts and bacteria, there are few reports of microsporidia in these natural enemies. An undescribed microsporidium was found in Chrysoperla carnea (Stephens) during the routine examination of specimens that were obtained from a commercial insectary for biological pest control. The objective of this study was to describe the pathogen by means of ultrastructure, molecular characterization and tissue pathology. All stages of the microsporidium were diplokaryotic and developed in direct contact with the host cell cytoplasm. Merogony and sporogony were not observed. Mature spores measured 3.49±0.10×1.52±0.05μm and had an isofilar polar filament with 8-10 coils that were frequently arranged in a single row, although double rows were also observed. Spores contained a lamellar polaroplast and a relatively small and inconspicuous polar vacuole was observed in the posterior region of about half of the spores that were examined. Tubular structures, similar in appearance to those in Nosema granulosis were observed in both sporonts and in spores. A cluster of small tubules was also observed in the posterior region of some spores. Microsporidian spores were observed in cells of the proventriculus, diverticulum and in epithelial cells of the posterior midgut. The Malpighian tubules, ileum, and rectum were heavily infected. Spores were also observed in the fat body, peripheral region of the ganglia, within and between the flight muscles, and beneath the cuticle. Although the tissues adjacent to the ovaries were heavily infected, microsporidian spores were not observed within the developing eggs. Pathogen transmission was not studied directly because it was difficult to maintain microsporidia-infected C. carnea in the laboratory. The presence of microsporidian spores

  13. Optimal Control Policies of Pests for Hybrid Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Baolin Kang

    2013-01-01

    Full Text Available We improve the traditional integrated pest management (IPM control strategies and formulate three specific management strategies, which can be described by hybrid dynamical systems. These strategies can not only effectively control pests but also reduce the abuse of pesticides and protect the natural enemies. The aim of this work is to study how the factors, such as natural enemies optimum choice in the two kinds of different pests, timings of natural enemy releases, dosages and timings of insecticide applications, and instantaneous killing rates of pesticides on both pests and natural enemies, can affect the success of IPM control programmes. The results indicate that the pests outbreak period or frequency largely depends on the optimal selective feeding of the natural enemy between one of the pests and the control tactics. Ultimately, we obtain the only pest needs to be controlled below a certain threshold while not supervising pest .

  14. Banker Plant System: a New Approach for Biological Control of Arthropod Pests%害虫生物防治新技术——载体植物系统

    Institute of Scientific and Technical Information of China (English)

    肖英方; 毛润乾; 沈国清; Lance S.Osbome

    2012-01-01

    建立一个自我维持并可有效降低害虫种群水平的系统是害虫生物防治长期追求的理想目标。载体植物系统(banker plant system)又称开放式天敌饲养系统,是近年来开发出的一种集保护利用本地天敌、人工繁殖释放天敌以及异地引进天敌等传统技术特点为一体的新型生物防治技术。载体植物(banker plants)、替代食物(alternative foods)和有益生物(beneficial)是该系统的三个基本要素。本文对载体植物和载体植物系统概念、特点以及近年来国际上的研究进展进行了综述,并结合自身的研究实践,举例介绍载体植物系统的应用,以推动国内外对载体植物系统的研究和应用。%Banker plant system(BPS) is a new concept for biological control of arthropod pests.It consists of three key elements: a banker plant,a highly specific alternative host or prey,and one or more natural enemies(predator or parasitoid).The ideal banker plant should be a non-crop plant that provides resources(alternative prey or nutrient) to sustain natural enemies of arthropod pest.The natural enemies should be specific to the alternative prey and the pest,and are able to disperse to a long distance to attack the pest.The banker plant system uniquely combines the advantages of both augmentative and conservation biological controls in greenhouse or field,it has been shown to be an effective,simple,reliable approach for control of arthropod pests.The use of banker plant system will not require the repeated release of natural enemies and also reduce the cost for purchasing commercial available biocontrol agents.The review is intended to summarize the history,development and potential application of banker plant systems.In our study,the goal is to develop long-term pest suppression of silver-leaf whitefly and two-spotted spider mite in vegetable crops,especially in greenhouse vegetables.Current,these pests have seriously

  15. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry.

    Science.gov (United States)

    Furlan, Lorenzo; Kreutzweiser, David

    2015-01-01

    Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.

  16. 农业景观害虫控制生境管理及植物配置方法%Habitat management and plant configuration for biological pest control in agricultural landscapes

    Institute of Scientific and Technical Information of China (English)

    戴漂漂; 张旭珠; 肖晨子; 张鑫; 宇振荣; 刘云慧

    2015-01-01

    集约化农业生产过程中,化学农药所带来的大量环境问题日益引起关注。为减少农药的投入及其所产生的环境负效应,生物防治害虫的方法在国内外得到了更多的关注与发展。生境管理是一种有利于天敌群落发展,而不利于害虫种群增长的保护性生物防治方法,其实质是通过为自然天敌提供诸如花蜜、替代猎物或寄主、躲避不利干扰的庇护所等资源,将农业景观中天敌的害虫控制服务和功能最大化,或者通过构建不适宜害虫取食和繁殖的环境条件起到抑制或阻碍害虫发展的作用。本文在参阅国内外文献的基础上,阐述了生境管理控制害虫的机理,并总结国外生物防治的实践经验以及近些年国内外的相关研究,概括提出田间尺度上害虫生物防治的非作物生境及作物生境的建设和植物配置方法,为通过生境管理提升农业景观中害虫生物防治生态系统服务提供参考。%The negative environmental effect of massive applications of chemical pesticides in intensive agricultural production practices has been a significant global concern. Therefore the rapid development of biological pest control in recent years is directed towards alleviating the negative impacts of intensified modern agricultural practices on the environment. Habitat management is an important conservation biological control approach that creates habitat conditions favorable to natural enemies but unfavorable to agricultural pests. Essentially, habitat management aims to maximize the function of biological control by providing natural enemies with resources (such as additional foods like nectar, alternative preys/hosts, and shelter from adverse conditions), or to suppress pests by making their habitats unfavorable. The appropriate selection and sound configuration of plants in agricultural landscapes are critical to successful habitat management. In this manuscript, we

  17. Weeds of Hawaii’s lands devoted to watershed protection and biodiversity conservation: Role of biological control as the missing piece in an integrated pest management strategy

    Science.gov (United States)

    Medeiros, Arthur C.; Loope, L.L.

    2011-01-01

    Despite Hawaii’s reputation as an extinction icon, significant biological resources remain, especially in watersheds, natural areas, and specialized edaphic sites (e.g., lava dry forest, coastal). While direct habitat destruction by humans continues, human-facilitated biological invaders are currently the primary agents of continuing degradation. The ability of invasive plants to have prolific seed production, efficient dispersal systems, and to become established in dense vegetation, complicated by Hawaii’s rugged topography, appears to render mechanical and chemical control as mere holding actions. Costly, ‘environmentally unfriendly’, and often ineffective, strategies using chemical and mechanical control on a large scale, despite the most valiant of efforts, can be viewed simply as attempts to buy time. Without increased levels of safely tested biological control, the seemingly inevitable result is the landscape level transformation of native forests, with potentially catastrophic consequences to cultural, biological, water, and economic resources. Increased levels of effective biological control for certain intractable invasive species appear to comprise a conspicuous ‘missing piece’ in our efforts to protect Hawaiian watersheds and other conservation lands.

  18. Herbivory, Predation, and Biological Control.

    Science.gov (United States)

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  19. BANKER PLANT携带天敌防治害虫的理论基础与应用%The theory and practice of using banker plant system for biological control of pests

    Institute of Scientific and Technical Information of China (English)

    李先伟; 潘明真; 刘同先

    2013-01-01

    The indiscriminate use of toxic pesticides lead to high resisues in food,vegetables and fruits,resulting a serious threat to the safety of people' s lives.Biological control of pests will provide safer food and a clean environment.This article briefly describes the latest progress of using banker plant system to carry predatory or parasitic natural enemies to manage pests in vegetables and other crops.Banker plants continuously supply natural enemies,and like a bank (banker) to continuously supply currency; and the spread of natural enemies from the banker plant to the crop system to control crop pests.We would like to provide the most updated information in theory and utilization of banker plant system,and the most recent advance in using banker plant systems to promote biological control in China.We also discussed the pros and cons of using banker plant system in integrated pest management programs.%滥用农药导致粮食、蔬菜和水果内有毒农药高残留,严重威胁着人民的生命安全;利用生物防治害虫将提供更安全的食品和洁净的环境.Banker植物系统是利用非作物植物饲养及携带天敌的寄主或猎物,再利用天敌的寄主或猎物饲养和释放天敌.这些Banker植物就像是一个‘银行家(Banker)’,连续不断地供应‘货币’(天敌),使天敌从‘银行家’植物上扩散到有害虫的作物上防治害虫,是生物防治发展的一个重要方向.本文系统介绍了利用Banker植物为替代寄主饲养释放天敌防治害虫的最新进展,旨在推动我国更好地开展Banker植物系统及其相关理论与应用的研究.

  20. Review on Application of Electromagnetic Theory and Technology to Forest Pests Control

    Institute of Scientific and Technical Information of China (English)

    WANG Xiangfeng; QU Zhiwei; LIANG Jun

    2006-01-01

    Many domestic and international scholars have done a wide range of researches on electromagnetic theory and technology and have made some achievements. Electromagnetic technology has been used in forest pests control as a convenient and high-efficient physics means. This article summarizes the current study of the electromagnetic biological effect and introduces the application of microwave, pulsed electromagnetic field and electrostatic field to forest pests control. The research direction and prospect of the application of electromagnetic theory and technology to forest pests control are also discussed.

  1. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  2. Nitric oxide fumigation for postharvest pest control

    Science.gov (United States)

    Nitric oxide fumigation is effective against all arthropod pests at various life stages tested. Nine insect pests at various life stages and bulb mites were subjected to nitric oxide fumigation treatments under ultralow oxygen conditions of =50 ppm O2 in 1.9L glass jars as fumigation chambers. The ...

  3. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean Pierre; Kiss, Jozsef; Kohl, Jurgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C.; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initi

  4. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops.

    Science.gov (United States)

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean-Pierre; Kiss, Jozsef; Köhl, Jürgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site-specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry.

  5. Companion and refuge plants to control insect pests

    Science.gov (United States)

    Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...

  6. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    Science.gov (United States)

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-05-21

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides.

  7. Ecology and control of an invasive pest, the cactus moth, Cactoblastis cactorum (Lepidoptera)

    Science.gov (United States)

    The cactus moth, Cactoblastis cactorum, was one of the success stories in classical biological control. In the 1920s, the prickly pear cactus was a serious pest in Australia. The cactus moth was imported from its native habitat in South America and proved so successful in controlling cactus that it ...

  8. Potential use of a serpin from Arabidopsis for pest control.

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez-Alfageme

    Full Text Available Although genetically modified (GM plants expressing toxins from Bacillus thuringiensis (Bt protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L. Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC(50 = 637 µg ml(-1. The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.

  9. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2014-04-01

    Full Text Available Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula and cotton bollworm (Helicoverpa armigera. The study aimed to evaluate four packages of integrated pest management (IPM techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012. Four packages of IPM evaluated were cotton varieties, i.e. Kanesia 10 or Kanesia 13, and seed treatment with synthetic insecticide (imidacloprid before sowing or spraying molasses (10 ml L-1 water as food for natural enemies. The cotton plants were intercropped with groundnut and sprayed with neem seed extract (NSE at the action threshold level for pest control. These packages were compared among themselves and also with the methods usually used by farmers, i.e. planting cotton variety Kanesia 8 intercropped with groundnut and pest control using synthetic chemical insecticides. Twenty five plants were sampled randomly per plot and measured for their growth, leafhopper and  bollworm populations, as well as cotton seed yield per plot. Observations were made weekly, starting at 30 days after planting (DAP until 120 DAP. The results showed that the use of Kanesia 10 or Kanesia 13 intercropped with groundnut and spraying molasses to conserve natural enemies was the best  pest management practice and superior to farmers’ practices. Conserving natural enemies is not only profitable (saving production cost of IDR1,150,000 to IDR1,500,000 ha-1 season-1, but also safe for the environment (no need to spray chemical insecticides.

  10. A PRINCIPAL-AGENT MODEL FOR REGIONAL PEST CONTROL ADOPTION

    OpenAIRE

    Ahouissoussi, Nicolas B.C.

    1995-01-01

    Investigating the underlying producer characteristics associated with regional pest control adoption revealed an interesting proposition. Early adopting producers of firm-specific techniques with characteristics including higher education, more specialized operations, and larger sized business units are dissatisfied with a regional pest control technique. This study provides an explanation of the proposition based on a principal-agent model. Empirical support for the proposition is also prese...

  11. A molecular diagnostic tool for the preliminary assessment of host-parasitoid associations in biological control programmes for a new invasive pest.

    Science.gov (United States)

    Gariepy, T D; Haye, T; Zhang, J

    2014-08-01

    Evaluation of host-parasitoid associations can be tenuous using conventional methods. Molecular techniques are well placed to identify trophic links and resolve host-parasitoid associations. Establishment of the highly invasive brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), outside Asia has prompted interest in the use of egg parasitoids (Hymenoptera: Scelionidae) as biological control agents. However, little is known regarding their host ranges. To address this, a DNA barcoding approach was taken wherein general PCR primers for Scelionidae and Pentatomidae were developed to amplify and sequence >500-bp products within the DNA barcoding region of the cytochrome oxidase I (COI) gene that would permit the identification of key players in this association. Amplification of DNA from Pentatomidae and Scelionidae was consistent across a broad range of taxa within these families, and permitted the detection of Scelionidae eggs within H. halys 1 h following oviposition. In laboratory assays, amplification and sequencing of DNA from empty, parasitized eggs was successful for both host (100% success) and parasitoid (50% success). When applied to field-collected, empty egg masses, the primers permitted host identification in 50-100% of the eggs analysed, and yielded species-level identifications. Parasitoid identification success ranged from 33 to 67% among field-collected eggs, with genus-level identification for most specimens. The inability to obtain species-level identities for these individuals is due to the lack of coverage of this taxonomic group in public DNA sequence databases; this situation is likely to improve as more species are sequenced and recorded in these databases. These primers were able to detect and identify both pentatomid host and scelionid parasitoid in a hyperparasitized egg mass, thereby clarifying trophic links otherwise unresolved by conventional methodology.

  12. Integrated flora management and pest control in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Sage, R.; Tucker, K. [Game Conservancy Trust (United Kingdom)

    1994-12-31

    Weeds and insect pests can reduce yields and hence the profitability of short rotation coppice crops. Control becomes prudent when the cost of controlling the pests is exceeded by the yield loss (the economic threshold). This frequently happens when establishing the crop because of weed competition. Economic yield losses due to insect pest damage and weed competition in established SRC plots are less obvious but probably still occur. Traditional methods of control using pesticides is often logistically difficult and expensive. However there may be opportunities for controlling pest populations through cultural practices as part of an Integrated Pest Management (IPM) strategy. Insect pests have a range of natural enemy species that could be encouraged through habitat and crop manipulations while the occurrence of weeds could be reduced by providing a ground cover of other less competitive plants. These cultural practices can lead to environmental benefits by reducing chemical applications and mechanical movements and increasing floral diversity, wildlife use and the landscape and amenity value of the crop. (Author)

  13. 太原市以虫治虫生物防治技术应用研究%Application Study on Technology of Biological Pest Control by Natural Enemies in Taiyuan

    Institute of Scientific and Technical Information of China (English)

    张志梅; 马美荣

    2012-01-01

    针对太原市国槐尺蠖、蚜虫类、白蜡绵粉蚧、侧柏毒蛾主要虫害,进行蠹克和天敌组合的生物防治室内外试验.结果表明,蠹克对国槐尺蠖室内4h致死率达到31.3%,8h致死率达到68.8%,12h致死率达到100%;室外3d死亡率63%,6d死亡率为75.3%,有一定的防治效果.蠹克对松大蚜类室内4h平均死亡率为88.03%,8h平均死亡率为98.94%;室外3d平均死亡率为57.45%,6d平均死亡率为90.3%,防治效果良好.白蜡绵粉蚧若虫室内外试验分别达到12h死亡率70.0%,2d死亡率为74.2%.天敌组合实际卵块寄生率半个月达到80%,卵粒达到65.16%,实际寄生率很高.在实际防治中,提高蠹克分散性,能达到很好的防治效果;在适宜条件下增加放蜂量可提高寄生率.蠹克和天敌组合可作为一项生物防治手段在实际工作中应用,前景广阔.%According to studying on four major pest insects: Semiothisa cinerearia Bremer et Grey, Cinara pinea Mordwiko, Phenacoccus fraxinus Tang and Parocneria furva in Taiyuan, the article conducted indoor and outdoor tests on biological pest control by combing products of Pyemotes and natural enemy. The outcomes showed: the lethality rate of Pyemotes to Semiothisa cinerearia Bremer et Grey indoor at 4, 8 and 12 h were 31.3%, 68.8% and 100% respectively; this lethality rate in 3 days and 6 days outdoor were 63% and 75.3% respectively. So, this measure had certain effect. The lethality rate of Pyemotes to Cinara pinea Mordwiko indoor at 4 h and 8 h were 88.03% and 98.94% respectively; the lethality rate in 3 days and 6 days outdoor were 57.45% and 90.03% respectively. The measure had good effect. The lethality rate of Pyemotes to Phenacoccus fraxinus Tang indoor at 12 h was 70.0% and in 2 days outdoor 74.2%. Using this combining product of Pyemotes and nature enemy, the actual parasitic rate of spawn and egg granules were 80% and 65.16% 1/2 month respectively, and this rate was high. For

  14. Modeling the integration of parasitoid, insecticide, and transgenic insecticidal crop for the long-term control of an insect pest.

    Science.gov (United States)

    Onstad, David W; Liu, Xiaoxia; Chen, Mao; Roush, Rick; Shelton, Anthony M

    2013-06-01

    The tools of insect pest management include host plant resistance, biological control, and insecticides and how they are integrated will influence the durability of each. We created a detailed model of the population dynamics and population genetics of the diamondback moth, Plutella xylostella L., and its parasitoid, Diadegma insulare (Cresson), to study long-term pest management in broccoli Brassica oleracea L. Given this pest's history of evolving resistance to various toxins, we also evaluated the evolution of resistance to transgenic insecticidal Bt broccoli (expressing Cry1Ac) and two types of insecticides. Simulations demonstrated that parasitism provided the most reliable, long-term control of P. xylostella populations. Use of Bt broccoli with a 10% insecticide-free refuge did not reduce the long-term contribution of parasitism to pest control. Small refuges within Bt broccoli fields can delay evolution of resistance > 30 generations if resistance alleles are rare in the pest population. However, the effectiveness of these refuges can be compromised by insecticide use. Rainfall mortality during the pest's egg and neonate stages significantly influences pest control but especially resistance management. Our model results support the idea that Bt crops and biological control can be integrated in integrated pest management and actually synergistically support each other. However, the planting and maintenance of toxin-free refuges are critical to this integration.

  15. Eco Control of Agro Pests using Imaging, Modelling & Natural Predators

    Directory of Open Access Journals (Sweden)

    Fina Faithpraise

    2014-10-01

    Full Text Available Caterpillars in their various forms: size, shape, and colour cause significant harm to crops and humans. This paper offers a solution for the detection and control of caterpillars through the use of a sustainable pest control system that does not require the application of chemical pesticides, which damage human health and destroy the naturally beneficial insects within the environment. The proposed system is capable of controlling 80% of the population of caterpillars in less than 65 days by deploying a controlled number of larval parasitoid wasps (Cotesia Flavipes, Cameron into the crop environment. This is made possible by using a continuous time model of the interaction between the caterpillar and the Cotesia Flavipes (Cameron wasps using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull probability distribution function. A negative binomial distribution is used to model the efficiency and the probability that the wasp will find and parasitize a host larva. The caterpillar is presented in all its life-cycle stages of: egg, larva, pupa and adult and the Cotesia Flavipes (Cameron wasp is present as an adult larval parasitoid. Biological control modelling is used to estimate the quantity of the Cotesia Flavipes (Cameron wasps that should be introduced into the caterpillar infested environment to suppress its population density to an economically acceptable level within a prescribed number of days.

  16. Ecological Compatibility of GM Crops and Biological Control

    Science.gov (United States)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  17. Bifurcation and chaos of a pest-control food chain model with impulsive effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengyan [Department of Mathematics, Wenzhou University, Wenzhou Zhejiang 325000 (China) and College of Science, Jimei University, Xiamen Fujian 361021 (China)], E-mail: wangfy68@163.com; Pang Guoping [Department of Mathematics and Computer Science, Yulin Normal University, Yulin Guangxi 537000 (China)], E-mail: g.p.pang@163.com; Lu Zhengyi [Department of Mathematics, Wenzhou University, Wenzhou Zhejiang 325000 (China)

    2009-02-28

    According to biological and chemical control strategy for pest control, we investigate the dynamics of a predator-prey food chain with impulsive effect, periodic releasing natural enemies and spraying pesticide at different fixed times, by using impulsive differential equation. Choose pest birth rate r{sub 2} as control parameter, we show that there exists a stable pest-eradication periodic solution when r{sub 2} is less than some critical value r{sub 2}* and the system is permanence when r{sub 2} is larger than the critical value r{sub 2}*. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in prey, middle-predator and top predator. Furthermore, bifurcation diagrams have shown that there exists complexity for the pulsed system including periodic doubling cascade.

  18. Nanosilica-from medicine to pest control.

    Science.gov (United States)

    Barik, T K; Sahu, B; Swain, V

    2008-07-01

    Nanotechnology is a broad interdisciplinary area of research, development, and industrial activity that has been growing rapidly worldwide for the past decade. More ambitious uses of nanoparticles are bioremediation of contaminated environments, controlled release of fragrances, biocides, and antifungals on textiles. Silica nanocomposites have received much attention because of its thermal degradation behavior and applications in chromatography, medicine, optics, etc. Nanobiotech takes agriculture from the battleground of genetically modified organisms to the brave new world of atomically modified organisms where rice has been modified atomically. Silica has been widely applied in various industries. Application of gold-coated silica has been used in the treatment for benign and malignant tumor. Surface-modified hydrophobic as well as lipophilic nanosilica could be effectively used as novel drugs for treatment of chicken malaria and nuclear polyhedrosis virus (BmNPV), a scourge in silkworm industry. Here, the authors attempt to provide a review to explain the impact of nanosilica on basic biology, medicine, agro-nanoproducts, and use of amorphous nanosilica as biopesticide.

  19. Multi-State Dependent Impulsive Control for Pest Management

    Directory of Open Access Journals (Sweden)

    Huidong Cheng

    2012-01-01

    Full Text Available According to the integrated pest management strategies, we propose a model for pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution of such system, and further, the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results. Our results show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.

  20. Biological control of ticks

    Science.gov (United States)

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  1. Systems of organic farming in spring vetch I: Biological response of sucking insect pests

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-04-01

    Full Text Available Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I – an organic farming system without any biological products used (growth under natural soil fertility – Control; II – an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa; III – an organic farming system in which a biological insecticide (NeemAzal T/S was used; IV – an organic farming system including a combination of three organic products: the foliar fertilizer, the plant growth regulator and the bioinsecticide (Polyversum+Biofa+NeemAzal T/S. Variant V represented a conventional farming system in which synthetic products were used in combination (foliar fertilizer, plant growth regulator and insecticide: Masterblend+Flordimex 420+Nurelle D. Treatment of vetch plants with the biological insecticide NeemAzal in combination with Biofa and Polyversum resulted in the lowest density of sucking pests, compared to all other organic farming methods tested (i.e. without NeemAzal, with NeemAzal alone, and its combination with Biofa and Polyversum. The greatest reduction in pest numbers during the vegetation period in that variant was observed in species of the order Thysanoptera (36.0-41.4%, followed by Hemiptera, and the families Aphididae (31.6-40.3% and Cicadellidae (27.3-28.6%. This combination showed an efficient synergistic interaction and an increase in biological efficacy as compared to individual application of NeemAzal. The highest toxic impact was found against Thrips tabaci, followed by Acyrthosiphon pisum. An analysis of variance regarding the efficacy against the species A. pisum, E. pteridis and T. tabaci showed that type of treatment had the most dominant influence and statistically significant impact.

  2. The bioeconomics of controlling an African rodent pest species

    DEFF Research Database (Denmark)

    Skonhoft, Anders; Leirs, Herwig; Andreassen, Harry P;

    2006-01-01

    The paper treats the economy of controlling an African pest rodent, the multimammate rat, causing major damage in maize production. An ecological population model is presented and used as a basis for the economic analyses carried out at the village level using data from Tanzania. This model...

  3. Advances in developing alternative treatments for postharvest pest control

    Science.gov (United States)

    USDA-ARS made two significant advances in the last 10 years in the development of alternative treatments for postharvest pest control: oxygenated phosphine fumigation and nitric oxide fumigation. Oxygenated phosphine is phosphine fumigation in an oxygen enriched atmosphere. It is significantly more...

  4. Iowa Commercial Pesticide Applicator Manual, Category 7A: General and Household Pest Control. CS-19. Category 7B: Termite Control, CS-20. Category 7C: Food Industry Pest Control, CS-21. Category 7D: Community Insect Control, CS-22.

    Science.gov (United States)

    Stockdale, Harold J., Ed.; And Others

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. The first section discusses general and household pest control and is concerned with parasitic pests and man, stored product pests, and irritating vertebrates. Section two is devoted to identifying and controlling structural pests such…

  5. Effect of soybeans, corn and rice configurations on the biological control of pest insects%大豆、玉米与水稻配置对稻田寄生蜂的影响

    Institute of Scientific and Technical Information of China (English)

    戈林泉; 胡中卫; 吴进才

    2013-01-01

    9.3%,respectively,which were 3.2%,1.6%,0.5% and 0.3% lower than in the control.The rates of occurrence of larvae or nymphs of the four pests in rice adjacent to maize were 10.3%,19.4%,17.5% and 2.6%,respectively,which were differences of + 0.9%,-2.5%,+ 1.9% and-1.9% respectively,compared with the control.These results provide important information for the biological control of crop pests.

  6. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  7. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  8. 9 CFR 3.84 - Cleaning, sanitization, housekeeping, and pest control.

    Science.gov (United States)

    2010-01-01

    ..., and pest control. 3.84 Section 3.84 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION..., sanitization, housekeeping, and pest control. (a) Cleaning of primary enclosures. Excreta and food waste must... from becoming soiled, and to reduce disease hazards, insects, pests, and odors. Dirt floors,...

  9. 9 CFR 3.11 - Cleaning, sanitization, housekeeping, and pest control.

    Science.gov (United States)

    2010-01-01

    ..., and pest control. 3.11 Section 3.11 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION..., sanitization, housekeeping, and pest control. (a) Cleaning of primary enclosures. Excreta and food waste must... contained in the primary enclosures, and to reduce disease hazards, insects, pests and odors. When steam...

  10. Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.

    Science.gov (United States)

    Gesell, Stanley G.

    This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…

  11. Species and control of insect pests and major diseases of Torreyagrandis Merrillii

    Institute of Scientific and Technical Information of China (English)

    WU Zhongliang; XU Zhihong; CHEN Xiulong; JIN Guolong; LI Suping; SHEN Yulin; LANG Xuejun; HU Zhongcheng; CHEN Lihong

    2006-01-01

    From January 2001 to December 2004,the investigation on the species of insect pests and diseases in Torreya grandis Merrillii was conducted and integrated control technologies of the main insect pests and diseases were studied in Zhuji,Shaoxin,Shenzhou,Dongyang,and Jiande counties of Zhejiang Province.Via field survey,a system of regular observations,55 species of insectpests belonging to 9 orders and 29 families,and 4 species of diseases were recorded.Among them,Lepteucosma torreyae and Macrolygus torreyae were found to be new species.The biological characteristics of the major insect pests and diseases,such as Rhyncaphytoptus abiesis,Helicobasidium compacum,Erwinia carotovora,Chlorella sp.,Macrolygus torreyae,and Lepteucosma torreyae,were primarily recorded,and their outbreaks and epidemics were researched.The forecasting method for Lepteucosma torreyae was established.Based on strengthening cultivation and management,integrated control measures were put forward including physical,biologic and chemical methods.Medications with higher effect and lower toxicity were screened by comparing the effect of different pesticide treatments.

  12. Research Progress of Ap-plication of Insect Mi-crosporidia in Biological Control of Agricultural Pests%微孢子虫在害虫生物防治中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    王玉强

    2015-01-01

    昆虫微孢子虫能引起昆虫的流行病,是一种很有应用潜力的微生物杀虫剂。综述昆虫微孢子虫在防治蝗虫、红火蚁、棉铃虫、玉米螟、云南松毛虫等农业害虫上的研究进展,并对目前存在的问题及其应用前景进行了展望。%The insect microsporidia may cause epizootics of insects, they are the potential microbial insecticides. The research progress of insect microsporidia controlling agricultural pests, such as grasshopper, red fire ant, cotton boll-worm, corn borer, Yunnan pine caterpil-lar were summarized, the current prob-lems and theirs application prospect were also described.

  13. Utah Home Orchard Pest Management Guide

    OpenAIRE

    Murray, Marion; Alston, Diane; Nischwitz, Claudia

    2012-01-01

    Integrated pest management (IPM) is the practice of combining knowledge of the pest and host plant with multiple tactics for long-term, safe pest control. The goal of IPM is pesticide reduction by using cultural, mechanical, and biological controls before the last option, pesticides.

  14. Chlorophyll derivatives for pest and disease control: Are they safe?

    Energy Technology Data Exchange (ETDEWEB)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  15. The use of insecticides to control insect pests

    Directory of Open Access Journals (Sweden)

    M Wojciechowska

    2016-07-01

    Full Text Available Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resistance of insects to these insecticides. In order to prevent occurrence of negative effects of insecticides on surroundings, the effects of these compounds should be studied

  16. RESEARCH REGARDING INTEGRATED DISEASES AND PESTS CONTROL IN APPLE TREE CULTIVATION IN THE CÂRCINOV-ARGES FRUIT GROWING BASIN

    Directory of Open Access Journals (Sweden)

    Şt. Popescu

    2012-04-01

    Full Text Available In tree culture technologies, regardless the species and varieties in culture, cessation and control of disease and pest attack represent important and necessary sequence, which influence the quantity and mainly the quality of fruit production, especially the biological potential transmitted for the next 2 -3 years.

  17. The genetic diversity,relationships,and potential for biological control of the lobate lac scale,Paratachardina pseudolobata Kondo&Gullan(Hemiptera:Coccoidea:Kerriidae),a pest in Florida,the Bahamas,Cuba and Christmas Island

    Science.gov (United States)

    The lobate lac scale Paratachardina pseudolobata Kondo & Gullan (Kerriidae) is a polyphagous pest of woody plants in Florida (U.S.A), the Bahamas, Cuba, and Christmas Island (Australia). Its recent appearance as a pest in these places indicates that this scale is introduced; however, its native rang...

  18. Engineered female-specific lethality for control of pest Lepidoptera.

    Science.gov (United States)

    Jin, Li; Walker, Adam S; Fu, Guoliang; Harvey-Samuel, Timothy; Dafa'alla, Tarig; Miles, Andrea; Marubbi, Thea; Granville, Deborah; Humphrey-Jones, Nerys; O'Connell, Sinead; Morrison, Neil I; Alphey, Luke

    2013-03-15

    The sterile insect technique (SIT) is a pest control strategy involving the mass release of radiation-sterilized insects, which reduce the target population through nonviable matings. In Lepidoptera, SIT could be more broadly applicable if the deleterious effects of sterilization by irradiation could be avoided. Moreover, male-only release can improve the efficacy of SIT. Adequate methods of male-only production in Lepidoptera are currently lacking, in contrast to some Diptera. We describe a synthetic genetic system that allows male-only moth production for SIT and also replaces radiation sterilization with inherited female-specific lethality. We sequenced and characterized the doublesex (dsx) gene from the pink bollworm (Pectinophora gossypiella). Sex-alternate splicing from dsx was used to develop a conditional lethal genetic sexing system in two pest moths: the diamondback moth (Plutella xylostella) and pink bollworm. This system shows promise for enhancing existing pink bollworm SIT, as well as broadening SIT-type control to diamondback moth and other Lepidoptera.

  19. Pest control of aphids depends on landscape complexity and natural enemy interactions

    Directory of Open Access Journals (Sweden)

    Emily A. Martin

    2015-07-01

    Full Text Available Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1 the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2 the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the

  20. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  1. Use of natural enemies and biorational pest control of corne

    Directory of Open Access Journals (Sweden)

    Cipriano García Gutiérrez

    2012-09-01

    Full Text Available A general analysis of the potential use of natural enemies and biorational insecticides for control of main pests of corn in thestate of Sinaloa is presented. A discuss on their composition, dosage, toxicity and type of effect on beneficial organisms(natural enemies and pollinators is too included. The work revealed that is possible implement the use of these natural enemies and products for the control of neonate larvae of Spodoptera frugiperda fall armyworm (J. E Smith with Nomuraea rileyi (Farlow (Samson; against thrips Frankliniella occidentalis (Pergande using the nematodes Steinernema riobravis (Cabanillas and Poinar, S. feltiae (Filipjev and Heterorhabditis bacteriophora (Poinar at doses of 10,000 IJ (4x10 ~ IJ/m; against the corn silk fly Euxesta stigmatias (Loew encouraging the natural parasitism of Spalangia sp., while for the cutworm Agrotis ipsilon (Hufnagel can be with spinosad (soluble concentrate at doses of 0.123 kg a. i, and to the corn earwormHelicoverpa zea (Boddie using the analog of methoxyfenozide molting hormone (24% at 144 mg of a. i/L. The biorational control agents that not affect significantly to the natural enemies were the nucleopoliedrosis virus SfMNPV and SeMNPV; N. rileyi and Isaria fumosorosea (Wize; Bacillus thuringiensis (Berlinier; the azadirachtin (neem and parasitoids. In the case of products of chemical synthesis: Spinosad, oxymatrine and bifenthrin showed high rates of mortality in the control of corn pests, so these are considered as of high and moderate risk to Aphis mellifera (L. bees, the methoxyfenozide presented relatively low toxicity to natural enemies. In general, biorational products have repellent effect on larvae and adults of these insects, inhibit feeding and induce molting, also causing deformities and impede the development and growth, too interfere with sexual intercourse and copulate, reducing the oviposition, as well as cause sterility of adults, so these may also constitute a risk to

  2. Construction of ice nucleation active Enterobacter cloacae for control of insect pests

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Ice nucleation active (INA) bacteria are the most potent heterogeneous ice nuclei in nature, which have become an important biological resource for diverse applications. Many researches have proved that INA bacteria can raise the supercooling points (SCPs) of insect pests, then reduce their cold hardiness. However, INA bacteria's inefficient colonization on the surface or in the guts of insects, and the high incidence of frost injury induced by their release hampered the application of INA bacteria in controlling insect pests in agricultural fields. In this study, we constructed a recombinant plasmid mob-Tn5-iceA with the ability of broad-host-range conjugal mobilization and integration of the ina gene of iceA into chromosomal DNA of many gram-negative bacteria by Tn5 transposition. In addition, Ent. cloacae strains stably carrying iceA and expressing high ice nucleation activity (INA), even in the absence of antibiotic pressure, were constructed through conjugal mobilization and Tn5 transposition. Ent. cloacae strains have been reported to be able to efficiently colonize in the guts of insects, but have weak plant epiphytic ability. Therefore, these transgenic Ent. cloacae may be promising candidates for control of insect pests in agricultural fields.

  3. Bt crops benefit natural enemies to control non-target pests.

    Science.gov (United States)

    Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M

    2015-11-12

    Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.

  4. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    OpenAIRE

    Liang, Juhua; Tang, Sanyi; Cheke, Robert

    2016-01-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel disc...

  5. Dynamic Analysis of a Predator-Prey (Pest Model with Disease in Prey and Involving an Impulsive Control Strategy

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2012-01-01

    Full Text Available The dynamic behaviors of a predator-prey (pest model with disease in prey and involving an impulsive control strategy to release infected prey at fixed times are investigated for the purpose of integrated pest management. Mathematical theoretical works have been pursuing the investigation of the local asymptotical stability and global attractivity for the semitrivial periodic solution and population persistent, which depicts the threshold expression of some critical parameters for carrying out integrated pest management. Numerical analysis indicates that the impulsive control strategy has a strong effect on the dynamical complexity and population persistent using bifurcation diagrams and power spectra diagrams. These results show that if the release amount of infective prey can satisfy some critical conditions, then all biological populations will coexist. All these results are expected to be of use in the study of the dynamic complexity of ecosystems.

  6. Dynamic complexities in a pest control model with birth pulse and harvesting

    Science.gov (United States)

    Goel, A.; Gakkhar, S.

    2016-04-01

    In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.

  7. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  8. Mite Pests in Plant Crops – Current Issues, Inovative Approaches and Possibilities for Controlling Them (1

    Directory of Open Access Journals (Sweden)

    Radmila Petanović

    2010-01-01

    Full Text Available In the middle of the last century, mites moved into the focus of attention as pests relevantto agriculture, forestry and landscape horticulture, presumably in direct reactionto the “green revolution” that involved plant cultivation in large-plot monocropping systems,improved methods of cultivation, selection of high-yielding cultivars and intensifieduse of pesticides and mineral fertilizers. Agroecosystems in which phytophagous miteshave become harmful organisms are primarily orchards, vineyards, greenhouses, urbangreeneries, plant nurseries and stored plant products, as well as annual field crops to asomewhat lesser degree. Phytophagous mite species belong to a variety of spider mites(Tetranychidae, false spider mites (Tenuipalpidae, gall and rust mites (Eriophyoidae, tarsonemidmites (Tarsonemidae and acarid mites (Acaridae. Most of these harmful speciesare widespread, some of them having more economic impact than others and being moredetrimental as depending on various specificities of each outdoor agroecosystem in anyparticular climatic region.The first segment of this overview focuses on the most significant mite pests ofagroecosystemsand urban horticultural areas in European countries, our own region andin Serbia today, primarily on species that have caused problems in recent years regardingplant production, and it also discusses various molecular methods available for investigatingdifferent aspects of the biology of phytophagous mites. Also, acaricides are discussedas a method of controlling mite pests in the light of the current situation and trends on pesticidemarkets in Serbia and the European Union member-countries

  9. Bacillus thuringiensis (Bt for the Control of Insect Pests in Stored Tobacco: A Review

    Directory of Open Access Journals (Sweden)

    Blanc M

    2014-12-01

    Full Text Available Among the insect species causing infestations and serious damages to stored commodities, the cigarette beetle, Lasiodermaserricorne (F. and the tobacco moth, Ephestiaelutella (Hübner are the major pests of both raw and manufactured tobacco. Post-harvest tobacco control is achieved through sanitation, insect monitoring, and fumigation with phosphine. However, insect resistance to phosphine and control failures have been reported, and increasing regulatory pressure is being exerted on fumigants. Biological control agents such as Bacillus thuringiensis (Bt appear to be environmentally sound and potentially viable alternatives to chemical control. Bt is a bacterium that produces insecticidal crystal proteins during the sporulation phase and has been, for more than 40 years, the microorganism of choice for the biocontrol of phytophagous insect pests. It produces insecticidal crystal proteins that display specific activity against certain orders of insects and become active upon ingestion by the insect. Our laboratory has conducted extensive research and worldwide surveys to evaluate the presence of Bt in stored tobacco and has confirmed previous findings indicating that Bt may be considered part of the naturally occurring phylloplanemicroflora. Several Bt strains were isolated from tobacco and characterized by DNA and protein profiling. The insecticidal activity of selected strains and of two commercial products against the larvae of L. serricorne was determined by diet incorporation assays. Moreover, the stability of Bt spores and crystal proteins on cured tobacco leaves was assessed over a storage period of time of 30 months. Cigarette prototypes were made with Bt-treated tobacco. Standard cigarette and smoke evaluations did not show any significant difference between the test and control cigarettes. Although the tested Bt strains and products did not yield satisfactory levels of mortality at the required times and doses, the experimental results

  10. 具有非线性感染率和生物化学控制的害虫管理模型%Nonlinear incidence rate of a pest management model with biological and chemical control concern

    Institute of Scientific and Technical Information of China (English)

    岳宗敏; 白云宵; 郭改慧

    2013-01-01

    A model with impulsive releases of infective pests and spraying pesticides at different moments for pest management is described and investigated in this paper. The globally asymptotic stability periodic solution of pest-extinction for this model is proved. Furthermore, the sufficient condition for permanence of the system is obtained. Finally, some conclusions are showed. The approach of combining impulsive releasing infective pests with impulsive spraying pesticides provides reliable tactical basis for the practical pest management.%讨论了具有非线性传染率并在两个不同时刻分别脉冲释放病虫和喷洒农药的害虫管理模型,证明了害虫灭绝解的全局渐近稳定性,并进一步得到了解持续生存的条件,最后给出了结论.其中所使用的控制方法为实际的害虫管理提供了可靠的理论依据.

  11. Manipulating within-orchard and adjacent habitats to provide better pest control in organic orchards. Some elements for modulating “orchard tree-pest-natural enemy” relationships

    OpenAIRE

    Simon, S.; SAUPHANOR, B.; DEFRANCE, H.; Lauri, P.E. (collab.)

    2009-01-01

    The control of pests in organic orchards cannot solely rely on the use of direct control methods. The effect of manipulating the habitat of orchard pests and natural enemies through tree architecture and the increase of plant diversity has been investigated in an experimental organic apple orchard and in a pear orchard, in order to provide information about the potential benefits of these cultural practices. Tree training affected the development of the most detrimental pests of apple trees, ...

  12. Plant tolerance: A unique approach to control hemipteran pests

    Science.gov (United States)

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through g...

  13. Industrial - Institutional - Structural and Health Related Pest Control Category Manual.

    Science.gov (United States)

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. The emphasis of this document is on the identification of wood-destroying pests and the damage caused by them to the structural components of buildings. The pests discussed include termites, carpenter ants, beetles, bees, and wasps and numerous…

  14. Pest control in Albania: an example of collaboration in technical and scientific development in public health

    Directory of Open Access Journals (Sweden)

    Enkelejda Velo

    2010-03-01

    Full Text Available In September 2007, a severe cockroach (Blattella germanica infestation was reported on the premises of the Scutari Regional Hospital. The hospital was infested by cockroaches despite regular insecticide treatment by local pest control officers. The failure of treatment required a careful evaluation of the problem. It also created the opportunity for a more complete analysis of pest control in Albania.

  15. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Fruit Pest Control.

    Science.gov (United States)

    Brunner, J.; And Others

    This manual is intended to assist pesticide applicators prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on fruit pest control. Sections included are: (1) Causes of fruit diseases; (2) Fruit fungicides and bactericides; (3) Insect and mite pests; (4) Insecticides and miticides;…

  16. Crop domestication, global human-mediated migration, and the unresolved role of geography in pest control

    Directory of Open Access Journals (Sweden)

    Yolanda H. Chen

    2016-05-01

    Full Text Available Abstract Ecological pest management seeks to improve pest control through the manipulation of ecological processes that promote natural enemies and suppress pests. These approaches can involve cultural practices such as reduced tillage, increased use of non-crop plants that provide food and shelter for natural enemies, and intercropping to enhance the abundance and diversity of natural enemies. A major assumption of ecological pest management is that these activities can be equally effective for all insect herbivores. Here, I propose that these strategies may only be effective for a subset of pests and geographic regions because most insect pests have complex evolutionary histories that make them difficult to manage. I discuss how crop domestication and human-mediated migration are major evolutionary events that shape the geography of interactions between plants, herbivores, and natural enemies. Insect herbivores can evolve to be pests through three major modes: 1 herbivores associated with the crop wild ancestor may shift onto the domesticated crop, 2 herbivores may host-shift from native host plants onto an introduced crop, or 3 human-mediated migration can introduce insect pests into new cropping regions. The resulting geographic structure can influence the success of pest management by altering ecological factors such as: species distributions, patterns of biodiversity, community structure, and natural enemy attack rates. I discuss how the different modes of insect pest evolution structure a set of relevant questions and approaches for ecological pest management. By acknowledging how agricultural history and geography shape the ecology and evolution of insect pests, we may collectively develop a better capacity to identify where and how ecological pest management approaches can be most broadly effective.

  17. The biological control of disease vectors.

    Science.gov (United States)

    Okamoto, Kenichi W; Amarasekare, Priyanga

    2012-09-21

    Vector-borne diseases are common in nature and can have a large impact on humans, livestock and crops. Biological control of vectors using natural enemies or competitors can reduce vector density and hence disease transmission. However, the indirect interactions inherent in host-vector disease systems make it difficult to use traditional pest control theory to guide biological control of disease vectors. This necessitates a conceptual framework that explicitly considers a range of indirect interactions between the host-vector disease system and the vector's biological control agent. Here we conduct a comparative analysis of the efficacy of different types of biological control agents in controlling vector-borne diseases. We report three key findings. First, highly efficient predators and parasitoids of the vector prove to be effective biological control agents, but highly virulent pathogens of the vector also require a high transmission rate to be effective. Second, biocontrol agents can successfully reduce long-term host disease incidence even though they may fail to reduce long-term vector densities. Third, inundating a host-vector disease system with a natural enemy of the vector has little or no effect on reducing disease incidence, but inundating the system with a competitor of the vector has a large effect on reducing disease incidence. The comparative framework yields predictions that are useful in developing biological control strategies for vector-borne diseases. We discuss how these predictions can inform ongoing biological control efforts for host-vector disease systems.

  18. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  19. Natural products for pest control: an analysis of their role, value and future.

    Science.gov (United States)

    Gerwick, B Clifford; Sparks, Thomas C

    2014-08-01

    Natural products (NPs) have long been used as pesticides and have broadly served as a source of inspiration for a great many commercial synthetic organic fungicides, herbicides and insecticides that are in the market today. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, NPs continue to be a source of models and templates for the development of new pest control agents. Interestingly, an examination of the literature suggests that NP models exist for many of the pest control agents that were discovered by other means, suggesting that, had circumstances been different, these NPs could have served as inspiration for the discovery of a great many more of today's pest control agents. Here, an attempt is made to answer questions regarding the existence of an NP model for existing classes of pesticides and what is needed for the discovery of new NPs and NP models for pest control agents.

  20. Basic factors controlling pest in high temperature systems

    Science.gov (United States)

    Berkowitz-Mattuck, J.; Rossetti, M.

    1971-01-01

    The catastrophic disintegration in air at intermediate temperatures of refractory materials which are very resistant to oxidation at high temperatures is known as pest. A study was undertaken to determine whether the mechanism proposed for pest failure in silicides might also be responsible for pest failure in NbAl3. The aim was to correlate oxidation kinetics in the range where disintegration of NbAl3 is observed with delayed failure data obtained under similar conditions. Studies were also undertaken to develop some understanding of deformation mechanisms in both silicides and aluminides.

  1. Phylogenetic Relations of Bacillus thuringiensis: Implications for Risks Associated to Its Use as a Microbiological Pest Control Agent

    DEFF Research Database (Denmark)

    Hendriksen, N. B.; Hansen, B. M.

    1998-01-01

    6th European Meeting Microbial Control of Pests in Sustainable Agriculture, Copenhagen, (Denmark), 10-15 August 1997.......6th European Meeting Microbial Control of Pests in Sustainable Agriculture, Copenhagen, (Denmark), 10-15 August 1997....

  2. THE INSECT PATHOGENIC FUNGUS Verticillium lecanii (Zimm. Viegas AND ITS USE FOR PESTS CONTROL: A REVIEW

    Directory of Open Access Journals (Sweden)

    Thiery B C ALAVO

    2015-08-01

    Full Text Available Chemical insecticides play an important role in the control of plant damage and plant diseases. However, extensive use of these products has led to the disruption of ecosystems because of several reasons such as death of non-target species, accumulation of pesticide residues in the environment and food, and buildup of pesticide resistance in the target species. Biological control is one of the alternatives to chemical pesticides and it can be described as the limitation of the abundance of living organisms and their products by other living organisms. Predators, parasitoids, fungi and other beneficial organisms can be used for the biocontrol of insect pests. The fungus Verticillium lecanii is one of the members of Deuteromycetes and it can be used for crop protection. This paper is a review of the international literature related to V. lecanii for the bio-control of insects of agricultural importance.

  3. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    Science.gov (United States)

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  4. Prospects for repellent in pest control: current developments and future challenges

    Science.gov (United States)

    The overall interest for environmentally safe pest control methods and the increased frequency of insecticide resistance in pest populations have stimulated research on insect repellents in the recent decades in medical and agricultural entomology. However, there remains a great deal of work to be ...

  5. Mite Pests in Plant Crops – Current Issues, Inovative Approaches and Possibilities for Controlling Them (2

    Directory of Open Access Journals (Sweden)

    Radmila Petanović

    2010-01-01

    Full Text Available Part one discusses some principal mite pests in agroecosystems and urban horticulturein European countries, Serbia and its neighbouring countries focusing primarily on issueswith regard to plant production, novel methods and approaches in applied acaralogy. Parttwo displays some major properties of acaricides inhibiting respiration, growth and developmentand other synthetic substances with acaricide action on the market in the last decadeof the 20th century and the first decade of the 21st century. Also some products of naturalorigin (azadirachtin, oils, micoacaricides are said to be gaining in importance. Issues withregard to the fact that mites can readily develop resistance to acardicides are discussed anda survey on the results of biochemical, physiological and genetical causes of resistance areanalyzed. Some basic principles of biological control of phytophagous mites and modernadvances and approaches are discussed as well as current knowledge on host plant resistanceto mites. Eventually, the possibility of using a combination of selective acaricides andbiological control agents is discussed but also the inclusion of other modes of control (agriculturalpractices and physical measures expected to contribute to an integrated managementof pest populations.

  6. Research on the Application of the Super Capacitor in the Solar LED Pest Control Light

    Directory of Open Access Journals (Sweden)

    Li Tianhua

    2014-02-01

    Full Text Available Based on the energy storage characteristics of the super-capacitor and solar panels, this study selects the super-capacitor as the storage device to design the solar LED pest control light, which is energy saving, environmentally friendly, safe and reliable. The solar LED pest control light is easy to use and there is no need erecting and maintaining wires. However, the current storage battery is weak in charge control due to the instability of the sun light and this unstable charge state may lead to its premature failure or capacity loss, thus causing the service life of pest control light to be below the designed specification.

  7. The cactus moth, Cactoblastis cactorum: Lessons in Biological Control

    Science.gov (United States)

    The cactus moth was one of the success stories in classical biological control. In the 1920s, the prickly pear cactus was a serious pest in Australia. The cactus moth was imported from its native habitat in South America and proved so successful in controlling cactus that it was mass reared and exp...

  8. Pest control and resistance management through release of insects carrying a male-selecting transgene

    OpenAIRE

    2015-01-01

    Background Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis (‘Bt crops’) emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largel...

  9. Bacillus thuringiensis-based Products for Insect Pest Control

    NARCIS (Netherlands)

    Maagd, de R.A.

    2015-01-01

    Bacillus thuringiensis (or Bt, as it has become generally known) is one of the oldest and widely used biological control agents and has a long history of use. Bt and a number of related bacteria produce a variety of toxins, mostly—but not exclusively- localized in the parasporal crystals, which are,

  10. Commercializing Biological Control

    Science.gov (United States)

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  11. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    Science.gov (United States)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  12. The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control.

    Science.gov (United States)

    Alyokhin, Andrei; Mota-Sanchez, David; Baker, Mitchell; Snyder, William E; Menasha, Sandra; Whalon, Mark; Dively, Galen; Moarsi, Wassem F

    2015-03-01

    Originally designed to reconcile insecticide applications with biological control, the concept of integrated pest management (IPM) developed into the systems-based judicious and coordinated use of multiple control techniques aimed at reducing pest damage to economically tolerable levels. Chemical control, with scheduled treatments, was the starting point for most management systems in the 1950s. Although chemical control is philosophically compatible with IPM practices as a whole, reduction in pesticide use has been historically one of the main goals of IPM practitioners. In the absence of IPM, excessive reliance on pesticides has led to repeated control failures due to the evolution of resistance by pest populations. This creates the need for constant replacement of failed chemicals with new compounds, known as the 'insecticide treadmill'. In evolutionary biology, a similar phenomenon is known as the Red Queen principle - continuing change is needed for a population to persevere because its competitors undergo constant evolutionary adaptation. The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an insect defoliator of potatoes that is notorious for its ability to develop insecticide resistance. In the present article, a review is given of four case studies from across the United States to demonstrate the importance of using IPM for sustainable management of a highly adaptable insect pest. Excessive reliance on often indiscriminate insecticide applications and inadequate use of alternative control methods, such as crop rotation, appear to expedite evolution of insecticide resistance in its populations. Resistance to IPM would involve synchronized adaptations to multiple unfavorable factors, requiring statistically unlikely genetic changes. Therefore, integrating different techniques is likely to reduce the need for constant replacement of failed chemicals with new ones.

  13. Control of moth pests by mating disruption: Successes and constraints

    NARCIS (Netherlands)

    Cardé, R.T.; Minks, A.K.

    1995-01-01

    Male moths generally find their mates by following the females' pheromone plume to its source. A formulated copy of this message is used to regulate mating of many important pests, including pink bollworm Pectinophora gossypiella, oriental fruit moth Grapholita molesta and tomato pinworm Keiferia ly

  14. Applicator Training Manual for: Seed Treatment Pest Control.

    Science.gov (United States)

    TeKrony, Dennis M.

    This manual gives general information on seed treatment and type of seeds which can be treated. Also discussed are the problems and pests commonly associated with seed diseases and the fungicides and insecticides used for seed treatment. Information is also given on seed treatment equipment such as dust treaters, slurry treaters, and direct…

  15. Genomic approaches for veterinary pest control and eradication

    Science.gov (United States)

    Arthropod pests of veterinary importance remain a threat to the health of livestock herds in the United States (US) and contribute to global food insecurity because they impact animal agriculture productivity directly through their parasitic habits and indirectly, in specific cases, due to the disea...

  16. Plant Tolerance: A Unique Approach to Control Hemipteran Pests

    Science.gov (United States)

    Koch, Kyle G.; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest’s physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented. PMID:27679643

  17. Erroneous host identification frustrates systematics and delays implementation of biological control

    NARCIS (Netherlands)

    Bin, F.; Roversi, P.F.; Lenteren, van J.C.

    2012-01-01

    Misidentifications of pests and their natural enemies and misinterpretations of pest-natural enemy associations have led to the failure of a number of biological control projects. In addition to misidentification, more complicated kinds of errors, such as mistakes in establishing host records of par

  18. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest.

    Science.gov (United States)

    Hiltpold, Ivan; Baroni, Mariane; Toepfer, Stefan; Kuhlmann, Ulrich; Turlings, Ted C J

    2010-07-15

    The efficacy of natural enemies as biological control agents against insect pests can theoretically be enhanced by artificial selection for high responsiveness to foraging cues. The recent discovery that maize roots damaged by the western corn rootworm (WCR) emit a key attractant for insect-killing nematodes has opened the way to explore whether a selection strategy can improve the control of root pests. The compound in question, (E)-beta-caryophyllene, is only weakly attractive to Heterorhabditis bacteriophora, one of the most infectious nematodes against WCR. To overcome this drawback, we used a six-arm below-ground olfactometer to select for a strain of H. bacteriophora that is more readily attracted to (E)-beta-caryophyllene. After six generations of selection, the selected strain responded considerably better and moved twice as rapidly towards a (E)-beta-caryophyllene source than the original strain. There was a minor trade-off between this enhanced responsiveness and nematode infectiveness. Yet, in subsequent field tests, the selected strain was significantly more effective than the original strain in reducing WCR populations in plots with a maize variety that releases (E)-beta-caryophyllene, but not in plots with a maize variety that does not emit this root signal. These results illustrate the great potential of manipulating natural enemies of herbivores to improve biological pest control.

  19. Studies on the Biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to Aid the Identification of the Mealybug Pest of Cactaceae in Puerto Rico.

    Science.gov (United States)

    Aguirre, M B; Diaz-Soltero, H; Claps, L E; Saracho Bottero, A; Triapitsyn, S; Hasson, E; Logarzo, G A

    2016-01-01

    Hypogeococcus pungens Granara de Willink, sensu stricto, is a serious pest of cacti in Puerto Rico threating many Caribbean islands. A classical biological control program for H. pungens was initiated for Puerto Rico in 2010 with a survey for natural enemies of H. pungens in its native range of Argentina. Biological differences were observed between populations of H. pungens sampled on Amaranthaceae and Cactaceae. Molecular studies suggested that H. pungens populations from different host plant families are likely a complex of species. Our objective was to study the biology of H. pungens sensu stricto on specimens collected in the same locality and host plant as the holotype [Tucumán Province, Argentina; Alternanthera pungens Kunth (Amaranthaceae)]. We were interested in the reproductive biology of females, longevity and survival of adults, the effect of temperature on the development, and nymph performance (survival and development) on five Cactaceae species. We found that H. pungens s.s showed marked biological differences from the populations collected on Cactaceae and exported to Australia for the biological control of the cactus Harrisia spp. The main differences were the presence of deuterotoky parthenogenesis and the fact that H. pungens did not attack Cactaceae in the laboratory. Our results provide biological evidence that H. pungens is a species complex. We propose that the population introduced to Australia is neither Hypogeococcus festerianus Lizer y Trelles nor H. pungens, but an undescribed species with three circuli, and that the Hypogeococcus pest of cacti in Puerto Rico is not H. pungens.

  20. Studies on the Biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to Aid the Identification of the Mealybug Pest of Cactaceae in Puerto Rico

    Science.gov (United States)

    Aguirre, M. B.; Diaz-Soltero, H.; Claps, L. E.; Saracho Bottero, A.; Triapitsyn, S.; Hasson, E.; Logarzo, G. A.

    2016-01-01

    Hypogeococcus pungens Granara de Willink, sensu stricto, is a serious pest of cacti in Puerto Rico threating many Caribbean islands. A classical biological control program for H. pungens was initiated for Puerto Rico in 2010 with a survey for natural enemies of H. pungens in its native range of Argentina. Biological differences were observed between populations of H. pungens sampled on Amaranthaceae and Cactaceae. Molecular studies suggested that H. pungens populations from different host plant families are likely a complex of species. Our objective was to study the biology of H. pungens sensu stricto on specimens collected in the same locality and host plant as the holotype [Tucumán Province, Argentina; Alternanthera pungens Kunth (Amaranthaceae)]. We were interested in the reproductive biology of females, longevity and survival of adults, the effect of temperature on the development, and nymph performance (survival and development) on five Cactaceae species. We found that H. pungens s.s. showed marked biological differences from the populations collected on Cactaceae and exported to Australia for the biological control of the cactus Harrisia spp. The main differences were the presence of deuterotoky parthenogenesis and the fact that H. pungens did not attack Cactaceae in the laboratory. Our results provide biological evidence that H. pungens is a species complex. We propose that the population introduced to Australia is neither Hypogeococcus festerianus Lizer y Trelles nor H. pungens, but an undescribed species with three circuli, and that the Hypogeococcus pest of cacti in Puerto Rico is not H. pungens. PMID:27324585

  1. The Trojan female technique: a novel, effective and humane approach for pest population control.

    Science.gov (United States)

    Gemmell, Neil J; Jalilzadeh, Aidin; Didham, Raphael K; Soboleva, Tanya; Tompkins, Daniel M

    2013-12-22

    Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.

  2. Conditional lethality strains for the biological control of Anastrepha species

    Science.gov (United States)

    Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...

  3. Analysis of sustainable pest control using a pesticide and a screened refuge.

    Science.gov (United States)

    Ringland, John; George, Prasanth

    2011-05-01

    We describe and analyze a 'screened refuge' technique for indefinitely sustaining control of insect pests using transgenic pesticidal crops or an applied pesticide, even when resistance is not recessive. The screen is a physical barrier that restricts pest movement. In a deterministic discrete-time model of the use of this technique, we obtain asymptotic analytical formulas for the two important equilibria of the system in terms of the refuge size and the pest fitnesses, mutation rates, and mobility out of and into the refuge. One of the equilibria is stable and is the point at which the pest population is controlled. The other is a saddle whose stable manifold bounds the basin of attraction of the former: its location provides a measure of the tolerance of the control mechanism to perturbations in the resistant allele density.

  4. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  5. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    Directory of Open Access Journals (Sweden)

    Bing Liu

    2013-01-01

    Full Text Available By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity of the natural enemy-extinction periodic solution and permanence of the system are obtained. Numerical simulations are presented to confirm our theoretical results.

  6. Towards integrated pest management in red clover seed production.

    Science.gov (United States)

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  7. Use of biorational for the vegetable pest control in the north of Sinaloa

    Directory of Open Access Journals (Sweden)

    María Berenice González Maldonado

    2012-09-01

    Full Text Available In Sinaloa the vegetable and cucurbits production are important agricultural activities, so each year a high volume of chemicalinsecticides are applied to pest control that attack these crops. This paper present the main pests insects in the region, as wellas an analysis about effects of biorational insecticides on these pests. Was found that for control of Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae is used Neem oil 0.2%., for kill nymphs of Bactericera cockerelli Sulc. (Homoptera: Psyllidae soursop Annona muricata L. (Annonales: Annonaceae at doses of 2500-5000 mg/L., for Liriomyza trifolii Burgess (Diptera: Agromyzidae neem seeds 2%., to Myzus persicae Sulzer (Hemiptera: Aphididae rapeseed oil at doses 920 g/L (2% v/v., to Frankliniella occidentalis Pergande (Thysanoptera: Thripidae spinosad (Conserve® 48-60 mg/L., and for Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae granular viruses (105 OBs/mL combined with neem (DalNeem TM emulsifiable oil and NeemAzal TM -T/S at doses of 8 mg/L, everyone. The use of these products and the dose depends on the type of pest and crop. In general these products cause insect mortality greater than 95%, besides having low toxicity on natural enemies, so that these can be used individually or in combination in integrated pest control schemes against vegetable pests, and also for disease vectors insects in the northern of Sinaloa.

  8. Welfare aspects of vertebrate pest control and culling: ranking control techniques for humaneness.

    Science.gov (United States)

    Littin, K; Fisher, P; Beausoleil, N J; Sharp, T

    2014-04-01

    The management of vertebrate pests depends on the use of traps, pesticides, repellents and other methods, each of which can cause varying levels of pain and other negative experiences to animals. Vertebrate pest control is essential for managing the impacts of unwanted or over-abundant animals on human and animal health, ecological balance and economic interests. As the need for this management is unlikely to diminish over time, a framework has been developed for assessing the humaneness of each technique by considering their negative impacts on animal welfare so that these can be included in decision-making about the selection of techniques for a specific control operation. This information can also support evidence-based regulations directed at managing such animal welfare impacts. In this paper, the authors discuss this assessment framework, briefly review two assessments conducted using the framework and discuss ways in which Competent Authorities and others can use it and other means to improve animal welfare in vertebrate pest management.

  9. Citrus growers vary in their adoption of biological control

    OpenAIRE

    Grogan, Kelly A.; Goodhue, Rachael E.

    2012-01-01

    In a spring 2010 survey, we investigated the characteristics that influenced whether California growers controlled major citrus pests with beneficial insects. We also performed statistical analysis of growers' reliance on Aphytus melinus, a predatory wasp, to control California red scale. The survey results suggest that growers with greater citrus acreage and more education are more likely to use biological control. Marketing outlets, ethnicity and primary information sources also influenced ...

  10. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  11. Virulence of Entomopathogenic Fungi and Bacteria against Stored Product Pests

    OpenAIRE

    Sevim, Ali; Sevim, Elif; Demirci, Meryem

    2015-01-01

    Virulence of Entomopathogenic Fungi and Bacteria against Stored Product PestsEntomopathogenic microorganisms such as bacteria, fungi, viruses, nematodes and protozoa play an important role for regulation of insect pest populations and, this leads to use these microorganisms as biological control agents against pest species as an alternative to chemicals insecticides. In this study, we tested different bacteria originated from stored product pests and fungi isolated from different sources agai...

  12. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  13. Biological control of invasive Dryocosmus kuriphilus with introduced parasitoid Torymus sinensis in Croatia, Slovenia and Hungary

    OpenAIRE

    2016-01-01

    Background and purpose: Dryocosmus kuriphilus is considered as one of the major pests of sweet chestnut and the effective method of controlling its populations and damage is the biological control with its introduced parasitoid Torymus sinensis. T. sinensis is a univoltine, host specific parasitoid, phenologically synchronized and morphologically adapted to D. kuriphilus. It has a good dispersal ability, it builds up populations quickly and it effectively controls the pest already few years a...

  14. Effect of gaseous ozone for control of stored product pests at low and high temperature

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Hansen, Peer; Vagn Jensen, Karl-Martin

    2013-01-01

    Gaseous ozone (O3) has shown potential for control of insects in stored grain. A previous laboratory study determined doses of ozone necessary to control freely exposed and internal stages of eleven stored product pest species at 20 C. In this study the impact of temperature on the effect of ozon...

  15. Beverton-Holt discrete pest management models with pulsed\\ud chemical control and evolution of pesticide resistance

    OpenAIRE

    Liang, Juhua; Tang, Sanyi; Cheke, Robert

    2016-01-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel disc...

  16. Biological characteristics of Acanthocinus carinulatus, a new record insect pest in Aershan, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; LUO You-qing; SHI Juan; Kari KELI(O)VAARA; QI Guo-xin; CHEN Yu-jie; MA Ling-yun

    2008-01-01

    Biological characteristics of a new record pest insect Acanthocinus carinulatus Gebler has been reported in China. During the last few years, outbreaks of this insect in larch (Larix gmelinii Rupr.) plantations of Aershan, Inner Mongolia have occurred. Each year one generation is born. The insects only damage the phloem in L. gmelinii, overwinter in galleries as larvae and pupate in May of the following year. The pupation culminates in late May. The pupal phase lasts about 45 d. Adults emerge in early June and require nutrition after emergence. Mating and oviposition occur from late June to early August and the adult males and females and may copulate many times in their lifetime. The female adults lay eggs in bark crevices. Oviposition sites with one egg occupy 70.5% of all sites, sites with three eggs occupy 6.8% and 22.7% of all crevices are without eggs. Eggs stay in this stage for a period of 7 to 11 d.Larvae hatch in early July and hibernate in early September. The rate of successful hatching is only 37.8%.

  17. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?

    Science.gov (United States)

    Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E

    2015-11-01

    Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.

  18. [Ecological control effects of Litchi chinensis-Desmodium intortum complex plant ecosystem on litchi pests].

    Science.gov (United States)

    Ouyang, Gecheng; Yang, Yueping; Liu, Deguang; Xiong, Jinjun; Huang, Mingdu

    2006-01-01

    An investigation on the community structure and dynamics of litchi pests and their natural enemies in constructed Litchi chinensis-Desmodium intortum complex plant ecosystem and single L. chinensis ecosystem showed that the total amount of litchi pests in the complex plant ecosystem was 61.27% of that in the single ecosystem in whole year, and only 50.45% in May, the key time for fruit development, which suggested that there was an interaction between D. intortum and L. chinensis. D. intortum and L. chinensis had a few common pests, but many common natural enemies. D. intortum florescence in winter provided shelter and substitutive food for the natural enemies of pests to survive in the extreme environmental conditions in winter. L. chinensis florescence was on the heel of D. intortum florescence, which provided better conditions for the natural enemies to survive and multiply. During florescence and fruit development stages of L. chinensis (from March to June), the predator/prey ratio in complex plant system was 4.22, 2.34, 2.2 and 20.63 times of that in single plant system in March, April, May and June, respectively, indicating the good control effect on pests of L. chinensis.

  19. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China; a simulation study.

    OpenAIRE

    Xia, J

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on insecticides against the cotton aphid in the past four decades has brought about a rapid development of insecticide resistance, serious outbreaks of key pests, resurgence of secondary pests, and risk for man and environment. Biological control of ...

  20. Towards integrated assessment of natural pest control as part of a set of ecosystem services: the Landscape IMAGES approach

    NARCIS (Netherlands)

    Rossing, W.A.H.; Groot, J.C.J.

    2012-01-01

    Natural pest control is an ecosystem service that appears to be affected by ecosystem characteristics at spatial scales from field to landscape. Changes in land use and land management at the field level to enhance pest control depend on a small number of decision makers. In contrast, changes at the

  1. Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control

    NARCIS (Netherlands)

    van Rijn, Paul C. J.; Wäckers, Felix L.

    2016-01-01

    In modern agricultural landscapes, many organisms providing ecosystem services such as pollination and natural pest control are likely constrained by shortage of nectar and/or pollen required for adult nutrition. More and more flower-rich field margin strips and other habitats are created to elimina

  2. Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control

    NARCIS (Netherlands)

    van Rijn, P.C.J.; Wäckers, F.L.

    2016-01-01

    1. In modern agricultural landscapes, many organisms providing ecosystem services such as pollination and natural pest control are likely constrained by shortage of nectar and/or pollen required for adult nutrition. More and more flower-rich field margin strips and other habitats are created to elim

  3. Apply Pesticides Correctly, A Guide for Commercial Applicators: Industrial, Institutional, Structural and Health Related Pest Control.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet the specific standards for pesticide applicators. The thrust of this document is the recognition and control of common pests. Included are those which directly affect man such as bees, roaches, mites, and mosquitoes; and those which destroy food products and wooden structures. Both mechanical and…

  4. Apply Pesticides Correctly, A Guide for Commercial Applicators: Ornamental and Turfgrass Pest Control.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with recognition and control of ornamental and turfgrass pests such as leaf spot, scab, powdery mildew, galls, grubs and weeds. A section of the text is also devoted to environmental concerns to be considered when undertaking pest…

  5. Entomopathogenic fungi for control of arthropod pests in egg production facilities

    DEFF Research Database (Denmark)

    Steenberg, Tove; Kilpinen, Ole

    Beauveria bassiana and other species of entomopathogenic fungi are potential candidates for microbial control of major pests in egg layers, e.g. the poultry red mite (Dermanyssus gallinae), the housefly (Musca domestica) and the darkling beetle (Alphitobius diaperinus). We have selected an isolate...

  6. LOW TEMPERATURE PHOSPHINE FUMIGATION FOR POSTHARVEST PEST CONTROL ON FRESH VEGETABLES

    Science.gov (United States)

    U.S. exported lettuce, broccoli, asparagus, and strawberries often harbor western flower thrips (Frankliniella occidentalis), a quarantined pest in Taiwan, and therefore require quarantine treatment. Fumigation with pure phosphine at a low temperature of 2°C was studied to control western flower t...

  7. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.

    Science.gov (United States)

    Zhang, Hao; Li, Hai-Chao; Miao, Xue-Xia

    2013-02-01

    Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi-mediated crop protection. However, there are many limitations using RNAi-based technology for pest control, with the effectiveness target gene selection and reliable double-strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome-scale high-throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro-injection or by feeding as a dietary component. However, micro-injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi-mediated crop protection has been considered as a potential new-generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi-based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.

  8. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control

    Institute of Scientific and Technical Information of China (English)

    Hao Zhang; Hai-Chao Li; Xue-Xia Miao

    2013-01-01

    Numerous studies indicate that target gene silencing by RNA interference (RNAi)could lead to insect death.This phenomenon has been considered as a potential strategy for insect pest control,and it is termed RNAi-mediated crop protection.However,there are many limitations using RNAi-based technology for pest control,with the effectiveness target gene selection and reliable double-strand RNA(dsRNA)delivery being two of the major challenges.With respect to target gene selection,at present,the use of homologous genes and genome-scale high-throughput screening are the main strategies adopted by researchers.Once the target gene is identified,dsRNA can be delivered by micro-injection or by feeding as a dietary component.However,micro-injection,which is the most common method,can only be used in laboratory experiments.Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects.Hence,RNAi-mediated crop protection has been considered as a potential new-generation technology for pest control,or as a complementary method of existing pest control strategies;however,further development to improve the efficacy of protection and range of species affected is necessary.In this review,we have summarized current research on RNAi-based technology for pest insect management.Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures.To accelerate its practical application in crop protection,further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.

  9. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Lindsey C. Perkin

    2016-09-01

    Full Text Available Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  10. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    Science.gov (United States)

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  11. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    Science.gov (United States)

    Perkin, Lindsey C.; Adrianos, Sherry L.; Oppert, Brenda

    2016-01-01

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs. PMID:27657138

  12. Microbial control of arthropod pests of orchards in temperate climates

    Science.gov (United States)

    Temperate orchards systems have several environmental features that make them conducive to microbial control strategies including adequate soil moisture, shading (protection from harmful UV) and stability. This chapter reviews and analyzes microbial control efforts in temperate orchards, including p...

  13. Entomopathogenic Nematodes for the Biological Control of Pest Insects

    OpenAIRE

    Ljerka Oštrec

    2001-01-01

    Entomopathogenic nematodes are part of 9 families, but only some species of these families: Heterorhabditidae, Mermithidae and Steinernematidae kill insects. Infective juveniles enter the insect host through the cuticle, or through the mouth, anus, etc., to reach the haemocel. The infective juveniles also enter the insect by the foot. After that the nematodes leave the insect who usually dies. The infective juveniles are associated with symbiotic bacterium (Xenorhabdus, Photorhabdus) which h...

  14. Will the Convention on Biological Diversity put an end to biological control?

    Directory of Open Access Journals (Sweden)

    Joop C. van Lenteren

    2011-03-01

    Full Text Available Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties. This also applies to species collected for potential use in biological control. Recent applications of access and benefit sharing principles have already made it difficult or impossible to collect and export natural enemies for biological control research in several countries. If such an approach is widely applied it would impede this very successful and environmentally safe pest management method based on the use of biological diversity. The International Organization for Biological Control of Noxious Animals and Plants has, therefore, created the "Commission on Biological Control and Access and Benefit Sharing". This commission is carrying out national and international activities to make clear how a benefit sharing regime might seriously frustrate the future of biological control. In addition, the IOBC Commission members published information on current regulations and perceptions concerning exploration for natural enemies and drafted some 30 case studies selected to illustrate a variety of points relevant to access and benefit sharing. In this article, we summarize our concern about the effects of access and benefit sharing systems on the future of biological control.

  15. Effects of land use on bird populations and pest control services on coffee farms

    Science.gov (United States)

    Railsback, Steven F.; Johnson, Matthew D.

    2014-01-01

    Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of “land sharing” (i.e., mixed cropland and habitat) vs. “land sparing” (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system. PMID:24711377

  16. Effects of land use on bird populations and pest control services on coffee farms.

    Science.gov (United States)

    Railsback, Steven F; Johnson, Matthew D

    2014-04-22

    Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of "land sharing" (i.e., mixed cropland and habitat) vs. "land sparing" (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system.

  17. Biological aspects of Eriopis connexa (Germar (Coleoptera: Coccinellidae fed on different insect pests of maize (Zea mays L. and sorghum [Sorghum bicolor L. (Moench.

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available Eriopis connexa (Germar (Coleoptera: Coccinellidae occurs in several countries of South America and its mass rearing is important for biological control programmes. This work evaluated biological aspects of E. connexa larva fed on eggs of Anagasta kuehniella (Zeller (Lepidoptera: Pyralidae and Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae frozen for one day, fresh eggs of Diatraea saccharalis (Fabricius (Lepidoptera: Pyralidae, S. frugiperda newly-hatched caterpillars, nymphs of Rhopalosiphum maidis (Fitch and Schizaphis graminum (Rondani (Hemiptera: Aphididae. Duration of larva, pupa and larva to adult stages differed among prey offered, whereas the prepupa stage was similar. Larva, pupa, prepupa and larva to adult viabilities were equal or major of 87.5% in all prey, except for larva fed on newly-hatched larvae of S. frugiperda. Eriopis connexa has good adaptation to different prey corroborating its polyphagous feeding habit, which evidences the potential of this natural enemy for controlling corn and sorghum pests.

  18. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    NARCIS (Netherlands)

    Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fliessbach, A.; Gunst, L.; Hedlund, K.; Mäder, P.; Mikola, J.; Robin, C.; Setälä, H.; Tatin-Froux, F.; Putten, van der W.H.; Scheu, S.

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological param

  19. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control

    Science.gov (United States)

    Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe

    2016-01-01

    Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis) and maize (Ostrinia furnacalis), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field. PMID:27763554

  20. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control

    Directory of Open Access Journals (Sweden)

    Qingsong Liu

    2016-10-01

    Full Text Available Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis and maize (Ostrinia furnacalis, demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field.

  1. Engineered repressible lethality for controlling the pink bollworm, a lepidopteran pest of cotton.

    Directory of Open Access Journals (Sweden)

    Neil I Morrison

    Full Text Available The sterile insect technique (SIT is an environmentally friendly method of pest control in which insects are mass-produced, irradiated and released to mate with wild counterparts. SIT has been used to control major pest insects including the pink bollworm (Pectinophora gossypiella Saunders, a global pest of cotton. Transgenic technology has the potential to overcome disadvantages associated with the SIT, such as the damaging effects of radiation on released insects. A method called RIDL (Release of Insects carrying a Dominant Lethal is designed to circumvent the need to irradiate insects before release. Premature death of insects' progeny can be engineered to provide an equivalent to sterilisation. Moreover, this trait can be suppressed by the provision of a dietary antidote. In the pink bollworm, we generated transformed strains using different DNA constructs, which showed moderate-to-100% engineered mortality. In permissive conditions, this effect was largely suppressed. Survival data on cotton in field cages indicated that field conditions increase the lethal effect. One strain, called OX3402C, showed highly penetrant and highly repressible lethality, and was tested on host plants where its larvae caused minimal damage before death. These results highlight a potentially valuable insecticide-free tool against pink bollworm, and indicate its potential for development in other lepidopteran pests.

  2. Engineered Repressible Lethality for Controlling the Pink Bollworm, a Lepidopteran Pest of Cotton

    Science.gov (United States)

    Morrison, Neil I.; Simmons, Gregory S.; Fu, Guoliang; O’Connell, Sinead; Walker, Adam S.; Dafa’alla, Tarig; Walters, Michelle; Claus, John; Tang, Guolei; Jin, Li; Marubbi, Thea; Epton, Matthew J.; Harris, Claire L.; Staten, Robert T.; Miller, Ernest; Miller, Thomas A.; Alphey, Luke

    2012-01-01

    The sterile insect technique (SIT) is an environmentally friendly method of pest control in which insects are mass-produced, irradiated and released to mate with wild counterparts. SIT has been used to control major pest insects including the pink bollworm (Pectinophora gossypiella Saunders), a global pest of cotton. Transgenic technology has the potential to overcome disadvantages associated with the SIT, such as the damaging effects of radiation on released insects. A method called RIDL (Release of Insects carrying a Dominant Lethal) is designed to circumvent the need to irradiate insects before release. Premature death of insects’ progeny can be engineered to provide an equivalent to sterilisation. Moreover, this trait can be suppressed by the provision of a dietary antidote. In the pink bollworm, we generated transformed strains using different DNA constructs, which showed moderate-to-100% engineered mortality. In permissive conditions, this effect was largely suppressed. Survival data on cotton in field cages indicated that field conditions increase the lethal effect. One strain, called OX3402C, showed highly penetrant and highly repressible lethality, and was tested on host plants where its larvae caused minimal damage before death. These results highlight a potentially valuable insecticide-free tool against pink bollworm, and indicate its potential for development in other lepidopteran pests. PMID:23226548

  3. An Exercise in Biological Control.

    Science.gov (United States)

    Lennox, John; Duke, Michael

    1997-01-01

    Discusses the history of the use of pesticides and biological control. Introduces the concept of biological control as illustrated in the use of the entomopathogenic bacterium Bacillus thuringiensis and highlights laboratory demonstrations of Koch's postulates. Includes an exercise that offers the student and teacher several integrated learning…

  4. Prevention and control of weeds, pests and diseases

    NARCIS (Netherlands)

    Sukkel, W.; Hommes, M.

    2009-01-01

    Weed control still requires major investments of money and labour in organic arable farming and field vegetable cultivation. For this reason, current research is focused to a large extent on the development of weed control strategies. These incorporate prevention as well as mechanical methods, and c

  5. Pest Control in Corn and Soybeans: Weeds - Insects - Diseases.

    Science.gov (United States)

    Doersch, R. E.; And Others

    This document gives the characteristics and application rates for herbicides used to control annual weeds in corn, annual and perennial broadleaf weeds in corn, quackgrass and yellow nutsedge in corn, and annual weeds in soybeans. It also gives insecticide use information for corn and soybeans. A brief discussion of disease control in corn and…

  6. Arthropod Pest Control for UK Oilseed Rape – Comparing Insecticide Efficacies, Side Effects and Alternatives

    Science.gov (United States)

    Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G.

    2017-01-01

    Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users’ health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0–1 t/ha less). Alternatives for future oilseed rape

  7. The result of bagged Pyrinuron baits for control rodent pest of forests

    Institute of Scientific and Technical Information of China (English)

    马力; 邓刚; 张蕊

    2000-01-01

    Bagged and dispersed Pyrinuron (a self-formulated rodenticide) were tested for control of Clethrionomus rutilus and Clethrionomus rufocanus in larch plantation, Pingshan area, Heilongjiang Province from Oct. 1998 to Apr. 1999. The results showed that the bagged Pyrinuron has good result for control of the two rodent pests. The density of rodents was reduced by 90.5% after application of bagged Pyrinuron. This application method has characteristics of long residual period, bait not going mould and saving labour force.

  8. Advances in postharvest pest control on perishable commodities using ultralow oxygen treatment and low temperature phosphine funigation

    Science.gov (United States)

    Recent research in postharvest pest control on fresh fruits and vegetables for export to markets have resulted in promising ultralow oxygen (ULO) treatments and low temperature phosphine fumigation treatments for a variety of pests on different commodities. Lettuce aphid (Nasonovia ribisnigri), wes...

  9. Pest control plan Modoc National Wildlife Refuge Alturas California

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this plan is to receive approval to control both wildlife and domestic animals in order to meet refuge goals and objectives. Refuge objectives were...

  10. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.

    Science.gov (United States)

    Lin, Fang-Jing; Bosquée, Emilie; Liu, Ying-Jie; Chen, Ju-Lian; Yong, Liu; Francis, Frédéric

    2016-09-01

    Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals.

  11. Farmers' knowledge and perception of cotton pests and pest control practices in Benin: results of a diagnostic study

    NARCIS (Netherlands)

    Sinzogan, A.A.C.; Huis, van A.; Kossou, D.K.; Jiggins, J.L.S.; Vodouhè, S.

    2004-01-01

    Cotton production constraints in Benin as perceived by farmers were studied from May to July 2003. The knowledge, perceptions and practices of farmers growing cotton under different pest management regimes were analysed. The methods used were open and semi-structured interviews with groups and indiv

  12. Biological control and nutrition: food for thought

    Science.gov (United States)

    Chemical pesticides are used frequently to combat arthropod pests that plague crops; however, these compounds come with potential risks to the environment and human health. Research efforts have focused on using natural agents as an alternative to these chemical insecticides. These biological contro...

  13. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  14. The Effect of Farmers' Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy.

    Science.gov (United States)

    Milne, Alice E; Bell, James R; Hutchison, William D; van den Bosch, Frank; Mitchell, Paul D; Crowder, David; Parnell, Stephen; Whitmore, Andrew P

    2015-12-01

    A farmer's decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers' and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests.

  15. Integrated Pest Management, Preliminary. Curriculum Guide and Instructional Materials for a Secondary School Vo-Ag Program.

    Science.gov (United States)

    Grady County Board of Education, Cairo, GA.

    This curriculum guide presents methods to disseminate information to students interested in dealing with pests, or who have concerns about the environmental impacts of modern pest control methods. Options are encouraged for pest control methods using a combination of natural, biological, cultural, and chemical means of control. Specifically…

  16. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  17. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2012-09-01

    Full Text Available Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX from the wolf spider (Lycosa carolinensis. One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  18. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Johnson, Eric T

    2012-09-28

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs) are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX) from the wolf spider (Lycosa carolinensis). One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda) larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  19. Bt maize and integrated pest management--a European perspective.

    Science.gov (United States)

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests.

  20. Experimental and numerical evaluations on palm microwave heating for Red Palm Weevil pest control

    Science.gov (United States)

    Massa, Rita; Panariello, Gaetano; Pinchera, Daniele; Schettino, Fulvio; Caprio, Emilio; Griffo, Raffaele; Migliore, Marco Donald

    2017-01-01

    The invasive Red Palm Weevil is the major pest of palms. Several control methods have been applied, however concern is raised regarding the treatments that can cause significant environmental pollution. In this context the use of microwaves is particularly attractive. Microwave heating applications are increasingly proposed in the management of a wide range of agricultural and wood pests, exploiting the thermal death induced in the insects that have a thermal tolerance lower than that of the host matrices. This paper describes research aiming to combat the Red Palm pest using microwave heating systems. An electromagnetic-thermal model was developed to better control the temperature profile inside the palm tissues. In this process both electromagnetic and thermal parameters are involved, the latter being particularly critical depending on plant physiology. Their evaluation was carried out by fitting experimental data and the thermal model with few free parameters. The results obtained by the simplified model well match with both that of a commercial software 3D model and measurements on treated Phoenix canariensis palms with a ring microwave applicator. This work confirms that microwave heating is a promising, eco-compatible solution to fight the spread of weevil. PMID:28361964

  1. Disease and Insect Pest Control Technical of Rosa roxburghii Tratt%刺梨病虫害防治技术

    Institute of Scientific and Technical Information of China (English)

    叶光伟; 李淼; 王德敏

    2014-01-01

    介绍了刺梨的形态特征和生物学特性,并针对其病虫害,包括白粉病、褐斑病、烟煤病、梨小食心虫、食叶害虫、月季长管蚜、白粉虱等分别总结防治技术,以期为刺梨高产栽培提供参考。%Morphological characteristics and biological characteristics of Rosa roxburghii Tratt were introduced.Disease and pest control techniques of Rosa roxburghii Tratt were summarized,including powdery mildew,brown blotch,dark mildew,oriental fruit moth,defoliator,Macrosiphum rosirvorum Zhang and Trialeurodes vaporariorum,so as to provide the reference for the high-yield cultivation of Rosa roxburghii Tratt.

  2. The biological control as a strategy to support nontraditional agricultural exports in Peru: An empirical analysis

    Directory of Open Access Journals (Sweden)

    Franklin Duarte Cueva

    2012-12-01

    Full Text Available The study is oriented to explore the general characteristics of agriculture, the biological control as a pest control mechanism and agro export industry. In this context, we try to promote the use of biological control as a strategy to support nontraditional exports related to products such as asparagus and fresh avocados grown in the La Libertad Department (Peru, through an agronomic and management approach. Biological control is the basis of integrated pest management (IPM and contributes to the conservation of agricultural ecosystems allowing to export companies reduce costs, fulfill international phytosanitary measures and supports the preservation of the environment and health. Thus, the Peruvian agro export companies could build a sustainable competitive advantage and seek a positioning as socially responsible firms. We analyze variables such as crop statistics, comparative costs between biological control and chemical control, main destination markets for asparagus and fresh avocados, international standards, among others.

  3. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    NARCIS (Netherlands)

    Lesna, Izabela; Wolfs, Peter; Faraji, Farid; Roy, Lise; Komdeur, Jan; Sabelis, Maurice W.

    2009-01-01

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify poten

  4. Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern U.S.

    Science.gov (United States)

    Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura

    2017-01-01

    Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.

  5. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    Directory of Open Access Journals (Sweden)

    Yuan-mei Li

    2017-01-01

    Full Text Available As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets.

  6. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    Science.gov (United States)

    Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.

    2017-01-01

    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets. PMID:28133568

  7. Commercial biological control agents targeted against plant-parasitic root-knot nematodes

    OpenAIRE

    Marie-Stéphane Tranier; Johan Pognant-Gros; Reynaldo De la Cruz Quiroz; Cristóbal Noé Aguilar González; Thierry Mateille; Sevastianos Roussos

    2014-01-01

    International audience; Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated ...

  8. Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry.

    Science.gov (United States)

    Hassanali, Ahmed; Herren, Hans; Khan, Zeyaur R; Pickett, John A; Woodcock, Christine M

    2008-02-12

    This paper describes the 'push-pull' or 'stimulo-deterrent diversionary' strategy in relation to current and potential examples from our own experiences. The push-pull effect is established by exploiting semiochemicals to repel insect pests from the crop ('push') and to attract them into trap crops ('pull'). The systems exemplified here have been developed for subsistence farming in Africa and delivery of the semiochemicals is entirely by companion cropping, i.e. intercropping for the push and trap cropping for the pull. The main target was a series of lepidopterous pests attacking maize and other cereals. Although the area given to the cereal crop itself is reduced under the push-pull system, higher yields are produced per unit area. An important spin-off from the project is that the companion crops are valuable forage for farm animals. Leguminous intercrops also provide advantages with regard to plant nutrition and some of the trap crops help with water retention and in reducing land erosion. A major benefit is that certain intercrop plants provide dramatic control of the African witchweed (striga). Animal husbandry forms an essential part of intensive subsistence agriculture in Africa and developments using analogous push-pull control strategies for insect pests of cattle are exemplified.

  9. Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija

    2016-04-01

    Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability.

  10. Soil nematode assemblages indicate the potential for biological regulation of pest species

    Science.gov (United States)

    Steel, Hanne; Ferris, Howard

    2016-05-01

    In concept, regulation or suppression of target nematode pest species should be enhanced when an abundance of predator species is supported by ample availability of bacterial- fungal- and non-damaging plant-feeding prey species. We selected soils from natural and managed environments that represented different levels of resource availability and disturbance. In microcosm chambers of each soil, in its natural state or after heat defaunation, we introduced test prey species not already resident in the soils (Meloidogyne incognita and Steinernema feltiae). Survival of the test prey was determined after a 5-day bioassay exposure. Across the soils tested, predator abundance and biomass were greater in undisturbed soils with plentiful resources and lower in soils from agricultural sites. Suppressiveness to the two introduced species increased with both numerical abundance and metabolic footprint of the predator assemblages. The magnitude of the increase in suppressiveness was greater at low numbers of predators then dampened to an asymptotic level at greater predator abundance, possibly determined by temporal and spatial aspects of the bioassay system and/or satiation of the predators. The more resource-limited the predators were and the higher the metabolic predator footprint, the greater the suppressiveness. The applied implications of this study are that soil suppressiveness to pest species may be enhanced by increasing resources to predators, removing chemical and physical constraints to their survival and increase, and altering management practices so that predators and target prey are co-located in time and space.

  11. Development of biological control of Tetranychus urticae (Acari:Tetranychidae) and Phorodon humuli (Hemiptera: Aphididae) in Oregon Hop yards

    Science.gov (United States)

    The temporal development of biological control of arthropod pests in perennial cropping systems is largely unreported. In this study, the development of biological control of twospotted spider mite, Tetranychus urticae Koch and hop aphid, Phorodon humuli (Schrank) in a new planting of hop in Oregon...

  12. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  13. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J;

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological...... control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility....

  14. Dynamic Analysis of General Integrated Pest Management Model with Double Impulsive Control

    Directory of Open Access Journals (Sweden)

    Yingke Li

    2015-01-01

    Full Text Available A general predator-prey model with disease in the prey and double impulsive control is proposed and investigated for the purpose of integrated pest management. By using the Floquet theory, the comparison theorem of impulsive differential equations, and the persistence theory of dynamical systems, we obtain that if threshold value R01, then the model is permanent. The numerical examples not only illustrate the theoretical results, but also show that when the model is permanent, then it may possess a unique globally attractive T-periodic solution.

  15. Nanoinsecticidas: Nuevas perspectivas para el control de plagas Nanoinsecticides: New perspectives on insect pest control

    Directory of Open Access Journals (Sweden)

    Teodoro Stadler

    2010-12-01

    diatomeas. La masiva aparición de productos a base de nanomateriales en el mercado ha superado la velocidad a la que se evalúa su potencial impacto, de modo que la aplicación avanza por delante de la regulación para su uso. Esto sugiere la urgente necesidad de investigar los potenciales riesgos que surgen del empleo de estos productos en general, de los nanoinsecticidas en particular y sus efectos sobre organismos no blancos, así como sobre las nuevas tecnologías de aplicación más seguras y eficientes. Los actuales niveles de aplicación de nanopartículas y los desarrollos por venir, sugieren que la nanotecnología tendrá un efecto directo sobre las tendencias de la evolución de la agricultura para el control de plagas.Sustainable agriculture demands new environmentally friendly pesticides that adhere to strict international regulations. Part of the research on new biorational pesticides focuses on natural products such as plant extracts, oils, and inorganic insecticides. Insecticidal dusts represent the oldest group of substances used by men for pest management, and their efficacy is based on physical phenomena. With the advent of synthetic pesticides, insecticidal dusts were used as carriers for other active ingredients in formulated insecticides. Organic dusts made a come-back as insecticides with the discovery of hidrophobic kaolin in the 90's. Recently, the discovery of nanoinsecticides brings new alternatives to expand the spectrum of applications of inorganic dusts. Development and registry of nanomaterials is based on the idea that they are not new materials, although they have different properties than the products with the same chemical structure, given that novel properties emerge from products when they are at the nanoscale. For example, reactivity, specific area, electric charge and quantum effects may differ. These substances with new properties are promising as tools for crop protection and food production, opening new frontiers for

  16. Combining pest control and resistance management: synergy of engineered insects with Bt crops.

    Science.gov (United States)

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2009-04-01

    Transgenic crops producing insecticidal toxins are widely used to control insect pests. Their benefits would be lost if resistance to the toxins became widespread in pest populations. The most widely used resistance management method is the high-dose/refuge strategy. This requires toxin-free host plants as refuges near insecticidal crops, and toxin doses intended to be sufficiently high to kill insects heterozygous for a resistant allele, thereby rendering resistance functionally recessive. We have previously shown by mathematical modeling that mass-release of harmless susceptible (toxin-sensitive) insects engineered with repressible female-specific lethality using release of insects carrying a dominant lethal ([RIDL] Oxitec Limited, United Kingdom) technology could substantially delay or reverse the spread of resistance and reduce refuge sizes. Here, we explore this proposal in depth, studying a wide range of scenarios, considering impacts on population dynamics as well as evolution of allele frequencies, comparing with releases of natural fertile susceptible insects, and examining the effect of seasonality. We investigate the outcome for pest control for which the plant-incorporated toxins are not necessarily at a high dose (i.e., they might not kill all homozygous susceptible and all heterozygous insects). We demonstrate that a RIDL-based approach could form an effective component of a resistance management strategy in a wide range of genetic and ecological circumstances. Because there are significant threshold effects for several variables, we expect that a margin of error would be advisable in setting release ratios and refuge sizes, especially as the frequency and properties of resistant alleles may be difficult to measure accurately in the field.

  17. Role of plants and plant based products towards the control of insect pests and vectors:A novel review

    Institute of Scientific and Technical Information of China (English)

    Elumalai Kuppusamy; Saranya Jayakumar

    2016-01-01

    Insect pests bear harmful effects causing great loss to the agricultural crops, stored agricultural products and vector mosquitoes can cause diseases to human. Plants possess an array of vast repository of phytochemicals and have been used to cure many diseases and to control the infestation of insect pests from time immemorial. Plants are easily biodegradable and ecologically safe for treating on the stored or on the field crops against pests to prevent from further damage or loss of stored products or preventing human from mosquito bites, thus preventing the spreading of dreadful diseases such as chikungunya and malaria. Hence, this review can give a clear insecticidal, pesticidal and mosquitocidal property of several plants against the insect pests and vectors.

  18. The discovery of pyridalyl: a novel insecticidal agent for controlling lepidopterous pests.

    Science.gov (United States)

    Sakamoto, Noriyasu; Saito, Shigeru; Hirose, Taro; Suzuki, Masaya; Matsuo, Sanshiro; Izumi, Keiichi; Nagatomi, Toshio; Ikegami, Hiroshi; Umeda, Kimitoshi; Tsushima, Kazunori; Matsuo, Noritada

    2004-01-01

    Synthesis of analogues of two compounds with known insecticidal activity, both of which contain a 3,3-dichloro-2-propenyloxy group, produced 2-(trifluoromethyl)-4-phenoxyphenyl 3,3-dichloro-2-propenyl ether, which had weak activity against lepidopterous larvae. Structural modifications around this lead compound led to the development of pyridalyl [Pleo, S-1812; 2,6-dichloro-4-(3,3-dichloroallyloxy)phenyl 3-[5-(trifluoromethyl)-2-pyridyloxy]propyl ether], which belongs to a new class of insecticides. Pyridalyl gives very good control of various lepidopterous and thysanopterous pests on cotton and vegetables, without phytotoxicity. It controls populations of Heliothis virescens F and Plutella xylostella (L) which are resistant to various currently used insecticides. It also produces unique insecticidal symptoms, so it may have a different mode of action from other existing insecticides. Pyridalyl is also less harmful than existing insecticides to various beneficial arthropods, so it should provide an important tool in IPM and insecticidal management programmes for the control of lepidopterous and thysanopterous pests. The first market introduction is expected in Japan and some Asian countries in the years between 2004 and 2005.

  19. Prospects for managing turfgrass pests with reduced chemical inputs.

    Science.gov (United States)

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings.

  20. Flower power? Potential benefits and pitfalls of using (flowering) vegetation for conservation biological control

    NARCIS (Netherlands)

    Wackers, F.L.; Rijn, van P.C.J.; Winkler, K.; Olson, D.

    2006-01-01

    Whereas nectar and pollen provision to predators and parasitoids is a main objective in pursuing agricultural biodiversity, we often know little about whether the flowering plant species involved are actually suitable as insect food sources or about their ultimate impact on biological pest control.

  1. Biological control of whitefly on greenhouse tomato in Colombia: Encarsia formosa or Amitus fuscipennis?

    NARCIS (Netherlands)

    Vis, de R.J.

    2001-01-01

    In Colombia, biological control of pests in greenhouse crops is only applied on a very limited scale in ornamentals and as yet non-existent in greenhouse vegetables. Greenhouse production of vegetables - mostly tomatoes- is a recent development, as a result of the high losses of field production due

  2. Ex-ante analysis of economic returns from biological control of coconut mite in Tanzania

    NARCIS (Netherlands)

    Oleke, J.M.; Manyong, V.; Mignouna, D.; Isinika, A.; Mutabazi, K.; Hanna, R.; Sabelis, M.

    2013-01-01

    The coconut mite, Aceria guerreronis Keifer, has been identified as one of the pests that pose a threat to the coconut industry in Benin. The study presents the simulation results of the economic benefits of the biological control of coconut mites in Benin using a standard economic surplus model. In

  3. Promise for plant pest control: root-associated pseudomonads with insecticidal activities

    Directory of Open Access Journals (Sweden)

    Peter eKupferschmied

    2013-07-01

    Full Text Available Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/ Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.

  4. Biorational agents--mechanism and importance in IPM and IRM programs for controlling agricultural pests.

    Science.gov (United States)

    Ishaaya, I; Kontsedalov, S; Mazirov, D; Horowitz, A R

    2001-01-01

    Among the new approaches for controlling agricultural pests is the development of novel compounds affecting specific processes in insects such as chitin synthesis inhibitors, juvenile hormone mimics and ecdysone agonists. In addition, efforts have been made to develop compounds acting selectively on groups of insects by inhibiting or enhancing biochemical sites such as respiration (diafenthiuron), the nicotinyl acetylcholine receptors (imidacloprid and acetamiprid), the GABA receptors (avermectins), the salivary glands of sucking pests (pymetrozine) and others. Among the most recent novel insecticides with selective properties are novaluron, thiamethoxam, emamectin and spinosad. Novaluron (Rimon) is a novel chitin synthesis inhibitor that acts by both ingestion and contact. It is a powerful suppressor of lepidopteran larvae such as Spodoptera littoralis and Helicoverpa armigera (by ingestion) and of whiteflies such as Bemisia tabaci and Trialeurodes vaporariorum (by contact). Thiamethoxam (Actarn), a novel neonicotinoid acts specifically on aphids and whiteflies. Emamectin (Proclaim), an avermectin derivative acts on GABA receptor affecting diversity of insects such as mites, lepidopterans and thrips. Spinosad (Tracer) seems to act on both acetylcholine and GABA receptors affecting diversity of insect species and is considered an important agent for controlling the western flower thrips.

  5. Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available The Djingarey Ber Mosque in Timbuktu (Mali is one of the most significant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surroundings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Damages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae, Bostrychoplites zycheli Marseuli (Bostrichidae and Lyctus africanus Lesne (Lyctidae, which were collected alive on site. Injures in the walls and decorated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by termites. Control and preventive measures, in the view of a sustainable, long-lasting integrated management are suggested.

  6. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

  7. Multiparasitism by Tetrastichus planipennisi (Hymenoptera: Eulophidae) and Spathius agrili (Hymenoptera:Braconidae): Implication for biological control of the Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    Interspecific competition among different species of insect parasitoids may affect the establishment or efficacies of these species in biological control of targeted pests. The endoparasitoid Tetrastichus planipennisi Yang and the ectoparasitoid Spathius agrili Yang, two gregarious larval parasito...

  8. Enabling technologies to improve area-wide integrated pest management programmes for the control of screwworms.

    Science.gov (United States)

    Robinson, A S; Vreysen, M J B; Hendrichs, J; Feldmann, U

    2009-06-01

    The economic devastation caused in the past by the New World screwworm fly Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) to the livestock industry in the U.S.A., Mexico and the rest of Central America was staggering. The eradication of this major livestock pest from North and Central America using the sterile insect technique (SIT) as part of an area-wide integrated pest management (AW-IPM) programme was a phenomenal technical and managerial accomplishment with enormous economic implications. The area is maintained screwworm-free by the weekly release of 40 million sterile flies in the Darien Gap in Panama, which prevents migration from screwworm-infested areas in Columbia. However, the species is still a major pest in many areas of the Caribbean and South America and there is considerable interest in extending the eradication programme to these countries. Understanding New World screwworm fly populations in the Caribbean and South America, which represent a continuous threat to the screwworm-free areas of Central America and the U.S.A., is a prerequisite to any future eradication campaigns. The Old World screwworm fly Chrysomya bezziana Villeneuve (Diptera: Calliphoridae) has a very wide distribution ranging from Southern Africa to Papua New Guinea and, although its economic importance is assumed to be less than that of its New World counterpart, it is a serious pest in extensive livestock production and a constant threat to pest-free areas such as Australia. In the 1980s repeated introductions and an expansion of Old World screwworm populations were reported in the Middle East; in the 1990s it invaded Iraq and since late 2007 it has been reported in Yemen, where a severe outbreak of myiasis occurred in 2008. Small-scale field trials have shown the potential of integrating the SIT in the control of this pest and various international organizations are considering using the release of sterile insects as part of an AW-IPM approach on a much wider scale

  9. Late pest control in determinate tomato cultivars Controle de pragas tardias em cultivares de tomateiro de crescimento determinado

    Directory of Open Access Journals (Sweden)

    Arlindo Leal Boiça Júnior

    2007-12-01

    Full Text Available The usage of insecticidal plants and others insect resistant varieties can be strong allies to the Integrated Pest Management (IPM, being able to reduce the number of insecticides applications and to minimize its effect to the man and the environment.The following control techniques were compared in field conditions, investigating the late pest control of two determinate tomato cultivars: a Conventional - sprayings of metamidophos, buprofezin, acephate, cipermetrin, abamectin, permetrin, teflubenzuron and lufenuron, applied every three to six days; b IPM - action threshold of each pest to the spraying of imidacloprid, triflumuron, lufenuron and abamectin; c IPM - Azadirachta indica (neem - Action threshold of each pest to the spraying of the nim oil (1.2% of azadirachtin at a concentration of 0.5%. The IPM and IPM - Neem control techniques were efficient controlling the late pest of the tomato cultivar, not differing from the conventional treatment that presented the lowest levels of infestation. The conventional control technique, IPM and IPM-neem promoted bigger tomato production with increasements of up to 74%. The number of sprayings was reduced up to 77% with the IPM and IPM - neem techniques, when compared to the conventional method. The neem product may be a promising alternative to the late pest control in the tomato field that adjusts to the IPM.O uso de plantas inseticidas e de variedades pode ser forte aliado ao Manejo Integrado de Pragas (MIP, podendo reduzir o número de aplicações de inseticidas e minimizar seus efeitos ao homem e ao meio ambiente. Em condições de campo, visando o controle de pragas tardias do tomateiro em duas cultivares de crescimento determinado, compararam-se as seguintes táticas de controle: a Convencional - pulverizações com os produtos metamidofós, buprofezin, acefato, cipermetrina, abamectina, permetrina, teflubenzuron e lufenuron, aplicados em intervalos de três a seis dias; b MIP - nível de a

  10. Study on sustainable control of the diseases and pests in garden plant in Weifang%山东潍坊市园林植物病虫害可持续控制研究

    Institute of Scientific and Technical Information of China (English)

    王万磊; 朱松元; 丁长年

    2014-01-01

    对潍坊园林植物主要病虫害进行调查,分析其发生特点,并提出相应对策:强调以生态学为基础,以生物防治为主导,综合采用植物检疫、栽培管理、化学防治等方法,达到对病虫害可持续控制的目的。%This article introduces the main diseases and pests of garden plant in Weifang city, analyses the occurrence characteristics, and put forward sustainable control tactics for diseases and pests. Taking ecology as the foundation and giving priority to the biological control, the method of plant quarantine, cultivation management and chemical pesticides should be adopted to sustainable control of diseases and pests.

  11. Impact of pest control strategies on the arthropodofauna living in bird nests built in nestboxes in pear and apple orchards.

    Science.gov (United States)

    Roy, Lise; Bouvier, Jean-Charles; Lavigne, Claire; Galès, Mathieu; Buronfosse, Thierry

    2013-08-01

    Pesticide applications have a strong impact on biodiversity in agroecosystems. The present study aimed to assess the impact of pest control strategies on the arthropodofauna of Parus major nests built within nestboxes installed in orchards. Unlike many studied groups, these arthropod communities are not in direct contact with pesticide sprays (on account of their being sheltered by nestboxes) and are also unable to move away from the treated area. In this pilot study, we estimated the prevalence and the taxonomic and ecological diversities of arthropodofauna sampled in the nests and assessed the extent to which the whole and nest-specific arthropodofauna were affected by pest control strategies. Sixteen different insect and arachnid Primary Taxonomic Groups (PTGs, order level or below) were found in nests. The best represented PTGs (≥10% occurrence in years 2007 and 2008) were Psocoptera (Insecta, detritivorous/saprophagous), detritivorous/saprophagous Astigmata (Acari) and hematophagous Mesostigmata (Acari). Pest control strategies had a large impact on the prevalence of arthropods in nests, with higher proportions of nests hosting arthropods in organic orchards than in conventional orchards and with intermediate proportions in nests in Integrated Pest Management orchards. In contrast, pest control strategies had no significant effect on the composition of the arthropod communities when only nests hosting nidicolous arthropods were considered.

  12. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    Science.gov (United States)

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results.

  13. Farmers' information on sweet potato production and millipede infestation in north-eastern Uganda. II. Pest incidence and indigenous control strategies

    NARCIS (Netherlands)

    Ebregt, E.; Struik, P.C.; Abidin, P.E.; Odongo, B.

    2004-01-01

    Sweet potato (Ipomoea batatas (L.) Lamk) is an important staple food for the people of north-eastern Uganda. Crop yields per unit area are low partly because of biological constraints, including pests like millipedes. The objective of this study was to generate information on pest incidence and cont

  14. Torymus sinensis: a viable management option for the biological control of Dryocosmus kuriphilus in Europe?

    OpenAIRE

    2014-01-01

    The chestnut gall wasp Dryocosmus kuriphilus is a global pest of chestnut (Castanea spp). Established as a pest in the mid-twentieth century in Japan, Korea and North America, this species was first reported in Europe in 2002. Following the successful release of a biological control agent Torymus sinensis in Japan, this parasitoid species has been released in Italy since 2005. Here we discuss the potential of T. sinensis as a viable management option for the biological control of D. kuriphil...

  15. Intestinal nematodes: biology and control.

    Science.gov (United States)

    Epe, Christian

    2009-11-01

    A variety of nematodes occur in dogs and cats. Several nematode species inhabit the small and large intestines. Important species that live in the small intestine are roundworms of the genus Toxocara (T canis, T cati) and Toxascaris (ie, T leonina), and hookworms of the genus Ancylostoma (A caninum, A braziliense, A tubaeforme) or Uncinaria (U stenocephala). Parasites of the large intestine are nematodes of the genus Trichuris (ie, whipworms, T vulpis). After a comprehensive description of their life cycle and biology, which are indispensable for understanding and justifying their control, current recommendations for nematode control are presented and discussed thereafter.

  16. The small hive beetle Aethina tumida: A review of its biology and control measures

    Directory of Open Access Journals (Sweden)

    Andrew G. S. CUTHBERTSON et al

    2013-10-01

    Full Text Available The small hive beetle Aethina tumida is an endemic parasitic pest and scavenger of colonies of social bees indigenous to sub-Saharan Africa. In this region this species rarely inflicts severe damage on strong colonies since the bees have develo­­ped strategies to combat them. However, A. tumida has since ‘escaped’ from its native home and has recently invaded areas such as North America and Australia where its economic impact on the apiculture industry has been significant. Small hive beetle, should it become established within Europe, represents a real and live threat to the UK bee keeping industry. Here we review the biology and current pest status of A. tumida and up to-date research in terms of both chemical and biological control used against this honey bee pest [Current Zoology 59 (5: 644–653, 2013].

  17. Mobile robot based electrostatic spray system for controlling pests on cotton plants in Iraq

    Science.gov (United States)

    Al-Mamury, M.; Manivannan, N.; Al-Raweshidy, H.; Balachandran, W.

    2015-10-01

    A mobile robot based electrostatic spray system was developed to combat pest infestation on cotton plants in Iraq. The system consists of a charged spray nozzle, a CCD camera, a mobile robot (vehicle and arm) and Arduino microcontroller. Arduino microcontroller is used to control the spray nozzle and the robot. Matlab is used to process the image from the CCD camera and to generate the appropriate control signals to the robot and the spray nozzle. COMSOL multi-physics FEM software was used to design the induction electrodes to achieve maximum charge transfer onto the fan spray liquid film resulting in achieving the desired charge/mass ratio of the spray. The charged spray nozzle was operated on short duration pulsed spray mode. Image analysis was employed to investigate the spray deposition on improvised insect targets on an artificial plant.

  18. Control of sugar beet pests at early season by seed treatment with insecticides

    Directory of Open Access Journals (Sweden)

    Kereši Tatjana

    2006-01-01

    Full Text Available In the period 2001-2004, experiments were conducted in the region of Bačka (northern Serbia to assess the efficiency of insecticide treatment of sugar beet seeds in controlling soil pests (larvae of Elateridae family and reducing the damage caused by beet weevil (Bothynoderes punctiventris G e r m and flea beetle (Chaetocnema tibialis I l l i g. Several insecticides mostly systemic ones (carbofuran, thiamethoxam, fipronil, imidacloprid and clothianidin, and their combinations with pyrethroids in different doses were tested in field conditions. Stand density, percentages of plants damaged by B. punctiventris and C. tibialis, injury level and weight of juvenile plants served as parameters for evaluation of insecticide efficiency. Most of the insecticides applied to seeds provided a significantly better stand density compared with the untreated control. Because of their systemic action, imidacloprid, thiamethoxam and their mixtures with pyrethroids provided very good protection of juvenile plants from C. tibialis and in some cases from B. punctiventris.

  19. Quarantine Pest- Bruchus rufimanus and Integrated Control Measures%检疫性害虫-蚕豆象及综合防治措施

    Institute of Scientific and Technical Information of China (English)

    吴建红; 白双桂; 陈旭雯

    2012-01-01

    The morphological features and biological characteristics of quarantine pest-Bruchus rufimanus were introduced as to grasp the law, to use coordinately labor, physical and chemical control measures reduce insect population base effectively to a minimum threshold.%介绍了检疫性害虫-蚕豆象的形态特征和生物特性,掌握其发生规律,协调运用人工、物理和化学等综合防治措施有效降低虫口基数,将危害减少到最低阈值。

  20. Cost-benefit analysis of an area-wide pest management program to control Asian tiger mosquito in New Jersey

    Science.gov (United States)

    Area-wide pest management (AWPM) is recommended to control urban mosquitoes, such as Aedes albopictus (Asian tiger mosquito), which limit outdoor activities. We conducted a cost-benefit analysis for an AWPM in Mercer and Monmouth counties, New Jersey, as part of a controlled design with matched area...

  1. Reevaluation of the value of autoparasitoids in biological control.

    Directory of Open Access Journals (Sweden)

    Lian-Sheng Zang

    Full Text Available Autoparasitoids with the capacity of consuming primary parasitoids that share the same hosts to produce males are analogous to intraguild predators. The use of autoparasitoids in biological control programs is a controversial matter because there is little evidence to support the view that autoparasitoids do not disrupt and at times may promote suppression of insect pests in combination with primary parasitoids. We found that Encarsia sophia, a facultative autoparasitoid, preferred to use heterospecific hosts as secondary hosts for producing males. The autoparasitoids mated with males originated from heterospecifics may parasitize more hosts than those mated with males from conspecifics. Provided with an adequate number of males, the autoparasitoids killed more hosts than En. formosa, a commonly used parasitoid for biological control of whiteflies. This study supports the view that autoparasitoids in combination with primary parasitoids do not disrupt pest management and may enhance such programs. The demonstrated preference of an autoparasitoid for heterospecifics and improved performance of males from heterospecifics observed in this study suggests these criteria should be considered in strategies that endeavor to mass-produce and utilize autoparasitoids in the future.

  2. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests.

    Science.gov (United States)

    King, Glenn F; Hardy, Margaret C

    2013-01-01

    Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.

  3. Biology and natural enemies of Agrilus fleischeri (Coleoptera: Buprestidae), a newly emerging destructive buprestid pest in Northeast China

    Science.gov (United States)

    The jewel beetle Agrilus fleischeri Obenberger (Coleoptera: Buprestidae) is a newly emerging major pest of poplar trees (Populus spp.) in northeast China and is responsible for the poplar mortality throughout its distribution range. In order to determine how to manage this pest effectively, we stud...

  4. Effectiveness of personal protective equipment: Relevance of dermal and inhalation exposure to chlorpyrifos among pest control operators

    NARCIS (Netherlands)

    Jagt, K. van der; Tielemans, E.; Links, I.; Brouwer, D.; Hemmen, J. van

    2004-01-01

    This study assessed the effectiveness of a custom fit personal protective equipment (PPE) program aimed at reducing occupational exposure to pesticides. The intervention study was carried out on 15 pest control operators (PCOs) during mixing/loading and application of chlorpyrifos. Each worker was m

  5. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey

    Science.gov (United States)

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and ...

  6. Economic evaluation of area-wide pest management program to control asian tiger mosquito in New Jersey

    Science.gov (United States)

    Area-wide pest management (AWPM) is recommended to control urban mosquitoes, such as Aedes albopictus, which limit outdoor activities. While several evaluations of effectiveness exist, information on costs is lacking. Economic evaluation of such a program is important to help inform policy makers an...

  7. Nitric oxide as a fumigant for postharvest pest control and its safety to postharvest quality of fresh products

    Science.gov (United States)

    Nitric oxide fumigation under ultralow oxygen atmospheres was discovered recently to be effective for pest control. It is effective against all life stages of insects and mites and against both external and internal feeders. Nitric oxide fumigation comes with additional but acceptable costs associ...

  8. How to produce male-only progeny in pest insects for SIT: a biotech approach.

    OpenAIRE

    Petrella, Valeria

    2014-01-01

    Insects represent the most abundant group of animals on earth, comprising about 800,000 described species, and approximately 10,000 of these species can be actually destructive for human activities. Pest control interventions, alternative to pesticides, are increasingly being implemented within the concept of Integrated Pest Management, involving the biological control to eradicate a pest from the area of interest. This concept has been recently extended also to those hemathoph...

  9. Integrated Pest Management.

    Science.gov (United States)

    Council on Environmental Quality, Washington, DC.

    After a brief discussion of the problems of pesticide use and the status of current pest control practices, a definition of integrated pest management is given along with some examples of its successful application, and a description of some of the reasons why the concept has not been applied more widely. The major techniques which can be used as…

  10. A Stably Transgenic INA Enterobacter cloacae for Control of Insect Pests

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jian; SUN Fu-zai; ZHAO Ting-chang; DING Ai-yun; TANG Chao-rong

    2003-01-01

    Using the minitransposon pMini-Tn5 and the ice-nucleation active (INA) gene of iceA, a suicide recombinant plasmid pTnice1 was constructed, which has the ability of broad-host-range conjugal mobilization and integration of iceA into chromosomal DNA of many gram-negative bacteria by Tn5 transposition.We used this plasmid to integrate the iceA into chromosomal DNA of Ent. cloacae and obtained the transgentic strain Enc1. 2022ina. In this transgenic Ent. cloacae, iceA would never be transferred elsewhere through transposition, and constantly expressed high ice nucleation activity even in the absence of antibiotic pressure.The transgenic strain was ingested by corn borer larvae. Over the 7 d after ingestion, the mean supercooling points (SCPs) of the larvae was about 10℃ higher than those of larvae treated with distilled water (control).The maintenance of these high SCPs was related to the stable gut colonization of transgenic strain. At 6th day post ingestion, the larva was exposed at - 5 or - 7℃ for 12 h, the percentages of larvae frozen to death were 85and 100%, respectively. In contrast, none or a small proportion of control larvae was frozen to death under the same conditions. Further studies demonstrated that this transgenic strain bore weak epiphytic ability.Therefore, this genetically engineered strain may be a promising candidate for control of insect pests in agricultural fields.

  11. Rationale for classical biological control of cattle fever ticks and proposed methods for field collection of natural enemies

    Science.gov (United States)

    Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks Rhipicephalus microplus and Rhipicephalus annulatus could complement existing control strategies for this livestock pest in the transboundary region between Mexico and T...

  12. Biological control of mealybugs with lacewing larvae is affected by the presence and type of supplemental prey

    NARCIS (Netherlands)

    Messelink, Gerben J.; Vijverberg, Roland; Leman, Ada; Janssen, Arne

    2016-01-01

    The diversity of prey and food sources in crops has a major effect on biological pest control by generalist predators. In this study, we tested if and how supplemental prey or food affects the control of the citrus mealybug Planococcus citri (Risso) by larvae of the green lacewing Chrysoperla luc

  13. Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%

    OpenAIRE

    de Lourdes Corrêa Figueiredo, Maria; Cruz, Ivan; da Silva, Rafael Braga; Foster, John Edward

    2015-01-01

    International audience; AbstractSpodoptera frugiperda is a major pest causing maize yield loss in Brazil. There is therefore a need for control methods, notably for organic farming because classical pesticides are not allowed. A potential solution for organic maize is to apply the biological control agent Trichogramma pretiosum to reduce S. frugiperda populations. Here, we tested the application of one, two, or three releases of T. pretiosum. We measured plant damage ratings, egg masses paras...

  14. Occurrence and Control of Diseases and Pests on Cucumis melo L. Postharvest%甜瓜采后病虫害的发生与防治

    Institute of Scientific and Technical Information of China (English)

    杨建丽

    2015-01-01

    甜瓜采后腐烂变质一直是甜瓜生产和远途运输销售的最大问题。腐烂变质的根本原因是病原真菌的侵染。介绍了甜瓜采后主要病虫害侵染和发病特征,概述了化学防治、物理防治以及生物防治等在甜瓜采后病虫害防治上的研究与应用。%The biggest problem of Cucumis melo L. production and transport sale is postharvest rot.Pathogenic fungus infection resulted in postharvest rot. Occurrence and epidemiological characteristics of diseases and pest of the Cucumis melo L. postharvest were summarized. Research and application of diseases and pest control of Cucumis melo L. postharvest from chemical control,physical control and biological control were overviewed.

  15. The phosphatase PTP-PEST/PTPN12 regulates endothelial cell migration and adhesion, but not permeability, and controls vascular development and embryonic viability.

    Science.gov (United States)

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C; Veillette, André

    2012-12-14

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability.

  16. PROTECTING ECOSYSTEMS BY WAY OF BIOLOGICAL CONTROL: CURSORY REFLECTIONS ON THE MAIN REGULATORY INSTRUMENTS FOR BIOLOGICAL CONTROL AGENTS, PRESENT AND FUTURE

    Directory of Open Access Journals (Sweden)

    R Alberts

    2013-06-01

    Full Text Available Although there are numerous threats to ecosystems and the resultant ecosystem services, alien and invasive plants (AIP have been identified as being one of the major causes of ecosystem destruction. In addressing the threat of alien and invasive plants through the use of various mechanisms, the regulatory framework imposed by legislation is key in ensuring that that controlling AIPs does in fact not do more harm than good. One such control mechanism, which has the potential to do wonders or wreak havoc if not adroitly implemented, is that of using biological control agents. This contribution provides a brief overview on the three main regulatory instruments used to control biological control agents in South Africa, namely the Conservation of Agricultural Resources Act 43 of 1983, the Agricultural Pests Act 36 of 1983 and the National Environmental Management: Biodiversity Act 10 of 2004. It also considers possible future developments on the regulation of biological control agents.

  17. How functional genomics will impact fruit fly pest control: the example of the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Scolari, Francesca; Gomulski, Ludvik M; Gabrieli, Paolo; Manni, Mosè; Savini, Grazia; Gasperi, Giuliano; Malacrida, Anna R

    2014-01-01

    The highly invasive agricultural insect pest Ceratitis capitata (Diptera: Tephritidae) is the most thoroughly studied tephritid fruit fly at the genetic and molecular levels. It has become a model for the analysis of fruit fly invasions and for the development of area-wide integrated pest management (AW-IPM) programmes based on the environmentally-friendly Sterile Insect Technique (SIT). Extensive transcriptome resources and the recently released genome sequence are making it possible to unravel several aspects of the medfly reproductive biology and behaviour, opening new opportunities for comparative genomics and barcoding for species identification. New genes, promotors and regulatory sequences are becoming available for the development/improvement of highly competitive sexing strains, for the monitoring of sterile males released in the field and for determining the mating status of wild females. The tools developed in this species have been transferred to other tephritids that are also the subject of SIT programmes.

  18. Urban Pest Management. Selected Readings.

    Science.gov (United States)

    Cowles, Kathleen Letcher, Comp.; And Others

    These readings provide basic background information on urban integrated pest management and the development of Integrated Pest Management (IPM) programs for the control of rodents, cockroaches, and head lice. IPM is a decision-making process for deciding if pest supprssion treatments are needed, when they should be initiated, where they should be…

  19. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control.

    Science.gov (United States)

    Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A

    2017-02-01

    RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies.

  20. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France

    Science.gov (United States)

    Malausa, Thibaut; Delaunay, Mathilde; Fleisch, Alexandre; Groussier-Bout, Géraldine; Warot, Sylvie; Crochard, Didier; Guerrieri, Emilio; Delvare, Gérard; Pellizzari, Giuseppina; Kaydan, M. Bora; Al-Khateeb, Nadia; Germain, Jean-François; Brancaccio, Lisa; Le Goff, Isabelle; Bessac, Melissa; Ris, Nicolas; Kreiter, Philippe

    2016-01-01

    Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids. PMID:27362639

  1. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    Directory of Open Access Journals (Sweden)

    Thibaut Malausa

    Full Text Available Pseudococcus comstocki (Hemiptera: Pseudococcidae is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae and Acerophagus malinus (Hymenoptera: Encyrtidae. The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  2. Economic Benefit for Cuban Laurel Thrips Biological Control.

    Science.gov (United States)

    Shogren, C; Paine, T D

    2016-02-01

    The Cuban laurel thrips, Gynaikothrips ficorum Marchal (Thysanoptera: Phlaeothripidae), is a critical insect pest of Ficus microcarpa in California urban landscapes and production nurseries. Female thrips feed and oviposit on young Ficus leaves, causing the expanding leaves to fold or curl into a discolored leaf gall. There have been attempts to establish specialist predator natural enemies of the thrips, but no success has been reported. We resampled the same areas in 2013-2014 where we had released Montandoniola confusa (= morguesi) Streito and Matocq (Hemiptera: Anthocoridae) in southern California in 1995 but had been unable to recover individuals in 1997-1998. Thrips galls were significantly reduced in all three of the locations in the recent samples compared with the earlier samples. M. confusa was present in all locations and appears to be providing successful biological control. The value of the biological control, the difference between street trees in good foliage condition and trees with poor foliage, was $58,766,166. If thrips damage reduced the foliage to very poor condition, the value of biological control was $73,402,683. Total cost for the project was $61,830. The benefit accrued for every dollar spent on the biological control of the thrips ranged from $950, if the foliage was in poor condition, to $1,187, if the foliage was in very poor condition. The value of urban forest is often underappreciated. Economic analyses that clearly demonstrate the very substantial rates of return on investment in successful biological control in urban forests provide compelling arguments for supporting future efforts.

  3. PESTS CONTROL IN BIRDS STORED FOOD WITH LAVANDER ESSENTIAL OIL VOLATILES

    Directory of Open Access Journals (Sweden)

    Roberta Knochl Novokmet

    2002-12-01

    Full Text Available The insecticidal efficiency of aromatic herb Lavandula officinalis Ch. was confirmed on two species of stored pests Plodia interpunctella Hübner and Tribolium castaneum Herbst by conducting the experiments. The oil was applied in two doses (0,5 i 1 ml/kg on three kinds of food for birds. Under winter storage conditions, the 100% mortality of P. interpunctella was obtained after 40 days of exposure to the dose of 1ml/kg. Under summer storage conditions, by applying the same dose, 68 days of exposure were necessary to generate 100% mortality of P. interpunctella. During the winter season, the application of 1 ml oil per kg of food generated a 100% mortality of T. castaneum after 44 days of exposure to the treated food. During the summer storage period, the same doses caused 100% mortality of T. castaneum after 68 days of exposure to the treated food. To achieve the same level of control of test insects in treated food at lower dose (0,5ml/kg, the exposure period of insects to treated food was generally longer for 4 to 8 days.

  4. Review of research on the insect pests of kenaf and their control in the Sudan.

    Science.gov (United States)

    Eldin, N S; El-Amin, E M

    1981-01-01

    Kenaf, Hibiscus cannabinus L., is grown in many parts of the Sudan as a fibre plant. During its various stages of growth, 17 different species of insects were detected, out of which only the cotton flea beetle Podagrica puncticollis Weise is of economic importance. The attack by this pest is most serious in the seedling stage; late sowings coupled with early light showers suffer the heaviest damage. In the leaves the beetles eat out round holes ('shot-hole effect'). The entire life cycle takes about 4 to 5 weeks, and about five generations are completed on the plant depending on the weather conditions. Cultural practices incorporating early sowing and eradication of the main host plants, Hibiscus esculentus and Abutilon spp., considerably reduce the size of the initial infestation. Chemicals tested as seed-dressing or sprays for the control of the beetle failed to give good results. However, granular insecticides showed a better performance and longer residual effect. Disyston 5G was effective for six weeks and also improved the general condition of the plants.

  5. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores

    Directory of Open Access Journals (Sweden)

    Alan Kergunteuil

    2016-11-01

    Full Text Available Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes and invertebrates included among the macrofauna of soils (arthropods and annelids that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  6. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  7. 粉虱类害虫综合防治途径的研究现状%Current Status of Whitefly Control Using Integrated Pest Management

    Institute of Scientific and Technical Information of China (English)

    宋飞飞; 苏德伟

    2013-01-01

      粉虱类害虫是我国主要经济害虫之一,寄主范围广,主要危害蔬菜和柑橘等经济作物。本文综述了粉虱的综合防治途径如农业防治、物理防治和生物防治等,并重点论述了如何利用昆虫病原真菌进行粉虱的生物防治,旨在为粉虱的更好治理提供参考。%Whiteflies is one of major economic pests in China, which have wide host ranges and mainly do harm to vegetables and citrus etc. This paper reviewed on integrated pest managements of whiteflies including agricultural, physical and biological control, especially focused on biocontrol of whitefly using entomopathogenic fungi, so as to provide a base for better control of whiteflies.

  8. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    Science.gov (United States)

    Li, Hang; Jiang, Weihua; Zhang, Zan; Xing, Yanru; Li, Fei

    2013-01-01

    The beet armyworm, Spodoptera exigua (Hübner), is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st) to 5(th) instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl) into the 4(th) instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3%) after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (Ppest control.

  9. [The analysis of climatic and biological parameters for the pest spread risk modelling of the wood nematode species Bursaphelenchus spp. and Devibursaphelenchus teratospicularis (Rhabditida: Aphelenchoidea)].

    Science.gov (United States)

    Ryss, A Y; Mokrousov, M V

    2014-01-01

    Based on the forest woody species wilt areassurvey in Nizhniy Novgorod region in August 2014, the possible factors of the pest spread risk modelling were analysed on six species of the genus Bursaphelenchus and Devibursaphelenchus teratospicularis using six parameters: plant host species, beetle vector species, average temperatures in July and January, annual precipitation. It was concluded that these parameters in the evaluated wilt spots correspond to climatic and biological data of the already published woody plants wilt records in Europe and Asia caused by the same nematode pest species. It was speculated that the annual precipitation of 600 mm and average July temperature of 25 degrees C or higher, are the critical combination that may be used to develop the predicative risk modelling in the forests' and parks' wilt monitoring.

  10. Market Forces and Technological Substitutes Cause Fluctuations in the Value of Bat Pest-Control Services for Cotton

    OpenAIRE

    Laura López-Hoffman; Ruscena Wiederholt; Chris Sansone; Bagstad, Kenneth J.; Paul Cryan; Diffendorfer, Jay E.; Joshua Goldstein; Kelsie Lasharr; John Loomis; Gary McCracken; Rodrigo A. Medellín; Amy Russell; Darius Semmens

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the south...

  11. Understanding biological control of greenhouse whitefly with the parasitoid Encarsia formosa. From individual behaviour to population dynamics.

    NARCIS (Netherlands)

    Roermund, van H.J.W.

    1995-01-01

    The greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae), is a very common, highly polyphagous pest insect all over the world. Biological control of whiteflies with the parasitoid Encarsia formosa Gahan (Hymenoptera, Aphelinidae) was already applied in the 1920s in Engl

  12. Natural flightless morphs of the ladybird beetle Adalia bipunctata improve biological control of aphids on single plants

    NARCIS (Netherlands)

    Lommen, S.T.E.; Middendorp, C.W.; Luijten, C.A.; Schelt, van J.; Brakefield, P.M.; Jong, de P.W.

    2008-01-01

    The challenge of using ladybird beetles for biological control of insect pests such as aphids is that the adult beetles tend to fly away from the host plants. Therefore, flightless ladybirds might improve biocontrol. There are several artificial ways to obtain flightless beetles, but it may be prefe

  13. Prey-Predator Model with Two-Stage Infection in Prey: Concerning Pest Control

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Nandi

    2015-01-01

    Full Text Available A prey-predator model system is developed; specifically the disease is considered into the prey population. Here the prey population is taken as pest and the predators consume the selected pest. Moreover, we assume that the prey species is infected with a viral disease forming into susceptible and two-stage infected classes, and the early stage of infected prey is more vulnerable to predation by the predator. Also, it is assumed that the later stage of infected pests is not eaten by the predator. Different equilibria of the system are investigated and their stability analysis and Hopf bifurcation of the system around the interior equilibriums are discussed. A modified model has been constructed by considering some alternative source of food for the predator population and the dynamical behavior of the modified model has been investigated. We have demonstrated the analytical results by numerical analysis by taking some simulated set of parameter values.

  14. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.

    Science.gov (United States)

    Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose

    2014-01-01

    The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.

  15. Advances and Perspectives of the use of the entomopathogenic fungi beauveria bassiana and metarhizium anisopliae for the control of arthropod pests in poultry production

    Directory of Open Access Journals (Sweden)

    DGP Oliveira

    2014-03-01

    Full Text Available Global poultry production is plagued by a wide variety of arthropods. The problems associated with their chemical control have led to an increasing search for control alternatives, and entomopathogenic fungi seem to be a promising strategy. Despite the large number of insects and mites considered as important pests in animal production, studies on the use of entomopathogenic fungi for their control are still scarce compared with agricultural pests, particularly in Brazil. This article reviews some damages and control aspects of the main arthropod pests that affect Brazilian poultry production, including house flies, lesser mealworms, and feather mites, by the use of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Studies published in the last 20 years were reviewed, and the main problems and limitations of that pest-control strategy are discussed.

  16. Practical Pest Management Strategies to Reduce Pesticide Runoff for Argentine Ant (Hymenoptera: Formicidae) Control.

    Science.gov (United States)

    Greenberg, Les; Rust, Michael K; Richards, Jaben; Wu, Xiaoqin; Kabashima, John; Wilen, Cheryl; Gan, Jay; Choe, Dong-Hwan

    2014-12-01

    The purpose of this study was to involve pest management professionals in the design of application techniques and strategies that would be efficacious and also reduce insecticide runoff. Our study involved measuring both the efficacy of treatments for the Argentine ant, Linepithema humile (Mayr), and the concurrent runoff of fipronil and pyrethroids. Two collaborating companies used low-impact protocols for controlling ants while minimizing runoff. Protocol 1 involved bimonthly treatments, while Protocol 2 was monthly. Both protocols involved an initial treatment with a fipronil spray around the foundation. At the garage door-driveway interface, the fipronil application was done as a pin stream for Protocol 1, and as a crack and crevice application in the expansion joint near the garage for Protocol 2. Protocol 1 replaced most pyrethroid sprays with bifenthrin granules placed around bushes and away from the driveway. For the next treatment on day 63, Protocol 1 also included cyfluthrin spray treatments around the house foundation and crack and crevice applications around the edge of the driveway. For the first treatment in Protocol 2, the fipronil spray was supplemented with spot treatments of cyfluthrin. For subsequent Protocol 2 treatments, botanical insecticides were applied. For weeks 1 and 2 posttreatment combined, Protocol 1 had significantly higher reductions in ant numbers compared with Protocol 2. Thereafter there were no significant differences between the protocols. Runoff of bifenthrin from the granules used with Protocol 1 was much lower than in previous trials involving bifenthrin sprays. Day 1 fipronil runoff for Protocol 2 was significantly lower than that for Protocol 1. This difference may be because of the crack and crevice application applied in Protocol 2. Cyfluthrin runoff was minimal for Protocol 2, which involved spot treatments to supplement the fipronil on day 1, or the botanical insecticides for subsequent treatments. Protocol 1 had a

  17. Subtle effects of biological invasions: cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa.

    Directory of Open Access Journals (Sweden)

    Serena Felline

    Full Text Available The green alga Caulerpa racemosa var. cylindracea has invaded Mediterranean seabed including marine reserves, modifying the structure of habitats and altering the distributional patterns of associated organisms. However, the understanding of how such invasion can potentially affect functional properties of Mediterranean subtidal systems is yet to be determined. In this study, we show that C. racemosa changes foraging habit of the native white seabream, Diplodus sargus. In invaded areas, we found a high frequency of occurrence of C. racemosa in the stomach contents of this omnivorous fish (72.7 and 85.7%, while the alga was not detected in fish from a control area. We also found a significant accumulation of caulerpin, one of the main secondary metabolites of C. racemosa, in fish tissues. The level of caulerpin in fish tissues was used here as an indicator of the trophic exposure to the invasive pest and related with observed cellular and physiological alterations. Such effects included activation of some enzymatic pathways (catalase, glutathione peroxidases, glutathione S-transferases, total glutathione and the total oxyradical scavenging capacity, 7-ethoxy resorufin O-deethylase, the inhibition of others (acetylcholinesterase and acylCoA oxidase, an increase of hepatosomatic index and decrease of gonadosomatic index. The observed alterations might lead to a detrimental health status and altered behaviours, potentially preventing the reproductive success of fish populations. Results of this study revealed that the entering of alien species in subtidal systems can alter trophic webs and can represent an important, indirect mechanism which might contribute to influence fluctuations of fish stocks and, also, the effectiveness of protection regimes.

  18. Subtle effects of biological invasions: cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa.

    Science.gov (United States)

    Felline, Serena; Caricato, Roberto; Cutignano, Adele; Gorbi, Stefania; Lionetto, Maria Giulia; Mollo, Ernesto; Regoli, Francesco; Terlizzi, Antonio

    2012-01-01

    The green alga Caulerpa racemosa var. cylindracea has invaded Mediterranean seabed including marine reserves, modifying the structure of habitats and altering the distributional patterns of associated organisms. However, the understanding of how such invasion can potentially affect functional properties of Mediterranean subtidal systems is yet to be determined. In this study, we show that C. racemosa changes foraging habit of the native white seabream, Diplodus sargus. In invaded areas, we found a high frequency of occurrence of C. racemosa in the stomach contents of this omnivorous fish (72.7 and 85.7%), while the alga was not detected in fish from a control area. We also found a significant accumulation of caulerpin, one of the main secondary metabolites of C. racemosa, in fish tissues. The level of caulerpin in fish tissues was used here as an indicator of the trophic exposure to the invasive pest and related with observed cellular and physiological alterations. Such effects included activation of some enzymatic pathways (catalase, glutathione peroxidases, glutathione S-transferases, total glutathione and the total oxyradical scavenging capacity, 7-ethoxy resorufin O-deethylase), the inhibition of others (acetylcholinesterase and acylCoA oxidase), an increase of hepatosomatic index and decrease of gonadosomatic index. The observed alterations might lead to a detrimental health status and altered behaviours, potentially preventing the reproductive success of fish populations. Results of this study revealed that the entering of alien species in subtidal systems can alter trophic webs and can represent an important, indirect mechanism which might contribute to influence fluctuations of fish stocks and, also, the effectiveness of protection regimes.

  19. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    Directory of Open Access Journals (Sweden)

    George Heath

    Full Text Available The parasitic sea lamprey (Petromyzon marinus has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  20. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets.

    Science.gov (United States)

    Wolf, P F J; Verreet, A

    2008-01-01

    Powdery mildew, caused by Erysiphe betae (Vanha) Weltzien, may be assumed as an important leaf disease in sugar beet growing areas of central Europe. Although the causal agent is mainly adapted to arid climatic zones, the disease is appearing every year, where the extent of infection is mainly dependent on weather conditions and susceptibility of cultivar. The losses caused by powdery mildew seldom exceed 10% of sugar yield; moreover, losses are likely only under the condition that the epidemic onset occurs before end-August. Nevertheless, the epidemic onset varies in a wide range, as there are years with high incidence followed by growing periods without severe infection. Therefore, in order to have a flexible control of the disease, where the use of fungicides could be minimised to an essential amount, a quaternary IPM (Integrated Pest Management) -concept was developed. The development is based on epidemiological field studies (Germany, 1993-2004, n = 76) of sugar beet leaf diseases under variation of year, site and cultivar. Efficacy of fungicide treatment timing was assessed in relation to the epidemic development. Comparison of treatments comprised fungicide sprays carried out from disease initiation till later stages of the epidemic. Additionally, the assessments were performed in relation to an untreated and a healthy control--the latter was three times treated according to a treatment regime with three to four week intervals. The effect of different application timings was measured by the potential of disease and yield loss control. The quaternary concept combines the advantages of four elements in order to compensate the constraints of the single tools: The period without disease risk is determined by a so-called negative-prognosis (i). First symptoms appear in the period from mid-July till the beginning of September. If disease initiation cannot be excluded, field observations by a sample of 100 leaves are advised. The disease scores enable the appliance

  1. Using global information technology to detect, monitor, and control mosquito pest and disease vector populations.

    Science.gov (United States)

    Geographic Information Systems (GIS), image analysis, and remote sensing comprise global information technologies that are used to characterize pest and vector populations of mosquitoes. At this national meeting, scientists from ARS and McNeese State University organized and convened a half-day sym...

  2. Gene disruption technologies have the potential to transform stored product insect pest control

    Science.gov (United States)

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...

  3. Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation

    Science.gov (United States)

    Augmentation biocontrol is a commercially viable pest management tactic in enclosed glasshouse environments, but is far less effective in open-field agriculture where newly released enemies rapidly disperse from release sites. We tested the potential for behavior-modifying semiochemicals to increase...

  4. Integrated sensor-based monitoring system for pest and disease control in greenhouses.

    Science.gov (United States)

    Suciu, Laura; Sumălan, R; Moga, D

    2012-01-01

    Diseases and pests are a problem even in greenhouse crops, problem which has to be solved without threatening the plant. Crop protection requires frequent updates in information and therefore sensor networks that are real time monitoring systems are the ones that can deliver such information. The purpose of this paper is to present a way of preventing the appearance of diseases and pests in a greenhouse by using a monitoring system composed of an integrated sensor network. Our sensor system is doing a real time monitoring of the following parameters in the greenhouse: light intensity, soil moisture and temperature, air temperature and humidity and air temperature at canopy level; all of the data being stored using a software made by "Tedelco". A real time monitoring camera is also used for pest and disease detection. A pot experiment, using beans, was established inside the greenhouse to test the applicability of the system. In order to assure the optimal conditions for the inhibition of pests, the greenhouse is also equipped with an artificial lighting system specially designed for greenhouses, an irrigation system and an artificial fog system. Sensor systems are the ideal support for preventive monitoring and at the same time it offers all the support data necessary for decision making regarding crops development.

  5. Use of psyllid genomes RNA interference for novel pest control strategies

    Science.gov (United States)

    Genomics has changed the strategies used to manage insects and diseases. The ability to effect a change in proteins, and transcripts, through RNA-interference, RNAi, has produced a rush towards the development of the most state-of-the-art pest suppression strategies available. To rapidly advance the...

  6. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents.

    Science.gov (United States)

    Card, Stuart; Johnson, Linda; Teasdale, Suliana; Caradus, John

    2016-08-01

    Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents.

  7. Multifunctional strategies for management of stink bugs based on the ecology and biology of these pests and their natural enemies

    Science.gov (United States)

    Phytophagous stink bugs (Hemiptera: Pentatomidae) are economically important pests in orchard, row, vegetable, and grain crops worldwide. Stink bugs move between closely associated hosts throughout the growing season in response to the deteriorating suitability of their current hosts, and an edge ef...

  8. Pest management strategies in traditional agriculture: an African perspective.

    Science.gov (United States)

    Abate, T; van Huis, A; Ampofo, J K

    2000-01-01

    research activities carried out by national or international agricultural research programs in Africa focus on classical biological control and host plant resistance breeding. With the exception of classical biological control of the cassava mealybug, research results have not been widely adopted. This could be due to African farmers facing heterogeneous conditions, not needing fixed prescriptions or one ideal variety but a number of options and genotypes to choose from. Indigenous pest management knowledge is site-specific and should be the basis for developing integrated pest management (IPM) techniques. Farmers often lack the biological and ecological information necessary to develop better pest management through experimentation. Formal research should be instrumental in providing the input necessary to facilitate participatory technology development such as that done by Farmer Field Schools, an approach now emerging in different parts of Africa.

  9. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    of, and perhaps will not be tolerated in, manmade critical systems. Although this paper does not directly address questions of ethics associated...political, ethical , and moral issues associated with the use of autonomous systems in warfare will be debated long after the technology hurdles to...accessible discussion on the interplay of biochemistry, genetics and embryology in animal evolution; Wagner, 2005 describes biological concepts of

  10. Control of rugose spiraling whitefly using biological insecticides, 2014

    Science.gov (United States)

    The objective of this study was to evaluate the efficacy of selected biological insecticides against a new invasive whitefly pest, Aleurodicus rugioperculatus Martin, in white bird of paradise under field condition. The trial was conducted at United States Horticultural Research Laboratory in Fort P...

  11. Biological Control of Mosquitoes with Mermithids

    OpenAIRE

    Platzer, E. G.

    1981-01-01

    Mermithid nematodes parasitizing mosquitoes have substantial potential for vector control. Studies on the physiological ecology of Romanomermis culicivorax have defined some of the general requirements of mermithid nematodes and produced general guidelines for the experimental release of mermithids in biological control. Experimental field studies have established the biological control potential of R. culicivorax, but further development and ulilization of this parasite will require a substa...

  12. The use of push-pull strategies in integrated pest management.

    Science.gov (United States)

    Cook, Samantha M; Khan, Zeyaur R; Pickett, John A

    2007-01-01

    Push-pull strategies involve the behavioral manipulation of insect pests and their natural enemies via the integration of stimuli that act to make the protected resource unattractive or unsuitable to the pests (push) while luring them toward an attractive source (pull) from where the pests are subsequently removed. The push and pull components are generally nontoxic. Therefore, the strategies are usually integrated with methods for population reduction, preferably biological control. Push-pull strategies maximize efficacy of behavior-manipulating stimuli through the additive and synergistic effects of integrating their use. By orchestrating a predictable distribution of pests, efficiency of population-reducing components can also be increased. The strategy is a useful tool for integrated pest management programs reducing pesticide input. We describe the principles of the strategy, list the potential components, and present case studies reviewing work on the development and use of push-pull strategies in each of the major areas of pest control.

  13. 砂梨病虫种群动态及其无公害防控技术%Disease and Pest Population Dynamics of Pyrus in Wuhan and the Non-polluted Control Techniques

    Institute of Scientific and Technical Information of China (English)

    刘先琴; 秦仲麒; 李先明; 涂俊凡; 杨夫臣; 关金菊

    2009-01-01

    The investigation showed that pear psylla,lace-bug,stinkbug,leaf eriophyid.the oriental fruit moth,Dasyneura pyri, fruit sawfly, phylloxera, Janus piri, ring rot, rust, black spot were the important disease and pest population in the pear orchards. They had high density, occurrenced in high frequency and seriously. The artificial control technique such as turning, scraping, clearance, luring and bagging were adopted. Natural enemies ladybird, lacewing, Syrphid flies, predatory bugs, spiders in the field were used for biological control. Chemical control time was standardized by the control criteria. The diseases and pests which reached the control criteria were sprayed the suitable pesticide in time. The damage of diseases and pests can be controlled effectively by the measures.%调查表明,梨木虱、网蝽、蝽象、叶瘿螨、梨小食心虫、瘿蚊、实蜂、蚜虫、梨茎蜂、轮纹病、锈病、黑斑病是武昌梨园的重要病虫种群,其发生频次高,密度大,危害重.采用"翻、刮、清、诱、套"进行人工防控;利用田间自然天敌进行生物防控;严格按照防治指标进行药荆防控,能较好地防止砂梨病虫的危害.

  14. 茶树病虫害智能化防治专家系统研究与应用%Study and Application of the Intelligentized Controlled Expert System on the Tea Plant Diseases and Insect Pests

    Institute of Scientific and Technical Information of China (English)

    汪辉进

    2011-01-01

    On the basis of the biological characteristics of tea plant diseases and insect pests in the south of Anhui province, and the relevant knowledge of artificial intelligence, the intelligentized controlled expert system was studied, so as to explore a new technology for the intelligentized control of tea plant diseases and insect pests.%根据皖南茶区茶树病虫害的生物学特点,依据人工智能化的相关知识,开展茶树病虫害智能化防治专家系统的研究,力求为我国茶园病虫害智能化防治探索一种新技术.

  15. Transgenic plants for insect pest control: a forward looking scientific perspective.

    Science.gov (United States)

    Ferry, N; Edwards, M G; Gatehouse, J; Capell, T; Christou, P; Gatehouse, A M R

    2006-02-01

    One of the first successes of plant biotechnology has been the creation and commercialisation of transgenic crops exhibiting resistance to major insect pests. First generation products encompassed plants with single insecticidal Bt genes with resistance against major pests of corn and cotton. Modelling studies predicted that usefulness of these resistant plants would be short-lived, as a result of the ability of insects to develop resistance against single insecticidal gene products. However, despite such dire predictions no such collapse has taken place and the acreage of transgenic insect resistance crops has been increasing at a steady rate over the 9 years since the deployment of the first transgenic insect resistant plant. However, in order to assure durability and sustainability of resistance, novel strategies have been contemplated and are being developed. This perspective addresses a number of potentially useful strategies to assure the longevity of second and third generation insect resistant plants.

  16. The use of phytochemicals as fumigants for the control of stored product insect pests

    OpenAIRE

    Eli Shaaya; Moshe Kostyukovsky

    2011-01-01

    The current study is aimed to evaluate the potential use of the known isothyiocyanates, as compared to a new isothyiocyanate (ITC) isolated from Eruca sativa (salad rocket) as fumigants for the control of stored product insects. The biological activity of methyl iodide (CH3I), carbon disulphide (CS2), benzaldehyde (C7H6O) and essential oils were also evaluated. The toxicity of the various fumigants was assessed against adults and larvae of a number of major stored product insects. ITCs are kn...

  17. Hanford site integrated pest management plan

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  18. The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry.

    Science.gov (United States)

    Popa, Valentin; Déziel, Eric; Lavallée, Robert; Bauce, Eric; Guertin, Claude

    2012-07-01

    Bark beetles, especially Dendroctonus species, are considered to be serious pests of the coniferous forests in North America. Bark beetle forest pests undergo population eruptions, causing region wide economic losses. In order to save forests, finding new and innovative environmentally friendly approaches in wood-boring insect pest management is more important than ever. Several biological control methods have been attempted over time to limit the damage and spreading of bark beetle epidemics. The use of entomopathogenic microorganisms against bark beetle populations is an attractive alternative tool for many biological control programmes in forestry. However, the effectiveness of these biological control agents is strongly affected by environmental factors, as well as by the susceptibility of the insect host. Bark beetle susceptibility to entomopathogens varies greatly between species. According to recent literature, bark beetles are engaged in symbiotic relationships with fungi and bacteria. These types of relationship are very complex and apparently involved in bark beetle defensive mechanisms against pathogens. The latest scientific discoveries in multipartite symbiosis have unravelled unexpected opportunities in bark beetle pest management, which are discussed in this article.

  19. Estimated crop loss due to coconut mite and financial analysis of controlling the pest using the acaricide abamectin.

    Science.gov (United States)

    Rezende, Daniela; Melo, José W S; Oliveira, José E M; Gondim, Manoel G C

    2016-07-01

    Reducing the losses caused by Aceria guerreronis Keifer has been an arduous task for farmers. However, there are no detailed studies on losses that simultaneously analyse correlated parameters, and very few studies that address the economic viability of chemical control, the main strategy for managing this pest. In this study the objectives were (1) to estimate the crop loss due to coconut mite and (2) to perform a financial analysis of acaricide application to control the pest. For this, the following parameters were evaluated: number and weight of fruits, liquid albumen volume, and market destination of plants with and without monthly abamectin spraying (three harvests). The costs involved in the chemical control of A. guerreronis were also quantified. Higher A. guerreronis incidence on plants resulted in a 60 % decrease in the mean number of fruits harvested per bunch and a 28 % decrease in liquid albumen volume. Mean fruit weight remained unaffected. The market destination of the harvested fruit was also affected by higher A. guerreronis incidence. Untreated plants, with higher A. guerreronis infestation intensity, produced a lower proportion of fruit intended for fresh market and higher proportions of non-marketable fruit and fruit intended for industrial processing. Despite the costs involved in controlling A. guerreronis, the difference between the profit from the treated site and the untreated site was 18,123.50 Brazilian Real; this value represents 69.1 % higher profit at the treated site.

  20. Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max).

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Dey, Debjani; Shakil, N A; Walia, S

    2012-01-01

    Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.

  1. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Hang Li

    Full Text Available The beet armyworm, Spodoptera exigua (Hübner, is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st to 5(th instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl into the 4(th instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3% after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (P<0.05. About 80% of the surviving insects in the siRNA-treated group of five genes (PGCP, chitinase1, tubulin1, tubulin2 and helicase showed retarded development. In chitinase1-siRNA and chitinase7-siRNA administered groups, 12.5% survivors exhibited "half-ecdysis". In arf1-siRNA and arf2-siRNA groups, the body color of 15% became black 48 h after injections. In summary, the transcriptome could be a valuable genetic resource for identification of genes in S. exigua and this study provided putative targets for RNAi pest

  2. Forestation Measures and Forest Pest Control%营林措施与森林害虫的控制

    Institute of Scientific and Technical Information of China (English)

    李镇宇

    2012-01-01

    The harm of local important pests such as Dendrolimus and poplar stem-borers was serious. The forestation measures and control mechanization on the effective prevention of Dendrolimus and poplar stem-borers was summarized.%松毛虫、杨树蛀干害虫等本土重大有害生物的危害严重。从营林措施的角度总结松毛虫、杨树蛀干天牛灾害的防治。

  3. Biology of Orb-weaver Spider Araneus ventricosus and Its Role in Insect Pest Control%落叶松人工林重要害虫天敌——大腹圆蛛生物学特性及其对害虫控制作用的研究

    Institute of Scientific and Technical Information of China (English)

    王志明; 刘进宝; 王海峰; 杨彦龙

    2011-01-01

    The life cycle of orb-weaver spider, Araneus ventricosus ( Arachnida: Araneae, Araneidae) takes for two years stretching over three years in Jilin province, China. The spider overwinters in the first to second and the six to seven instars. Except for the egg stage and the first to second instars, the other young instars and the mature spiders spin webs so they can catch insects and other small animals for their food. The spider favorites light place in the habitat, and spin vertical circular nets in the forest edge, forest gap, roadside, resting in the daytime and feeding in the night. Even in the light rain condition they are active normally. The spider can prey directly small insects, however, for large insect they can feed it after web capture silk is twined. The spider feed many latch insect pests, including the moths of Coleophora obducta (Meyrick) , Dendrolimus superans (Butler), Malacosoma neustria testacea Motschulsky, Lymantria dispar L. , Lymantria mathura Moore, Laspeyresia gruneniana ( Ratzburg), Laspeyresia zebeana ( Ratzeburg), and the sawflies of Pachynematus itoi Okutani, Pristiphora erichsonii (Hartig). Thus, the spider potentially becomes an effective natural enemy of larch insect pests.%大腹圆蛛(Araneus ventricosus)在吉林省2年完成1代,跨3个年度,以1~2龄和6~7龄若蛛越冬.该蛛除卵期及1、2龄蛛外,其它龄态的若、成蛛均张网捕食生活.该蛛喜居有光的柄境,在林缘、林窗处、路旁处结圆形垂直网,昼伏夜出,在小雨条件下可以正常活动.大腹圆蛛对小型猎物可直接取食,对中、大型猎物,需缠绕成束的捕获丝缚住再取食.在林间大腹贺蛛可取食多种蛾和叶蜂成虫,包括兴安落叶松鞘蛾、落叶松毛虫、黄褐幕枯叶蛾、舞毒蛾、栎毒蛾、松皮小卷蛾、松廖小卷蛾、伊藤厚丝叶蜂和落叶松叶蜂等多种落叶松害虫,是一种有效的害虫天敌.

  4. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    Science.gov (United States)

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  5. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    Full Text Available Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars due to the introduction and widespread adoption of Bt (Bacillus thuringiensis cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  6. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    Science.gov (United States)

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J; Cryan, Paul; Diffendorfer, Jay E; Goldstein, Joshua; Lasharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A; Russell, Amy; Semmens, Darius

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  7. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton

    Science.gov (United States)

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  8. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  9. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.

    Science.gov (United States)

    Huvenne, Hanneke; Smagghe, Guy

    2010-03-01

    RNA interference already proved its usefulness in functional genomic research on insects, but it also has considerable potential for the control of pest insects. For this purpose, the insect should be able to autonomously take up the dsRNA, for example through feeding and digestion in its midgut. In this review we bring together current knowledge on the uptake mechanisms of dsRNA in insects and the potential of RNAi to affect pest insects. At least two pathways for dsRNA uptake in insects are described: the transmembrane channel-mediated uptake mechanism based on Caenorhabditis elegans' SID-1 protein and an 'alternative' endocytosis-mediated uptake mechanism. In the second part of the review dsRNA feeding experiments on insects are brought together for the first time, highlighting the achievement of implementing RNAi in insect control with the first successful experiments in transgenic plants and the diversity of successfully tested insect orders/species and target genes. We conclude with points of discussion and concerns regarding further research on dsRNA uptake mechanisms and the promising application possibilities for RNAi in insect control.

  10. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity.

    Science.gov (United States)

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z; Sastry, Sarita K

    2014-02-01

    Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.

  11. Maize benefits the predatory beetle, Propylea japonica (Thunberg, to provide potential to enhance biological control for aphids in cotton.

    Directory of Open Access Journals (Sweden)

    Fang Ouyang

    Full Text Available BACKGROUND: Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. METHODOLOGY: The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008-2010. PRINCIPAL FINDING: Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ(13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C(3- to a C(4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C(4 resources within one week. Approximately 80-100% of the diet of P. japonica adults in maize originated from a C(3-based resource in June, July and August, while approximately 80% of the diet originated from a C(4-based resource in September. CONCLUSION/SIGNIFICANCE: Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.

  12. Molecular comparison of cattle fever ticks from native and introduced ranges with insights into optimal search areas for classical biological control agents

    Science.gov (United States)

    Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks could complement existing control strategies for this livestock pest in the transboundary region between Mexico and Texas. DNA fingerprinting tools were used to compare ...

  13. A Manual of Mosquito Control Projects and Committee Assignments for 4-H and Scouts Biology Class Projects, Organized Community Service Programs, and Individuals Interested in Environmental Management.

    Science.gov (United States)

    Hart, Richard A.

    The mosquito control projects presented in this manual were prepared from an educational viewpoint and are intended for use by students in 4-H and Scouts and as a supplement to high school and college biology course work. The major emphasis of the projects is on integrated pest management, an approach utilizing cost-effective control methods which…

  14. The use of phytochemicals as fumigants for the control of stored product insect pests

    Directory of Open Access Journals (Sweden)

    Eli Shaaya

    2011-08-01

    Full Text Available The current study is aimed to evaluate the potential use of the known isothyiocyanates, as compared to a new isothyiocyanate (ITC isolated from Eruca sativa (salad rocket as fumigants for the control of stored product insects. The biological activity of methyl iodide (CH3I, carbon disulphide (CS2, benzaldehyde (C7H6O and essential oils were also evaluated. The toxicity of the various fumigants was assessed against adults and larvae of a number of major stored product insects. ITCs are known to have high toxicity and only very low concentrations are needed for the control of stored product insects. Eruca sativa is used worldwide as a food supplement. Methylthio butyl ITC, the main bioactive component in this plant has high toxicity against insects, but lower mammalian toxicity as compared to other active ITCs. This makes this compound a potential candidate for insect control. Comparative studies with CH3I, CS2 and C7H6O showed that the first was the most active compound against stored product insects followed by the second and third. C7H6O was found active, but very sorptive; therefore it was less effective against insects. The activity of a large number of essential oils (EOs isolated from aromatic plants was also evaluated.

  15. Global stability and optimisation of a general impulsive biological control model

    CERN Document Server

    Mailleret, Ludovic

    2008-01-01

    An impulsive model of augmentative biological control consisting of a general continuous predator-prey model in ordinary differential equations augmented by a discrete part describing periodic introductions of predators is considered. It is shown that there exists an invariant periodic solution that corresponds to prey eradication and a condition ensuring its global asymptotic stability is given. An optimisation problem related to the preemptive use of augmentative biological control is then considered. It is assumed that the per time unit budget of biological control (i.e. the number of predators to be released) is fixed and the best deployment of this budget is sought after in terms of release frequency. The cost function to be minimised is the time taken to reduce an unforeseen prey (pest) invasion under some harmless level. The analysis shows that the optimisation problem admits a countable infinite number of solutions. An argumentation considering the required robustness of the optimisation result is the...

  16. The integrated control concept and its relevance to current integrated pest management in California fresh market grapes.

    Science.gov (United States)

    Bentley, Walter J

    2009-12-01

    The foundation of an integrated pest management program involves valid treatment thresholds, accurate and simple monitoring methods, effective natural controls, selective pesticides and trained individuals who can implement the concept. The Integrated Control Concept written by Stern, Smith, van den Bosch and Hagen elucidated each of these points in an alfalfa ecosystem. Alfalfa hay (Medicago sativa L.) has a low per acre value, requires little hand labor and is primarily marketed in the USA. In contrast, fresh market table grape (Vitis vinifera L.) has a high per acre value, requires frequent hand labor operations, suffers unacceptable cosmetic damage and is marketed throughout both the USA and the world. Each of the components of a working IPM program is present in table grape production. Marketing grapes to foreign countries presents special problems with pests considered invasive and where residue tolerances for some selective insecticides are lacking. However, fresh market grape farmers are still able to deal with these special problems and utilize an IPM program that has resulted in a 42% reduction in broad-spectrum insecticide use from 1995 to 2007.

  17. Controlled ecological life support system - biological problems

    Science.gov (United States)

    Moore, B., III (Editor); Macelroy, R. D. (Editor)

    1982-01-01

    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.

  18. New records of entomopathogenic fungi infecting Bemisia tabaci and Trialeurodes vaporariorum, pests of horticultural crops, in Argentina

    Science.gov (United States)

    The whiteflies (Hemiptera: Aleyrodidae) Bemisia tabaci (Gennadius), and Trialeurodes vaporariorum (Westwood) are major crop pests throughout the world. Although extensive research about biological control of whitefly has been conducted towards these insect's parasitoids and predators, several entom...

  19. Successful application of entomopathogenic nematodes for the biological control of western corn rootworm larvae in Europe – a mini review

    Directory of Open Access Journals (Sweden)

    Toepfer, Stefan

    2014-02-01

    Full Text Available 10 years of joint efforts in research and development have led to a nematode-based biological control solution for one of the most destructive maize pests, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae. Commercially mass-produced Heterorhabditis species of beneficial entomopathogenic nematodes are ready to use. They can be applied into the soil during sowing of maize for controlling the subsequently hatching larvae of D. virgifera virgifera thus preventing root feeding and damage to maize. Policy bodies, decision makers and farmers are advised to consider biological control as one of the alternatives to synthetic pesticides in maize production, and according to the EC Directive on the sustainable use of pesticides and implementation of integrated pest management.

  20. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance.

    Science.gov (United States)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A; Wu, Jianhong

    2013-11-01

    Integrated pest management options such as combining chemical and biological control are optimal for combating pesticide resistance, but pose questions if a pest is to be controlled to extinction. These questions include (i) what is the relationship between the evolution of pesticide resistance and the number of natural enemies released? (ii) How does the cumulative number of natural enemies dying affect the number of natural enemies to be released? To address these questions, we developed two novel pest-natural enemy interaction models incorporating the evolution of pesticide resistance. We investigated the number of natural enemies to be released when threshold conditions for the extinction of the pest population in two different control tactics are reached. Our results show that the number of natural enemies to be released to ensure pest eradication in the presence of increasing pesticide resistance can be determined analytically and depends on the cumulative number of dead natural enemies before the next scheduled release time.

  1. Protecting Plants against Pests and Pathogens with Entomopathogenic Fungi

    DEFF Research Database (Denmark)

    Keyser, Chad Alton

    is an increasingly important area of research. Efforts to maximize agricultural output are significantly dependent on reliable means for pest suppression. Biological control, or the use of living organisms to suppress a pest population, is a leading alternative to traditional chemical-based pesticides for crop...... protection. The fungal genus Metarhizium is one of the most intensely researched groups of entomopathogenic fungi and several isolates have been successfully employed as biopesticides for crop protection; however, inconsistent field reliability has limited wider implementation. Research emphasizing...... of variability with in the species. The results of these studies further clarify the important role Metarhizium spp. play in the natural environment and highlight their vast potential to be implemented as biological control agents of important pest insects....

  2. Cotton in Benin: governance and pest management

    NARCIS (Netherlands)

    Togbe, C.E.

    2013-01-01

    Key words: cotton, synthetic pesticides, neem oil (Azadirachta indica), Beauveria bassiana, Bacillus thuringiensis, field experiment, farmers’ participation   Pests are one of the main factors limiting cotton production worldwide. Most of the pest control strategies in cotton producti

  3. Advantages and limitations of the Five Domains model for assessing welfare impacts associated with vertebrate pest control.

    Science.gov (United States)

    Beausoleil, N J; Mellor, D J

    2015-01-01

    Many pest control activities have the potential to impact negatively on the welfare of animals, and animal welfare is an important consideration in the development, implementation and evaluation of ethically defensible vertebrate pest control. Thus, reliable and accurate methods for assessing welfare impacts are required. The Five Domains model provides a systematic method for identifying potential or actual welfare impacts associated with an event or situation in four physical or functional domains (nutrition, environment, health or functional status, behaviour) and one mental domain (overall mental or affective state). Here we evaluate the advantages and limitations of the Five Domains model for this purpose and illustrate them using specific examples from a recent assessment of the welfare impacts of poisons used to lethally control possums in New Zealand. The model has a number of advantages which include the following: the systematic identification of a wide range of impacts associated with a variety of control tools; the production of relative rankings of tools in terms of their welfare impacts; the easy incorporation of new information into assessments; and the highlighting of additional information needed. For example, a recent analysis of sodium fluoroacetate (1080) poisoning in possums revealed the need for more information on the period from the onset of clinical signs to the point at which consciousness is lost, as well as on the level of consciousness during or after the occurrence of muscle spasms and seizures. The model is also valuable because it clearly separates physical or functional and affective impacts, encourages more comprehensive consideration of negative affective experiences than has occurred in the past, and allows development and evaluation of targeted mitigation strategies. Caution must be used in interpreting and applying the outputs of the model, most importantly because relative rankings or grades are fundamentally qualitative in

  4. An assessment of the benefits of yellow Sigatoka (Mycosphaerella musicola control in the Queensland Northern Banana Pest Quarantine Area

    Directory of Open Access Journals (Sweden)

    David Cook

    2013-09-01

    Full Text Available The banana leaf spotting disease yellow Sigatoka is established and actively controlled in Australia through intensive chemical treatments and diseased leaf removal. In the State of Queensland, the State government imposes standards for de-leafing to minimise the risk of the disease spreading in 6 banana pest quarantine areas. Of these, the Northern Banana Pest Quarantine Area is the most significant in terms of banana production. Previous regulations imposed obligations on owners of banana plants within this area to remove leaves from plants with visible spotting on more than 15 per cent of any leaf during the wet season. Recently, this leaf disease threshold has been lowered to 5 per cent. In this paper we examine the likely impact this more-costly regulation will have on the spread of the disease. We estimate that the average net benefit of reducing the diseased leaf threshold is only likely to be $1.4million per year over the next 30 years, expressed as the annualised present value of tightened regulation. This result varies substantially when the timeframe of the analysis is changed, with shorter time frames indicating poorer net returns from the change in protocols. Overall, the benefit of the regulation change is likely to be minor.

  5. Modern Stored-Product Insect Pest Management

    Directory of Open Access Journals (Sweden)

    Hagstrum David William

    2014-07-01

    Full Text Available Stored-product entomologists have a variety of new monitoring, decision-making, biological, chemical, and physical pest management tools available to them. Two types of stored-product insect populations are of interest: insects of immediate economic importance infesting commodities, and insects that live in food residues in equipment and facilities. The sampling and control methods change as grain and grain products move from field to consumer. There are also some changes in the major insect pest species to take into consideration. In this review, we list the primary insect pests at each point of the marketing system, and indicate which sampling methods and control strategies are most appropriate. Economic thresholds for insect infestation levels developed for raw commodity storage, processing plants, and retail business allow sampling-based pest management to be done before insect infestations cause economic injury. Taking enough samples to have a representative sample (20-30 samples will generally provide enough information to classify a population as above or below an economic threshold.

  6. Retrospection of Alien Invasive Forest Insect Pests in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Eleven species of alien invasive forest insect pests have been found since the early time that insect species had been taken recorded in China. Their origins, inland distribution, invasive time, hosts, causing damage are recorded in this paper for the evidence of biological invasion. Their control methods are also studied or discussed.

  7. A socioeconomic analysis of biocontrol in integrated pest management

    NARCIS (Netherlands)

    Benjamin, Emmanuel O.; Wesseler, Justus H.H.

    2016-01-01

    European regulations on the sustainable use of pesticides aim to promote integrated pest management (IPM) strategy and the use of biological control agents. However, uncertainty over benefits and costs, irreversibility effects as well as flexibility in adoption of this technology needs to be cons

  8. Parasites, politics and public science: the promotion of biological control in Western Australia, 1900-1910.

    Science.gov (United States)

    Deveson, Edward

    2016-06-01

    Biological control of arthropods emerged as a scientific enterprise in the late nineteenth century and the orchard industry of California was an early centre of expertise. In 1900, as the Australian colonies prepared for federation, each had a government entomologist attached to its agriculture department. The hiring of George Compere from California by the Western Australian Department of Agriculture began a controversial chapter in the early history of biological control that was linked to a late, local popularization of acclimatization. Compere became known as the 'travelling entomologist' and for a decade brought 'parasites' of pest insects from overseas and released them in Perth. His antagonistic disciplinary rhetoric and inflated claims for the 'parasite theory' created conflict with his counterparts in the eastern states. The resulting inter-state entomological controversy was played out in the press, revealing the political use of science for institutional and even state identity. It is a story of transnational exchanges, chance discoveries and popular public science: popular because of the promise of a simple, natural solution to agricultural insect pests and because of the public nature of the disputes it generated between the experts. This microcosm contributes to the global historiography of acclimatization, biological control, scientific exposition and the professionalization of agricultural science.

  9. The Biological Control of the Malaria Vector

    Directory of Open Access Journals (Sweden)

    Layla Kamareddine

    2012-09-01

    Full Text Available The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes.

  10. Ecology and biological control of Verticillium dahliae

    NARCIS (Netherlands)

    Soesanto, L.

    2000-01-01

    The dynamics of Verticillium dahliae , the causal agent of wilt disease in many crops including potato, cotton, and olive, were investigated. Its biological control with Talaromyces flavus with or without additional Pseudomonas fluorescens was attempted. Arabidopsis thaliana was selected as a bioass

  11. Biological Control of Nematodes with Bacteria

    Science.gov (United States)

    Biological control of nematodes is receiving increased attention as environmental considerations with the use of nematicides have increased in importance and their high cost prohibits use on many crops. In addition, nematode resistant cultivars are not available for many crops and resistance that i...

  12. Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses.

    Science.gov (United States)

    Gigon, Vincent; Camps, Cédric; Le Corff, Josiane

    2016-01-01

    Biological control against phytophagous arthropods has been widely used under greenhouse conditions. Its success is dependent on a number of factors related to the abiotic conditions and to the interactions between pests and biological control agents. In particular, when multiple predator species are introduced to suppress one pest, competitive interactions might occur, including intraguild predation (IGP). In tomato crops, the spider mite Tetranychus urticae Koch is a very problematic phytophagous mite and its control is not yet satisfactory. In 2012 and 2013, the ability of a potential new predatory mite Phytoseiulus macropilis (Banks) was assessed, alone and in the presence of Macrolophus pygmaeus Rambur. Macrolophus pygmaeus is a polyphagous mirid supposed to predate on P. macropilis. Both years, under greenhouse conditions, the effectiveness of the two predators was compared between the following treatments: T. urticae, T. urticae + P. macropilis, T. urticae + M. pygmaeus, and T. urticae + P. macropilis + M. pygmaeus. The number of arthropods per tomato plant over time indicated that P. macropilis well-controlled the population of T. urticae, whereas M. pygmaeus had a very limited impact. Furthermore, there was no evidence of IGP between the two predators but in the presence of M. pygmaeus, P. macropilis tended to have a more clumped spatial distribution. Further studies should clarify the number and location of inoculation points to optimize the control of T. urticae by P. macropilis.

  13. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  14. Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): 'Other Pests' Occasionally Found in Laboratory Animal Facilities.

    Science.gov (United States)

    Clemmons, Elizabeth A; Taylor, Douglas K

    2016-11-01

    Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles (Tribolium spp.) are common stored-product pests that have previously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized.

  15. Analysis on pest control by landscape techniques%园林技术措施控制病虫害探析

    Institute of Scientific and Technical Information of China (English)

    郑会玲; 吴祥春; 于颖; 丁世民

    2012-01-01

      结合园林工作实际,将园林技术措施控制病虫害的实现途径进行多角度、多层次的探析,即统筹协调“园林植物—病虫害—环境”所组成的生态系统的关系,建设生态园林,实现园林绿地与花木生产基地病虫害的可持续控制%  This paper analyzed widely the realization ways of pest control measurements by using landscape techniques combined with landscape work practice. This is to coordinate the ecosystem relations among landscape plants, plant pest diseases and environment to build an ecosystem landscape and realize a continuous control to the plant pest diseases in landscape green land, flowers and trees planting bases.

  16. Biological control of aflatoxin contamination of crops

    Institute of Scientific and Technical Information of China (English)

    Yan-ni YIN; Lei-yan YAN; Jin-hua JIANG; Zhong-hua MA

    2008-01-01

    Aflatoxins produced primarily by two closely related fungi, Aspergillus flavus and Aspergillus parasiticus, are mutagenic and carcinogenic in animals and humans. Of many approaches investigated to manage aflatoxin contamination, biological control method has shown great promise. Numerous organisms, including bacteria, yeasts and nontoxigenic fungal strains of A.flavus and A. parasiticus, have been tested for their ability in controlling aflatoxin contamination. Great successes in reducing aflatoxin contamination have been achieved by application of nontoxigenic strains of A. flavus and A. parasiticus in fields of cotton, peanut, maize and pistachio. The nontoxigenic strains applied to soil occupy the same niches as the natural occurring toxigenic strains. They, therefore, are capable of competing and displacing toxigenic strains. In this paper, we review recent development in biological control of aflatoxin contamination.

  17. Biological Control of the Invasive Dryocosmus kuriphilus (Hymenoptera: Cynipidae) - an Overview and the First Trials in Croatia

    OpenAIRE

    2014-01-01

    Background and Purpose: Dryocosmus kuriphilus is a globally invasive insect pest, spreading very quickly in new habitats and making serious damage to sweet chestnut forests in Croatia and in several other European countries. Indigenous parasitoid species trophically associated with oak gallwasps have adapted to this new host but cannot effectively regulate its population density. Classical biological control using parasitoid Torymus sinensis has been proven to be the only effective method of ...

  18. Thevetia peruviana (Family: Apocynaceae in the control of slug and snail pests

    Directory of Open Access Journals (Sweden)

    A. Panigrahi

    1994-06-01

    Full Text Available An aqueous extract prepared from Kernels of the fruit of Thevetia peruviana (Pers. Schumann (Family : Apocynaceae was found under experimental conditions, to be toxic ti the slug Laevicaulis alte (Férussac and the snail Achatina fulica Bowdich, the important agrihorticultural pests of Indo-Pacific countries. Concentrations as low as 1% (w/v killed all the slugs exposed in less than 981.00 (± SD 22.76 min, and 2% of the extract killed 100% of the slugs L. alte and 50%, 50% and 30% of the snail A. fulica in between 92.34 (± SD 6.63 - 321.33 (± SD 4.14 and 271.20 (± SD 17.54 - 298.26 (± SD 16.69 min respectively. The most effective concentration of the extract was 20%; it killed 100% of exposed slugs and snails within a short time (40-50 and 90-1440 min respectively when the extract was exposed on the soil in experimental trays or when it was applied to potato slices offered as food to the gastropods.

  19. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  20. Biological activity of ethanolic extract fractions of Dracaena arborea against infestation of stored grains by two storage insect pests.

    Science.gov (United States)

    Epidi, T T; Udo, I O

    2009-07-01

    As part of on-going efforts to use eco-friendly alternatives to chemical pesticides, ethanolic extract of dried leaves of Dracaena arborea (Willd.) Link (Dragon tree; Dracaenaceae) dissolved in distilled water and partitioned between equal volumes of n-hexane, chloroform, ethyl acetate and butanol was assessed in the laboratory against infestation by Sitophillus zeamais Motsch. and Callosobruchus maculatus Walp. in stored maize and cowpea, respectively. One hundred grams each of maize grains and cowpea seeds were treated with 400 mg kg(-1) of each extract fraction to evaluate contact toxicity, damage assessment, effect on eggs and immature stages and progeny production in both insect species. Contact toxicity by topical application, toxicity upon filter paper application and repellency using area preference method were carried out on the two insect species. Results showed that the extract fraction caused significant (p against S. zeamais. Grain damage was significantly (p grains were inhibited. The extract fractions evoked a strong repellent action against S. zeamais but moderate action against C. maculatus. The full potentials of using extract fractions of D. arborea as grain protectant against infestation by insect pests is discussed.

  1. Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides.

    Science.gov (United States)

    Mkenda, Prisila; Mwanauta, Regina; Stevenson, Philip C; Ndakidemi, Patrick; Mtei, Kelvin; Belmain, Steven R

    2015-01-01

    Plants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris) that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders). Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin) and T. diversifolia (the sesquiterpene lactone tagitinin A). Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.

  2. Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides.

    Directory of Open Access Journals (Sweden)

    Prisila Mkenda

    Full Text Available Plants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders. Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin and T. diversifolia (the sesquiterpene lactone tagitinin A. Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.

  3. On-farm evaluation of inundative biological control of Ostrinia nubilalis (Lepidoptera: Crambidae) by Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in three European maize-producing regions

    NARCIS (Netherlands)

    Razinger, Jaka; Vasileiadis, Vasileios P.; Giraud, Marion; Dijk, van Willem; Modic, Špela; Sattin, Maurizio; Urek, Gregor

    2016-01-01

    BACKGROUND: A 2 year study was conducted to evaluate the efficacy of biological control with optimally timed Trichogramma brassicae releases as an integrated pest management tool against the European corn borer (ECB), Ostrinia nubilalis (Hübner), in on-farm experiments (i.e. real field conditions

  4. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    Science.gov (United States)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  5. 农作物病虫害绿色防控技术应用概况%Advances in the applications of green crop pest control techniques

    Institute of Scientific and Technical Information of China (English)

    赵中华; 尹哲; 杨普云

    2011-01-01

    Since the concept of public and green plant protection was proposed at the National Plant Protection Conference in 2006, the development and application of green crop pest control techniques have made significant achievements in China. According to national statistics in 2009, the total application area of green crop pest control techniques was 51 million hm2 times, accounting for 10.4% of the total crop pest control areas in China. In this review, major green pest control techniques including physical control, the application of insect pheromones,natural enemies, bio-pesticides, antibiotics, insect repellents and ecological control were reviewed, and recommendations on the application of green crop pest control techniques were put forward.%自2006年全国植保工作会上提出"公共植保、绿色植保"理念以来,我国农作物病虫害绿色防控技术的研发与应用取得了显著成效.据2009年底初步统计,各种绿色防控技术应用面积累计达5100万h㎡次,约占全国农作物病虫害防治总面积的10.4%.本文就当前生产上主要的物理诱控、昆虫信息素诱控、天敌昆虫、生物农药、农用抗生素、驱避剂、生态控制等绿色防控技术应用情况进行了概述,并提出了绿色防控技术推广应用的建议.

  6. Main forest pests on pines in Anxi County and its integrated control measures%安溪县松树主要有害生物及其防治

    Institute of Scientific and Technical Information of China (English)

    刘长士

    2011-01-01

    总结了近10年安溪县松树6种主要有害生物(松突圆蚧、松墨天牛、马尾松毛虫、松大蚜、松针褐斑病、棕鼯鼠)的发生特点与分布情况,提出了各主要有害生物的综合防治措施。%The distribution,harm and main characteristics of the six main forest pests species on pines in Anxi County,including Hemiberlesia pitysophila,Monochamus alternatus,Dendrolimus punctatus,Cinara pinitabulaeformis,Lecanosticta acicola and Bursaphelenchus xylophilus were dealt with by nearly 10 years of field studies.Integrated control measures were introduced according to local climate and forest pests characteristics,and could decrease the suffering rate caused by forest pests to less than 1.5‰.

  7. A New Strategy of Insect Pest Control:Down-regulating Cotton Boliworm Gene Expression by Engineering Plant Double Stranded RNA

    Institute of Scientific and Technical Information of China (English)

    MAO Ying-bo; XUE Xue-yi; WANG Ling-jiang; CHEN Xiao-ya

    2008-01-01

    @@ Cotton bollworm (Helicoverpa armigera ) is an important agricultural pest that causes severeyield loss to crops,particularly to cotton.Transgenic Bt crops have been successful in protectingplants,however,Bt proteins are toxic to all lepidopteran insects but have little effects to sucking pests,such as aphids.Furthermore,the continuous use of Bt crops increases insect resistance.

  8. Effectiveness of the area wide pest management program to control asian tiger mosquito in New Jersey: evidence from a household survey

    Science.gov (United States)

    Households’ behaviors can both mitigate and measure the spread of urban mosquito species. Beginning in 2009, an area-wide pest management (AWPM) project to control Ae. Albopictus was implemented in 6 areas in Monmouth and Mercer counties, NJ. Including other activities, the project focused on increa...

  9. Effectiveness of the Area-wide Pest Management Program to Control Asian Tiger Mosquito in New Jersey: Evidence from a Household Survey

    Science.gov (United States)

    Households’ behaviors can both mitigate and measure the spread of urban mosquitos. Beginning in 2009, a comprehensive area-wide pest management (AWPM) project to control Aedes albopictus was implemented in 4 areas in Monmouth and Mercer Counties, New Jersey. Including other activities, the project f...

  10. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region

    Directory of Open Access Journals (Sweden)

    Roger I. Vargas

    2015-04-01

    Full Text Available Fruit flies (Diptera: Tephritidae are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas.

  11. Guiding Classical Biological Control of an Invasive Mealybug Using Integrative Taxonomy.

    Directory of Open Access Journals (Sweden)

    Aleixandre Beltrà

    Full Text Available Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa, sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain.

  12. Guiding Classical Biological Control of an Invasive Mealybug Using Integrative Taxonomy

    Science.gov (United States)

    Beltrà, Aleixandre; Addison, Pia; Ávalos, Juan Antonio; Crochard, Didier; Garcia-Marí, Ferran; Guerrieri, Emilio; Giliomee, Jan H.; Malausa, Thibaut; Navarro-Campos, Cristina; Palero, Ferran; Soto, Antonia

    2015-01-01

    Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy) a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa), sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain. PMID:26047349

  13. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  14. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats.

    Directory of Open Access Journals (Sweden)

    Jared G Ali

    Full Text Available While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs. However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.

  15. Peste des Petits Ruminants Virus.

    Science.gov (United States)

    Baron, M D; Diallo, A; Lancelot, R; Libeau, G

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.

  16. Analysis of 1,3-Dichloropropene for Control of Meloidogyne spp. in a Tobacco Pest Management System.

    Science.gov (United States)

    Fortnum, B A; Johnson, A W; Lewis, S A

    2001-12-01

    1,3-Dichloropropene (1,3-D) and nonfumigant nematicides were evaluated for control of Meloidogyne spp. and soil and foliar insects in a tobacco pest management system. In a field with a high Meloidogyne spp. population density (root gall index 4.0 to 4.5 on a 0 to 10 scale in untreated controls), tobacco yields and crop values increased (482 kg/ha and $1,784/ha for 1, 3-D; 326 kg/ha and $1,206/ha for fenamiphos; 252 kg/ha and $933/ha for ethoprop) with nematicide application over an untreated control. In fields with a low population density of Meloidogyne arenaria or M. incognita (root gall index 2.3 to 2.5 in untreated controls), yields ranged from 1,714 to 2,027 kg/ha and were not altered by fumigant or nonfumigant nematicide application. Carbofuran, a soil-applied nonfumigant nematicide/insecticide, reduced the number of foliar insecticide applications required to keep insect populations below treatment threshold (3.8 vs. 4.5, respectively, for treated vs. untreated). Carbofuran reduced the cost ($23/ha) of foliar insecticide treatments when compared to an untreated control. Although nonfumigant nematicides provided some soil and foliar insect control, the cost of using a fumigant plus a lower insecticidal rate of a soil insecticide/nematicide was comparable to the least expensive non-fumigant nematicide when the cost of foliar insecticide applications was included in the cost estimates. Savings in foliar insecticide cost by use of soil-applied nonfumigant nematicide/insecticides were small ($23/ha) in comparison to potential value reductions by root-knot nematodes when the nonfumigant nematicides fenamiphos or ethoprop ($578/ha and $851/ha, respectively) were used instead of 1,3-D.

  17. Science Letters: Radio frequency heating: a potential method for post-harvest pest control in nuts and dry products

    Institute of Scientific and Technical Information of China (English)

    WANGShao-jin; TANGJu-ming

    2004-01-01

    The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applications. There is an urgent need to develop effective and economically viable alternative treatments to replace current phytosanitary and quarantine practices in order to maintain the competitiveness of US agriculture in domestic and international markets. With the reliable heating block system, the thermal death kinetics for fifth-instar codling moth, lndianmeal moth, and navel orangeworm were determined at a heating rate of 18℃/min. A practical process protocol was developed to control the most heat resistant insect pest, fifth-instar navel orangeworm, in in-shell walnuts using a 27MHz pilot scale radio frequency (RF) system. RF heating to 55℃ and holding in hot air for at least 5min resulted in 100% mortality of the fifth-instar navel orangeworm. Rancidity, sensory qualities and shell characteristics were not affected by the treatments. If this method can be economically integrated into the handling process, it should have excellent potential as a disinfestation method for in-shell walnuts.

  18. Radio frequency heating:a potential method for post-harvest pest control in nuts and dry products

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-jin; TANG Ju-ming

    2004-01-01

    The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applications. There is an urgent need to develop effective and economically viable alternative treatments to replace current phytosanitary and quarantine practices in order to maintain the competitiveness of US agriculture in domestic and international markets. With the reliable heating block system, the thermal death kinetics for fifth-instar codling moth, Indianmeal moth, and navel orangeworm were determined at a heating rate of 18℃/min. A practical process protocol was developed to control the most heat resistant insect pest, fifth-instar navel orangeworm, in in-shell walnuts using a 27 MHz pilot scale radio frequency (RF)system. RF heating to 55℃ and holding in hot air for at least 5 min resulted in 100% mortality of the fifth-instar navel orangeworm. Rancidity, sensory qualities and shell characteristics were not affected by the treatments. If this method can be economically integrated into the handling process, it should have excellent potential as a disinfestation method for in-shell walnuts.

  19. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control.

    Science.gov (United States)

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and…

  20. Comparing strategies for controlling an African pest rodent: an empirically based theoretical study

    DEFF Research Database (Denmark)

    Stenseth, Nils Chr.; Leirs, Herwig; Mercelis, Saskia

    2001-01-01

    . This model incorporated three functional age categories (juveniles, subadults and adults) of both sexes and used density-dependent and density-independent factors, the latter represented by rainfall.3. The model was used to analyse the effect of rodent control on the population dynamics and resulting number...... of rats. Control measures affecting survival as well as reproduction were considered.4. The model showed that control measures reducing survival will only have long-term effects on population size if they are also applied when rodent densities are low. Control measures applied only when rodent densities...... are high will not have persistent effects, even at high mortality rates.5. The model demonstrated that control measures reducing reproduction are likely to prevent Mastomys outbreaks, but will keep densities low over a long period only when the contraceptive effect is strong (> 75% reduction).6. Provided...

  1. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    Directory of Open Access Journals (Sweden)

    Anaïs Castagnola

    2014-01-01

    Full Text Available This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae and Bacillus (Firmicutes: Bacillaceae. Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.

  2. Bioplastic made from corn starch as an effective biological delivery vehicle for control of agricultural pests

    Science.gov (United States)

    In recent years, increasing consumer sensitivity to environmental sustainability and favorable legislation has resulted in a rising demand for renewable and bio-based products, including biodegradable plastic. A recent market research report has projected a 15% annual increase in the demand of biode...

  3. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Zimmerman, Jess K; Nash, David R

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia...

  4. Low cost production of nematodes for biological control of insect pests

    Science.gov (United States)

    Entomopathogenic nematodes are produced in two ways: in artificial media using liquid or solid fermentation methods (in vitro) or by mass producing insect hosts to be artificially exposed to mass infection by nematodes (in vivo). The yellow mealworm (Tenebrio molitor) is a good host for in vivo nema...

  5. 害虫遗传防治的研究历史与现状%History and status of the genetic control of insect pest

    Institute of Scientific and Technical Information of China (English)

    严盈; 万方浩

    2015-01-01

    作为防治或根除重大害虫最为有效的手段之一,害虫遗传防治在世界范围内被广泛采用并取得了巨大成功。本文综述了不育昆虫技术、雌性致死系统和昆虫显性致死技术等经典害虫遗传防治策略的发展历史、技术特点和应用情况。近年来,许多新的分子生物手段被不断提出并整合到害虫遗传防治策略中,包括归巢核酸内切酶基因、锌指核酸酶、转录激活因子样效应因子核酸酶、CRISPR/Cas9系统、Medea元件、Killer-Rescue系统、Wolbachia-细胞质不亲和性系统等。基于这些新的工具手段,许多国家已经在不同程度上启动了下一代害虫遗传防治项目。而我国在该领域的研究相对薄弱,需要在借鉴国外成功经验的同时,进一步加强害虫遗传防治的基础和应用研究,从而实现本地有害生物的可持续治理和外来入侵生物的有效狙击,确保我国未来的粮食和生态安全。%Genetic pest management ( GPM) is one of the most efficient methods to control or eradicate insect pests and has been carried out worldwide with notable successes. Some classic GPM strategies including the sterile insect technology ( SIT) , female kill-ing system ( FKS) and release of insects carrying dominant lethality ( RIDL) are reviewed here. The development history, technical characters and application of SIT, FKS and RIDL technologies are introduced. In recent years, many new molecular or biological tools like the homing endonuclease gene, zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR/Cas9 sys-tem, medea element, the killer-rescue system and the Wolbachia-cytoplasmic incompatibility system were proposed to improve GPM efficiency. Some new tools were already used in control programs as next generation GPM strategies in some countries. The GPM practice in China is limited, and both basic and applied research on GPM should be enhanced, as the GPM

  6. Pest Locations, washoe county vector control data, Published in 2006, 1:1200 (1in=100ft) scale, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Pest Locations dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2006. It is described as...

  7. Eicosanoids: Exploiting Insect Immunity to Improve Biological Control Programs

    Directory of Open Access Journals (Sweden)

    David Stanley

    2012-05-01

    Full Text Available Insects, like all invertebrates, express robust innate, but not adaptive, immune reactions to infection and invasion. Insect immunity is usually resolved into three major components. The integument serves as a physical barrier to infections. Within the hemocoel, the circulating hemocytes are the temporal first line of defense, responsible for clearing the majority of infecting bacterial cells from circulation. Specific cellular defenses include phagocytosis, microaggregation of hemocytes with adhering bacteria, nodulation and encapsulation. Infections also stimulate the humoral component of immunity, which involves the induced expression of genes encoding antimicrobial peptides and activation of prophenoloxidase. These peptides appear in the hemolymph of challenged insects 6–12 hours after the challenge. Prostaglandins and other eicosanoids are crucial mediators of innate immune responses. Eicosanoid biosynthesis is stimulated by infection in insects. Inhibition of eicosanoid biosynthesis lethally renders experimental insects unable to clear bacterial infection from hemolymph. Eicosanoids mediate specific cell actions, including phagocytosis, microaggregation, nodulation, hemocyte migration, hemocyte spreading and the release of prophenoloxidase from oenocytoids. Some invaders have evolved mechanisms to suppress insect immunity; a few of them suppress immunity by targeting the first step in the eicosanoid biosynthesis pathways, the enzyme phospholipase A2. We proposed research designed to cripple insect immunity as a technology to improve biological control of insects. We used dsRNA to silence insect genes encoding phospholipase A2, and thereby inhibited the nodulation reaction to infection. The purpose of this article is to place our view of applying dsRNA technologies into the context of eicosanoid actions in insect immunity. The long-term significance of research in this area lies in developing new pest management

  8. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control : what we know so far

    OpenAIRE

    Joga, Mallikarjuna; Zotti, Moises J.; Smagghe, Guy; Christiaens, Olivier

    2016-01-01

    In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of ...

  9. RNAi efficiency, systemic properties and novel delivery methods for pest insect control: what we know so far.

    OpenAIRE

    Mallikarjuna Reddy Joga; Moises João Zotti; Guy Smagghe; Olivier Christiaens

    2016-01-01

    In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches towards insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of...

  10. Formulation to Enhance the Insecticidal Activity of Entomopathogenic Nematodes for Control of Insect Pests of Orchards

    Science.gov (United States)

    Extended shelf life and rapid dispersion of entomopathogenic nematode (EPN) infective juveniles (IJs) in spray suspensions were the principal objectives of earlier EPN formulation development. Subsequently, formulation of EPNs for enhanced insecticidal control in greenhouses and field has been inves...

  11. Explicit Solution of the Average-Cost Optimality Equation for a Pest-Control Problem

    Directory of Open Access Journals (Sweden)

    Epaminondas G. Kyriakidis

    2011-01-01

    Full Text Available We introduce a Markov decision process in continuous time for the optimal control of a simple symmetrical immigration-emigration process by the introduction of total catastrophes. It is proved that a particular control-limit policy is average cost optimal within the class of all stationary policies by verifying that the relative values of this policy are the solution of the corresponding optimality equation.

  12. Habitat eradication and cropland intensification may reduce parasitoid diversity and natural pest control services in annual crop fields

    Directory of Open Access Journals (Sweden)

    Deborah K. Letourneau

    2015-10-01

    Full Text Available Abstract California’s central coast differs from many agricultural areas in the U.S., which feature large tracts of monoculture production fields and relatively simple landscapes. Known as the nations salad bowl, and producing up to 90% of U.S. production of lettuces, broccoli and Brussels sprouts, this region is a mosaic of fresh vegetable fields, coastal meadow, chaparral shrubs, riparian and woodland habitat. We tested for relationships between the percent cover of crops, riparian and other natural landscape vegetation and the species richness of parasitic wasps and flies foraging in crops, such as broccoli, kale and cauliflower, and interpreted our results with respect to the decrease in natural habitat and increase in cropland cover prompted by a local microbial contamination event in 2006. Our key results are that: (1 as cropland cover in the landscape increased, fewer species of parasitoids were captured in the crop field, (2 parasitoid richness overall was positively associated with the amount of riparian and other natural vegetation in the surrounding 500m, (3 different groups of parasitoids were associated with unique types of natural vegetation, and (4 parasitism rates of sentinel cabbage aphid and cabbage looper pests were correlated with landscape vegetation features according to which parasitoids caused the mortality. Although individual species of parasitoids may thrive in landscapes that are predominantly short season crops, the robust associations found in this study across specialist and generalist parasitoids and different taxa (tachinid flies, ichneumon wasps, braconid wasps shows that recent food safety practices targeting removal of natural vegetation around vegetable fields in an attempt to eliminate wildlife may harm natural enemy communities and reduce ecosystem services. We argue that enhancing biological diversity is a key goal for transforming agroecosystems for future productivity, sustainability and public health.

  13. Integrated pest management and allocation of control efforts for vector-borne diseases

    Science.gov (United States)

    Ginsberg, H.S.

    2001-01-01

    Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.

  14. Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems

    Directory of Open Access Journals (Sweden)

    Trifone D'Addabbo

    2014-11-01

    Full Text Available Synthetic pesticides have played a major role in crop protection related to the intensification of agricultural systems. In the recent years, environmental side effects and health concerns raised by an indiscriminate use have led the EU to the ban of many synthetic pesticides. As a result of this drastic revision, currently there is a strong need for new and alternative pest control methods. An interesting source of biorational pesticides may be represented by the biocidal compounds naturally occurring in plants as products of the secondary metabolism. Groups of plant secondary metabolites most promising for the development of pesticidal formulations are glucosinolates, saponins, and more generally terpenoid phytoconstituents, such as essential oil and their constituents. Glucosinolates are thioglucosidic secondary metabolites occurring mainly in the Brassicaceae and, at a less extent, in Capparidaceae families. The incorporation of glucosinolate- containing plant material into the soil results in degradation products highly toxic to soilborne pest, pathogens and weeds. This practice, known as biofumigation, may be considered as an ecological alternative to soil toxic fumigants. Plant-derived saponins are triterpene glycosides present in top and root tissues of plant species of the families Leguminosae, Alliaceae, Asteraceae, Polygalaceae and Agavaceae. Saponins and saponin-rich plant materials have been also reported for a biocidal activity on phytoparasites and soilborne plant pathogens. Essential oils are volatile, natural, heterogeneous mixtures of single substances, mainly terpenes and phenolics, formed as secondary metabolites by aromatic plants belonging to several botanical families. Among terpenes, limonoid triterpenes have been demonstrated to possess interesting insecticidal, nematicidal and antifungal properties. Occurrence of these compounds is mainly limited to Meliaceae and Rutaceae. Alkaloids, phenolics, cyanogenic glucosides

  15. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops

    Directory of Open Access Journals (Sweden)

    Oumar Bashir

    2016-10-01

    Full Text Available Bacillus thuringiensis (B. t. based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water. A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin. Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.

  16. 莫桑比克腰果病虫害种类及其防治%Diseases and Insect Pests of Cashew in Mozambique and Their Control

    Institute of Scientific and Technical Information of China (English)

    梁李宏; 张中润; Americo Uaciquete; 黄海杰

    2011-01-01

    The category and damage of diseases and insect pests of cashew in Nampula, Inhambane, Gaza and Maputo provinces in Mozambique were studied, 8 species of diseases and 39 species of insect pests were identified. The major diseases were powdery mildew and anthracnose, and the major insect pests were tea mosquito bug (Helopeltis schoutedeni Reuter and Helopeltis anacardii Miller), coconut bug (Pseudothe rap tits wayi Brown), cashew weevil (Mecocorynus loripes Chevrolat) and red-banded thrip (Selenothrips rubrocinctus (Ciard)). Control measures for major diseases and insect pests of cashew in Mozambique were also given in this paper.%在莫桑比克楠普拉省、伊尼扬巴内省、加扎省和马普托省对腰果病虫害进行了系统的调查,发现为害腰果的病害8种,害虫39种.其中主要病害有白粉病和炭疽病,主要害虫有棉角盲蝽、安氏角盲蝽、椰缘蝽、腰果鹰嘴象甲和红带蓟马.并对莫桑比克主要腰果病虫害提出了相应的防治措施.

  17. Occurrence Investigation and Control Measures of Rhododendron Pests in Quanzhou City%泉州市杜鹃花害虫发生调查与防治

    Institute of Scientific and Technical Information of China (English)

    郑月琼; 陈达嵩

    2011-01-01

    The occurrences of rhododendron pests in Quanzhou city were investigated.The results showed that the main pests of rhododendron were leaf pests,including stephanitis pyriodes,Trialeurodes vaporariorum,rhododendron sawfly,snail,thrips and aphid.Among which,S.pyriodes,T.vaporariorum and rhododendron sawfly occurred widely and seriously,and the occurrences of snail,thrips and aphid were sporadic.This paper described the occurrence characteristic of the main pests mentioned above,and then summarized a set of effective control measures.%对泉州市杜鹃花发生情况进行调查,结果表明:目前泉州市杜鹃花害虫以叶部害虫为主,有杜鹃冠网蝽、温室白粉虱、杜鹃叶蜂、蜗牛、蓟马与蚜虫,其中杜鹃冠网蝽、温室白粉虱与杜鹃叶蜂发生普遍且严重,其次是蜗牛,蓟马与蚜虫则零星发生。该文描述了以上主要害虫的发生特点,并总结出一系列有效防治方法。

  18. Investigating levels of ICT access and confidence by Wheat Planters in Hamedan Province for (Eurygaster integriceps Sunn Pest Management and Control

    Directory of Open Access Journals (Sweden)

    Heshmatullah Saadi

    2006-10-01

    Full Text Available Varying forms of ICT is used nowadays to disseminate information and innovations among farmers. The present study investigates the level of access and confidence in various information and communication technologies with respect to pest control (e.g. Sunn Pest. A survey was performed over wheat farmers in Hamedan Province. 203 farmers where selected using multi-level, multi-step sampling. The required data was collected using a questionnaire composed of 35 open and two closed questions. Findings demonstrated that Hamedani Farmers have limited access to modern information sources such as computers, e-journals and e-magazines, and agricultural brochures. Organizational institutions and traditional sources of information such as agricultural extension and service centers, TV, neighbors and friends, Agricultural suppliers and such are increasingly available to these farmers. The findings demonstrates that farmers have high confidence in agricultural research center, Hamedan Agricultural Jahad Organization and regional agricultural service and extension. Given the current situation regarding presentation of specialized information on wheat pests and diseases, particularly the Sunn Pest, Agricultual extensions and Service centers that are highly available to the farmers, pose the most viable choice. There seems to be a significant correlation between area planted, level of production and farmers’ access and confidence in ICT. There is a significant, but negative correlation between farmers’ age and their confidence in ICT. Level of access to and confidence in ICT seems to have significant correlation with level of education, social standing and participation in training courses.

  19. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops

    Science.gov (United States)

    Bashir, Oumar; Lemoyne, Pierre

    2016-01-01

    Bacillus thuringiensis (B. t.) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops. PMID:27761325

  20. Integrated Pest Management in a Predator-Prey System with Allee Effects.

    Science.gov (United States)

    Costa, M I S; dos Anjos, L

    2015-08-01

    A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.

  1. 烟粉虱暴发成因及其治理技术研究%Outbreak Reason of Cotton Whitefly [Bemisia Tabaci(Gennadius)]and its Integrated Pest Measure

    Institute of Scientific and Technical Information of China (English)

    慕卫; 刘峰; 刘海涛

    2003-01-01

    The reason of cotton whitefly [ Bemisia tabaci ( Gennadius) ] happened heavily in China in recent years was analyzed from its biology characteristic, host range, crop culture and environment situation, control measure. At last, integrated pest measure for control cotton whiteflywas clarified.

  2. Use of a regulatory mechanism of sex determination in pest insect control

    Indian Academy of Sciences (India)

    Tarig Dafa'alla; Gouliang Fu; Luke Alphey

    2010-09-01

    The sexual development of an insect is defined through a hierarchical control of several sex determining genes. Of these genes, transformer (tra) and doublesex (dsx) are well characterized and functionally conserved, especially dsx. Both genes are regulated at the transcriptional level through sex-specific alternative splicing. Incorporation of a genetically engineered sex-specific splicing module derived from these genes in transgenic systems, such as RIDL (release of insects carrying a dominant lethal), would allow the production of male-only insects for control programmes without any physical intervention.

  3. Potential of the neonicotinoid imidacloprid and the oxadiazine indoxacarb for controlling five coleopteran pests of stored grain

    Institute of Scientific and Technical Information of China (English)

    Gregory J. Daglish; Manoj K. Nayak

    2012-01-01

    The potential for using imidacloprid (a neonicotinoid) and indoxacarb (an oxadiazine) as grain protectants was investigated in bioassays against resistant strains of five stored grain beetles.The species investigated were Rhyzopertha dominica (F.) (the lesser grain borer),Sitophilus oryzae (L.) (the rice weevil),Tribolium castaneum (Herbst)(the rust-red flour beetle),Oryzaephilus surinamensis (L.) (the saw tooth flour beetle),and Cryptolestesferrugineus (Stephens) (the flat grain beetle).Each of these species has developed resistance to one or more protectants,including organophosphorus insecticides,synthetic pyrethroids and the juvenile hormone analogue methoprene.Mortality and reproduction after a 2-week exposure of adults to treated wheat depended on species,dose and insecticide.Imidacloprid had no effect on S.oryzae at any dose,but none of the other species produced any live progeny at 10 mg/kg.Indoxacarb had no effect on T.castaneum at any dose,but none of the other species produced any live progeny at 5 mg/kg.The results show that although both imidacloprid and indoxacarb can control at least four of the five key pests tested at doses comparable to those used for organophosphorus protectants,more potent neonicotinoid or oxadiazine insecticides would be needed than either of these to provide broad spectrum protection of stored grain.

  4. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?

    Science.gov (United States)

    Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane

    2009-03-01

    While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.

  5. Farmers’ knowledge and perceptions of potato pests and their management in Uganda

    Directory of Open Access Journals (Sweden)

    Joshua Sikhu Okonya

    2016-03-01

    Full Text Available As we initiate entomological research on potato (Solanum tuberosum L. in Uganda, there is need to understand farmers’ knowledge of existing insect pest problems and their management practices. Such information is important for designing a suitable intervention and successful integrated pest management (IPM strategy. A farm household survey using a structured questionnaire was conducted among 204 potato farmers in six districts of Uganda (i.e., Kabale, Kisoro, Mbale, Kapchorwa, Mubende, and Kyegegwa during August and September 2013. Diseases, insect pests, price fluctuations, and low market prices were the four highest ranked constraints in potato production, in order of decreasing importance. Cutworms (Agrotis spp., aphids (Myzus persicae (Sulzer, and potato tuber moth (Phthorimaea operculella (Zeller were the three most severe insect pests. Ants (Dorylis orantalis Westwood, whiteflies (Bemisia tabaci (Gennadius, and leafminer flies (Liriomyza huidobrensis (Blanchard were pests of moderate importance. Major yield losses are predominantly due to late blight (Phytophthora infestans (Mont. de Bary and reached 100% without chemical control in the districts of Kabale, Kisoro, Mbale, and Kapchorwa. On average, farmers had little to moderate knowledge about pest characteristics. The predominant control methods were use of fungicides (72% of respondents and insecticides (62% of respondents. On average, only 5% of the 204 farmers knew about insect pests and their natural enemies. This lack of knowledge calls for training of both farmers and extension workers in insect pest identification, their biology, and control. Empowering farmers with knowledge about insect pests is essential for the reduction of pesticide misuse and uptake of more environmentally friendly approaches like IPM. Field surveys would need follow-up in order to assess the actual field infestation rates and intensities of each insect pest and compare the results with the responses

  6. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  7. Rhagoletis cerasi Loew (Diptera: Tephritidae – Biological Characteristics, Harmfulness, and Control

    Directory of Open Access Journals (Sweden)

    Svetomir Stamenković

    2012-01-01

    Full Text Available The European cherry fruit fly, Rhagoletis cerasi Loew (Diptera: Tephritidae, is a highlydestructive pest in sweet and sour cherry orchards with a distribution area throughoutEurope and the temperate regions of Asia. It occurs regularly in all production regions ofthese fruit species in Serbia, damaging up to 10% of cherries in commercial production,while damage can go up to 100% in orchards and on solitary threes unprotected by controlmeasures.In Serbia, European cherry fruit fly most often attacks and damages fruits of the lateripeningcultivars of sweet cherry (Van, Stela, Hedelfinger, Bing, Lambert, Drogan’s Yellow.After a sweet cherry harvest, adults migrate to sour cherry where they continue feedingand ovipositing in half-mature sour cherries (prevailingly the domestic ecotype Oblačinska.During their activity period, larvae damage the fruits, so that they can no longer be consumedeither fresh or processed. The high percentage of sour cherries damaged by R. cerasihas become a factor limiting exports because the intensity of infestation of this fruitexceeds permissible limits. Pesticide use for controlling this pest, especially in integratedproduction, is based on a very poor selection of insecticides which cause problems withresidual ecotoxicity. Consequently, alternative measures for controlling European cherryfruit fly have been intensively studied over the past few years.This work surveys up-to-date results of various studies on the European cherry fruit flyas a very important pest in Serbia and other South and Mid-European countries. The workcontains detailed descriptions of its biological characteristics, flight phenology, infestationintensity and possibilities of fly control in sweet and sour cherry production areas.

  8. Biological agents for whitefly control in Sardinian greenhouse tomatoes.

    Science.gov (United States)

    Nannini, M; Foddi, F; Manca, L; Pisci, R; Sanna, F

    2009-01-01

    To evaluate the effectiveness of alternative options for biocontrol of whiteflies in greenhouse tomatoes, an experiment was carried out during the cropping season 2005-2006 in one of Sardinia's major horticultural districts (S. Margherita di Pula, Cagliari, Italy). Twelve long-cycle and 17 short-cycle tomato crops (8 autumn and 9 spring crops) were surveyed. All of them were treated for insect pest control at the beginning of the growing season, but in 19 out of 29 cases whitefly natural enemies were also released (BCA greenhouses), at least four weeks after the last treatment. The following release programmes were tested: on autumn crops, 1 Macrolophus caliginosus and 12 Eretmocerus mundus/m2; on long-cycle crops, 1 M. caliginosus (released in autumn or spring) and 24 Encarsia formosa/m2 or 48 E. formosa/m2; on spring crops, 1 M. caliginosus and 24 E. formosa/m2 or 48 E. formosa/m2. The cost of each option was fixed at approximately 0.25 Euros/m2. The remaining greenhouses were maintained as controls (no BCA greenhouses). While whitefly and mirid populations were monitored monthly, whitefly species composition and mortality of immature stages were estimated at least twice during the growing season. On short-cycle autumn crops, the release of M. caliginosus and E. mundus produced negligible results in terms of Bemisia tabaci control. On long-cycle and spring crops, even though in June mortality rates in BCA greenhouses were found to be 2- to 3-fold higher than in no-BCA greenhouses, Trialeurodes vaporariorum population growth was not significantly affected by natural enemies. Among the beneficials tested, E. formosa proved to be the most effective; E. mundus and M. caliginosus did not establish well, probably owing to the persistence of insecticide residues, scarce prey availability and intense plant de-leafing. The presence of indigenous natural enemies of whiteflies was observed in most sites, but in general they contributed little to biological control. The

  9. Application of some insecticides and plant crude extracts for controlling insect pests in yard long bean

    Directory of Open Access Journals (Sweden)

    Wipawadee Chamnan

    2003-05-01

    Full Text Available Tests on plant crude extracts of neem seeds, galanga and citronella grass at the rates of 200 ml/20 L of water together with synthetic insecticides, cypermethrin, methamidophos, carbosulfan and carbofuran, at the recommended rates showed that none of the treatments was effective in controlling plant damage caused by adult of bean fly (Ophiomyia phaseoli Tryon. The application of the synthetic insecticide, methamidophos, and plant crude extracts of neem seeds + galanga + citronella grass provided the highest effectiveness tocontrol aphids (Aphis craccivora Koch. Control of A. craccivora was not significantly different between the synthetic insecticide and plant crude extracts, except methamidophos. Pod damage caused by pod borer (Maruca testulalis Geyer and yields were also not significantly different among treatments. However, the highest yield of 1,224.7 kg/rai was recorded in plots treated with neem seed extracts and the synthetic insecticide, carbosulfan. In untreated plots, the lowest yield of 587.3 kg/rai was collected.

  10. Application of some insecticides and plant crude extracts for controlling insect pests in yard long bean

    OpenAIRE

    2003-01-01

    Tests on plant crude extracts of neem seeds, galanga and citronella grass at the rates of 200 ml/20 L of water together with synthetic insecticides, cypermethrin, methamidophos, carbosulfan and carbofuran, at the recommended rates showed that none of the treatments was effective in controlling plant damage caused by adult of bean fly (Ophiomyia phaseoli Tryon). The application of the synthetic insecticide, methamidophos, and plant crude extracts of neem seeds + galanga + citronella grass prov...

  11. Generation of phosphine gas for the control of grain storage pests

    OpenAIRE

    Zhao, B.X.

    2010-01-01

    The phosphine generator is a device for rapid production of phosphine (PH₃) gas to be introduced into grain storage. The aluminum phosphide (ALP) tablets are used as raw material and its effective constituent is 56%. When the aluminum phosphide and water are brought into contact a hydrolyzation reaction takes place to produce the phosphine gas. Controlling the reaction temperature, reaction pressure and the dosage of aluminum phosphide immersed in the water, the hydrolyzation reaction can be ...

  12. Description of a new species of Anagyrus Howard (Hymenoptera: Chalcidoidea: Encyrtidae), a promising biological control agent of the invasive Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Sternorrhyncha: Pseudococcidae).

    Science.gov (United States)

    Rameshkumar, A; Noyes, J S; Poorani, J; Chong, J H

    2013-01-01

    Anagyrus amnestos sp. n. (Hymenoptera: Encyrtidae), a promising parasitoid of the invasive Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Pseudococcidae), is described based on material collected from India. This parasitoid was identified as Anagyrus sp. nov. nr. sinope Noyes & Menezes in recent literature, and was initially collected in Georgia, USA. It was found to be a specific parasitoid of the Madeira mealybug and its biological attributes and potential as a biological control agent of this pest were studied. In what appears to be a case of fortuitous introduction, we detected this parasitoid in large numbers on Madeira mealybugs from the southern Indian state of Karnataka, where the mealybug is a recently introduced invasive pest. In view of its economic importance as a potential biological control agent of the Madeira mealybug, it is formally described and illustrated here. Comparative accounts of the new species vis-a-vis its close relatives in India and the Americas are provided.

  13. Economic Thresholds in Soybean-Integrated Pest Management: Old Concepts, Current Adoption, and Adequacy.

    Science.gov (United States)

    Bueno, A F; Paula-Moraes, S V; Gazzoni, D L; Pomari, A F

    2013-10-01

    Increasing global demands for food underline the need for higher crop yields. The relatively low costs of the most commonly used insecticides in combination with increasing soybean market prices led growers and technical advisors to debate the adequacy of recommended economic thresholds (ETs). The adoption of ETs and pest sampling has diminished in Brazil, leading to excessive pesticide use on soybean. The reduced efficacy of natural biological control, faster pest resurgence, and environment contamination are among the side-effects of pesticide abuse. To address these problems and maximize agricultural production, pest control programs must be guided by a proper integrated pest management (IPM) approach, including the ET concept. Therefore, the most appropriate time to initiate insecticide spraying in soybean is indicated by the available ETs which are supported by experiments over the last 40 years in different edapho-climatic conditions and regions with distinct soybean cultivars. Published scientific data indicate that preventive insecticide use is an expensive and harmful use of chemicals that increases the negative impact of pesticides in agroecosystems. However, the established ETs are for a limited number of species (key pests), and they only address the use of chemicals. There is a lack of information regarding secondary pests and other control strategies in addition to insecticides. It is clear then that much progress is still needed to improve ETs for pest management decisions. Nevertheless, using the current ETs provides a basis for reducing the use of chemicals in agriculture without reducing yields and overall production, thereby improving sustainability.

  14. Chemical Biology Strategies for Biofilm Control.

    Science.gov (United States)

    Yang, Liang; Givskov, Michael

    2015-08-01

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  15. Boundaries of sustainability in simple and elaborate models of agricultural pest control with a pesticide and a non-toxic refuge.

    Science.gov (United States)

    Mohammed-Awel, Jemal; Ringland, John; Bantle, John; Festinger, Aaron; Jo, Hee-Joon; Klafehn, Ryan

    2012-01-01

    In two models of pest control using a pesticidal crop along with a non-pesticidal refuge to prevent the development of resistance, we numerically compute the bifurcations that bound the region in parameter space where control is sustainable indefinitely. An exact formula for one of the bifurcation surfaces in one of the models is also found. One model is conceptual and as simple as possible. The other is realistic and very detailed. Despite the great differences in the models, we find the same distinctive bifurcation structure. We focus on the parameters that determine: (i) the restriction of pest exchange between the crop and the refuge, which we call 'screening' the refuge, and (ii) the recessiveness of the resistance trait. The screened refuge technique is seen to work in the models up to quite high values of fitness of resistant heterozygotes, that is, even when resistance is not strongly recessive.

  16. 基于限时脉冲控制害虫策略的Gompertz模型%Time-limited Pest Impulsive Control Strategy based on Gompertz Model

    Institute of Scientific and Technical Information of China (English)

    徐为坚; 陈时东

    2011-01-01

    基于在限定时间内控制害虫的策略,建立具有Gompertz增长的脉冲微分方程模型,得到该模型的边值解存在的条件,给出计算最大脉冲周期的方法,解决在限定时间内将害虫密度控制在经济阈值之下的问题.%Based on the time-limited pest control strategy,we construct the model of impulsive differential equation with Gompertz growth,and obtain the existence condition of the solution to the boundary value problem of the model.Furthermore,we present the method that can be used to calculate the maximum impulsive period,and solve the problem about how to control the pest density within the economic threshold in a given time.

  17. 引入注目的储粮害虫防治进展述评%A REVIEW OF CONSPICUOUS RESEARCH PROGRESS IN STORED GRAIN PEST CONTROL

    Institute of Scientific and Technical Information of China (English)

    粱权

    2001-01-01

    作者根据所掌握的新近国际储粮害虫防治领域的科学研究与应用技术的动态和发展,结合我国情况,在熏蒸剂磷化氢和惰性粉类杀虫剂方面,择其主要的作了扼要介绍,并提出了看法和建议。%This paper reviews recent world - wide noticeable research achievements of the application of phosphine fumigation for control of stored grain pests and stressed the significance of applicator' s and environmental safe protection. The author also introduced the present status of using diatomaceous earth(DE) in controlling stored grain pests in some developed countries. The necessity of the development of DE in China is also proposed.

  18. Green Control Techniques of Diseases and Insect Pests of Citrus%柑橘病虫害绿色防控技术

    Institute of Scientific and Technical Information of China (English)

    李燕辉; 彭昌家; 苟建华; 李鸿韬

    2014-01-01

    Introduced the quarantine control (including the strict implementation of quarantine mea⁃sures,new citrus orchard location need to consult thelocal station of plant protection or plant quarantine station quarantine shall consult opinions,establish the risk of harmful biological monitoring,timely sam⁃pling inspection,do a good job of citrus canker blockade control),agricultural control and prevention (in⁃cluding choosing superior resistant rootstock varieties and virus-free seedling,science and pruning,improv⁃ing ventilation condition,big fruit fly on early removal of tangerine trees fruit,winter, spring gar⁃den,cleaning tillage,conservation and utilization of natural enemies,strengthen the cultivation and man⁃agement,fruit bagging,trunk white-washed,suitable harvest),physical prevention and control (includ⁃ing light trapping,artificial to kill), physical and chemical induced control (including the yellow board trap,sexual trapping agent booby trap,food trapping agent) the scope of application of green control tech⁃niques and various technical and scientific medication and other citrus pests etc.%介绍了检疫控制(包括严格执行检疫措施、新柑橘园选址须征询当地植保植检站或植物检疫站意见、建立检疫性和外来危险性有害生物监测点,及时抽样送检、切实搞好柑橘溃疡病的封锁控制)、农业防控(包括选用优良抗性砧木品种和无病毒苗木、科学修剪,改善通风条件、及早摘除橘树上大实蝇有虫果、冬、春清园、翻耕、保护利用天敌、加强栽培管理、果实套袋、主干刷白、适期采收)、物理防控(包括灯光诱杀、人工捕杀)、理化诱控(包括黄板诱杀、性诱剂诱杀、食诱剂诱杀)和科学用药等柑橘病虫害绿色防控技术及各项技术的适用范围。

  19. Programmable temperature control system for biological materials

    Science.gov (United States)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  20. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores.

    Science.gov (United States)

    Wassermann, Marion; Selzer, Philipp; Steidle, Johannes L M; Mackenstedt, Ute

    2016-07-01

    The entomopathogenic fungus Metarhizium anisopliae is used as a biological pest control agent against various arthropod species, including ticks. However, the efficacy depends on tick species, tick stage and fungus strain. We studied the effect of M. anisopliae on engorged larvae and nymphs of Ixodes ricinus, the most abundant tick species in Europe, under laboratory and semi-field conditions. A significant reduction of engorged larvae and nymphs could be shown under laboratory as well as under semi-field conditions. Only 3.5% of the larvae treated in the lab and only 18.5% kept under semi-field conditions were able to develop into nymphs compared to the recovered nymphs of the control groups, which were regarded as 100%. Only 7.1% of nymphs were recovered as adult ticks after fungal treatment under semi-field conditions compared to the control (100%). The efficacy of blastospores of M. anisopliae against engorged larvae and nymphs of I. ricinus under semi-field conditions was demonstrated in this study, showing their high potential as a biological control agent of ticks. Further studies will have to investigate the effect of this agent against other stages of I. ricinus as well as other tick species before its value as a biological control agent against ticks can be fully assessed.

  1. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  2. Pests and Diseases Damaged Banana in Yunnan and Their Control%云南香蕉病虫害危害现状及防治策略

    Institute of Scientific and Technical Information of China (English)

    曾莉; 郭志祥; 番华彩; 杨佩文; 李迅东; 刘树芳

    2011-01-01

    It reports the current state of pests diseases occurred in banana of Yunnan province through investigation.Suggestion and control methods are hereby present.%通过调查研究,报道云南香蕉病虫害种类、危害现状和当前病虫防治工作中存在问题,提出防治策略和建议。

  3. Integrated pest management in western flower thrips: past, present and future.

    Science.gov (United States)

    Mouden, Sanae; Sarmiento, Kryss Facun; Klinkhamer, Peter Gl; Leiss, Kirsten A

    2017-01-27

    Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in 'omics' technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost-effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  4. Scientific Opinion on the pest categorisation of Paysandisia archon (Burmeister

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Plant Health (PLH

    2014-07-01

    Full Text Available The Panel on Plant Health performed a pest categorisation of Paysandisia archon for the European Union territory. P. archon is a well-defined pest species attacking many palm species. It is currently present in several southern European Member States (Croatia, Cyprus, France, Greece, Italy, Slovenia and Spain. Malta and Portugal are considered to be very important areas for further spread of the pest. The pest is listed in Annex IIAII of Council Directive 2000/29/EC and special requirements for host plants with respect to P. archon are formulated in Annexes IVAI and IVAII of Council Directive 2000/29/EC. This moth is a strong flier, but its main pathway of spread is via ornamental palms traded from outside the European Union and between Member States. Wherever its hosts are present outdoors in southern Europe, P. archon has the potential to establish. Although P. archon can complete its development in protected cultivation and in private/public indoor plant collections, there is no evidence of establishment. The damage produced by the larvae can cause the death of the plant with consequences for cultivated and native palm trees, and therefore on ecosystem services and biodiversity. At the moment no fully effective chemical or biological control methods are available against spread and impact of P. archon, while the use of glues on the stipe of the palm can be effective but affects the ornamental value of the plant. P. archon meets all pest categorisation criteria for both quarantine pests and regulated non-quarantine pests.

  5. Biology and life table parameters of the mushroom pest, Pediculaster fletchmanni (Acari: Siteroptidae), at three constant temperatures

    Institute of Scientific and Technical Information of China (English)

    KATAYUN KHERADMAND; KARIM KAMALI; YAGHOUB FATHIPOUR; EBRAHIM MOHAMMADI GOLTAPEH; A. M. CAMERIK

    2006-01-01

    This paper is concerned with the bionomics and demography of Pediculaster fletchmanni Wicht (Acar: Siteroptidae) under controlled conditions (20 ± 1, 22 ± 1 and 25 ± 1℃, 70% ± 5% relative humidity and a photoperiod of 16L: 8D hours). Glass Petri dishes inoculated with Trichoderma sp. mycelia were used as substrate and food source. The mean developmental time of the egg and the active larva did not differ significantly at the various constant temperatures, but these periods were significantly different for the quiescent larval stage. The preoviposition period ranged from 2.3 to 2.8 days, the ovipositional period increased with temperature increase, and all females died immediately after oviposition.The development of active larvae was the fastest of all life stages. The developmental threshold ranged between 5.25-14.22℃ the highest value being observed for the quiescent larval development. For immature development required 89.29 degree-days. Values of rm (intrinsic rate of increase) were 0.229, 0.398 and 0.386 for 20, 22 and 25℃ respectively.Finite rates of increase (λ) increased along with increasing temperature from 20-25℃consequently the population doubling time (Dt) and mean generation time (Tc) showed significant differences with increasing temperature.

  6. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey.

    Directory of Open Access Journals (Sweden)

    Donald S Shepard

    Full Text Available Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and Monmouth Counties, New Jersey with a controlled design (AW-IPM vs. control from 2009 through 2011. The study analyzed financial documents and staff time for AW-IPM and surveyed an average of 415 randomly chosen households in AW-IPM and control areas each fall from 2008 through 2011. Hours lost from yard and porch activities were calculated as differences between actual and potential hours of these activities in an average summer week if there had been no mosquito concerns. Net estimated benefits of AW-IPM were based on cross-over and difference-in-difference analyses. Reductions in hours lost were valued based on respondents' willingness to pay for a hypothetical extra hour free of mosquitoes spent on yard or porch activities and literature on valuation of a quality adjusted life year (QALY. The incremental cost of AW-IPM per adult was $41.18 per year. Number of hours lost due to mosquitoes in AW-IPM areas between the base year (2008 and the intervention years (2009-2011 declined by 3.30 hours per summer week in AW-IPM areas compared to control areas. Survey respondents valued this improvement at $27.37 per adult per summer week. Over the 13-week summer, an average adult resident gained 42.96 hours of yard and porch time, worth $355.82. The net benefit over the summer was $314.63. With an average of 0.0027 QALYs gained per adult per year, AW-IPM was cost effective at $15,300 per QALY gained. The benefit-cost ratio from hours gained was 8.64, indicating that each $1 spent on AW-IPM gave adults additional porch and yard time worth over $8.

  7. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey.

    Science.gov (United States)

    Shepard, Donald S; Halasa, Yara A; Fonseca, Dina M; Farajollahi, Ary; Healy, Sean P; Gaugler, Randy; Bartlett-Healy, Kristen; Strickman, Daniel A; Clark, Gary G

    2014-01-01

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and Monmouth Counties, New Jersey with a controlled design (AW-IPM vs. control) from 2009 through 2011. The study analyzed financial documents and staff time for AW-IPM and surveyed an average of 415 randomly chosen households in AW-IPM and control areas each fall from 2008 through 2011. Hours lost from yard and porch activities were calculated as differences between actual and potential hours of these activities in an average summer week if there had been no mosquito concerns. Net estimated benefits of AW-IPM were based on cross-over and difference-in-difference analyses. Reductions in hours lost were valued based on respondents' willingness to pay for a hypothetical extra hour free of mosquitoes spent on yard or porch activities and literature on valuation of a quality adjusted life year (QALY). The incremental cost of AW-IPM per adult was $41.18 per year. Number of hours lost due to mosquitoes in AW-IPM areas between the base year (2008) and the intervention years (2009-2011) declined by 3.30 hours per summer week in AW-IPM areas compared to control areas. Survey respondents valued this improvement at $27.37 per adult per summer week. Over the 13-week summer, an average adult resident gained 42.96 hours of yard and porch time, worth $355.82. The net benefit over the summer was $314.63. With an average of 0.0027 QALYs gained per adult per year, AW-IPM was cost effective at $15,300 per QALY gained. The benefit-cost ratio from hours gained was 8.64, indicating that each $1 spent on AW-IPM gave adults additional porch and yard time worth over $8.

  8. Are Entomopathogenic Nematodes Effective Biological Control Agents Against the Carob Moth, Ectomyelois ceratoniae?

    Science.gov (United States)

    Memari, Zahra; Karimi, Javad; Kamali, Shokoofeh; Goldansaz, Seyed Hossein; Hosseini, Mojtaba

    2016-12-01

    The carob moth (Ectomyelois ceratoniae) is the key pest of pomegranate, which causes a significant percentage of losses in pomegranate orchards and warehouses of Iran annually. The pest larvae are characterized by displaying a cryptic behavior within the fruit, which avoids most routine control techniques, especially chemical method. The low efficiency of traditional measurements and also the rich species diversity of natural enemies within the infested fruits highlight the necessity of exploring effective control methods, especially environmental friendly approaches. Entomopathogenic nematodes (EPNs) are a group of biological control agents that actively search for the host, including those in a cryptic habitat like the carob moth larvae within infested fruits. Here, we assumed that treatment of the infested and dropped fruits with EPNs may provide new insight into the management of the carob moth. Three species of EPNs, Steinernema feltiae, S. carpocapsae, and Heterorhabditis bacteriophora were selected and used in a series of in vitro and in vivo experiments. In preliminary assays, the EPNs species were used with different concentrations of infective juveniles (IJs) (0, 1, 5, 10, 25, and 50 IJ/larvae) in 2-cm diam. plates. The mortality rates of the laboratory tests were 79.75% and 76.5% for S. feltiae and S. carpocapsae, corresponded to LC50 value of 2.02 IJ/larva for S. feltiae and 2.05 IJ/larva for S. carpocapsae. On the contrary, H. bacteriophora demonstrated low virulence on the pest larvae in petri tests with a LC50 = 426.92 IJ/larva. Hence, both Steinernema species were selected for subsequent experiments. The penetration rate for S. feltiae and S. carpocapsae into the hemocoel of the pest was 43% and 31%, respectively, and the corresponding reproduction rate was 15,452 IJ/larva for S. feltiae and 18,456 IJ/larva for S. carpocapsae. The gathered data from those in vitro tests were used for a field assay. Different concentrations (5, 10, 50, 100, and 160

  9. Impact of combining planting date and chemical control to reduce larval densities of stem-infesting pests of sunflower in the central plains.

    Science.gov (United States)

    Charlet, Laurence D; Aiken, Robert M; Meyer, Ron F; Gebre-Amlak, Assefa

    2007-08-01

    The guild of stem-infesting insect pests of sunflower, Helianthus annuus L., within the central Plains is a concern to producers chiefly due to losses caused by plant lodging from the sunflower stem weevil, Cylindrocopturus adspersus (LeConte) (Coleoptera: Curculionidae), and Dectes texanus texanus LeConte (Coleoptera: Cerambycidae). The incidence of a root boring moth, Pelochrista womonana (Kearfott) (Lepidoptera: Tortricidae), also has increased. Experiments were conducted in three locations in Colorado and Kansas during 2001-2003 to investigate the potential of combining planting date and foliar and seed treatment insecticide applications to lower insect stalk densities of these three pests. The impact of these strategies on weevil larval parasitoids also was studied. Eight sunflower stem weevil larval parasitoid species were identified. All were Hymenoptera and included the following (relative composition in parentheses): Nealiolus curculionis (Fitch) (42.6%), Nealiolus collaris (Brues) (3.2%) (Braconidae), Quadrastichus ainsliei Gahan (4.2%) (Eulophidae), Eurytoma tylodermatis Ashmead (13.1%) (Eurytomidae), Neocatolaccus tylodermae (Ashmead) (33.7%), Chlorocytus sp. (1.6%), Pteromalus sp. (0.5%) (Pteromalidae), and Eupelmus sp. (1.0%) (Eupelmidae). The results from this 3-yr study revealed that chemical control was often reliable in protecting the sunflower crop from stem pests and was relatively insensitive to application timing. Although results in some cases were mixed, overall, delayed planting can be a reliable and effective management tool for growers in the central Plains to use in reducing stem-infesting pest densities in sunflower stalks. Chemical control and planting date were compatible with natural mortality contributed by C. adspersus larval parasitoids.

  10. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  11. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  12. Fungal biological control agents for integrated management of Culicoides spp. (Diptera: Ceratopogonidae of livestock

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2015-02-01

    Full Text Available Aim: Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana had wide host range against insects and hence these are being exploited as fungal bio-pesticide on a large scale. Both fungi are proved pesticides against many crop pests and farmers are well acquainted with their use on the field. Thus, research was aimed to explore the potency of these fungal spores against larval and adult Culicoides midges, a pest of livestock. Materials and Methods: In-vitro testing of both fungal biological control agents was undertaken in Petri dishes against field collected Culicoides larvae, while in plastic beakers against field collected blood-engorged female Culicoides midges. In-vivo testing was undertaken by spraying requisite concentration of fungal spores on the drainage channel against larvae and resting sites of adult Culicoides midges in the cattle shed. Lethal concentration 50 (LC50 values and regression equations were drawn by following probit analysis using SPSS statistical computerized program. Results: The results of this study revealed LC50 values of 2692 mg and 3837 mg (108 cfu/g for B. bassiana and M. anisopliae, respectively, against Culicoides spp. larvae. Death of Culicoides larvae due to B. bassiana showed greenish coloration in the middle of the body with head and tail showed intense blackish changes, while infection of M. anisopliae resulted in death of Culicoides larvae with greenish and blackish coloration of body along with total destruction, followed by desquamation of intestinal channel. The death of adult Culicoides midges were caused by both the fungi and after death growth of fungus were very well observed on the dead cadavers proving the efficacy of the fungus. Conclusion: Preliminary trials with both funguses (M. anisopliae, B. bassiana showed encouraging results against larvae and adults of Culicoides spp. Hence, it was ascertained that, these two fungal molecules can form a part of biological control and

  13. Optically controlled collisions of biological objects

    Science.gov (United States)

    Davies, Benjamin J.; Kishore, Rani; Mammen, Mathai; Helmerson, Kristian; Choi, Seok-Ki; Phillips, William D.; Whitesides, George M.

    1998-04-01

    We have developed a new assay in which two mesoscale particles are caused to collide using two independently controlled optical tweezers. This assay involves the measurement of the adhesion probability following a collision. Since the relative orientation, impact parameter (i.e., distance of closest approach), and collision velocity of the particles, as well as the components of the solution, are all under the user's control, this assay can mimic a wide range of biologically relevant collisions. We illustrate the utility of our assay by evaluating the adhesion probability of a single erythrocyte (red blood cell) to an influenza virus-coated microsphere, in the presence of sialic acid-bearing inhibitors of adhesion. This probability as a function of inhibitor concentration yields a measure of the effectiveness of the inhibitor for blocking viral adhesion. Most of the inhibition constants obtained using the tweezers agree well with those obtained from other techniques, although the inhibition constants for the best of the inhibitors were beyond the limited resolution of conventional assays. They were readily evaluated using our tweezers-based assay, however, and prove to be the most potent inhibitors of adhesion between influenza virus and erythrocytes ever measured. Further studies are underway to investigate the effect of collision velocity on the adhesion probability, with the eventual goal of understanding the various mechanisms of inhibition (direct competition for viral binding sites versus steric stabilization). Analysis of these data also provide evidence that the density of binding sites may be a crucial parameter in the application of this assay and polymeric inhibition in general.

  14. Herbivore-induced plant volatiles to enhance biological control in agriculture.

    Science.gov (United States)

    Peñaflor, M F G V; Bento, J M S

    2013-08-01

    Plants under herbivore attack synthetize defensive organic compounds that directly or indirectly affect herbivore performance and mediate other interactions with the community. The so-called herbivore-induced plant volatiles (HIPVs) consist of odors released by attacked plants that serve as important cues for parasitoids and predators to locate their host/prey. The understanding that has been gained on the ecological role and mechanisms of HIPV emission opens up paths for developing novel strategies integrated with biological control programs with the aim of enhancing the efficacy of natural enemies in suppressing pest populations in crops. Tactics using synthetic HIPVs or chemically/genetically manipulating plant defenses have been suggested in order to recruit natural enemies to plantations or help guiding them to their host more quickly, working as a "synergistic" agent of biological control. This review discusses strategies using HIPVs to enhance biological control that have been proposed in the literature and were categorized here as: (a) exogenous application of elicitors on plants, (b) use of plant varieties that emit attractive HIPVs to natural enemies, (c) release of synthetic HIPVs, and (d) genetic manipulation targeting genes that optimize HIPV emission. We discuss the feasibility, benefits, and downsides of each strategy by considering not only field studies but also comprehensive laboratory assays that present an applied approach for HIPVs or show the potential of employing them in the field.

  15. Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control.

    Directory of Open Access Journals (Sweden)

    Heidi Liere

    Full Text Available BACKGROUND: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. CONCLUSIONS/SIGNIFICANCE: From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern.

  16. Host-Symbiont Interactions for Potentially Managing Heteropteran Pests

    Directory of Open Access Journals (Sweden)

    Simone Souza Prado

    2012-01-01

    Full Text Available Insects in the suborder Heteroptera, the so-called true bugs, include over 40,000 species worldwide. This insect group includes many important agricultural pests and disease vectors, which often have bacterial symbionts associated with them. Some symbionts have coevolved with their hosts to the extent that host fitness is compromised with the removal or alteration of their symbiont. The first bug/microbial interactions were discovered over 50 years ago. Only recently, mainly due to advances in molecular techniques, has the nature of these associations become clearer. Some researchers have pursued the genetic modification (paratransgenesis of symbionts for disease control or pest management. With the increasing interest and understanding of the bug/symbiont associations and their ecological and physiological features, it will only be a matter of time before pest/vector control programs utilize this information and technique. This paper will focus on recent discoveries of the major symbiotic systems in Heteroptera, highlighting how the understanding of the evolutionary and biological aspects of these relationships may lead to the development of alternative techniques for efficient heteropteran pest control and suppression of diseases vectored by Heteroptera.

  17. Efficacy of Intercropping as a Management Tool for the Control on Insect Pests of Cabbage in Ghana 1H m 2m

    Directory of Open Access Journals (Sweden)

    Timbilla, JA.

    2001-01-01

    Full Text Available The efficacy of intercropping cabbage with other vegetables and herbs as a management tool in migitating insect pests problems of cabbage was investigated in the field at Kwadaso, Kumasi during a three season period in the forest region of Ghana. The results showed that Plutella xylostella could be effectively controlled when cabbage is intercropped with onion, spearmint and tomato. However, there is the need to control Hellula undalis in endemie areas with pesticides up to six weeks after transplanting. Both Karate (cyhalothrin and Dipel 2X (the biopesticide Bacillus thuringiensis subsp. Kurstaki were effective in mitigating the problem of H. undalis in the intercropping experiments and both are recommended.

  18. Coupled information diffusion--pest dynamics models predict delayed benefits of farmer cooperation in pest management programs.

    Directory of Open Access Journals (Sweden)

    François Rebaudo

    2011-10-01

    Full Text Available Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM combining social (diffusion theory and biological (pest population dynamics models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.

  19. Coupled information diffusion--pest dynamics models predict delayed benefits of farmer cooperation in pest management programs.

    Science.gov (United States)

    Rebaudo, François; Dangles, Olivier

    2011-10-01

    Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.

  20. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far.

    Science.gov (United States)

    Joga, Mallikarjuna R; Zotti, Moises J; Smagghe, Guy; Christiaens, Olivier

    2016-01-01

    In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.

  1. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far

    Science.gov (United States)

    Joga, Mallikarjuna R.; Zotti, Moises J.; Smagghe, Guy; Christiaens, Olivier

    2016-01-01

    In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants. PMID:27909411

  2. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  3. Toxins for transgenic resistance to hemipteran pests.

    Science.gov (United States)

    Chougule, Nanasaheb P; Bonning, Bryony C

    2012-06-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  4. Alternative fumigants to methyl bromide for the control of pest infestation in grain and dry food products

    OpenAIRE

    Shaaya, E.; Kostyukovsky, M.

    2010-01-01

    The primary aim of the current study is to evaluate the potential use of the known isothyiocyanates (ITC) as compared to a new ITC isolated from Eruca sativa (salad rocket) as fumigants for the control of stored products insects. The biological activity of methyl iodide (CH₃I), carbon disulphide (CS₂), benzaldehyde (C₇H₆0) and essential oils were also evaluated. The toxicity of the various fumigants was assessed against adults and larvae of a number of major stored-product insects. ITCs are p...

  5. Study of the pest community of velvetleaf (Abutilon theophrasti Medic.).

    Science.gov (United States)

    Nagy, V; Keresztes, B; Nádasy, E

    2011-01-01

    Velvetleaf (Abutilon theophrasti Medicus 1787) is one of the most economically threatening weed plant in Hungary. Researching biological control against it, and identifying a possible and effective biocontrol agent is an important challenge, as chemical control is difficult and expensive, and there is an increasing claim to practice slight plant protection. Entomological studies were made in several parts of the world, for evaluating the species, occuring in velvetleaf, but none of these kind of experiments were assessed in Hungary. Our observations were made in field and plastic boxes, both under open field circumstances in 2008 and 2009 by visually assessing pests, netting and damage based identifying. Meanwhile 8 pest species were identified, including (Helix pomatia Linnaeus 1758--roman snale; Trialeurodes vaporariorum (Westwood 1856)--greenhouse whitefly; Oxycarenus lavaterae (Fabricius 1787)-- lime seed bug; Pyrrhocoris apterus (Linnaeus 1758)--fire bug; Rhopalus parumpunctatus Schilling 1829--common hyaline bug; Liorhyssus hyalinus--hyaline grass bug (Fabricius 1794); Mamestra brassicae (Linnaeus 1758)--cabbage moth; Helicoverpa armigera (Hübner 1808)--corn earworm). On the whole the literature datas were enlarged with four new velvetleaf pests (roman scale, lime seed bug, common hyaline bug, cabbage moth). Considering the earlier literature and our results, Liorhyssus hyalinus may play an important role on biological management of velvetleaf. However this pest considered as polyphagous, but discovered to occur in great numbers on velvetleaf, this points to the fact that can be its main host plant and by sucking on the plant, can cause decreased germination rate. We suggest the "hyaline velvetleaf bug" name istead of "hyaline grass bug". Of course, additional experiments are needed on this pest to may use safety and effectively in the future.

  6. Perspectives on the potential of entomopathogenic fungi in biological control of ticks.

    Science.gov (United States)

    Fernandes, Éverton K K; Bittencourt, Vânia R E P; Roberts, Donald W

    2012-03-01

    Ticks are serious health threats for humans, and both domestic and wild animals. Ticks are controlled mostly by application of chemical products; but these acaricides have several negative side effects, including toxicity to animals, environmental contamination, and induction of chemical resistance in some tick populations. Entomopathogenic fungi infect arthropods in nature and can occur at enzootic or epizootic levels in their host populations. Laboratory studies clearly demonstrate that these fungi can cause high mortality in all developmental stages of several tick species, and also reduce oviposition of infected engorged females. Tick mortality following application of fungi in the field, however, often is less than that suggested by laboratory tests. This is due to many negative biotic and climatic factors. To increase efficacy of fungal agents for biological control of ticks under natural conditions, several points need consideration: (1) select effective isolates (viz., high virulence; and tolerance to high temperature, ultraviolet radiation and desiccation); (2) understand the main factors that affect virulence of fungal isolates to their target arthropods including the role of toxic metabolites of the fungal isolates; and (3) define with more precision the immune response of ticks to infection by entomopathogenic fungi. The current study reviews recent literature on biological control of ticks, and comments on the relevance of these results to advancing the development of fungal biocontrol agents, including improving formulation of fungal spores for use in tick control, and using entomopathogenic fungi in integrated pest (tick) management programs.

  7. Biological Control Against the Cowpea Weevil (Callosobruchus Chinensis L., Coleoptera: Bruchidae Using Essential Oils of Some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Fatiha Righi Assia

    2014-07-01

    Full Text Available Chickpea (Cicer arietinum L. is a valuable foodstuff but unfortunately this legume is prone to insect attacks from the chick pea weevil (Callosobruchus chinensis L.. This serious pest damages the chickpea and causes decreases in the yield and in the nutritional quality. Biological control is being used to deal with this problem. We tried different doses of the essential oils of three new medicinal plants, namely Salvia verbenaca L., Scilla maritima L., and Artemisia herba-alba Asso to limit the damage of the chick pea weevil pest, and to protect consumer’s health. To determine the effect and efficiency of the oil, the tests were conducted using the different biological parameters of fertility, longevity, and fecundity, under controlled temperature and relative humidity (28°C and 75%. The effectiveness of organic oils was demonstrated. We tested these oils on the germination of seeds. The obtained results showed that the tested plant oils have a real organic insecticide effect. The essential oil of Artemisia proved most effective as a biocide; achieving a mortality rate of 100%. A significant reduction in longevity was observed under the effect of 30 μl of S. maritima (1.3 days and S. verbenaca (2.8, 4.6 days, respectively, for males and females compared to 8 and 15 days for the control. For fecundity, an inhibition of oviposition was obtained using 30 μl of Salvia and Scilla essential oils. The test on the seed germination using different essential oils, showed no damage to the germinating seeds. The germination rate was 99%. These findings suggest that the tested plants can be used as a bioinsecticide for control of the C. chinensis pest of stored products.

  8. Safer Schools: Achieving a Healthy Learning Environment through Integrated Pest Management.

    Science.gov (United States)

    2003

    Integrated pest management (IPM) is a program of prevention, monitoring, and control that offers the opportunity to eliminate or drastically reduce hazardous pesticide use. IPM is intended to establish a program that uses cultural, mechanical, biological, and other non-toxic practices, and only introduces least-hazardous chemicals as a last…

  9. 'More than two': integrating biological control and sterile insects, from factory to field, and the possibility of its implementation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Cladera, Jorge L.; Viscarret, Mariana M.; Carabajal Paladino, Leonela Z.; Pietrek, Alejandro [Instituto de Tecnologia Agropecuaria (INTA), Castelar (Argentina). Inst. de Genetica; Soria, M. Alejandra; Ovruski, Sergio M. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (PROIMI/CONICET), Tucuman (Argentina). Planta Piloto de Procesos Industrials Microbiolo

    2006-07-01

    No single control measure is able to provide full control of a pest. Integration of techniques like the sterile insect (SIT) with biological control practices (BC) should be intensively sough for. This possibility is revised here in connection with the fruit fly pest problems in Argentina. Theoretical reasons as well as practical conveniences for this integration are reviewed in this paper, the intention of which is to promote a discussion on how to approach the experimental study of the SIT+CB integration problem, i.e. how to measure the effects of each separate control measure as well as that of both acting together, in a repeatable manner. Arguments are advanced in favor of the joint production and releases of sterile fruit flies and parasitoids. (author)

  10. Coupled Human-Environment Dynamics of Forest Pest Spread and Control in a Multi-Patch, Stochastic Setting.

    Directory of Open Access Journals (Sweden)

    Qasim Ali

    Full Text Available The transportation of camp firewood infested by non-native forest pests such as Asian long-horned beetle (ALB and emerald ash borer (EAB has severe impacts on North American forests. Once invasive forest pests are established, it can be difficult to eradicate them. Hence, preventing the long-distance transport of firewood by individuals is crucial.Here we develop a stochastic simulation model that captures the interaction between forest pest infestations and human decisions regarding firewood transportation. The population of trees is distributed across 10 patches (parks comprising a "low volume" partition of 5 patches that experience a low volume of park visitors, and a "high volume" partition of 5 patches experiencing a high visitor volume. The infestation spreads within a patch--and also between patches--according to the probability of between-patch firewood transportation. Individuals decide to transport firewood or buy it locally based on the costs of locally purchased versus transported firewood, social norms, social learning, and level of concern for observed infestations.We find that the average time until a patch becomes infested depends nonlinearly on many model parameters. In particular, modest increases in the tree removal rate, modest increases in public concern for infestation, and modest decreases in the cost of locally purchased firewood, relative to baseline (current values, cause very large increases in the average time until a patch becomes infested due to firewood transport from other patches, thereby better preventing long-distance spread. Patches that experience lower visitor volumes benefit more from firewood movement restrictions than patches that experience higher visitor volumes. Also, cross-patch infestations not only seed new infestations, they can also worsen existing infestations to a surprising extent: long-term infestations are more intense in the high volume patches than the low volume patches, even when

  11. New Biologic Drug Tackles Hard-To-Control Asthma

    Science.gov (United States)

    ... html New Biologic Drug Tackles Hard-to-Control Asthma Benralizumab significantly cuts respiratory attacks, two trials show ... drug reduces flare-ups in patients with severe asthma that is not controlled by steroid inhalers alone, ...

  12. Dynamical Systems and Control Theory Inspired by Molecular Biology

    Science.gov (United States)

    2014-10-02

    in both bacterial and eukaryotic signaling pathways. A common theme in the systems biology literature is that certain systems whose output variables...AFRL-OSR-VA-TR-2014-0282 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY Eduardo Sontag RUTGERS THE STATE UNIVERSITY OF NEW JERSEY...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY AFOSR FA9550-11-1-0247

  13. Pest repelling properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2014-01-01

    Ants control pests via predation and physical deterrence; however, ant communication is based on chemical cues which may serve as warning signals to potential prey and other intruders. The presence of ant pheromones may, thus, be sufficient to repel pests from ant territories. This mini...

  14. DoD Pest Management Program

    Science.gov (United States)

    2008-05-29

    Medicine shall provide program administration and data support services, including permanent archiving for all Military Services, in accordance with...minor nuisance pest problems. Quarters and housing occupants are responsible for controlling pests, such as cockroaches , household infesting ants... cockroach and ant baits and/or traps, mouse traps, glue boards, and ready-to-use aerosol pesticides. The office designated to manage the

  15. Test of“Baolin Preparation”Inject Control Pests of Landscape Trees Pests in Nanchang City%“保林制剂”注杆防治南昌市园林树木害虫试验研究

    Institute of Scientific and Technical Information of China (English)

    袁文金; 揭建林; 高璜; 吴宁刚; 邓玉华; 黄文超

    2013-01-01

    The landscape trees pests in Nanchang were used for test of“Baolin preparation”inject control, such as:Anoplophora glabripennis, Aromia bungii, Clostera anachoreta, Latoia sinica, Thosea sinensis, Eriococcus legerstroemiae, etc. The test results showed that the “Baolin preparation”has a good control effect on Clostera anachoreta, Latoia sinica, Thosea sinensis, and the drug dose in 6.0~10.0 mL/10 cm DBH, its control effect can reach more than 90%. It has fast control effect, long duration of efficacy, convenient medication, no pollution, no impact on the surrounding environment and other advantages.%对南昌市园林绿化树种害虫:光肩星天牛、桃红颈天牛、杨扇舟蛾、绿刺蛾、扁刺蛾、紫薇绒蚧等进行“保林制剂”注杆防治试验,结果表明“保林制剂”对杨扇舟蛾、扁刺蛾和绿刺蛾具有很好的防治效果,且药物剂量在6.0-10.0 mL/10 cm胸径时,其防治效果能达到了90%以上。防治效果快、药效持续时间长,用药方便、没污染、对周边环境无影响等优点。

  16. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  17. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  18. The effect of temperature on the biology of Phytoseiulus macropilis (Banks (Phytoseiidae in applied biological control program

    Directory of Open Access Journals (Sweden)

    Catiane Dameda

    2016-10-01

    Full Text Available Phytoseiulus macropilis (Banks (Phytoseiidae is a natural enemy of Tetranychus urticae Koch (TSSM, a common pest in several cultures, especially in greenhouses. This research aimed to know the biological parameters of a strain of P. macropilis from Vale do Taquari, State of Rio Grande do Sul, feeding on TSSM at different temperatures. The study was initiated with 30 eggs individualized in arenas under the temperature of 20, 25 and 30 ± 1°C and relative humidity of 80 ± 10%. The average length (T of each generation decreased with the increase of temperature, ranging from 25.71 days at 20°C to 11.14 days at 30°C. The net reproductive rate (Ro ranged from 45.47 at 20°C to 18.25 at 30°C; the innate capacity for increase (rm was 0.15 at 20°C, reaching 0.26 at 30°C and the finite increase rate (λ ranged from 1.41 to 1.82 females day-1 at 20 and 30°C, respectively. In the present study, it was observed that the strain of the evaluated predatory mite from mild climate of South Brazil, might present a good performance to control TSSM when exposed to a temperature range between 20 and 30°C.

  19. Control Effects of Two-Batch-Duck Raising with Rice Framing on Rice Diseases, Insect Pests and Weeds in Paddy Field

    Directory of Open Access Journals (Sweden)

    Kai-ming Liang

    2012-10-01

    Full Text Available Rice-duck farming system is one of the means of organic rice farming, in which the weeds, diseases and insects could be effectively controlled with minimal or no pesticide and herbicide application. Whereas in conventional rice-duck farming system the controlling effect on diseases, insect pests and weeds was slowly disappeared after the rice heading stage at which ducks were driven out of the paddy field. To fill up the blank period of pasture activities of ducks, this study put forward two new rice-duck farming systems innovated from the conventional rice-duck farming system, in these new systems, two batches of ducks were raised with rice within one rice planting season. The results revealed that the overall controlling effect of ducks on rice diseases, insect pest and weeds was significantly enhanced in the two new rice-duck farming systems without agrochemicals application. It might be suggested that these two new systems have potential application as biocontrol agent for the organic rice agriculture.

  20. Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana

    OpenAIRE

    Kim, Jeong Jun; Jeong, Gayoung; Han, Ji Hee; Lee, Sangyeob

    2013-01-01

    Aphids are one of the most destructive pests in crop production such as pepper, cucumber, and eggplants. The importance of entomopathogenic fungi as alternative pest control agents is increasing. Conidia of entomopathogenic fungi are influenced by environmental conditions, such as temperature and relative humidity, and cause slow and fluctuating mortality. These factors have prevented wider application and use of biocontrol agents. For investigation of means of mitigation of such problems, we...

  1. Biology and control of Varroa destructor.

    Science.gov (United States)

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed.

  2. Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA

    Directory of Open Access Journals (Sweden)

    Shawn A. Steffan

    2017-02-01

    Full Text Available The cranberry fruitworm (Acrobasis vaccinii Riley, sparganothis fruitworm (Sparganothis sulfureana Clemens, and blackheaded fireworm (Rhopobota naevana Hübner are historically significant pests of cranberries (Vaccinium macrocarpon Aiton in the Upper Midwest (Wisconsin, USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant’s developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.

  3. Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity

    Directory of Open Access Journals (Sweden)

    Shahid Ali Ahmad

    2012-01-01

    Full Text Available Entomopathogenic fungi vary considerably in their mode of action and virulence. Successful infection depends primarily on the adherence and penetration ability of a fungus to the host integuments. A variety of extracellular enzymes is produced during the degradation of insect integument. The attempts to control insects have changed over time from chemicals to natural control methods. This is why the development of natural methods of insect control or biopesticides, is preferred. By the use of fungal entomopathogens, insect pests can be controlled. There is no doubt that insects have been used for many years, but their effective use in the field remains elusive. However, their additional role in nature has also been discovered. Comparison of entomopathogens with conventional chemical pesticides depends on their efficiency and cost. In addition to efficiency, there are advantages in using microbial control agents, such as human safety and other non-target organisms; pesticide residues are minimized in food and biodiversity increased in managed ecosystems. In the present review the pathogenicity and virulence of entomopathogenic fungi and their role as biological control agents using biotechnology will be discussed.

  4. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand.

    Science.gov (United States)

    Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.

  5. 防治叶菜病虫害型生物菌肥生产技术%Production Technology of Biological Bacterial Fertilizer for Prevention and Cure of Plant Diseases and Insect Pests of Leaf Vegetables

    Institute of Scientific and Technical Information of China (English)

    万德印; 王刚; 郑曙光

    2015-01-01

    针对农业生产中大量使用农药、化肥所导致的食品安全和环境污染问题,开发了防治叶菜病虫害型生物菌肥生产工艺,并介绍了菌种选择及生产技术指标等。防治叶菜病虫害型生物菌肥是在传统的叶菜专用菌肥中添加枯草芽孢杆菌和苏云金芽孢杆菌,不仅可有效防治叶菜病虫害,还利于培肥地力、提高叶菜产量和品质。%In connection with problems of food safety and environmental pollution caused by pesticide and fertilizer widely used in agriculture production,the production technology of biological bacterial fertilizer for prevention and cure of plant diseases and insect pests of leaf vegetables is researched and developed,and the strain selection and production technical indexes are introduced. The biological bacterial fertilizer for prevention and cure of plant diseases and insect pests of leaf vegetables is produced by adding bacillus subtilis and bacillus thuringlensis to traditional special bacterial fertilizer for leaf vegetables,it can not only effectively prevent and cure plant diseases and insect pests of leaf vegetables,but also benefit raising soil fertility,promoting yield and quality of leaf vegetables.

  6. Integrated pest management model and optimization control%害虫综合治理模型与最优控制策略

    Institute of Scientific and Technical Information of China (English)

    杨光

    2011-01-01

    This paper considers optimization control of integrated pest management. Crops to passive absorbing due to spaying pesticides, the effects of the pesticides gradually decrease, this process of the absorption, distribution and elimination would be analogous to taking medicine of the human being. So in this paper we try to establish the models of the crops pesticide effect by pharmacokinetics theory. First of all, the impulsive models of the pest management consisting of the spaying pesticides and releasing natural enemies of pests along with crops pesticide effect are established and analyzed. Then, making use of the optimal control theory to solve the optimum dose of the pesticides and the time intervals of spaying pesticides. Thus, given an optimal pest management strategy of the integrated pest management, which make pesticide residuals in the crops and the total dose of the spraying pesticides least, also make the maximum value of the pest population is larger then the given Economic Threshold. Finally, the simulation result shows the strategy is viable and effectively.%针对农作物害虫综合治理问题,提出一个对农作物危害最小的最优方案.由于喷洒杀虫剂,农作物被迫吸收农药,药效随时间下降,其吸收、分布和消除过程与人类用药类似,作者大胆尝试利用药物动力学理论研究建立农作物药效模型.首先根据脉冲微分方程理论,将农作物药效模型与害虫-天敌动态模型结合起来,建立农作物药效模型和喷洒杀虫剂及释放天敌的脉冲控制模型;然后根据脉冲控制理论分析上述模型的稳定性,利用最优控制理论,求出最适杀虫剂药量和喷洒时间间隔,使得杀虫剂药量在农作物的残留和喷洒农药量最少,同时使害虫数量控制在经济危害阈值以下,给出综合治理农业害虫的最佳方案;最后,通过数值模拟解释这一方案的执行.结果表明,该策略行之有效.

  7. Current management efforts against Cactoblastis cactorum as a pest of North American prickly pear cactus, Opuntia spp.

    Science.gov (United States)

    The unintentional arrival of Cactoblastis cactorum (Lepidoptera: Pyralidae) to Florida changed the scope of this celebrated weed biological control agent from savior to pest. Based on this insects’ substantial control of non-native Opuntia spp. (prickly pear cactus) in Australia and other parts of ...

  8. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants.

    Science.gov (United States)

    Ruiz de Escudero, Iñigo; Estela, Anna; Escriche, Baltasar; Caballero, Primitivo

    2007-01-01

    The potential of Bacillus thuringiensis Cry proteins to control the grape pest Lobesia botrana was explored by testing first-instar larvae with Cry proteins belonging to the Cry1, Cry2, and Cry9 groups selected for their documented activities against Lepidoptera. Cry9Ca, a toxin from B. thuringiensis, was the protein most toxic to L. botrana larvae, followed in decreasing order by Cry2Ab, Cry1Ab, Cry2Aa, and Cry1Ia7, with 50% lethal concentration values of 0.09, 0.1, 1.4, 3.2, and 8.5 microg/ml of diet, respectively. In contrast, Cry1Fa and Cry1JA were not active at the assayed concentration (100 microg/ml). In vitro binding and competition experiments showed that none of the toxins tested (Cry1Ia, Cry2Aa, Cry2Ab, and Cry9C) shared binding sites with Cry1Ab. We conclude that either Cry1Ia or Cry9C could be used in combination with Cry1Ab to control this pest, either as the active components of B. thuringiensis sprays or expressed together in transgenic plants.

  9. Sampling stored product insect pests: a comparison of four statistical sampling models for probability of pest detection

    Science.gov (United States)

    Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...

  10. Prospects for the use of entomopathogenic fungi for control of stored-product pests%利用昆虫病原真菌防治贮粮害虫展望

    Institute of Scientific and Technical Information of China (English)

    杰夫· 劳尔德

    2007-01-01

    Only two fungus species,Beauveria bassiana and Metarhizium anisopliae,have been given serious attention as possible microbial controls for stored-product pests.Their host ranges are broad, but their potency for the various target insects varies greatly,and some of the most important pests such as the red flour beetle are very tolerant of fungi.Accordingly, strategies are needed to improve the fungal performance.One such strategy is combination with other environmentally benign treatments such as controlled desiccant dusts and controlled atmospheres. Ironically the relatively dryness of stored-product environments favors fungal efficacy.Desiccation stress renders some insects more vulnerable to fungi.The longevity of fungus spores is also best under dry conditions.The prospects of fungi for control of stored-product pests can be improved by taking advantage of these phenomena and judicious selection of use venues and application strategies.

  11. Autonomous Biological Control of Dactylopius opuntiae (Hemiptera: Dactyliiopidae) in a Prickly Pear Plantation With Ecological Management.

    Science.gov (United States)

    Cruz-Rodríguez, J A; González-Machorro, E; Villegas González, A A; Rodríguez Ramírez, M L; Mejía Lara, F

    2016-04-07

    It is broadly known that the conservation of biological diversity in agricultural ecosystems contributes to pest control. This process was studied in a prickly pear plantation (Opuntia megacanthaandOpuntia ficus-indica) located in central Mexico. No insecticides have been used on this plantation since 2000, and local farmers believe that the presence of different species of insects limits the growth of the wild cochineal (Dactylopius opuntiaeCockerell), which is one of the main pests in this crop. From August 2012 to November 2013, we estimated the number of cochineal per stem in the plantation and determined its spatial distribution pattern. In order to identify signs of population regulation, we obtained histograms of the frequency distribution of the size of the clusters and determined if distribution is adjusted to a power function (power law). We identified the cochineal predators and determined the correlation in their abundances. The greater abundance of cochineal occurred between summer and autumn while the minimum value was recorded in spring. The frequency distribution of the cochineal clusters had a high level of adjustment to a power function, suggesting the presence of population regulation processes. Six species that prey on cochineal were identified.Laetilia coccidivoraandHyperaspis trifurcatawere the most active and their abundance was significantly correlated with the abundance of cochineal. We found that the probability of extinction of these insects in a cladode increases with its density, since the density and predator activity also increased. It is likely that, under these conditions, the cochineal have established an autonomous control.

  12. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  13. Current status and prospect of pests on Moringa oleifera%辣木害虫研究现状与展望

    Institute of Scientific and Technical Information of China (English)

    李召波; 田洋; 马春花; 高熹; 李强

    2016-01-01

    The present study was conducted to summarize the domestic and foreign research findings of Moringa oleifera, including the main pests species, their damage, occurrence and control technologies. However, there were some limitations existed in present research on pests of M. oleifera, for example, species of insect pests were unknown, pest control technology was simple, and dynamics of pest population had not been studied. According to existing problems, some relevant suggestions are put forward, which include making a comprehensive investigation and identification of pests on M. oleifera, strengthening systematic study on biological characteristics of pests , investigating natural enemies of pests and actively carrying out research work of biological control, studying forecasting technology of main pests, establishing integrated pest management system of M. oleifera.%文章综述了国内外辣木主要害虫种类、危害和发生规律及防治技术等的研究成果,并针对辣木害虫种类不明、防治方法简单及害虫优势种种群动态研究不足等问题,提出对各辣木种植区的害虫进行全面调查和鉴定;加强辣木害虫生物学特性研究;调查害虫天敌,积极开展生物防治研究;对发生严重的害虫进行预测预报研究,建立辣木害虫综合防控技术体系等建议。

  14. Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.

    Science.gov (United States)

    Kapranas, Apostolos; Tena, Alejandro

    2015-01-07

    Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.

  15. Pest control: A modelling approach. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by S. Petrovskii, N. Petrovskaya and D. Bearup

    Science.gov (United States)

    Tyson, Rebecca C.

    2014-09-01

    Successful food production results in the delivery to market of beautiful produce, free of damage from insects. All of that produce however, is an excellent and plentiful food source, and nature has evolved a multitude of insects that compete with humans for access. There exist a number of management strategies to combat pests, including traditional crop rotation and companion planting techniques, as well as more sophisticated techniques including mating disruption using pheromones and the application of chemical sprays. Chemical sprays are extremely effective, and are in widespread use around the globe [1,12,20]. Indeed, pesticides are the dominant form of pest management in current use [10,20].

  16. Project Summary: Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-02-01

    relative high performance predictability currently associated with automated machines. Anyone who has walked a normally well behaved male dog in the...possibilities as well. Attitude control systems normally include proportional and integral control on sensed attitude, with damping and robustness provided...attacking predators. Some examples include red-wing black bird nest defense [1], meerkat predator mobbing [2], and predator identification in guppy schools

  17. Benefits of collaborative learning for environmental management: applying the integrated systems for knowledge management approach to support animal pest control.

    Science.gov (United States)

    Allen, W; Bosch, O; Kilvington, M; Oliver, J; Gilbert, M

    2001-02-01

    Resource management issues continually change over time in response to coevolving social, economic, and ecological systems. Under these conditions adaptive management, or "learning by doing," offers an opportunity for more proactive and collaborative approaches to resolving environmental problems. In turn, this will require the implementation of learning-based extension approaches alongside more traditional linear technology transfer approaches within the area of environmental extension. In this paper the Integrated Systems for Knowledge Management (ISKM) approach is presented to illustrate how such learning-based approaches can be used to help communities develop, apply, and refine technical information within a larger context of shared understanding. To outline how this works in practice, we use a case study involving pest management. Particular attention is paid to the issues that emerge as a result of multiple stakeholder involvement within environmental problem situations. Finally, the potential role of the Internet in supporting and disseminating the experience gained through ongoing adaptive management processes is examined.

  18. Biological control of weeds release sites : Kulm Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Table of release sites of insects for biological control of invasive plants at Kulm Wetland Management District (WMD). Insects were released on Kulm WMD to...

  19. Arms Control: US and International efforts to ban biological weapons

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  20. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen;

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising.......Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....