WorldWideScience

Sample records for biological pathways

  1. The Kynurenine Pathway in Stem Cell Biology

    OpenAIRE

    Jones, Simon P; Guillemin, Gilles J; Bruce J Brew

    2013-01-01

    The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental ar...

  2. e-Science and biological pathway semantics

    Directory of Open Access Journals (Sweden)

    Luciano Joanne S

    2007-05-01

    Full Text Available Abstract Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.

  3. Using biological pathway data with paxtools.

    Directory of Open Access Journals (Sweden)

    Emek Demir

    Full Text Available A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL, which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0 can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools.

  4. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-01-01

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters. PMID:27311441

  5. Modelling the structure and dynamics of biological pathways

    OpenAIRE

    O'Hara, Laura; Livigni, Alessandra; Theocharidis, Thanos; Boyer, Benjamin; Angus, Tim; Wright, Derek; Chen, Sz-Hau; Raza, Sobia; Barnett, Mark; Digard, Paul; Smith, Lee; Freeman, Thomas

    2016-01-01

    There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here we present a new, freely-available modelling framework that includes: a biologist-friendly pathway modelling language (mEPN); a simple but sophisticated method to support model parameterisation using accessible biological information, a stochastic flow algorithm that simulates the dynamics of pathway activity, and a 3D...

  6. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  7. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  8. Discerning mechanistically rewired biological pathways by cumulative interaction heterogeneity statistics.

    Science.gov (United States)

    Cotton, Travis B; Nguyen, Hien H; Said, Joseph I; Ouyang, Zhengyu; Zhang, Jinfa; Song, Mingzhou

    2015-01-01

    Changes in response of a biological pathway could be a consequence of either pathway rewiring, changed input, or a combination of both. Most pathway analysis methods are not designed for mechanistic rewiring such as regulatory element variations. This limits our understanding of biological pathway evolution. Here we present a Q-method to discern whether changed pathway response is caused by mechanistic rewiring of pathways due to evolution. The main innovation is a cumulative pathway interaction heterogeneity statistic accounting for rewiring-specific effects on the rate of change of each molecular variable across conditions. The Q-method remarkably outperformed differential-correlation based approaches on data from diverse biological processes. Strikingly, it also worked well in differentiating rewired chaotic systems, whose dynamics are notoriously difficult to predict. Applying the Q-method on transcriptome data of four yeasts, we show that pathway interaction heterogeneity for known metabolic and signaling pathways is indeed a predictor of interspecies genetic rewiring due to unbalanced TATA box-containing genes among the yeasts. The demonstrated effectiveness of the Q-method paves the way to understanding network evolution at the resolution of functional biological pathways. PMID:25921728

  9. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  10. Reactome: a database of reactions, pathways and biological processes

    OpenAIRE

    Croft, David; O’Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson

    2010-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualiz...

  11. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per;

    basis of SNP-data and trait phenotypes and can account for a much larger fraction of the heritable component. A disadvantage is that this “black-box” modelling approach conceals the biological mechanisms underlying the trait. We propose to open the “black-box” by building SNP-set genomic models that...

  12. A systems biology approach reveals common metastatic pathways in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Flores Ricardo J

    2012-05-01

    Full Text Available Abstract Background Osteosarcoma (OS is the most common malignant bone tumor in children and adolescents. The survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein expression data in two distinct human metastatic OS models. Results mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and SaOS-2/LM7. Pathway analysis of the differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very different biological nature of the cell lines. To address this issue, we used a topological significance analysis based on a “shortest-path” algorithm to identify topological nodes, which uncovered additional biological information with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway analysis of the significant topological nodes revealed a striking concordance between the models and identified significant common pathways, including “Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton remodeling/Cytoskeleton remodeling”, and “Cell adhesion/Chemokines and adhesion”. Of these, the “Cytoskeleton remodeling/TGF/WNT” was the top ranked common pathway from the topological analysis of the genomic and proteomic profiles in the two metastatic models. The up-regulation of proteins in the “Cytoskeleton remodeling/TGF/WNT” pathway in the Sa

  13. KeyPathwayMiner: Detecting Case-Specific Biological Pathways Using Expression Data

    OpenAIRE

    Alcaraz, Nicolas; Kücük, Hande; Weile, Jochen; Wipat, Anil; Baumbach, Jan

    2011-01-01

    Recent advances in systems biology have provided us with massive amounts of pathway data that describe the interplay of genes and their products. The resulting biological networks can be modeled as graphs. By means of "omics" technologies, such as microarrays, the activity of genes and proteins can be measured. Here, data from microarray experiments is integrated with the network data to gain deeper insights into gene expression. We introduce KeyPathwayMiner, a method that enab...

  14. Reactome: a database of reactions, pathways and biological processes.

    Science.gov (United States)

    Croft, David; O'Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson; Schmidt, Esther; Shamovsky, Veronica; Yung, Christina; Birney, Ewan; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice. PMID:21067998

  15. HIPPOCRATES IS CARE: HISTORY AND SOME BIOLOGICAL PATHWAYS ON CAREGIVER

    Directory of Open Access Journals (Sweden)

    Rosangela Souza Kalil

    2011-08-01

    Full Text Available AbstractHippocrates is the mainstay of care. Plato and Aristotle state humoralism as the way that Hippocrates understands human health disorders. He closely observed patients to restore humoral equilibrium, relying on healing power of nature to recover health, rejecting drugs or any kind of procedure that could harm the individual. The development of a common ground of understanding is desirable as a process of negotiating treatment goals and methods which may create an atmosphere of support and solidarity. The concept of supportive care was formalized in Belgium in 1992 with attention to multicultural aspect of our population. The biological basis on care are backed on cortical circuitries, association of pathways, existence of several neurotransmitters, which mediates integrative process promoting behavior, emotion and cognitive. Care may influence favorably all these biological systems and help to improve quality of live or even cure the patient. Descriptors: Hippocrates is Care, Biological Basis on Care, Pathways of Care.

  16. Constructing biological pathways by a two-step counting approach.

    Directory of Open Access Journals (Sweden)

    Hsiuying Wang

    Full Text Available Networks are widely used in biology to represent the relationships between genes and gene functions. In Boolean biological models, it is mainly assumed that there are two states to represent a gene: on-state and off-state. It is typically assumed that the relationship between two genes can be characterized by two kinds of pairwise relationships: similarity and prerequisite. Many approaches have been proposed in the literature to reconstruct biological relationships. In this article, we propose a two-step method to reconstruct the biological pathway when the binary array data have measurement error. For a pair of genes in a sample, the first step of this approach is to assign counting numbers for every relationship and select the relationship with counting number greater than a threshold. The second step is to calculate the asymptotic p-values for hypotheses of possible relationships and select relationships with a large p-value. This new method has the advantages of easy calculation for the counting numbers and simple closed forms for the p-value. The simulation study and real data example show that the two-step counting method can accurately reconstruct the biological pathway and outperform the existing methods. Compared with the other existing methods, this two-step method can provide a more accurate and efficient alternative approach for reconstructing the biological network.

  17. Bone biology, signaling pathways, and therapeutic targets for osteoporosis.

    Science.gov (United States)

    Iñiguez-Ariza, Nicole M; Clarke, Bart L

    2015-10-01

    Major advances have occurred recently in the treatment of osteoporosis in recent years. Most patients are currently treated with bisphosphonates, denosumab, raloxifene, or teriparatide, and in some countries, strontium ranelate. Strontium ranelate and calcitonin have recently had their use restricted due to cardiovascular concerns and malignancy, respectively. The available agents have generally provided excellent options that effectively reduce fracture risk. New targets are being sought based on appreciation of the bone biology and signaling pathways involved in bone formation and resorption. These agents will directly target these signaling pathways, and further expand the options available for treatment of osteoporosis. PMID:26255682

  18. Algebraic Systems Biology: A Case Study for the Wnt Pathway

    OpenAIRE

    Gross, Elizabeth; Harrington, Heather A.; Rosen, Zvi; Sturmfels, Bernd

    2015-01-01

    Steady state analysis of dynamical systems for biological networks give rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here the variety is described by a polynomial system in 19 unknowns and 36 parameters. Current methods from computational algebraic geometry and combinatorics are applied to analyze this model.

  19. Crossing frontiers in tackling pathways of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Bacher, S.; Blackburn, T. M.; Booy, O.; Brundu, G.; Brunel, S.; Cardoso, A.-C.; Eschen, R.; Gallardo, B.; Galil, B.; García-Berthou, E.; Genovesi, P.; Groom, Q.; Harrower, C.; Hulme, P. E.; Katsanevakis, S.; Kenis, M.; Kühn, I.; Kumschick, S.; Martinou, A. F.; Nentwig, W.; O´Flynn, C.; Pagad, S.; Pergl, Jan; Pyšek, Petr; Rabitsch, W.; Richardson, D. M.; Roques, A.; Roy, H. E.; Sclarea, R.; Schindler, S.; Seebens, H.; Vanderhoeven, S.; Vila, M.; Wilson, J. R. U.; Zenetos, A.; Jeschke, J.M.

    2015-01-01

    Roč. 65, č. 8 (2015), s. 769-782. ISSN 0006-3568 R&D Projects: GA ČR GB14-36079G; GA ČR(CZ) GAP504/11/1028 Grant ostatní: AV ČR(CZ) Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * pathways * management Subject RIV: EH - Ecology, Behaviour Impact factor: 5.377, year: 2014

  20. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  1. Efficient algorithms for extracting biological key pathways with global constraints

    DEFF Research Database (Denmark)

    Baumbach, Jan; Friedrich, T.; Kötzing, T.;

    2012-01-01

    from a set of cases (patients, cell lines, tissues, etc.). We aimed for finding all maximal connected sub-graphs where all nodes but K are expressed in all cases but at most L, i.e. key pathways. Thereby, we combined biological networks with OMICS data, instead of analyzing these data sets in isolation....... Here we present an alternative approach that avoids a certain bias towards hub nodes: We now aim for extracting all maximal connected sub-networks where all but at most K nodes are expressed in all cases but in total (!) at most L, i.e. accumulated over all cases and all nodes in a solution. We call...

  2. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    Science.gov (United States)

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics. PMID:26645985

  3. Mnk kinase pathway: Cellular functions and biological outcomes

    Institute of Scientific and Technical Information of China (English)

    Sonali; Joshi; Leonidas; C; Platanias

    2014-01-01

    The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.

  4. Developing Molecular Interaction Database and Searching for Similar Pathways (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Kawashima, Shuichi; Katayama, Toshiaki; Kanehisa, Minoru

    1998-01-01

    We have developed a database named BRITE, which contains knowledge of interacting molecules and/or genes concering cell cycle and early development. Here, we report an overview of the database and the method of automatic search for functionally common sub-pathways between two biological pathways in BRITE.

  5. cPath: open source software for collecting, storing, and querying biological pathways

    Directory of Open Access Journals (Sweden)

    Gross Benjamin E

    2006-11-01

    Full Text Available Abstract Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.

  6. Predicting metabolic pathways from metabolic networks with limited biological knowledge

    OpenAIRE

    Leung, HCM; Yiu, SM; Chin, FYL; Leung, SY; Xiang, CL

    2010-01-01

    Understanding the metabolism of new species (e.g. endophytic fungi that produce fuel) have tremendous impact on human lives. Based on predicted proteins and existing reaction databases, one can construct the metabolic network for the species. Next is to identify critical metabolic pathways from the network. Existing computational techniques identify conserved pathways based on multiple networks of related species, but have the following drawbacks. Some do not rely on additional information, s...

  7. Systems Approaches for Synthetic Biology: A Pathway Toward Mammalian Design

    Directory of Open Access Journals (Sweden)

    RahulRekhi

    2013-10-01

    Full Text Available We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches—stochasticity, complexity, and scale—with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility towards synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications.

  8. Encoding the states of interacting proteins to facilitate biological pathways reconstruction

    Directory of Open Access Journals (Sweden)

    Termanini Alberto

    2010-08-01

    Full Text Available Abstract Background In a systems biology perspective, protein-protein interactions (PPI are encoded in machine-readable formats to avoid issues encountered in their retrieval for the reconstruction of comprehensive interaction maps and biological pathways. However, the information stored in electronic formats currently used doesn't allow a valid automatic reconstruction of biological pathways. Results We propose a logical model of PPI that takes into account the "state" of proteins before and after the interaction. This information is necessary for proper reconstruction of the pathway. Conclusions The adoption of the proposed model, which can be easily integrated into existing machine-readable formats used to store the PPI data, would facilitate the automatic or semi-automated reconstruction of biological pathways. Reviewers This article was reviewed by Dr. Wen-Yu Chung (nominated by Kateryna Makova, Dr. Carl Herrmann (nominated by Dr. Purificación López-García and Dr. Arcady Mushegian.

  9. [A novel biological pathway expansion method based on the knowledge of protein-protein interactions].

    Science.gov (United States)

    Zhao, Xiaolei; Zuo, Xiaoyu; Qin, Jiheng; Liang, Yan; Zhang, Naizun; Luan, Yizhao; Rao, Shaoqi

    2014-04-01

    Biological pathways have been widely used in gene function studies; however, the current knowledge for biological pathways is per se incomplete and has to be further expanded. Bioinformatics prediction provides us a cheap but effective way for pathway expansion. Here, we proposed a novel method for biological pathway prediction, by intergrating prior knowledge of protein?protein interactions and Gene Ontology (GO) database. First, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to which the interacting neighbors of a targe gene (at the level of protein?protein interaction) belong were chosen as the candidate pathways. Then, the pathways to which the target gene belong were determined by testing whether the genes in the candidate pathways were enriched in the GO terms to which the target gene were annotated. The protein?protein interaction data obtained from the Human Protein Reference Database (HPRD) and Biological General Repository for Interaction Datasets (BioGRID) were respectively used to predict the pathway attribution(s) of the target gene. The results demanstrated that both the average accuracy (the ratio of the correctly predicted pathways to the totally pathways to which all the target genes were annotated) and the relative accuracy (of the genes with at least one annotated pathway being successful predicted, the percentage of the genes with all the annotated pathways being correctly predicted) for pathway predictions were increased with the number of the interacting neighbours. When the number of interacting neighbours reached 22, the average accuracy was 96.2% (HPRD) and 96.3% (BioGRID), respectively, and the relative accuracy was 93.3% (HPRD) and 84.1% (BioGRID), respectively. Further validation analysis of 89 genes whose pathway knowledge was updated in a new database release indicated that 50 genes were correctly predicted for at least one updated pathway, and 43 genes were accurately predicted for all the updated pathways, giving an

  10. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  11. Reactome pathway analysis to enrich biological discovery in proteomics data sets.

    Science.gov (United States)

    Haw, Robin; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-09-01

    Reactome (http://www.reactome.org) is an open-source, expert-authored, peer-reviewed, manually curated database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Pathway Browser is a Systems Biology Graphical Notation-like visualization system that supports manual navigation of pathways by zooming, scrolling and event highlighting, and that exploits PSI Common Query Interface web services to overlay pathways with molecular interaction data from the Reactome Functional Interaction Network and interaction databases such as IntAct, ChEMBL and BioGRID. Pathway and expression analysis tools employ web services to provide ID mapping, pathway assignment and over-representation analysis of user-supplied data sets. By applying Ensembl Compara to curated human proteins and reactions, Reactome generates pathway inferences for 20 other species. The Species Comparison tool provides a summary of results for each of these species as a table showing numbers of orthologous proteins found by pathway from which users can navigate to inferred details for specific proteins and reactions. Reactome's diverse pathway knowledge and suite of data analysis tools provide a platform for data mining, modeling and analysis of large-scale proteomics data sets. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 8). PMID:21751369

  12. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery

    OpenAIRE

    Bosl William J

    2007-01-01

    Abstract Background Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequa...

  13. Stochastic robustness and relative stability of multiple pathways in biological networks

    CERN Document Server

    Guo, Yongyi; Qian, Min; Ge, Hao

    2015-01-01

    Multiple dynamic pathways always exist in biological networks, but their robustness against internal fluctuations and relative stability have not been well recognized and carefully analyzed yet. Here we try to address these issues through an illustrative example, namely the Siah-1/beta-catenin/p14/19 ARF loop of protein p53 dynamics. Its deterministic Boolean network model predicts that two parallel pathways with comparable magnitudes of attractive basins should exist after the protein p53 is activated when a cell becomes harmfully disturbed. Once the low but non-neglectable intrinsic fluctuations are incorporated into the model, we show that a phase transition phenomenon is emerged: in one parameter region the probability weights of the normal pathway, reported in experimental literature, are comparable with the other pathway which is seemingly abnormal with the unknown functions, whereas, in some other parameter regions, the probability weight of the abnormal pathway can even dominate and become globally at...

  14. Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways

    Science.gov (United States)

    Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...

  15. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DEFF Research Database (Denmark)

    King, Zachary A.; Draeger, Andreas; Ebrahim, Ali;

    2015-01-01

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can......IP)-in conjunction with metabolite-and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these...... features and explains how the development approach used for Escher can be used to guide the development of future visualization tools....

  16. A model invalidation-based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides

    Directory of Open Access Journals (Sweden)

    Hamadeh Abdullah

    2009-10-01

    Full Text Available Abstract Background Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models. Results In this paper, we developed a novel mathematical model/experiment design cycle to help determine the probable network connectivity by iteratively invalidating models corresponding to competing signalling pathways. To do this, we systematically design experiments in silico that discriminate best between models of the competing signalling pathways. The method determines the inputs and parameter perturbations that will differentiate best between model outputs, corresponding to what can be measured/observed experimentally. We applied our method to the unknown connectivities in the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. We first developed several models of R. sphaeroides chemotaxis corresponding to different signalling networks, all of which are biologically plausible. Parameters in these models were fitted so that they all represented wild type data equally well. The models were then compared to current mutant data and some were invalidated. To discriminate between the remaining models we used ideas from control systems theory to determine efficiently in silico an input profile that would result in the biggest difference in model outputs. However, when we applied this input to the models, we found it to be insufficient for discrimination in silico. Thus, to achieve better discrimination, we determined the best change in initial conditions (total protein concentrations as well as the best change in the input profile. The designed experiments were then performed on live cells and the resulting

  17. The oxalate-carbonate pathway: at the interface between biology and geology

    Science.gov (United States)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  18. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery

    Directory of Open Access Journals (Sweden)

    Bosl William J

    2007-02-01

    Full Text Available Abstract Background Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists

  19. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  20. Effective identification of conserved pathways in biological networks using hidden Markov models.

    Directory of Open Access Journals (Sweden)

    Xiaoning Qian

    Full Text Available BACKGROUND: The advent of various high-throughput experimental techniques for measuring molecular interactions has enabled the systematic study of biological interactions on a global scale. Since biological processes are carried out by elaborate collaborations of numerous molecules that give rise to a complex network of molecular interactions, comparative analysis of these biological networks can bring important insights into the functional organization and regulatory mechanisms of biological systems. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we present an effective framework for identifying common interaction patterns in the biological networks of different organisms based on hidden Markov models (HMMs. Given two or more networks, our method efficiently finds the top matching paths in the respective networks, where the matching paths may contain a flexible number of consecutive insertions and deletions. CONCLUSIONS/SIGNIFICANCE: Based on several protein-protein interaction (PPI networks obtained from the Database of Interacting Proteins (DIP and other public databases, we demonstrate that our method is able to detect biologically significant pathways that are conserved across different organisms. Our algorithm has a polynomial complexity that grows linearly with the size of the aligned paths. This enables the search for very long paths with more than 10 nodes within a few minutes on a desktop computer. The software program that implements this algorithm is available upon request from the authors.

  1. A retrosynthetic biology approach to metabolic pathway design for therapeutic production

    Directory of Open Access Journals (Sweden)

    Faulon Jean-Loup

    2011-08-01

    Full Text Available Abstract Background Synthetic biology is used to develop cell factories for production of chemicals by constructively importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical transformations (reversed enzyme-catalyzed reactions in the metabolic space starting from a target product to reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for a given compound. Results In our method, we efficiently address the complexity problem by coding substrates, products and reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state fluxes from the genome-wide reconstruction of the organism's metabolism, or the estimation of metabolite toxicity from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics and for one antitumor agent, as well as for several essential metabolites are outlined. Conclusions We present here a unified framework that integrates diverse techniques involved in the design of heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space

  2. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard; Larsen, Lotte Bach; Larsen, Mette Krogh; Sørensen, Peter

    2014-01-01

    The milk fat profile of the Danish Holstein (DH) and Danish Jersey (DJ) show clear differences. Identification of the genomic regions, genes and biological pathways underlying the milk fat biosynthesis will improve the understanding of the biology underlying bovine milk fat production and may...... provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP...

  3. Mechanisms and biological impact of DNA repair pathways for UV and γ-ray-induced damage

    International Nuclear Information System (INIS)

    Nature has equipped all living systems with an intricate network of DNA repair pathways, to cope with damage induced by genotoxic agents (such as UV light, γ-rays and numerous chemicals). These pathways ensure genome stability and prevent carcinogenesis. Examples of multi-step damage repair processes are: nucleotide excision repair (NER, for removal of a wide variety of lesions, including UV) and recombination repair (for elimination of the very genotoxic radiation-induced double strand breaks). The NER pathway is understood in great detail and is associated with three human syndromes characterized by marked sun sensitivity: xeroderma pigmentosum (XP), cockayne syndrome (CS) and tricho-thio-dystrophy (TTD), XP patients show an over 1000 x increased risk of skin cancer, in contrast to CS and TTD. At least 25 proteins re involved some are also implicated in other cellular processes, explaining puzzling features associated with defects in these genes. NER-deficient mouse mutants have been generated, that permit evaluation of the biological impact of this process. Recombination repair is much less understood. However, recently a number of genes has been cloned based on sequence homology with yeast genes and mouse mutants are being generated. These will be invaluable to investigate e.g. radioresistance and radiation-induced tumorigenesis and for radiotherapy. (author)

  4. Preparing nano-calcium phosphate particles via a biologically friendly pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qinghong; Xu Xurong; Tang Ruikang [Department of Chemistry and Centre of Biopathways and Biomaterials, Zhejiang University, Hangzhou, Zhejang 310027 (China); Ji Huijiao; Liu Yukan; Zhang Ming, E-mail: rtang@zju.edu.c [Department of Biology, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2010-08-01

    It is widely agreed that nano-calcium phosphates (CaP) play an important role in tissue engineering and medical application due to their unique biological characteristics. However, the properties of nano-CaP, including bioactivity, biocompatibility and mechanical properties, are tailored over wide ranges by controlling the size and morphology of particles. Therefore, it is important to develop synthesis methods which can control the particle size distribution and shape uniformly. In this study, we report that polyacrylic acid (PAA) can act as an efficient agent to modulate nano-CaP formation. The dimension of the resultant sphere-like nanoparticles (5-60 nm) can readily be regulated by changing PAA concentrations (75-200 {mu}g ml{sup -1}). In contrast to other additives, PAA is a water-soluble polymer that has already been used as an excellent biocompatible implant material in vivo. Our in vitro proliferation experiments of bone marrow mesenchymal stem cells (BMSCs) demonstrate that the involvement of PAA does not change the bioactivity of the resultant nano-CaP. In contrast, the nano-CaP fabricated by using another typical control agent, hexadecyl (cetyl) trimethyl ammonium bromide, suppressed the cell proliferation of BMSCs. Thus, we suggest that the biopolymer, PAA, can provide a more biologically friendly pathway to prepare biological nano-CaP for biomedical application. (communication)

  5. Preparing nano-calcium phosphate particles via a biologically friendly pathway

    International Nuclear Information System (INIS)

    It is widely agreed that nano-calcium phosphates (CaP) play an important role in tissue engineering and medical application due to their unique biological characteristics. However, the properties of nano-CaP, including bioactivity, biocompatibility and mechanical properties, are tailored over wide ranges by controlling the size and morphology of particles. Therefore, it is important to develop synthesis methods which can control the particle size distribution and shape uniformly. In this study, we report that polyacrylic acid (PAA) can act as an efficient agent to modulate nano-CaP formation. The dimension of the resultant sphere-like nanoparticles (5-60 nm) can readily be regulated by changing PAA concentrations (75-200 μg ml-1). In contrast to other additives, PAA is a water-soluble polymer that has already been used as an excellent biocompatible implant material in vivo. Our in vitro proliferation experiments of bone marrow mesenchymal stem cells (BMSCs) demonstrate that the involvement of PAA does not change the bioactivity of the resultant nano-CaP. In contrast, the nano-CaP fabricated by using another typical control agent, hexadecyl (cetyl) trimethyl ammonium bromide, suppressed the cell proliferation of BMSCs. Thus, we suggest that the biopolymer, PAA, can provide a more biologically friendly pathway to prepare biological nano-CaP for biomedical application. (communication)

  6. Proteomic dissection of biological pathways/processes through profiling protein-protein interaction networks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cellular functions, either under the normal or pathological conditions or under different stresses, are the results of the coordinated action of multiple proteins interacting in macromolecular complexes or assemblies. The precise determination of the specific composition of protein complexes, especially using scalable and high-throughput methods, represents a systematic approach toward revealing particular cellular biological functions. In this regard, the direct profiling protein-protein interactions (PPIs) represent an efficient way to dissect functional pathways for revealing novel protein functions. In this review, we illustrate the technological evolution for the large-scale and precise identification of PPIs toward higher physiologically relevant accuracy. These techniques aim at improving the efficiency of complex pull-down, the signal specificity and accuracy in distinguishing specific PPIs, and the accuracy of identifying physiological relevant PPIs. A newly developed streamline proteomic approach for mapping the binary relationship of PPIs in a protein complex is introduced.

  7. Identifying biological pathways in the MRI findings of people with low back pain

    DEFF Research Database (Denmark)

    Jensen, Rikke Krüger; Jensen, Tue Secher; Kjær, Per;

    Investigations into the association between lumbar MRI findings and low back pain (LBP) are complicated by multiple MRI findings being present at the same time. Findings such as lumbar intervertebral disc protrusions or endplate changes almost always co-exist with other degenerative disc findings such as the...... distinguish the best fitting clusters of MRI findings. The distribution of lumbar disc levels in each cluster was also reported. Based on known histological changes inherent in the degeneration process of the motion segment, the clusters were grouped into hypothetical biological pathways. Results Latent class...... clusters representing progressive stages of disc degeneration in the lower lumbar levels; (ii) four clusters representing progressive stages of disc protrusions and endplate changes in the lower lumbar levels; (iii) two cluster with endplate changes at either the upper or the lower endplates; (iv) two...

  8. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Science.gov (United States)

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that

  9. Molecular Biological and Biochemical Studies Reveal New Pathways Important for Cotton Fiber Development

    Institute of Scientific and Technical Information of China (English)

    Yu Xu; Hong-Bin Li; Yu-Xian Zhu

    2007-01-01

    As one of the longest single-celled seed trichomes, fibers provide an excellent model for studying fundamental biological processes such as cell differentiation, cell expansion, and cell wall biosynthesis. In this review, we summarize recent progress in cotton functional genomic studies that characterize the dynamic changes in the transcriptomes of fiber cells. Extensive expression profilings of cotton fiber transcriptomes have provided comprehensive information, as quite a number of transcription factors and enzyme-coding genes have been shown to express preferentially during the fiber elongation period. Biosynthesis of the plant hormone ethylene is found significantly upregulated during the fiber growth period as revealed by both microarray analysis and by biochemical and physiological studies. It is suggested that genetic engineering of the ethylene pathway may improve the quality and the productivity of cotton lint. Many metabolic pathways, such as biosynthesis of celiulose and matrix polysaccharides are preferentially expressed in actively growing fiber cells. Five gene families, including proline-rich proteins (PRP), arabinogalactan proteins (AGP), expansins, tubulins and lipid transfer proteins (LTP) are activated during early fiber development,indicating that they may also be needed for cell elongation. In conclusion, we identify a few areas of future research for cotton functional genomic studies.

  10. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  11. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar; Ganesh, Santhi K.; Garcia, Melissa; Gaunt, Tom R.; Glazer, Nicole L.; Go, Min Jin; Goel, Anuj; Grässler, Jürgen; Grobbee, Diederick E.; Groop, Leif; Guarrera, Simonetta; Guo, Xiuqing; Hadley, David; Hamsten, Anders; Han, Bok-Ghee; Hardy, Rebecca; Hartikainen, Anna-Liisa; Heath, Simon; Heckbert, Susan R.; Hedblad, Bo; Hercberg, Serge; Hernandez, Dena; Hicks, Andrew A.; Hilton, Gina; Hingorani, Aroon D.; Bolton, Judith A Hoffman; Hopewell, Jemma C.; Howard, Philip; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Ikram, M. Arfan; Islam, Muhammad; Iwai, Naoharu; Jarvelin, Marjo-Riitta; Jackson, Anne U.; Jafar, Tazeen H.; Janipalli, Charles S.; Johnson, Toby; Kathiresan, Sekar; Khaw, Kay-Tee; Kim, Hyung-Lae; Kinra, Sanjay; Kita, Yoshikuni; Kivimaki, Mika; Kooner, Jaspal S.; Kumar, M. J. Kranthi; Kuh, Diana; Kulkarni, Smita R.; Kumari, Meena; Kuusisto, Johanna; Kuznetsova, Tatiana; Laakso, Markku; Laan, Maris; Laitinen, Jaana; Lakatta, Edward G.; Langefeld, Carl D.; Larson, Martin G.; Lathrop, Mark; Lawlor, Debbie A.; Lawrence, Robert W.; Lee, Jong-Young; Lee, Nanette R.; Levy, Daniel; Li, Yali; Longstreth, Will T.; Luan, Jian'an; Lucas, Gavin; Ludwig, Barbara; Mangino, Massimo; Mani, K. Radha; Marmot, Michael G.; Mattace-Raso, Francesco U. S.; Matullo, Giuseppe; McArdle, Wendy L.; McKenzie, Colin A.; Meitinger, Thomas; Melander, Olle; Meneton, Pierre; Meschia, James F.; Miki, Tetsuro; Milaneschi, Yuri; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Morris, Richard W.; Mosley, Thomas H.; Najjar, Samer; Narisu, Narisu; Newton-Cheh, Christopher; Nguyen, Khanh-Dung Hoang; Nilsson, Peter; Nyberg, Fredrik; O'Donnell, Christopher J.; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ong, RickTwee-Hee; Ongen, Halit; Onland-Moret, N. Charlotte; O'Reilly, Paul F.; Org, Elin; Orru, Marco; Palmas, Walter; Palmen, Jutta; Palmer, Lyle J.; Palmer, Nicholette D.; Parker, Alex N.; Peden, John F.; Peltonen, Leena; Perola, Markus; Pihur, Vasyl; Platou, Carl G. P.; Plump, Andrew; Prabhakaran, Dorairajan; Psaty, Bruce M.; Raffel, Leslie J.; Rao, Dabeeru C.; Rasheed, Asif; Ricceri, Fulvio; Rice, Kenneth M.; Rosengren, Annika; Rotter, Jerome I.; Rudock, Megan E.; Sõber, Siim; Salako, Tunde; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Schwartz, Steven M.; Schwarz, Peter E. H.; Scott, Laura J.; Scott, James; Scuteri, Angelo; Sehmi, Joban S.; Seielstad, Mark; Seshadri, Sudha; Sharma, Pankaj; Shaw-Hawkins, Sue; Shi, Gang; Shrine, Nick R. G.; Sijbrands, Eric J. G.; Sim, Xueling; Singleton, Andrew; Sjögren, Marketa; Smith, Nicholas L.; Artigas, Maria Soler; Spector, Tim D.; Staessen, Jan A.; Stancakova, Alena; Steinle, Nanette I.; Strachan, David P.; Stringham, Heather M.; Sun, Yan V.; Swift, Amy J.; Tabara, Yasuharu; Tai, E-Shyong; Talmud, Philippa J.; Taylor, Andrew; Terzic, Janos; Thelle, Dag S.; Tobin, Martin D.; Tomaszewski, Maciej; Tripathy, Vikal; Tuomilehto, Jaakko; Tzoulaki, Ioanna; Uda, Manuela; Ueshima, Hirotsugu; Uiterwaal, Cuno S. P. M.; Umemura, Satoshi; van der Harst, Pim; van der Schouw, Yvonne T.; van Gilst, Wiek H.; Vartiainen, Erkki; Vasan, Ramachandran S.; Veldre, Gudrun; Verwoert, Germaine C.; Viigimaa, Margus; Vinay, D. G.; Vineis, Paolo; Voight, Benjamin F.; Vollenweider, Peter; Wagenknecht, Lynne E.; Wain, Louise V.; Wang, Xiaoling; Wang, Thomas J.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Whincup, Peter H.; Wiggins, Kerri L.; Witteman, Jacqueline C. M.; Wong, Andrew; Wu, Ying; Yajnik, Chittaranjan S.; Yao, Jie; Young, J. H.; Zelenika, Diana; Zhai, Guangju; Zhang, Weihua; Zhang, Feng; Zhao, Jing Hua; Zhu, Haidong; Zhu, Xiaofeng; Zitting, Paavo; Zukowska-Szczechowska, Ewa; Okada, Yukinori; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L.; Aung, Tin; Teo, Yik-Ying; Kim, Young Jin; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S. -J. Cathy; Mei, Hao; Hixson, James E.; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Tanaka, Toshihiro; Reilly, Muredach P; Schunkert, Heribert; Assimes, Themistocles L.; Hall, Alistair; Hengstenberg, Christian; König, Inke R.; Laaksonen, Reijo; McPherson, Ruth; Thompson, John R.; Thorsteinsdottir, Unnur; Ziegler, Andreas; Absher, Devin; Chen, Li; Cupples13, L. Adrienne; Halperin, Eran; Li, Mingyao; Musunuru, Kiran; Preuss, Michael; Schillert, Arne; Thorleifsson, Gudmar; Wells, George A.; Holm, Hilma; Roberts, Robert; Stewart, Alexandre F. R.; Fortmann, Stephen; Go, Alan; Hlatky, Mark; Iribarren, Carlos; Knowles, Joshua; Myers, Richard; Quertermous, Thomas; Sidney, Steven; Risch, Neil; Tang, Hua; Blankenberg, Stefan; Schnabel, Renate; Sinning, Christoph; Lackner, Karl J.; Tiret, Laurence; Nicaud, Viviane; Cambien, Francois; Bickel, Christoph; Rupprecht, Hans J.; Perret, Claire; Proust, Carole; Münzel, Thomas F.; Barbalic, Maja; Chen, Ida Yii-Der; Demissie-Banjaw, Serkalem; Folsom, Aaron; Lumley, Thomas; Marciante, Kristin; Taylor, Kent D.; Volcik, Kelly; Gretarsdottir, Solveig; Gulcher, Jeffrey R.; Kong, Augustine; Stefansson, Kari; Thorgeirsson, Gudmundur; Andersen, Karl; Fischer, Marcus; Grosshennig, Anika; Linsel-Nitschke, Patrick; Stark, Klaus; Schreiber, Stefan; Aherrahrou, Zouhair; Bruse, Petra; Doering, Angela; Klopp, Norman; Diemert, Patrick; Loley, Christina; Medack, Anja; Nahrstedt, Janja; Peters, Annette; Wagner, Arnika K.; Willenborg, Christina; Böhm, Bernhard O.; Dobnig, Harald; Grammer, Tanja B.; Hoffmann, Michael M.; Meinitzer, Andreas; Winkelmann, Bernhard R.; Pilz, Stefan; Renner, Wilfried; Scharnagl, Hubert; Stojakovic, Tatjana; Tomaschitz, Andreas; Winkler, Karl; Guiducci, Candace; Burtt, Noel; Gabriel, Stacey B.; Dandona, Sonny; Jarinova, Olga; Qu, Liming; Wilensky, Robert; Matthai, William; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Epstein, Stephen E.; Rader, Daniel J.; Nelson, Christopher P.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Loehr, Laura R.; Rosamond, Wayne D.; Benjamin, Emelia; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A.; Stricker, Bruno H.; Chang, Patricia P.; Willerson, James T.; Felix, Stephan B.; Watzinger, Norbert; Aragam, Jayashri; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J.; Greiser, Karin Halina; Deckers, Jaap W.; Stritzke, Jan; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; Reffelmann, Thorsten; Redfield, Margaret M.; Werdan, Karl; Mitchell, Gary F.; Arnett, Donna K.; Gottdiener, John S.; Blettner, Maria; Friedrich, Nele; Kovacs, Peter; Wild, Philipp S.; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P. S.; Carroll, Robert J.; Penninx, Brenda W.; Scott, Rodney J.; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H.; Kardia, Sharon L. R.; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J.; Turner, Stephen T.; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J. F.; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P.; Parsa, Afshin; O'Connell, Jeffrey R.; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H.; Böger, Carsten A.; Goessling, Wolfram; Chasman, Daniel I.; Köttgen, Anna; Kao, W. H. Linda; Fox, Caroline S.

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  12. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology.

    Science.gov (United States)

    Akaberi, M; Iranshahi, M; Mehri, S

    2016-06-01

    The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26988179

  13. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  14. Systems biology and brain activity in neuronal pathways by smart device and advanced signal processing

    Science.gov (United States)

    Castellani, Gastone; Intrator, Nathan; Remondini, Daniel

    2014-01-01

    Contemporary biomedicine is producing large amount of data, especially within the fields of “omic” sciences. Nevertheless, other fields, such as neuroscience, are producing similar amount of data by using non-invasive techniques such as imaging, functional magnetic resonance and electroencephalography. Nowadays a big challenge and a new research horizon for Systems Biology is to develop methods to integrate and model this data in an unifying framework capable to disentangle this amazing complexity. In this paper we show how methods from genomic data analysis can be applied to brain data. In particular the concept of pathways, networks and multiplex are discussed. These methods can lead to a clear distinction of various regimes of brain activity. Moreover, this method could be the basis for a Systems Biology analysis of brain data and for the integration of these data in a multivariate and multidimensional framework. The feasibility of this integration is strongly dependent from the feature extraction method used. In our case we used an “alphabet” derived from a multi-resolution analysis that is capable to capture the most relevant information from these complex signals. PMID:25206359

  15. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media.

    Science.gov (United States)

    Wang, Zhongying; von dem Bussche, Annette; Qiu, Yang; Valentin, Thomas M; Gion, Kyle; Kane, Agnes B; Hurt, Robert H

    2016-07-01

    Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1-30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk. PMID:27267956

  16. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    DEFF Research Database (Denmark)

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.;

    We tackle the problem of de-novo pathway extraction. Given a biological network and a set of case-control studies, KeyPathwayMiner efficiently extracts and visualizes all maximal connected sub-networks that contain mainly genes that are dysregulated, e.g., differentially expressed, in most cases...... problems and designed a set of algorithms to tackle the combinatorial explosion of the search space. During the presentation we will demonstrate how to: Import and process the data, set the parameters for the two models, compute and visualize the key pathways, judge and statistically evaluate the results...

  17. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    OpenAIRE

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard; Larsen, Lotte Bach; Larsen, Mette Krogh; Sørensen, Peter

    2014-01-01

    Background The milk fat profile of the Danish Holstein (DH) and Danish Jersey (DJ) show clear differences. Identification of the genomic regions, genes and biological pathways underlying the milk fat biosynthesis will improve the understanding of the biology underlying bovine milk fat production and may provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty...

  18. Confirming a biological pathway in the metabolic syndrome--insight from the NHANES 1999-2002.

    Science.gov (United States)

    Lin, Lian-Yu; Kuo, Hsu-Ko; Li, Hung-Yuan; Hwang, Juey-Jen; Lin, Jou-Wei

    2008-12-01

    The objective of this study was to examine the role of obesity in the development of the metabolic syndrome (MS). A total of 3,596 whites aged 19 years and above, who participated in the National Health and Nutrition Examination Survey (NHANES) 1999-2002, were included for analysis. Anthropometric measurements, biochemical profiles, and high-sensitivity C-reactive protein (CRP) were measured. A structural equation model (SEM) was constructed to elucidate a pathway in which obesity initiated the cascade leading to full MS. The results of SEM demonstrated that obesity was positively associated with elevated CRP level (B = 0.05, P mediation of insulin resistance and/or inflammation. The results of the cross-sectional analysis in the white subjects have shown that obesity has a strong influence on hypertension that obtains little additional influence from inflammation or insulin resistance. The metabolic profile in the NHANES group has been confirmatory with the statement that there is a sequential effect from obesity to inflammation, insulin resistance, and dyslipidemia. This approach has allowed to inferring important biological insights about the nature of the relationships among the components of MS. PMID:18846046

  19. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    Science.gov (United States)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  20. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.

    Science.gov (United States)

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. PMID:27296645

  1. A coherent framework for multiresolution analysis of biological networks with “memory”: Ras pathway, cell cycle, and immune system

    OpenAIRE

    Barbano, Paolo Emilio; Spivak, Marina; Feng, Jiawu; Antoniotti, Marco; Mishra, Bud

    2005-01-01

    Various biological processes exhibit characteristics that vary dramatically in response to different input conditions or changes in the history of the process itself. One of the examples studied here, the Ras-PKC-mitogen-activated protein kinase (MAPK) bistable pathway, follows two distinct dynamics (modes) depending on duration and strength of EGF stimulus. Similar examples are found in the behavior of the cell cycle and the immune system. A classification methodology, based on time-frequenc...

  2. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics

    OpenAIRE

    Yin, Lianhong; Zheng, Lingli; Xu, Lina; Dong, Deshi; Han, Xu; Qi, Yan; Zhao, Yanyan; Xu, Youwei; Peng, Jinyong

    2015-01-01

    Background Inverse docking technology has been a trend of drug discovery, and bioinformatics approaches have been used to predict target proteins, biological activities, signal pathways and molecular regulating networks affected by drugs for further pharmacodynamic and mechanism studies. Methods In the present paper, inverse docking technology was applied to screen potential targets from potential drug target database (PDTD). Then, the corresponding gene information of the obtained drug-targe...

  3. DMPD: Type I interferon receptors: biochemistry and biological functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502368 Type I interferon receptors: biochemistry and biological functions. de Wee...(.html) (.csml) Show Type I interferon receptors: biochemistry and biological functions. PubmedID 17502368 T...itle Type I interferon receptors: biochemistry and biological functions. Authors

  4. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors: signaling and bio...logy. PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  5. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    Science.gov (United States)

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions. PMID:24579087

  6. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  7. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop

    Science.gov (United States)

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.001 PMID:27296645

  8. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era.

    Science.gov (United States)

    Hagiwara, Daisuke; Sakamoto, Kazutoshi; Abe, Keietsu; Gomi, Katsuya

    2016-09-01

    Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era." PMID:27007956

  9. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Lim Da-jeong

    2010-11-01

    , which is involved in connective tissue degradation, could play a role in an important biological pathway for building up marbling in cattle. Moreover, ADAMTS4 and TGFβ1could potentially be used as an early biological marker for marbling fat content in the early stages of growth.

  10. Downregulation of RSK2 influences the biological activities of human osteosarcoma cells through inactivating AKT/mTOR signaling pathways.

    Science.gov (United States)

    Qiu, Quanhe; Jiang, Jing; Lin, Liangbo; Cheng, Si; Xin, Daqi; Jiang, Wei; Shen, Jieliang; Hu, Zhenming

    2016-06-01

    RSK2 (90 kDa ribosomal S6 kinase) is a downstream effector of the Ras/ERK (extracellular signal-regulated kinase) signaling pathway that has major functions in cell biological activities, including regulating nuclear signaling, cell cycle progression, cell proliferation, cell growth, protein synthesis, cell migration and cell survival, and is expressed in most types of human malignant tumors, including lung cancer, prostate and breast tumors, skin cancer and osteosarcomas (OS). RSK2 was found to be essential for osteosarcoma formation. To investigate whether RSK2 is expressed at high levels in human osteosarcome tissues and whether its expression is correlated with the aggressive biological behavior of osteosarcoma cell line (OCLs), we assessed the association between RSK2 expression and OS cell progression, as well as the effects of RSK2 inhibition on the biological activities of osteosarcoma cells. We performed immunohistochemistry to analyze the expression of RSK2 in specimens from 30 humans with osteosarcoma, and 15 normal tissues. RSK2 gene expression levels in 30 specimens with osteosarcoma were significantly higher than those of normal tissues. We performed RNA interference on three OCLs to evaluate cell apoptosis, cell growth, cell proliferation, cell motility, chemosensitivity and oncogenicity. After transfection with RSK2 shRNA, increased cell apoptosis, cell growth inhibition, cell cycle progression, weaker cell proliferation, cell migration and weaker tumor formation were observed in all OCLs. These results suggested that RSK2 expression may mediate the biological activities of OS cells and RSK2 may be an effective therapeutic target for the treatment of osteosarcomas. The AKT/mTOR, MAPK/ERK/c-Fos and Bcl2/Bax pathways were analysed to clarify the mechanisms involved. PMID:27082640

  11. Identifying novel glioma associated pathways based on systems biology level meta-analysis

    OpenAIRE

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    Background With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on ...

  12. Gene-based GWAS and -biological pathway analysis of the resilience of executive functioning

    OpenAIRE

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K.; Gibbons, Laura E.; Nho, Kwangsik; Glymour, M. Maria; Ertekin-Taner, Nilüfer; Thomas J Montine; Saykin, Andrew J; Crane, Paul K.

    2014-01-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative t...

  13. Molecular Biology of Pancreatic Ductal Adenocarcinoma Progression: Aberrant Activation of Developmental Pathways

    OpenAIRE

    Rhim, Andrew D.; Stanger, Ben Z.

    2010-01-01

    Embryonic development marks a period of peak tissue growth and morphogenesis in the mammalian lifecycle. Many of the pathways that underlie cell proliferation and movement are relatively quiescent in adult animals but become reactivated during carcinogenesis. This phenomenon has been particularly well documented in pancreatic cancer, where detailed genetic studies and a robust mouse model have permitted investigators to test the role of various developmental signals in cancer progression. In ...

  14. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways

    Science.gov (United States)

    Ghosh, Debajyoti; Ding, Lili; Sivaprasad, Umasundari; Geh, Esmond; Biagini Myers, Jocelyn; Bernstein, Jonathan A.; Khurana Hershey, Gurjit K; Mersha, Tesfaye B.

    2015-01-01

    Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures ‘89ADGES’, including FLG gene, were identified to show dysregulation consistently across these studies. Using a Support Vector Machine, we showed that the ‘89ADGES’ discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., FLG, CORIN, AQP, LOR, KRT16), inflammation (e.g., IL37, IL27RA, CCL18) and lipid metabolism (e.g., AKR1B10, FAD7, FAR2). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel “barrier therapy” for this disease. PMID:26717000

  15. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  16. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  17. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves.

    Directory of Open Access Journals (Sweden)

    Wenying Xu

    Full Text Available Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96% diurnal probe sets in seedling leaves, 13,773 (24.08% diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated

  18. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    Science.gov (United States)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this

  19. Synthesis and biological evaluation of novel compounds as potential modulators of cannabinoid signalling pathways

    OpenAIRE

    De Bank, Paul A

    2001-01-01

    Most of the biological effects of cannabis are due to the activation of specific cannabinoid receptors. To date, two such receptors have been discovered and are found predominantly in the central nervous system (the CB1 receptor) or the immune system (the CB2 receptor). Endogenous cannabinoid receptor ligands, the endocannabinoids, have also been isolated and the mechanisms of their synthesis and degradation postulated. By modulating the activation of cannabinoid receptors and endocannabinoid...

  20. An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information

    Directory of Open Access Journals (Sweden)

    Miyano Satoru

    2010-06-01

    Full Text Available Abstract Background Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. Results We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. Conclusions The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more

  1. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    Science.gov (United States)

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis. PMID:26438268

  2. Activation T-DNA tagging. Gene isolation and molecular dissection of complex biological pathways

    International Nuclear Information System (INIS)

    Activation tagging is a powerful means of isolating plant genes whose products are involved in complex biochemical processes. The dominant mutation produced allows direct selection for a defined phenotype. Plasmid rescue can be used to recover both the T-DNA and the flanking plant sequences containing the tagged gene. Activation tagging has been used to create a number of differing tobacco mutants, including those whose cells are characterized by their ability to grow in culture in the absence of auxin in the media. The tagged genes in this case are, in effect, cellular proto-oncogenes and are likely to play a role in the auxin biosynthetic and perception pathway. (author). 16 refs

  3. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  4. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    Science.gov (United States)

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  5. Geochemical pathways and biological uptake of radium in small Canadian Shield lakes

    International Nuclear Information System (INIS)

    The sediment-water interactions and biological uptake of 226Ra are described for four small Canadian Shield lakes at the Experimental Lakes Area, Kenora, Ontario. A single addition of 226Ra was made to each lake between 1970 and 1976. Approximately 90 percent of the added 226Ra initially sorbed to the sediments. Outflow from the lakes showed losses of only 5-11 percent 226Ra per year. Models are proposed for adsorption and outflow of 226Ra from lakes. Biological uptake and long-term 226Ra concentrations were measured in three species of macrophytes, crayfish, and five species of fish. Bioaccumulation ranged from 1100 to 5000 in macrophytes, 705 in crayfish, from 30 to 80 in large trout (Salvelinus namaycush), white sucker (Catostomus commersoni), and lake whitefish (Coregonus clupeaformis), and from 230 to 1200 in fathead minnows (Pimephales promelas), pearl dace (Semotilus margarita), and northern redbelly dace (Chrosomus eos). The concept of Ra/Ca ratio in organisms versus water and food is used to explain the differences in bioaccumulation. 226Ra is discriminated against versus calcium by fish but favoured by macrophytes and crayfish

  6. The NF-kB pathway: LET dependence of the biological response to heavy ion beams

    Science.gov (United States)

    Hellweg, Christine; Baumstark-Khan, Christa; Arenz, Andrea; Reitz, Guenther; Schmitz, Claudia; Spitta, Luis F.; Ruscher, Roland; Lau, Patrick; Meier, Matthias M.; Testard, Isabelle

    Radiation is an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long term orbital and interplanetary missions. A solar flare can threaten the astronauts' life, and long-term exposure to galactic cosmic rays may shorten the healthy life-span after return to Earth due to cancer induction. Understanding of the cellular and molecular processes underlying these phenomena may allow better risk estimation and development of appropriate countermeasures. A central factor in the cellular stress response is the transcription factor nuclear factor κB (NF-κB). As an antiapoptotic factor, if activated in human cells by ion beam exposure, it could influence the cancer risk of astronauts exposed to cosmic radiation and improve cellular survival after exposure to high radiation doses. In previous studies using a screening assay for the detection of NF-κB-dependent gene induction (HEK-pNF-κB-d2EGFP/Neo cells), the activation of this transcription factor by heavy ions was shown (Radiat. Res. 164: 527-530, 2005). In this work, the dependency of NF-κB activation on LET was examined. Accelerated argon ions (36 Ar, 95 MeV/u, LET 232 keV/` ım) activate the NF-κB pathway already at low particle densities (1-2 particle hits per nucleus), which result in as less as 5-50 induced double strand breaks per cell. Accelerated carbon ions (13 C, 75 MeV/u, LET 30 keV/µm) induce NF-κB-dependent gene expression at higher particle densities (50-500 particle hits per nucleus), but to a lower extent than the argon ions. Intermediate NF-κB activation is initiated by exposure of human cells with carbon ions with an LET of 70 keV/µm. Sparsely ionizing radiation such as X-rays activates the NF-κB pathway at high doses (> 4 Gy), neutrons at doses > 3 Gy. These results suggest a LET dependency of NF-κB activation: high LET radiation activates NF-κB - dependent on initial nuclear DNA damage followed by cytoplasmic signalling events - more efficiently

  7. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications.

    Directory of Open Access Journals (Sweden)

    Urmi Sengupta

    Full Text Available Type 2 diabetes mellitus (T2D is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d Lastly, from our fourth network we have inferred that the interaction of beta-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better

  8. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  9. Biological pathways and chemical behavior of plutonium and other actinides in the environment

    International Nuclear Information System (INIS)

    The principal long-lived actinide elements that may enter the environment from either U or Pu fuel cycles are Pu, Am, Cm, and Np. Approximately 25% of the alpha activity estimated to be released to the atmosphere from the LMFBR fuel cycle will be contributed by 241Am, 242Cm, and 244Cm. The balance of the alpha activity will come from Pu isotopes. Activities of 242Cm, 244Cm, 241Am, 243Am, and 237Np in waste may exceed concentrations of Pu isotopes in waste after various periods of decay. Thorium and uranium isotopes may also be released by operations of the thorium fuel cycle. Environmental actinides are discussed under the following headings: sources of man-made actinide elements; pathways of exposure; environmental chemistry of actinides; uptake of actinides by plants; distribution of actinides in components of White Oak Lake; entry of actinides into terrestrial food chains; relationship between chemical behavior and uptake of actinides by organisms; and behavior of Pu in freshwater and marine food chains

  10. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Directory of Open Access Journals (Sweden)

    Matthew P. Anderson

    2008-01-01

    Full Text Available We review evidence to support a model where the disease process underlying autism may begin when an in utero or early postnatal environmental, infectious, seizure, or autoimmune insult triggers an immune response that increases reactive oxygen species (ROS production in the brain that leads to DNA damage (nuclear and mitochondrial and metabolic enzyme blockade and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations, producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with damaged DNA and impaired metabolic enzyme function may generate additional ROS which will cause persistent activation of the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Beyond the direct effects of ROS on neuronal function, receptors on neurons that bind the inflammatory mediators may serve to inhibit neuronal signaling to protect them from excitotoxic damage during various pathologic insults (e.g., infection. In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  11. Why are well-educated Muscovites more likely to survive? Understanding the biological pathways.

    Science.gov (United States)

    Todd, Megan A; Shkolnikov, Vladimir M; Goldman, Noreen

    2016-05-01

    There are large socioeconomic disparities in adult mortality in Russia, although the biological mechanisms are not well understood. With data from the study of Stress, Aging, and Health in Russia (SAHR), we use Gompertz hazard models to assess the relationship between educational attainment and mortality among older adults in Moscow and to evaluate biomarkers associated with inflammation, neuroendocrine function, heart rate variability, and clinical cardiovascular and metabolic risk as potential mediators of that relationship. We do this by assessing the extent to which the addition of biomarker variables into hazard models of mortality attenuates the association between educational attainment and mortality. We find that an additional year of education is associated with about 5% lower risk of age-specific all-cause and cardiovascular mortality. Inflammation biomarkers are best able to account for this relationship, explaining 25% of the education-all-cause mortality association, and 35% of the education-cardiovascular mortality association. Clinical markers perform next best, accounting for 13% and 23% of the relationship between education and all-cause and cardiovascular mortality, respectively. Although heart rate biomarkers are strongly associated with subsequent mortality, they explain very little of the education-mortality link. Neuroendocrine biomarkers fail to account for any portion of the link. These findings suggest that inflammation may be important for understanding mortality disparities by socioeconomic status. PMID:27085072

  12. Biologically active substances-enriched diet regulates gonadotrope cell activation pathway in liver of adult and old rats.

    Science.gov (United States)

    Oszkiel, Hanna; Wilczak, Jacek; Jank, Michał

    2014-09-01

    According to the Hippocrates' theorem "Let food be your medicine and medicine be your food", dietary interventions may induce changes in the metabolic and inflammatory state by modulating the expression of important genes involved in the chronic disorders. The aim of the present study was to evaluate the influence of long-term (14 months) use of biologically active substances-enriched diet (BASE-diet) on transcriptomic profile of rats' liver. The experiment was conducted on 36 Sprague-Dawley rats divided into two experimental groups (fed with control or BASE-diet, both n = 18). Control diet was a semi-synthetic diet formulated according to the nutritional requirements for laboratory animals. The BASE-diet was enriched with a mixture of polyphenolic compounds, β-carotene, probiotics, and n-3 and n-6 polyunsaturated fatty acids. In total, n = 3,017 differentially expressed (DE) genes were identified, including n = 218 DE genes between control and BASE groups after 3 months of feeding and n = 1,262 after 14 months. BASE-diet influenced the expression of genes involved particularly in the gonadotrope cell activation pathway and guanylate cyclase pathway, as well as in mast cell activation, gap junction regulation, melanogenesis and apoptosis. Especially genes involved in regulation of GnRH were strongly affected by BASE-diet. This effect was stronger with the age of animals and the length of diet use. It may suggest a link between the diet, reproductive system function and aging. PMID:25156242

  13. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  14. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Testa, Mauro; Tang, Shikui [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gheorghiu, Liliana [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Biggs, Peter; Paganetti, Harald [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Efstathiou, Jason A. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lu, Hsiao-Ming [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Held, Kathryn D. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Willers, Henning, E-mail: hwillers@mgh.harvard.edu [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.

  15. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    International Nuclear Information System (INIS)

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and 137Cs γ-rays were used. To estimate the RBE of protons relative to 60Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation

  16. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  17. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  18. Generation of computationally predicted Adverse Outcome Pathway networks through integration of publicly available in vivo, in vitro, phenotype, and biological pathway data.

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is becoming a widely used tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse ecological and human health outcomes. However, the conventional process...

  19. The effect of following learning style pathways on learning and satisfaction in online biology laboratories for non-science-major undergraduates

    Science.gov (United States)

    Ritschel-Trifilo, Patricia M.

    Learning is a biological process involving horizontal and vertical synapse formations in the brain resulting in established neuronal pathways. Each learner has a unique biological makeup resulting in individual approaches to acquire, understand, and perceive information, which constitutes their learning styles. Learners have a dominant and several subdominant learning styles they use to explore new material. This study investigates the effect of following learning style pathways on learning and satisfaction in an online biology laboratory for non-science-major undergraduates. Participants in the control group, without knowledge of learning styles, randomly chose from eight instructional strategies, to create a pathway to explore the subject of fermentation and enzymes. Each participant in the experimental group was tested to determine dominant and subdominant learning styles, and was then instructed to follow a specific pathway that conformed to his or her learning styles through the instructional materials to explore the topics. Results of the study show a statistically significant improvement in learning when instructional strategies are matched to dominant and subdominant learning styles compared to instructional strategies unmatched to learning styles. Learners following the learning style pathway exactly as suggested by Canfield Learning Styles Inventory, with the dominant instruction first, accomplished extremely significantly higher posttest scores over those who only partially followed the suggested learning path. Learners expressed a higher level of satisfaction with the instruction and greater ease of learning when the instructional strategies matched learning styles. Research results suggest that, if the instructional strategies incorporated into an online laboratory presenting unfamiliar material to learners do not match the learner's style, the learner is forced to use a brain pathway with little neuronal connectivity resulting in poor learning and

  20. A Novel Biological Role of α-Mangostin in Modulating Inflammatory Response Through the Activation of SIRT-1 Signaling Pathway.

    Science.gov (United States)

    Franceschelli, Sara; Pesce, Mirko; Ferrone, Alessio; Patruno, Antonia; Pasqualone, Livia; Carlucci, Giuseppe; Ferrone, Vincenzo; Carlucci, Maura; de Lutiis, Maria Anna; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza

    2016-11-01

    Several studies have shown that xanthones obtained from Garcinia Mangostana (GM) have remarkable biological activities. α-mangostin (α-MG) is the main constituent of the fruit hull of the GM. Several findings have suggested that SIRT-1, a nuclear histone deacetylase, could influence cellular function by the inhibition of NF-kB signaling. ROS can inhibit SIRT-1 activity by initiating oxidative modifications on its cysteine residues, and suppression of SIRT-1 enhances the NF-κB signaling resulting in inflammatory responses. The goals of the present study were to evaluate the quantity of α-MG in the methanolic extract of GM (Vithagroup Spa) and to investigate the activity of this xanthone in U937 cell line and in human monocytes from responsive to inflammatory insult analyzing the possible changes on the activation of SIRT-1 protein via NF-Kb. Cells were treated with the methanolic extract of GM and/or LPS. The chromatographic separation of α-MG was performed by an HPLC analysis. EX 527, a specific SIRT-1 inhibitor, was used to determine if SIRT-1/NfkB signaling pathway might be involved in α-MG action on cells. Our results show that α-MG inhibits p65 acetylation and down-regulates the pro-inflammatory gene products as COX-2, iNOS via SIRT-1 activation. Cells treated with EX 527 showed an up-regulation of NFkB acetylation and an over expression of inducible enzymes and their product of catalysis (NO and PGE2). These results suggest that α-MG may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. J. Cell. Physiol. 231: 2439-2451, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895796

  1. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation

    Science.gov (United States)

    Guilmatre, Audrey; Dubourg, Christèle; Mosca, Anne-Laure; Legallic, Solenn; Goldenberg, Alice; Drouin-Garraud, Valérie; Layet, Valérie; Rosier, Antoine; Briault, Sylvain; Bonnet-Brilhault, Frédérique; Laumonnier, Frédéric; Odent, Sylvie; Le Vacon, Gael; Joly-Helas, Géraldine; David, Véronique; Bendavid, Claude; Pinoit, Jean-Michel; Henry, Céline; Impallomeni, Caterina; Germano, Eva; Tortorella, Gaetano; Di Rosa, Gabriella; Barthelemy, Catherine; Andres, Christian; Faivre, Laurence; Frébourg, Thierry; Saugier Veber, Pascale; Campion, Dominique

    2009-01-01

    Context Comparative genomic hybridization (array-CGH) studies have suggested that rare copy number variations (CNVs) at numerous loci are involved in the etiology of mental retardation (MR), autism spectrum disorders (ASD) and schizophrenia. Objective The goal of the present paper was (i) to provide an estimate of the collective frequency of a set of recurrent/overlapping CNVs in three different groups of patients as compared with healthy controls and (ii) to assess whether each CNV is present in more than one clinical category. Design, setting and population We have investigated 28 candidate loci previously identified by array-CGH studies for gene dosage alteration in 247 subjects with MR, 260 with ASD, 236 with schizophrenia or schizoaffective disorder and 236 healthy controls. Main outcome measures Collective and individual frequency of the analyzed CNVs in patients as compared with controls. Results Recurrent or overlapping CNVs were found in patients at 40% of the selected loci. We show that the collective frequency of CNVs at these loci is significantly increased in autistic patients, patients with schizophrenia and patients with MR as compared with controls (p= 0.005, p< 0.001 and p= 0.001 respectively, Fisher exact test). Individual significance (p= 0.02) was reached for association between autism and a 350 kb deletion located in 22q11 and spanning the PRODH gene. Conclusions These results support the hypothesis that weakly to moderately recurrent CNVs, either transmitted or occurring de novo, are causing or contributory factors for these diseases. Second, we show that most of these CNVs, which contain genes involved in neurotransmission or synapse formation and maintenance, are present in the 3 pathological conditions, supporting the existence of shared biological pathways between these neurodevelopmental disorders. PMID:19736351

  2. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis

    International Nuclear Information System (INIS)

    important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology

  3. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    International Nuclear Information System (INIS)

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis

  4. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  5. RNA-sequencing analysis of TCDD-induced responses in zebrafish liver reveals high relatedness to in vivo mammalian models and conserved biological pathways.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Li

    Full Text Available TCDD is one of the most persistent environmental toxicants in biological systems and its effect through aryl hydrocarbon receptor (AhR has been well characterized. However, the information on TCDD-induced toxicity in other molecular pathways is rather limited. To fully understand molecular toxicity of TCDD in an in vivo animal model, adult zebrafish were exposed to TCDD at 10 nM for 96 h and the livers were sampled for RNA-sequencing based transcriptomic profiling. A total of 1,058 differently expressed genes were identified based on fold-change>2 and TPM (transcripts per million >10. Among the top 20 up-regulated genes, 10 novel responsive genes were identified and verified by RT-qPCR analysis on independent samples. Transcriptomic analysis indicated several deregulated pathways associated with cell cycle, endocrine disruptors, signal transduction and immune systems. Comparative analyses of TCDD-induced transcriptomic changes between fish and mammalian models revealed that proteomic pathway is consistently up-regulated while calcium signaling pathway and several immune-related pathways are generally down-regulated. Finally, our study also suggested that zebrafish model showed greater similarity to in vivo mammalian models than in vitro models. Our study indicated that the zebrafish is a valuable in vivo model in toxicogenomic analyses for understanding molecular toxicity of environmental toxicants relevant to human health. The expression profiles associated with TCDD could be useful for monitoring environmental dioxin and dioxin-like contamination.

  6. The ESF Programme on Functional Genomics Workshop on ‘Data Integration in Functional Genomics: Application to Biological Pathways’

    Directory of Open Access Journals (Sweden)

    Paul van der Vet

    2006-04-01

    Full Text Available We report from the second ESF Programme on Functional Genomics workshop on Data Integration, which covered topics including the status of biological pathways databases in existing consortia; pathways as part of bioinformatics infrastructures; design, creation and formalization of biological pathways databases; generating and supporting pathway data and interoperability of databases with other external databases and standards. Key issues emerging from the discussions were the need for continued funding to cover maintenance and curation of databases, the importance of quality control of the data in these resources, and efforts to facilitate the exchange of data and to ensure the interoperability of databases.

  7. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  8. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    OpenAIRE

    Wei Li; Jingkai Zhao; Lei Zhang; Yinfeng Xia; Nan Liu; Sujing Li; Shihan Zhang

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NO x removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NO x removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NO x removal in a biofilter. Experimental results re...

  9. Systems Biology-Based Identification of Crosstalk between E2F Transcription Factors and the Fanconi Anemia Pathway

    Directory of Open Access Journals (Sweden)

    Moe Tategu

    2007-01-01

    Full Text Available Fanconi anemia (FA is an autosomal recessive disorder characterized by congenital abnormalities, bone marrow failure, chromosome fragility, and cancer susceptibility. At least eleven members of the FA gene family have been identified using complementation experiments. Ubiquitin-proteasome has been shown to be a key regulator of FA proteins and their involvement in the repair of DNA damage. Here, we identifi ed a novel functional link between the FA/BRCA pathway and E2F-mediated cell cycle regulome. In silico mining of a transcriptome database and promoter analyses revealed that a significant number of FA gene members were regulated by E2F transcription factors, known to be pivotal regulators of cell cycle progression – as previously described for BRCA1. Our findings suggest that E2Fs partly determine cell fate through the FA/BRCA pathway.

  10. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle)

    OpenAIRE

    Lim Da-jeong; Kim Nam-Kuk; Werf Julius; Gondro Cedric; Lee Seung-Hwan; Park Eung-Woo; Oh Sung-Jong; Gibson John P; Thompson John M

    2010-01-01

    Abstract Background Marbling (intramuscular fat) is a valuable trait that impacts on meat quality and an important factor determining price of beef in the Korean beef market. Animals that are destined for this high marbling market are fed a high concentrate ration for approximately 30 months in the Korean finishing farms. However, this feeding strategy leads to inefficiencies and excessive fat production. This study aimed to identify candidate genes and pathways associated with intramuscular ...

  11. Beyond prostaglandins - chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich; Galano, J. M.; Durand, T.

    2008-01-01

    Roč. 47, č. 32 (2008), s. 5894-5955. ISSN 1433-7851 Institutional research plan: CEZ:AV0Z40550506 Keywords : biological activity * fatty acids * isoprostanes * oxidation * total synthesis Subject RIV: CC - Organic Chemistry Impact factor: 10.879, year: 2008

  12. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas; Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr

    2015-01-16

    Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our in vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.

  13. A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments

    OpenAIRE

    Min Zhao; Lei Kong; Hong Qu

    2014-01-01

    Although the intelligence quotient (IQ) is the most popular intelligence test in the world, little is known about the underlying biological mechanisms that lead to the differences in human. To improve our understanding of cognitive processes and identify potential biomarkers, we conducted a comprehensive investigation of 158 IQ-related genes selected from the literature. A genomic distribution analysis demonstrated that IQ-related genes were enriched in seven regions of chromosome 7 and the X...

  14. Psychological and biological responses to race-based social stress as pathways to disparities in educational outcomes.

    Science.gov (United States)

    Levy, Dorainne J; Heissel, Jennifer A; Richeson, Jennifer A; Adam, Emma K

    2016-09-01

    We present the race-based disparities in stress and sleep in context model (RDSSC), which argues that racial/ethnic disparities in educational achievement and attainment are partially explained by the effects of race-based stressors, such as stereotype threat and perceived discrimination, on psychological and biological responses to stress, which, in turn, impact cognitive functioning and academic performance. Whereas the roles of psychological coping responses, such as devaluation and disidentification, have been theorized in previous work, the present model integrates the roles of biological stress responses, such as changes in stress hormones and sleep hours and quality, to this rich literature. We situate our model of the impact of race-based stress in the broader contexts of other stressors [e.g., stressors associated with socioeconomic status (SES)], developmental histories of stress, and individual and group differences in access to resources, opportunity and employment structures. Considering both psychological and biological responses to race-based stressors, in social contexts, will yield a more comprehensive understanding of the emergence of academic disparities between Whites and racial/ethnic minorities. (PsycINFO Database Record PMID:27571526

  15. Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the ?uorescent yield

    CERN Document Server

    Faklaris, Orestis; Irinopoulou, Theano; Tauc, Patrick; Girard, Hugues; Gesset, Celine; Senour, Mohamed; Thorel, Alain; Arnault, Jean-Charles; Boudou, Jean-Paul; Curmi, Patrick A; Treussart, François

    2009-01-01

    Diamond nanoparticles have been recently used as new ?uorescent labels in cells. Their emission relies on color centers embedded in the diamond matrix. In this work we compare the photoluminescence of a single color center embedded in a 30 nm diameter nanodiamond to that to a single dye molecule and demonstrate the perfect photostability of the color centers. We also compare the photoluminescence properties of nanodiamonds prepared under different conditions in order to ?nd the optimal parameters to achieve a high ?uorescence yield. We use these photoluminescent nanodiamonds for HeLa cell labeling and investigate their uptake mechanism. On the one hand by immunostaining the endocytotic vesicles and on the other by transmission electron microscopy observations we study the localization of nanodiamonds in cells. Moreover, by blocking selectively different endocytotic mechanisms we unravel their internalization pathway. We ?nd that nanodiamonds enter the cells by receptor-mediated endocytosis. The results of thi...

  16. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    International Nuclear Information System (INIS)

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize 125I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished 125I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type

  17. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    Science.gov (United States)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  18. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.

    Science.gov (United States)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-09-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  19. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  20. An Optimization-Based Framework for the Transformation of Incomplete Biological Knowledge into a Probabilistic Structure and Its Application to the Utilization of Gene/Protein Signaling Pathways in Discrete Phenotype Classification.

    Science.gov (United States)

    Esfahani, Mohammad Shahrokh; Dougherty, Edward R

    2015-01-01

    Phenotype classification via genomic data is hampered by small sample sizes that negatively impact classifier design. Utilization of prior biological knowledge in conjunction with training data can improve both classifier design and error estimation via the construction of the optimal Bayesian classifier. In the genomic setting, gene/protein signaling pathways provide a key source of biological knowledge. Although these pathways are neither complete, nor regulatory, with no timing associated with them, they are capable of constraining the set of possible models representing the underlying interaction between molecules. The aim of this paper is to provide a framework and the mathematical tools to transform signaling pathways to prior probabilities governing uncertainty classes of feature-label distributions used in classifier design. Structural motifs extracted from the signaling pathways are mapped to a set of constraints on a prior probability on a Multinomial distribution. Being the conjugate prior for the Multinomial distribution, we propose optimization paradigms to estimate the parameters of a Dirichlet distribution in the Bayesian setting. The performance of the proposed methods is tested on two widely studied pathways: mammalian cell cycle and a p53 pathway model. PMID:26671803

  1. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    Science.gov (United States)

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy. PMID:24827677

  2. Progesterone receptors - animal models and cell signalling in breast cancer: Diverse activation pathways for the progesterone receptor: possible implications for breast biology and cancer

    International Nuclear Information System (INIS)

    Progesterone and estradiol, and their nuclear receptors, play essential roles in the physiology of the reproductive tract, the mammary gland and the nervous system. Estrogens have traditionally been considered associated with an increased risk of breast cancer. There is, however, compelling evidence that progesterone plays an important role in breast cell proliferation and cancer. Herein, we review the possible role of progestins and the progesterone receptor-associated signaling pathways in the development of breast cancer, as well as the therapeutic possibilities arising from our growing knowledge of the activation of the progesterone receptor by other proliferative mechanisms

  3. Biologics beyond TNF-α inhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders

    DEFF Research Database (Denmark)

    Tougaard, Peter; Zervides, Kristoffer Alexander; Skov, Søren;

    2016-01-01

    novel drugs that target TNF-α signaling are still being developed. Indeed, blockade of this pathway seems so important amongst immune-targets that TNF-α targeted therapies will continue to have a significant role in the treatment of chronic inflammation. However, up to 40% of RA and IBD patients do not...... respond to anti-TNF-α treatment and one possible explanation may be the heterogeneity of chronic inflammatory diseases and a dominance of other significant TNF family members. Indeed, polymorphisms in the TNF family member, TL1A gene, is associated with the development of IBD and increased serum...

  4. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots.

    Science.gov (United States)

    Wang, Yan; Xu, Liang; Shen, Hong; Wang, Juanjuan; Liu, Wei; Zhu, Xianwen; Wang, Ronghua; Sun, Xiaochuan; Liu, Liwang

    2015-01-01

    The radish (Raphanus sativus L.) is an important root vegetable crop. In this study, the metabolite profiling analysis of radish roots exposed to lead (Pb) and cadmium (Cd) stresses has been performed using gas chromatography-mass spectrometry (GC-MS). The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between control and Pb- or Cd-treated samples. The metabolic profiling indicated Pb or Cd stress could cause large metabolite alteration mainly on sugars, amino acids and organic acids. Furthermore, an integrated analysis of the effects of Pb or Cd stress was performed on the levels of metabolites and gene transcripts from our previous transcriptome work in radish roots. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of integration data demonstrated that exposure of radish to Pb stress resulted in profound biochemical changes including carbohydrate metabolism, energy metabolism and glutathione metabolism, while the treatment of Cd stress caused significant variations in energy production, amino acid metabolism and oxidative phosphorylation-related pathways. These results would facilitate further dissection of the mechanisms of heavy metal (HM) accumulation/tolerance in plants and the effective management of HM contamination in vegetable crops by genetic manipulation. PMID:26673153

  5. Pathways with PathWhiz.

    Science.gov (United States)

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  6. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Li, Jiepin; Teng, Yuhao; Liu, Shenlin; Wang, Zifan; Chen, Yan; Zhang, Yingying; Xi, Songyang; Xu, Song; Wang, Ruiping; Zou, Xi

    2016-03-01

    Cinnamaldehyde (CA) is a bioactive compound isolated from the stem bark of Cinnamomum cassia, that has been identified as an antiproliferative substance with pro-apoptotic effects on various cancer cell lines in vitro. In the present study, the effects of CA on human colon cancer cells were investigated at both the molecular and cellular levels. Three types of colorectal cancer cells at various stages of differentiation and invasive ability (SW480, HCT116 and LoVo) were treated with CA at final concentrations of 20, 40 and 80 µg/ml for 24 h. Compared with the control group, the proliferation inhibition rate of the human colorectal cancer cells following treatment with CA increased in a dose- and time-dependent manner. The invasion and adhesion abilities of the cells were significantly inhibited as indicated by Transwell and cell-matrix adhesion assays. Meanwhile, CA also upregulated the expression of E-cadherin and downregulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. CA also elevated the apoptotic rate. The levels of pro-apoptotic genes were upregulated while the levels of apoptosis inhibitory genes were decreased which further confirmed the pro-apoptotic effect of CA. In order to explore the mechanism of CA-induced apoptosis, insulin-like growth factor-1 (IGF-1) and PI3K inhibitor (LY294002) were used to regulate the phosphoinositide 3-kinase (PI3K)/AKT pathway. The transcription activity of PI3K/AKT was markedly inhibited by CA, as well as IGF-1 which functions as an anti-apoptotic factor. In conclusion, CA has the potential to be developed as a new antitumor drug. The mechanisms of action involve the regulation of expression of genes involved in apoptosis, invasion and adhesion via inhibition of the PI3K/Akt signaling pathway. PMID:26677144

  7. Combinatorial pathway assembly in yeast

    Directory of Open Access Journals (Sweden)

    Khalil Essani

    2015-10-01

    Full Text Available With the emergence of synthetic biology and the vast knowledge about individual biocatalytic reactions, the challenge nowadays is to implement whole natural or synthetic pathways into microorganisms. For this purpose balanced enzyme activities throughout the pathway need to be achieved in addition to simple functional gene expression to avoid bottlenecks and to obtain high titers of the desired product. As the optimization of pathways in a specific biological context is often hard to achieve by rational design, combinatorial approaches have been developed to address this issue. Here, current strategies and proof of concepts for combinatorial pathway assembly in yeasts are reviewed. By exploiting its ability to join multiple DNA fragments in a very efficient and easy manner, the yeast Saccharomyces cerevisiae does not only constitute an attractive host for heterologous pathway expression, but also for assembling pathways by recombination in vivo.

  8. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  9. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    International Nuclear Information System (INIS)

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value≤0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  10. MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Dorn Ruth

    2010-04-01

    Full Text Available Abstract Background Triptolide is a diterpene triepoxide from the Chinese medicinal plant Tripterygium wilfordii Hook F., with known anti-inflammatory, immunosuppressive and anti-cancer properties. Results Here we report the expression profile of immune signaling genes modulated by triptolide in LPS induced mouse macrophages. In an array study triptolide treatment modulated expression of 22.5% of one hundred and ninety five immune signaling genes that included Toll-like receptors (TLRs. TLRs elicit immune responses through their coupling with intracellular adaptor molecules, MyD88 and TRIF. Although it is known that triptolide inhibits NFκB activation and other signaling pathways downstream of TLRs, involvement of TLR cascade in triptolide activity was not reported. In this study, we show that triptolide suppresses expression of proinflammatory downstream effectors induced specifically by different TLR agonists. Also, the suppressive effect of triptolide on TLR-induced NFκB activation was observed when either MyD88 or TRIF was knocked out, confirming that both MyD88 and TRIF mediated NFκB activation may be inhibited by triptolide. Within the TLR cascade triptolide downregulates TLR4 and TRIF proteins. Conclusions This study reveals involvement of TLR signaling in triptolide activity and further increases understanding of how triptolide activity may downregulate NFκB activation during inflammatory conditions.

  11. Decreased radioiodine uptake of FRTL-5 cells after 131I incubation in vitro: molecular biological investigations indicate a cell cycle-dependent pathway

    International Nuclear Information System (INIS)

    In radioiodine therapy the ''stunning phenomenon'' is defined as a reduction of radioiodine uptake after diagnostic application of 131I. In the current study, we established an in vitro model based on the ''Fisher rat thyrocyte cell line no. 5'' (FRTL-5) to investigate the stunning. TSH-stimulated FRTL-5 cells were incubated with 131I. Time-dependent 131I uptake and the viability of FRTL-5 cells were evaluated at 4-144 h after radioiodine application. All data was corrected for number of viable cells, half life and 131I concentration. Sodium iodide symporter (NIS) and the housekeeping gene (β-actin, GAPDH) levels were quantified by quantitative polymerase chain reaction (qPCR). Additionally, immunohistochemical staining (IHC) of NIS on the cell membrane was carried out. FRTL-5 monolayer cell cultures showed a specific maximum uptake of 131I 24-48 h after application. Significantly decreased 131I uptake values were observed after 72-144 h. The decrease in radioiodine uptake was correlated with decreasing mRNA levels of NIS and housekeeping genes. In parallel, unlike in controls, IHC staining of NIS on FRTL-5 cells declined significantly after 131I long-term incubation. It could be demonstrated that during 131I incubation of FRTL-5 cells, radioiodine uptake decreased significantly. Simultaneously decreasing levels of NIS mRNA and protein expression suggest a NIS-associated mechanism. Since mRNA levels of housekeeping genes decreased, too, the reduced NIS expression might be provoked by a cell cycle arrest. Our investigations recommend the FRTL-5 model as a valuable tool for further molecular biological investigations of the stunning phenomenon. (orig.)

  12. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  13. Pathways with PathWhiz

    OpenAIRE

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pa...

  14. WikiPathways: capturing the full diversity of pathway knowledge.

    Science.gov (United States)

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R; Miller, Ryan; Coort, Susan L; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T; Pico, Alexander R

    2016-01-01

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access. PMID:26481357

  15. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  16. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  17. THE BIOLOGY OF FRACTURE HEALING

    OpenAIRE

    Marsell, Richard; Einhorn, Thomas A.

    2011-01-01

    The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone hea...

  18. Biologic therapies for juvenile arthritis

    OpenAIRE

    Wilkinson, N; Jackson, G.; Gardner-Medwin, J.

    2003-01-01

    A group of therapies with exciting potential has emerged for children and young people with severe juvenile idiopathic arthritis (JIA) uncontrolled by conventional disease modifying drugs. Theoretical understanding from molecular biologic research has identified specific targets within pathophysiological pathways that control rheumatoid arthritis (RA) and JIA. This review identifies the pathways of autoimmunity to begin to show how biologic agents have been produced to replicate, mimic, or bl...

  19. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin;

    2016-01-01

    We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression, for...... instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  20. Reactome from a WikiPathways Perspective.

    Science.gov (United States)

    Bohler, Anwesha; Wu, Guanming; Kutmon, Martina; Pradhana, Leontius Adhika; Coort, Susan L; Hanspers, Kristina; Haw, Robin; Pico, Alexander R; Evelo, Chris T

    2016-05-01

    Reactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party. The nascent collaboration between WikiPathways and Reactome illustrates the mutual benefits of combining these two approaches. We created a format converter that converts Reactome pathways to the GPML format used in WikiPathways. In addition, we developed the ComplexViz plugin for PathVisio which simplifies looking up complex components. The plugin can also score the complexes on a pathway based on a user defined criterion. This score can then be visualized on the complex nodes using the visualization options provided by the plugin. Using the merged collection of curated and converted Reactome pathways, we demonstrate improved pathway coverage of relevant biological processes for the analysis of a previously described polycystic ovary syndrome gene expression dataset. Additionally, this conversion allows researchers to visualize their data on Reactome pathways using PathVisio's advanced data visualization functionalities. WikiPathways benefits from the dedicated focus and attention provided to the content converted from Reactome and the wealth of semantic information about interactions. Reactome in turn benefits from the continuous community curation available on WikiPathways. The research community at large benefits from the availability of a larger set of pathways for analysis in PathVisio and Cytoscape. The pathway statistics results obtained from PathVisio are significantly better when using a larger set of candidate pathways for analysis. The conversion serves as a general model for integration of multiple pathway resources developed using different approaches. PMID:27203685

  1. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection of...... fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  2. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    OpenAIRE

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pa...

  3. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    OpenAIRE

    Ye-Rang Yun; Jong Eun Won; Eunyi Jeon; Sujin Lee; Wonmo Kang; Hyejin Jo; Jun-Hyeog Jang; Ueon Sang Shin; Hae-Won Kim

    2010-01-01

    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain opt...

  4. Aberrant Signaling Pathways in Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Mitsutoshi, E-mail: nakada@ns.m.kanazawa-u.ac.jp; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Teng, Lei [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Department of Neurosurgery, The First Clinical College of Harbin Medical University, Nangang, Harbin 150001 (China); Pyko, Ilya V.; Hamada, Jun-Ichiro [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan)

    2011-08-10

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.

  5. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  6. Modeling biochemical pathways in the gene ontology.

    Science.gov (United States)

    Hill, David P; D'Eustachio, Peter; Berardini, Tanya Z; Mungall, Christopher J; Renedo, Nikolai; Blake, Judith A

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  7. Designing pathways

    DEFF Research Database (Denmark)

    Scheuer, John Damm

    2010-01-01

    The theoretical background in this chapter is organizational studies and especially theories about design and design processes in organizations. The concept of design is defined as a particular kind of work aimed at making arrangements in order to change existing situations into desired ones. The...... illustrative case example is the introduction of clinical pathways in a psychiatric department. The contribution to a general core of design research is the development of the concept of design work and a critical discussion of the role of technological rules in design work....

  8. Oxylipin Pathway in Rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    E. Wassim Chehab; John V. Perea; Banu Gopalan; Steve Theg; Katayoon Dehesh

    2007-01-01

    Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental information. The oxylipin pathway is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxylipin pathway induces the de novo synthesis of biologically active metabolltes called "oxylipins". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxylipln pathway, allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are responsible for production of the signaling compounds,jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways in rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations in monocots and dicots.

  9. Minimal metabolic pathway structure is consistent with associated biomolecular interactions.

    Science.gov (United States)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  10. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.;

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we intr...

  11. A Study of the PDGF Signaling Pathway with PRISM

    OpenAIRE

    Qixia Yuan; Jun Pang; Sjouke Mauw; Panuwat Trairatphisan; Monique Wiesinger; Thomas Sauter

    2011-01-01

    In this paper, we apply the probabilistic model checker PRISM to the analysis of a biological system -- the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. We show that quantitative verification can yield a better understanding of the PDGF signaling pathway.

  12. Noise in biology

    International Nuclear Information System (INIS)

    Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling. (review article)

  13. The Reactome pathway Knowledgebase.

    Science.gov (United States)

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2016-01-01

    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494

  14. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... chemical biology, drug repurposing, and off-target effects prediction....

  15. Coherence in electron transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Beratan, David N; Waldeck, David H

    2011-01-01

    Central to the view of electron-transfer reactions is the idea that nuclear motion generates a transition state geometry at which the electron/hole amplitude propagates coherently from the electron donor to the electron acceptor. In the weakly coupled or nonadiabatic regime, the electron amplitude tunnels through an electronic barrier between the donor and acceptor. The structure of the barrier is determined by the covalent and noncovalent interactions of the bridge. Because the tunneling barrier depends on the nuclear coordinates of the reactants (and on the surrounding medium), the tunneling barrier is highly anisotropic, and it is useful to identify particular routes, or pathways, along which the transmission amplitude propagates. Moreover, when more than one such pathway exists, and the paths give rise to comparable transmission amplitude magnitudes, one may expect to observe quantum interferences among pathways if the propagation remains coherent. Given that the effective tunneling barrier height and width are affected by the nuclear positions, the modulation of the nuclear coordinates will lead to a modulation of the tunneling barrier and hence of the electron flow. For long distance electron transfer in biological and biomimetic systems, nuclear fluctuations, arising from flexible protein moieties and mobile water bridges, can become quite significant. We discuss experimental and theoretical results that explore the quantum interferences among coupling pathways in electron-transfer kinetics; we emphasize recent data and theories associated with the signatures of chirality and inelastic processes, which are manifested in the tunneling pathway coherence (or absence of coherence). PMID:23833692

  16. 植物花青素生物合成途径相关基因研究进展及其基因工程修饰%Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway

    Institute of Scientific and Technical Information of China (English)

    赵德勇

    2012-01-01

    This paper reviews the advances in research of synthetic genes and regulator genes involved in the anthocyanin biological synthesis process as well as in genetic engineering in regulating the anthocyanin biological synthesis. Anthocyanin biological synthesis process of plants belongs to the secondary metabolic pathway, regulates the expression of key enzymes involved in the pathway, and could hence lead to a reduced or increased yield of target compound. Genetic improvement of plants may be realized through modifying the secondary metabolic process. Anthocyanin accumulation helps the plants to act against the UV Further study on the defense molecular mechanism of the anthocyanin facilitates b with resistance to diseases and adversities. radiation, insects and fungi. reeding of new plant cultivars%对植物花青素生物合成及调控基因的研究进展、基因工程在调控花青素合成途径中的应用进行了综述。植物花青素生物合成属次生代谢途径,对该途径关键酶基因的调控可降低或提高目标化合物的产量,可通过调控植物次生代谢的方式对植物进行遗传改良。对植物通过积累花青素来适应紫外线辐射、防卫害虫及真菌侵害的分子机制进行研究,有助于培育抗病、抗逆的植物新品种。

  17. Interleukin-17: characteristics, differentiation pathways, signaling and biological functions Interleuquina-17: características, vías de diferenciación, señalización y funciones biológicas

    OpenAIRE

    Luis Fernando García Moreno; Sara Claudia París Ángel; Viviana María Vélez Marín

    2007-01-01

    Interleukin-17 is a proinflammatory cytokine with very pleiotropic biological functions. It is secreted by different subsets of activated T cells. Its receptor is found on different cells in a wide range of tissues. IL-17 has been shown to be involved in the development of autoimmune diseases, allograft rejection, cancer, immediate and delayed hypersensitivity responses, and control of infections. IL-17 seems to play an important role in the immune response against Mycobacterium tuberculosis....

  18. Notch Signaling Pathway and Human Placenta

    OpenAIRE

    Wei-Xiu Zhao, Jian-Hua Lin

    2012-01-01

    Notch signaling was evolutionarily conserved and critical for cell-fate determination, differentiation and many other biological processes. Growing evidences suggested that Notch signaling pathway played an important role in the mammalian placental development. All of the mammalian Notch family proteins had been identified in human placenta except Delta-like 3, which appeared to affect the axial skeletal system. However the molecular mechanisms that regulated the Notch signaling pathway remai...

  19. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  20. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  1. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    OpenAIRE

    Bor-Sen Chen; Chia-Chou Wu

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of...

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Δ9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein α by microRNA-690.

    Science.gov (United States)

    Hegde, Venkatesh L; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P; Singh, Narendra P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2013-12-27

    Δ(9)-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b(+)Gr-1(+) MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b(+)Ly6G(+)Ly6C(+) and CD11b(+)Ly6G(-)Ly6C(+) purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in

  4. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  5. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  6. AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Mizuno Satoshi

    2012-05-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/.

  7. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  8. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  9. Biology task group

    International Nuclear Information System (INIS)

    The accomplishments of the task group studies over the past year are reviewed. The purposes of biological investigations, in the context of subseabed disposal, are: an evaluation of the dose to man; an estimation of effects on the ecosystem; and an estimation of the influence of organisms on and as barriers to radionuclide migration. To accomplish these ends, the task group adopted the following research goals: (1) acquire more data on biological accumulation of specific radionuclides, such as those of Tc, Np, Ra, and Sr; (2) acquire more data on transfer coefficients from sediment to organism; (3) Calculate mass transfer rates, construct simple models using them, and estimate collective dose commitment; (4) Identify specific pathways or transfer routes, determine the rates of transfer, and make dose limit calculations with simple models; (5) Calculate dose rates to and estimate irradiation effects on the biota as a result of waste emplacement, by reference to background irradiation calculations. (6) Examine the effect of the biota on altering sediment/water radionuclide exchange; (7) Consider the biological data required to address different accident scenarios; (8) Continue to provide the basic biological information for all of the above, and ensure that the system analysis model is based on the most realistic and up-to-date concepts of marine biologists; and (9) Ensure by way of free exchange of information that the data used in any model are the best currently available

  10. BIOZON: a hub of heterogeneous biological data

    OpenAIRE

    Birkland, Aaron; Yona, Golan

    2005-01-01

    Biological entities are strongly related and mutually dependent on each other. Therefore, there is a growing need to corroborate and integrate data from different resources and aspects of biological systems in order to analyze them effectively. Biozon is a unified biological database that integrates heterogeneous data types such as proteins, structures, domain families, protein–protein interactions and cellular pathways, and establishes the relationships between them. All data are integrated ...

  11. Reverse Engineering Adverse Outcome Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  12. Biological and molecular mechanisms of sulfur mustard analogue-induced toxicity in JB6 and HaCaT cells: possible role of ataxia telangiectasia-mutated/ataxia telangiectasia-Rad3-related cell cycle checkpoint pathway.

    Science.gov (United States)

    Tewari-Singh, Neera; Gu, Mallikarjuna; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2010-06-21

    Effective medical treatment and preventive measures for chemical warfare agent sulfur mustard (HD)-caused incapacitating skin toxicity are lacking, because of limited knowledge of its mechanism of action. The proliferating basal epidermal cells are primary major sites of attack during HD-caused skin injury. Therefore, employing mouse JB6 and human HaCaT epidermal cells, here, we investigated the molecular mechanism of HD analogue 2-chloroethyl ethyl sulfide (CEES)-induced skin cytotoxicity. As compared to the control, up to 1 mM CEES treatment of these cells for 2, 4, and 24 h caused dose-dependent decreases in cell viability and proliferation as measured by DNA synthesis, together with S and G2-M phase arrest in cell cycle progression. Mechanistic studies showed phosphorylation of DNA damage sensors and checkpoint kinases, ataxia telangiectasia-mutated (ATM) at ser1981 and ataxia telangiectasia-Rad3-related (ATR) at ser428 within 30 min of CEES exposure, and modulation of S and G2-M phase-associated cell cycle regulatory proteins, which are downstream targets of ATM and ATR kinases. Hoechst-propidium iodide staining demonstrated that CEES-induced cell death was both necrotic and apoptotic in nature, and the latter was induced at 4 and 24 h of CEES treatment in HaCaT and JB6 cells, respectively. An increase in caspase-3 activity and both caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage coinciding with CEES-caused apoptosis in both cell lines suggested the involvement of the caspase pathway. Together, our findings suggest a DNA-damaging effect of CEES that activates ATM/ATR cell cycle checkpoint signaling as well as caspase-PARP pathways, leading to cell cycle arrest and apoptosis/necrosis in both JB6 and HaCaT cells. The identified molecular targets, quantitative biomarkers, and epidermal cell models in this study have the potential and usefulness in rapid development of effective prophylactic and therapeutic interventions against HD-induced skin toxicity

  13. Evolution and applications of plant pathway resources and databases

    DEFF Research Database (Denmark)

    Sucaet, Yves; Deva, Taru

    2011-01-01

    Plants are important sources of food and plant products are essential for modern human life. Plants are increasingly gaining importance as drug and fuel resources, bioremediation tools and as tools for recombinant technology. Considering these applications, database infrastructure for plant model...... systems deserves much more attention. Study of plant biological pathways, the interconnection between these pathways and plant systems biology on the whole has in general lagged behind human systems biology. In this article we review plant pathway databases and the resources that are currently available....... We lay out trends and challenges in the ongoing efforts to integrate plant pathway databases and the applications of database integration. We also discuss how progress in non-plant communities can serve as an example for the improvement of the plant pathway database landscape and thereby allow...

  14. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the...

  15. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  16. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  17. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  18. Biology Notes.

    Science.gov (United States)

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  19. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...

  20. Integrative Biological Analysis of the APOE*3-Leiden Transgenic Mouse

    NARCIS (Netherlands)

    Clish, C.B.; Davidov, E.; Oresic, M.; Plasterer, T.N.; Lavine, G.; Londo, T.; Meys, M.; Snell, P.; Stochaj, W.; Adourian, A.; Zhang, X.; Morel, N.; Neumann, E.; Verheij, E.; Vogels, J.T.W.E.; Havekes, L.M.; Afeyan, N.; Regnier, F.; Greef, J. van der; Naylor, S.

    2004-01-01

    Integrative (or systems biology) is a new approach to analyzing biological entities as integrated systems of genetic, genomic, protein, metabolite, cellular, and pathway events that are in flux and interdependent. Here, we demonstrate the application of intregrative biological analysis to a mammalia

  1. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan;

    2016-01-01

    Background: More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for breast cancer. However, many metabolic biomarkers are difficult to replicate among studies.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  2. The emergence of modularity in biological systems

    Science.gov (United States)

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2011-06-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks.

  3. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  4. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  5. Biological radioprotector

    International Nuclear Information System (INIS)

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  6. Brain evolution by brain pathway duplication.

    Science.gov (United States)

    Chakraborty, Mukta; Jarvis, Erich D

    2015-12-19

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  7. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  8. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  9. 基于蛋白质互作知识的生物学通路扩充新方法%A novel biological pathway expansion method based on the knowledge of protein-protein interactions

    Institute of Scientific and Technical Information of China (English)

    赵小蕾; 左晓宇; 覃继恒; 梁岩; 张乃尊; 栾奕昭; 饶绍奇

    2014-01-01

    生物学通路被广泛应用于基因功能学研究,但现有的生物学通路知识并不完善,仍需进一步扩充.生物信息学预测为通路扩充提供了一种有效且经济的途径.文章提出了一种融合蛋白质-蛋白质互作知识以及Gene Ontology(GO)数据库信息进行基因通路预测的新方法.首先选取目标基因在蛋白质-蛋白质互作层面上的邻居所在的Kyoto Encyclopedia of Genes and Genomes(KEGG)通路为候选通路,然后通过检验候选通路中的基因是否在与目标基因关联的GO节点富集来判断目标基因的通路归属.分别利用Human Protein Reference Database(HPRD)和Biological General Repository for Interaction Datasets(BioGRID)数据库中的蛋白质-蛋白质互作信息进行预测.结果表明,在两套数据中,随着互作邻居个数的增加,预测的平均准确率(在所有目标基因注释的通路中被成功预测的比例)及相对准确率(在至少有一个注释通路被成功预测的基因集中,所有注释通路均被预测正确的基因所占的比例)均呈现上升趋势.当互作邻居个数达到22时,预测的平均准确率分别达到96.2%(HPRD)和96.3%(BioGRID),而相对准确率分别为93.3%(HPRD)和84.1%(BioGRID).进一步利用新版数据库对旧版数据库中被更新的89个基因进行验证,至少有一个更新通路被预测正确的基因有50个,其中43个基因的更新通路被完全正确预测,相对准确率为86.0%.这些结果显示该方法是一种可靠且有效的通路扩充方法.

  10. Biology of infantile hemangioma.

    Science.gov (United States)

    Itinteang, Tinte; Withers, Aaron H J; Davis, Paul F; Tan, Swee T

    2014-01-01

    Infantile hemangioma (IH), the most common tumor of infancy, is characterized by an initial proliferation during infancy followed by spontaneous involution over the next 5-10 years, often leaving a fibro-fatty residuum. IH is traditionally considered a tumor of the microvasculature. However, recent data show the critical role of stem cells in the biology of IH with emerging evidence suggesting an embryonic developmental anomaly due to aberrant proliferation and differentiation of a hemogenic endothelium with a neural crest phenotype that possesses the capacity for endothelial, hematopoietic, mesenchymal, and neuronal differentiation. Current evidence suggests a putative placental chorionic mesenchymal core cell embolic origin of IH during the first trimester. This review outlines the emerging role of stem cells and their interplay with the cytokine niche that promotes a post-natal environment conducive for vasculogenesis involving VEGFR-2 and its ligand VEGF-A and the IGF-2 ligand in promoting cellular proliferation, and the TRAIL-OPG anti-apoptotic pathway in preventing cellular apoptosis in IH. The discovery of the role of the renin-angiotensin system in the biology of IH provides a plausible explanation for the programed biologic behavior and the β-blocker-induced accelerated involution of this enigmatic condition. This crucially involves the vasoactive peptide, angiotensin II, that promotes cellular proliferation in IH predominantly via its action on the ATIIR2 isoform. The role of the RAS in the biology of IH is further supported by the effect of captopril, an ACE inhibitor, in inducing accelerated involution of IH. The discovery of the critical role of RAS in IH represents a novel and fascinating paradigm shift in the understanding of human development, IH, and other tumors in general. PMID:25593962

  11. The biology of strigolactones

    KAUST Repository

    Ruyter-Spira, Carolien P.

    2013-02-01

    The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved. © 2012 Elsevier Ltd.

  12. [Biological therapy for osteoporosis].

    Science.gov (United States)

    Nakamura, Shinya; Tanaka, Sakae

    2014-06-01

    Osteoporosis is a disorder of bone formation and resorption balance. Advances in our knowledge of the molecular mechanisms of bone formation and resorption led to promising therapeutic targets for osteoporosis. In the novel biological drugs, denosumab, a monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL) has been clinically applied by positive effect on bone mineral density, negative effect on bone resorption, preventive effect on fragility fractures and safety. Odanacatib, a cathepsin K inhibitor is drawing attention as an antiresorptive drug which has lower bone resorption potency than bisphosphoneate. On the other hand, BHQ-880, an anti-Dickkopf-1 (Dkk-1) antibody and romosozumab (AMG-785) , an anti-sclerostin antibody which activate Wnt/β-catenin signaling pathway are drawing attention as bone formation accelerators with no bone resorption acceleration. Clinical studies of these drugs are now ongoing and their clinical applications are expected. PMID:24870844

  13. Perception of biological motion in visual agnosia

    OpenAIRE

    Elisabeth Huberle; Paul Rupek; Markus Lappe

    2012-01-01

    Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what') and a dorsal ('where') visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non...

  14. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  15. Development of Network Analysis and Visualization System for KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Dongmin Seo

    2015-07-01

    Full Text Available Big data refers to informationalization technology for extracting valuable information through the use and analysis of large-scale data and, based on that data, deriving plans for response or predicting changes. With the development of software and devices for next generation sequencing, a vast amount of bioinformatics data has been generated recently. Also, bioinformatics data based big-data technology is rising rapidly as a core technology by the bioinformatician, biologist and big-data scientist. KEGG pathway is bioinformatics data for understanding high-level functions and utilities of the biological system. However, KEGG pathway analysis requires a lot of time and effort because KEGG pathways are high volume and very diverse. In this paper, we proposed a network analysis and visualization system that crawl user interest KEGG pathways, construct a pathway network based on a hierarchy structure of pathways and visualize relations and interactions of pathways by clustering and selecting core pathways from the network. Finally, we construct a pathway network collected by starting with an Alzheimer’s disease pathway and show the results on clustering and selecting core pathways from the pathway network.

  16. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    Science.gov (United States)

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  17. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  18. Immunomodulatory Pathways and Metabolism

    OpenAIRE

    Bhargava, Prerna

    2012-01-01

    Energy metabolism plays a vital role in normal physiology, adaptive responses and host defense mechanisms. Research throughout the last decade has shown evidence that immune pathways communicate with metabolic pathways to alter the metabolic status in response to physiological or pathological signals. In this thesis, I will explore how immunomodulatory molecules affect metabolic homeostasis and conversely, how metabolic sensing pathways modulate immune responses. The first part my work utiliz...

  19. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  20. Standardization for natural product synthetic biology.

    Science.gov (United States)

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  1. Standardization for natural product synthetic biology

    OpenAIRE

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering.

  2. Towards Systems Biology of Human Pulmonary Fibrosis

    OpenAIRE

    Studer, Sean M.; Kaminski, Naftali

    2007-01-01

    The integrated effect of multiple pathways, molecules, genetic polymorphisms, environmental stimuli, and possible infection determines the lung phenotype in idiopathic pulmonary fibrosis (IPF), a chronic progressive and often lethal lung disease. Systems biology approaches aim to provide a systemwide view of biological process using computational tools and high-throughput technologies. Although much of the analysis of genome-level transcriptional high-resolution profiles of IPF was reductioni...

  3. Biological effects

    International Nuclear Information System (INIS)

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH)

  4. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  5. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  6. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth Huberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  7. Brain evolution by brain pathway duplication

    OpenAIRE

    Chakraborty, Mukta; Jarvis, Erich D

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel ...

  8. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  9. Evolutionary algorithm for metabolic pathways synthesis.

    Science.gov (United States)

    Gerard, Matias F; Stegmayer, Georgina; Milone, Diego H

    2016-06-01

    Metabolic pathway building is an active field of research, necessary to understand and manipulate the metabolism of organisms. There are different approaches, mainly based on classical search methods, to find linear sequences of reactions linking two compounds. However, an important limitation of these methods is the exponential increase of search trees when a large number of compounds and reactions is considered. Besides, such models do not take into account all substrates for each reaction during the search, leading to solutions that lack biological feasibility in many cases. This work proposes a new evolutionary algorithm that allows searching not only linear, but also branched metabolic pathways, formed by feasible reactions that relate multiple compounds simultaneously. Tests performed using several sets of reactions show that this algorithm is able to find feasible linear and branched metabolic pathways. PMID:27080162

  10. Heavy metal pathways and archives in biological tissue

    International Nuclear Information System (INIS)

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants (Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush (Atriplex burbhanyana) and one species each of acacia (Acacia saligna) and estuarine crocodiles (Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 μmol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated anthropogenic Pb sources and the hypothesis that the osteoderm can be used as an archive of the crocodile's exposure to Pb during its life

  11. Heavy metal pathways and archives in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Orlic, I. E-mail: ivo@ansto.gov.au; Siegele, R.; Menon, D.D.; Markich, S.J.; Cohen, D.D.; Jeffree, R.A.; McPhail, D.C.; Sarbutt, A.; Stelcer, E

    2002-05-01

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants (Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush (Atriplex burbhanyana) and one species each of acacia (Acacia saligna) and estuarine crocodiles (Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 {mu}mol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated anthropogenic Pb sources and the hypothesis that the osteoderm can be used as an archive of the crocodile's exposure to Pb during its life.

  12. HIPPOCRATES IS CARE: HISTORY AND SOME BIOLOGICAL PATHWAYS ON CAREGIVER

    OpenAIRE

    Rosangela Souza Kalil; Fernando Raphael de Almeida Ferry; Fernando Samuel Sion; Jorge Francisco da Cunha-Pinto; Marcelo Mendes de Azevedo Costa-Velho; Carlos Alberto Morais De Sá

    2011-01-01

    AbstractHippocrates is the mainstay of care. Plato and Aristotle state humoralism as the way that Hippocrates understands human health disorders. He closely observed patients to restore humoral equilibrium, relying on healing power of nature to recover health, rejecting drugs or any kind of procedure that could harm the individual. The development of a common ground of understanding is desirable as a process of negotiating treatment goals and methods which may create an atmosphere of support ...

  13. Heavy metal pathways and archives in biological tissue

    Science.gov (United States)

    Orlic, I.; Siegele, R.; Menon, D. D.; Markich, S. J.; Cohen, D. D.; Jeffree, R. A.; McPhail, D. C.; Sarbutt, A.; Stelcer, E.

    2002-05-01

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants ( Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush ( Atriplex burbhanyana) and one species each of acacia ( Acacia saligna) and estuarine crocodiles ( Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 μmol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated anthropogenic Pb sources and the hypothesis that the osteoderm can be used as an archive of the crocodile's exposure to Pb during its life.

  14. Lipid disequilibrium in biological membranes, a possible pathway to neurodegeneration.

    Science.gov (United States)

    Witt, Stephan N

    2014-12-01

    We recently reported that knocking down the enzyme phosphatidylserine decarboxylase, which synthesizes the phospholipid phosphatidylethanolamine (PE) in mitochondria, perturbs the homeostasis of the human Parkinson disease (PD) protein α-synuclein (expressed in yeast or worms). In yeast, low PE in the psd1Δ deletion mutant induces α-synuclein to enter cytoplasmic foci, the level of this protein increases 3-fold compared to wild-type cells, and the mutant cells are severely sick. The metabolite ethanolamine protects both yeast and worms from the deleterious synergistic effects of low mitochondrial PE and α-synuclein. Here we highlight a Drosophila mutant called easily shocked-thought to be a model of epilepsy-that cannot use ethanolamine to synthesize PE. We also highlight recently identified mutated genes associated with defective lipid metabolism in PD and epilepsy patients. We propose that disruptions in lipid homeostasis (synthesis and degradation) may be responsible for some cases of PD and epilepsy. PMID:26480301

  15. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  16. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    Science.gov (United States)

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility. PMID:26743605

  17. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  18. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  19. Effects of microgravity environment on intracellular signal transduction pathways

    Directory of Open Access Journals (Sweden)

    De CHANG

    2012-09-01

    Full Text Available Microgravity environment is a stress and extracellular signal that affects cellular morphology and function through signal transduction system, thus leading to certain biological effect. At present, many signaling pathways have been reported to be involved in the regulation of cell function under microgravity environment, such as NF-κB signaling pathway, Notch signaling pathway, MAPK signaling pathway, HSP signaling pathway and so on, and these reports have laid a foundation for the molecular studies of cytolergy under outer space environment. The recent progress in the researches on intracellular signaling pathways affected by microgravity is herewith reviewed in present paper in the hope of providing references for understanding the cell activity in space environment, and to find the ways to alleviate the harmful effects caused by the microgravity environment.

  20. Pathway analysis of coronary atherosclerosis.

    Science.gov (United States)

    King, Jennifer Y; Ferrara, Rossella; Tabibiazar, Raymond; Spin, Joshua M; Chen, Mary M; Kuchinsky, Allan; Vailaya, Aditya; Kincaid, Robert; Tsalenko, Anya; Deng, David Xing-Fei; Connolly, Andrew; Zhang, Peng; Yang, Eugene; Watt, Clifton; Yakhini, Zohar; Ben-Dor, Amir; Adler, Annette; Bruhn, Laurakay; Tsao, Philip; Quertermous, Thomas; Ashley, Euan A

    2005-09-21

    Large-scale gene expression studies provide significant insight into genes differentially regulated in disease processes such as cancer. However, these investigations offer limited understanding of multisystem, multicellular diseases such as atherosclerosis. A systems biology approach that accounts for gene interactions, incorporates nontranscriptionally regulated genes, and integrates prior knowledge offers many advantages. We performed a comprehensive gene level assessment of coronary atherosclerosis using 51 coronary artery segments isolated from the explanted hearts of 22 cardiac transplant patients. After histological grading of vascular segments according to American Heart Association guidelines, isolated RNA was hybridized onto a customized 22-K oligonucleotide microarray, and significance analysis of microarrays and gene ontology analyses were performed to identify significant gene expression profiles. Our studies revealed that loss of differentiated smooth muscle cell gene expression is the primary expression signature of disease progression in atherosclerosis. Furthermore, we provide insight into the severe form of coronary artery disease associated with diabetes, reporting an overabundance of immune and inflammatory signals in diabetics. We present a novel approach to pathway development based on connectivity, determined by language parsing of the published literature, and ranking, determined by the significance of differentially regulated genes in the network. In doing this, we identify highly connected "nexus" genes that are attractive candidates for therapeutic targeting and followup studies. Our use of pathway techniques to study atherosclerosis as an integrated network of gene interactions expands on traditional microarray analysis methods and emphasizes the significant advantages of a systems-based approach to analyzing complex disease. PMID:15942018

  1. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  2. Migration pathways in soils

    International Nuclear Information System (INIS)

    This study looked at diffusive migration through three types of deformation; the projectile pathways, hydraulic fractures of the sediments and faults, and was divided into three experimental areas: autoradiography, the determination of diffusion coefficients and electron microscopy of model projectile pathways in clay. For the autoradiography, unstressed samples were exposed to two separate isotopes, Pm-147 (a possible model for Am behaviour) and the poorly sorbed iodide-125. The results indicated that there was no enhanced migration through deformed kaolin samples nor through fractured Great Meteor East (GME) sediment, although some was evident through the projectile pathways in GME and possibly through the GME sheared samples. The scanning electron microscopy of projectile pathways in clay showed that emplacement of a projectile appeared to have no effect on the orientation of particles at distances greater than two projectile radii from the centre of a projectile pathway. It showed that the particles were not simply aligned with the direction of motion of the projectile but that, the closer to the surface of a particular pathway, the closer the particles lay to their original orientation. This finding was of interest from two points of view: i) the ease of migration of a pollutant along the pathway, and ii) possible mechanisms of hole closure. It was concluded that, provided that there is no advective migration, the transport of radionuclides through sediments containing these defects would not be significantly more rapid than in undeformed sediments. (author)

  3. Biologics in dermatologic therapy - An update

    Directory of Open Access Journals (Sweden)

    Coondoo Arijit

    2009-01-01

    Full Text Available Biologics are protein molecules which are used in various diseases to target the specific points in the immunopathogenesis of the diseases. The molecules are produced by recombinant DNA technology. The molecules bind to the specific targets without interfering wtih rest of the pathogenetic pathways. Therefore the so called ′immunosuppressives′ have, although, a broader broader spectrum of action on immune system, their side-effects are also equally more. The biologics, because of their spefic action on the immune system, have very little side effects. The biologics which have revolutionized the treatment of various dermatologic diseases have been discussed here.

  4. DMPD: Regulatory pathways in inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17967718 Regulatory pathways in inflammation. Mantovani A, Garlanda C, Locati M, Ro....html) (.csml) Show Regulatory pathways in inflammation. PubmedID 17967718 Title Regulatory pathways in infl

  5. Nutritional Systems Biology: Definitions and Approaches

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Nielsen, Jens

    2009-01-01

    waiting for a predictive knowledge of genetic variation. It is widely recognized that systems and network biology has the potential to increase our understanding of how nutrition influences metabolic pathways and homeostasis, how this regulation is disturbed in a diet-related disease, and to what extent...... individual genotypes contribute to such diseases....

  6. RDFScape: Semantic Web meets Systems Biology

    Science.gov (United States)

    Splendiani, Andrea

    2008-01-01

    Background The recent availability of high-throughput data in molecular biology has increased the need for a formal representation of this knowledge domain. New ontologies are being developed to formalize knowledge, e.g. about the functions of proteins. As the Semantic Web is being introduced into the Life Sciences, the basis for a distributed knowledge-base that can foster biological data analysis is laid. However, there still is a dichotomy, in tools and methodologies, between the use of ontologies in biological investigation, that is, in relation to experimental observations, and their use as a knowledge-base. Results RDFScape is a plugin that has been developed to extend a software oriented to biological analysis with support for reasoning on ontologies in the semantic web framework. We show with this plugin how the use of ontological knowledge in biological analysis can be extended through the use of inference. In particular, we present two examples relative to ontologies representing biological pathways: we demonstrate how these can be abstracted and visualized as interaction networks, and how reasoning on causal dependencies within elements of pathways can be implemented. Conclusions The use of ontologies for the interpretation of high-throughput biological data can be improved through the use of inference. This allows the use of ontologies not only as annotations, but as a knowledge-base from which new information relevant for specific analysis can be derived. PMID:18460179

  7. Chapter 8: Biological knowledge assembly and interpretation.

    Directory of Open Access Journals (Sweden)

    Ju Han Kim

    Full Text Available Most methods for large-scale gene expression microarray and RNA-Seq data analysis are designed to determine the lists of genes or gene products that show distinct patterns and/or significant differences. The most challenging and rate-liming step, however, is to determine what the resulting lists of genes and/or transcripts biologically mean. Biomedical ontology and pathway-based functional enrichment analysis is widely used to interpret the functional role of tightly correlated or differentially expressed genes. The groups of genes are assigned to the associated biological annotations using Gene Ontology terms or biological pathways and then tested if they are significantly enriched with the corresponding annotations. Unlike previous approaches, Gene Set Enrichment Analysis takes quite the reverse approach by using pre-defined gene sets. Differential co-expression analysis determines the degree of co-expression difference of paired gene sets across different conditions. Outcomes in DNA microarray and RNA-Seq data can be transformed into the graphical structure that represents biological semantics. A number of biomedical annotation and external repositories including clinical resources can be systematically integrated by biological semantics within the framework of concept lattice analysis. This array of methods for biological knowledge assembly and interpretation has been developed during the past decade and clearly improved our biological understanding of large-scale genomic data from the high-throughput technologies.

  8. The metabolic pathway collection from EMP: the enzymes and metabolic pathways database.

    Science.gov (United States)

    Selkov, E; Basmanova, S; Gaasterland, T; Goryanin, I; Gretchkin, Y; Maltsev, N; Nenashev, V; Overbeek, R; Panyushkina, E; Pronevitch, L; Selkov, E; Yunus, I

    1996-01-01

    The Enzymes and Metabolic Pathways database (EMP) is an encoding of the contents of over 10 000 original publications on the topics of enzymology and metabolism. This large body of information has been transformed into a queryable database. An extraction of over 1800 pictorial representations of metabolic pathways from this collection is freely available on the World Wide Web. We believe that this collection will play an important role in the interpretation of genetic sequence data, as well as offering a meaningful framework for the integration of many other forms of biological data. PMID:8594593

  9. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  10. Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology

    OpenAIRE

    Hill Steven M; Neve Richard M; Bayani Nora; Kuo Wen-Lin; Ziyad Safiyyah; Spellman Paul T; Gray Joe W; Mukherjee Sach

    2012-01-01

    Abstract Background An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary informatio...

  11. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  12. Signal transduction pathway profiling of individual tumor samples

    Directory of Open Access Journals (Sweden)

    Peterson Carsten

    2005-06-01

    Full Text Available Abstract Background Signal transduction pathways convey information from the outside of the cell to transcription factors, which in turn regulate gene expression. Our objective is to analyze tumor gene expression data from microarrays in the context of such pathways. Results We use pathways compiled from the TRANSPATH/TRANSFAC databases and the literature, and three publicly available cancer microarray data sets. Variation in pathway activity, across the samples, is gauged by the degree of correlation between downstream targets of a pathway. Two correlation scores are applied; one considers all pairs of downstream targets, and the other considers only pairs without common transcription factors. Several pathways are found to be differentially active in the data sets using these scores. Moreover, we devise a score for pathway activity in individual samples, based on the average expression value of the downstream targets. Statistical significance is assigned to the scores using permutation of genes as null model. Hence, for individual samples, the status of a pathway is given as a sign, + or -, and a p-value. This approach defines a projection of high-dimensional gene expression data onto low-dimensional pathway activity scores. For each dataset and many pathways we find a much larger number of significant samples than expected by chance. Finally, we find that several sample-wise pathway activities are significantly associated with clinical classifications of the samples. Conclusion This study shows that it is feasible to infer signal transduction pathway activity, in individual samples, from gene expression data. Furthermore, these pathway activities are biologically relevant in the three cancer data sets.

  13. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways.......Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...

  14. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  15. Plant MetGenMAP: an integrative analysis system for plant systems biology

    Science.gov (United States)

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  16. The dynamics of alternative pathways to compensatory substitution

    OpenAIRE

    Nasrallah, Chris A.

    2013-01-01

    The role of epistatic interactions among loci is a central question in evolutionary biology and is increasingly relevant in the genomic age. While the population genetics of compensatory substitution have received considerable attention, most studies have focused on the case when natural selection is very strong against deleterious intermediates. In the biologically-plausible scenario of weak to moderate selection there exist two alternate pathways for compensatory substitution. In one pathwa...

  17. Parameter inference and model selection in signaling pathway models

    OpenAIRE

    Toni, Tina; Stumpf, Michael P. H.

    2009-01-01

    To support and guide an extensive experimental research into systems biology of signaling pathways, increasingly more mechanistic models are being developed with hopes of gaining further insight into biological processes. In order to analyse these models, computational and statistical techniques are needed to estimate the unknown kinetic parameters. This chapter reviews methods from frequentist and Bayesian statistics for estimation of parameters and for choosing which model is best for model...

  18. Omics/systems biology and cancer cachexia.

    Science.gov (United States)

    Gallagher, Iain J; Jacobi, Carsten; Tardif, Nicolas; Rooyackers, Olav; Fearon, Kenneth

    2016-06-01

    Cancer cachexia is a complex syndrome generated by interaction between the host and tumour cells with a background of treatment effects and toxicity. The complexity of the physiological pathways likely involved in cancer cachexia necessitates a holistic view of the relevant biology. Emergent properties are characteristic of complex systems with the result that the end result is more than the sum of its parts. Recognition of the importance of emergent properties in biology led to the concept of systems biology wherein a holistic approach is taken to the biology at hand. Systems biology approaches will therefore play an important role in work to uncover key mechanisms with therapeutic potential in cancer cachexia. The 'omics' technologies provide a global view of biological systems. Genomics, transcriptomics, proteomics, lipidomics and metabolomics approaches all have application in the study of cancer cachexia to generate systems level models of the behaviour of this syndrome. The current work reviews recent applications of these technologies to muscle atrophy in general and cancer cachexia in particular with a view to progress towards integration of these approaches to better understand the pathology and potential treatment pathways in cancer cachexia. PMID:26783720

  19. Pathways, Networks and Systems Medicine Conferences

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H. [Pacific Northwest Research Institute

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  20. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  1. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis.

    Directory of Open Access Journals (Sweden)

    Ananya Roy

    Full Text Available Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001 and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005. These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours and the hemostasis pathway responds gradually over a 2-3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.

  2. Reciprocal regulation of metabolic and signaling pathways

    Directory of Open Access Journals (Sweden)

    Barth Andreas S

    2010-03-01

    Full Text Available Abstract Background By studying genome-wide expression patterns in healthy and diseased tissues across a wide range of pathophysiological conditions, DNA microarrays have revealed unique insights into complex diseases. However, the high-dimensionality of microarray data makes interpretation of heterogeneous gene expression studies inherently difficult. Results Using a large-scale analysis of more than 40 microarray studies encompassing ~2400 mammalian tissue samples, we identified a common theme across heterogeneous microarray studies evident by a robust genome-wide inverse regulation of metabolic and cell signaling pathways: We found that upregulation of cell signaling pathways was invariably accompanied by downregulation of cell metabolic transcriptional activity (and vice versa. Several findings suggest that this characteristic gene expression pattern represents a new principle of mammalian transcriptional regulation. First, this coordinated transcriptional pattern occurred in a wide variety of physiological and pathophysiological conditions and was identified across all 20 human and animal tissue types examined. Second, the differences in metabolic gene expression predicted the magnitude of differences for signaling and all other pathways, i.e. tissue samples with similar expression levels of metabolic transcripts did not show any differences in gene expression for all other pathways. Third, this transcriptional pattern predicted a profound effect on the proteome, evident by differences in structure, stability and post-translational modifications of proteins belonging to signaling and metabolic pathways, respectively. Conclusions Our data suggest that in a wide range of physiological and pathophysiological conditions, gene expression changes exhibit a recurring pattern along a transcriptional axis, characterized by an inverse regulation of major metabolic and cell signaling pathways. Given its widespread occurrence and its predicted effects

  3. Measurement set selection of parameter estimation in biological system modelling——A case study of signal transduction pathways%生物系统建模中参数估计的测量集选择——以信号转导通路模型研究为例

    Institute of Scientific and Technical Information of China (English)

    贾建芳; 岳红

    2012-01-01

    Parameter estimation is a challenging problem for biological system modelling since the model is normally of high dimension,the measurement data are sparse and noisy,and the cost of experiments is high.Accurate recovery of parameters depends on the quantity and quality of measurement data.It is therefore important to know which measurements to be taken,when and how through optimal experimental design (OED).In this paper,a method was proposed to determine the most informative measurement set for the parameter estimation of dynamic systems,in particular,biochemical reaction systems,such that the unknown parameters can be inferred with the best possible statistical quality using the data collected from the designed experiments.System analysis using matrix theory was used to examine the number of necessary measurement variables.The priority of each measurement variable was determined by optimal experimental design based on Fisher information matrix (FIM).The applicability and advantages of the proposed method were shown through an example of a signal pathway model.%生物系统模型通常具有很高的维数,测量数据不完备、易受噪声污染,而且生物实验成本高,所以参数估计已经成为生物系统建模的挑战性问题之一.参数的精确估计取决于测量数据的数量和质量,因此,通过优化实验设计确定如何采集测量数据是非常重要的.针对动态系统的参数估计问题,尤其是生物反应系统,提出了一种确定富含信息的测量集选择方法,通过从设计的实验中获得测量数据,以最佳的统计质量估计系统的未知参数.该方法首先利用矩阵论的系统分析来确定估计参数所必需的测量状态的数目,再通过基于Fisher信息阵的优化实验设计决定每个测量状态的优先等级.最后,以信号转导通路模型为例,解释了该方法的优势和适用性.

  4. Apoptosis signaling pathways and lymphocyte homeostasis

    Institute of Scientific and Technical Information of China (English)

    Guangwu Xu; Yufang Shi

    2007-01-01

    It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways of apoptotic cell death induction: extrinsic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.

  5. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  6. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool

    OpenAIRE

    Zi, Z.; Klipp, E.

    2006-01-01

    The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of...

  7. The Regulation of Pulmonary Inflammation by the Hypoxia-Inducible Factor–Hydroxylase Oxygen-Sensing Pathway

    OpenAIRE

    Moira K B Whyte; Walmsley, Sarah R.

    2014-01-01

    Although the hypoxia-inducible factor (HIF)–hydroxylase oxygen-sensing pathway has been extensively reviewed in the context of cellular responses to hypoxia and cancer biology, its importance in regulating innate immune biology is less well described. In this review, we focus on the role of the HIF-hydroxylase pathway in regulating myeloid cell responses and its relevance to inflammatory lung disease. The more specific roles of individual HIF/ prolyl hydroxylase pathway members in vivo are di...

  8. Developmental systems biology flourishing on new technologies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies,and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches.

  9. Developmental systems biology flourishing on new technologies.

    Science.gov (United States)

    Han, Jing-Dong J; Liu, Yi; Xue, Huiling; Xia, Kai; Yu, Hong; Zhu, Shanshan; Chen, Zhang; Zhang, Wei; Huang, Zheng; Jin, Chunyu; Xian, Bo; Li, Jing; Hou, Lei; Han, Yixing; Niu, Chaoqun; Alcon, Timothy C

    2008-10-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches. PMID:18937914

  10. Clinical pharmacology considerations in biologics development

    Institute of Scientific and Technical Information of China (English)

    Liang ZHAO; Tian-hua REN; Diane D WANG

    2012-01-01

    Biologics,including monoclonal antibodies (mAbs) and other therapeutic proteins such as cytokines and growth hormones,have unique characteristics compared to small molecules.This paper starts from an overview of the pharmacokinetics (PK) of biologics from a mechanistic perspective,the determination of a starting dose for first-in-human(FIH) studies,and dosing regimen optimisation for phase Ⅱ/Ⅲ clinical trials.Subsequently,typical clinical pharmacology issues along the corresponding pathways for biologics development are summarised,including drug-drug interactions,QTc prolongation,immunogenicity,and studies in specific populations.The relationships between the molecular structure of biologics,their pharmacokinetic and pharmacodynamic characteristics,and the corresponding clinical pharmacology strategies are summarised and depicted in a schematic diagram.

  11. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    Directory of Open Access Journals (Sweden)

    Duy Ngoc Do

    2014-09-01

    Full Text Available Residual feed intake (RFI is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs, candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2 and 60k genotypic data was used. Genome-wide association analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as XIRP2, TTC29, SOGA1, MAS1, GRK5, PROX1, GPR155 and ZFYVE26 were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kilo base pairs of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2 were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05. These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs.

  12. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  13. Design principles in biological networks

    Science.gov (United States)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  14. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  15. What can causal networks tell us about metabolic pathways?

    Directory of Open Access Journals (Sweden)

    Rachael Hageman Blair

    Full Text Available Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: "What can causal networks tell us about metabolic pathways?". Using data from an Arabidopsis Bay[Formula: see text]Sha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies.

  16. Proteomics for Adverse Outcome Pathway Discovery using Human Kidney Cells?

    Science.gov (United States)

    An Adverse Outcome Pathway (AOP) is a conceptual framework that applies molecular-based data for use in risk assessment and regulatory decision support. AOP development is based on effects data of chemicals on biological processes (i.e., molecular initiating events, key intermedi...

  17. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  18. Logical knowledge representation of regulatory relations in biomedical pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Hansen, Jens Ulrik

    2010-01-01

    simulations of smaller parts of a pathway. In this work we suggest a knowledge representation of the most basic relations in regulatory processes regulates, positively regulates and negatively regulates in logics based on a semantic analysis. We discuss the usage of these relations in biology and in articial...... intelligence for hypothesis development in drug discovery....

  19. Synthetic pathways to make nanoparticles fluorescent

    Science.gov (United States)

    Sokolova, Viktoriya; Epple, Matthias

    2011-05-01

    In biosciences, it is often necessary to follow the pathway of nanoparticles within cells or tissues. The nanoparticles can be used as labeled sensors which may, e.g., address functionalities within a cell, carry other specific agents like drugs or be magnetic for tumor thermotherapy. In the context of nanotoxicology, the fate of a given nanoparticle is of interest. As many methods in cell biology are based on fluorescence detection, there is a strong demand to make nanoparticles fluorescent. Different ways to introduce fluorescence are reviewed and exemplified with typical kinds of nanoparticles, i.e. polymers, silica and calcium phosphate.

  20. KeyPathwayMiner 4.0

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; Pauling, Josch; Batra, Richa;

    2014-01-01

    BACKGROUND: Over the last decade network enrichment analysis has become popular in computational systems biology to elucidate aberrant network modules. Traditionally, these approaches focus on combining gene expression data with protein-protein interaction (PPI) networks. Nowadays, the so...... release of KeyPathwayMiner (version 4.0) that is not limited to analyses of single omics data sets, e.g. gene expression, but is able to directly combine several different omics data types. Version 4.0 can further integrate existing knowledge by adding a search bias towards sub-networks that contain...

  1. Racial discrimination & health: pathways & evidence.

    Science.gov (United States)

    Ahmed, Ameena T; Mohammed, Selina A; Williams, David R

    2007-10-01

    This review provides an overview of the existing empirical research of the multiple ways by which discrimination can affect health. Institutional mechanisms of discrimination such as restricting marginalized groups to live in undesirable residential areas can have deleterious health consequences by limiting socio-economic status (SES) and creating health-damaging conditions in residential environments. Discrimination can also adversely affect health through restricting access to desirable services such as medical care and creating elevated exposure to traditional stressors such as unemployment and financial strain. Central to racism is an ideology of inferiority that can adversely affect non-dominant groups because some members of marginalized populations will accept as true the dominant society's ideology of their group's inferiority. Limited empirical research indicates that internalized racism is inversely related to health. In addition, the existence of these negative stereotypes can lead dominant group members to consciously and unconsciously discriminate against the stigmatized. An overview of the growing body of research examining the ways in which psychosocial stress generated by subjective experiences of discrimination can affect health is also provided. We review the evidence from the United States and other societies that suggest that the subjective experience of discrimination can adversely affect health and health enhancing behaviours. Advancing our understanding of the relationship between discrimination and health requires improved assessment of the phenomenon of discrimination and increased attention to identifying the psychosocial and biological pathways that may link exposure to discrimination to health status. PMID:18032807

  2. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  3. Pictures of Synthetic Biology

    OpenAIRE

    Cserer, Amelie; Seiringer, Alexandra

    2009-01-01

    This article is concerned with the representation of Synthetic Biology in the media and by biotechnology experts. An analysis was made of German-language media articles published between 2004 and 2008, and interviews with biotechnology-experts at the Synthetic Biology conference SB 3.0 in Zurich 2007. The results have been reflected in terms of the definition of Synthetic Biology, applications of Synthetic Biology and the perspectives of opportunities and risks. In the media, Synthetic Biolog...

  4. Joint GWAS Analysis: Comparing similar GWAS at different genomic resolutions identifies novel pathway associations with six complex diseases

    OpenAIRE

    McGeachie, Michael J.; Clemmer, George L.; Jessica Lasky-Su; Amber Dahlin; Raby, Benjamin A.; Weiss, Scott T.

    2014-01-01

    We show here that combining two existing genome wide association studies (GWAS) yields additional biologically relevant information, beyond that obtained by either GWAS separately. We propose Joint GWAS Analysis, a method that compares a pair of GWAS for similarity among the top SNP associations, top genes identified, gene functional clusters, and top biological pathways. We show that Joint GWAS Analysis identifies additional enriched biological pathways that would be missed by traditional Si...

  5. Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics*

    OpenAIRE

    Huang, Yuanpeng Janet; Hang, Dehua; Lu, Long Jason; Tong, Liang; Gerstein, Mark B; Montelione, Gaetano T.

    2008-01-01

    Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as “hubs” or “b...

  6. A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.

    Science.gov (United States)

    Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban

    2015-09-01

    In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied. PMID:25935045

  7. Abstracts of the 30. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    Several aspects concerning biochemistry and molecular biology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  8. Abstracts of the 29. annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    Several aspects concerning biochemistry and molecular biology of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay and nuclear magnetic resonance are the most applied techniques

  9. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  10. Pathways of tau fibrillization.

    Science.gov (United States)

    Kuret, Jeff; Chirita, Carmen N; Congdon, Erin E; Kannanayakal, Theresa; Li, Guibin; Necula, Mihaela; Yin, Haishan; Zhong, Qi

    2005-01-01

    New methods for analyzing tau fibrillization have yielded insights into the biochemical transitions involved in the process. Here we review the parallels between the sequential progression of tau fibrillization observed macroscopically in Alzheimer's disease (AD) lesions and the pathway of tau aggregation observed in vitro with purified tau preparations. In addition, pharmacological agents for further dissection of fibrillization mechanism and lesion formation are discussed. PMID:15615636

  11. New pathways into headship?

    OpenAIRE

    Higham, Rob; Early, Peter; Coldwell, Michael; Stevens, Anna; Brown, Chris

    2015-01-01

    There continues to be something of a conundrum in the recruitment of headteachers in England. While “a very large majority of headteachers report being satisfied with their jobs” (Micklewright et al 2014: 17), headteacher recruitment and retention remain major challenges for school governors and policy makers. In this context, the New Pathways into Headship project was commissioned by the National College for Teaching and Leadership (NCTL) in January 2013. Tasked with considering new or a...

  12. Pathway analysis of IMC

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya; Nielson, Flemming; Pilegaard, Henrik

    We present the ongoing work on the pathway analysis of a stochastic calculus. Firstly we present a particular stochastic calculus that we have chosen for our modeling - the Interactive Markov Chains calculus, IMC for short. After that we specify a few restrictions that we have introduced into the...... syntax of IMC in order to make our analysis feasible. Finally we describe the analysis itself together with several theoretical results that we have proved for it....

  13. Crosstalk between pathways enhances the controllability of signalling networks.

    Science.gov (United States)

    Wang, Dingjie; Jin, Suoqin; Zou, Xiufen

    2016-02-01

    The control of complex networks is one of the most challenging problems in the fields of biology and engineering. In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is lower than in networks without crosstalk. These results indicate that the biological networks are optimally designed to achieve their normal functions from the viewpoint of the control theory. The authors' work provides a comprehensive understanding of the impact of network structures and properties on controllability. PMID:26816393

  14. Signaling pathways regulating production of hyaluronic acid in pig oocyte-cumulus cell-complexes

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Nagyová, Eva

    Luxembourg: Recherches Scientifiques Luxembourg, 2006. s. 647. [Cell Signaling World 2006, Signal Transduction Pathways therapeutic targets. 25.01.2006-28.01.2006, Luxembourg] R&D Projects: GA ČR GA523/04/0574 Institutional research plan: CEZ:AV0Z50450515 Keywords : signaling pathways Subject RIV: EB - Genetics ; Molecular Biology

  15. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  16. Systems Biology from a Yeast Omics Perspective

    OpenAIRE

    Snyder, Michael; Gallagher, Jennifer E.G.

    2009-01-01

    Systems biology represents a paradigm shift from the study of individual genes, proteins or other components to that of the analysis of entire pathways, cellular, developmental, or organismal processes. Large scale studies, primarily initiated in S. cerevisiae, have allowed the identification and characterization of components on an unprecedented level. Large scale interaction, transcription factor binding and phosphorylation data have enabled the elucidation of global regulatory networks. Th...

  17. FNV: light-weight flash-based network and pathway viewer

    OpenAIRE

    Dannenfelser, Ruth; Lachmann, Alexander; Szenk, Mariola; Ma'ayan, Avi

    2011-01-01

    Motivation: Network diagrams are commonly used to visualize biochemical pathways by displaying the relationships between genes, proteins, mRNAs, microRNAs, metabolites, regulatory DNA elements, diseases, viruses and drugs. While there are several currently available web-based pathway viewers, there is still room for improvement. To this end, we have developed a flash-based network viewer (FNV) for the visualization of small to moderately sized biological networks and pathways.

  18. Meta-analysis for pathway enrichment analysis when combining multiple genomic studies

    OpenAIRE

    Shen, Kui; Tseng, George C.

    2010-01-01

    Motivation: Many pathway analysis (or gene set enrichment analysis) methods have been developed to identify enriched pathways under different biological states within a genomic study. As more and more microarray datasets accumulate, meta-analysis methods have also been developed to integrate information among multiple studies. Currently, most meta-analysis methods for combining genomic studies focus on biomarker detection and meta-analysis for pathway analysis has not been systematically purs...

  19. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  20. ComPath: comparative enzyme analysis and annotation in pathway/subsystem contexts

    Directory of Open Access Journals (Sweden)

    Kim Sun

    2008-03-01

    Full Text Available Abstract Background Once a new genome is sequenced, one of the important questions is to determine the presence and absence of biological pathways. Analysis of biological pathways in a genome is a complicated task since a number of biological entities are involved in pathways and biological pathways in different organisms are not identical. Computational pathway identification and analysis thus involves a number of computational tools and databases and typically done in comparison with pathways in other organisms. This computational requirement is much beyond the capability of biologists, so information systems for reconstructing, annotating, and analyzing biological pathways are much needed. We introduce a new comparative pathway analysis workbench, ComPath, which integrates various resources and computational tools using an interactive spreadsheet-style web interface for reliable pathway analyses. Results ComPath allows users to compare biological pathways in multiple genomes using a spreadsheet style web interface where various sequence-based analysis can be performed either to compare enzymes (e.g. sequence clustering and pathways (e.g. pathway hole identification, to search a genome for de novo prediction of enzymes, or to annotate a genome in comparison with reference genomes of choice. To fill in pathway holes or make de novo enzyme predictions, multiple computational methods such as FASTA, Whole-HMM, CSR-HMM (a method of our own introduced in this paper, and PDB-domain search are integrated in ComPath. Our experiments show that FASTA and CSR-HMM search methods generally outperform Whole-HMM and PDB-domain search methods in terms of sensitivity, but FASTA search performs poorly in terms of specificity, detecting more false positive as E-value cutoff increases. Overall, CSR-HMM search method performs best in terms of both sensitivity and specificity. Gene neighborhood and pathway neighborhood (global network visualization tools can be used

  1. Simulation of Fermentation Pathway Using Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Sigeru OMATU

    2013-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, we propose Bees Algorithm (BA to enhance the performance in estimating the parameters for metabolic pathway data to simulate fermentation pathway for Saccharomyces cerevisiae. However, the parameter estimation of biological processes has always been a challenging task due to the complexity and nonlinear equations. Therefore, we present this algorithm as a new approach for parameter estimation for biological interactions to obtain more accurate parameter values. The result shows that BA outperforms other estimation algorithms as it produces the most accurate kinetic parameters, which contributes to the precision of simulated kinetic model.

  2. Simulation of Fermentation Pathway Using Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Ying LEONG

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, we propose Bees Algorithm (BA to enhance the performance in estimating the parameters for metabolic pathway data to simulate fermentation pathway for Saccharomyces cerevisiae. However, the parameter estimation of biological processes has always been a challenging task due to the complexity and nonlinear equations. Therefore, we present this algorithm as a new approach for parameter estimation for biological interactions to obtain more accurate parameter values. The result shows that BA outperforms other estimation algorithms as it produces the most accurate kinetic parameters, which contributes to the precision of simulated kinetic model.

  3. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  4. Biology of Blood

    Science.gov (United States)

    ... Mail Facebook TwitterTitle Google+ LinkedIn Home Blood Disorders Biology of Blood Overview of Blood Medical Dictionary Also ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  5. Improving Carbon Fixation Pathways

    OpenAIRE

    Ducat, Daniel C.; Silver, Pamela A.

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing...

  6. Aquatic pathway 1

    International Nuclear Information System (INIS)

    This first part of the study discusses problems of exposure due to the emission of radioactive substances into the environment via the water pathway. Discussion is started with a paper on the fundamentals of calculation and another paper on the results of preliminary radiological model calculations. The colloquium will assess the present state of knowledge, helps to find an agreement between divergent opinions and determine open questions and possible solutions. Ten main problems have been raised, most of which pertain to site conditions. They are trated as sub-investigations by individual participants or working groups. The findings will be discussed in further colloquia. (orig.)

  7. Engineering scalable biological systems

    OpenAIRE

    Lu, Timothy K.

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial, and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic, and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast, and mammal...

  8. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  9. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  10. Upgrading Undergraduate Biology Education

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  11. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  12. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology. PMID:24156739

  13. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Mattheisen, Manuel; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flicldnger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gailagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Laengstroem, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nwulia, Evaristus A.; Nyholt, Dale R.; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnstroem, Karola; Reif, Andreas; Ribases, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; Cair, David St.; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutdiffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; Van den Oord, Edwin J. C. G.; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zoellner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Kendler, Kenneth S.; Weiss, Lauren A.; Wray, Naomi R.; Zhao, Zhaoming; Geschwind, Daniel H.; Sullivan, Patrick F.; Smoller, Jordan W.; Holmans, Peter A.; Breen, Gerome

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ove

  14. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    DEFF Research Database (Denmark)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.;

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ...

  15. Diverse Biological Functions of Extracellular Collagen Processing Enzymes

    OpenAIRE

    Trackman, Philip C.

    2005-01-01

    Collagens are abundant proteins in higher organisms, and are formed by a complex biosynthetic pathway involving intracellular and extracellular post-translational modifications. Starting from simple soluble precursors, this interesting pathway produces insoluble functional fibrillar and non-fibrillar elements of the extracellular matrix. The present review highlights recent progress and new insights into biological regulation of extracellular procollagen processing, and some novel functions o...

  16. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    Science.gov (United States)

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  17. Biological Water or Rather Water in Biology?

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 13 (2015), s. 2449-2451. ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : biological water * protein * interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.458, year: 2014

  18. Columbia River pathway report

    International Nuclear Information System (INIS)

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  19. Signaling Pathways in Melanogenesis

    Directory of Open Access Journals (Sweden)

    Stacey A. N. D’Mello

    2016-07-01

    Full Text Available Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.

  20. Signaling Pathways in Melanogenesis.

    Science.gov (United States)

    D'Mello, Stacey A N; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  1. The Chordin Morphogenetic Pathway.

    Science.gov (United States)

    De Robertis, Edward M; Moriyama, Yuki

    2016-01-01

    The ancestral Chordin/bone morphogenetic protein (BMP) signaling pathway that establishes dorsal-ventral (D-V) patterning in animal development is one of the best understood morphogenetic gradients, and is established by multiple proteins that interact with each other in the extracellular space-including several BMPs, Chordin, Tolloid, Ont-1, Crossveinless-2, and Sizzled. The D-V gradient is adjusted redundantly by regulating the synthesis of its components, by direct protein-protein interactions between morphogens, and by long-range diffusion. The entire embryo participates in maintaining the D-V BMP gradient, so that for each action in the dorsal side there is a reaction in the ventral side. A gradient of Chordin is formed in the extracellular matrix that separates ectoderm from endomesoderm, called Brachet's cleft in Xenopus. The Chordin/BMP pathway is self-organizing and able to scale pattern in the dorsal half of bisected embryos or in Spemann dorsal lip transplantation experiments. PMID:26970622

  2. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    Energy Technology Data Exchange (ETDEWEB)

    Ovacik, Meric A. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Sen, Banalata [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Gaido, Kevin W. [U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, MD 20855 (United States); Ierapetritou, Marianthi G. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Biomedical Engineering Department, Rutgers University, NJ 08854 (United States)

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  3. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    International Nuclear Information System (INIS)

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data

  4. Genome-wide association study knowledge-driven pathway analysis of alcohol dependence implicates the calcium signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Li Danni; Li Jinming; Guo Yanfang

    2014-01-01

    Background Alcohol dependence (AD) is a serious and common public health problem.The identification of genes that contribute to the AD variation will improve our understanding of the genetic mechanism underlying this complex disease.Previous genome-wide association studies (GWAS) and candidate gene genetic association studies identified individual genes as candidates for alcohol phenotypes,but efforts to generate an integrated view of accumulative genetic variants and pathways under alcohol drinking are lacking.Methods We applied enrichment gene set analysis to existing genetic association results to identify pertinent pathways to AD in this study.A total of 1 438 SNPs (P <1.0×10-3) associated to alcohol drinking related traits have been collected from 31 studies (10 candidate gene association studies,19 GWAS of SNPs,and 2 GWAS of copy number variants).Results Among all of the KEGG pathways,the calcium signaling pathway (hsa04020) showed the most significant enrichment of associations (21 genes) to alcohol consumption phenotypes (P=5.4×10-5).Furthermore,the calcium signaling pathway is the only pathway that turned out to be significant after multiple test adjustments,achieving Bonferroni P value of 0.8×10-3 and FDR value of 0.6×10-2,respectively.Interestingly,the calcium signaling pathway was previously found to be essential to regulate brain function,and genes in this pathway link to a depressive effect of alcohol consumption on the body.Conclusions Our findings,together with previous biological evidence,suggest the importance of gene polymorphisms of calcium signaling pathway to AD susceptibility.Still,further investigations are warranted to uncover the role of this pathway in AD and related traits.

  5. Additive manufacturing of biologically-inspired materials.

    Science.gov (United States)

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  6. Synthetic biological networks

    International Nuclear Information System (INIS)

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  7. Signalling pathway impact analysis based on the strength of interaction between genes.

    Science.gov (United States)

    Bao, Zhenshen; Li, Xianbin; Zan, Xiangzhen; Shen, Liangzhong; Ma, Runnian; Liu, Wenbin

    2016-08-01

    Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (-1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA. PMID:27444024

  8. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  9. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  10. The regulation of pulmonary inflammation by the hypoxia-inducible factor-hydroxylase oxygen-sensing pathway.

    Science.gov (United States)

    Whyte, Moira K B; Walmsley, Sarah R

    2014-12-01

    Although the hypoxia-inducible factor (HIF)-hydroxylase oxygen-sensing pathway has been extensively reviewed in the context of cellular responses to hypoxia and cancer biology, its importance in regulating innate immune biology is less well described. In this review, we focus on the role of the HIF-hydroxylase pathway in regulating myeloid cell responses and its relevance to inflammatory lung disease. The more specific roles of individual HIF/ prolyl hydroxylase pathway members in vivo are discussed in the context of lineage-specific rodent models of inflammation, with final reference made to the therapeutic challenges of targeting the HIF/hydroxylase pathway in immune cells. PMID:25525731

  11. Biological monitors of air pollution

    International Nuclear Information System (INIS)

    Direct biological monitoring of air pollution was introduced about 30 years ago. Although still under development, the application of biological monitors, or indicators, may provide important information on the levels, availability, and pathways of a variety of pollutants including heavy metals and other toxic trace elements in the air. A survey is given of the most frequently used biomonitors, such as herbaceous plants, tree leaves or needles, bryophytes, and lichens, with their possible advantages and/or limitations. In addition to using naturally-occurring biomonitors, a possibility of employing ''transplanted'' species in the study areas, for instance grasses grown in special containers in standard soils or lichens transplanted with their natural substrate to an exposition site, is also mentioned. Several sampling and washing procedures are reported. The important of employing nuclear analytical methods, especially instrumental neutron activation analysis, for multielemental analysis of biomonitors as a pre-requisite for unlocking the information contained in chemical composition of monitor's tissues, such as apportionment of emission sources using multivariate statistical procedures, is also outlined. (author). 32 refs, 2 figs

  12. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  13. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  14. Bringing the physical sciences into your cell biology research

    OpenAIRE

    Robinson, Douglas N; Iglesias, Pablo A.

    2012-01-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works toget...

  15. Pathways to Global Markets

    DEFF Research Database (Denmark)

    Smith, David E.; Mitry, Darryl J.

    2011-01-01

    . An important case study is McDonald‘s corporation, the world‘s largest fast food restaurant chain. This company has employed divergent marketing and economic strategies in both domestic and the international markets to become a leader in the global marketplace. An overview of the company‘s background......, organizational structures, mission and vision illustrate McDonald‘s strategic focus on its proactive evolution from a small drive-through operation to a global fast-food giant. The strategy is based on its ability to adapt to the cultural differences of the markets that McDonald‘s serves while preserving its......For marketing and economic researchers, an important aspect of globalization is the degree to which various consumer behavior dimensions and consumption patterns in different parts of the world are becoming similar, and how multinational companies have identified pathways to global success...

  16. Summer 2014 Pathways Report

    Science.gov (United States)

    Hand, Zachary

    2014-01-01

    Over the summer I had the exciting opportunity to work for NASA at the Kennedy Space Center as a Mission Assurance Engineering intern. When I was offered a position in mission assurance for the Safety and Mission Assurance directorate's Launch Services Division, I didn't really know what I would be doing, but I knew it would be an excellent opportunity to learn and grow professionally. In this report I will provide some background information on the Launch Services Division, as well as detail my duties and accomplishments during my time as an intern. Additionally, I will relate the significance of my work experience to my current academic work and future career goals. This report contains background information on Mission Assurance Engineering, a description of my duties and accomplishments over the summer of 2014, and relates the significance of my work experience to my school work and future career goals. It is a required document for the Pathways program.

  17. Exposures from aquatic pathways

    International Nuclear Information System (INIS)

    Methods for estimation aquatic pathways contribution to the total population exposure are discussed. Aquatic pathways are the major factor for radionuclides spreading from the Chernobyl Exclusion zone. An annual outflow of 90Sr and 137Cs comprised 10-20 TBq and 2-4 TBq respectively and the population exposed by this effluence constitutes almost 30 million people. The dynamic of doses from 90Sr and 'Cs, which Dnieper water have to delivered, is calculated. The special software has been developed to simulate the process of dose formation in the of diverse Dnieper regions. Regional peculiarities of municipal tap, fishing and irrigation are considered. Seventy-year prediction of dose structure and function of dose forming is performed. The exposure is estimated for 12 regions of the Dnieper basin and the Crimea. The maximal individual annual committed effective doses due to the use of water by ordinary members of the population in Kiev region from 90Sr and 137Cs in 1986 are 1.7*10-5 Sv and 2.7*10-5 Sv respectively. A commercial fisherman on Kiev reservoir in 1986 received 4.7*10-4 Sv and 5*10-3 Sv from 90Sr and 137Cs, respectively. The contributions to the collective cumulative (over 70 years) committed effective dose (CCCED70) of irrigation, municipal tap water and fish consumption for members of the population respectively are 18%, 43%, 39% in Kiev region, 8%, 25%, 67% in Poltava region, and 50%, 50%, 0% (consumption of Dnieper fish is absent) in the Crimea. The predicted contribution of the Strontium-90 to CCCED70 resulting from the use of water is 80%. The CCCED70 to the population of the Dnieper regions (32.5 million people) is 3000 person-Sv due to the use the Dnieper water

  18. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have...... tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. RESULTS: The major findings are upregulation of cell cycle pathways and a...... system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. CONCLUSIONS: By pathway meta-analysis many biological mechanisms beyond major...

  19. Genetic variants and risk of esophageal squamous cell carcinoma: A GWAS-based pathway analysis

    Science.gov (United States)

    Yang, Xi; Zhu, Hongcheng; Qin, Qin; Yang, Yuehua; Yang, Yan; Cheng, Hongyan; Sun, Xinchen

    2015-01-01

    This study was designed to identify candidate single-nucleotide polymorphisms (SNPs) that may affect the susceptibility to esophageal squamous cell carcinoma (ESCC) and elucidate their potential mechanisms to generate SNP-to-gene-to-pathway hypotheses. A genome-wide association study (GWAS) dataset for ESCC, which included 453,852 SNPs from 1898 ESCC patients and 2100 control subjects of Chinese population, was reviewed. The identify candidate causal SNPs and pathways (ICSNPathway) analysis identified seven candidate SNPs, five genes, and seven pathways, which together revealed seven hypothetical biological mechanisms. The three strongest hypothetical biological mechanisms were as follows: rs4135113 → TDG → BASE EXCISION REPAIR; rs1800450 → MBL2 → MONOSACCHARIDE BINDING; and rs3769823 → CASP8 → d4gdiPathway. The GWAS dataset was evaluated using the ICSNPathway, which showed seven candidate SNPs, five genes, and seven pathways that may contribute to the susceptibility of patients to ESCC. PMID:25431829

  20. A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer.

    Science.gov (United States)

    Oh, Jung Hun; Deasy, Joseph O

    2016-05-01

    Chemoresistance is a major obstacle to the successful treatment of many human cancer types. Increasing evidence has revealed that chemoresistance involves many genes and multiple complex biological mechanisms including cancer stem cells, drug efflux mechanism, autophagy and epithelial-mesenchymal transition. Many studies have been conducted to investigate the possible molecular mechanisms of chemoresistance. However, understanding of the biological mechanisms in chemoresistance still remains limited. We surveyed the literature on chemoresistance-related genes and pathways of multiple cancer types. We then used a curated pathway database to investigate significant chemoresistance-related biological pathways. In addition, to investigate the importance of chemoresistance-related markers in protein-protein interaction networks identified using the curated database, we used a gene-ranking algorithm designed based on a graph-based scoring function in our previous study. Our comprehensive survey and analysis provide a systems biology-based overview of the underlying mechanisms of chemoresistance. PMID:26220932

  1. Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway

    Directory of Open Access Journals (Sweden)

    Heath John K

    2009-04-01

    Full Text Available Abstract Background Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques. Results Here we use a high-level narrative language in designing a computational model of the gp130/JAK/STAT signalling pathway and show that the model reproduces the dynamic behaviour of the pathway derived by biological observation. We then "experiment" on the model by simulation and sensitivity analysis to define those parameters which dominate the dynamic behaviour of the pathway. The model predicts that nuclear compartmentalisation and phosphorylation status of STAT are key determinants of the pathway and that alternative mechanisms of signal attenuation exert their influence on different timescales. Conclusion The described narrative model of the gp130/JAK/STAT pathway represents an interesting case study showing how, by using this approach, researchers can model biological systems without explicitly dealing with formal notations and mathematical expressions (typically used for biochemical modelling, nevertheless being able to obtain simulation and analysis results. We present the model and the sensitivity analysis results we have obtained, that allow us to identify the parameters which are most sensitive to perturbations. The results, which are shown to be in agreement with existing mathematical models of the gp130/JAK/STAT pathway, serve us as a form of validation of the model and of the

  2. Biology of Healthy Aging and Longevity.

    Science.gov (United States)

    Carmona, Juan José; Michan, Shaday

    2016-01-01

    As human life expectancy is prolonged, age-related diseases are thriving. Aging is a complex multifactorial process of molecular and cellular decline that affects tissue function over time, rendering organisms frail and susceptible to disease and death. Over the last decades, a growing body of scientific literature across different biological models, ranging from yeast, worms, flies, and mice to primates, humans and other long-lived animals, has contributed greatly towards identifying conserved biological mechanisms that ward off structural and functional deterioration within living systems. Collectively, these data offer powerful insights into healthy aging and longevity. For example, molecular integrity of the genome, telomere length, epigenetic landscape stability, and protein homeostasis are all features linked to "youthful" states. These molecular hallmarks underlie cellular functions associated with aging like mitochondrial fitness, nutrient sensing, efficient intercellular communication, stem cell renewal, and regenerative capacity in tissues. At present, calorie restriction remains the most robust strategy for extending health and lifespan in most biological models tested. Thus, pathways that mediate the beneficial effects of calorie restriction by integrating metabolic signals to aging processes have received major attention, such as insulin/insulin growth factor-1, sirtuins, mammalian target of rapamycin, and 5' adenosine monophosphate-activated protein kinase. Consequently, small-molecule targets of these pathways have emerged in the impetuous search for calorie restriction mimetics, of which resveratrol, metformin, and rapamycin are the most extensively studied. A comprehensive understanding of the molecular and cellular mechanisms that underlie age-related deterioration and repair, and how these pathways interconnect, remains a major challenge for uncovering interventions to slow human aging while extending molecular and physiological youthfulness

  3. PLANT ISOFLAVONES: BIOSYNHTESIS, DETECTION AND BIOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. D. Naumenko

    2013-10-01

    Full Text Available Biological properties, chemical structures and biosynthesis pathways of plant isoflavones, especially soybean isoflavones (daidzein, genistein and glycitein are reviewed. The structures of isoflavones, and their aglicone and glucosides (glycosides forms as well as isoflavone biosynthesis pathways are described. General information about the advanced methods for the detection of isoflavones and their conjugates are considered. The importance of the profiling of isoflavones, flavonoids and their conjugates by means of analytical tools and methods to dissolve some questions in biology and medicine is discussed. The review provides data on the major isoflavone content in some vegetable crops and in the tissues of different soybean varieties. Health benefits and treatment or preventive properties of isoflavones for cancer, cardiovascular, endocrine diseases and metabolic disorders are highlighted. The mechanisms that may explain their positive biological effects are considered. The information on the application of advanced technologies to create new plant forms producing isoflavonoids with a predicted level of isoflavones, which is the most favorable for the treatment is given. The possibilities to use the metabolic engineering for the increasing of accumulation and synthesis of isoflavones at the non-legume crops such as tobacco, Arabidopsis and maize are considered. The examples how the plant tissues, which are not naturally produced of the isoflavones, can obtain potential for the synthesis of biologically active compounds via inducing of the activity of the introduced enzyme isoflavon synthase, are given. Specific biochemical pathways for increasing the synthesis of isoflavone genistein in Arabidopsis thaliana tissues are discussed. It is concluded that plant genetic engineering which is focused on modification of the secondary metabolites contain in plant tissues, enables to create the new crop varieties with improved agronomic properties and

  4. Allicin: Chemistry and Biological Properties

    Directory of Open Access Journals (Sweden)

    Jan Borlinghaus

    2014-08-01

    Full Text Available Allicin (diallylthiosulfinate is a defence molecule from garlic (Allium sativum L. with a broad range of biological activities. Allicin is produced upon tissue damage from the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide in a reaction that is catalyzed by the enzyme alliinase. Current understanding of the allicin biosynthetic pathway will be presented in this review. Being a thiosulfinate, allicin is a reactive sulfur species (RSS and undergoes a redox-reaction with thiol groups in glutathione and proteins that is thought to be essential for its biological activity. Allicin is physiologically active in microbial, plant and mammalian cells. In a dose-dependent manner allicin can inhibit the proliferation of both bacteria and fungi or kill cells outright, including antibiotic-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA. Furthermore, in mammalian cell lines, including cancer cells, allicin induces cell-death and inhibits cell proliferation. In plants allicin inhibits seed germination and attenuates root-development. The majority of allicin’s effects are believed to be mediated via redox-dependent mechanisms. In sub-lethal concentrations, allicin has a variety of health-promoting properties, for example cholesterol- and blood pressure-lowering effects that are advantageous for the cardio-vascular system. Clearly, allicin has wide-ranging and interesting applications in medicine and (green agriculture, hence the detailed discussion of its enormous potential in this review. Taken together, allicin is a fascinating biologically active compound whose properties are a direct consequence of the molecule’s chemistry.

  5. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants

    Indian Academy of Sciences (India)

    Vinod Shanker Dubey; Ritu Bhalla; Rajesh Luthra

    2003-09-01

    Terpenoids are known to have many important biological and physiological functions. Some of them are also known for their pharmaceutical significance. In the late nineties after the discovery of a novel non-mevalonate (non-MVA) pathway, the whole concept of terpenoid biosynthesis has changed. In higher plants, the conventional acetate-mevalonate (Ac-MVA) pathway operates mainly in the cytoplasm and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones predominantly. The plastidic non-MVA pathway however synthesizes hemi-, mono-, sesqui- and di-terpenes, along with carotenoids and phytol chain of chlorophyll. In this paper, recent developments on terpenoids biosynthesis are reviewed with respect to the non-MVA pathway.

  6. [Pathway-focused correlation study of genome-wide methylation status with visual memory].

    Science.gov (United States)

    Gu, Xiaochu; Ni, Peiyan; Xiang, Bo; Zhao, Liansheng; Wei, Jinxue; Wang, Yingche; Ma, Xiaohong; Li, Tao

    2015-10-01

    OBJECTIVE To explore the biological processes and pathways associated with memory function which may be regulated by gene promoter methylation. METHODS The genome-wide promoter methylation statuses in 9 healthy individuals were analyzed with a Multiplex HG18 CpG Promoter chip. Genes with promoter methylation statuses strongly correlated with both immediate and delayed visual memory function were preceded for pathway and physical interactions analysis. RESULTS Sixty nine genes have been correlated with both immediate and delayed visual memory functions. Twenty two pathways, with a Q-value of migration and differentiation. CONCLUSION Pathways related with memory function may be regulated by DNA methylation. PMID:26418979

  7. Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets

    Indian Academy of Sciences (India)

    Chen Li; Qi-Wei Ge; Mitsuru Nakata; Hiroshi Matsuno; Satoru Miyano

    2007-01-01

    This paper first presents basic Petri net components representing molecular interactions and mechanisms of signalling pathways, and introduces a method to construct a Petri net model of a signalling pathway with these components. Then a simulation method of determining the delay time of transitions, by using timed Petri nets – i.e. the time taken in firing of each transition – is proposed based on some simple principles that the number of tokens flowed into a place is equivalent to the number of tokens flowed out. Finally, the availability of proposed method is confirmed by observing signalling transductions in biological pathways through simulation experiments of the apoptosis signalling pathways as an example.

  8. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  9. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    OpenAIRE

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased...

  10. Spectroscopy of biological nanocrystals

    OpenAIRE

    Ortac, Inanc; Severcan, Feride

    2007-01-01

    Nanocrystals have gained much interest in recent years, due to their unusual properties allowing interesting applications in physical and biological science. In this literature review, biological nanocrystals are discussed from the spectroscopic point of view. Firstly, the theory behind the outstanding abilities of the nanocrystals is described. Secondly, the spectroscopic properties of biological nanocrystals are mentioned. Lastly, the use of nanocrystals with various spectroscopic applicati...

  11. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  12. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  13. Introducing Aquatic Biology

    OpenAIRE

    Kinne, Otto; Browman, Howard I.; Seaman, Matthias

    2007-01-01

    The Inter-Research Science Center (IR) journals Marine Ecology Progress Series (MEPS) and Aquatic Microbial Ecology (AME) have been receiving increasing numbers of high-quality manuscripts that are principally biological, rather than ecological. With regret, we have had to turn these submissions away. Also, leading limnologists have for many years suggested that IR should provide an outlet for top quality articles on freshwater biology and ecology. Aquatic Biology (...

  14. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  15. Glycobiology Current Molecular Biology

    OpenAIRE

    Sabire KARAÇALI

    2003-01-01

    Carbohydrate chemistry evolved into carbohydrate biochemistry and gradually into the biology of carbohydrates, or glycobiology, at the end of the last century. Glycobiology is the new research area of modern molecular biology, and it investigates the structure, biosynthesis and biological functions of glycans. The numbers, linkage types (a or b), positions, binding points and functional group differences of monosaccharides create microheterogeneity. Thus, numerous glycoforms with precise stru...

  16. Foundations of biology

    OpenAIRE

    Sikorav, Jean-Louis; Braslau, Alan; Goldar, Arach

    2014-01-01

    It is often stated that there are no laws in biology, where everything is contingent and could have been otherwise, being solely the result of historical accidents. Furthermore, the customary introduction of fundamental biological entities such as individual organisms, cells, genes, catalysts and motors remains largely descriptive; constructive approaches involving deductive reasoning appear, in comparison, almost absent. As a consequence, both the logical content and principles of biology ne...

  17. Biological agents in management of osteoporosis.

    Science.gov (United States)

    Tella, Sri Harsha; Gallagher, J Christopher

    2014-11-01

    Osteoporosis is a skeletal disease associated with an imbalance between formation and resorption, leading to net loss of bone mass, loss of bone microarchitecture, and development of fractures. Bone resorption is primarily due to an activation of osteoclastogenesis and an increase in receptor activator of nuclear factor kappa-B ligand (RANKL) expression, a cytokine involved in the final pathway of the osteoclast cycle.Recent studies of genetic diseases led to the discovery of the wingless-type (Wnt) signaling pathway that plays a major role in bone formation. Further work showed that sclerostin produced by osteocytes and the Dickkopf (DKK1) protein secreted in bone were negative regulators of the Wnt signaling bone formation pathway that act directly by binding to the co-receptors LRP5 and LRP6 of WnT and thereby inhibiting the anabolic Wnt pathway. This understanding of the bone remodeling led to the discovery of new biological drugs that target these pathways and have been evaluated in clinical trials.The current article discusses the role of these newer "biological" agents in management of osteoporosis. Denosumab, a human monoclonal antibody that specifically binds RANKL, blocks the binding of RANK to its ligand markedly reducing bone resorption, increases bone density, and reduces fractures and is approved for osteoporosis. Parathyroid hormone PTH 1-34 (teriparatide) stimulates bone formation through inhibition of sclerostin, DKK1, and frizzled protein; increases BMD; improves microarchitecture; and decreases fractures and is approved for osteoporosis. The anti-sclerostin antibodies (romosozumab, blosozumab) increase bone mass by neutralizing the negative effects of sclerostin on the Wnt signaling pathway. These biologics are being evaluated now in a clinical trial and early data looks promising. Cathepsin K is a proteolytic enzyme that degrades bone matrix and inhibitors such as odanacatib show increasing bone density and perhaps decreased fractures. The

  18. Epigenetic deregulation of the COX pathway in cancer.

    Science.gov (United States)

    Cebola, Inês; Peinado, Miguel A

    2012-10-01

    Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients. PMID:22580191

  19. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  20. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies. PMID:17645413

  1. Gene Ontology Analysis of GWA Study Data Sets Provides Insights into the Biology of Bipolar Disorder

    OpenAIRE

    Holmans, Peter; Green, Elaine K; Pahwa, Jaspreet Singh; Ferreira, Manuel A.R.; Purcell, Shaun M; Sklar, Pamela; Owen, Michael J.; O'Donovan, Michael C.; Craddock, Nick

    2009-01-01

    We present a method for testing overrepresentation of biological pathways, indexed by gene-ontology terms, in lists of significant SNPs from genome-wide association studies. This method corrects for linkage disequilibrium between SNPs, variable gene size, and multiple testing of nonindependent pathways. The method was applied to the Wellcome Trust Case-Control Consortium Crohn disease (CD) data set. At a general level, the biological basis of CD is relatively well known for a complex genetic ...

  2. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  3. Circular polymerase extension cloning of complex gene libraries and pathways.

    Directory of Open Access Journals (Sweden)

    Jiayuan Quan

    Full Text Available High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC. This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways.

  4. Measuring the evolutionary rewiring of biological networks.

    Science.gov (United States)

    Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y K; Yan, Koon-Kiu; Kim, Philip M; Snyder, Michael; Gerstein, Mark B

    2011-01-01

    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555

  5. Measuring the evolutionary rewiring of biological networks.

    Directory of Open Access Journals (Sweden)

    Chong Shou

    Full Text Available We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.

  6. Biologic agents in the treatment of glomerulonephritides.

    Science.gov (United States)

    Yeo, See Cheng; Liew, Adrian

    2015-11-01

    Current immunosuppression strategies in the treatment of glomerulonephritides remain unsatisfactory, especially in glomerular diseases that are frequently relapsing or are resistant to treatment. Toxicities associated with the use of drugs with non-specific targets for the immune response result in treatment non-compliance, and increase morbidity and mortality in these patients. Advances in our understanding of the immunopathogenesis of glomerulonephritis and the availability of biologics have led to their successful use in the treatment of immune-mediated glomerular diseases. Biologics are usually very large complex molecules, often produced using recombinant DNA technology and manufactured in a living system such as a microorganism, or plant or animal cells. They are novel agents that can target specific immune cell types, cytokines or immune pathways involved in the pathogenesis of these disorders. It is attractive to consider that, given their specific mode of action, these agents can potentially offer a more directed and effective immunosuppression, with side-effect profiles that are much more desirable. However, there have been few randomized controlled trials comparing biologic agents to conventional immunosuppression, and in many of these studies the side-effect profiles have been disappointingly similar. In this review, we will examine the rationale, efficacy and safety of some commonly used biologics in the treatment of primary and secondary glomerulonephritides. We will also discuss some of the key challenges that may be encountered with the use of biologics in treating glomerulonephritis in the future. PMID:26040770

  7. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  8. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. PMID:27284024

  9. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.

    Science.gov (United States)

    Seol, Eunhee; Sekar, Balaji Sundara; Raj, Subramanian Mohan; Park, Sunghoon

    2016-02-01

    Hydrogen (H2) production from glucose by dark fermentation suffers from the low yield. As a solution to this problem, co-production of H2 and ethanol, both of which are good biofuels, has been suggested. To this end, using Escherichia coli, activation of pentose phosphate (PP) pathway, which can generate more NADPH than the Embden-Meyhof-Parnas (EMP) pathway, was attempted. Overexpression of two key enzymes in the branch nodes of the glycolytic pathway, Zwf and Gnd, significantly improved the co-production of H2 and ethanol with concomitant reduction of pyruvate secretion. Gene expression analysis and metabolic flux analysis (MFA) showed that, upon overexpression of Zwf and Gnd, glucose assimilation through the PP pathway, compared with that of the EMP or Entner-Doudoroff (ED) pathway, was greatly enhanced. The maximum co-production yields were 1.32 mol H2 mol(-1) glucose and 1.38 mol ethanol mol(-1) glucose, respectively. It is noteworthy that the glycolysis and the amount of NAD(P)H formed under anaerobic conditions could be altered by modifying (the activity of) several key enzymes. Our strategy could be applied for the development of industrial strains for biological production of reduced chemicals and biofuels which suffers from lack of reduced co-factors. PMID:26581029

  10. Pathways to man

    International Nuclear Information System (INIS)

    The study of radionuclide pathways leading to man generally has the goal of allowing us to predict human exposure from measurements of the radionuclide concentration in some segment of the environment. This modelling process provides a valuable tool in both the regulatory and health protection fields. However, most of the models in the regulatory field and in the health physics profession were designed to maximize exposure estimates. It is preferable to have scientifically defensible estimates and to add suitable safety factors at the end. Thus we are still faced with the development and validation of suitable models for many of the radionuclides of interest. The most useful models will include means of assessing variability and uncertainty. In this case variability might be considered as the differences in behavior due to age, sex or other factors in animals or man and those differences among plant species or animal species that determine their uptake factors. The uncertainty, on the other hand, would be the estimate of possible error in the experimental measurements. Model parameters would always have some variability even for site-specific cases and broad averages for population groups would have to include a factor expressing the possible variabilty and uncertainity. Thus any exposure calculation would have to be expressed with some range and valid assessments of this range are required

  11. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  12. Pathway Interaction Database (PID) —

    Science.gov (United States)

    The National Cancer Institute (NCI) in collaboration with Nature Publishing Group has established the Pathway Interaction Database (PID) in order to provide a highly structured, curated collection of information about known biomolecular interactions and key cellular processes assembled into signaling pathways.

  13. Cutaneous wound healing: recruiting developmental pathways for regeneration

    OpenAIRE

    Bielefeld, Kirsten A.; Amini-Nik, Saeid; Alman, Benjamin A.

    2012-01-01

    Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new...

  14. A machine learning pipeline for discriminant pathways identification

    OpenAIRE

    Barla, Annalisa; Jurman, Giuseppe; Visintainer, Roberto; Squillario, Margherita; Filosi, Michele; Riccadonna, Samantha; Furlanello, Cesare

    2011-01-01

    Motivation: Identifying the molecular pathways more prone to disruption during a pathological process is a key task in network medicine and, more in general, in systems biology. Results: In this work we propose a pipeline that couples a machine learning solution for molecular profiling with a recent network comparison method. The pipeline can identify changes occurring between specific sub-modules of networks built in a case-control biomarker study, discriminating key groups of genes whose in...

  15. Master Regulators, Regulatory Networks, and Pathways of Glioblastoma Subtypes

    OpenAIRE

    Serdar Bozdag; Aiguo Li; Mehmet Baysan; Fine, Howard A.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor. GBM samples are classified into subtypes based on their transcriptomic and epigenetic profiles. Despite numerous studies to better characterize GBM biology, a comprehensive study to identify GBM subtype- specific master regulators, gene regulatory networks, and pathways is missing. Here, we used FastMEDUSA to compute master regulators and gene regulatory networks for each GBM subtype. We also ran Gene Set Enrichment Analy...

  16. Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways

    OpenAIRE

    Quan, Jiayuan; Tian, Jingdong

    2009-01-01

    High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or ...

  17. New insights into the oxidation pathways of apomorphine

    OpenAIRE

    Garrido, Jorge; Delerue-Matos, Cristina; Borges, Fernanda; Macedo, Tice R. A.; Oliveira-Brett, A. M.

    2002-01-01

    A detailed study of the oxidative behaviour of apomorphine in aqueous media is reported. Resorting to the synthesis of apomorphine derivatives it was possible to identify all the anodic oxidation peaks of apomorphine, which are related to the oxidation of the catechol and tertiary amine groups. These findings were revealed to be important since they could lead to a better understanding of the biological interactions of apomorphine and gain insight into its metabolic pathways. Duri...

  18. Mechanism of Anesthetic Action: Oxygen Pathway Perturbation Hypothesis

    OpenAIRE

    Hu, Huping; Wu, Maoxin

    2001-01-01

    The mechanism of anesthesia is relevant to the neural and biological aspects of cognitive sciences. Although more than 150 years have past since the discovery of general anesthetics, how they precisely work remains a mystery. We propose a novel unitary mechanism of general anesthesia verifiable by experiments. In the proposed mechanism, general anesthetics perturb oxygen pathways in both membranes and oxygen-utilizing proteins such that the availabilities of oxygen to its sites of utilization...

  19. Diversity in Pathways to Common Childhood Disruptive Behavior Disorders

    OpenAIRE

    Martel, Michelle M.; Nikolas, Molly; Jernigan, Katherine; Friderici, Karen; Nigg, Joel T.

    2012-01-01

    Oppositional-Defiant Disorder (ODD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are highly comorbid, a phenomenon thought to be due to shared etiological factors and mechanisms. Little work has attempted to chart multiple-level-of-analysis pathways (i.e., simultaneously including biological, environmental, and trait influences) to ODD and ADHD, the goal of the present investigation. 559 children/adolescents (325 boys) between the ages of 6 and 18 participated in a multi-stage, compreh...

  20. LRRK2 Pathways Leading to Neurodegeneration.

    Science.gov (United States)

    Cookson, Mark R

    2015-07-01

    Mutations in LRRK2 are associated with inherited Parkinson's disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD. PMID:26008812

  1. The seco-iridoid pathway from Catharanthus roseus.

    Science.gov (United States)

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  2. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  3. US biosimilar pathway unlikely to be used: developers will opt for a traditional BLA filing.

    Science.gov (United States)

    Wiatr, Claudia

    2011-02-01

    In March 2010, the US passed the healthcare reform bill, including The Biologics Price Competition and Innovation Act of 2009, which established an abbreviated Biologic License Application (aBLA) pathway for the approval of biosimilars. The aBLA pathway may never be used. At the "Business of Biosimilars" meeting in Boston in September, developers of both innovator and generic biologics as well as representatives from the scientific, regulatory, and legal communities noted that, because of unclear requirements for clinical data and the need for public disclosure of proprietary data, manufacturers of generic biologics are unlikely to take advantage of the aBLA process, opting instead for a standard Biologic License Application (BLA). The implications of an unusable biosimilars pathway in the US dampen our already soft outlook for biosimilars. Companies will still develop follow-on biologics, but approved compounds will behave as new branded drugs. Biosimilars in the US are therefore not likely to lead to aggressive pricing, but will more likely mirror current situations where several similar biologics are available. For example, the interferon (IFN) β-1a products Avonex® and Rebif®, and Betaseron® (IFN β-1b) have all enjoyed >10% price increases for the last several years in spite of their clinical similarities. inThought reiterates its outlook for generic erosion of a typical biologic that projects a loss of revenue of 30% over 5 years compared to the 90% revenue loss for a typical branded small molecule. PMID:21222498

  4. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  5. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  6. Bioinformatics and School Biology

    Science.gov (United States)

    Dalpech, Roger

    2006-01-01

    The rapidly changing field of bioinformatics is fuelling the need for suitably trained personnel with skills in relevant biological "sub-disciplines" such as proteomics, transcriptomics and metabolomics, etc. But because of the complexity--and sheer weight of data--associated with these new areas of biology, many school teachers feel…

  7. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  8. Biological pretreatment sewages water

    OpenAIRE

    Veselý, Václav

    2009-01-01

    Bachelor's thesis deals with waste water purification at the stage of pre-inflow of water into the biological waste water treatment plants. It is divided into two parts, a theoretical and calculation. The theoretical part deals about sewage water and the method of biological treatment. Design proposal is part of the activation tank for quantity EO.

  9. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  10. Interpreting metabolomic profiles using unbiased pathway models.

    Directory of Open Access Journals (Sweden)

    Rahul C Deo

    2010-02-01

    Full Text Available Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT in 50 individuals, 25 with normal (NGT and 25 with impaired glucose tolerance (IGT. Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for "active modules"--regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved

  11. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  12. Optics of Biological Particles

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  13. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  14. Pathway Analysis Using Genome-Wide Association Study Data for Coronary Restenosis – A Potential Role for the PARVB Gene

    Science.gov (United States)

    Verschuren, Jeffrey J. W.; Trompet, Stella; Sampietro, M. Lourdes; Heijmans, Bastiaan T.; Koch, Werner; Kastrati, Adnan; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Quax, Paul H. A.; Jukema, J. Wouter

    2013-01-01

    Background Coronary restenosis after percutaneous coronary intervention (PCI) still remains a significant limitation of the procedure. The causative mechanisms of restenosis have not yet been fully identified. The goal of the current study was to perform gene-set analysis of biological pathways related to inflammation, proliferation, vascular function and transcriptional regulation on coronary restenosis to identify novel genes and pathways related to this condition. Methods The GENetic DEterminants of Restenosis (GENDER) databank contains genotypic data of 556,099SNPs of 295 cases with restenosis and 571 matched controls. Fifty-four pathways, related to known restenosis-related processes, were selected. Gene-set analysis was performed using PLINK, GRASS and ALIGATOR software. Pathways with a p<0.01 were fine-mapped and significantly associated SNPs were analyzed in an independent replication cohort. Results Six pathways (cell-extracellular matrix (ECM) interactions pathway, IL2 signaling pathway, IL6 signaling pathway, platelet derived growth factor pathway, vitamin D receptor pathway and the mitochondria pathway) were significantly associated in one or two of the software packages. Two SNPs in the cell-ECM interactions pathway were replicated in an independent restenosis cohort. No replication was obtained for the other pathways. Conclusion With these results we demonstrate a potential role of the cell-ECM interactions pathway in the development of coronary restenosis. These findings contribute to the increasing knowledge of the genetic etiology of restenosis formation and could serve as a hypothesis-generating effort for further functional studies. PMID:23950981

  15. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    Science.gov (United States)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  16. Survival associated pathway identification with group Lp penalized global AUC maximization

    Directory of Open Access Journals (Sweden)

    Liu Zhenqiu

    2010-08-01

    Full Text Available Abstract It has been demonstrated that genes in a cell do not act independently. They interact with one another to complete certain biological processes or to implement certain molecular functions. How to incorporate biological pathways or functional groups into the model and identify survival associated gene pathways is still a challenging problem. In this paper, we propose a novel iterative gradient based method for survival analysis with group Lp penalized global AUC summary maximization. Unlike LASSO, Lp (p 1. We first extend Lp for individual gene identification to group Lp penalty for pathway selection, and then develop a novel iterative gradient algorithm for penalized global AUC summary maximization (IGGAUCS. This method incorporates the genetic pathways into global AUC summary maximization and identifies survival associated pathways instead of individual genes. The tuning parameters are determined using 10-fold cross validation with training data only. The prediction performance is evaluated using test data. We apply the proposed method to survival outcome analysis with gene expression profile and identify multiple pathways simultaneously. Experimental results with simulation and gene expression data demonstrate that the proposed procedures can be used for identifying important biological pathways that are related to survival phenotype and for building a parsimonious model for predicting the survival times.

  17. Modularized study of human calcium signalling pathway

    Indian Academy of Sciences (India)

    Losiana Nayak; Rajat K De

    2007-08-01

    Signalling pathways are complex biochemical networks responsible for reg ulation of numerous cellular functions. These networks function by serial and successive interactions among a large number of vital biomolecules and chemical compounds. For deciphering and analysing the underlying mechanism of such networks, a modularized study is quite helpful. Here we propose an algorithm for modularization of calcium signalling pathway of H. sapiens. The idea that ``a node whose function is dependant on maximum number of other nodes tends to be the center of a sub network” is used to divide a large signalling network into smaller sub networks. Inclusion of node(s) into sub networks(s) is dependant on the outdegree of the node(s). Here outdegree of a node refers to the number of re lations of the considered node lying outside the constructed sub network. Node(s) having more than c relations lying outside the expanding subnetwork have to be excluded from it. Here is a specified variable based on user preference, which is finally fixed during adjustments of created subnetworks, so that certain biological significance can be conferred on them.

  18. Signaling pathways in diabetic nephropathy.

    Science.gov (United States)

    Kawanami, Daiji; Matoba, Keiichiro; Utsunomiya, Kazunori

    2016-10-01

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), however, specific treatment for DN has not yet been elucidated. Therefore, it is critically important to understand the molecular mechanism underlying DN to develop cause-related therapeutic strategy. To date, various factors such as hemodynamic changes and metabolic pathways have been shown to be involved in the pathogenesis of DN. Excessive glucose influx activates cellular signaling pathways, including the diacylglycerol (DAG)-protein kinase C (PKC) pathway, advanced glycation end-products (AGE), polyol pathway, hexosamine pathway and oxidative stress. These factors interact with one another, thereby facilitating inflammatory processes, leading to the development of glomerulosclerosis under diabetic conditions. In addition to metabolic pathways, Rho-kinase, an effector of small-GTPase binding protein Rho, has been implicated as an important factor in the pathogenesis of DN. A number of studies have demonstrated that Rho-kinase plays key roles in the development of DN by inducing endothelial dysfunction, mesangial excessive extracellular matrix (ECM) production, podocyte abnormality, and tubulointerstitial fibrosis. In this review article, we describe our current understanding of the signaling pathways in DN. PMID:27094540

  19. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  20. Total synthesis, biosynthesis and biological profiles of clavine alkaloids.

    Science.gov (United States)

    McCabe, Stephanie R; Wipf, Peter

    2016-07-01

    This review highlights noteworthy synthetic and biological aspects of the clavine subfamily of ergot alkaloids. Recent biosynthetic insights have laid the groundwork for a better understanding of the diverse biological pathways leading to these indole derivatives. Ergot alkaloids were among the first fungal-derived natural products identified, inspiring pharmaceutical applications in CNS disorders, migraine, infective diseases, and cancer. Pergolide, for example, is a semi-synthetic clavine alkaloid that has been used to treat Parkinson's disease. Synthetic activities have been particularly valuable to facilitate access to rare members of the Clavine family and empower medicinal chemistry research. Improved molecular target identification tools and a better understanding of signaling pathways can now be deployed to further extend the biological and medical utility of Clavine alkaloids. PMID:27215547

  1. Metabolic pathway engineering of the toluene degradation pathway

    OpenAIRE

    Regan, L.

    1995-01-01

    This thesis addresses the problem of how to examine a metabolic pathway and identify what are the key elements, specifically with respect to rate-limitation. The aim is to be able to analyze a pathway, identify the bottlenecks and implement genetic modifications to remove these bottlenecks. This is done by defining the system of interest and developing a predictive model using kinetic data. The model predictions can then be verified using fermentation data and genetic technique...

  2. Estimation and Testing for the Effect of a Genetic Pathway on a Disease Outcome Using Logistic Kernel Machine Regression via Logistic Mixed Models

    OpenAIRE

    Lin Xihong; Ghosh Debashis; Liu Dawei

    2008-01-01

    Abstract Background Growing interest on biological pathways has called for new statistical methods for modeling and testing a genetic pathway effect on a health outcome. The fact that genes within a pathway tend to interact with each other and relate to the outcome in a complicated way makes nonparametric methods more desirable. The kernel machine method provides a convenient, powerful and unified method for multi-dimensional parametric and nonparametric modeling of the pathway effect. Result...

  3. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer

    OpenAIRE

    Li, Donghui; Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-De-Mesquita, H Bas; Fuchs, Charles S; Gallinger, Steven; Gross, Myron

    2012-01-01

    Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic...

  4. Mechanistic Effects of Calcitriol in Cancer Biology

    Directory of Open Access Journals (Sweden)

    Lorenza Díaz

    2015-06-01

    Full Text Available Besides its classical biological effects on calcium and phosphorus homeostasis, calcitriol, the active vitamin D metabolite, has a broad variety of actions including anticancer effects that are mediated either transcriptionally and/or via non-genomic pathways. In the context of cancer, calcitriol regulates the cell cycle, induces apoptosis, promotes cell differentiation and acts as anti-inflammatory factor within the tumor microenvironment. In this review, we address the different mechanisms of action involved in the antineoplastic effects of calcitriol.

  5. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  6. Unraveling pancreatic islet biology by quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianying; Dann, Geoffrey P.; Liew, Chong W.; Smith, Richard D.; Kulkarni, Rohit N.; Qian, Weijun

    2011-08-01

    The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.

  7. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  8. Propagating quantum coherence for a biological advantage

    CERN Document Server

    Hoyer, Stephan; Whaley, K Birgitta

    2011-01-01

    Photosynthetic antennas need to efficiently transfer absorbed energy through chains of pigment molecules to reaction centers, where excitations induce charge separation. Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in this energy transfer process, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model which suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to demonstrate a quantum coherent ratchet effect, in a design based on an energy transfer pathway in the Fenna-Matthews-Olson complex of the green sulfur bacteria. These results suggest a biological role for coherent oscillations in spatially directing energy transfer.

  9. Biology and Treatment of Rhabdoid Tumor.

    Science.gov (United States)

    Geller, James I; Roth, Jacquelyn J; Biegel, Jaclyn A

    2015-01-01

    Rhabdoid tumor is a rare, highly aggressive malignancy that primarily affects infants and young children. These tumors typically arise in the brain and kidney, although extrarenal, non-central nervous system tumors in almost all soft-tissue sites have been described. SMARCB1 is a member of the SWI/SNF chromatin-remodeling complex and functions as a tumor suppressor in the vast majority of rhabdoid tumors. Patients with germline mutations or deletions affecting SMARCB1 are predisposed to the development of rhabdoid tumors, as well as the genetic disorder schwannomatosis. The current hypothesis is that rhabdoid tumors are driven by epigenetic dysregulation, as opposed to the alteration of a specific biologic pathway. The strategies for novel therapeutic approaches based on what is currently known about rhabdoid tumor biology are presented. PMID:26349416

  10. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure;

    2014-01-01

    and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search....... However, computational systems biology offers more advantages than providing a high-throughput literature search; it may form the basis for establishment of hypotheses on potential links between environmental chemicals and human diseases, which would be very difficult to establish experimentally....... This is possible due to the existence of comprehensive databases containing information on networks of human protein–protein interactions and protein–disease associations. Experimentally determined targets of the specific chemical of interest can be fed into these networks to obtain additional information that can...

  11. A Molecular Biology Database Digest

    OpenAIRE

    Bry, François; Kröger, Peer

    2000-01-01

    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration...

  12. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  13. Can the natural diversity of quorum sensing advance synthetic biology?

    Directory of Open Access Journals (Sweden)

    Rene Michele Davis

    2015-03-01

    Full Text Available Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over one hundred morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  14. A multi-pathway model for photosynthetic reaction center

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  15. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc, E-mail: m.muller@ulg.ac.be

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.

  16. Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.

    Science.gov (United States)

    Dickson, Alex; Lotz, Samuel D

    2016-06-23

    The binding of ligands with their molecular receptors is of tremendous importance in biology. Although much emphasis has been placed on characterizing binding sites and bound poses that determine the binding thermodynamics, the pathway by which a ligand binds importantly determines the binding kinetics. The computational study of entire unbiased ligand binding and release pathways is still an emerging field, made possible only recently by advances in computational hardware and sampling methodologies. We have developed one such method (WExplore) that is based on a weighted ensemble of trajectories, which we apply to ligand release for the first time, using a set of three previously characterized interactions between low-affinity ligands and the protein FKBP-12 (FK-506 binding protein). WExplore is found to be more efficient that conventional sampling, even for the nanosecond-scale unbinding events observed here. From a nonequilibrium ensemble of unbinding trajectories, we obtain ligand residence times and release pathways without using biasing forces or a Markovian assumption of transitions between regions. We introduce a set of analysis tools for unbinding transition pathways, including using von Mises-Fisher distributions to model clouds of ligand exit points, which provide a quantitative proxy for ligand surface diffusion. Differences between the transition pathway ensembles of the three ligands are identified and discussed. PMID:27231969

  17. SOIL BIOLOGY AND ECOLOGY

    Science.gov (United States)

    The term "Soil Biology", the study of organism groups living in soil, (plants, lichens, algae, moss, bacteria, fungi, protozoa, nematodes, and arthropods), predates "Soil Ecology", the study of interactions between soil organisms as mediated by the soil physical environment. oil ...

  18. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  19. Teaching evolutionary biology

    Directory of Open Access Journals (Sweden)

    Tidon Rosana

    2004-01-01

    Full Text Available Evolutionary Biology integrates several disciplines of Biology in a complex and interactive manner, where a deep understanding of the subject demands knowledge in diverse areas. Since this knowledge is often inaccessible to the majority of specialized professionals, including the teachers, we present some reflections in order to stimulate discussions aimed at the improvement of the conditions of education in this area. We examine the profile of evolutionary teaching in Brazil, based on questionnaires distributed to teachers in Secondary Education in the Federal District, on data provided by the "National Institute for Educational Studies and Research", and on information collected from teachers working in various regions of this country. Issues related to biological misconceptions, curriculum and didactic material are discussed, and some proposals are presented with the objective of aiding discussions aimed at the improvement of the teaching of evolutionary biology.

  20. Vibrations, Quanta and Biology

    CERN Document Server

    Huelga, S F

    2013-01-01

    Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

  1. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted or...... residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled, and...

  2. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean....

  3. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  4. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  5. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted or...... residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled, and...

  6. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to...

  7. The Biology of Behaviour.

    Science.gov (United States)

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  8. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  9. Ontologies for molecular biology.

    Science.gov (United States)

    Schulze-Kremer, S

    1998-01-01

    Molecular biology has a communication problem. There are many databases using their own labels and categories for storing data objects and some using identical labels and categories but with a different meaning. A prominent example is the concept "gene" which is used with different semantics by major international genomic databases. Ontologies are one means to provide a semantic repository to systematically order relevant concepts in molecular biology and to bridge the different notions in various databases by explicitly specifying the meaning of and relation between the fundamental concepts in an application domain. Here, the upper level and a database branch of a prospective ontology for molecular biology (OMB) is presented and compared to other ontologies with respect to suitability for molecular biology (http:/(/)igd.rz-berlin.mpg.de/approximately www/oe/mbo.html). PMID:9697223

  10. Fishery Biology Database (AGDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  11. Large Pelagics Biological Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  12. The Biology of Aging.

    Science.gov (United States)

    Sprott, Richard L.; And Others

    1992-01-01

    Thirteen articles in this special issue discuss aging theories, biomarkers of aging, aging research, disease, cancer biology, Alzheimer's disease, stress, oxidation of proteins, gene therapy, service delivery, biogerontology, and ethics and aging research. (SK)

  13. Synthetic biology: A foundation for multi-scale molecular biology

    OpenAIRE

    Bower, Adam G; McClintock, Maria K; Stephen S. Fong

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Bu...

  14. Signalling pathways in endometrial cancer

    OpenAIRE

    Markowska, Anna; Pawałowska, Monika; Lubin, Jolanta; Markowska, Janina

    2014-01-01

    Carcinogenesis is a multistage process, during which the activity of signalling pathways responsible for cell cycle regulation and division is disrupted which leads to inhibition of apoptosis and enhanced proliferation. Improper activation of Wnt/β-catenin and PI3K. Akt pathways play essential role in endometrial cancers (EC), mainly type I. Mutations in APC, axin or CTNBB1 may lead to β-catenin overactivation leading to excessive gene expression. PTEN inactivation, mutations in the PIK3CA or...

  15. Vestibular pathways involved in cognition

    Directory of Open Access Journals (Sweden)

    Martin Hitier

    2014-07-01

    Full Text Available Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projections areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: 1 the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; 2 the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of the head direction; 3 the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and 4 a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex, which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.

  16. Computational Thinking in Biology

    OpenAIRE

    Priami, Corrado

    2007-01-01

    The paper presents a new approach based on process calculi to systems modeling suitable for biological systems. The main characteristic of process calculi is a linguistic description level to dene incrementally and compositionally executable models. The formalism is suitable to be exploited on the same systems at dierent levels of abstractions connected through well dened formal rules. The abstraction principle that represents biological entities as interacting computational units is the basi...

  17. Biological Sciences Building

    OpenAIRE

    Kumaraswamy, Mohan

    2002-01-01

    One element of the CIVCAL project Web-based resources containing images, tables, texts and associated data on the construction of the Biological Sciences Building. The HKU Kadoorie Biological Sciences Building is an 11-storey reinforced concrete framed building with a structural steel arch roof. The building dimensions are approximately 60 metres x 30 metres. The estimated project cost for the superstructure construction (excluding the bored pile foundations) was about HK$ 400 million....

  18. Biological treatment for sewage

    OpenAIRE

    Xintai, Wang; Luc Sanya, Eric

    2007-01-01

    The sewage treatment is by no means insignificant in our world, and for many sewage treatment plants, the biological treatment is the best choice to eliminate the nutrients and organic compounds in the waste water. Today, in most waste water treatment plants, there are two main kinds of biological waste water treatment – the active sludge method and the biofilm method. Each of these two methods have their own advantages and disadvantages. For different towns or cities, the waste water treatme...

  19. Synthetic biology and biosecurity.

    Science.gov (United States)

    Robienski, Jürgen; Simon, Jürgen

    2014-01-01

    This article discusses the conflict fields and legal questions of synthetic biology, esp. concerning biosecurity. A respective jurisprudential discussion has not taken place yet in Germany apart from few statements and recommendations. But in Germany, Europe and the USA, it is generally accepted that a broad discussion is necessary. This is esp. true for the question of biosecurity and the possible dangers arising from Synthetic Biology. PMID:25845204

  20. Biological sequence analysis

    OpenAIRE

    Speed, T. P.

    2003-01-01

    This talk will review a little over a decade's research on applying certain stochastic models to biological sequence analysis. The models themselves have a longer history, going back over 30 years, although many novel variants have arisen since that time. The function of the models in biological sequence analysis is to summarize the information concerning what is known as a motif or a domain in bioinformatics, and to provide a tool for discovering instances of that motif or domain in a separa...

  1. Noise in Biology

    OpenAIRE

    Tsimring, Lev S

    2014-01-01

    Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms, and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evol...

  2. Biological Based Risk Assessment for Space Exploration

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Exposures from galactic cosmic rays (GCR) - made up of high-energy protons and high-energy and charge (HZE) nuclei, and solar particle events (SPEs) - comprised largely of low- to medium-energy protons are the primary health concern for astronauts for long-term space missions. Experimental studies have shown that HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation, making risk assessments for cancer and degenerative risks, such as central nervous system effects and heart disease, highly uncertain. The goal for space radiation protection at NASA is to be able to reduce the uncertainties in risk assessments for Mars exploration to be small enough to ensure acceptable levels of risks are not exceeded and to adequately assess the efficacy of mitigation measures such as shielding or biological countermeasures. We review the recent BEIR VII and UNSCEAR-2006 models of cancer risks and their uncertainties. These models are shown to have an inherent 2-fold uncertainty as defined by ratio of the 95% percent confidence level to the mean projection, even before radiation quality is considered. In order to overcome the uncertainties in these models, new approaches to risk assessment are warranted. We consider new computational biology approaches to modeling cancer risks. A basic program of research that includes stochastic descriptions of the physics and chemistry of radiation tracks and biochemistry of metabolic pathways, to emerging biological understanding of cellular and tissue modifications leading to cancer is described.

  3. Toward Contactless Biology: Acoustophoretic DNA Transfection

    Science.gov (United States)

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo

    2016-02-01

    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.

  4. BIOZON: a hub of heterogeneous biological data.

    Science.gov (United States)

    Birkland, Aaron; Yona, Golan

    2006-01-01

    Biological entities are strongly related and mutually dependent on each other. Therefore, there is a growing need to corroborate and integrate data from different resources and aspects of biological systems in order to analyze them effectively. Biozon is a unified biological database that integrates heterogeneous data types such as proteins, structures, domain families, protein-protein interactions and cellular pathways, and establishes the relationships between them. All data are integrated on to a single graph schema centered around the non-redundant set of biological objects that are shared by each source. This integration results in a highly connected graph structure that provides a more complete picture of the known context of a given object that cannot be determined from any one source. Currently, Biozon integrates roughly 2 million protein sequences, 42 million DNA or RNA sequences, 32,000 protein structures, 150,000 interactions and more from sources such as GenBank, UniProt, Protein Data Bank (PDB) and BIND. Biozon augments source data with locally derived data such as 5 billion pairwise protein alignments and 8 million structural alignments. The user may form complex cross-type queries on the graph structure, add similarity relations to form fuzzy queries and rank the results based on analysis of the edge structure similar to Google PageRank, online at Biozon.org. PMID:16381854

  5. Pathway level analysis of gene expression using singular value decomposition

    Directory of Open Access Journals (Sweden)

    Kepler Thomas B

    2005-09-01

    Full Text Available Abstract Background A promising direction in the analysis of gene expression focuses on the changes in expression of specific predefined sets of genes that are known in advance to be related (e.g., genes coding for proteins involved in cellular pathways or complexes. Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation. In this article, we present a new method of this kind that operates by quantifying the level of 'activity' of each pathway in different samples. The activity levels, which are derived from singular value decompositions, form the basis for statistical comparisons and other applications. Results We demonstrate our approach using expression data from a study of type 2 diabetes and another of the influence of cigarette smoke on gene expression in airway epithelia. A number of interesting pathways are identified in comparisons between smokers and non-smokers including ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison with results from the related approach, 'gene-set enrichment analysis', is also provided. Conclusion Our method offers a flexible basis for identifying differentially expressed pathways from gene expression data. The results of a pathway-based analysis can be complementary to those obtained from one more focused on individual genes. A web program PLAGE (Pathway Level Analysis of Gene Expression for performing the kinds of analyses described here is accessible at http://dulci.biostat.duke.edu/pathways.

  6. MouseCyc: a curated biochemical pathways database for the laboratory mouse

    OpenAIRE

    Evsikov, Alexei V.; Dolan, Mary E; Genrich, Michael P; Patek, Emily; Bult, Carol J

    2009-01-01

    Linking biochemical genetic data to the reference genome for the laboratory mouse is important for comparative physiology and for developing mouse models of human biology and disease. We describe here a new database of curated metabolic pathways for the laboratory mouse called MouseCyc . MouseCyc has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human.

  7. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    OpenAIRE

    Tan Qihua; Thomassen Mads; Kruse Torben A

    2008-01-01

    Abstract Background Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and trans...

  8. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    OpenAIRE

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A.

    2008-01-01

    Background Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription ...

  9. The Alternative Haem Biosynthesis Pathway: Structure, Function and Properties of Sirohaem Decarboxylase

    OpenAIRE

    Palmer, David James

    2014-01-01

    Haem, a cyclic tetrapyrrole, is found in organisms from all three domains of life. Haem is a prosthetic group for many proteins involved in essential biological processes such as respiration and oxygen transport. Synthesis of haem in eukaryotes and most bacteria follows a well defined route with highly conserved intermediates. However, an alternative haem biosynthesis pathway in Archaea and some bacteria was recently elucidated. This newly discovered pathway utilises sirohaem as a metabolic i...

  10. A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology.

    Science.gov (United States)

    Mei, Hongkang; Feng, Gang; Zhu, Jason; Lin, Simon; Qiu, Yang; Wang, Yue; Xia, Tian

    2016-01-01

    Systems biology has shown its potential in facilitating pathway-focused therapy development for central nervous system (CNS) diseases. An integrated network can be utilized to explore the multiple disease mechanisms and to discover repositioning opportunities. This review covers current therapeutic gaps for CNS diseases and the role of systems biology in pharmaceutical industry. We conclude with a Multiple Level Network Modeling (MLNM) example to illustrate the great potential of systems biology for CNS diseases. The system focuses on the benefit and practical applications in pathway centric therapy and drug repositioning. PMID:26235090

  11. Molecular Biology of Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    HuanXi; JanBrabender; RalfMetzger; PaulM.Schneider

    2004-01-01

    There have been many new developments in our understanding of esophageal carcinoma biology over the past several years. Information regarding both of the major forms of this disease, adenocarcinoma and squamous cell carcinoma, has accumulated in conjunction with data on precursor conditions such as Barrett's esophagus. Interesting and promising findings have included overexpression of proto-oncogenes,loss of heterozygosity at multiple chromosomal loci, tumor suppressor gene inactivation, epigenetic silencing by DNA methylation, and mutations and deletions involving the tumor suppressor gene p53. Important cancer pathways, the cyclin kinase inhibitor cascade and the DNA mismatch repair process, implicated in the genesis of multiple tumor types have also been inculpated in esophageal carcinogenesis. Alterations in the p16 and p15 cyclin kinase inhibitors including point mutations and homozygous deletions have been reported in primary esophageal tumors. Further developments in the field of molecular carcinogenesis of esophageal malignancies promise to yield improvements in prevention, early detection, prognostic categorization, and perhaps gene-based therapy of this deadly disease.

  12. A Central Theory of Biology

    Science.gov (United States)

    Torday, John S.

    2015-01-01

    The history of physiologic cellular–molecular interrelationships can be traced all the way back to the unicellular state by following the pathway formed by lipids ubiquitously accommodating calcium homeostasis, and its consequent adaptive effects on oxygen uptake by cells, tissues and organs. As a result, a cohesive, mechanistically integrated view of physiology can be formulated by recognizing the continuum comprising conception, development, physiologic homeostasis and death mediated by soluble growth factor signaling. Seeing such seemingly disparate processes as embryogenesis, chronic disease and dying as the gain and subsequent loss of cell–cell signaling provides a novel perspective for physiology and medicine. It is emblematic of the self-organizing, self-referential nature of life, starting from its origins. Such organizing principles obviate the pitfalls of teleologic evolution, conversely providing a way of resolving such seeming dichotomies as holism and reductionism, genotype and phenotype, emergence and contingence, proximate and ultimate causation in evolution, cells and organisms. The proposed approach is scale-free and predictive, offering a Central Theory of Biology. PMID:25911556

  13. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology

    Institute of Scientific and Technical Information of China (English)

    Sarah C Shuck; Emily A Short; John J Turchi

    2008-01-01

    Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG-NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.

  14. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  15. [Biologics and mycobacterial diseases].

    Science.gov (United States)

    Tsuyuguchi, Kazunari; Matsumoto, Tomoshige

    2013-03-01

    Various biologics such as TNF-alpha inhibitor or IL-6 inhibitor are now widely used for treatment of rheumatoid arthritis. Many reports suggested that one of the major issues is high risk of developing tuberculosis (TB) associated with using these agents, which is especially important in Japan where tuberculosis still remains endemic. Another concern is the risk of development of nontuberculous mycobacterial (NTM) diseases and we have only scanty information about it. The purpose of this symposium is to elucidate the role of biologics in the development of mycobacterial diseases and to establish the strategy to control them. First, Dr. Tohma showed the epidemiologic data of TB risks associated with using biologics calculated from the clinical database on National Database of Rheumatic Diseases by iR-net in Japan. He estimated TB risks in rheumatoid arthritis (RA) patients to be about four times higher compared with general populations and to become even higher by using biologics. He also pointed out a low rate of implementation of QuantiFERON test (QFT) as screening test for TB infection. Next, Dr. Tokuda discussed the issue of NTM disease associated with using biologics. He suggested the airway disease in RA patients might play some role in the development of NTM disease, which may conversely lead to overdiagnosis of NTM disease in RA patients. He suggested that NTM disease should not be uniformly considered a contraindication to treatment with biologics, considering from the results of recent multicenter study showing relatively favorable outcome of NTM patients receiving biologics. Patients with latent tuberculosis infection (LTBI) should receive LTBI treatment before starting biologics. Dr. Kato, a chairperson of the Prevention Committee of the Japanese Society for Tuberculosis, proposed a new LTBI guideline including active implementation of LTBI treatment, introducing interferon gamma release assay, and appropriate selection of persons at high risk for

  16. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  17. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  18. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    Directory of Open Access Journals (Sweden)

    Fiehn Oliver

    2006-11-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC. We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy.

  19. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  20. Biology of ageing

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    Living systems owe their survival and health to a series of complex biochemical pathways of maintenance and repair. These defense systems create the homeodynamic space of an individual, which is characterized by stress tolerance, molecular damage control and continuous remodeling. Ageing, age-rel...

  1. A simple biosynthetic pathway for large product generation from small substrate amounts

    International Nuclear Information System (INIS)

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  2. A simple biosynthetic pathway for large product generation from small substrate amounts

    Science.gov (United States)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  3. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528561

  4. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies

    KAUST Repository

    Cannistraci, Carlo

    2013-02-14

    Background: Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Methods. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). Results. The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. Conclusions: The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The

  5. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki

    1987-01-01

    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  6. Biological races in humans.

    Science.gov (United States)

    Templeton, Alan R

    2013-09-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two most commonly used biological concepts of race, chimpanzees are indeed subdivided into races but humans are not. Adaptive traits, such as skin color, have frequently been used to define races in humans, but such adaptive traits reflect the underlying environmental factor to which they are adaptive and not overall genetic differentiation, and different adaptive traits define discordant groups. There are no objective criteria for choosing one adaptive trait over another to define race. As a consequence, adaptive traits do not define races in humans. Much of the recent scientific literature on human evolution portrays human populations as separate branches on an evolutionary tree. A tree-like structure among humans has been falsified whenever tested, so this practice is scientifically indefensible. It is also socially irresponsible as these pictorial representations of human evolution have more impact on the general public than nuanced phrases in the text of a scientific paper. Humans have much genetic diversity, but the vast majority of this diversity reflects individual uniqueness and not race. PMID:23684745

  7. Systems Biology Approaches to Understand Natural Products Biosynthesis

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K.; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  8. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  9. Bipolar Disorder: The Role of the Kynurenine and Melatonergic Pathways.

    Science.gov (United States)

    Anderson, George; Jacob, Aude; Bellivier, Frank; Geoffroy, Pierre Alexis

    2016-01-01

    Bipolar disorder (BD) is a long-recognized severe and common psychiatric disorder, with a complex and often diverse range of presentations. BD is a heterogenous disorder that has traditionally, if rather simply, been defined by the recurrences of manic and depressive episodes, and presents with numerous immune-inflammatory and circadian/sleep abnormalities. A number of different lines of research have investigated the biological underpinnings of BD and demonstrate a heritability of about 80-90%. This genetic contribution is thought to be mediated by a wide array of genetic factors, rather than being strongly influenced by a couple of genes. In this context, a clearer formulation of the biological underpinnings of BD is needed in order to encompass the diverse effects of multiple susceptibility genes. The biological underpinnings of BD includes work that has focussed on the role played by increased immune inflammatory activity, particularly changes in pro-inflammatory cytokines, as measured both centrally and systemically. Changes in immune- inflammatory activity are intimately associated with alterations in levels of oxidative and nitrosative stress (O&NS), which are increased in BD. Many of the neuroregulatory changes driven by O&NS and immune-inflammatory activity are mediated by the tryptophan catabolite (TRYCAT) pathways, with changes in TRYCATs being evident both centrally and peripherally. A consequence of increased pro-inflammatory cytokines, is their induction of indoleamine 2,3-dioxygenase (IDO), which takes tryptophan away from serotonin, Nacetylserotonin and melatonin synthesis, driving it to the synthesis of neuroregulatory TRYCATs. Most work exploring such changes has emphasized the role of TRYCATs in enhancing or decreasing neuronal activity. However, a relatively overlooked consequence of cytokine induced IDO and TRYCAT pathway activation is the impact that this has on aryl hydrocarbon receptor (AhR) activation and in decreasing melatonergic pathway

  10. Informing Biological Design by Integration of Systems and Synthetic Biology

    OpenAIRE

    Smolke, Christina D.; Silver, Pamela A.

    2011-01-01

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.

  11. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    DEFF Research Database (Denmark)

    Tort, F.; Bartkova, J.; Sehested, M.;

    2006-01-01

    culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...... hierarchical positions along the retinoblastoma pathway. Our data provide new insights into oncogene-evoked DDR in human tumorigenesis, with potential implications for individualized management of tumors with elevated cyclin D1 versus cyclin E, due to their distinct clinical variables and biological behavior....

  12. Trim65: A cofactor for regulation of the microRNA pathway

    OpenAIRE

    Li, Shitao; Wang, Lingyan; Fu, Bishi; Dorf, Martin E.

    2014-01-01

    MicroRNA (miRNA) comprise a large family of non-protein coding transcripts which regulate gene expression in diverse biological pathways of both plants and animals. We recently used a systematic proteomic approach to generate a protein interactome map of the human miRNA pathway involved in miRNA biogenesis and processing. The interactome expands the number of candidate proteins in the miRNA pathway and connects the network to other cellular processes. Functional analyses identified TRIM65 and...

  13. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    DEFF Research Database (Denmark)

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A; Madireddy, L; El Behi, M; De Jager, P L; Baranzini, S E; Cournu-Rebeix, I; Fontaine, B; Sørensen, Per Soelberg

    2014-01-01

    interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell...... adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes...

  14. Selection platforms for directed evolution in synthetic biology.

    Science.gov (United States)

    Tizei, Pedro A G; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B

    2016-08-15

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. PMID:27528765

  15. Intergenerational pathways leading to foster care placement of foster care alumni’s children

    OpenAIRE

    Jackson Foster, Lovie J.; Beadnell, Blair; Pecora, Peter J.

    2013-01-01

    This study examined a path model that postulated intergenerational relationships between biological parent psychosocial functioning and foster care alumni mental health, economic status, and social support; and from these to the likelihood of children of foster care alumni being placed in foster care. The sample included 742 adults who spent time in foster care as children with a private foster care agency and who reported having at least one biological child. A full pathway was found between...

  16. Traceability of biologicals

    DEFF Research Database (Denmark)

    Vermeer, Niels S; Spierings, Irina; Mantel-Teeuwisse, Aukje K;

    2015-01-01

    INTRODUCTION: Traceability is important in the postmarketing surveillance of biologicals, since changes in the manufacturing process may give rise to product- or batch-specific risks. With the expected expansion of the biosimilar market, there have been concerns about the ability to trace...... individual products within pharmacovigilance databases. AREAS COVERED: The authors discuss the present challenges in the traceability of biologicals in relation to pharmacovigilance, by exploring the processes involved in ensuring traceability. They explore both the existing systems that are in place...... for the recording of exposure information in clinical practice, as well as the critical steps involved in the transfer of exposure data to various pharmacovigilance databases. EXPERT OPINION: The existing systems ensure the traceability of biologicals down to the manufacturer within pharmacy records, but do...

  17. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  18. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  19. Biological therapy of psoriasis

    Directory of Open Access Journals (Sweden)

    Sivamani Raja

    2010-01-01

    Full Text Available The treatment of psoriasis has undergone a revolution with the advent of biologic therapies, including infliximab, etanercept, adalimumab, efalizumab, and alefacept. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. These usually being well tolerated are being found useful in a growing number of immune-mediated diseases, psoriasis being just one example. The newest biologic, ustekinumab, is directed against the p40 subunit of the IL-12 and IL-23 cytokines. It has provided a new avenue of therapy for an array of T-cell-mediated diseases. Biologics are generally safe; however, there has been concern over the risk of lymphoma with use of these agents. All anti-TNF-α agents have been associated with a variety of serious and "routine" opportunistic infections.

  20. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  1. Boolean network model for GPR142 against Type 2 diabetes and relative dynamic change ratio analysis using systems and biological circuits approach

    OpenAIRE

    Kaushik, Aman Chandra; Sahi, Shakti

    2015-01-01

    Systems biology addresses challenges in the analysis of genomics data, especially for complex genes and protein interactions using Meta data approach on various signaling pathways. In this paper, we report systems biology and biological circuits approach to construct pathway and identify early gene and protein interactions for predicting GPR142 responses in Type 2 diabetes. The information regarding genes, proteins and other molecules involved in Type 2 diabetes were retrieved from literature...

  2. Biological and Pharmaceutical Nanomaterials

    Science.gov (United States)

    Kumar, Challa S. S. R.

    2006-01-01

    This first comprehensive yet concise overview of all important classes of biological and pharmaceutical nanomaterials presents in one volume the different kinds of natural biological compounds that form nanomaterials or that may be used to purposefully create them. This unique single source of information brings together the many articles published in specialized journals, which often remain unseen by members of other, related disciplines. Covering pharmaceutical, nucleic acid, peptide and DNA-Chitosan nanoparticles, the book focuses on those innovative materials and technologies needed for the continued growth of medicine, healthcare, pharmaceuticals and human wellness. For chemists, biochemists, cell biologists, materials scientists, biologists, and those working in the pharmaceutical and chemical industries.

  3. Neutron structural biology

    International Nuclear Information System (INIS)

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  4. The Biological Universe

    Science.gov (United States)

    Dick, Steven J.

    2000-03-01

    Introduction; 1. From the physical world to the biological universe: Democritus to Lowell; 2. Plurality of worlds and the decline of anthropocentrism; 3. The solar system: the limits of observation; 4. Solar systems beyond: the limits of theory; 5. Extraterrestrials in literature and the arts: the role of imagination; 6. The UFO controversy: on perception and deception; 7. The origin and evolution of life in the extraterrestrial context; 8. SETI: the Search for Extraterrestrial Intelligence; 9. The convergence of disciplines: birth of a new science; 10. The meaning of life; Summary and conclusion: the biological universe and the limits of science.

  5. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  6. IntegromeDB: an integrated system and biological search engine

    Directory of Open Access Journals (Sweden)

    Baitaluk Michael

    2012-01-01

    Full Text Available Abstract Background With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Description Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. Conclusions The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback.

  7. Towards a Pathway Inventory of the Human Brain for Modeling Disease Mechanisms Underlying Neurodegeneration.

    Science.gov (United States)

    Iyappan, Anandhi; Gündel, Michaela; Shahid, Mohammad; Wang, Jiali; Li, Hui; Mevissen, Heinz-Theodor; Müller, Bernd; Fluck, Juliane; Jirsa, Viktor; Domide, Lia; Younesi, Erfan; Hofmann-Apitius, Martin

    2016-04-12

    Molecular signaling pathways have been long used to demonstrate interactions among upstream causal molecules and downstream biological effects. They show the signal flow between cell compartments, the majority of which are represented as cartoons. These are often drawn manually by scanning through the literature, which is time-consuming, static, and non-interoperable. Moreover, these pathways are often devoid of context (condition and tissue) and biased toward certain disease conditions. Mining the scientific literature creates new possibilities to retrieve pathway information at higher contextual resolution and specificity. To address this challenge, we have created a pathway terminology system by combining signaling pathways and biological events to ensure a broad coverage of the entire pathway knowledge domain. This terminology was applied to mining biomedical papers and patents about neurodegenerative diseases with focus on Alzheimer's disease. We demonstrate the power of our approach by mapping literature-derived signaling pathways onto their corresponding anatomical regions in the human brain under healthy and Alzheimer's disease states. We demonstrate how this knowledge resource can be used to identify a putative mechanism explaining the mode-of-action of the approved drug Rasagiline, and show how this resource can be used for fingerprinting patents to support the discovery of pathway knowledge for Alzheimer's disease. Finally, we propose that based on next-generation cause-and-effect pathway models, a dedicated inventory of computer-processable pathway models specific to neurodegenerative diseases can be established, which hopefully accelerates context-specific enrichment analysis of experimental data with higher resolution and richer annotations. PMID:27079715

  8. HGF–Met Pathway in Regeneration and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Kunio Matsumoto

    2014-10-01

    Full Text Available Hepatocyte growth factor (HGF is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis, regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.

  9. Alternative end-joining pathway(s): bricolage at DNA breaks.

    Science.gov (United States)

    Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick

    2014-05-01

    To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years. PMID:24613763

  10. Models in Biology.

    Science.gov (United States)

    Flannery, Maura C.

    1997-01-01

    Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…

  11. Evolution, Entropy, & Biological Information

    Science.gov (United States)

    Peterson, Jacob

    2014-01-01

    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  12. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  13. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Gonçalo Espregueira;

    2016-01-01

    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  14. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2006-01-01

    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  15. Molecular Biology of Medulloblastoma

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  16. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    cortical bone, and the nanoscale response of bone in compression. Lastly, a framework for the investigation of biological design principles has been developed. The framework combines parametric modeling, multi-material 3D-printing, and direct mechanical testing to efficiently screen large parameter spaces...

  17. Spin glasses and biology

    CERN Document Server

    Stein, David

    1992-01-01

    This volume is an introduction to the application of techniques developed for the study of disordered systems to problems which arise in biology. Topics presented include neural networks, adaptation and evolution, maturation of the immune response, and protein dynamics and folding. This book will appeal to students and researchers interested in statistical and condensed matter physics, glasses and spin glasses, and biophysics.

  18. Biological Congress in Sweden

    Science.gov (United States)

    Bennett, D. P.

    1975-01-01

    Reports on the International Congress on the Improvement of Biology Education which was attended by delegates from fifty-eight different countries. The objectives of the Congress were to identify and analyze trends, to prepare a four-year plan for further improvement, and to prepare materials for publication by UNESCO. (GS)

  19. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  20. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  1. Nuclear physics and biology

    International Nuclear Information System (INIS)

    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  2. Biological activity determination

    Czech Academy of Sciences Publication Activity Database

    Madronová, L.; Novák, J.; Kubíček, J.; Antošová, B.; Kozler, J.; Novák, František

    New York: Nova Science Publisher, 2011 - (Madronová, L.), s. 85-103. (Chemistry Research and Applications). ISBN 978-1-61668-965-0 Institutional research plan: CEZ:AV0Z60660521 Keywords : biological activity * determination * potassium humate samples Subject RIV: CB - Analytical Chemistry, Separation

  3. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  4. UniPathway: a resource for the exploration and annotation of metabolic pathways.

    Science.gov (United States)

    Morgat, Anne; Coissac, Eric; Coudert, Elisabeth; Axelsen, Kristian B; Keller, Guillaume; Bairoch, Amos; Bridge, Alan; Bougueleret, Lydie; Xenarios, Ioannis; Viari, Alain

    2012-01-01

    UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway. PMID:22102589

  5. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-01

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  6. Biological trade and markets

    Science.gov (United States)

    2016-01-01

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other ‘commodities’. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten ‘terms of contract’ that ‘self-stabilize’ trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models—often called ‘Walrasian’ markets—are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying ‘principal–agent’ problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists

  7. Integrative analyses reveal signaling pathways underlying familial breast cancer susceptibility.

    Science.gov (United States)

    Piccolo, Stephen R; Hoffman, Laura M; Conner, Thomas; Shrestha, Gajendra; Cohen, Adam L; Marks, Jeffrey R; Neumayer, Leigh A; Agarwal, Cori A; Beckerle, Mary C; Andrulis, Irene L; Spira, Avrum E; Moos, Philip J; Buys, Saundra S; Johnson, William Evan; Bild, Andrea H

    2016-03-01

    The signaling events that drive familial breast cancer (FBC) risk remain poorly understood. While the majority of genomic studies have focused on genetic risk variants, known risk variants account for at most 30% of FBC cases. Considering that multiple genes may influence FBC risk, we hypothesized that a pathway-based strategy examining different data types from multiple tissues could elucidate the biological basis for FBC. In this study, we performed integrated analyses of gene expression and exome-sequencing data from peripheral blood mononuclear cells and showed that cell adhesion pathways are significantly and consistently dysregulated in women who develop FBC. The dysregulation of cell adhesion pathways in high-risk women was also identified by pathway-based profiling applied to normal breast tissue data from two independent cohorts. The results of our genomic analyses were validated in normal primary mammary epithelial cells from high-risk and control women, using cell-based functional assays, drug-response assays, fluorescence microscopy, and Western blotting assays. Both genomic and cell-based experiments indicate that cell-cell and cell-extracellular matrix adhesion processes seem to be disrupted in non-malignant cells of women at high risk for FBC and suggest a potential role for these processes in FBC development. PMID:26969729

  8. A network map of Interleukin-10 signaling pathway.

    Science.gov (United States)

    Verma, Renu; Balakrishnan, Lavanya; Sharma, Kusum; Khan, Aafaque Ahmad; Advani, Jayshree; Gowda, Harsha; Tripathy, Srikanth Prasad; Suar, Mrutyunjay; Pandey, Akhilesh; Gandotra, Sheetal; Prasad, T S Keshava; Shankar, Subramanian

    2016-03-01

    Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group. PMID:26253919

  9. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways.

    Science.gov (United States)

    Bar-Even, Arren

    2016-07-19

    Formate may become an ideal mediator between the physicochemical and biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds for providing both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the small number of naturally occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could permit growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes, the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions, and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals. PMID:27348189

  10. REGγ is associated with multiple oncogenic pathways in human cancers

    Directory of Open Access Journals (Sweden)

    He Jing

    2012-02-01

    Full Text Available Abstract Background Recent studies suggest a role of the proteasome activator, REGγ, in cancer progression. Since there are limited numbers of known REGγ targets, it is not known which cancers and pathways are associated with REGγ. Methods REGγ protein expressions in four different cancers were investigated by immunohistochemistry (IHC analysis. Following NCBI Gene Expression Omnibus (GEO database search, microarray platform validation, differential expressions of REGγ in corresponding cancers were statistically analyzed. Genes highly correlated with REGγ were defined based on Pearson's correlation coefficient. Functional links were estimated by Ingenuity Core analysis. Finally, validation was performed by RT-PCR analysis in established cancer cell lines and IHC in human colon cancer tissues Results Here, we demonstrate overexpression of REGγ in four different cancer types by micro-tissue array analysis. Using meta-analysis of publicly available microarray databases and biological studies, we verified elevated REGγ gene expression in the four types of cancers and identified genes significantly correlated with REGγ expression, including genes in p53, Myc pathways, and multiple other cancer-related pathways. The predicted correlations were largely consistent with quantitative RT-PCR analysis. Conclusions This study provides us novel insights in REGγ gene expression profiles and its link to multiple cancer-related pathways in cancers. Our results indicate potentially important pathogenic roles of REGγ in multiple cancer types and implicate REGγ as a putative cancer marker.

  11. REGγ is associated with multiple oncogenic pathways in human cancers

    International Nuclear Information System (INIS)

    Recent studies suggest a role of the proteasome activator, REGγ, in cancer progression. Since there are limited numbers of known REGγ targets, it is not known which cancers and pathways are associated with REGγ. REGγ protein expressions in four different cancers were investigated by immunohistochemistry (IHC) analysis. Following NCBI Gene Expression Omnibus (GEO) database search, microarray platform validation, differential expressions of REGγ in corresponding cancers were statistically analyzed. Genes highly correlated with REGγ were defined based on Pearson's correlation coefficient. Functional links were estimated by Ingenuity Core analysis. Finally, validation was performed by RT-PCR analysis in established cancer cell lines and IHC in human colon cancer tissues Here, we demonstrate overexpression of REGγ in four different cancer types by micro-tissue array analysis. Using meta-analysis of publicly available microarray databases and biological studies, we verified elevated REGγ gene expression in the four types of cancers and identified genes significantly correlated with REGγ expression, including genes in p53, Myc pathways, and multiple other cancer-related pathways. The predicted correlations were largely consistent with quantitative RT-PCR analysis. This study provides us novel insights in REGγ gene expression profiles and its link to multiple cancer-related pathways in cancers. Our results indicate potentially important pathogenic roles of REGγ in multiple cancer types and implicate REGγ as a putative cancer marker

  12. SIX2 Effects on Wilms Tumor Biology

    Directory of Open Access Journals (Sweden)

    Janene Pierce

    2014-12-01

    Full Text Available Wilms tumor (WT blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM, in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2 is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.

  13. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528563

  14. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P;

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  15. Signalling pathways in endometrial cancer.

    Science.gov (United States)

    Markowska, Anna; Pawałowska, Monika; Lubin, Jolanta; Markowska, Janina

    2014-01-01

    Carcinogenesis is a multistage process, during which the activity of signalling pathways responsible for cell cycle regulation and division is disrupted which leads to inhibition of apoptosis and enhanced proliferation. Improper activation of Wnt/β-catenin and PI3K. Akt pathways play essential role in endometrial cancers (EC), mainly type I. Mutations in APC, axin or CTNBB1 may lead to β-catenin overactivation leading to excessive gene expression. PTEN inactivation, mutations in the PIK3CA or Akt result in increased transmission in the PI3K/Akt pathway, apoptosis inhibition, intensive cell division, mTOR excitation. In non-endometrioid cancers, key mutations include suppressor gene TP53 responsible for repairing damaged DNA or apoptosis initiation. Irregularities in gene P16, encoding a protein forming the p16-cyclinD/CDK-pRb have also been described. Understanding the complex relations between specific proteins taking part in signal transduction of the abovementioned pathways is key to research on drugs used in targeted therapy. PMID:25520571

  16. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique ro...

  17. Rapid prototype extruded conductive pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  18. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  19. Relationships between Signaling Pathway Usage and Sensitivity to a Pathway Inhibitor: Examination of Trametinib Responses in Cultured Breast Cancer Lines

    Science.gov (United States)

    Leung, Euphemia Y.; Kim, Ji Eun; Askarian-Amiri, Marjan; Rewcastle, Gordon W.; Finlay, Graeme J.; Baguley, Bruce C.

    2014-01-01

    Cellular signaling pathways involving mTOR, PI3K and ERK have dominated recent studies of breast cancer biology, and inhibitors of these pathways have formed a focus of numerous clinical trials. We have chosen trametinib, a drug targeting MEK in the ERK pathway, to address two questions. Firstly, does inhibition of a signaling pathway, as measured by protein phosphorylation, predict the antiproliferative activity of trametinib? Secondly, do inhibitors of the mTOR and PI3K pathways synergize with trametinib in their effects on cell proliferation? A panel of 30 human breast cancer cell lines was chosen to include lines that could be classified according to whether they were ER and PR positive, HER2 over-expressing, and “triple negative”. Everolimus (targeting mTOR), NVP-BEZ235 and GSK2126458 (both targeting PI3K/mTOR) were chosen for combination experiments. Inhibition of cell proliferation was measured by IC50 values and pathway utilization was measured by phosphorylation of signaling kinases. Overall, no correlation was found between trametinib IC50 values and inhibition of ERK signaling. Inhibition of ERK phosphorylation was observed at trametinib concentrations not affecting proliferation, and sensitivity of cell proliferation to trametinib was found in cell lines with low ERK phosphorylation. Evidence was found for synergy between trametinib and either everolimus, NVP-BEZ235 or GSK2126458, but this was cell line specific. The results have implications for the clinical application of PI3K/mTOR and MEK inhibitors. PMID:25170609

  20. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    OpenAIRE

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that...