WorldWideScience

Sample records for biological part assembly

  1. Asmparts: assembly of biological model parts.

    Science.gov (United States)

    Rodrigo, Guillermo; Carrera, Javier; Jaramillo, Alfonso

    2007-12-01

    We propose a new computational tool to produce models of biological systems by assembling models from biological parts. Our software not only takes advantage of modularity, but it also enforces standardisation in part characterisation by considering a model of each part. We have used model parts in SBML to design transcriptional networks. Our software is open source, it works in linux and windows platforms, and it could be used to automatically produce models in a server. Our tool not only facilitates model design, but it will also help to promote the establishment of a registry of model parts.

  2. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  3. CIDAR MoClo: Improved MoClo Assembly Standard and New E. coli Part Library Enable Rapid Combinatorial Design for Synthetic and Traditional Biology.

    Science.gov (United States)

    Iverson, Sonya V; Haddock, Traci L; Beal, Jacob; Densmore, Douglas M

    2016-01-15

    Multipart and modular DNA part libraries and assembly standards have become common tools in synthetic biology since the publication of the Gibson and Golden Gate assembly methods, yet no multipart modular library exists for use in bacterial systems. Building upon the existing MoClo assembly framework, we have developed a publicly available collection of modular DNA parts and enhanced MoClo protocols to enable rapid one-pot, multipart assembly, combinatorial design, and expression tuning in Escherichia coli. The Cross-disciplinary Integration of Design Automation Research lab (CIDAR) MoClo Library is openly available and contains promoters, ribosomal binding sites, coding sequence, terminators, vectors, and a set of fluorescent control plasmids. Optimized protocols reduce reaction time and cost by >80% from that of previously published protocols. PMID:26479688

  4. Assembly sequencing with toleranced parts

    Energy Technology Data Exchange (ETDEWEB)

    Latombe, J.C. [Stanford Univ., CA (United States). Robotics Lab.; Wilson, R.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1995-02-21

    The goal of assembly sequencing is to plan a feasible series of operations to construct a product from its individual parts. Previous research has thoroughly investigated assembly sequencing under the assumption that parts have nominal geometry. This paper considers the case where parts have toleranced geometry. Its main contribution is an efficient procedure that decides if a product admits an assembly sequence with infinite translations that is feasible for all possible instances of the components within the specified tolerances. If the product admits one such sequence, the procedure can also generate it. For the cases where there exists no such assembly sequence, another procedure is proposed which generates assembly sequences that are feasible only for some values of the toleranced dimensions. If this procedure produces no such sequence, then no instance of the product is assemblable. Finally, this paper analyzes the relation between assembly and disassembly sequences in the presence of toleranced parts. This work assumes a simple, but non-trivial tolerance language that falls short of capturing all imperfections of a manufacturing process. Hence, it is only one step toward assembly sequencing with toleranced parts.

  5. The biological microprocessor, or how to build a computer with biological parts

    OpenAIRE

    Gerd HG Moe-Behrens

    2013-01-01

    Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / outpu...

  6. Mapping the conformations of biological assemblies

    CERN Document Server

    Schwander, P; Phillips, G N; Jr.,; Ourmazd, A

    2009-01-01

    Mapping conformational heterogeneity of macromolecules presents a formidable challenge to X-ray crystallography and cryo-electron microscopy, which often presume its absence. This has severely limited our knowledge of the conformations assumed by biological systems and their role in biological function, even though they are known to be important. We propose a new approach to determining to high resolution the three-dimensional conformations of biological entities such as molecules, macromolecular assemblies, and ultimately cells, with existing and emerging experimental techniques. This approach may also enable one to circumvent current limits due to radiation damage and solution purification.

  7. The biological microprocessor, or how to build a computer with biological parts.

    Science.gov (United States)

    Moe-Behrens, Gerd Hg

    2013-01-01

    Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output device, an arithmetic logic unit, a control unit, memory, and wires (busses) to interconnect these components. A biocomputer can be used to monitor and control a biological system. PMID:24688733

  8. The biological microprocessor, or how to build a computer with biological parts

    Directory of Open Access Journals (Sweden)

    Gerd HG Moe-Behrens

    2013-04-01

    Full Text Available Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output device, an arithmetic logic unit, a control unit, memory, and wires (busses to interconnect these components. A biocomputer can be used to monitor and control a biological system.

  9. CAD Parts-Based Assembly Modeling by Probabilistic Reasoning

    KAUST Repository

    Zhang, Kai-Ke

    2016-04-11

    Nowadays, increasing amount of parts and sub-assemblies are publicly available, which can be used directly for product development instead of creating from scratch. In this paper, we propose an interactive design framework for efficient and smart assembly modeling, in order to improve the design efficiency. Our approach is based on a probabilistic reasoning. Given a collection of industrial assemblies, we learn a probabilistic graphical model from the relationships between the parts of assemblies. Then in the modeling stage, this probabilistic model is used to suggest the most likely used parts compatible with the current assembly. Finally, the parts are assembled under certain geometric constraints. We demonstrate the effectiveness of our framework through a variety of assembly models produced by our prototype system. © 2015 IEEE.

  10. Synthetic Self-Assembled Materials in Biological Environments.

    Science.gov (United States)

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  11. Automated assembly of micro mechanical parts in a Microfactory setup

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Gegeckaite, Asta;

    2006-01-01

    Many micro products in use today are manufactured using semi-automatic assembly. Handling, assembly and transport of the parts are especially labour intense processes. Automation of these processes holds a large potential, especially if flexible, modular microfactories can be developed. This paper...... focuses on the issues that have to be taken into consideration in order to go from a semi-automatic production into an automated microfactory. The application in this study is a switch consisting of 7 parts. The development of a microfactory setup to take care of the automated assembly of the switch...

  12. DNA Synthesis, Assembly and Applications in Synthetic Biology

    OpenAIRE

    Ma, Siying; Tang, Nicholas; Tian, Jingdong

    2012-01-01

    The past couple of years saw exciting new developments in microchip-based gene synthesis technologies. Such technologies hold the potential for significantly increasing the throughput and decreasing the cost of gene synthesis. Together with more efficient enzymatic error correction and genome assembly methods, these new technologies are pushing the field of synthetic biology to a higher level.

  13. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    Science.gov (United States)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  14. Targeted development of registries of biological parts.

    Directory of Open Access Journals (Sweden)

    Jean Peccoud

    Full Text Available BACKGROUND: The design and construction of novel biological systems by combining basic building blocks represents a dominant paradigm in synthetic biology. Creating and maintaining a database of these building blocks is a way to streamline the fabrication of complex constructs. The Registry of Standard Biological Parts (Registry is the most advanced implementation of this idea. METHODS/PRINCIPAL FINDINGS: By analyzing inclusion relationships between the sequences of the Registry entries, we build a network that can be related to the Registry abstraction hierarchy. The distribution of entry reuse and complexity was extracted from this network. The collection of clones associated with the database entries was also analyzed. The plasmid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed experimentally but unexpected discrepancies have also been identified. CONCLUSIONS/SIGNIFICANCE: Organizational guidelines are proposed to help design and manage this new type of scientific resources. In particular, it appears necessary to compare the cost of ensuring the integrity of database entries and associated biological samples with their value to the users. The initial strategy that permits including any combination of parts irrespective of its potential value leads to an exponential and economically unsustainable growth that may be detrimental to the quality and long-term value of the resource to its users.

  15. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy.

    Science.gov (United States)

    Casini, Arturo; MacDonald, James T; De Jonghe, Joachim; Christodoulou, Georgia; Freemont, Paul S; Baldwin, Geoff S; Ellis, Tom

    2014-01-01

    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications.

  16. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  17. An Easy-to-Assemble Three-Part Galvanic Cell

    Science.gov (United States)

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  18. Research on Micromanipulating Robot Based on Micro Parts Assembly

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At present, micro parts assembly is one of the key problems in the fields of micromachine and microelectro mechanical system (MEMS). Performing microassembly by micromanipulating robots is put forward in this paper. Thus based, the general structure of a micromanipulating robot is analyzed briefly. A micro telemanipulating robot developed by the authors with visual monitoring and bilateral force feedback is introduced. The peg in hole task of 0.2mm has been finished successfully by telemanipulation. The operator has gained durative and stable contacting force perceiving.

  19. Eugene--a domain specific language for specifying and constraining synthetic biological parts, devices, and systems.

    Directory of Open Access Journals (Sweden)

    Lesia Bilitchenko

    Full Text Available BACKGROUND: Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices from a collection of individual Parts. RESULTS: We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. CONCLUSIONS: Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.

  20. Part identification in robotic assembly using vision system

    Science.gov (United States)

    Balabantaray, Bunil Kumar; Biswal, Bibhuti Bhusan

    2013-12-01

    Machine vision system acts an important role in making robotic assembly system autonomous. Identification of the correct part is an important task which needs to be carefully done by a vision system to feed the robot with correct information for further processing. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Interest point detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus it needs to choose the correct tool for the process with respect to the given environment. In this paper analysis of three major corner detection algorithms is performed on the basis of their accuracy, speed and robustness to noise. The work is performed on the Matlab R2012a. An attempt has been made to find the best algorithm for the problem.

  1. Critical appraisal: dental amalgam update--part II: biological effects.

    Science.gov (United States)

    Wahl, Michael J; Swift, Edward J

    2013-12-01

    Dental amalgam restorations have been controversial for over 150 years. In Part I of this Critical Appraisal, the clinical efficacy of dental amalgam was updated. Here in Part II, the biological effects of dental amalgam are addressed.

  2. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies.

    Science.gov (United States)

    Sherratt, Michael J; Bax, Daniel V; Chaudhry, Shazia S; Hodson, Nigel; Lu, Jian R; Saravanapavan, Priya; Kielty, Cay M

    2005-12-01

    In addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces. Using both cleaning and coating approaches on silicon wafers and glass coverslips we have produced chemically homogeneous, topographically similar substrates which cover a large amphiphilic range. Extremes of substrate amphiphilicity induced morphological changes in periodicity, curvature and lateral spreading which may mask binding sites or disrupt domain structure. Biological functionality, as assayed by the ability to support cell spreading, was significantly reduced for fibrillin microfibrils adsorbed on highly hydrophilic substrates (contact angle 20.7 degrees) compared with less hydrophilic (contact angle 38.3 degrees) and hydrophobic (contact angle 92.8 degrees) substrates. With an appropriate choice of surface chemistry, multifunctional ECM assemblies retain their native morphology and biological functionality.

  3. Method of Measuring Fixture Automatic Design and Assembly for Auto-Body Part

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of 3-D measuring fixture automatic assembly for auto-body part is presented. Locating constraint mapping technique and assembly rule-based reasoning are applied. Calculating algorithm of the position and pose for the part model, fixture configuration and fixture elements in virtual auto-body assembly space are given. Transforming fixture element from itself coordinate system space to assembly space with homogeneous transformation matrix is realized. Based on the second development technique of unigraphics(UG), the automated assembly is implemented with application program interface (API) function. Lastly the automated assembly of measuring fixture for rear longeron as a case is implemented.

  4. Analysis and optimization of assembly variations for non-rigid parts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Traditional variation analysis methods are not applicable to non-rigid assemblies due to possible part deformation during the assembly process. This paper presents the use of finite element methods to simulate assembly deformation. The relationship between the parts' variation and the variation of the key points in final assembly for quality control is set up by calculating the spring back deformation after assembly. Moreover, the optimization method for non-rigid assembly variations based on finite element analysis is presented. The optimal objective is to reduce the manufacturing cost. The approach is implemented by using ANSYS and MATLAB. The test example shows that the proposed method is effective and applicable.

  5. Scar-less multi-part DNA assembly design automation

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Nathan J.

    2016-06-07

    The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.

  6. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  7. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities.

  8. Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms

    Science.gov (United States)

    Toth-Fejel, Tihamer T.

    2000-06-01

    Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.

  9. Reverse Design and Rapid Prototyping ABS Part Assembly with Hard Material

    Directory of Open Access Journals (Sweden)

    Xu Yaodong

    2016-01-01

    Full Text Available In order to realize the variant design of the existing product , and rapid completion of the manufacturing and assembly, a new product was designed by reverse design method,and manufactured by rapid prototyping technology to finish assembly with hard material part. An experiment of rapid prototyping part with different model scales assembling with metal part was done to find the right scale of 1.008 of the model in H/h tolerance fit and 0.1mm more in size in interference fit. Through the static theory analysis, the amount of the interference fit was calculated by equal torque in contrast with mechanical assembly.The result was further proved by ProE mechanica simulation for stress and strain. Applying the rule of the results in experiment,prototyping part assembly with hard material part in different types of fit can be realized.

  10. Interference between Parts of a Mechanical Assembly Contained in a STEP File

    Directory of Open Access Journals (Sweden)

    Edwin Estévez Parra

    2015-01-01

    Full Text Available Obtaining interferences among parts of a product contributes to determine the feasibility of the assembly sequences according to the geometry of the parts involved. However, in assembly may exist partswith freeform surfaces which make difficult to determine the interference relationship between themautomatically. The objective of this research is to present a method for obtaining interference among assembly parts with prismatic, cylindric and form free surfaces. The method is automated with a software developed on PythonOCC open source framework, which is based on OpenCascade. The techniques for extracting assembly geometric information which is contained in a 3D CAD file withSTEP standard format, the detection of collisions between the parts in disassembly directions, and the generation of interference matrices are described. Two examples of mechanical assemblies are analyzed to demonstrate the effectiveness of the method and the interferences matrices corresponding to the six principal axis disassembly directions are obtained as a result.

  11. Self-Assembly of Micro-Parts onto Si Substrates at Liquid-Liquid Interface

    Institute of Scientific and Technical Information of China (English)

    LIU Mei; ZHANG Jian-Gang; LV Yao; XIA Shan-Hong

    2006-01-01

    We report a new approach for the self-assembly of cuboid micro-parts onto Si substrates to construct threedimensional microstructures.To perform assembly,the Si substrates are prepared with a deep cavity array as binding sites.An aggregate composed of hundreds of uniformly aligned micro-parts is formed at the C10F18-H2O interface.The micro-parts are arranged by passing the substrate through the aggregate of micro-parts,thus the micro-parts are left on the substrate,and then the substrate is vibrated ultrasonically in the solution,making it possible for the micro-parts to fall into the cavities on the substrate.Finally the substrate is pulled out of the solution after assembly.This technique could give a high yield of up to 70%,providing a ilew method for micro-assembly.

  12. The Biological Side of Water-Soluble Arene Ruthenium Assemblies

    OpenAIRE

    Bruno Therrien; Julien Furrer

    2014-01-01

    This review article covers the synthetic strategies, structural aspects, and host-guest properties of ruthenium metalla-assemblies, with a special focus on their use as drug delivery vectors. The two-dimensional metalla-rectangles show interesting host-guest possibilities but seem less appropriate for being used as drug carriers. On the other hand, metalla-prisms allow encapsulation and possible targeted release of bioactive molecules and consequently show some potential as drug delivery vect...

  13. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... Gravity for Drop Assembly ER10MR98.010...

  14. Directed self-assembly defectivity assessment. Part II

    Science.gov (United States)

    Bencher, Chris; Yi, He; Zhou, Jessica; Cai, Manping; Smith, Jeffrey; Miao, Liyan; Montal, Ofir; Blitshtein, Shiran; Lavi, Alon; Dotan, Kfir; Dai, Huixiong; Cheng, Joy Y.; Sanders, Daniel P.; Tjio, Melia; Holmes, Steven

    2012-03-01

    The main concern for the commercialization of directed self-assembly (DSA) for semiconductor manufacturing continues to be the uncertainty in capability and control of defect density. Our research investigates the defect densities of various DSA process applications in the context of a 300mm wafer fab cleanroom environment; this paper expands substantially on the previously published DSA defectivity study by reporting a defect density process window relative to chemical epitaxial pre-pattern registration lines; as well as investigated DSA based contact hole shrinking and report critical dimension statistics for the phase separated polymers before and after etch, along with positional accuracy measurements and missing via defect density.

  15. Weak Polyelectrolyte-Clay Assemblies: Physical Mechanisms of Biological Response

    Science.gov (United States)

    Sukhishvili, Svetlana; Pavlukhina, Svetlana; Zhuk, Iryna

    2014-03-01

    We report on a highly efficient, non-leachable antibacterial coating, consisting of an ultrathin nanocomposite hydrogel capable of hosting, protecting and delivering antibiofilm agents in response to bacterial infection. Constructed using layer-by-layer (LbL) deposition of clay nanoplatelets and a weak polyelectrolyte and loaded with an antimicrobial agent (AmA), the coatings was highly resistant to colonization by Staphylococcus aureus. The high antibiofilm activity of the coating results from a combination of highly localized, bacteria-triggered AmA release and hydrogel swelling, as well as retention of AmA by clay nanoplatelets. We discuss the dependence of rheological and swelling properties of weak polyelectrolyte-clay assemblies on film thickness, clay platelet orientation and environmental pH.

  16. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa;

    2015-01-01

    is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts......We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We...... present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments...

  17. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    Science.gov (United States)

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.

  18. The year's new drugs & biologics 2014 - Part II: trends & challenges.

    Science.gov (United States)

    Graul, A I; Serebrov, M; Cruces, E; Tracy, M; Dulsat, C

    2015-02-01

    2014 was a year of continued high activity in the pharma and biotech industry, as evidenced in part I of this annual two-part review article published last month in this journal (1). As of December 23, 2014, a total of 55 new chemical and biological entities had reached their first markets worldwide, together with another 29 important new line extensions. Another 19 products were approved for the first time during the year but not yet launched by December 23. Furthermore, during the now-traditional year-end sprint, several regulatory agencies issued last-minute approvals for other compounds that missed the deadline for inclusion in that article, bringing the total of new approvals for the year to a somewhat higher number. In addition to the successful development, registration and launch of new drugs and biologics, there are various other trends and tendencies that serve as indicators of the overall health and status of the industry. These include the pursuit of novel programs designed by regulators to stimulate the development of drugs for diseases that are currently under-treated; the regular and pragmatic culling by companies of their R&D pipelines; and the decision to unify pipelines, portfolios and sales forces through mergers and acquisitions. PMID:25756068

  19. Assembling new technologies at the interface of materials science and biology

    Science.gov (United States)

    Stendahl, John C.

    Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA

  20. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    OpenAIRE

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, LiHui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genet...

  1. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, George [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Casparay, Alfred H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-19

    In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.

  2. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    Science.gov (United States)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-01-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces. PMID:27762315

  3. Effects of the chemical decontamination on the component parts of the ATR fuel assembly

    International Nuclear Information System (INIS)

    The chemical decontamination technique has been developed in order to remove the crud adhering to the surface of the components constructing the primary coolant system, as a part of the measure to decrease the exposure in the annual inspection. The technique has been already applied to the prototype reactor 'Fugen', in the core of which the fuel assemblies were not loaded. The chemical decontamination, for the core in which the fuel assemblies are loaded, has been planned for the purpose of improving the utilization factor. It is necessary to confirm, through the test before putting the plan into practice, that the decontamination reagent does not exert a bad influence upon the components constructing the fuel assembly. This report describes the test results which have been carried out so as to investigate the influence of the reagent on the components constructing the fuel assembly. The outline of the results is as follows: (1) The susceptibility to stress corrosion cracking of the chemical decontamination treatment and the residual decontamination reagent on the components constructing the fuel assembly is low enough. (2) The chemical decontamination treatment and the residual decontamination reagent do not exert a bad influence upon the integrity of the fuel assembly concerning the fuel rod holding function of the spacer and the characteristics of the fretting wear caused on the fuel claddings. (author)

  4. Introduction of customized inserts for streamlined assembly and optimization of BioBrick synthetic genetic circuits

    OpenAIRE

    Gupta Saurabh; Derda Ratmir; Norville Julie E; Drinkwater Kelly A; Belcher Angela M; Leschziner Andres E; Knight Thomas F

    2010-01-01

    Abstract Background BioBrick standard biological parts are designed to make biological systems easier to engineer (e.g. assemble, manipulate, and modify). There are over 5,000 parts available in the Registry of Standard Biological Parts that can be easily assembled into genetic circuits using a standard assembly technique. The standardization of the assembly technique has allowed for wide distribution to a large number of users -- the parts are reusable and interchangeable during the assembly...

  5. Self-Assembly of Microscale Parts through Magnetic and Capillary Interactions

    Directory of Open Access Journals (Sweden)

    Madan Dubey

    2011-03-01

    Full Text Available Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and general handling of individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we describe the use of magnetic and capillary forces to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration. Integrated permanent magnet microstructures provided magnetic forces, while a low-melting-point solder alloy provided capillary forces. A finite element model of forces between the magnetic features demonstrated the utility of magnetic forces at this size scale. Despite a slight departure from designed dimensions in the actual fabricated parts, the combination of magnetic and capillary forces improved the assembly yield to 8%, over approximately 0.1% achieved previously with capillary forces alone.

  6. A Multiobjective Optimization Algorithm to Solve the Part Feeding Problem in Mixed-Model Assembly Lines

    Directory of Open Access Journals (Sweden)

    Masood Fathi

    2014-01-01

    Full Text Available Different aspects of assembly line optimization have been extensively studied. Part feeding at assembly lines, however, is quite an undeveloped area of research. This study focuses on the optimization of part feeding at mixed-model assembly lines with respect to the Just-In-Time principle motivated by a real situation encountered at one of the major automobile assembly plants in Spain. The study presents a mixed integer linear programming model and a novel simulated annealing algorithm-based heuristic to pave the way for the minimization of the number of tours as well as inventory level. In order to evaluate the performance of the algorithm proposed and validate the mathematical model, a set of generated test problems and two real-life instances are solved. The solutions found by both the mathematical model and proposed algorithm are compared in terms of minimizing the number of tours and inventory levels, as well as a performance measure called workload variation. The results show that although the exact mathematical model had computational difficulty solving the problems, the proposed algorithm provides good solutions in a short computational time.

  7. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid.

    Science.gov (United States)

    Ruder, Warren C; Hsu, Chia-Pei D; Edelman, Brent D; Schwartz, Russell; Leduc, Philip R

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures. PMID:22952408

  8. Self-assembly of dendritic dipeptides as a model of chiral selection in primitive biological systems.

    Science.gov (United States)

    Rosen, Brad M; Roche, Cécile; Percec, Virgil

    2013-01-01

    Biological macromolecules are homochiral, composed of sequences of stereocenters possessing the same repeated absolute configuration. This chapter addresses the mechanism of homochiral selection in polypeptides. In particular, the relationship between the stereochemistry (L or D) of structurally distinct α-amino acids is explored. Through functionalization of Tyr-Xaa dipeptides with self-assembling dendrons, the effect of stereochemical sequence of the dipeptide on the thermodynamics of self-assembly and the resulting structural features can be quantified. The dendritic dipeptide approach effectively isolates the stereochemical information of the shortest sequence of stereochemical information possible in polypeptide, while simultaneously allowing for dendron driven tertiary and quaternary structure formation and subsequent transfer of chiral information from the dipeptide to the dendritic sheath. This approach elucidates a mechanism of selecting a homochiral relationship between dissimilar but neighboring α-amino acids through thermodynamic preference for homochirality in solution-phase and bulk supramolecular helical polymerization. PMID:23306867

  9. The space exposure biology assembly (SEBA)-results of the phase a study

    Science.gov (United States)

    Schulte, W.; Hofmann, P.; König, H.

    In the past ESA has successfully flown several experiment facilities for research in space biology, such as the `Exobiology Radiation Assembly' on the EURECA free-flyer and the exposure facility `BIOPAN' on Russian retrievable FOTON satellites. A flight opportunity in the mid-term future well suited to experiments in the field of exobiology and radiation research will be the `Space Exposure Biology Assembly' (SEBA). This new multi-user facility will be installed as an external payload on one of the EXPRESS Pallets that are attached to the truss structure of the International Space Station. In its baseline configuration SEBA consists of two multi-user experiment units: ■ EXPOSE, a sun exposed experiment unit, designed for photobiology and photoprocessing experiments; this unit will be mounted on a sun pointing device ■ MATROSHKA, an experiment unit for the simulation of extravehicular activities of man by using a phantom of a human body equipped with sensors for radiation dosimetric measurements. In addition, SEBA will provide resources to accommodate further self-standing biological or dosimetry add-on experiments. All SEBA elements will be installed on a single EXPRESS Pallet Adapter with an exchange interval of one to three years.

  10. Luminescent/paramagnetic xanthane probes in the study of labeled biological assemblies

    Science.gov (United States)

    Burghardt, Thomas P.; Toft, Daniel J.; Ajtai, Katalin

    1993-05-01

    The techniques for specifying the angular distribution of luminescent and paramagnetic probes on biological assemblies have been combined in the investigation of probe orientation and order of labeled myosin cross-bridges muscle fibers. This combination has been accomplished on two levels involving: (1) a mathematical formalism that permits the combination of data from individual luminescent and paramagnetic probes, and (2) the introduction of a family of specific extrinsic probes that are capable of producing an interpretable luminescent and paramagnetic signal when attached to a muscle fiber. The mathematical formalism has been applied to several probes of the myosin cross-bridge in muscle fibers to establish that the cross-bridge rotates during muscle contraction to produce muscle shortening (Burghardt & Ajtai, 1992 Biochemistry 31, 200; Ajtai et al., 1992 Biochemistry 31, 207). The luminescent/paramagnetic probes have also been employed in the investigation of order and orientation of cross-bridge in muscle fibers (Ajtai & Burghardt, 1992 Biochemistry 31, 4265). The properties of these dual nature probes invites further development of experimental techniques exploiting the high orientation sensitivity of paramagnetic probes with the ability of the probe to absorb and emit light. Flash-photolysis electron paramagnetic resonance is one such technique that may prove useful in the investigation of probe order in biological assemblies.

  11. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    Science.gov (United States)

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  12. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia. Part 3

    DEFF Research Database (Denmark)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas;

    2015-01-01

    These updated guidelines are based on the first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in the years 2005 and 2006. For this 2015 revision, all available publications pertaining to the biological ....... These guidelines are primarily concerned with the biological treatment (including antipsychotic medication and other pharmacological treatment options) of patients with schizophrenia.......These updated guidelines are based on the first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in the years 2005 and 2006. For this 2015 revision, all available publications pertaining to the biological...... treatment of schizophrenia were reviewed systematically to allow for an evidence-based update. These guidelines provide evidence-based practice recommendations which are clinically and scientifically relevant. They are intended to be used by all physicians diagnosing and treating patients with schizophrenia...

  13. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  14. Effects of demographic stochasticity on biological community assembly on evolutionary time scales

    KAUST Repository

    Murase, Yohsuke

    2010-04-13

    We study the effects of demographic stochasticity on the long-term dynamics of biological coevolution models of community assembly. The noise is induced in order to check the validity of deterministic population dynamics. While mutualistic communities show little dependence on the stochastic population fluctuations, predator-prey models show strong dependence on the stochasticity, indicating the relevance of the finiteness of the populations. For a predator-prey model, the noise causes drastic decreases in diversity and total population size. The communities that emerge under influence of the noise consist of species strongly coupled with each other and have stronger linear stability around the fixed-point populations than the corresponding noiseless model. The dynamics on evolutionary time scales for the predator-prey model are also altered by the noise. Approximate 1/f fluctuations are observed with noise, while 1/ f2 fluctuations are found for the model without demographic noise. © 2010 The American Physical Society.

  15. 78 FR 23940 - Use of International Standard ISO-10993, “Biological Evaluation of Medical Devices Part 1...

    Science.gov (United States)

    2013-04-23

    ... HUMAN SERVICES Food and Drug Administration Use of International Standard ISO-10993, ``Biological... International Standard ISO-10993, `Biological Evaluation of Medical Devices Part 1: Evaluation and Testing... entitled ``Use of International Standard ISO-10993, `Biological Evaluation of Medical Devices Part...

  16. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: ABTR Fuel Assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-19

    A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20, 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/137Cs 134Cs/154Eu, and 154Eu/137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the

  17. Experimental Studies on Assemblies 1 and 2 of the Fast Reactor FR-0. Part 2

    International Nuclear Information System (INIS)

    In a first part of this report, published as AE-195, an account was given of critical mass determinations and measurements of flux distribution and reaction ratios in the first assemblies of the fast zero power reactor FR0. This second part of the report deals with various investigations involving the measurement of reactivity. Control rod calibrations have been made using the positive period, the inverse multiplication, the rod drop and the pulsed source techniques, and show satisfactory agreement between the various methods. The reactivity worths of samples of different materials and different sizes have been measured at the core centre. Comparisons with perturbation calculations show that the regular and adjoint fluxes are well predicted in the central region of the core. The variation in the prompt neutron life-time with reactivity has been studied by means of the pulsed source and the Rossi-α techniques. Comparison with one region calculations reveals large discrepancies, indicating that this simple model is inadequate. Some investigations of streaming effects in an empty channel in the reactor and of interaction effects between channels have been made and are compared with theoretical estimates. Measurements of the reactivity worth of an air gap between the reactor halves and of the temperature coefficient are also described in the report. The work has been performed as a joint effort by AB Atomenergi and the Research Institute of National Defence

  18. 1994 Baseline biological studies for the Device Assembly Facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Y.E. [ed.; Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report describes environmental work performed at the Device Assembly Facility (DAF) in 1994 by the Basic Environmental Monitoring and Compliance Program (BECAMP). The DAF is located near the Mojave-Great Basin desert transition zone 27 km north of Mercury. The area immediately around the DAF building complex is a gentle slope cut by 1 to 3 m deep arroyos, and occupied by transitional vegetation. In 1994, construction activities were largely limited to work inside the perimeter fence. The DAF was still in a preoperational mode in 1994, and no nuclear materials were present. The DAF facilities were being occupied so there was water in the sewage settling pond, and the roads and lights were in use. Sampling activities in 1994 represent the first year in the proposed monitoring scheme. The proposed biological monitoring plan gives detailed experimental protocols. Plant, lizard, tortoise, small mammal, and bird surveys were performed in 1994. The authors briefly outline procedures employed in 1994. Studies performed on each taxon are reviewed separately then summarized in a concluding section.

  19. Exploring the elastic features of spherically shaped biological assemblies and soft matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Asfaw, Mesfin, E-mail: mesfin.taye@csun.edu [Department of Physics and Astronomy, California State University, Northridge, CA (United States)

    2011-03-16

    Using a numerical simulation, we study the elastic features of biological assemblies (e.g. viruses and bacteria) and soft matter systems (e.g. colloidosomes and nanoparticle covered droplets) that possess a spherical shape in which the proteins (particles) on the colloidosomes or virus shells are mechanically linked to form a stress-bearing spherical structure that may dramatically enhance the surface rigidity. The dependence of the rigidity enhancement upon the density of the cross-linked proteins situated on the surface of the virus is explored. We determine the percolation threshold P{sub ce} by considering bond percolation on the spherical elastic networks involving nearest neighbor forces. The percolation threshold of such networks is very different from that of a two-dimensional triangular lattice due to the topological effect. We find that the threshold probability for the spherical elastic network is considerably smaller than for an unwrapped network, which reveals that the spherical topology induces more rigidity to the network.

  20. Probing self assembly in biological mixed colloids by SANS, deuteration and molecular manipulation

    International Nuclear Information System (INIS)

    Small-angle neutron scattering was used to obtain information on the form and molecular arrangement of particles in mixed colloids of bile salts with phosphatidylcholine, and bile salts with monoolein. Both types of systems showed the same general characteristics. The particle form was highly dependent on total lipid concentration. At the highest concentrations the particles were globular mixed micelles with an overall size of 50 Angstrom. As the concentration was reduced the mixed micelles elongated, becoming rodlike with diameter about 50 Angstrom. The rods had a radial core-shell structure in which the phosphatidylcholine or monoolein fatty tails were arranged radially to form the core with the headgroups pointing outward to form the shell. The bile salts were at the interface between the shell and core with the hydrophilic parts facing outward as part of the shell. The lengths of the rods increased and became more polydispersed with dilution. At sufficiently low concentrations the mixed micelles transformed into single bilayer vesicles. These results give insight on the physiological function of bile and on the rules governing the self assembly of bile particles in the hepatic duct and the small intestine

  1. Probing self assembly in biological mixed colloids by SANS, deuteration and molecular manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P. [Los Alamos National Laboratory, NM (United States); Thiyagarajan, P. [Argonne National Laboratory, IL (United States); Hoffman, A. [Univ. of California, San Diego, CA (United States); Alkan-Onyuksel, H. [Univ. of Illinois, Chicago, IL (United States)

    1994-12-31

    Small-angle neutron scattering was used to obtain information on the form and molecular arrangement of particles in mixed colloids of bile salts with phosphatidylcholine, and bile salts with monoolein. Both types of systems showed the same general characteristics. The particle form was highly dependent on total lipid concentration. At the highest concentrations the particles were globular mixed micelles with an overall size of 50{Angstrom}. As the concentration was reduced the mixed micelles elongated, becoming rodlike with diameter about 50{Angstrom}. The rods had a radial core-shell structure in which the phosphatidylcholine or monoolein fatty tails were arranged radially to form the core with the headgroups pointing outward to form the shell. The bile salts were at the interface between the shell and core with the hydrophilic parts facing outward as part of the shell. The lengths of the rods increased and became more polydispersed with dilution. At sufficiently low concentrations the mixed micelles transformed into single bilayer vesicles. These results give insight on the physiological function of bile and on the rules governing the self assembly of bile particles in the hepatic duct and the small intestine.

  2. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Science.gov (United States)

    2010-01-01

    ... Biological Weapons No. Supplement No. 1 to Part 742 Commerce and Foreign Trade Regulations Relating to...—Nonproliferation of Chemical and Biological Weapons Note: Exports and reexports of items in performance of...: (i) Equipment (for producing chemical weapon precursors and chemical warfare agents) described...

  3. The Constructor: a web application optimizing cloning strategies based on modules from the registry of standard biological parts

    NARCIS (Netherlands)

    Hesselman, M.C.; Koehorst, J.J.; Slijkhuis, T.; Hugenholtz, F.; Odoni, D.I.; Passel, van M.W.J.

    2012-01-01

    Synthetic biology is an emerging field that combines molecular biology with engineering principles, which requires abstraction levels applied to a modular biological componentry. The Registry of Standard Biological Parts harbours such a repository of standardized parts, and thereby facilitates the c

  4. TiO2 thin films self-assembled with a partly fluorinated surfactant template.

    Science.gov (United States)

    Henderson, Mark J; Zimny, Kevin; Blin, Jean-Luc; Delorme, Nicolas; Bardeau, Jean-François; Gibaud, Alain

    2010-01-19

    New TiO(2) films have been self-assembled on solid substrate by dip-coating using TiCl(4) as the titanium source and the partly fluorinated surfactant F(CF(2))(8)C(2)H(4)(OC(2)H(4))(9)OH as the liquid crystal template. By control over the dip-withdrawal speed, film thicknesses from a minimum of 43 nm were produced with rms roughnesses of 0.5-0.7 nm. The films were characterized by X-ray reflectivity, grazing incidence small-angle X-ray scattering, atomic force microscopy, contact angle measurements, and Raman spectroscopy. Their GI-SAXS patterns are characteristic of a 2-D hexagonal structure in which tubular rods of the fluorinated surfactant are packed hexagonally and aligned parallel to the substrate. Reflectivity and contact angle measurements of the as-prepared film indicate that a low-density hydrophilic TiO(2) surface presents to the air. PMID:19754061

  5. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  6. Post-Irradiation Examination Test for an Evaluation of In-Core Performance of the Parts of Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. S.; Ryu, W. S.; Choo, Y. S. (and others)

    2007-11-15

    The mechanical properties of the parts of a nuclear fuel assembly are degraded during the operation of the reactor, through the mechanism of irradiation damage. The properties changes of the parts of the fuel assembly should be quantitatively estimated to ensure the safety of the fuel assembly and rod during the operation. The test techniques developed in this report are used to produce the irradiation data of the grid 1x1 cell spring with fuel cladding, the grid 1x1 cell, the spring on one face of the 1x1 cell, the inner/outer strip of the grid and the guide tube. The specimens were irradiated in the CT test hole of HANARO of a 30 MW thermal output at 270 {approx} 375 .deg. C up to a fast neutron fluence of 5.7x10{sup 20} n/cm{sup 2}(E>1 MeV). From the spring test of mid grid 1x1 cell and bottom grid plate, the irradiation effects were not found. The irradiation effects on the irradiation growth also were not found. The buckling load of mid grid 1x1 cell tends to increase due to a neutron irradiation. From the tensile tests, the strengths increased but the elongations decreased due to an irradiation. Through these tests of the components, the essential data on the fuel assembly design could be obtained. These results will be used to update the irradiation behavior databases, to improve the performance of fuel assembly, and to predict the service life of the fuel assembly in a reactor.

  7. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.

    Directory of Open Access Journals (Sweden)

    Akihiro Horii

    Full Text Available A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG and 2-unit RGD binding sequence PGR (PRGDSGYRGDS. We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration.

  8. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    Science.gov (United States)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  9. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Rajkumar, Arun Stephen; Zhang, Jie;

    2015-01-01

    , we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our...

  10. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed.

  11. A Digital Interface for the Part Designers and the Fixture Designers for a Reconfigurable Assembly System

    Directory of Open Access Journals (Sweden)

    Vishwa V. Kumar

    2013-01-01

    Full Text Available This paper presents a web-based framework for interfacing product designers and fixture designers to fetch the benefits of early supplier involvement (ESI to a reconfigurable assembly system (RAS. The interfacing of the two members requires four steps, namely, collaboration chain, fixture supplier selection, knowledge share, and accommodation of service facilities so as to produce multiple products on a single assembly line. The interfacing not only provokes concurrency in the activities of product and fixture designer but also enables the assembly systems to tackle the spatial and generational variety. Among the four stages of interfacing, two steps are characterized by optimization issues, one from the product customer side and the other from the fixture designer side. To impart promptness in the optimization and hence the interaction, computationally economic tools are also presented in the paper for both of the supplier selection and fixture design optimization.

  12. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    Science.gov (United States)

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  13. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory.

  14. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    Science.gov (United States)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  15. Assembly, start and operation of an activated sludge reactor for the industrial effluents treatment: physico chemical and biological parameters

    Directory of Open Access Journals (Sweden)

    Márcia Regina Assalin

    2008-05-01

    Full Text Available Although of the immense available bibliography regarding the activated sludge process, little it is found in relation to the basic procedure to be adopted to implant, to activate and to monitor a reactor of activated sludge in laboratory scales. This article describes the assembly, departure and operation of an activated sludge system, operating in continuous process, at a laboratory scale, to study effluents treatments, using as example, Kraft E1 pulp mill effluent. Factors as biodegradability of the effluent to be treated, stationary state of the reactor, conventional operation parameters as physical chemistry and biological parameters are presented.

  16. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  17. In vitro production and characterization of partly assembled human CD3 complexes

    DEFF Research Database (Denmark)

    Kastrup, J; Pedersen, L Ø; Dietrich, J;

    2002-01-01

    in Golgi apparatus before the fully assembled T-cell receptor is transported to the cell surface. To study the structural properties of the human CD3 chains, we have developed new methods to produce and fold the extracellular domains of CD3 gamma, CD3 delta and CD3 epsilon. Proteins were expressed in......Pairwise assembly of human CD3 chains takes place in the endoplasmic reticulum of T cells. Subsequently, the CD3 heterodimers form complexes with Ti alpha and Tiss chains forming hexameric Ti alpha beta CD3 gamma epsilon delta epsilon complexes. Finally, association with the zeta 2 homodimer occurs...... Escherichia coli as denatured chains and de novo folded in vitro. CD3 gamma and CD3 epsilon folded as soluble monomers, whereas CD3 delta did not yield any soluble proteins. When folding the chains pairwise, soluble CD3 gamma epsilon and CD3 delta epsilon heterodimers could be isolated, whereas CD3 gamma...

  18. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    OpenAIRE

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; Leduc, Philip R.

    2012-01-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zer...

  19. Comparison of self-assembled and micelle encapsulated QD chemosensor constructs for biological sensing.

    Science.gov (United States)

    Lemon, Christopher M; Nocera, Daniel G

    2015-01-01

    Whereas a variety of covalent conjugation strategies have been utilized to prepare quantum dot (QD)-based nanosensors, supramolecular approaches of self-assembly have been underexplored. A major advantage of self-assembly is the ability to circumvent laborious synthetic efforts attendant to covalent conjugation of a chemosensor to functionalized QDs. Here, we combine a CdSe/ZnS core-shell QD with gold(III) corroles using both self-assembly and micelle encapsulation to form QD nanosensors. Appreciable spectral overlap between QD emission and corrole absorption results in efficient Förster resonance energy transfer (FRET), which may be initiated by one- or two-photon excitation. The triplet state of the gold(III) corroles is quenched by molecular oxygen, enabling these constructs to function as optical O2 sensors, which is useful for the metabolic profiling of tumours. The photophysical properties, including QD and corrole lifetimes, FRET efficiency, and O2 sensitivity, have been determined for each construct. The relative merits of each conjugation strategy are assessed with regard to their implementation as sensors. PMID:26399200

  20. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  1. CRINUM ; AN ENDLESS SOURCE OF BIOACTIVE PRINCIPLES: A REVIEW. PART V. BIOLOGICAL PROFILE

    Directory of Open Access Journals (Sweden)

    John Refaat*, Mohamed S. Kamel , Mahmoud A. Ramadan and Ahmed A. Ali

    2013-04-01

    Full Text Available ABSTRACT: Crinum is a well-known traditional herb belongs to family Amaryllidaceae. Worldwide, different Crinum species are commonly used to treat various conditions due to their excellent medicinal values. Members of this genus are also best known biofactories for the unique Amaryllidaceae alkaloids. But to the significant phytoconstituents produced by this plant as well as their therapeutic potentials, many Crinum species have been subjected to extensive chemical, cytological and pharmacological investigations. This part of our comprehensive review work on the chemical and biological profiles of Crinums describes the results of biological and toxicological studies conducted on different species. In addition, general analytical conclusions as well as some suggestions for future phytochemical and biological work on Crinums are discussed.

  2. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II : pulsed neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Rabiti, C.; Nuclear Engineering Division

    2008-10-22

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a {sup 3}He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment.

  3. FEM analysis of the top nozzle with welding parts of 16NGF fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, Carlos Frederico Mattos; Brittes, Luiz Henrique Alves; Silva, Marcio Adriano Coelho da [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)]. E-mails: carlosschettino@inb.gov.br; brittes@inb.gov.br; marcio.adriano@inb.gov.br

    2007-07-01

    The present work aims to evaluate structurally the welded Top Nozzle (previously casting) used in the fuel assembly type 16 x 16 used in the Nuclear Power Plant Angra I. The full solid model of this component was generated with SOLIDWORKS program and later imported to ANSYS 10.0 program. For the Finite Element model were used elements SOLID-92 and BEAM3. The validation of the analysis was lead comparing the results got from simulation using ANSYS to physical tests already performed previously in the Westinghouse Electric Company (U.S.A.). The analysis covered specific loads simulating the conditions found during the shipping and handling of the Fuel Element (static loads corresponding to 4g - four times the Fuel Element weight) as well as simulating the conditions found during the operation of the nuclear power plant (Conditions I, II, III and IV). The structural integrity of the Top Nozzle is assured when the design criteria, defined in the ASME Code Section III (Boilers and Pressures Vessels), are satisfied. The results of these analysis were used to prove that the welded Top Nozzle is capable to keep the dimensional stability for which it was designed when submitted to loads that correspond to required stresses for its use in Nuclear Fuel Assemblies. The performed analysis provided INB to get more information of extreme importance for the continuity of the development of the welded Top Nozzle and its later production. (author)

  4. Design of casting blanks in CAPP system for parts of piston-cylinder assembly of internal combustion engines

    Directory of Open Access Journals (Sweden)

    V. Todić

    2012-01-01

    Full Text Available Development of information technology industry provided great possibilities in the area of integration of diff erent CAx systems, such as CAD, CAM, CAE and others. In order to successfully link systems of automated-design (or Computer Aided Design - CAD with automated manufacturing systems (or Computer Aided Manufacturing – CAM, automation of manufacturing process planning is needed, i.e. CAPP (Computer-Aided Process Planning systems can bridge a gap between design and manufacturing. In this paper is shown design of casting blanks in CAPP system for parts of piston-cylinder assembly of internal combustion engines in a manufacturing system.

  5. Wholes that cause their parts: organic self-reproduction and the reality of biological teleology.

    Science.gov (United States)

    Teufel, Thomas

    2011-06-01

    A well-rehearsed move among teleological realists in the philosophy of biology is to base the idea of genuinely teleological forms of organic self-reproduction on a type of causality derived from Kant. Teleological realists have long argued for the causal possibility of this form of causality--in which a whole is considered the cause of its parts--as well as formulated a set of teleological criteria of adequacy for it. What is missing, to date, is an account of the mereological principles that govern the envisioned whole-to-part causality. When the latter principles are taken into account, we find that there is no version of whole-to-part causality that is mereologically, causally and teleologically possible all at once, as teleological realism requires. PMID:21486664

  6. Kitting versus line stocking in the automotive assembly industry: the influence of part characteristics

    OpenAIRE

    Limère, Veronique; Van Landeghem, Hendrik; Aghezzaf, El-Houssaine

    2011-01-01

    Kitting and line stocking are two part feeding methods that are common in industry. Each system has particular operational benefits and disadvantages but there is a lack of research investigating the trade-offs between both systems. A mathematical cost model is presented for the assignment of individual parts to the materials supply method which is most cost effective for the overall materials delivery system (kitting or line stocking). The model is tested on realistic datasets. Results are p...

  7. A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design

    International Nuclear Information System (INIS)

    This paper is part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF). Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated in a considerable amount of research that resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  8. Experimental Studies on Assemblies 1 and 2 of the Fast Reactor FR-0. Part 1

    International Nuclear Information System (INIS)

    FR0 is a fast zero power reactor built for experiments in reactor physics. It is a split table machine containing vertical fuel elements. 120 kg of U235 are available as fuel, which is fabricated into metallic plates of 20 % enrichment. The control system comprises 5 spring-loaded safety elements and 3 + 1 elements for startup operations and power control. The reactor went critical in February 1964. The first assemblies studied were made up of undiluted fuel into a cylindrical and a spherical core, respectively, surrounded by a reflector made of copper. The present report describes some experiments made on these systems. Primarily, critical mass determinations, flux distribution measurements and studies of the conversion ratio are dealt with. The measured quantities have been compared with theoretical predictions using various transport theory programmes (DSN, TDC) and cross section sets. The experimental results show that the neutron spectrum in the copper reflector is softer than predicted, but apart from this discrepancy agreement with theory has generally been obtained

  9. Irradiation Test in HANARO for an Evaluation of In-Core Performance of the Parts of Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Choi, M. H.; Cho, J. M.; Son, M. H.; Choi, M. H.; Shin, Y. T.; Park, S. J

    2007-10-15

    For an evaluation of the neutron irradiation properties of the parts of a nuclear fuel assembly requested by KNFC (Korea Nuclear Fuel Co., Ltd.), the 05M-07U instrumented capsule was designed, fabricated, and successfully irradiated at HANARO. The basic structure of the 05M-07U capsule was based on the 04M-17U capsule which had been successfully irradiated in HANARO as part of the 2004 project. However, because of a limited number of specimens and the budget of one university, the remaining space in the capsule was filled with various KAERI specimens. 88 specimens such as 1x1 spacer grid, spring, buckling, growth and tensile specimens of Zirlo and Inconel alloys were inserted in the capsule. The capsule was composed of 5 stages having many kinds of specimens and an independent electric heater at each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 5 sets of Ni-Ti-Fe neutron fluence monitors installed in the capsule. The capsule was irradiated in the CT test hole of HANARO of a 30MW thermal output at 270-400 .deg. C up to a fast neutron fluence of 5.7x10{sup 20}(n/cm{sup 2}) (E>1.0MeV). After an irradiation test, the main body of the capsule was cut off at the bottom of the protection tube with a cutting system and it was transported to the IMEF (Irradiated Materials Examination Facility). The irradiated specimens were tested to evaluate the irradiation performance of the parts of a fuel assembly in the IMEF hot cell.

  10. Biology and Mechanics of Blood Flows Part II: Mechanics and Medical Aspects

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part II of this two-volume sequence, Mechanics and Medical Aspects, refers to the extraction of input data at the macroscopic scale for modeling the cardiovascular system, and complements Part I, which focuses on nanoscopic and microscopic components and processes. This volume contains chapters on anatomy, physiology, continuum mechanics, as well as pathological changes in the vasculature walls including the heart and their treatments. Methods of numerical simulations are given and illustrated in particular by application to wall diseases. This authoritative book will appeal to any biologist, chemist, physicist, or applied mathematician interested in the functioning of the cardiovascular system.

  11. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    Full Text Available BACKGROUND: Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. RESULTS: The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters connected to a fixed output device (a logic inverter expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. CONCLUSIONS: Promoters activities (referred to a standard promoter can vary when they are measured via different reporter devices (up to 22%, when they are used within a two-expression-cassette system (up to 35% and when they drive another device in a functionally interconnected circuit (up to 44%. This paper

  12. Bibliographical database of radiation biological dosimetry and risk assessment: Part 2

    International Nuclear Information System (INIS)

    This is part 11 of a database constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on authors, key words, title, year, journal name, or publication number. Photocopies of the publications contained in the database are maintained in a file that is numerically arranged by our publication acquisition numbers. This volume contains 1048 additional entries, which are listed in alphabetical order by author. The computer software used for the database is a simple but sophisticated relational database program that permits quick information access, high flexibility, and the creation of customized reports. This program is inexpensive and is commercially available for the Macintosh and the IBM PC. Although the database entries were made using a Macintosh computer, we have the capability to convert the files into the IBM PC version. As of this date, the database cites 2260 publications. Citations in the database are from 200 different scientific journals. There are also references to 80 books and published symposia, and 158 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed within the scientific literature, although a few journals clearly predominate. The journals publishing the largest number of relevant papers are Health Physics, with a total of 242 citations in the database, and Mutation Research, with 185 citations. Other journals with over 100 citations in the database, are Radiation Research, with 136, and International Journal of Radiation Biology, with 132

  13. Supramolecular assembly of biological molecules purified from bovine nerve cells: from microtubule bundles and necklaces to neurofilament networks

    International Nuclear Information System (INIS)

    With the completion of the human genome project, the biosciences community is beginning the daunting task of understanding the structures and functions of a large number of interacting biological macromolecules. Examples include the interacting molecules involved in the process of DNA condensation during the cell cycle, and in the formation of bundles and networks of filamentous actin proteins in cell attachment, motility and cytokinesis. In this proceedings paper we present examples of supramolecular assembly based on proteins derived from the vertebrate nerve cell cytoskeleton. The axonal cytoskeleton in vertebrate neurons provides a rich example of bundles and networks of neurofilaments, microtubules (MTs) and filamentous actin, where the nature of the interactions, structures, and structure-function correlations remains poorly understood. We describe synchrotron x-ray diffraction, electron microscopy, and optical imaging data, in reconstituted protein systems purified from bovine central nervous system, which reveal unexpected structures not predicted by current electrostatic theories of polyelectrolyte bundling, including three-dimensional MT bundles and two-dimensional MT necklaces

  14. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  15. Mode 3 Project-Based O-Level: Part II Biology

    Science.gov (United States)

    Greatorex, D.; Lock, R.

    1978-01-01

    Presents a British biology course for the O-level which aims to promote the understanding of broad biological principles through an environmental approach. Results of proper assessment and overall examination performance are also revealed. (HM)

  16. Modelling of a biologically inspired robotic fish driven by compliant parts.

    Science.gov (United States)

    El Daou, Hadi; Salumäe, Taavi; Chambers, Lily D; Megill, William M; Kruusmaa, Maarja

    2014-03-01

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill's elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. PMID:24451164

  17. Modelling of a biologically inspired robotic fish driven by compliant parts

    International Nuclear Information System (INIS)

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill’s elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. (paper)

  18. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  19. Independent in vitro assembly of all three major morphological parts of the 30S ribosomal subunit of Thermus thermophilus.

    Science.gov (United States)

    Agalarov, S C; Selivanova, O M; Zheleznyakova, E N; Zheleznaya, L A; Matvienko, N I; Spirin, A S

    1999-12-01

    Fragments of the 16S rRNA of Thermus thermophilus representing the 3' domain (nucleotides 890-1515) and the 5' domain (nucleotides 1-539) have been prepared by transcription in vitro. Incubation of these fragments with total 30S ribosomal proteins of T. thermophilus resulted in formation of specific RNPs. The particle assembled on the 3' RNA domain contained seven proteins corresponding to Escherichia coli ribosomal proteins S3, S7, S9, S10, S13, S14, and S19. All of them have previously been shown to interact with the 3' domain of the 16S RNA and to be localized in the head of the 30S ribosomal subunit. The particle formed on the 5' RNA domain contained five ribosomal proteins corresponding to E. coli proteins S4, S12, S17, S16, and S20. These proteins are known to be localized in the main part of the body of the 30S subunit. Both types of particle were compact and had sedimentation coefficients of 15.5 S and 13 S, respectively. Together with our recent demonstration of the reconstitution of the RNA particle representing the platform of the T. thermophilus 30S ribosomal subunit [Agalarov, S.C., Zheleznyakova, E.N., Selivanova, O.M., Zheleznaya, L.A., Matvienko, N.I., Vasiliev, V.D. & Spirin, A.S. (1998) Proc. Natl Acad. Sci. USA 95, 999-1003], these experiments establish that all three main structural lobes of the small ribosomal subunit can be reconstituted independently of each other and prepared in the individual state.

  20. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    International Nuclear Information System (INIS)

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by 1H and 31P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior

  1. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong, E-mail: tzengronga@jnu.edu.cn; Tu, Mei; Zhao, Jianhao

    2014-12-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by {sup 1}H and {sup 31}P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior.

  2. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  3. Design of Auto Generating Tool of Part Sub Assembly Drawing%零件小组立图自动生成程序设计

    Institute of Scientific and Technical Information of China (English)

    周玉飞

    2014-01-01

    The part sub assembly drawing is still in the stage of manual drawing mode in many shipyards for .By using the Python language of Tribon system for secondary development , the part sub assembly drawing can be automatically generated .This program is verified by a series of ship design , showing that it is feasible .%针对目前很多船厂对于零件小组立图的生成还处于手工出图模式的问题,通过利用Python语言对Tribon系统进行二次开发,实现零件小组立图的自动批量生成。一系列船型的实践证明该程序是可行的且实用性很强。

  4. Nanoscale device architectures derived from biological assemblies: The case of tobacco mosaic virus and (apo)ferritin

    Science.gov (United States)

    Calò, Annalisa; Eiben, Sabine; Okuda, Mitsuhiro; Bittner, Alexander M.

    2016-03-01

    Virus particles and proteins are excellent examples of naturally occurring structures with well-defined nanoscale architectures, for example, cages and tubes. These structures can be employed in a bottom-up assembly strategy to fabricate repetitive patterns of hybrid organic-inorganic materials. In this paper, we review methods of assembly that make use of protein and virus scaffolds to fabricate patterned nanostructures with very high spatial control. We chose (apo)ferritin and tobacco mosaic virus (TMV) as model examples that have already been applied successfully in nanobiotechnology. Their interior space and their exterior surfaces can be mineralized with inorganic layers or nanoparticles. Furthermore, their native assembly abilities can be exploited to generate periodic architectures for integration in electrical and magnetic devices. We introduce the state of the art and describe recent advances in biomineralization techniques, patterning and device production with (apo)ferritin and TMV.

  5. The Multinational Arabidopsis Steering Subcommittee for Proteomics Assembles the Largest Proteome Database Resource for Plant Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Weckwerth, Wolfram; Baginsky, Sacha; Van Wijk, Klass; Heazlewood, Joshua; Millar, Harvey

    2009-12-01

    In the past 10 years, we have witnessed remarkable advances in the field of plant molecular biology. The rapid development of proteomic technologies and the speed with which these techniques have been applied to the field have altered our perception of how we can analyze proteins in complex systems. At nearly the same time, the availability of the complete genome for the model plant Arabidopsis thaliana was released; this effort provides an unsurpassed resource for the identification of proteins when researchers use MS to analyze plant samples. Recognizing the growth in this area, the Multinational Arabidopsis Steering Committee (MASC) established a subcommittee for A. thaliana proteomics in 2006 with the objective of consolidating databases, technique standards, and experimentally validated candidate genes and functions. Since the establishment of the Multinational Arabidopsis Steering Subcommittee for Proteomics (MASCP), many new approaches and resources have become available. Recently, the subcommittee established a webpage to consolidate this information (www.masc-proteomics.org). It includes links to plant proteomic databases, general information about proteomic techniques, meeting information, a summary of proteomic standards, and other relevant resources. Altogether, this website provides a useful resource for the Arabidopsis proteomics community. In the future, the website will host discussions and investigate the cross-linking of databases. The subcommittee members have extensive experience in arabidopsis proteomics and collectively have produced some of the most extensive proteomics data sets for this model plant (Table S1 in the Supporting Information has a list of resources). The largest collection of proteomics data from a single study in A. thaliana was assembled into an accessible database (AtProteome; http://fgcz-atproteome.unizh.ch/index.php) and was recently published by the Baginsky lab.1 The database provides links to major Arabidopsis online

  6. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  7. Rapid Assembly of DNA via Ligase Cycling Reaction (LCR).

    Science.gov (United States)

    Chandran, Sunil

    2017-01-01

    The assembly of multiple DNA parts into a larger DNA construct is a requirement in most synthetic biology laboratories. Here we describe a method for the efficient, high-throughput, assembly of DNA utilizing the ligase chain reaction (LCR). The LCR method utilizes non-overlapping DNA parts that are ligated together with the guidance of bridging oligos. Using this method, we have successfully assembled up to 20 DNA parts in a single reaction or DNA constructs up to 26 kb in size. PMID:27671935

  8. Medical and biologic factors of speech and language development in children (part 2

    Directory of Open Access Journals (Sweden)

    Chernov D.N.

    2015-03-01

    Full Text Available The recent data shows that medico-biological aspects of the study of speech and language development in children should be expanded to include an analysis of various socio-cultural factors as the problem requires an interdisciplinary approach. The review stresses the necessity of methodological approach to study of bio- socio-cultural conditions of emerging speech and language abilities in ontogenesis. Psycho-pedagogical aspect involves: informing parents about the medical and biological aspects of speech and language development in childhood; the active involvement of parents in the remedial and preventive activities carried out by specialists; activities to improve the quality and quantity of child-parent interaction depending on the severity and nature of deviations in child speech and language development.

  9. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    Science.gov (United States)

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work.

  10. Medico-biological factors of speech and language development in young children (part 1)

    OpenAIRE

    Chernov D.N.

    2015-01-01

    The article analyzed the main results of medico-biological directions in the study of the factors of children's speech and language. It shows that a variety of pre-, peri-and neonatal developmental factors (teratogenic effects, prematurity, low birth weight, maternal diseases during pregnancy, and chronic diseases of the child) had a negative impact on the child-parent relationship that has a lasting influence on child speech and language development.

  11. Impact of Two Ant Species on Egg Parasitoids Released as Part of a Biological Control Program

    OpenAIRE

    Kergunteuil, Alan; Basso, César; Pintureau, Bernard

    2013-01-01

    Biological control using Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae), an egg parasitoid wasp, was tested in Uruguay to reduce populations of lepidopteran pests on soybeans. It was observed that the commercial parasitoid dispensers, which were made of cardboard, were vulnerable to small predators that succeeded in entering and emptying the containers of all the eggs parasitized by T. pretiosum. Observations in a soybean crop showed that the only small, common predators presen...

  12. Study of cardiovascular disease biomarkers among tobacco consumers, part 2: biomarkers of biological effect

    OpenAIRE

    Nordskog, Brian K.; Brown, Buddy G.; Marano, Kristin M.; Campell, Leanne R.; Jones, Bobbette A.; Borgerding, Michael F.

    2015-01-01

    Abstract An age-stratified, cross-sectional study was conducted in the US among healthy adult male cigarette smokers, moist snuff consumers, and non-tobacco consumers to evaluate cardiovascular biomarkers of biological effect (BoBE). Physiological assessments included flow-mediated dilation, ankle-brachial index, carotid intima-media thickness and expired carbon monoxide. Approximately one-half of the measured serum BoBE showed statistically significant differences; IL-12(p70), sICAM-1 and IL...

  13. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  14. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    International Nuclear Information System (INIS)

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database

  15. Biological results of the snellius expedition XXII. Octocorallia from the Malay Archipelago (Part II)

    NARCIS (Netherlands)

    Verseveldt, J.

    1966-01-01

    The material dealt with in this second part of "Octocorallia from the Malay Archipelago" comprises mainly specimens belonging to the family Nephtheidae. Most of these nephtheids were obtained during the cruise of the "Willebrord Snellius". In addition to this material I examined some specimens colle

  16. Trombay criticality formula for the characterization of neutron leakage variations from small reactor assemblies. Part 2 : Applications

    International Nuclear Information System (INIS)

    Although sophisticated code packages based on multigroup transport theory, diffusion theory and Monte Carlo methods are available to calculate accurately ksub(eff) and neutron leakage for any system of interest, it is often useful to have simple formulae and correlations which can be used to make quick and suffjciently accurate estimates and spot-checks of the 'reasonableness' of computer outputs and give a deeper insight into the basic physical phenomena involved. The Trombay Criticality Formula (TCF) for ksub(eff) encompassing both its variants TCF(W) and TCF(E), is found to be remarkably useful in the context of high core neutron leakage reflected small assemblies for estimating ksub(eff) changes due to alterations in various geometrical and physical system parameters of size, shape and density. The present paper brings out the wide range of applications of TCF through a number of representative examples. The system constants that may be required to use TCF are tabulated for a number of typical small assemblies. The accuracy that is attainable in various applications is also discussed. It is shown that it is possible to predict ksub(eff) within approximately 3% for sigma/sigmasub(c) ranging from 0.3 to 1.2. Degree of reflection parameter Y and shape correction factor q can be predicted within approximately 1%. (author)

  17. Biological autoxidation. II. Cholesterol esters as inert barrier antioxidants. Self-assembly of porous membrane sacs. An hypothesis.

    Science.gov (United States)

    Kon, S H

    1978-01-01

    The antioxidation defenses recognized thus far appear too weak. Needed are inert barriers to encapsulate foci of activated oxygen (FAOs) and contain their spreading. These capsules must: 1. self-assemble nonenzymatically and spontaneously in face of adversity; 2. resist oxidation and dissolution in water; and 3. be moderately fluid and elastic enough to withstand flexing by tissues. Evidence shows activated oxygen: a. is produced by common cholesterolester (CE)-raising agents; b. boosts accumulation of CEs; and c. splits low-density lipoproteins (LDL), thus releasing CE-rich coalescence-prone lipid micelles. I am proposing that CEs, combined with polar lipids, are uniquely suited to form inert-lipid antioxidation barriers (ILABs). Porous ILAB capsules self-assemble from lipid micelles released by oxidatively degraded LDL. The capsules are thermodynamically unstable but elastic, durable and capable of self-repair through oxidation of ambient LDL. All capsules tend to contract into spheres. Enclosed needle-like "foreign bodies", such as asbestos, puncture the contracting capsules. Hence the odd bulbous architecture of asbestos bodies. ILABs protect from--and their failure initiates and promotes--carcinogenesis and atherosclerosis. ILABs may be mediators of membrane biogenesis. The loss of arterial flexibility in atherosclerosis protects ILAB capsules from breakage. PMID:748727

  18. Study of cardiovascular disease biomarkers among tobacco consumers, part 2: biomarkers of biological effect

    Science.gov (United States)

    Nordskog, Brian K.; Brown, Buddy G.; Marano, Kristin M.; Campell, Leanne R.; Jones, Bobbette A.; Borgerding, Michael F.

    2015-01-01

    Abstract An age-stratified, cross-sectional study was conducted in the US among healthy adult male cigarette smokers, moist snuff consumers, and non-tobacco consumers to evaluate cardiovascular biomarkers of biological effect (BoBE). Physiological assessments included flow-mediated dilation, ankle-brachial index, carotid intima-media thickness and expired carbon monoxide. Approximately one-half of the measured serum BoBE showed statistically significant differences; IL-12(p70), sICAM-1 and IL-8 were the BoBE that best differentiated among the three groups. A significant difference in ABI was observed between the cigarette smokers and non-tobacco consumer groups. Significant group and age effect differences in select biomarkers were identified. PMID:25787701

  19. Study of cardiovascular disease biomarkers among tobacco consumers, part 2: biomarkers of biological effect.

    Science.gov (United States)

    Nordskog, Brian K; Brown, Buddy G; Marano, Kristin M; Campell, Leanne R; Jones, Bobbette A; Borgerding, Michael F

    2015-02-01

    An age-stratified, cross-sectional study was conducted in the US among healthy adult male cigarette smokers, moist snuff consumers, and non-tobacco consumers to evaluate cardiovascular biomarkers of biological effect (BoBE). Physiological assessments included flow-mediated dilation, ankle-brachial index, carotid intima-media thickness and expired carbon monoxide. Approximately one-half of the measured serum BoBE showed statistically significant differences; IL-12(p70), sICAM-1 and IL-8 were the BoBE that best differentiated among the three groups. A significant difference in ABI was observed between the cigarette smokers and non-tobacco consumer groups. Significant group and age effect differences in select biomarkers were identified. PMID:25787701

  20. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps.

    Science.gov (United States)

    Greenbury, S F; Ahnert, S E

    2015-12-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype-phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into 'constrained' and 'unconstrained' sequences, in the broadest possible sense. As 'constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. 'Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with 'coding' and 'non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. PMID:26609063

  1. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps.

    Science.gov (United States)

    Greenbury, S F; Ahnert, S E

    2015-12-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype-phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into 'constrained' and 'unconstrained' sequences, in the broadest possible sense. As 'constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. 'Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with 'coding' and 'non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps.

  2. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype–phenotype maps

    Science.gov (United States)

    Greenbury, S. F.; Ahnert, S. E.

    2015-01-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype–phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into ‘constrained' and ‘unconstrained' sequences, in the broadest possible sense. As ‘constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. ‘Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with ‘coding' and ‘non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. PMID:26609063

  3. Biologic indicators of exposure to cadmium and lead palmerton, Pennsylvania. Part 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, S.M.; McGeehin, M.A.; Stallings, F.L.; Terracciano, G.L.; Amler, R.W.

    1995-05-01

    In Part 2 of this study, no difference was reported in the results of medical tests of the blood, liver, kidney, and immune systems of participants living in the two study areas. No relationships was found between exposure to cadmium and lead and the immune, liver, and blood system tests. No community wide medical action is needed in Palmerton based on the results of this study. No further site-specific health studies are recommended.

  4. Can virtual reality predict body part discomfort and performance of people in realistic world for assembling tasks?

    CERN Document Server

    Hu, Bo; Zhang, Wei; Salvendy, Gaverial; Chablat, Damien; Bennis, Fouad

    2011-01-01

    This paper presents our work on relationship of evaluation results between virtual environment (VE) and realistic environment (RE) for assembling tasks. Evaluation results consist of subjective results (BPD and RPE) and objective results (posture and physical performance). Same tasks were performed with same experimental configurations and evaluation results were measured in RE and VE respectively. Then these evaluation results were compared. Slight difference of posture between VE and RE was found but not great difference of effect on people according to conventional ergonomics posture assessment method. Correlation of BPD and performance results between VE and RE are found by linear regression method. Moreover, results of BPD, physical performance, and RPE in VE are higher than that in RE with significant difference. Furthermore, these results indicates that subjects feel more discomfort and fatigue in VE than RE because of additional effort required in VE.

  5. Water Complexes Take Part in Biological Effect Created by Weak Combined Magnetic Field

    Science.gov (United States)

    Sheykina, Nadiia

    2016-07-01

    It was revealed experimentally that at small level of magnetic field's noise (less than 4µT/Hz0.5) the dependence of gravitropc reaction of cress roots on frequency had a fine structure/ The peak that corresponded to the cyclotron frequency of Ca2+ ions for the static component of combined magnetic field that was equal to 40µT became split up into three peaks ( f1 = 31/3Hz, f2 = 32.5Hz i f3 = 34 Hz./ . The frequency f1 corresponded to the Ca2+ ion (theoretical value 31.6 Hz), the frequency f2 corresponded to the hydronium ion H3O+ (theoretical value 32.9 Hz), the frequency f3 corresponded to OH- ion (theoretical value 35 Hz). Taking into account the influence of combined magnetic field on hydronium ions and Del Giudice' hypothesis one may throw away doubts about the possibility of ion cyclotron resonance. The hydronium ions are unusual because they have a long free path length. It was revealed that pH of the distillated water changed under the treatment in combined magnetic field tuned to cyclotron frequency of hydronium ion. Such changes in pH had to lead to the biological effects on the molecular ,cell and organism levels.

  6. Fixed-wing MAV attitude stability in atmospheric turbulence-Part 2: Investigating biologically-inspired sensors

    Science.gov (United States)

    Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R.

    2014-11-01

    Challenges associated with flight control of agile fixed-wing Micro Air Vehicles (MAVs) operating in complex environments is significantly different to any larger scale vehicle. The micro-scale of MAVs can make them particularly sensitive to atmospheric disturbances thus limiting their operation. As described in Part 1, current conventional reactive attitude sensing systems lack the necessary response times for attitude control in high turbulence environments. This paper reviews in greater detail novel and emerging biologically inspired sensors, which can sense the disturbances before a perturbation is induced. A number of biological mechanoreceptors used by flying animals are explored for their utility in MAVs. Man-made attempts of replicating mechanoreceptors have thus been reviewed. Bio-inspired flow and pressure-based sensors were found to be the most promising for complementing or replacing current inertial-based reactive attitude sensors. Achieving practical implementations that meet the size, weight and power constraints of MAVs remains a significant challenge. Biological systems were found to rely on multiple sensors, potentially implying a number of research opportunities in the exploration of heterogeneous bio-inspired sensing solutions.

  7. Phytochemical screening, total phenolic contents and biological evaluation of aerial parts of nepeta praetervisa

    International Nuclear Information System (INIS)

    This study was designed to explore the phytochemical screening, total phenolic contents, radical scavenging potential and urease inhibitory activities in various fractions of the aerial parts of Nepeta praetervisa. Sub-fractions (n-hexane, chloroform, ethyl acetate, n-butanol, and aqueous) were prepared from the crude methanolic extract using partition chromatography. Phytochemical tests were performed and revealed the presence of various classes of secondary metabolites in various sub-fractions (Table-1). Total phenolic contents of all the fractions were determined using Folin-Ciocalteu (FC) reagent and the ethyl acetate sub-fraction was found to possess the highest level of phenolic contents (627.25 mg gallic acid equivalent (GAE)/g) as compared to the other fractions. The radical scavenging activity was determined at various concentrations ranging from 2.5 - 0.15 micro g /10 mu L by 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) method. At the lowest concentration level, the ethyl acetate sub-fraction showed maximum level of antioxidant activity (78%) compared to BHA used as standard. The decreasing order of activity was ethyl acetate>chloroform>aqueous>n-butanol>methanol>n-hexane. On the other hand when all these fractions were screened for urease inhibition activity using indophenols method, the ethyl acetate sub-fraction showed significant urease inhibitory activity (68 %) compared with the standard thiourea at the concentration of 50 mu g /10 mu L. The decreasing order of activity of various sub-fractions was ethyl acetate>chloroform>hexane>aqueous, while n-butanol sub- fraction was inactive. (author)

  8. Synthesis, characterization, molecular docking and biological studies of self assembled transition metal dithiocarbamates of substituted pyrrole-2-carboxaldehyde.

    Science.gov (United States)

    Nami, Shahab A A; Ullah, Irfan; Alam, Mahboob; Lee, Dong-Ung; Sarikavakli, Nursabah

    2016-07-01

    A series of self assembled 3d transition metal dithiocarbamate, M(pdtc) [where M=Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)] have been synthesized and spectroscopically characterized. The bidentate dithiocarbamate ligand Na2pdtc (Disodium-1,4-phenyldiaminobis (pyrrole-1-sulfino)dithioate) was prepared by insertion reaction of carbondisulfide with Schiff base, N,N'-bis-(1H-pyrrol-2-ylmethylene)-benzene-1,4-diamine (L1) in basic medium. The simple substitution reaction between the metal halide and Na2pdtc yielded the title complexes in moderate yields. However, the in situ procedure gives high yield with the formation of single product as evident by TLC. Elemental analysis, IR, (1)H and (13)C NMR spectra, UV-vis., magnetic susceptibility and conductance measurements were done to characterize the complexes, M(pdtc). All the evidences suggest that the complexes have tetrahedral geometry excepting Cu(II) which is found to be square planar. A symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the complexes. The conductivity data show that the complexes are non-electrolyte in nature. The anti-oxidant activity of the ligand, Na2pdtc and its transition metal complexes, M(pdtc) have been carried out using DPPH and Cu(pdtc) was found to be most effective. The anti-microbial activity of the Na2pdtc and M(pdtc) complexes have been carried out and on this basis the molecular docking study of the most effective complex, Cu(pdtc) has also been reported. PMID:27197060

  9. Developments in the tools and methodologies of synthetic biology

    Directory of Open Access Journals (Sweden)

    Richard eKelwick

    2014-11-01

    Full Text Available Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices or systems. However, biological systems are generally complex and unpredictable and are therefore intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a ‘body of knowledge’ from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled and its functionality tested. At each stage of the design cycle an expanding repertoire of tools is being developed. In this review we highlight several of these tools in terms of their applications and benefits to the synthetic biology community.

  10. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  11. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-02-01

    Full Text Available This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity. Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells – even if the gas-phase pollutants are not

  12. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity. Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells. We observed that, even if the gas-phase pollutants

  13. Implementation and evaluation of a training program as part of the Cooperative Biological Engagement Program in Azerbaijan

    Directory of Open Access Journals (Sweden)

    April eJohnson

    2015-10-01

    Full Text Available A training program for animal and human health professionals has been implemented in Azerbaijan through a joint agreement between the United States Defense Threat Reduction Agency and the Government of Azerbaijan. The training program is administered as part of the Cooperative Biological Engagement Program, and targets key employees in Azerbaijan’s disease surveillance system including physicians, veterinarians, epidemiologists, and laboratory personnel. Training is aimed at improving detection, diagnosis, and response to especially dangerous pathogens, although the techniques and methodologies can be applied to other pathogens and diseases of concern. Biosafety and biosecurity training is provided to all trainees within the program. Prior to 2014, a variety of international agencies and organizations provided training, which resulted in gaps related to lack of coordination of training materials and content. In 2014 a new training program was implemented in order to address those gaps. This paper provides an overview of the Cooperative Biological Engagement Program training program in Azerbaijan, a description of how the program fits into existing national training infrastructure, and an evaluation of the new program’s effectiveness to date. Long-term sustainability of the program is also discussed.

  14. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy.

    Science.gov (United States)

    Stark, Holger; Chari, Ashwin

    2016-02-01

    Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination. PMID:26671943

  15. Blueprints for green biotech: development and application of standards for plant synthetic biology.

    Science.gov (United States)

    Patron, Nicola J

    2016-06-15

    Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects.

  16. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly

    OpenAIRE

    Torella, Joseph P.; Boehm, Christian R.; Lienert, Florian; Chen, Jan-Hung; Way, Jeffrey C.; Silver, Pamela A.

    2013-01-01

    In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly....

  17. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis.

    Science.gov (United States)

    Diesen, Diana L; Kuo, Paul C

    2010-07-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiologic processes, including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In Part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, nonalcoholic). In Part II of this review, we will review oxidative stress in common pathophysiologic conditions, including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson's disease, sepsis, and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions.

  18. Nitric oxide and redox regulation in the liver: part II. Redox biology in pathologic hepatocytes and implications for intervention.

    Science.gov (United States)

    Diesen, Diana L; Kuo, Paul C

    2011-05-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiologic processes, including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In Part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, nonalcoholic). In Part II of this review, we will review oxidative stress in common pathophysiologic conditions, including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson's disease, sepsis, and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions.

  19. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  20. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  1. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    S. Ebersviller

    2012-03-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM.

    In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the

  2. WIPP [Waste Isolation Pilot Plant]/SRL in situ tests: Part 2, Pictorial history of MIIT [Materials Interface Interactions Tests] and final MIIT matrices, assemblies, and sample listings

    International Nuclear Information System (INIS)

    In situ testing of Savannah River Plant [SRP] waste glass is an important component in ensuring technical and public confidence in the safety and effective performance of the wasteforms. Savannah River Laboratory [SRL] is currently involved in joint programs involving field testing of SRP waste in Sweden, Belgium, and the United Kingdom. Most recently, this in situ effort has been expanded to include the first field tests to be conducted in the United States, involving burial of a variety of simulated nuclear waste systems. This new effort, called the Materials Interface Interactions Tests or MIIT, is a program jointly conducted by Sandia National Laboratory/Waste Isolation Pilot Plant [WIPP] and SRL. Over 1800 samples, supplied by the United States, France, West Germany, Belgium, Canada, Japan, and the United Kingdom, were buried approximately 650m below the earth's surface in the salt geology at WIPP, near Carlsbad, New Mexico. The MIIT program is one of the largest cooperative efforts ever undertaken in the waste management field; the data produced from these tests are designed to benefit a wide cross-section of the waste management community. An earlier document provided an overview of the WIPP MIIT program and described its place in the waste glass assessment program at Savannah River. This document represents the second in this series and its objectives include: (1) providing a pictorial history of assembly and installation of wasteforms, metals, and geologic samples in WIPP; (2) providing 'finalized and completed' sample matrices for the entire 7-part MIIT program; (3) documenting final sample assemblies by the use of schematic drawings, including each sample, its orientation, and its environment; and (4) providing a complete listing of all samples and the means for managing analyses and resulting data

  3. DNA Assembly in 3D Printed Fluidics

    OpenAIRE

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Che-Wei Wang; Jaime J Rivera; Octavio Mondragón-Palomino; Carr, Peter A.; Voigt, Christopher A.; Neri Oxman; Kong, David S.

    2015-01-01

    The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly p...

  4. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care

    OpenAIRE

    Tatiana N Demidova-Rice; Michael R Hamblin; Herman, Ira M.

    2012-01-01

    This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians’ understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that ini...

  5. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  6. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-09-12

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology.

  7. Biological Activities and Nutraceutical Potentials of Water Extracts from Different Parts of Cynomorium Coccineum L. (Maltese Mushroom

    Directory of Open Access Journals (Sweden)

    Zucca Paolo

    2016-07-01

    Full Text Available Maltese Mushroom (Cynomorium coccineum L. is a non-photosynthetic plant that has been used in traditional medicine for many centuries. In this paper, water extracts from the whole plant, external layer and peeled plant were studied to determine the main components responsible for its biological activities, i.e., its antimicrobial, antioxidant, and anti-tyrosinase activities; its cytotoxicity against mouse melanoma B16F10 cells; and its pro-erectile activity in adult male rats. The results of electron transfer and hydrogen transfer assays showed that the antioxidant activity was mainly due to anthocyanins in the external layer, whereas the external layer and peeled plant extracts both inhibited the microbial growth of several Gram-positive strains. In contrast, the whole plant extract had the highest anti-tyrosinase activity and exhibited pro-erectile activity when administered subcutaneously. Overall, this study elucidated which parts of Maltese Mushroom are responsible for its antimicrobial, antioxidant, and anti-tyrosinase activities and thus which extracts have potential for use in nutraceutical formulations.

  8. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures

    Science.gov (United States)

    Whitesides, George M.; Mathias, John P.; Seto, Christopher T.

    1991-12-01

    Molecular self assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by non-covalent bonds. Molecular self-assembly is ubiquitous in biological systems, and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated non-covalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating non-biological structures having dimensions of 1-10(exp 2) nanometers. Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

  9. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  10. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  11. The World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Biological Treatment of Substance Use and Related Disorders. Part 2: Opioid dependence

    NARCIS (Netherlands)

    M. Soyka; H.R. Kranzler; W. van den Brink; J. Krystal; H.J. Möller; S. Kasper

    2011-01-01

    Objectives. To develop evidence-based practice guidelines for the pharmacological treatment of opioid abuse and dependence. Methods. An international task force of the World Federation of Societies of Biological Psychiatry (WFSBP) developed these practice guidelines after a systematic review of the

  12. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  13. Eukaryotic Systems Broaden the Scope of Synthetic Biology

    OpenAIRE

    Haynes, Karmella A.; Silver, Pamela A.

    2009-01-01

    Synthetic biology aims to engineer novel cellular functions by assembling well-characterized molecular parts (i.e., nucleic acids and proteins) into biological “devices” that exhibit predictable behavior. Recently, efforts in eukaryotic synthetic biology have sprung from foundational work in bacteria. Designing synthetic circuits to operate reliably in the context of differentiating and morphologically complex cells presents unique challenges and opportunities for progress in the field. This ...

  14. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  15. JAK/STAT signalling--an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology.

    Science.gov (United States)

    Blätke, Mary Ann; Dittrich, Anna; Rohr, Christian; Heiner, Monika; Schaper, Fred; Marwan, Wolfgang

    2013-06-01

    Mathematical models of molecular networks regulating biological processes in cells or organisms are most frequently designed as sets of ordinary differential equations. Various modularisation methods have been applied to reduce the complexity of models, to analyse their structural properties, to separate biological processes, or to reuse model parts. Taking the JAK/STAT signalling pathway with the extensive combinatorial cross-talk of its components as a case study, we make a natural approach to modularisation by creating one module for each biomolecule. Each module consists of a Petri net and associated metadata and is organised in a database publically accessible through a web interface (). The Petri net describes the reaction mechanism of a given biomolecule and its functional interactions with other components including relevant conformational states. The database is designed to support the curation, documentation, version control, and update of individual modules, and to assist the user in automatically composing complex models from modules. Biomolecule centred modules, associated metadata, and database support together allow the automatic creation of models by considering differential gene expression in given cell types or under certain physiological conditions or states of disease. Modularity also facilitates exploring the consequences of alternative molecular mechanisms by comparative simulation of automatically created models even for users without mathematical skills. Models may be selectively executed as an ODE system, stochastic, or qualitative models or hybrid and exported in the SBML format. The fully automated generation of models of redesigned networks by metadata-guided modification of modules representing biomolecules with mutated function or specificity is proposed. PMID:23443149

  16. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  17. AN ANTHOLOGY OF THE DISTINGUISHED ACHIEVEMENTS IN SCIENCE AND TECHNIQUE. PART 25: OPENINGS IN BIOLOGY AND GENETICS OF LIVING ORGANISMS

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2015-04-01

    Full Text Available Purpose. Formulation in the compressed type of basic scientifically-historical information, touching the topics for all of humanity and biological science − geneticists taking into account the known for today scientific achievements on the way of its evolutional development is presented. Methodology. Scientific methods of receipt and systematization of knowledges. Methods of historical method at becoming and development of biological science and genetics. Results. Short history of origin and becoming of classic genetics is described. The portraits of row of domestic and foreign scientists, bringing in a prominent contribution to development of genetics as sciences are presented. Short general biological bases of heredity are given for living organisms. Information is resulted about basic modern fundamental achievements and scientific openings of humanity in area of biology and genetics of living organisms. Originality. First by a scientist-electro-physicist for the wide circle of readers the simple and clear appearance is expound short basic scientific information about genes, genome and difficult mechanisms of transmission in the animal (vegetable kingdom of the inherited information. Practical value. System built scientific popularization of existent knowledges of humanity in area of such section of biological science as genetics and expansion for the large number of people of scientific range of interests about outward us things and flowings in its difficult biological processes.

  18. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care.

    Science.gov (United States)

    Demidova-Rice, Tatiana N; Hamblin, Michael R; Herman, Ira M

    2012-07-01

    This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians' understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that initiate cellular and tissue responses after injury, which may be impeded during chronic wound healing.

  19. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Mounir Tilaoui

    Full Text Available Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba.Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs.Essential oils from leaves and aerial parts (mixture of capitulum and leaves were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86% and monocyclic monoterpenes (21.48%; esters constituted the major fraction (62.8% of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells.Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.

  20. STAR: a simple TAL effector assembly reaction using isothermal assembly

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M.

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly (‘Gibson assembly’) that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  1. DeviceEditor visual biological CAD canvas

    Directory of Open Access Journals (Sweden)

    Chen Joanna

    2012-02-01

    Full Text Available Abstract Background Biological Computer Aided Design (bioCAD assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.

  2. Reflector-moderated critical assemblies

    International Nuclear Information System (INIS)

    Experiments with reflector-moderated critical assemblies were part of the Rover Program at the Los Alamos Scientific Laboratory (LASL). These assemblies were characterized by thick D2O or beryllium reflectors surrounding large cavities that contained highly enriched uranium at low average densities. Because interest in this type of system has been revived by LASL Plasma Cavity Assembly studies, more detailed descriptions of the early assemblies than had been available in the unclassified literature are provided. (U.S.)

  3. Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, M.P.M. van; Dorleijn, A.S.; Joziasse, J.; Bruning, H.; Rulkens, W.H.; Grotenhuis, J.T.C.

    2007-01-01

    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Qua

  4. Switching from usual brand cigarettes to a tobacco-heating cigarette or snus: Part 3. Biomarkers of biological effect.

    Science.gov (United States)

    Ogden, Michael W; Marano, Kristin M; Jones, Bobbette A; Morgan, Walter T; Stiles, Mitchell F

    2015-01-01

    A randomized, multi-center study of adult cigarette smokers switched to tobacco-heating cigarettes, snus or ultra-low machine yield tobacco-burning cigarettes (50/group) for 24 weeks was conducted. Evaluation of biomarkers of biological effect (e.g. inflammation, lipids, hypercoaguable state) indicated that the majority of consistent and statistically significant improvements over time within each group were observed in markers of inflammation. Consistent and statistically significant differences in pairwise comparisons between product groups were not observed. These findings are relevant to the understanding of biomarkers of biological effect related to cigarette smoking as well as the risk continuum across various tobacco products (ClinicalTrials.gov Identifier: NCT02061917). PMID:26525962

  5. Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 3: Biology

    International Nuclear Information System (INIS)

    This study describes the biological results of a comprehensive shoreline ecology program designed to assess ecological recovery in Prince William Sound following the Exxon Valdez oil spill on march 24, 1989. The program is an application of the ''Sediment Quality Triad'' approach, combining chemical, toxicological, and biological measurements. The study was designed so that results could be extrapolated to the entire spill zone in Prince William Sound. The spill affected four major shoreline habitat types in Prince William Sound: pebble/gravel, boulder/cobble, sheltered bedrock, and exposed bedrock. The study design had two components: (1) one-time stratified random sampling at 64 sites representing four habitats and four oiling levels (including unoiled reference sites) and (2) periodic sampling at 12 nonrandomly chosen sites that included some of the most heavily oiled locations in the sound. Biological communities on rock surfaces and in intertidal and shallow subtidal sediments were analyzed for differences resulting from to oiling in each of 16 habitat/tide zone combinations. Statistical methods included univariate analyses of individual species abundances and community parameter variables (total abundance, species richness, and Shannon diversity), and multivariate correspondence analysis of community structure. 58 refs., 13 figs., 9 tabs

  6. Systematic Review of Breast Cancer Biology in Developing Countries (Part 2): Asian Subcontinent and South East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Bhikoo, Riyaz, E-mail: riyazbhikoo@gmail.com; Srinivasa, Sanket; Yu, Tzu-Chieh [Department of Surgery, South Auckland Clinical School, University of Auckland, Auckland 1640 (New Zealand); Moss, David [Department of Surgery, Middlemore Hospital, Auckland 1640 (New Zealand); Hill, Andrew G [Department of Surgery, South Auckland Clinical School, University of Auckland, Auckland 1640 (New Zealand)

    2011-05-13

    There has been no systematic appraisal of ethnicity-based variations in breast cancer (BC) biology amongst women from developing countries. A qualitative systematic review was conducted of breast cancer size, stage, grade, histological type, extra-mammary involvement, hormone receptor status as well as patient demographics. This review includes patients from Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America. BC in these regions present at an earlier age with large aggressive tumours. Distant metastases are frequently present at the time of diagnosis. African women have a higher frequency of triple negative tumours. Over half of Middle Eastern women have lymph node involvement at the time of diagnosis. Despite experiencing a lower incidence compared to the Ashkenazi Jewish population, Palestinian women have poorer five-year survival outcomes. The majority of women from Mexico and South America have stage two or three disease whilst over sixty percent of women from Eastern Europe have either stage one or stage two disease. The biological characteristics of BC in the Caribbean cannot be fully assessed due to a paucity of data from the region. BC amongst the developing world is characterised by an early peak age of onset with aggressive biological characteristics. Strategies that improve breast cancer awareness, address amenable risk factors and improve early detection are essential.

  7. Systematic Review of Breast Cancer Biology in Developing Countries (Part 2: Asian Subcontinent and South East Asia

    Directory of Open Access Journals (Sweden)

    Andrew G Hill

    2011-05-01

    Full Text Available There has been no systematic appraisal of ethnicity-based variations in breast cancer (BC biology amongst women from developing countries. A qualitative systematic review was conducted of breast cancer size, stage, grade, histological type, extra-mammary involvement, hormone receptor status as well as patient demographics. This review includes patients from Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America. BC in these regions present at an earlier age with large aggressive tumours. Distant metastases are frequently present at the time of diagnosis. African women have a higher frequency of triple negative tumours. Over half of Middle Eastern women have lymph node involvement at the time of diagnosis. Despite experiencing a lower incidence compared to the Ashkenazi Jewish population, Palestinian women have poorer five-year survival outcomes. The majority of women from Mexico and South America have stage two or three disease whilst over sixty percent of women from Eastern Europe have either stage one or stage two disease. The biological characteristics of BC in the Caribbean cannot be fully assessed due to a paucity of data from the region. BC amongst the developing world is characterised by an early peak age of onset with aggressive biological characteristics. Strategies that improve breast cancer awareness, address amenable risk factors and improve early detection are essential.

  8. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia. Part 3: Update 2015 Management of special circumstances: Depression, Suicidality, substance use disorders and pregnancy and lactation.

    Science.gov (United States)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas; Lieberman, Jeffrey; Glenthøj, Birte; Gattaz, Wagner F; Thibaut, Florence; Möller, Hans-Jürgen

    2015-04-01

    These updated guidelines are based on the first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in the years 2005 and 2006. For this 2015 revision, all available publications pertaining to the biological treatment of schizophrenia were reviewed systematically to allow for an evidence-based update. These guidelines provide evidence-based practice recommendations which are clinically and scientifically relevant. They are intended to be used by all physicians diagnosing and treating patients with schizophrenia. Based on the first version of these guidelines a systematic review, as well as a data extraction from national guidelines have been performed for this update. The identified literature was evaluated with respect to the strength of evidence for its efficacy and subsequently categorised into six levels of evidence (A-F) and five levels of recommendation (1-5). This third part of the updated guidelines covers the management of the following specific treatment circumstances: comorbid depression, suicidality, various comorbid substance use disorders (legal and illegal drugs), and pregnancy and lactation. These guidelines are primarily concerned with the biological treatment (including antipsychotic medication and other pharmacological treatment options) of patients with schizophrenia.

  9. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects.

    Science.gov (United States)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas; Lieberman, Jeffrey; Glenthoj, Birte; Gattaz, Wagner F; Thibaut, Florence; Möller, Hans-Jürgen

    2013-02-01

    Abstract These updated guidelines are based on a first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in 2006. For this 2012 revision, all available publications pertaining to the biological treatment of schizophrenia were reviewed systematically to allow for an evidence-based update. These guidelines provide evidence-based practice recommendations that are clinically and scientifically meaningful. They are intended to be used by all physicians diagnosing and treating people suffering from schizophrenia. Based on the first version of these guidelines, a systematic review of the MEDLINE/PUBMED database and the Cochrane Library, in addition to data extraction from national treatment guidelines, has been performed for this update. The identified literature was evaluated with respect to the strength of evidence for its efficacy and then categorised into six levels of evidence (A-F) and five levels of recommendation (1-5) ( Bandelow et al. 2008a ,b, World J Biol Psychiatry 9:242, see Table 1 ). This second part of the updated guidelines covers long-term treatment as well as the management of relevant side effects. These guidelines are primarily concerned with the biological treatment (including antipsychotic medication and other pharmacological treatment options) of adults suffering from schizophrenia.

  10. Design and development of pneumatic riveting pressure assembly machine for shell parts%壳体类零件气动铆压装配机床设计开发

    Institute of Scientific and Technical Information of China (English)

    杨孟涛; 金红伟; 王晓梅; 杨永刚

    2012-01-01

    为了实现壳体类零件需要从圆周或周边进行铆压装配的工艺要求,创新设计了新颖的机械执行结构,开发制造了一种新型的气动铆压装配机床.根据机床工艺流程,采用基于PLC和文本编辑器的控制方式,实现了机床的自动化.该机床为铆压装配机床的设计开发提供了新的思路和方法.%In order to achieve riveting assembly process requirements for the shell parts from the circumference or perimeter, a novel pneumatic riveting pressure assembly machine with innovative mechanical actuator was developed and fabricated. According to the assembly process, using the control method based on PLC and text editor to realize automatic machine. The machine provides new ideas and methods for the design and development of riveting assembly machine.

  11. What was the Assembly Line?

    DEFF Research Database (Denmark)

    Nye, David

    2010-01-01

    The assembly line is still evolving a century after its invention, and it was not a distinct historical stage, nor was it part of an inevitable sequence that followed "Taylorism."......The assembly line is still evolving a century after its invention, and it was not a distinct historical stage, nor was it part of an inevitable sequence that followed "Taylorism."...

  12. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices. PMID:27325057

  13. Development of a coupled physical-biological ecosystem model ECOSMO - Part I: Model description and validation for the North Sea

    DEFF Research Database (Denmark)

    Schrum, Corinna; Alekseeva, I.; St. John, Michael

    2006-01-01

    A 3-D coupled biophysical model ECOSMO (ECOSystem MOdel) has been developed. The biological module of ECOSMO is based on lower trophic level interactions between two phyto- and two zooplankton components. The dynamics of the different phytoplankton components are governed by the availability...... showed that the model, based on consideration of limiting processes, is able to reproduce the observed spatial and seasonal variability of the North Sea ecosystem e.g. the spring bloom, summer sub-surface production and the fall bloom. Distinct differences in regional characteristics of diatoms...

  14. 49 CFR 572.186 - Abdomen assembly.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Abdomen assembly. 572.186 Section 572.186... Dummy, 50th Percentile Adult Male § 572.186 Abdomen assembly. (a) The abdomen assembly (175-5000) is part of the dummy assembly shown in drawing 175-0000 including load sensors specified in §...

  15. 49 CFR 572.113 - Neck assembly.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Neck assembly. 572.113 Section 572.113... 50th Percentile Male § 572.113 Neck assembly. The head/neck assembly consists of the parts 78051-61X...) Test procedure. (1) Soak the head and neck assembly in a test environment at any temperature between...

  16. A lightweight suction gripper for micro assembly

    NARCIS (Netherlands)

    Bos, E.J.C.; Bullema, J.E.; Delbressine, F.L.M.; Schellekens, P.H.J.; Dietzel, A.H.

    2008-01-01

    Assembly is a crucial part in the realization of a product. Compared to assembly in the macro world, assembly in the micro world is influenced by scaling effects. These include surface forces, high requirements on placement uncertainty and small product dimensions. Conventional high-speed assembly i

  17. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Boehm, CR; Lienert, F; Chen, JH; Way, JC; Silver, PA

    2013-12-28

    In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.

  18. Structural and functional biological assessment of aggregate dredging intensity on the Belgian part of the North Sea

    OpenAIRE

    Backer, A De; Hillewaert, H.; Van Hoey, G; Wittoeck, J.; Hostens, K.

    2014-01-01

    Marine aggregate dredging in the Belgian part of the North Sea (BPNS) is restricted to four dedicated concession zones. Within these zones, there are areas under different dredging pressure, but with the advantage that these are situated within a similar habitat (cfr. similar sediment characteristics) . As such, this study assessed how different degrees of dredging pressure executed on a similar sandy habitat affect the benthic ecosystem. Possible responses of the macrobenthos on the dredging...

  19. Part project 1. Methods and concepts of biological waste composting. Comparison - evaluation - recommendations; Teilbericht 1. Verfahren und Konzepte der Bioabfallkompostierung. Vergleich - Bewertung - Empfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Helm, M.; Schoen, H. [Bayerische Landesanstalt fuer Landtechnik der Technischen Univ. Muenchen-Weihenstephan (Germany)

    1997-12-31

    Topics of this article are: composting of biological wastes; techniques, operation modes, regional concepts, engineering, hygienical, ecological, economical aspects. (SR) gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Das uebergeordnete Ziel des Weihenstephaner Verbundvorhabens bestand darin, fachliche Grundlagen und Entscheidungshilfen fuer den Bereich der Kompostierung und der Verwertung von biogenen Reststoffen, insbesondere der getrennt erfassten organischen Abfaelle aus den Haushaltungen (Bioabfall), zu schaffen. In diesem Rahmen sollen sowohl verschiedene Verfahren und Techniken der Kompostierung als auch regionale Konzepte hinsichtlich verfahrenstechnischer, hygienischer, oekologischer, oekonomischer und die Entsorgungssicherheit betreffender Aspekte untersucht und bewertet werden. (orig./SR)

  20. Top-down assembly design using assembly features

    Institute of Scientific and Technical Information of China (English)

    石万凯; DENEUX; Dominique; 等

    2002-01-01

    The primary task of top-down assembly desig is to define a product's detailed physical description satisfying its functional requirements identified during the functional design phase.The implementation of this design process requires two things,that is ,product functional representation and a general assembly model.Product functions are not only the formulation of a customer's needs,but also the input data of assembly design.A general assembly model is to support the evolving process of the elaboration of a product structure.The assembly feature of extended concept is taken as a functional carrier,which is a generic relation among assembly-modeled entities.The model of assembly features describes the link between product functions and form features of parts.On the basis of this link,the propagation of design modifications is discussed so as to preserve the functionality and the coherence of the assembly model.The formal model of assembly design process describes the top-down process of creating an assembly model.This formal model is represented by the combination of assembly feature operations,the assembly model and the evaluation process.A design case study is conducted to verify the applicability of the presented approaches.

  1. Trapping of Hepatitis B Virus capsid assembly intermediates by phenylpropenamide assembly accelerators

    OpenAIRE

    Katen, Sarah P.; Chirapu, Srinivas Reddy; Finn, M.G.; Zlotnick, Adam

    2010-01-01

    Understanding the biological self-assembly process of virus capsids is key to understanding the viral life cycle, as well as serving as a platform for the design of assembly-based antiviral drugs. Here we identify and characterize the phenylpropenamide family of small molecules, known to have antiviral activity in vivo, as assembly effectors of the Hepatitis B Virus (HBV) capsid. We have found two representative phenylpropenamides to be assembly accelerators, increasing the rate of assembly w...

  2. El nuevo aspecto de la Revista Peruana de Biología / La CI+T y nuestra parte

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2006-10-01

    Full Text Available Con el volumen 13 iniciamos una serie de cambios en la Revista Peruana de Biología. Estos cambios se relacionan a la búsqueda de economía del espacio y la mejor presentación preparándonos para el crecimiento futuro. Esperamos así tener la capacidad de incrementar la cantidad de artículos por número de la revista de una manera económica. El más visible de los cambios se refiere al tamaño y a la diagramación. Pasamos del tama- ño menudo (184 x 261 mm al tamaño A4 (210 x 297 mm; la diferencia de costos entre ambas es pequeña y la ganancia en espacio es significativa, además permite la exposición de una adecuada área para figuras. Otro cambio se refiere a la tipografía, pasamos de un texto en Time Roman 10 a Garamond 10, esta última es una letra menuda que permite ahorrar espacio y resalta las letras cursivas. También dejamos las variedades de letras para utilizar la Arial 10 en títulos, resúmenes, leyendas y la Book Antiqua para las tablas.

  3. Pulp-dentin biology in restorative dentistry. Part 4: Dental caries--characteristics of lesions and pulpal reactions.

    Science.gov (United States)

    Bjørndal, L; Mjör, I A

    2001-10-01

    The infectious disease dental caries results in lesions that may affect enamel, dentin, pulp, and cementum. If a caries lesion has progressed to the stage at which it requires restorative intervention, it is important that the clinician understand the tissue changes in the dentin that are likely to have taken place during lesion development. Until the present, no major distinction between the restorative treatment of active (rapidly progressing) and arrested (slowly progressing) lesions has been made, despite the fact that the two conditions exhibit major differences in tissue changes in the pulp-dentin complex. Intratubular changes and tertiary dentin formation will affect the outcome of the restorative treatment. In unaffected dentin and in rapidly progressing lesions, permeable tubules persist, and when the preparation of carious teeth results in the opening of unaffected dentin, greater care must be taken in all phases of the restorative procedures than if the dentin is impermeable. An active, deep lesion can be changed to an arrested lesion by a two-step excavation approach. Optimal assessment of the prevailing clinical conditions can only be made on the basis of thorough knowledge of the biology of the pulp-dentin organ.

  4. Diretrizes da World Federation of Societies of Biological Psychiatry (WFSBP para tratamento biológico de transtornos depressivos unipolares, 1ª parte: tratamento agudo e de continuação do transtorno depressivo maior World Federation of Societies of Biological Psychiatry (WFSBP Guidelines for biological treatment of unipolar depressive disorders, part 1: acute and continuation treatment of major depressive disorder

    Directory of Open Access Journals (Sweden)

    Michael Bauer

    2009-01-01

    Full Text Available Estas diretrizes práticas para o tratamento biológico de transtornos depressivos unipolares foram desenvolvidas por uma Força-Tarefa internacional da Federação Mundial de Sociedades de Psiquiatria Biológica (WFSBP. O objetivo ao desenvolver tais diretrizes foi rever sistematicamente todas as evidências existentes referentes ao tratamento de transtornos depressivos unipolares e produzir uma série de recomendações práticas com significado clínico e científico, baseadas nas evidências existentes. Têm como objetivo seu uso por todos os médicos que atendam e tratem pacientes com essas afecções. Os dados usados para o desenvolvimento das diretrizes foram extraídos primariamente de várias diretrizes e painéis nacionais de tratamento para transtornos depressivos, bem como de metanálises e revisões sobre a eficácia dos antidepressivos e outras intervenções de tratamento biológico identificadas por uma busca no banco de dados MEDLINE e Cochrane Library. A literatura identificada foi avaliada quanto à força das evidências sobre sua eficácia e, então, categorizada em quatro níveis de evidências (A a D. Esta primeira parte das diretrizes abrange definição, classificação, epidemiologia e evolução dos transtornos depressivos unipolares, bem como tratamento das fases aguda e de manutenção. As diretrizes se referem primariamente ao tratamento biológico (incluindo antidepressivos, outros medicamentos psicofarmacológicos e hormonais, eletroconvulsoterapia, fototerapia, estratégias terapêuticas complementares e novas de adultos jovens e também, embora em menor grau, de crianças, adolescentes e adultos idosos.These practice guidelines for the biological treatment of unipolar depressive disorders were developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP. The goal for developing these guidelines was to systematically review all available evidence pertaining to the

  5. Geometric reasoning about assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  6. Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures

    Science.gov (United States)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be

  7. Spent fuel assembly hardware

    International Nuclear Information System (INIS)

    When spent nuclear fuel is disposed of in a repository, the waste package will include the spent fuel assembly hardware, the structural portion of the fuel assembly, and the fuel pins. The spent fuel assembly hardware is the subject of this paper. The basic constituent parts of the fuel assembly will be described with particular attention on the materials used in their construction. The results of laboratory analyses performed to determine radionuclide inventories and trace impurities also will be described. Much of this work has been incorporated into a US Department of Energy (DOE) database maintained by Oak Ridge National Laboratory (ORNL). This database is documented in DOE/RW-0184 and can be obtained from Karl Notz at ORNL. The database provides a single source for information regarding wastes that may be sent to the repository

  8. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies.

    Science.gov (United States)

    Jensen, Sacha A; Handford, Penny A

    2016-04-01

    The 10-12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10-12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10-12 nm diameter microfibril and perform such diverse roles. PMID:27026396

  9. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies.

    Science.gov (United States)

    Jensen, Sacha A; Handford, Penny A

    2016-04-01

    The 10-12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10-12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10-12 nm diameter microfibril and perform such diverse roles.

  10. A Self-Assembled Aggregate Composed of a Fatty Acid Membrane and the Building Blocks of Biological Polymers Provides a First Step in the Emergence of Protocells

    Science.gov (United States)

    Black, Roy A.; Blosser, Matthew C.

    2016-01-01

    We propose that the first step in the origin of cellular life on Earth was the self-assembly of fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme provides explanations for the selection and concentration of the prebiotic components of cells; the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then explain how the conformational constraints and altered chemical environment due to binding of the components to the membrane could facilitate the formation of nucleosides, oligonucleotides and peptides. We conclude by discussing how the resulting oligomers, even if short and random, could have increased vesicle stability and growth more than their building blocks did, and how competition among these vesicles could have led to longer polymers with complex functions. PMID:27529283

  11. A Self-Assembled Aggregate Composed of a Fatty Acid Membrane and the Building Blocks of Biological Polymers Provides a First Step in the Emergence of Protocells.

    Science.gov (United States)

    Black, Roy A; Blosser, Matthew C

    2016-01-01

    We propose that the first step in the origin of cellular life on Earth was the self-assembly of fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme provides explanations for the selection and concentration of the prebiotic components of cells; the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then explain how the conformational constraints and altered chemical environment due to binding of the components to the membrane could facilitate the formation of nucleosides, oligonucleotides and peptides. We conclude by discussing how the resulting oligomers, even if short and random, could have increased vesicle stability and growth more than their building blocks did, and how competition among these vesicles could have led to longer polymers with complex functions. PMID:27529283

  12. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria;

    2009-01-01

    and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...

  13. Illustrating how mechanical assemblies work

    KAUST Repository

    Mitra, Niloy J.

    2013-01-01

    How-things-work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of the individual parts and the interactions across the parts based on their geometry and a few user-specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences, and animation to convey the causal chain of motions and mechanical interactions across parts. We demonstrate our system on a wide variety of assemblies. © 2013 ACM 0001-0782/13/01.

  14. Illustrating how mechanical assemblies work

    KAUST Repository

    Mitra, Niloy J.

    2010-07-26

    How things work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of individual parts and the interactions between parts based on their geometry and a few user specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences and animation to convey the causal chain of motions and mechanical interactions between parts. We present results for a wide variety of assemblies. © 2010 ACM.

  15. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    Directory of Open Access Journals (Sweden)

    Alireza Nomani

    2010-05-01

    Full Text Available Alireza Nomani1,6, Ismaeil Haririan1,5, Ramin Rahimnia2,4, Shamileh Fouladdel2, Tarane Gazori1, Rassoul Dinarvand1, Yadollah Omidi3, Ebrahim Azizi2,41Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Molecular Research Lab, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 4Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; 5Biomaterials Research Center (BRC Tehran, Iran; 6Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, IranAbstract: To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine dendrimer (PAMAM dendrimer and a short-stranded DNA (antisense oligonucleotide, multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS; zeta potential measurement; and atomic force microscopy (AFM. PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was

  16. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  17. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules.

    Directory of Open Access Journals (Sweden)

    Alejandro Sarrion-Perdigones

    Full Text Available Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB, a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop ("braid" topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described.

  18. The Use of XPS and Angle Resolved XPS for the Characterization of Self Assembled Monolayer Grown on Substrate Surfaces for Specific Biological Applications

    International Nuclear Information System (INIS)

    The techniques of X-Ray Photoelectron Spectroscopy (XPS) and angle resolved XPS have been utilised to characterise the chemistry and structure of SAMs grown on gold surfaces for biological applications. A study of a series of alkane thiol SAMs on gold showed that the film thickness is proportional to alkane chain length and that changes in the sulphur chemistry indicate different bonding modes at low and high overlayer coverage. It is determined that a well ordered matrix thiol has a SAM film thickness confirming that the molecules are aligned at a 27 degree tilt angle to the surface normal and bond to the gold surface via the sulphur group. (author)

  19. Sand Dredging and River Morphology Change along Parts of New Calabar River in Akpor Area of Rivers State, Nigeria and its Implications for Biological Resource Conservation

    Directory of Open Access Journals (Sweden)

    P.C. Mmom

    2012-01-01

    Full Text Available The study was instituted to assess the impact of sand dredging along parts of New Calabar River channel morphology and the implication for biological resources conservation.The study was conducted within a period of two years (2008 and 2009 in two major sand dredging sites (Ogbogoro and Rumuorlumeni areas along the new Calabar River in Rivers State, Nigeria. The channel measurement was ascertained using hydrographic survey report carried out by dredge operators in the areas. The influence of river channel incision on river hydraulics was evaluated by comparing stream velocity of the different years. The volume of sand in the two areas were ascertained from sand search report, sediment lost from the channel were also obtained from the dredge time reports of dredge operators. The study reveals thatsignificant down-cutting in the riverbed along these parts of the New Calabar River. Significant increase in stream velocity was observed with increase the sediment transport capacityand accelerated channel incision; in fact there was significant change in the channel geometry. Consequently, there was an observed decline in the productivity of aquatic resources in the area, which our survey affirms as being a result of intense sand dredging in the area. The study therefore concludes that intense and uncontrolled sand dredging in the study area would mean detrimental impact on river management systems as well as future of the aquatic biodiversity and biological resources in the area. Thus, there is need for stringent restrictions on in-channel sand mining to save the biophysical and socio-economic environment of the affected areas.

  20. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Nonionic dithiol surfactants were synthesized by simple one step esterification. • The surface activity of the synthesized dithiol surfactants showed high tendency toward adsorption and micellization. • The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared. • The silver nanoparticles enhanced the biological activity of the synthesized dithiol surfactants. - Abstract: Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and 1H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔGmic, ΔHmic and ΔSmic) and adsorption (ΔGads, ΔGads and ΔSads) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants

  1. Seismic behaviour of fuel assembly

    International Nuclear Information System (INIS)

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab

  2. Seismic behaviour of fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heuy Gap; Jhung, Myung Jo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab.

  3. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elaal, Ali A., E-mail: ali_ashour5@yahoo.com; Tawfik, Salah M.; Shaban, Samy M.

    2015-07-01

    Graphical abstract: - Highlights: • Nonionic dithiol surfactants were synthesized by simple one step esterification. • The surface activity of the synthesized dithiol surfactants showed high tendency toward adsorption and micellization. • The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared. • The silver nanoparticles enhanced the biological activity of the synthesized dithiol surfactants. - Abstract: Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and {sup 1}H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔG{sub mic}, ΔH{sub mic} and ΔS{sub mic}) and adsorption (ΔG{sub ads}, ΔG{sub ads} and ΔS{sub ads}) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants.

  4. 49 CFR 572.184 - Shoulder assembly.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Shoulder assembly. 572.184 Section 572.184... Dummy, 50th Percentile Adult Male § 572.184 Shoulder assembly. (a) The shoulder (175-3000) is part of the body assembly shown in drawing 175-0000. When subjected to impact tests specified in paragraph...

  5. 49 CFR 572.183 - Neck assembly.

    Science.gov (United States)

    2010-10-01

    ... CFR 572.33) at the time the pendulum makes contact with the decelerating mechanism. The velocity-time... 49 Transportation 7 2010-10-01 2010-10-01 false Neck assembly. 572.183 Section 572.183... Dummy, 50th Percentile Adult Male § 572.183 Neck assembly. (a) The neck assembly consists of parts...

  6. Shock buffer for nuclear control assembly

    International Nuclear Information System (INIS)

    A shock buffer is provided for the gradual deceleration of a rapidly descending control element assembly in a nuclear reactor. The interactive buffer components are associated respectively with the movable control element assembly and part of the upper guide structure independent of and spaced from the fuel assemblies of the reactor

  7. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    Science.gov (United States)

    Abd-Elaal, Ali A.; Tawfik, Salah M.; Shaban, Samy M.

    2015-07-01

    Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and 1H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔGmic, ΔHmic and ΔSmic) and adsorption (ΔGads, ΔGads and ΔSads) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants.

  8. The assembly of C. elegans lamins into macroscopic fibers.

    Science.gov (United States)

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.

  9. The assembly of C. elegans lamins into macroscopic fibers.

    Science.gov (United States)

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties. PMID:27341289

  10. Furnace assembly

    Science.gov (United States)

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  11. Self-assembly, self-organization and division of labour

    OpenAIRE

    Sendova-Franks, A. B.

    1999-01-01

    The prospect of generic principles of biological organization being uncovered through the increasingly broad use of the concepts of 'self-assembly' and 'self-organization' in biology will only be fulfilled if students of different levels of biological organization use the same terms with the same meanings. We consider the different ways the terms 'self-assembly' and 'self-organization' have been used, from studies of molecules to studies of animal societies. By linking 'self-assembly' and 'se...

  12. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  13. Molecular motor assembly of a biomimetic system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Active biological molecules and functional structures can be fabricated into a bio-mimetic system by using molecular assembly method. Such materials can be used for the drug delivery, disease diagnosis and therapy, and new nanodevice construction.

  14. BEILING HUANENG BUILDING ROOF CONSTRUCTION GLOBAL SLIP ASSEMBLY PARTS%北京华能大厦屋盖散件拼装整体滑移施工技术

    Institute of Scientific and Technical Information of China (English)

    耿爱贤; 刘丙宇; 刘英勇; 程军伟

    2011-01-01

    华能大厦中庭屋盖钢结构是三向网格单层柱面网壳结构.安装时结合现场实际情况并从技术经济角度综合考虑,采用塔式起重机将散件吊装到屋顶上进行拼装,然后将拼装好的单元体通过滑轨牵引到指定位置.在液压同步滑移过程中,测量人员通过测量仪器配合测量点位移的监测,以及专业技术人员对滑移过程中液压器、液压泵站、计算机同步控制系统、传感检测系统等的监控,保证了安装的精度及施工安全.%The Atrium Huaneng Building is a three-way steel mesh roof reticulated shell structures. The actual Situation with on -site installation, technical and economic point of view from the comprehensive consideration, the use of tower crane will be lifting the roof on the parts assembled, and then through the slide assembly unit body good traction to the specified location. Slippage in the hydraulic synchronization process, by measuring the person with the measurements by the displacement measuring instruments, and professional and technical personnel for monitoring the process of hydraulic control on the slip, pump stations, computer synchronization control system, sensor detection systems, monitoring to ensure accuracy of the installation and construction safety.

  15. Assembly Sequence Planning for Mechanical Products

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A method for assembly sequence planning is proposed in this paper. First, two methods for assembly sequence planning are compared, which are indirect method and direct method. Then, the limits of the previous assembly planning system are pointed out. On the basis of indirect method, an improved method for assembly sequence planning is put forward. This method is composed of four parts, which are assembly modeling for products, assembly sequence representing, assembly sequence planning, and evaluation and optimization. The assembly model is established by human machine interaction, and the assembly model contains components' information and the assembly relation among the components. The assembly sequence planning is based on the breaking up of the assembly model. And/or graph is used to represent assembly sequence set. Every component which satisfies the disassembly condition is recorded as a node of an and/or graph. After the disassembly sequence and/or graph is generated, heuristic algorithm - AO* algorithm is used to search the disassembly sequence and/or graph, and the optimum assembly sequence planning is realized. This method is proved to be effective in a prototype system which is a sub-project of a state 863/CIMS research project of China - ‘Concurrent Engineering’.

  16. Uracil Excision for Assembly of Complex Pathways

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Nielsen, Morten Thrane; Kim, Se Hyeuk;

    2015-01-01

    Despite decreasing prices on synthetic DNA constructs, higher-order assembly of PCR-generated DNA continues to be an important exercise in molecular and synthetic biology. Simplicity and robustness are attractive features met by the uracil excision DNA assembly method, which is one of the most in...

  17. Dynamics of assembly production flow

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...

  18. Assembly delay line pulse generators

    CERN Multimedia

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  19. Conduit coupling assembly

    International Nuclear Information System (INIS)

    A conduit coupling assembly for coupling pipes with an interposed seal has a first part for receiving a pipe and is in splined engagement with a bush fixed to a pipe. A second part having radial fingers so that it can be turned by a manipulator, has a threaded engagement with the first part which is the same hand but different pitch to a threaded engagement between the second part and the bush. Pitches of 8:7 for couplings will give a mechanical advantage of 56:1 thus reducing the force needed to obtain a given axial movement of the bush and thus of the pipe and compression of the seal. (author)

  20. The Procedure for Assembling the EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    Wu Songtao

    2005-01-01

    Due to the complicated constitution and high precision requirements of the EAST superconducting tokamak, a meticulous assembling procedure and measurement scheme must be established. The big size and mass of the EAST machine's components and complicated configuration with tight installation tolerances call for a highly careful assembling procedure. The assembling procedure consists of three main sub-procedures for the assembling of the base, of the tori of the VV, the vacuum vessel TS and the TF, and of the peripheral parts respectively. Before the assembly, a reference framework has been set up by means of an industrial measurement system with reference fiducial targets fixed on the wall of the test hall. In this paper, the assembling procedure is described in detail, the survey control system of the assembly is discussed, and progress in the assembly work is also reported.

  1. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  2. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  3. Heater assembly

    International Nuclear Information System (INIS)

    An electrical resistance heater, installed in the H1 borehole, is used to thermally perturb the rock mass through a controlled heating and cooling cycle. Heater power levels are controlled by a Variac power transformer and are measured by wattmeters. Temperatures are measured by thermocouples on the borehole wall and on the heater assembly. Power and temperature values are recorded by the DAS described in Chapter 12. The heater assembly consists of a 3.55-m (11.6-ft) long by 20.3-cm (8-in.) O.D., Type 304 stainless steel pipe, containing a tubular hairpin heating element. The element has a heated length of 3 m (9.84 ft). The power rating of the element is 10 kW; however, we plan to operate the unit at a maximum power of only 3 kW. The heater is positioned with its midpoint directly below the axis of the P2 borehole, as shown in the borehole configuration diagram. This heater midpoint position corresponds to a distance of approximately 8.5 m (27.9 ft) from the H1 borehole collar. A schematic of the heater assembly in the borehole is shown. The distance from the borehole collar to the closest point on the assembly (the front end) is 6.5 m (21.3 ft). A high-temperature inflatable packer, used to seal the borehole for moisture collection, is positioned 50 cm (19.7 in.) ahead of the heater front end. The heater is supported and centralized within the borehole by two skids, fabricated from 25-mm (1-in.) O.D. stainless steel pipe. Thermocouples are installed at a number of locations in the H1 borehole. Four thermocouples that are attached to the heater skin monitor temperatures on the outer surface of the can, while three thermocouples that are held in place by rock sections monitor borehole wall temperatures beneath the heater. Temperatures are also monitored at the heater terminal and on the packer hardware

  4. Minimus: a fast, lightweight genome assembler

    Directory of Open Access Journals (Sweden)

    Salzberg Steven L

    2007-02-01

    Full Text Available Abstract Background Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. Results We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. Conclusion We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  5. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  6. Interfacing Self-Assembled Nanostructures with Biology

    DEFF Research Database (Denmark)

    Vinther, Mathias

    DNA nanoteknologi har gennem de seneste to ̊artier gennemg ̊aet en forblø↵ende udvikling. Brugen af DNA til bottom-up fabrikation af selvsamlende nanopartikler har vist sig uhyre succes- fuld. Teknologien har s ̊aledes været i stand til at producere nanostrukturer af højere strukturel kompleksite...

  7. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  8. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  9. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  10. Diretrizes da Federação Mundial das Sociedades de Psiquiatria Biológica para o tratamento biológico da esquizofrenia. Parte 2: tratamento de longo prazo World Federation of Societies of Biological Psychiatry (WFSBP guidelines for biological treatment of schizophrenia. Part 2: long-term treatment

    Directory of Open Access Journals (Sweden)

    Peter Falkai

    2006-01-01

    Full Text Available Estas diretrizes para o tratamento biológico da esquizofrenia foram desenvolvidas pela Força-Tarefa da Federação Mundial das Sociedades de Psiquiatria Biológica (World Federation of Societies of Biological Psychiatry, WFSBP. As metas fixadas durante o desenvolvimento destas diretrizes foi a revisão sistemática de todas as evidências disponíveis referentes ao tratamento da esquizofrenia, tanto no âmbito clínico como no científico, e o estabelecimento de um consenso sobre as principais recomendações para a prática psiquiátrica. Estas diretrizes são destinadas a todos os médicos que atendem e tratam de pacientes portadores de esquizofrenia. Os dados usados para desenvolver estas diretrizes foram extraídos primariamente de vários painéis e diretrizes nacionais para o tratamento da esquizofrenia, assim como de metanálises, revisões e estudos clínicos randomizados sobre a eficácia do tratamento farmacológico e de outras intervenções terapêuticas biológicas, identificadas por uma busca nas bases de dados MedLine e na Biblioteca Cochrane. A literatura identificada foi avaliada quanto à solidez das evidências a favor da eficácia de determinada intervenção, sendo, então, categorizada em quatro níveis de evidência (de A a D. A segunda parte das diretrizes abrange o tratamento de longo prazo, bem como o controle dos efeitos colaterais relevantes. Essas diretrizes são primariamente relacionadas ao tratamento biológico de adultos esquizofrênicos, incluindo medicação antipsicótica, outras opções de tratamento farmacológico, eletroconvulsoterapia, estratégias terapêuticas recentes e complementares.These guidelines for the biological treatment of schizophrenia were developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP. The goal during the development of these guidelines was to review systematically all available evidence pertaining to the treatment of

  11. Diretrizes da Federação Mundial das Sociedades de Psiquiatria Biológica para o tratamento biológico da esquizofrenia. Parte 1: tratamento agudo World Federation of Societies of Biological Psychiatry (WFSBP guidelines for biological treatment of schizophrenia. Part 1: acute treatment

    Directory of Open Access Journals (Sweden)

    Peter Falkai

    2006-01-01

    Full Text Available Estas diretrizes para o tratamento biológico da esquizofrenia foram desenvolvidas pela Força-Tarefa da Federação Mundial das Sociedades de Psiquiatria Biológica (World Federation of Societies of Biological Psychiatry, WFSBP. A meta fixada durante o desenvolvimento destas diretrizes foi rever sistematicamente todas as evidências disponíveis referentes ao tratamento da esquizofrenia, tanto no âmbito clínico como científico, e chegar a um consenso sobre as principais recomendações para a prática psiquiátrica. Estas diretrizes são destinadas a todos os médicos que atendem e tratam de pacientes portadores de esquizofrenia. Os dados usados para desenvolver estas diretrizes foram extraídos primariamente de vários painéis e diretrizes nacionais de tratamento para esquizofrenia, assim como de metanálises, revisões e estudos clínicos randomizados sobre a eficácia do tratamento farmacológico e de outras intervenções terapêuticas biológicas, identificadas por uma busca nas bases de dados MedLine e Biblioteca Cochrane. A literatura identificada foi avaliada no que diz respeito à solidez das evidências a favor da eficácia de uma dada intervenção e, então, categorizada em quatro níveis de evidências (de A a D. A primeira parte das diretrizes abrange a definição da doença, sua classificação, a epidemiologia e o curso da esquizofrenia, assim como o manejo terapêutico de fase aguda. Estas diretrizes são primariamente relacionadas ao tratamento biológico de adultos esquizofrênicos, incluindo medicação antipsicótica, outras opções de tratamento farmacológico, terapia eletroconvulsiva, estratégias terapêuticas recentes e complementares.These guidelines for the biological treatment of schizophrenia were developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP. The goal during the development of these guidelines was to review systematically all available evidence

  12. Biological pretreatment sewages water

    OpenAIRE

    Veselý, Václav

    2009-01-01

    Bachelor's thesis deals with waste water purification at the stage of pre-inflow of water into the biological waste water treatment plants. It is divided into two parts, a theoretical and calculation. The theoretical part deals about sewage water and the method of biological treatment. Design proposal is part of the activation tank for quantity EO.

  13. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    Science.gov (United States)

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].

  14. Metagenomic Assembly: Overview, Challenges and Applications

    Science.gov (United States)

    Ghurye, Jay S.; Cepeda-Espinoza, Victoria; Pop, Mihai

    2016-01-01

    Advances in sequencing technologies have led to the increased use of high throughput sequencing in characterizing the microbial communities associated with our bodies and our environment. Critical to the analysis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from complex mixtures. Metagenomic assembly involves new computational challenges due to the specific characteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field. We also review several applications of metagenome assembly in addressing interesting biological problems. PMID:27698619

  15. Oscillations in molecular motor assemblies

    CERN Document Server

    Vilfan, A; Vilfan, Andrej; Frey, Erwin

    2005-01-01

    Autonomous oscillations in biological systems may have a biochemical origin or result from an interplay between force-generating and visco-elastic elements. In molecular motor assemblies the force-generating elements are molecular engines and the visco-elastic elements are stiff cytoskeletal polymers. The physical mechanism leading to oscillations depends on the particular architecture of the assembly. Existing models can be grouped into two distinct categories: systems with a {\\em delayed force activation} and {\\em anomalous force-velocity relations}. We discuss these systems within phase plane analysis known from the theory of dynamic systems and by adopting methods from control theory, the Nyquist criterion.

  16. Assembly auxiliary system for narrow cabins of spacecraft

    Science.gov (United States)

    Liu, Yi; Li, Shiqi; Wang, Junfeng

    2015-09-01

    Due to the narrow space and complex structure of spacecraft cabin, the existing asssembly systems can not well suit for the assembly process of cabin products. This paper aims to introduce an assembly auxiliary system for cabin products. A hierarchical-classification method is proposed to re-adjust the initial assembly relationship of cabin into a new hierarchical structure for efficient assembly planning. An improved ant colony algorithm based on three assembly principles is established for searching a optimizational assembly sequence of cabin parts. A mixed reality assembly environment is constructed with enhanced information to promote interaction efficiency of assembly training and guidance. Based on the machine vision technology, the inspection of left redundant objects and measurement of parts distance in inner cabin are efficiently performed. The proposed system has been applied to the assembly work of a spacecraft cabin with 107 parts, which includes cabin assembly planning, assembly training and assembly quality inspection. The application result indicates that the proposed system can be an effective assistant tool to cabin assembly works and provide an intuitive and real assembly experience for workers. This paper presents an assembly auxiliary system for spacecraft cabin products, which can provide technical support to the spacecraft cabin assembly industry.

  17. Synthetic self-assembled models with biomimetic functions

    NARCIS (Netherlands)

    Fiammengo, Roberto; Crego-Calama, Mercedes; Reinhoudt, David N.

    2001-01-01

    Self-assembly can be considered a powerful tool in the hand of chemists for the understanding, modeling and mimicking of biological systems. The possibility of reproducing biological functions in synthetic systems obtained by self-assembly is envisioned as a modest but very important step towards th

  18. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper.

    Science.gov (United States)

    Cranford, Steven W; Buehler, Markus J

    2010-07-01

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  19. RESEARCH OF MOVEMENT NAVIGATION BASED ON ASSEMBLY CONSTRAINT RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The requirements and features of virtual assembly movement navigator are analyzed to help operators flexibly manipulate virtual objects, precisely locate or assemble virtual parts in virtual environment. With the degree-of-freedom analysis, the assembly constraint hierarchical model is constructed and the system's constraints are built dynamically. Thus, all objects in virtual environment can be located reasonally by the navigator. Moreover, the assembly constraint recognition in the process of assembly and movement correction is also discussed.

  20. Research overview on vibration damping of mistuned bladed disk assemblies

    OpenAIRE

    Zhang, Liang; Liu, Tiejian; Li, Xin; Xuyao HUO

    2016-01-01

    Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home a...

  1. Biological effects and physics of solar and galactic cosmic radiation, Part B; Proceedings of a NATO Advanced Study Institute on Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Algarve, Portugal, Oct. 13-23, 1991

    Science.gov (United States)

    Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)

    1993-01-01

    Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.

  2. Shear-induced assembly of lambda-phage DNA.

    OpenAIRE

    Haber, C.; Wirtz, D

    2000-01-01

    Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of lambda-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted lambda-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing th...

  3. Workload analyse of assembling process

    Science.gov (United States)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Since the neutron flux distribution and the power distribution of a fuel assembly in which short fuel rods vary greatly in the vicinity of a boundary where the distribution of uranium amount is different, the reading value of local power range monitors, having the detectors positioned in the vicinity of the boundary is varied. Then in the present invention, the upper end of the effective axial length of fuel rod is so made as not approaching with the detection position of the local power range monitor in a reactor core. Further, the upper end of the effective axial length of fuel rods in a 4 x 4 fuel rod lattice positioned at the corner on the side of the local power range monitor is so made as not approaching the detection position of the local power range monitor. As a result, the change of the neutron flux distribution and power distribution in the vicinity of the position where the detector of the local power range monitor is situated can be extremely reduced. Accordingly, there is no scattering and fluctuation for the reading value by the local power range monitor, to improve the monitoring performance for thermal characteristics in the reactor core. (N.H.)

  5. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To reconstruct a BWR type reactor into a high conversion reactor with no substantial changes for the reactor inner structure such as control rod structure. Constitution: The horizontal cross sectional shape of a channel box is reformed into a square configuration and the arrangement of fuel rods is formed as a trigonal lattice-like configuration. As a method of improving the conversion ratio, there is considered to use a dense lattice by narrowing the distance between fuel rods and trigonal lattice arrangement for fuel rod is advantageous therefor. A square shape cross sectional configuration having equal length both in the lateral and longitudinal directions is suitable for the channel box as a guide upon movement of the control rod. Fuel rods can be arranged with no loss by the trigonal lattice configuration, by which it is possible to improve the neutron moderation, increase the reactor core reactivity and conduct effective fuel combustion. In this way, it is possible to attain the object by inserting the follower portion of the control rod at the earier half and extracting the same at the latter half during the operation period in the reactor core comprising fuel assemblies suitable to a high conversion BWR type reactor having average conversion ratio of about 0.8. (Kamimura, M.)

  6. Combinatorial pathway assembly in yeast

    Directory of Open Access Journals (Sweden)

    Khalil Essani

    2015-10-01

    Full Text Available With the emergence of synthetic biology and the vast knowledge about individual biocatalytic reactions, the challenge nowadays is to implement whole natural or synthetic pathways into microorganisms. For this purpose balanced enzyme activities throughout the pathway need to be achieved in addition to simple functional gene expression to avoid bottlenecks and to obtain high titers of the desired product. As the optimization of pathways in a specific biological context is often hard to achieve by rational design, combinatorial approaches have been developed to address this issue. Here, current strategies and proof of concepts for combinatorial pathway assembly in yeasts are reviewed. By exploiting its ability to join multiple DNA fragments in a very efficient and easy manner, the yeast Saccharomyces cerevisiae does not only constitute an attractive host for heterologous pathway expression, but also for assembling pathways by recombination in vivo.

  7. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  8. CT Performance Evaluation Using Multi Material Assemblies

    DEFF Research Database (Denmark)

    Stolfi, Alessandro; De Chiffre, Leonardo

    2015-01-01

    This paper concerns an investigation of the accuracy of Computed Tomography measurements using multi-material assemblies. In this study, assemblies involving similar densities for elementary parts were considered. The investigation includes dimensional and geometrical measurements of two 10 mm high...

  9. Improvability of assembly systems I: Problem formulation and performance evaluation

    Directory of Open Access Journals (Sweden)

    S.-Y. Chiang

    2000-01-01

    Full Text Available This work develops improvability theory for assembly systems. It consists of two parts. Part I includes the problem formulation and the analysis technique. Part II presents the so-called improvability indicators and a case study.

  10. Crystallogenesis of biological macromolecules. Biological, microgravity and other physicochemical aspects

    NARCIS (Netherlands)

    Giege, R; Drenth, J; Ducruix, A; McPherson, A; Saenger, W

    1995-01-01

    After an historical introduction and justification of the importance of proteins (as well as other macromolecules or macromolecular assemblies of biological origin) in modern biology but also in physics, this review presents the state of the field of macromolecular crystallogenesis. The basic questi

  11. Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part A: Eukaryotic Gene Structure and DNA Replication

    OpenAIRE

    Wild, Gary E; Papalia, Patrizia; Ropeleski, Mark J.; Faria, Julio; Thomson, Alan BR

    2000-01-01

    Progress in the basic sciences of cell and molecular biology has provided an exciting dimension that has translated into clinically relevant information in every medical subspecialty. Importantly, the application of recombinant DNA technology has played a major role in unravelling the intricacies related to the molecular pathophysiology of disease. This series of review articles constitutes a framework for the integration of the database of new information into the core knowledge base of conc...

  12. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ascoli, R. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: rosaria.dascoli@unina2.it; Rao, M.A. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: maria.rao@unina.it; Adamo, P. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: adamo@unina.it; Renella, G. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: giancarlo.renella@unifi.it; Landi, L. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: loretta.landi@unifi.it; Rutigliano, F.A. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: floraa.rutigliano@unina2.it; Terribile, F. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: terribil@unina.it; Gianfreda, L. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: liliana.gianfreda@unina.it

    2006-11-15

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, {beta}-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community. - In studied soils organic C content resulted the principal factor influencing growth and activity of microbial community, with Cu and Cr contents having a lower relevance.

  13. Systematic Review of Breast Cancer Biology in Developing Countries (Part 1): Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America

    Energy Technology Data Exchange (ETDEWEB)

    Bhikoo, Riyaz, E-mail: riyazbhikoo@gmail.com; Srinivasa, Sanket; Yu, Tzu-Chieh [Department of Surgery, South Auckland Clinical School, University of Auckland, Auckland 1640 (New Zealand); Moss, David [Department of Surgery, Middlemore Hospital, Auckland 1640 (New Zealand); Hill, Andrew G [Department of Surgery, South Auckland Clinical School, University of Auckland, Auckland 1640 (New Zealand)

    2011-05-13

    There has been no systematic appraisal of ethnicity-based variations in breast cancer (BC) biology amongst women from developing countries. A qualitative systematic review was conducted of breast cancer size, stage, grade, histological type, extra-mammary involvement, hormone receptor status as well as patient demographics. This review includes patients from Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America. BC in these regions present at an earlier age with large aggressive tumours. Distant metastases are frequently present at the time of diagnosis. African women have a higher frequency of triple negative tumours. Over half of Middle Eastern women have lymph node involvement at the time of diagnosis. Despite experiencing a lower incidence compared to the Ashkenazi Jewish population, Palestinian women have poorer five-year survival outcomes. The majority of women from Mexico and South America have stage two or three disease whilst over sixty percent of women from Eastern Europe have either stage one or stage two disease. The biological characteristics of BC in the Caribbean cannot be fully assessed due to a paucity of data from the region. BC amongst the developing world is characterised by an early peak age of onset with aggressive biological characteristics. Strategies that improve breast cancer awareness, address amenable risk factors and improve early detection are essential.

  14. Systematic Review of Breast Cancer Biology in Developing Countries (Part 1: Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America

    Directory of Open Access Journals (Sweden)

    Andrew G Hill

    2011-05-01

    Full Text Available There has been no systematic appraisal of ethnicity-based variations in breast cancer (BC biology amongst women from developing countries. A qualitative systematic review was conducted of breast cancer size, stage, grade, histological type, extra-mammary involvement, hormone receptor status as well as patient demographics. This review includes patients from Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America. BC in these regions present at an earlier age with large aggressive tumours. Distant metastases are frequently present at the time of diagnosis. African women have a higher frequency of triple negative tumours. Over half of Middle Eastern women have lymph node involvement at the time of diagnosis. Despite experiencing a lower incidence compared to the Ashkenazi Jewish population, Palestinian women have poorer five-year survival outcomes. The majority of women from Mexico and South America have stage two or three disease whilst over sixty percent of women from Eastern Europe have either stage one or stage two disease. The biological characteristics of BC in the Caribbean cannot be fully assessed due to a paucity of data from the region. BC amongst the developing world is characterised by an early peak age of onset with aggressive biological characteristics. Strategies that improve breast cancer awareness, address amenable risk factors and improve early detection are essential.

  15. Systematic Review of Breast Cancer Biology in Developing Countries (Part 1): Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America

    International Nuclear Information System (INIS)

    There has been no systematic appraisal of ethnicity-based variations in breast cancer (BC) biology amongst women from developing countries. A qualitative systematic review was conducted of breast cancer size, stage, grade, histological type, extra-mammary involvement, hormone receptor status as well as patient demographics. This review includes patients from Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America. BC in these regions present at an earlier age with large aggressive tumours. Distant metastases are frequently present at the time of diagnosis. African women have a higher frequency of triple negative tumours. Over half of Middle Eastern women have lymph node involvement at the time of diagnosis. Despite experiencing a lower incidence compared to the Ashkenazi Jewish population, Palestinian women have poorer five-year survival outcomes. The majority of women from Mexico and South America have stage two or three disease whilst over sixty percent of women from Eastern Europe have either stage one or stage two disease. The biological characteristics of BC in the Caribbean cannot be fully assessed due to a paucity of data from the region. BC amongst the developing world is characterised by an early peak age of onset with aggressive biological characteristics. Strategies that improve breast cancer awareness, address amenable risk factors and improve early detection are essential

  16. Silk: molecular organization and control of assembly.

    Science.gov (United States)

    Valluzzi, Regina; Winkler, Stefan; Wilson, Donna; Kaplan, David L

    2002-02-28

    The interface between the science and engineering of biology and materials is an area of growing interest. One of the goals of this field is to utilize biological synthesis and processing of polymers as a route to gain insight into topics such as molecular recognition, self-assembly and the formation of materials with well-defined architectures. The biological processes involved in polymer synthesis and assembly can offer important information on fundamental interactions involved in the formation of complex material architectures, as well as practical knowledge into new and important materials related to biomaterial uses and tissue engineering needs. Classic approaches in biology, including genetic engineering, controlled microbial physiology and enzymatic synthesis, are prototypical methods used to control polymer structure and chemistry, including stereoselectivity and regioselectivity, to degrees unattainable using traditional synthetic chemistry. This type of control can lead to detailed and systematic studies of the formation of the structural hierarchy in materials and the subsequent biological responses to these materials.

  17. COMPUTER-AIDED BLOCK ASSEMBLY PROCESS PLANNING IN SHIPBUILD-ING BASED ON RULE-REASONING

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhiying; LI Zhen; JIANG Zhibin

    2008-01-01

    Computer-aided block assembly process planning based on rule-reasoning are developed in order to improve the assembly efficiency and implement the automated block assembly process planning generation in shipbuilding. First, weighted directed liaison graph (WDLG) is proposed to represent the model of block assembly process according to the characteristics of assembly relation, and edge list (EL) is used to describe assembly sequences. Shapes and assembly attributes of block parts are analyzed to determine the assembly position and matched parts of parts used frequently. Then, a series of assembly rules are generalized, and assembly sequences for block are obtained by means of rule reasoning. Final, a prototype system of computer-aided block assembly process planning is built. The system has been tested on actual block, and the results were found to be quite efficiency. Meanwhile, the fundament for the automation of block assembly process generation and integration with other systems is established.

  18. Hapsembler: An Assembler for Highly Polymorphic Genomes

    Science.gov (United States)

    Donmez, Nilgun; Brudno, Michael

    As whole genome sequencing has become a routine biological experiment, algorithms for assembly of whole genome shotgun data has become a topic of extensive research, with a plethora of off-the-shelf methods that can reconstruct the genomes of many organisms. Simultaneously, several recently sequenced genomes exhibit very high polymorphism rates. For these organisms genome assembly remains a challenge as most assemblers are unable to handle highly divergent haplotypes in a single individual. In this paper we describe Hapsembler, an assembler for highly polymorphic genomes, which makes use of paired reads. Our experiments show that Hapsembler produces accurate and contiguous assemblies of highly polymorphic genomes, while performing on par with the leading tools on haploid genomes. Hapsembler is available for download at http://compbio.cs.toronto.edu/hapsembler.

  19. Probe tip heating assembly

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  20. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  1. Inlet nozzle assembly

    Science.gov (United States)

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  2. Automatic Identification of Digital Label Assembly Drawings of Mechanical Parts Based on Computer Vision Technology%基于计算机视觉技术的机械零件装配图数字标号的自动识别

    Institute of Scientific and Technical Information of China (English)

    江能兴

    2011-01-01

    In order to realize precisely the automatic identification of numeric characters in the assembly drawings of mechanical parts, the technology of Open Computer Vision libraries (OpenCV) are developed. This paper not only introduces the basic framework of OpenCV and its typical application areas, also, it compares and analyses the numeric characters in the assembly drawings of mechanical parts, which has great significance to the improvement on the current development in the area of the automatic identification of digital label assembly drawings of mechanical parts.%为精准快速地对机械零件装配图中的数字字符进行自动识别,提出一种基于开源计算机视觉库OpenCV的模板匹配方法.本文介绍OpenCV的基本框架、典型运用领域和利用OpenCV开发库对机械零件装配图中的数字字符进行自动识别的比较分析,该项工作对改进目前对机械图进行人工数字识别的现状具有重要的意义.

  3. Tilt assembly for tracking solar collector assembly

    Science.gov (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  4. Mixed Reality-based Interactive Technology for Aircraft Cabin Assembly

    Institute of Scientific and Technical Information of China (English)

    LI Shiqi; PENG Tao; WANG Junfeng; XU Chi

    2009-01-01

    Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.

  5. U1-RNP and Toll-like receptors in the pathogenesis of mixed connective tissue diseasePart II. Endosomal TLRs and their biological significance in the pathogenesis of mixed connective tissue disease.

    Science.gov (United States)

    Paradowska-Gorycka, Agnieszka

    2015-01-01

    Mixed connective tissue disease (MCTD) is a chronic autoimmune immunopathological disease of unknown etiology, which is characterized by the presence of various clinical symptoms and the presence of autoantibodies against U1-RNP particles. The U1-RNP component engages immune cells and their receptors in a complex network of interactions that ultimately lead to autoimmunity, inflammation, and tissue injury. The anti-U1-RNP autoantibodies form an immune complex with self-RNA, present in MCTD serum, which can act as endosomal Toll-like receptor (TLR) ligands. Inhibition of TLRs by nucleic acids is a promising area of research for the development of novel therapeutic strategies against pathogenic infection, tumorigenesis and autoimmunity. In this review we summarize current knowledge of endogenous TLRs and discuss their biological significance in the pathogenesis of MCTD. In part I we described the structure, biological function and significance of the U1-RNP complex in MCTD.

  6. Part 1. Assessment of carcinogenicity and biologic responses in rats after lifetime inhalation of new-technology diesel exhaust in the ACES bioassay.

    Science.gov (United States)

    McDonald, Jacob D; Doyle-Eisele, Melanie; Seagrave, JeanClare; Gigliotti, Andrew P; Chow, Judith; Zielinska, Barbara; Mauderly, Joe L; Seilkop, Steven K; Miller, Rodney A

    2015-01-01

    The Health Effects Institute and its partners conceived and funded a program to characterize the emissions from heavy-duty diesel engines compliant with the 2007 and 2010 on-road emissions standards in the United States and to evaluate indicators of lung toxicity in rats and mice exposed repeatedly to 2007-compliant new-technology diesel exhaust (NTDE*). The a priori hypothesis of this Advanced Collaborative Emissions Study (ACES) was that 2007-compliant on-road diesel emissions "... will not cause an increase in tumor formation or substantial toxic effects in rats and mice at the highest concentration of exhaust that can be used ... although some biological effects may occur." This hypothesis was tested at the Lovelace Respiratory Research Institute (LRRI) by exposing rats by chronic inhalation as a carcinogenicity bioassay. Indicators of pulmonary toxicity in rats were measured after 1, 3, 12, 24, and 28-30 months of exposure. Similar indicators of pulmonary toxicity were measured in mice, as an interspecies comparison of the effects of subchronic exposure, after 1 and 3 months of exposure. A previous HEI report (Mauderly and McDonald 2012) described the operation of the engine and exposure systems and the characteristics of the exposure atmospheres during system commissioning. Another HEI report described the biologic responses in mice and rats after subchronic exposure to NTDE (McDonald et al. 2012). The primary motivation for the present chronic study was to evaluate the effects of NTDE in rats in the context of previous studies that had shown neoplastic lung lesions in rats exposed chronically to traditional technology diesel exhaust (TDE) (i.e., exhaust from diesel engines built before the 2007 U.S. requirements went into effect). The hypothesis was largely based on the marked reduction of diesel particulate matter (DPM) in NTDE compared with emissions from older diesel engine and fuel technologies, although other emissions were also reduced. The DPM

  7. Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part A: Eukaryotic Gene Structure and DNA Replication

    Directory of Open Access Journals (Sweden)

    Gary E Wild

    2000-01-01

    Full Text Available Progress in the basic sciences of cell and molecular biology has provided an exciting dimension that has translated into clinically relevant information in every medical subspecialty. Importantly, the application of recombinant DNA technology has played a major role in unravelling the intricacies related to the molecular pathophysiology of disease. This series of review articles constitutes a framework for the integration of the database of new information into the core knowledge base of concepts related to the pathogenesis of gastrointestinal disorders and liver disease. The goal of this series of three articles is to review the basic principles of eukaryotic gene expression. The first article examines the role of DNA in directing the flow of genetic information in eukaryotic cells.

  8. Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne; Schadt, Christopher; Miller, Lance; Phelps, Tommy; Brown, S. D.; Arkin, Adam; Hazen, Terry; Drake, Megin; Yang, Z.K.; Podar, Mircea

    2010-05-17

    One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophism to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for

  9. Error Analysis of Robotic Assembly System Based on Screw Theory

    Institute of Scientific and Technical Information of China (English)

    韩卫军; 费燕琼; 赵锡芳

    2003-01-01

    Assembly errors have great influence on assembly quality in robotic assembly systems. Error analysis is directed to the propagations and accumula-tions of various errors and their effect on assembly success.Using the screw coordinates, assembly errors are represented as "error twist", the extremely compact expression. According to the law of screw composition, relative position and orientation errors of mating parts are computed and the necessary condition of assembly success is concluded. A new simple method for measuring assembly errors is also proposed based on the transformation law of a screw.Because of the compact representation of error, the model presented for error analysis can be applied to various part- mating types and especially useful for error analysis of complexity assembly.

  10. Fatty acids, coumarins and polyphenolic compounds of Ficus carica L. cv. Dottato: variation of bioactive compounds and biological activity of aerial parts.

    Science.gov (United States)

    Marrelli, Mariangela; Statti, Giancarlo A; Tundis, Rosa; Menichini, Francesco; Conforti, Filomena

    2014-01-01

    Leaves, bark and woody part of Ficus carica L. cultivar Dottato collected in different months were examined to assess their chemical composition, antioxidant activity and phototoxicity on C32 human melanoma cells after UVA irradiation. The phytochemical investigation revealed different composition in the coumarin, fatty acid, polyphenol and flavonoid content. The second harvest of leaves and the first harvest of the bark possessed the highest antiradical activity with IC50 values of 64.00 ± 0.59 and 67.00 ± 1.09 μg/mL, respectively. Harvest III of leaves showed the best inhibition of lipid peroxidation (IC50 = 1.48 ± 0.04 μg/mL). Leaf samples of F. carica showed also the best antiproliferative activity in comparison with bark and woody part of F. carica.

  11. Pattern formation in centrosome assembly.

    Science.gov (United States)

    Mahen, Robert; Venkitaraman, Ashok R

    2012-02-01

    A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale. PMID:22245706

  12. Assembly plans for ITER

    International Nuclear Information System (INIS)

    The assembly of ITER represents an extrapolation of a factor of two or more in size over existing large tokamaks. An assembly plan has been developed based on the ITER Outline Design. This plan was reviewed by technical experts and critical issues were identified. Alternate designs are being developed to address the most serious concerns and to minimize cost and assembly schedule. Because ITER has many characteristics of a full-scale nuclear reactor its assembly has challenges not faced previously by the fusion community. Careful assembly planning and well-designed tooling are required to insure success in the assembly of ITER

  13. Firearm trigger assembly

    Science.gov (United States)

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  14. Autonomous electrochromic assembly

    Science.gov (United States)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  15. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  16. Design, synthesis and biological evaluation of novel 4-alkapolyenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents--part III.

    Science.gov (United States)

    Ronga, Luisa; Del Favero, Marco; Cohen, Anita; Soum, Claire; Le Pape, Patrice; Savrimoutou, Solène; Pinaud, Noël; Mullié, Catherine; Daulouede, Sylvie; Vincendeau, Philippe; Farvacques, Natacha; Agnamey, Patrice; Pagniez, Fabrice; Hutter, Sébastien; Azas, Nadine; Sonnet, Pascal; Guillon, Jean

    2014-06-23

    A series of new 4-alkapolyenylpyrrolo[1,2-a]quinoxaline derivatives, original and structural analogues of alkaloid chimanine B and of previously described 4-alkenylpyrrolo[1,2-a]quinoxalines, was synthesized in good yields using efficient palladium-catalyzed Suzuki-Miyaura cross-coupling reactions. These new compounds were tested for in vitro antiparasitic activity upon three Leishmania spp. strains. Biological results showed activity against the promastigote forms of L. major, L. mexicana and L. donovani with IC50 ranging from 1.2 to 14.7 μM. In attempting to investigate if our pyrrolo[1,2-a]quinoxaline derivatives are broad-spectrum antiprotozoal compounds activities toward one Trypanosoma brucei brucei strain and the W2 and 3D7 Plasmodium falciparum strains were also investigated. In parallel, the in vitro cytotoxicity of these molecules was assessed on the murine J774 and human HepG2 cell lines. Structure-activity relationships of these new synthetic compounds are here discussed.

  17. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt.

    Science.gov (United States)

    El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S

    2016-01-01

    The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.

  18. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt.

    Science.gov (United States)

    El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S

    2016-05-01

    The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity. PMID:26211503

  19. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  20. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  1. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  2. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  3. Forwardly movable assembly for a firearm

    Science.gov (United States)

    Crandall, David L.; Watson, Richard W.

    2007-06-05

    A forwardly movable assembly for a firearm, the forwardly movable assembly adapted to be disposed in operative relationship relative to the other operative parts of a firearm, the firearm having in operative relationship each with one or more of the others: a barrel, a receiver, and at least one firing mechanism; the forwardly movable assembly comprising: the barrel and the receiver operatively connected with each other; a movable hand support structure to which at least one of the barrel and the receiver is connected, the barrel being movable therewith, the movable hand support structure being adapted to be gripped by an operator of the firearm; the forwardly movable assembly being adapted to be moved forward by an operator upon gripping the movable hand support structure and manually maneuvering the hand support structure forwardly; and, as the forwardly movable assembly is moved forwardly, the firing mechanism is completely disengaged therefrom and held substantially stationary relative thereto.

  4. Molecular assembly in natural and engineered systems

    CERN Document Server

    Howorka, Stefan

    2011-01-01

    This volume explores some of the most exciting recent advances in basic research on molecular assembly in natural and engineered systems and how this knowledge is leading to advances in the various fields.* This series provides a forum for discussion of new discoveries, approaches, and ideas * Contributions from leading scholars and industry experts * Reference guide for researchers involved in molecular biology and related fields

  5. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  6. Assembly planning at the micro scale

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Xavier, P.; Brown, R.

    1998-05-14

    This paper investigates a new aspect of fine motion planning for the micro domain. As parts approach 1--10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. It has been experimentally shown that assembly plans in the micro domain are not reversible, motions required to pick up a part are not the reverse of motions required to release a part. This paper develops the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool.

  7. Shaping the science-industry-policy interface in synthetic biology.

    Science.gov (United States)

    Gaisser, Sibylle; Reiss, Thomas

    2009-12-01

    Current advances in the emerging field of synthetic biology and the improvements in key technologies promise great impacts, not only on future scientific development, but also on the economy. In this paper we will adopt the triple helix concept for analyzing the early stages of a new field of science and innovation, namely synthetic biology. Synthetic biology is based on the creation and assembly of parts in order to create new and more complex structures and functions. These features of synthetic biology raise questions related to standardization and intellectual property, but also to security and public perception issues that go beyond the classical biotechnology discussions. These issues concern all involved actors in the synthetic biology field and affect the interrelationship between science, industry and policy. Based on the results of the recently finished EU FP-6 funded project TESSY ( http://www.tessy-europe.de ), the article analyzes these issues. Additionally, it illustrates the setting of clear framework conditions for synthetic biology research and development and the identification and definition of common goals for the future development of the field which will be needed for efficient science-industry-policy interaction. It was shown that it will be crucial to develop approaches that consider the needs of science and industry, on the one hand, and comply with the expectations of society, on the other hand. As synthetic biology is a global activity, the involvement of national decision-makers in international initiatives will further stimulate the development of the field. PMID:19816806

  8. SolidWorks 2011 Assemblies Bible

    CERN Document Server

    Lombard, Matt

    2011-01-01

    A fan of the SolidWorks Bible, but want more detail on assemblies? Here you go. SolidWorks fans have long sought more detail on SolidWorks topics, and now you have it. We took our popular SolidWorks Bible, divided it into two books (SolidWorks 2011 Assemblies Bible and SolidWorks 2011 Parts Bible) and packed each new book with a host of items from your wish lists, such as more extensive coverage of the basics, additional tutorials, and expanded coverage of topics largely ignored by other books. This SolidWorks 2011 Assemblies Bible shows you how to organize parts data to create assemblies or s

  9. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  10. Large Pelagics Biological Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  11. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  12. A trait-based approach for examining microbial community assembly

    Science.gov (United States)

    Prest, T. L.; Nemergut, D.

    2015-12-01

    Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.

  13. Reverse engineering of complex biological body parts by squared distance enabled non-uniform rational B-spline technique and layered manufacturing.

    Science.gov (United States)

    Pandithevan, Ponnusamy

    2015-02-01

    In tissue engineering, the successful modeling of scaffold for the replacement of damaged body parts depends mainly on external geometry and internal architecture in order to avoid the adverse effects such as pain and lack of ability to transfer the load to the surrounding bone. Due to flexibility in controlling the parameters, layered manufacturing processes are widely used for the fabrication of bone tissue engineering scaffold with the given computer-aided design model. This article presents a squared distance minimization approach for weight optimization of non-uniform rational B-spline curve and surface to modify the geometry that exactly fits into the defect region automatically and thus to fabricate the scaffold specific to subject and site. The study showed that though the errors associated in the B-spline curve and surface were minimized by squared distance method than point distance method and tangent distance method, the errors could be minimized further in the rational B-spline curve and surface as the optimal weight could change the shape that desired for the defect site. In order to measure the efficacy of the present approach, the results were compared with point distance method and tangent distance method in optimizing the non-rational and rational B-spline curve and surface fitting for the defect site. The optimized geometry then allowed to construct the scaffold in fused deposition modeling system as an example. The result revealed that the squared distance-based weight optimization of the rational curve and surface in making the defect specific geometry best fits into the defect region than the other methods used.

  14. Artful interfaces within biological materials

    Directory of Open Access Journals (Sweden)

    John W.C. Dunlop

    2011-03-01

    Full Text Available Biological materials have a wide range of mechanical properties matching their biological function. This is achieved via complex structural hierarchies, spanning many length scales, arising from the assembly of different sized building blocks during growth. The interfaces between these building blocks can increase resistance to fracture, join materials of different character, make them deform more easily and provide motility. While they represent only a tiny fraction of the overall volume, interfaces are essential for the integrity and function of the overall tissue. Understanding their construction principles, often based on specialized molecular assemblies, may change our current thinking about composite materials.

  15. Virus Assemblies as Templates for Nanocircuits

    Energy Technology Data Exchange (ETDEWEB)

    James N Culver; Michael T Harris

    2011-08-31

    The goals of this project were directed at the identification and characterization of bio-mineralization processes and patterning methods for the development of nano scale materials and structures with novel energy and conductive traits. This project utilized a simple plant virus as a model template to investigate methods to attach and coat metals and other inorganic compounds onto biologically based nanotemplates. Accomplishments include: the development of robust biological nanotemplates with enhanced inorganic coating activities; novel coating strategies that allow for the deposition of a continuous inorganic layer onto a bio-nanotemplate even in the absence of a reducing agent; three-dimensional patterning methods for the assemble of nano-featured high aspect ratio surfaces and the demonstrated use of these surfaces in enhancing battery and energy storage applications. Combined results from this project have significantly advanced our understanding and ability to utilize the unique self-assembly properties of biologically based molecules to produce novel materials at the nanoscale level.

  16. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  17. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  18. Spacer conformation in biologically active molecules. Part 2. Structure and conformation of 4-[2-(diphenylmethylamino)ethyl]-1-(2-methoxyphenyl) piperazine and its diphenylmethoxy analog—potential 5-HT 1A receptor ligands

    Science.gov (United States)

    Karolak-Wojciechowska, J.; Fruziński, A.; Czylkowski, R.; Paluchowska, M. H.; Mokrosz, M. J.

    2003-09-01

    As a part of studies on biologically active molecule structures with aliphatic linking chain, the structures of 4-[2-diphenylmethylamino)ethyl]-1-(2-methoxyphenyl)piperazine dihydrochloride ( 1) and 4-[2-diphenylmethoxy)ethyl]-1-(2-methoxyphenyl)piperazine fumarate ( 2) have been reported. In both compounds, four atomic non-all-carbons linking chains (N)C-C-X-C are present. The conformation of that linking spacer depends on the nature of the X-atom. The preferred conformation for chain with XNH has been found to be fully extended while for that with XO—the bend one. It was confirmed by conformational calculations (strain energy distribution and random search) and crystallographic data, including statistics from CCDC.

  19. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  20. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja;

    2016-01-01

    DNA vectors serve to maintain and select recombinant DNA in cell factories, and as design complexity increases, there is a greater need for well-characterized parts and methods for their assembly. Standards in synthetic biology are top priority, but standardizing molecular cloning contrasts...... flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...... to the synthetic biology community....

  1. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle.

    Science.gov (United States)

    Carbonell, Pablo; Currin, Andrew; Jervis, Adrian J; Rattray, Nicholas J W; Swainston, Neil; Yan, Cunyu; Takano, Eriko; Breitling, Rainer

    2016-08-27

    Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  2. Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle

    Science.gov (United States)

    Currin, Andrew; Jervis, Adrian J.; Rattray, Nicholas J. W.; Swainston, Neil; Yan, Cunyu; Breitling, Rainer

    2016-01-01

    Covering: 2000 to 2016 Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  3. Laser light stripe measurements assure correct piston assembly

    Science.gov (United States)

    Stein, Norbert; Frohn, Heiko

    1993-12-01

    Two VIKON-3D optical inspection systems assure the correct assembly of piston rings and guard rings in a new Volkswagen piston/rod assembly line. Both systems use laser light stripe measurements to locate and identify the relevant parts with high accuracy. The piston ring assembly is checked dynamically in video real time using laser light stripe and parallel projection techniques. In addition structured light is used to verify the correct piston/rod assembly. Both inspection systems are fully integrated into the manufacturing line. All types of pistons assembled can be checked without any mechanical changes to the measurement setup.

  4. Method for the detection of defective nuclear fuel assemblies

    International Nuclear Information System (INIS)

    There is applied an ultrasonic transmitter on a tape carrier by means of which the ultrasonic transmitter can be guided underwater between the fuel assemblies. If a fuel assembly is defective, i.e. filled with water, the reflection coefficient at the front interface between cladding and inner space of the fuel assembly will decrease. Essential parts of the ultrasonic signal will move through the liquid and will not be reflected until the backward liquid/metal interface of the fuel assembly. This impulse echo is different from that of the gas-filled fuel assembly. (DG)

  5. Finishing of the cold mass assembly

    CERN Multimedia

    Maximilien Brice

    2001-01-01

    Photo 1 The connection-side end of the active part assembly. This view shows the electrical connections between the poles and the curved bus ended with flanges for the connection with the protection diode. Photo 2 The connection-side end of the active part assembly. This view shows the electrical connections between the poles, the auxiliary bus bars and the instrumentation wires. Photo 3 Lyre-side end of the active part assembly. One can see the mechanical support of the corretor magnets that are to be installed around the cold bore tubes. Photo 4 General view of the finishing station showing the special supporting structures (blue and yellow structures) needed for the geometric measurements and for the alignment operations. Around the magnet, there are datum points (on the tripodes) needed to build up the coordinates system for the measurements.

  6. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  7. Assembly of ISX

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, N.W.

    1977-01-01

    The Impurity Study Experiment, a moderate size tokamak, was recently assembled at ORNL. Demountable toroidal field coils allowed for the assembly of major components at remote locations and rapid installation into ISX. A discharge cleaning plasma was generated in ISX six weeks after the arrival of the final toroidal field coil. A chronological summary of the assembly is presented, emphasizing features designed to aid in assembly and maintenance. A cross-section of the machine showing the major mechanical components to be discussed is given.

  8. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  9. Self-assembly and application of diphenylalanine-based nanostructures.

    Science.gov (United States)

    Yan, Xuehai; Zhu, Pengli; Li, Junbai

    2010-06-01

    Micro- and nanostructures fabricated from biological building blocks have attracted tremendous attention owing to their potential for application in biology and in nanotechnology. Many biomolecules, including peptides and proteins, can interact and self-assemble into highly ordered supramolecular architectures with functionality. By imitating the processes where biological peptides or proteins are assembled in nature, one can delicately design and synthesize various peptide building blocks composed of several to dozens of amino acids for the creation of biomimetic or bioinspired nanostructured materials. This tutorial review aims to introduce a new kind of peptide building block, the diphenylalanine motif, extracted with inspiration of a pathogenic process towards molecular self-assembly. We highlight recent and current advances in fabrication and application of diphenylalanine-based peptide nanomaterials. We also highlight the preparation of such peptide-based nanostructures as nanotubes, spherical vesicles, nanofibrils, nanowires and hybrids through self-assembly, the improvement of their properties and the extension of their applications. PMID:20502791

  10. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  11. Mitochondrial ribosome assembly in health and disease.

    Science.gov (United States)

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  12. Reconstitution of nanomachine driving the assembly of proteins into bacterial outer membranes

    International Nuclear Information System (INIS)

    Over 9.5 million people die each year due to infectious diseases caused by pathogens. Many species of pathogenic bacteria require nanomachines acting like a molecular pump that shuttle key disease-causing molecules (proteins) from inside bacteria cells to the outside surface, priming the bacteria for infections. How such proteins are assembled remains an important question in biology. If we can inhibit the nanomachines function in transporting specific violence factors, it would disable the disease process. Therefore it is crucial to understand how the proteins are transported through the nanomachines from the periplasm to the extracellular space. Measuring the activity of the component parts of membrane-embedded nanomachines in solution is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). We show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  13. Plant and Animal Gravitational Biology. Part 2

    Science.gov (United States)

    1997-01-01

    Session WA2 includes short reports concerning: (1) The Asymmetrical Growth of Otoliths in Fish Affected by Altered Gravity and Causes Kinetosis; (2) Neurobiological Responses of Fish to Altered Gravity conditions: A Review; (3) An Age-Dependent Sensitivity of the Roll-Induced Vestibulocular Reflex to Hypergravity Exposure of Several Days in an Amphibian (Xenopus Laevis); (4) Mechanically-Induced Membrane Wounding During Parabolic Flight; and (5) Erythropoietin Stimulates Increased F Cell Numbers in Bone Marrow Cultures Established in Gravity and Microgravity Conditions.

  14. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  15. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  16. The determinism and boundedness of self-assembling structures

    CERN Document Server

    Tesoro, S

    2016-01-01

    Self-assembly processes are widespread in nature, and lie at the heart of many biological and physical phenomena. The characteristics of self-assembly building blocks determine the structures that they form. Among the most important of these properties are whether the self-assembly is deterministic or nondeterministic, and whether it is bound or unbound. The former tells us whether the same set of building blocks always generates the same structure, and the latter whether it grows indefinitely. These properties are highly relevant in the context of protein structures, as the difference between deterministic protein self-assembly and nondeterministic protein aggregation is central to a number of diseases. Here we introduce a graph-based approach that can determine, with a few restrictions, whether a set of self-assembly building blocks is deterministic or nondeterministic, and whether it is bound or unbound. We apply this methodology to a previously studied lattice self-assembly model and discuss generalisatio...

  17. Expanding coordination chemistry from protein to protein assembly.

    Science.gov (United States)

    Sanghamitra, Nusrat J M; Ueno, Takafumi

    2013-05-14

    Bioinorganic chemistry is of growing importance in the fields of nanomaterial science and biotechnology. Coordination of metals by biological systems is a crucial step in intricate enzymatic reactions such as photosynthesis, nitrogen fixation and biomineralization. Although such systems employ protein assemblies as molecular scaffolds, the important roles of protein assemblies in coordination chemistry have not been systematically investigated and characterized. Many researchers are joining the field of bioinorganic chemistry to investigate the inorganic chemistry of protein assemblies. This area is emerging as an important next-generation research field in bioinorganic chemistry. This article reviews recent progress in rational design of protein assemblies in coordination chemistry for integration of catalytic reactions using metal complexes, preparation of mineral biomimetics, and mechanistic investigations of biomineralization processes with protein assemblies. The unique chemical properties of protein assemblies in the form of cages, tubes, and crystals are described in this review.

  18. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz;

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...

  19. Assembly of primary cilia

    DEFF Research Database (Denmark)

    Pedersen, Lotte B; Veland, Iben R; Schrøder, Jacob M;

    2008-01-01

    in primary cilia assembly or function have been associated with a panoply of disorders and diseases, including polycystic kidney disease, left-right asymmetry defects, hydrocephalus, and Bardet Biedl Syndrome. Here we provide an up-to-date review focused on the molecular mechanisms involved in the assembly...

  20. Perspective: Geometrically frustrated assemblies

    Science.gov (United States)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  1. Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits.

    Science.gov (United States)

    Harbage, David; Kondev, Jané

    2016-07-01

    Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.

  2. Fuel Assembly Damping Summary

    International Nuclear Information System (INIS)

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  3. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  4. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  5. 3D Assembly Group Analysis for Cognitive Automation

    Directory of Open Access Journals (Sweden)

    Christian Brecher

    2012-01-01

    Full Text Available A concept that allows the cognitive automation of robotic assembly processes is introduced. An assembly cell comprised of two robots was designed to verify the concept. For the purpose of validation a customer-defined part group consisting of Hubelino bricks is assembled. One of the key aspects for this process is the verification of the assembly group. Hence a software component was designed that utilizes the Microsoft Kinect to perceive both depth and color data in the assembly area. This information is used to determine the current state of the assembly group and is compared to a CAD model for validation purposes. In order to efficiently resolve erroneous situations, the results are interactively accessible to a human expert. The implications for an industrial application are demonstrated by transferring the developed concepts to an assembly scenario for switch-cabinet systems.

  6. On computational properties of gene assembly in ciliates

    Directory of Open Access Journals (Sweden)

    Vladimir Rogojin

    2010-11-01

    Full Text Available Gene assembly in stichotrichous ciliates happening during sexual reproduction is one of the most involved DNA manipulation processes occurring in biology. This biological process is of high interest from the computational and mathematical points of view due to its close analogy with such concepts and notions in theoretical computer science as permutation and linked list sorting and string rewriting. Studies on computational properties of gene assembly in ciliates represent a good example of interdisciplinary research contributing to both computer science and biology. We review here a number of general results related both to the development of different computational methods enhancing our understanding on the nature of gene assembly, as well as to the development of new biologically motivated computational and mathematical models and paradigms. Those paradigms contribute in particular to combinatorics, formal languages and computability theories.

  7. Self-assembling and self-limiting monolayer deposition

    Science.gov (United States)

    Foest, Rüdiger; Schmidt, Martin; Gargouri, Hassan

    2014-02-01

    Effects of spatial ordering of molecules on surfaces are commonly utilized to deposit ultra-thin films with a thickness of a few nm. In this review paper, several methods are discussed, that are distinguished from other thin film deposition processes by exactly these effects that lead to self-assembling and self-limiting layer growth and eventually to coatings with unique and fascinating properties and applications in micro-electronics, optics, chemistry, or biology. Traditional methods for the formation of self-assembled films of ordered organic molecules, such as the Langmuir-Blodgett technique along with thermal atomic layer deposition (ALD) of inorganic molecules are evaluated. The overview is complemented by more recent developments for the deposition of organic or hybrid films by molecular layer deposition. Particular attention is given to plasma assisted techniques, either as a preparative, supplementary step or as inherent part of the deposition as in plasma enhanced ALD or plasma assisted, repeated grafting deposition. The different methods are compared and their film formation mechanisms along with their advantages are presented from the perspective of a plasma scientist. The paper contains lists of established film compounds and a collection of the relevant literature is provided for further reading.

  8. Vision and Force Sensing to Decrease Assembly Uncertainty

    OpenAIRE

    Ellwood, R. John; Raatz, Annika; Hesselbach, Jürgen

    2010-01-01

    International audience This paper presents two ways of decreasing the assembly uncertainty of micro assembly tasks through further or optimized integration of sensors within a size adapted assembly system. To accomplish this, the orientation of the part to be placed with respect to the vision sensor is changed. This was possible through a new gripper which was able to overcome the restrictions placed on the system by the vision sensor. Another increase in precision was obtained through the...

  9. Dissipative self-assembly of vesicular nanoreactors.

    Science.gov (United States)

    Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Scrimin, Paolo; Prins, Leonard J

    2016-07-01

    Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system. PMID:27325101

  10. Advanced DNA assembly technologies in drug discovery.

    Science.gov (United States)

    Tsvetanova, Billyana; Peng, Lansha; Liang, Xiquan; Li, Ke; Hammond, Linda; Peterson, Todd C; Katzen, Federico

    2012-05-01

    Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.

  11. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  12. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2014-01-01

    Full Text Available Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to assembly connection strength to depict the assembling difficulty level. The transmissibility based on trust relationship was applied on the assembly connection strength. Assembly unit partition based on assembly connection strength was conducted, and interferential assembly units were identified and revised. The assembly sequence planning and optimization of parts in each assembly unit and between assembly units was conducted using genetic algorithm. With certain type of high speed CNC turning center, as an example, this paper explored into the assembly modeling, assembly unit partition, and assembly sequence planning and optimization and realized the optimized assembly sequence of headstock of CNC machine tool.

  13. Fibrillin: from microfibril assembly to biomechanical function.

    Science.gov (United States)

    Kielty, Cay M; Baldock, Clair; Lee, David; Rock, Matthew J; Ashworth, Jane L; Shuttleworth, C Adrian

    2002-02-28

    Fibrillins form the structural framework of a unique and essential class of extracellular microfibrils that endow dynamic connective tissues with long-range elasticity. Their biological importance is emphasized by the linkage of fibrillin mutations to Marfan syndrome and related connective tissue disorders, which are associated with severe cardiovascular, ocular and skeletal defects. These microfibrils have a complex ultrastructure and it has proved a major challenge both to define their structural organization and to relate it to their biological function. However, new approaches have at last begun to reveal important insights into their molecular assembly, structural organization and biomechanical properties. This paper describes the current understanding of the molecular assembly of fibrillin molecules, the alignment of fibrillin molecules within microfibrils and the unique elastomeric properties of microfibrils.

  14. DC source assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  15. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  16. Triggered self-assembly of magnetic nanoparticles

    OpenAIRE

    Ye, L; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can t...

  17. 49 CFR 572.193 - Neck assembly.

    Science.gov (United States)

    2010-10-01

    ... environment as specified in 49 CFR 572.200(j); (2) Attach the neck-headform assembly, as shown in Figure V2-A or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49 CFR 572.33) in either the left or right lateral impact orientations, respectively, so that...

  18. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle dynam...

  19. Automotive stamped part fatigue design

    OpenAIRE

    Caudoux Mélanie; Facchinetti Matteo Luca; Raynal Renaud

    2014-01-01

    Fatigue design of automotive axle parts is of prior concern because of these are high safety parts and they are expected to drive the overall vehicle mass reduction. In this framework, the stamping process is widely used to form axle parts, before assembling them by welding. Consequently, the mechanical and physical characteristics of the blank sheet are modified, having a strong influence on the fatigue behavior. In this paper, we address the consequences of the stamped process on the fatigu...

  20. Biology of Nanobots

    Science.gov (United States)

    Duan, Wentao; Pavlick, Ryan; Sen, Ayusman

    2013-12-01

    One of the more interesting recent discoveries has been the ability to design nano/microbots which catalytically harness the chemical energy in their environment to move autonomously. Their potential applications include delivery of materials, self-assembly of superstructures, and roving sensors. One emergent area of research is the study of their collective behavior and how they emulate living systems. The aim of this chapter is to describe the "biology" of nanobots, summarizing the fundamentals physics behind their motion and how the bots interact with each other to initiate complex emergent behavior.

  1. Self-assembly of smallest magnetic particles.

    Science.gov (United States)

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-11-24

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole-dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained.

  2. Attomolar DNA detection with chiral nanorod assemblies

    Science.gov (United States)

    Ma, Wei; Kuang, Hua; Xu, Liguang; Ding, Li; Xu, Chuanlai; Wang, Libing; Kotov, Nicholas A.

    2013-10-01

    Nanoscale plasmonic assemblies display exceptionally strong chiral optical activity. So far, their structural design was primarily driven by challenges related to metamaterials whose practical applications are remote. Here we demonstrate that gold nanorods assembled by the polymerase chain reaction into DNA-bridged chiral systems have promising analytical applications. The chiroplasmonic activity of side-by-side assembled patterns is attributed to a 7-9 degree twist between the nanorod axes. This results in a strong polarization rotation that matches theoretical expectations. The amplitude of the bisignate ‘wave’ in the circular dichroism spectra of side-by-side assemblies demonstrates excellent linearity with the amount of target DNA. The limit of detection for DNA using side-by-side assemblies is as low as 3.7 aM. This chiroplasmonic method may be particularly useful for biological analytes larger than 2-5 nm which are difficult to detect by methods based on plasmon coupling and ‘hot spots’. Circular polarization increases for inter-nanorod gaps between 2 and 20 nm when plasmonic coupling rapidly decreases. Reaching the attomolar limit of detection for simple and reliable bioanalysis of oligonucleotides may have a crucial role in DNA biomarker detection for early diagnostics of different diseases, forensics and environmental monitoring.

  3. Metrology Techniques for the Assembly of NCSX

    International Nuclear Information System (INIS)

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex three dimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometer aided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  4. Metrology Techniques for the Assembly of NCSX

    Energy Technology Data Exchange (ETDEWEB)

    C. Priniski, T. Dodson, M. Duco, S. Raftopoulos, R. Ellis, and A. Brooks

    2009-09-24

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex threedimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometeraided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  5. Steam separator latch assembly

    Science.gov (United States)

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  6. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  7. High speed door assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  8. Assemblies of gold icosahedra

    OpenAIRE

    Bilalbegovic, G.

    2004-01-01

    Low-dimensional free-standing aggregates of bare gold clusters are studied by the molecular dynamics simulation. Icosahedra of 55 and 147 atoms are equilibrated at T=300 K. Then, their one- and two-dimensional assemblies are investigated. It is found that icosahedra do not coalescence into large drops, but stable amorphous nanostructures are formed: nanowires for one-dimensional and nanofilms for two-dimensional assemblies. The high-temperature stability of these nanostructures is also invest...

  9. RESEARCH OF GUIDANCE TECHNOLOGY FOR ASSEMBLY MODELING IN VIRTUAL ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Technology of movement and knowledge guidance in virtual assembly is presented. The designer can move the mechanical part precisely under the movement guidance. The movement guidance is implemented based on constraint recognition and assembly degree of freedom analysis. A multi-hierarchy knowledge base is built to represent the assembly knowledge and information. The virtual assembly system judges the requirement of the designer based on the context of design task and searches for the useful knowledge and information, which can be provided to the designer in a natural way.

  10. Automated Sequencing and Subassembly Detection in Automobile Body Assembly Planning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The choice of the sequence in which parts or subass em blies are put together in the mechanical assembly of a product can drastical ly affect the efficiency of the assembly process. Unlike metal cutting operation s where computer aided system have been available for some 15 to 25 years to hel p manufacturing engineers in generating cutting sequences and NC programs, the m ajority of assembly planning tasks in automobile body design is still manually p erformed by assembly designers according to their pa...

  11. Interference checking approach with tolerance based on assembly dimension chain

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Li Yingguang; Wang Wei; and Liao Wenhe

    2012-01-01

    CAD model with nominal dimension is implemented in interference checking of assembly simulation of aircraft complex parts at present, which causes inadequate availability. In order to address this challenging issue, interference checking method with tolerance based on assembly dimension chain was proposed. Worst case and maximum error probability of tolerance of composing loop were used, and CAD models were respectively re-constructed and inserted into simulation system. Before dynamic interference checking, engineering semantic interference condition was set to assembly requirements. Finally, the interface checking result was a basis for reasonability of assembly process and tolerance. A prototype system was developed based on the above research.

  12. Controlled parts management

    International Nuclear Information System (INIS)

    The Controlled Parts Management (CPM) system is based on industry standard practices for managing inventory. CPM is designed to record the movement of any type of inventory in a defined region referred to as an Account or SubAccount. The system is used to track the receiving, processing, storing and transfer of inventory parts. CPM provides information on parts, quantity and the exact location of the inventory. CPM is a barcode-based-part tracking system currently used to track controlled parts that are used in the R and D and testing of weapons; this tracking helps maintain the part pedigree that is required for certification of a weapon or weapon test. CPM includes bar code data collection software programmed into portable bar code readers for automating physical inventory services and remote transaction capture. CPM interfaces to other Engineering systems and supports a 'material content' of a weapons test through the test Bill of Materials and assignment of a unique inventory part in CPM. Additional functionality includes the ability to group or join parts, logically or physically and temporary or permanent, to represent discrete parts, containers, subassemblies and assemblies, and groupings.

  13. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  14. Protein assemblies by site-specific avidin-biotin interactions.

    Science.gov (United States)

    Mori, Yutaro; Minamihata, Kosuke; Abe, Hiroki; Goto, Masahiro; Kamiya, Noriho

    2011-08-21

    Exploiting self-assembly systems with biological building blocks is of significant interest in the fabrication of advanced biomaterials. We assessed the potential use of site-specific ligand labeling of protein building blocks in designing functional protein self-assemblies by combining site-specifically biotinylated bacterial alkaline phosphatase (as a bidentate or tetradentate ligand unit) and streptavidin (as a tetrameric receptor). PMID:21731938

  15. Predicting Multicomponent Protein Assemblies Using an Ant Colony Approach

    OpenAIRE

    Venkatraman, Vishwesh; Ritchie, David

    2011-01-01

    National audience Biological processes are often governed by functional modules of large protein assemblies such as the proteasomes and the nuclear pore complex, for example. However, atomic structures can be determined experimentally only for a small fraction of these multicomponent assemblies. In this article, we present an ant colony optimization based approach to predict the structure of large multicomponent complexes. Starting with pair-wise docking predictions, a multigraph consistin...

  16. An update on complex I assembly: the assembly of players

    OpenAIRE

    Vartak, Rasika S.; Semwal, Manpreet Kaur; Bai, Yidong

    2014-01-01

    Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pat...

  17. Engineering and Assembly of Protein Modules into Functional Molecular Systems.

    Science.gov (United States)

    Hirschi, Stephan; Stauffer, Mirko; Harder, Daniel; Müller, Daniel J; Meier, Wolfgang; Fotiadis, Dimitrios

    2016-01-01

    Synthetic biology approaches range from the introduction of unique features into organisms to the assembly of isolated biomacromolecules or synthetic building blocks into artificial biological systems with biomimetic or completely novel functionalities. Simple molecular systems can be based on containers on the nanoscale that are equipped with tailored functional modules for various applications in healthcare, industry or biological and medical research. The concept, or vision, of assembling native or engineered proteins and/or synthetic components as functional modules into molecular systems is discussed. The main focus is laid on the engineering of energizing modules generating chemical energy, transport modules using this energy to translocate molecules between compartments of a molecular system, and catalytic modules (bio-)chemically processing the molecules. Further key aspects of this discourse are possible approaches for the assembly of simple nanofactories and their applications in biotechnology and medical health. PMID:27363367

  18. Part Transportation Improvement in Warehouse of an Automotive Factory

    Science.gov (United States)

    Choojan, Tiwapom; Chutima, Parames

    2016-05-01

    This research is focus on the problems cause the assembly line stop in a Japanese automotive manufacturer in Thailand. The problem arose from not being able to supply parts to the assembly line in time and supplying wrong parts to the assembly line. Methods to resolve these problems involved the followings: 1) design new tag labels, 2) improve operations method and 3) redesign the parts storage layout and supply routes. The result showed that the time for transferring parts from the warehouse to the preparing area and the overlapped routes were reduced. Moreover, the supply accuracy from the preparation area to the assembly line was improved.

  19. A self-assembled ionophore

    Science.gov (United States)

    Tirumala, Sampath K.

    1997-11-01

    Ionophores are compounds that bind and transport ions. Ion binding and transport are fundamental to many biological and chemical processes. In this thesis we detail the structural characterization and cation binding properties of a self-assembled ionophore built from an isoguanosine (isoG) derivative, 5sp'-t-butyldimethylsilyl-2sp',3sp'-isopropylidene isoG 30. We begin with a summary of the themes that facilitate ionophore design and the definitions of "self-assembly" and "self-assembled ionophore" in Chapter 1. In Chapter 2, we describe the structural characterization of the isoG 30 self-assembly. IsoG possesses complementary hydrogen bond donor and acceptor sites suitable to form a Csb4-symmetric tetramer, (isoG)sb4 51, that is stable even in high dielectric organic solvents such as CDsb3CN and dsb6-acetone. The isoG tetramer 51 has been characterized by vapor phase osmometry, UV spectroscopy, and by 1D and 2D NMR spectroscopy. The isoG tetramer 51 organizes by hydrogen bonding between the Watson-Crick face of one isoG base and the complementary bottom edge of another purine. The tetramer 51 is stabilized by an inner and outer ring of hydrogen bonds. The inner ring forms between the imino NH1 proton of one monomer and the C2 carbonyl oxygen of an adjacent monomer, while the outer ring is made up of four NH6-N3 hydrogen bonds. The isoG tetramer 51 is thermodynamically stable, with an equilibrium constant (Ksba) of ca. 10sp9-10sp{10} Msp{-3} at room temperature, and a DeltaGsp° of tetramer formation of -12.5 kcal molsp{-1} in dsb6-acetone at 25sp°C. The van't Hoff plots indicated that the thermodynamic parameters for tetramer formation were DeltaHsp° = -18.2 ± 0.87 kcal molsp{-1} and DeltaSsp°sb{298} = -19.1 ± 5.45 eu. In Chapter 3, we describe the cation binding properties of isoG tetramer 51. The isoG tetramer 51 has a central cavity, containing four oxygen atoms, that is suitable for cation coordination. Depending on the cation, the resulting iso

  20. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  1. Photovoltaic self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  2. Study of electronic made-to-measure for clothing based on body parts assembly technology%基于人体部件模板组装的服装量身定制技术研究

    Institute of Scientific and Technical Information of China (English)

    石秀金; 孙莉; 李继云; 施霞萍; 陈家训

    2009-01-01

    通过采集人体样本数据,形成人体部件模板系列,根据客户提供的不同类型体形特征数据文件,提取出对应人体特征数据,生成个性化的三维虚拟人体模型,并最终生成个性化服装原型衣片.依照上述技术路线,设计了原型系统的架构,给出了功能结构,最后实现了原型系统.原型系统的运行结果表明,技术路线正确,系统方案合理,有助于推广电子化量身定制(eMTM)应用.%The human body parts template series were formed through gathering the sample data of human body. The personal 3-dimensional virtual human body model was generated by extracting the feature data of the corresponding human body from different types of body shape data files provided by the customer, and then personal prototype garment chips were achieved. According to the technical route above, the architecture of the prototype system was designed, the function structure was provided, and then the prototype system was realized finally. The operation results of the prototype system show that the technical route is right, and the system scheme is reasonable, can help to popularize the application of electronic Made to Measure (eMTM).

  3. Modular Fixture Assembly Model for Virtual Assembly Design

    Institute of Scientific and Technical Information of China (English)

    PENG Gao-liang; CHEN Guang-feng; LIU Xin-hua

    2009-01-01

    To support modular fixture assembly design in virtual environment, a multi-view based modular fixture virtual assembly model is proposed. Instead of squeezing all assembly related information into a single model, three complementary views of assembly model, element information, function and structure, and assembly relationship are proposed to be used. The first view contains the detailed element information, while the other two explicitly capture the hierarchical function relationships and mating relationships respectively. These views are complementary in the sense that each view only contains a specific aspect of assembly related information while together they include required assembly related information. The proposed assembly model is specialized to accommodate the features of modular fixture virtual assembly design and applied in our developed prototype system.

  4. Pulse detonation assembly and hybrid engine

    Science.gov (United States)

    Rasheed, Adam (Inventor); Dean, Anthony John (Inventor); Vandervort, Christian Lee (Inventor)

    2010-01-01

    A pulse detonation (PD) assembly includes a number of PD chambers adapted to expel respective detonation product streams and a number of barriers disposed between respective pairs of PD chambers. The barriers define, at least in part, a number of sectors that contain at least one PD chamber. A hybrid engine includes a number of PD chambers and barriers. The hybrid engine further includes a turbine assembly having at least one turbine stage, being in flow communication with the PD chambers and being configured to be at least partially driven by the detonation product streams. A segmented hybrid engine includes a number of PD chambers and segments configured to receive and direct the detonation product streams from respective PD chambers. The segmented hybrid engine further includes a turbine assembly configured to be at least partially driven by the detonation product streams.

  5. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  6. Power module assembly

    Science.gov (United States)

    Campbell, Jeremy B.; Newson, Steve

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  7. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  8. In vitro kinetochore assembly

    Science.gov (United States)

    Miell, Matthew D D; Straight, Aaron F

    2016-01-01

    The kinetochore is the primary site of interaction between chromosomes and microtubules of the mitotic spindle during chromosome segregation. The kinetochore is a complex of more than 100 proteins that transiently assemble during mitosis at a single defined region on each chromosome, known as the centromere. Kinetochore assembly and activity must be tightly regulated to ensure proper microtubule interaction and faithful chromosome segregation because perturbation of kinetochores often results in aneuploidy and cell lethality. As such, cell free and reconstituted systems to analyze kinetochore formation and function are invaluable in probing the biochemical activities of kinetochores. In vitro approaches to studying kinetochores have enabled the manipulation of kinetochore protein structure, function, interactions and regulation that are not possible in cells. Here we outline a cell-free approach for the assembly of centromeres and recruitment of functional kinetochores that enables their manipulation and analysis. PMID:27193846

  9. Assembling Sustainable Territories

    DEFF Research Database (Denmark)

    Vandergeest, Peter; Ponte, Stefano; Bush, Simon

    2015-01-01

    The authors show how certification assembles ‘sustainable’ territories through a complex layering of regulatory authority in which both government and nongovernment entities claim rule-making authority, sometimes working together, sometimes in parallel, sometimes competitively. It is argued...... that territorialisation is accomplished not just through (re)defining bounded space, but more broadly through the assembling of four elements: space, subjects, objects, and expertise. Four case studies of sustainability certification in seafood are analyzed to show that ‘green gabbing’ is not necessarily the central...... dynamic in assembling sustainable territories, and that certification always involves state agencies in determining how the key elements that comprise it are defined. Whereas some state agencies have been suspicious of sustainability certification, others have embraced it or even used it to extend...

  10. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  11. Force-controlled robotic assembly processes of rigid and flexible objects methodologies and applications

    CERN Document Server

    Ghalyan, Ibrahim Fahad Jasim

    2016-01-01

    This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry. .

  12. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  13. Transfer of fuel assemblies

    International Nuclear Information System (INIS)

    Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If the strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly

  14. Thermodynamics of Biological Processes

    Science.gov (United States)

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  15. Low inductance connector assembly

    Science.gov (United States)

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  16. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  17. Biology and Mathematics

    Directory of Open Access Journals (Sweden)

    Bascompte, Jordi

    2007-06-01

    Full Text Available Biology has become the new “physics” of mathematics, one of the areas of greatest mathematical applications. In turn, mathematics has provided powerful tools and metaphors to approach the astonishing complexity of biological systems. This has allowed the development of sound theoretical frameworks. Here, I summarize some of the most significant contributions of mathematics to biology, ranging from population genetics, to developmental biology, and to networks of species interactions.La biología se ha convertido en la nueva “física” de las matemáticas, una de las áreas con mayores aplicaciones. Las matemáticas, por su parte, han proporcionado herramientas y metáforas muy poderosas para abordar la increíble complejidad de los sistemas biológicos. Esto ha permitido la génesis de marcos conceptuales sólidos. En este artículo resumo algunas de las aplicaciones más exitosas de las matemáticas a la biología que van desde la genética de poblaciones a la biología del desarrollo y las redes de interacciones ecológicas.

  18. HPC-MAQ : A PARALLEL SHORT-READ REFERENCE ASSEMBLER

    Directory of Open Access Journals (Sweden)

    Veeram Venkata Siva Prasad

    2011-07-01

    Full Text Available Bioinformatics and computational biology are rooted in life sciences as well as computer and information sciences and technologies. Bioinformatics applies principles of information sciences and technologies to make the vast, diverse, and complex life sciences data more understandable and useful. Computational biology uses mathematical and computational approaches to address theoretical and experimental questions in biology. Short read sequence assembly is one of the most important steps in the analysis of biological data. There are many open source software’s available for short read sequence assembly where MAQ is one such popularly used software by the research community. In general, biological data sets generated by next generation sequencers are very huge and massive which requires tremendous amount of computational resources. The algorithm used for the short read sequence assembly is NP Hard which is computationally expensive and time consuming. Also MAQ is single threaded software which doesn't use the power of multi core and distributed computing and it doesn't scale. In this paper we report HPC-MAQ which addresses the NP-Hard related challenges of genome reference assembly and enables MAQ parallel and scalable through Hadoop which is a software framework for distributed computing.

  19. Solar central receiver heliostat reflector assembly

    Science.gov (United States)

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  20. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  1. An Interactive Assembly Process Planner

    Institute of Scientific and Technical Information of China (English)

    廖华飞; 张林鍹; 肖田元; 曾理; 古月

    2004-01-01

    This paper describes the implementation and performance of the virtual assembly support system (VASS), a new system that can provide designers and assembly process engineers with a simulation and visualization environment where they can evaluate the assemblability/disassemblability of products, and thereby use a computer to intuitively create assembly plans and interactively generate assembly process charts. Subassembly planning and assembly priority reasoning techniques were utilized to find heuristic information to improve the efficiency of assembly process planning. Tool planning was implemented to consider tool requirements in the product design stage. New methods were developed to reduce the computation amount involved in interference checking. As an important feature of the VASS, human interaction was integrated into the whole process of assembly process planning, extending the power of computer reasoning by including human expertise, resulting in better assembly plans and better designs.

  2. Heuristics for production scheduling problem with machining and assembly operations

    Directory of Open Access Journals (Sweden)

    P.M. Khodke

    2012-01-01

    Full Text Available This work deals with production scheduling problem in an assembly flow shop, having parts machining followed by their subsequent assembly operations. Limited heuristics available on the problem, are based on unrealistic assumption that every part is processed on all machines. In this paper, two heuristics NEH_BB and Disjunctive are proposed to solve assembly flow shop scheduling problem where every part may not be processed on each machine. Exhaustive computational experiments are conducted with 60 trials each. The methods are found to be applicable to large size problems. The objective functions used for comparison are makespan and computational time. Disjunctive method takes very less computational time as compared to NEH_BB and hence claimed to be the better among available approaches for finding solution in assembly flow shop problems.

  3. Three-dimensional bioprinting using self-assembling scalable scaffold-free "tissue strands" as a new bioink.

    Science.gov (United States)

    Yu, Yin; Moncal, Kazim K; Li, Jianqiang; Peng, Weijie; Rivero, Iris; Martin, James A; Ozbolat, Ibrahim T

    2016-01-01

    Recent advances in bioprinting have granted tissue engineers the ability to assemble biomaterials, cells, and signaling molecules into anatomically relevant functional tissues or organ parts. Scaffold-free fabrication has recently attracted a great deal of interest due to the ability to recapitulate tissue biology by using self-assembly, which mimics the embryonic development process. Despite several attempts, bioprinting of scale-up tissues at clinically-relevant dimensions with closely recapitulated tissue biology and functionality is still a major roadblock. Here, we fabricate and engineer scaffold-free scalable tissue strands as a novel bioink material for robotic-assisted bioprinting technologies. Compare to 400 μm-thick tissue spheroids bioprinted in a liquid delivery medium into confining molds, near 8 cm-long tissue strands with rapid fusion and self-assemble capabilities are bioprinted in solid form for the first time without any need for a scaffold or a mold support or a liquid delivery medium, and facilitated native-like scale-up tissues. The prominent approach has been verified using cartilage strands as building units to bioprint articular cartilage tissue. PMID:27346373

  4. A Method for Designing Assembly Tolerance Networks of Mechanical Assemblies

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available When designing mechanical assemblies, assembly tolerance design is an important issue which must be seriously considered by designers. Assembly tolerances reflect functional requirements of assembling, which can be used to control assembling qualities and production costs. This paper proposes a new method for designing assembly tolerance networks of mechanical assemblies. The method establishes the assembly structure tree model of an assembly based on its product structure tree model. On this basis, assembly information model and assembly relation model are set up based on polychromatic sets (PS theory. According to the two models, the systems of location relation equations and interference relation equations are established. Then, using methods of topologically related surfaces (TTRS theory and variational geometric constraints (VGC theory, three VGC reasoning matrices are constructed. According to corresponding relations between VGCs and assembly tolerance types, the reasoning matrices of tolerance types are also established by using contour matrices of PS. Finally, an exemplary product is used to construct its assembly tolerance networks and meanwhile to verify the feasibility and effectiveness of the proposed method.

  5. Geometric design of part feeders

    NARCIS (Netherlands)

    Berretty, R.-P.M.

    2001-01-01

    This thesis presents solutions for problems derived from industrial assembly and robotic manipulation. The basic tasks in a factory are manufacturing the parts, and combining them into the desired product. In automating these tasks, we want to use robot manipulators that require little or no h

  6. Design Concepts in Set Parts Supply Implementation

    Directory of Open Access Journals (Sweden)

    Suhartini Mohd Jainury

    2013-10-01

    Full Text Available The increasing number of parts variants on an assembly line requires an improvement for a cost efficient and flexible parts supply system. For that reason, the Set Parts Supply (SPS system was introduced by Toyota as a new material handling system for supplying parts in sets based on the kitting concept. In this study, we investigate the consideration of design concepts in SPS implementation at one of Malaysia’s automotive manufacturers through a case study in a mixed-model assembly line that contains many parts to be assembled to the car body. From our case study, we found that the design of the ‘parts only’ or minomi concept on the component racks contributes to the elimination of waste; mura, muri and muda. Finally, we present the lean approach in the minomi concepts that used in designing the component racks.

  7. Triggered self-assembly of magnetic nanoparticles

    Science.gov (United States)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  8. Self assembly of interlocked architectures

    CERN Document Server

    Schergna, S

    2002-01-01

    An area of great interest is the synthesis and characterisation of molecules possessing moving parts, with the goal that they can act as 'molecular machine' carrying out tasks that molecules with fixed conventional architectures cannot do. Rotaxanes and catenanes (mechanically interlocked architectures) represent one approach toward achieving these aims as their component wheels and / or threads are connected together but can still move, in certain, controlled directions. This thesis focused on the study of structural rigidity and the preorganisation of thread binding sites as factors of major influence on template efficiency in the synthesis of hydrogen bond assembled supramolecular structures (rotaxanes and catenanes). Chapter One gives a brief outline of the common synthetic approaches to interlocked architectures (catenanes and rotaxanes) that are now being developed to address the problems outlined above. Chapter Two and Chapter Three concerns the synthesis of novel amide-based rotaxanes containing vario...

  9. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.

    Science.gov (United States)

    Zhou, Mi; Smith, Andrew M; Das, Apurba K; Hodson, Nigel W; Collins, Richard F; Ulijn, Rein V; Gough, Julie E

    2009-05-01

    We report here the design of a biomimetic nanofibrous hydrogel as a 3D-scaffold for anchorage-dependent cells. The peptide-based bioactive hydrogel is formed through molecular self-assembly and the building blocks are a mixture of two aromatic short peptide derivatives: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartate) as the simplest self-assembling moieties reported so far for the construction of small-molecule-based bioactive hydrogels. This hydrogel provides a highly hydrated, stiff and nanofibrous hydrogel network that uniquely presents bioactive ligands at the fibre surface; therefore it mimics certain essential features of the extracellular matrix. The RGD sequence as part of the Fmoc-RGD building block plays a dual role of a structural component and a biological ligand. Spectroscopic and imaging analysis using CD, FTIR, fluorescence, TEM and AFM confirmed that FF and RGD peptide sequences self-assemble into beta-sheets interlocked by pi-pi stacking of the Fmoc groups. This generates the cylindrical nanofibres interwoven within the hydrogel with the presence of RGDs in tunable densities on the fibre surfaces. This rapid gelling material was observed to promote adhesion of encapsulated dermal fibroblasts through specific RGD-integrin binding, with subsequent cell spreading and proliferation; therefore it may offer an economical model scaffold to 3D-culture other anchorage-dependent cells for in-vitro tissue regeneration. PMID:19201459

  10. Self-Assembled DNA Templated Nano-wires and Circuits

    Science.gov (United States)

    Braun, Erez

    2000-03-01

    The realization that conventional microelectronics is approaching its miniaturization limits has motivated the search for an alternative route based on self-assembled nanometer-scale electronics. We have recently proposed a new approach based on the hybridization of biological and electronic materials (Braun E., Eichen Y., Sivan U. and Ben-Yoseph G., Nature 391, 775 (1998)). The concept relies on a two-step self-assembly process. The inherent molecular recognition capabilities of DNA molecules are first utilized to construct a network that serves as a template for the subsequent assembly of electronic materials into a circuit. The utilization of DNA and its associated enzymatic machinery enables: (a) self-assembly of complex substrates, (b) specific molecular addresses for the localization of electronic materials (e.g., gold colloids) by standard molecular biology techniques, (c) interdevice wiring and (d) bridging the microscopic structures to the macroscopic world. The self-assembly of nanometer scale electronics relies on two complementary developments. First, the ability to convert DNA molecules into thin conductive wires and second, the self-assembly of complex extended DNA templates. Our progress in these two directions will be presented. Regarding the first issue, a physical process resulting in condensation of gold colloids onto DNA molecules enables the assembly of thin gold wires (around 100-200 A wide) having, in principle, unlimited extensions. The second issue is developed in the context of recombinant DNA which allows the self-assembly of precise molecular junctions and networks. Specifically, we use RecA protein, which is the main protein responsible for genetic recombination in E. Coli bacteria, to construct DNA junctions at pre-designed addresses (sequences) on the molecules. The integration of these processes allows advancing nanometer-scale electronics. A realistic fabrication scheme for a room-temperature single-electron transistor

  11. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  12. Synergistic Synthetic Biology: Units in Concert

    OpenAIRE

    PabloCarbonell; Jean-YvesTrosset

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimen...

  13. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  14. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation et and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly ma...

  15. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may r...

  16. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may require t...

  17. Rotary shaft sealing assembly

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  18. Corium protection assembly

    Science.gov (United States)

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  19. Spool assembly support analysis

    International Nuclear Information System (INIS)

    This document provides the wind/seismic analysis and evaluation for the pump pit spool assemblies. Hand calculations were used for the analysis. UBC, AISC, and load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  20. Turbomachine blade assembly

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  1. Liaison concatenation – A method to obtain feasible assembly sequences from 3D-CAD product

    Indian Academy of Sciences (India)

    M V A Raju Bahubalendruni; Bibhuti Bhusan Biswal

    2016-01-01

    Selection of optimized assembly sequence from the available feasible assembly sequences is significantly essential to achieve cost-effective manufacturing process. To achieve this, at the outset, generation of feasible assembly sequences with topological, geometrical, precedence and stability conditions should be generated. The increase of part count in a product results huge number of assembly sequences, the Liaison matrix/Liaison graph generated based on the connections between the assembly components eliminates nonpossible assembly sequences at the initial phase. There exist methods namely cut-set method to eliminate the non-possible assembly sequences using liaison graph. In this paper a new approach to eliminate the non-possible assembly sequences based on liaisons is described and the correctness of the methodology is illustrated with an example. The methodology to obtain the feasible assembly sequences is also briefly described and presented. An algorithm to interface with the CAD environment is described briefly.

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. SSME component assembly and life management expert system

    Science.gov (United States)

    Ali, M.; Dietz, W. E.; Ferber, H. J.

    1989-01-01

    The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.

  4. IkeaBot: An autonomous multi-robot coordinated furniture assembly system

    OpenAIRE

    Knepper, Ross A.; Layton, Todd; Romanishin, John William; Rus, Daniela L.

    2013-01-01

    We present an automated assembly system that directs the actions of a team of heterogeneous robots in the completion of an assembly task. From an initial user-supplied geometric specification, the system applies reasoning about the geometry of individual parts in order to deduce how they fit together. The task is then automatically transformed to a symbolic description of the assembly-a sort of blueprint. A symbolic planner generates an assembly sequence that can be executed by a team of coll...

  5. Cation Charge Dependence of the Forces Driving DNA Assembly

    OpenAIRE

    DeRouchey, Jason; Parsegian, V. Adrian; Rau, Donald C.

    2010-01-01

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental fo...

  6. Biological, chemical and other data collected in the North Atlantic Ocean on the WEATHERBIRD II cruises UNKNOWN as part of the EDDIES project from 2004-06-24 to 2005-08-25 (NODC Accession 0081718)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PI: Nick Bates of: Bermuda Biological Station for Research (BBSR) dataset: Niskin bottle and CTD data; nutrients, oxygen, DIC, POC, PON platform: R/V Weatherbird II...

  7. Biological data collected in the North Atlantic Ocean on the OCEANUS cruises WB0409, WB0413, WB0506, and WB0508 as part of the EDDIES project from 2004-06-24 to 2005-08-24 (NODC Accession 0086459)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PI: Nick Bates of: Bermuda Biological Station for Research (BBSR) dataset: Primary Production data platform: R/V Weatherbird II Methodology: see Chapter 18: Primary...

  8. Physical and biological data collected with CDT, fluorometer, and SeaSoar aboard the ship WECOMA as part of Global Ocean Ecosystem Dynamics (GLOBEC) in the North Pacific Ocean from May 30 to June 16 2000 (NODC Accession 0000986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and biological data collected with CDT, fluorometer, and SeaSoar aboard the ship WECOMA in the North Pacific Ocean from May 30 to June 16 2000. These data...

  9. Chemical and biological data collected as part of the CArbon Retention In A Colored Ocean (CARIACO) program in the Cariaco Basin off the coast of Venezuela, January 17, 2005 - January 16, 2006 (NODC Accession 0013170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and biological data were collected using bottle casts on the continental shelf of Venezuela from the HERMANO GINES from January 17, 2005 to January 16,...

  10. Chemical and biological data collected as part of the CArbon Retention In A Colored Ocean (CARIACO) program in the Cariaco Basin off the coast of Venezuela, May 23, 2005 - November 11, 2006 (NODC Accession 0038513)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and biological data were collected using bottle casts on the continental shelf of Venezuela from the HERMANO GINES from May 23, 2005 to November 11, 2006....

  11. Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Australia: part I--a method of manual documentary analysis.

    Science.gov (United States)

    Ilic, Nina; Savic, Snezana; Siegel, Evan; Atkinson, Kerry; Tasic, Ljiljana

    2012-12-01

    Recent development of a wide range of regulatory standards applicable to production and use of tissues, cells, and other biologics (or biologicals), as advanced therapies, indicates considerable interest in the regulation of these products. The objective of this study was to analyze and compare high-tier documents within the Australian, European, and U.S. biologic drug regulatory environments using qualitative methodology. Cohort 1 of the selected 18 high-tier regulatory documents from the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), and the Therapeutic Goods Administration (TGA) regulatory frameworks were subject to a manual documentary analysis. These documents were consistent with the legal requirements for manufacturing and use of biologic drugs in humans and fall into six different categories. Manual analysis included a terminology search. The occurrence, frequency, and interchangeable use of different terms and phrases were recorded in the manual documentary analysis. Despite obvious differences, manual documentary analysis revealed certain consistency in use of terminology across analyzed frameworks. Phrase search frequencies have shown less uniformity than the search of terms. Overall, the EMA framework's documents referred to "medicinal products" and "marketing authorization(s)," the FDA documents discussed "drug(s)" or "biologic(s)," and the TGA documents referred to "biological(s)." Although high-tier documents often use different terminology they share concepts and themes. Documents originating from the same source have more conjunction in their terminology although they belong to different frameworks (i.e., Good Clinical Practice requirements based on the Declaration of Helsinki, 1964). Automated (software-based) documentary analysis should be obtained for the conceptual and relational analysis.

  12. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  13. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  14. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  15. School Assemblies: The Lost Art.

    Science.gov (United States)

    Beach, Daniel R.

    1979-01-01

    Guidelines and suggestions are offered for successful school assemblies. The school assembly should be a positive event; an occasion for developing unity, group loyalty, and desirable audience habits. (Author/MLF)

  16. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  17. Emulating biology: Building nanostructures from the bottom up

    OpenAIRE

    Seeman, Nadrian C.; Belcher, Angela M.

    2002-01-01

    The biological approach to nanotechnology has produced self-assembled objects, arrays and devices; likewise, it has achieved the recognition of inorganic systems and the control of their growth. Can these approaches now be integrated to produce useful systems?

  18. Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿

    OpenAIRE

    Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam

    2008-01-01

    The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely relat...

  19. Measurement Technology for Engine Assembly

    Institute of Scientific and Technical Information of China (English)

    GAO Li; ZHENG Zeyu; DAI Shangping

    2006-01-01

    In many industrial, it is often necessary to analyze the engine assembly. This paper introduces three kinds of new technologies on the assembly line of engine in recent years, it have played the positive role in improving the quality of assembling.

  20. Low inductance busbar assembly

    Science.gov (United States)

    Holbrook, Meghan Ann

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  1. Fuel assemblies chemical cleaning

    International Nuclear Information System (INIS)

    NPP Paks found a thermal-hydraulic anomaly in the reactor core during cycle 14 that was caused by corrosion product deposits on fuel assemblies (FAs) that increased the hydraulic resistance of the FAs. Consequently, the coolant flow through the FAs was insufficient resulting in a temperature asymmetry inside the reactor core. Based on this fact NPP Paks performed differential pressure measurements of all fuel assemblies in order to determine the hydraulic resistance and subsequently the limit values for the hydraulic acceptance of FAs to be used. Based on the hydraulic investigations a total number of 170 FAs was selected for cleaning. The necessity for cleaning the FAs was explained by the fact that the FAs were subjected to a short term usage in the reactor core only maximum of 1,5 years and had still a capacity for additional 2 fuel cycles. (authors)

  2. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To increase the fuel assembly rigidity while making balance in view of the dimension thereby improving the earthquake proofness. Constitution: In a nuclear fuel assembly having a control rod guide thimble tube, the gap between the thimble tube and fuel insert (inner diameter of the guiding thimble tube-outer diameter of the fuel insert) is made greater than 1.0 mm. Further, the wall thickness of the thimble tube is made to about 4 - 5 % of the outer diameter, while the flowing fluid pore cross section S in the thimble tube is set as: S = S0 x A0/A where S0: cross section of the present flowing fluid pore, A: effective cross section after improvement, = Π/4(d2 - D2) in which d is the thimble tube inner diameter and the D is the fuel insert outer diameter. A0: present effective cross section. (Seki, T.)

  3. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  4. 3D vision assisted flexible robotic assembly of machine components

    Science.gov (United States)

    Ogun, Philips S.; Usman, Zahid; Dharmaraj, Karthick; Jackson, Michael R.

    2015-12-01

    Robotic assembly systems either make use of expensive fixtures to hold components in predefined locations, or the poses of the components are determined using various machine vision techniques. Vision-guided assembly robots can handle subtle variations in geometries and poses of parts. Therefore, they provide greater flexibility than the use of fixtures. However, the currently established vision-guided assembly systems use 2D vision, which is limited to three degrees of freedom. The work reported in this paper is focused on flexible automated assembly of clearance fit machine components using 3D vision. The recognition and the estimation of the poses of the components are achieved by matching their CAD models with the acquired point cloud data of the scene. Experimental results obtained from a robot demonstrating the assembly of a set of rings on a shaft show that the developed system is not only reliable and accurate, but also fast enough for industrial deployment.

  5. The renaissance of developmental biology.

    Science.gov (United States)

    St Johnston, Daniel

    2015-05-01

    Since its heyday in the 1980s and 90s, the field of developmental biology has gone into decline; in part because it has been eclipsed by the rise of genomics and stem cell biology, and in part because it has seemed less pertinent in an era with so much focus on translational impact. In this essay, I argue that recent progress in genome-wide analyses and stem cell research, coupled with technological advances in imaging and genome editing, have created the conditions for the renaissance of a new wave of developmental biology with greater translational relevance.

  6. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  7. Uniform Test Assembly

    Science.gov (United States)

    Belov, Dmitry I.

    2008-01-01

    In educational practice, a test assembly problem is formulated as a system of inequalities induced by test specifications. Each solution to the system is a test, represented by a 0-1 vector, where each element corresponds to an item included (1) or not included (0) into the test. Therefore, the size of a 0-1 vector equals the number of items "n"…

  8. REACTOR NOZZLE ASSEMBLY

    Science.gov (United States)

    Capuder, F.C.; Dearwater, J.R.

    1959-02-10

    An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.

  9. Water Pollution: Part I, Municipal Wastewaters; Part II, Industrial Wastewaters.

    Science.gov (United States)

    Fowler, K. E. M.

    This publication is an annotated bibliography of municipal and industrial wastewater literature. This publication consists of two parts plus appendices. Part one is entitled Municipal Wastewaters and includes publications in such areas as health effects of polluted waters, federal policy and legislation, biology and chemistry of polluted water,…

  10. Fourth Doctoral Student Assembly

    CERN Multimedia

    Ingrid Haug

    2016-01-01

    On 10 May, over 130 PhD students and their supervisors, from both CERN and partner universities, gathered for the 4th Doctoral Student Assembly in the Council Chamber.   The assembly was followed by a poster session, at which eighteen doctoral students presented the outcome of their scientific work. The CERN Doctoral Student Programme currently hosts just over 200 students in applied physics, engineering, computing and science communication/education. The programme has been in place since 1985. It enables students to do their research at CERN for a maximum of three years and to work on a PhD thesis, which they defend at their University. The programme is steered by the TSC committee, which holds two selection committees per year, in June and December. The Doctoral Student Assembly was opened by the Director-General, Fabiola Gianotti, who stressed the importance of the programme in the scientific environment at CERN, emphasising that there is no more rewarding activity than lear...

  11. IAHS Third Scientific Assembly

    Science.gov (United States)

    The International Association of Hydrological Sciences (IAHS) convened its Third Scientific Assembly in Baltimore, Md., May 10-19, 1989. The Assembly was attended by about 450 scientists and engineers. The attendance was highest from the U.S., as could be expected; 37 were from Canada; 22 each, Netherlands and United Kingdom; 14, Italy; 12, China; 10, Federal Republic of Germany; 8 each from France, the Republic of South Africa, and Switzerland; 7, Austria; 6 each, Finland and Japan; others were scattered among the remainder of 48 countries total.one of the cosponsors and also handled business matters for the Assembly. Other cosponsors included the International Association of Meteorology and Atmospheric Physics (IAMAP), United Nations Environmental Program (UNEP), United Nations Educational, Scientific, and Cultural Organization (UNESCO), World Meteorological Organization (WMO), and U.K. Overseas Development Authority (ODA). U.S. federal agencies serving as cosponsors included the Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, National Weather Service, Department of Agriculture, Department of State, and U.S. Geological Survey.

  12. Ordinary General Assembly

    CERN Multimedia

    Association du personnel

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Modifications to the statutes of the association Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda...

  13. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  14. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  15. Ethical Issues in Synthetic Biology

    OpenAIRE

    Heavey, Patrick Joseph

    2013-01-01

    Synthetic biology has been defined as: “the design and construction of new biological parts, devices, and systems, and the re-design of existing, natural biological systems for useful purposes” (syntheticbiology.org). The convergence of scientific fields such as molecular biology, computer science and others have rendered it a natural progression, based on existing knowledge.The fact that humanity has reached a stage of development where it seems feasible to “create” life, or design it to a h...

  16. Understanding of viral assembly through characterization of virus like nanoparticles

    Science.gov (United States)

    Malyutin, Andrey

    Virus like nanoparticles (VNPs) are a versatile platform for the development of novel materials that can be used in clinical applications or to study fundamental aspects of viral self-assembly and biophysics. In this work I summarize my progress on three VNP based studies. (1) We perform small angle X-ray scattering, cryo-electron microscopy (cryo-EM) combined with single particle reconstruction, and magnetic resonance imaging (MRI) to characterize structure and properties of VNPs containing gold coated iron oxide nanoparticles (NPs). These 11 nm NPs can be functionalized with HS-PEG-COOH ligand and maintain native protein structure and excellent magnetic properties, making them suitable for use as contrast agents in MRI. (2) Light scattering and cryo-EM and tomography are applied to study the assembly mechanism of BMV capsids around gold NPs. A novel mechanism of assembly is observed that, upon initiation of assembly, proceeds through an intermediary aggregation step of proteins and NPs, followed by protein annealing, and a release of assembled VNPs. This mechanism could have biological relevance to native virus assembly, as it exemplifies the versatility and robustness of the BMV protein, its ability to rescue assembly even in an aggregated state, as derived from the need to assemble in a variety of hosts and conditions. (3) The effects of crowding conditions, as mimicked by PEG6000 and Ficoll 70, on the assembly of empty capsids of BMV and structure of native BMV virions are investigated by light scattering, cryo-EM, and single particle reconstruction. Native virions display reduction in overall size, dependent on crowding agent concentration; whereas the assembly of empty capsids is greatly accelerated in crowded conditions at a range of ionic strengths. This work further displays the need for in vivo methods to study viral properties, as in vitro experiments miss the complexities of the cell.

  17. Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers.

    Science.gov (United States)

    Han, Xu; Zheng, Yeting; Munro, Catherine J; Ji, Yiwen; Braunschweig, Adam B

    2015-08-01

    Despite their central role in directing some of the most complex biological processes, carbohydrates--nature's other information carrying biopolymer--have been largely ignored as building blocks for synthetic hierarchical assemblies. The non-stoichiometric binding and astronomical diversity characteristic of carbohydrates could lead to tantalizingly complex assembly algorithms, but these attributes simultaneously increase the difficulty of preparing carbohydrate assemblies and anticipating their behavior. Convergences in biotechnology, nanotechnology, polymer chemistry, surface science, and supramolecular chemistry have led to many recent important breakthroughs in glycan microarrays and synthetic carbohydrate receptors, where the idiosyncrasies of carbohydrate structure and binding are increasingly considered. We hope to inspire more researchers to consider carbohydrate structure, diversity, and binding as attractive tools for constructing synthetic hierarchical assemblies.

  18. A Modular Assembly Platform for Rapid Generation of DNA Constructs.

    Science.gov (United States)

    Akama-Garren, Elliot H; Joshi, Nikhil S; Tammela, Tuomas; Chang, Gregory P; Wagner, Bethany L; Lee, Da-Yae; Rideout, William M; Papagiannakopoulos, Thales; Xue, Wen; Jacks, Tyler

    2016-01-01

    Traditional cloning methods have limitations on the number of DNA fragments that can be simultaneously manipulated, which dramatically slows the pace of molecular assembly. Here we describe GMAP, a Gibson assembly-based modular assembly platform consisting of a collection of promoters and genes, which allows for one-step production of DNA constructs. GMAP facilitates rapid assembly of expression and viral constructs using modular genetic components, as well as increasingly complicated genetic tools using contextually relevant genomic elements. Our data demonstrate the applicability of GMAP toward the validation of synthetic promoters, identification of potent RNAi constructs, establishment of inducible lentiviral systems, tumor initiation in genetically engineered mouse models, and gene-targeting for the generation of knock-in mice. GMAP represents a recombinant DNA technology designed for widespread circulation and easy adaptation for other uses, such as synthetic biology, genetic screens, and CRISPR-Cas9. PMID:26887506

  19. Case Study in Biomimetic Design: Handling and Assembly of Microparts

    DEFF Research Database (Denmark)

    Shu, Li; Hansen, Hans Nørgaard; Gegeckaite, Asta;

    2006-01-01

    This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves...

  20. Self-assembly drugs: from micelles to nanomedicine.

    Science.gov (United States)

    Messina, Paula V; Besada-Porto, Jose Miguel; Ruso, Juan M

    2014-03-01

    Self-assembly has fascinated many scientists over the past few decades. Rapid advances and widespread interest in the study of this subject has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nano- and mesoscopic dimensions. Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries for scientists seeking to design novel molecular materials exhibiting unusual properties, and for researchers investigating the structure and function of biomolecules. Consequently, self-assembly transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field including nanotechnology and nanomedicine. Basically, self-assembly focuses on a wide range of discrete molecules or molecular assemblies and uses physical transformations to achieve its goals. In this Review, we present a comprehensive overview of the advances in the field of drug self-assembly and discuss in detail the synthesis, self-assembly behavior, and physical properties as well as applications. We refer the reader to past reviews dealing with colloidal molecules and colloidal self-assembly. In the first part, we will discuss, compare, and link the various bioinformatic procedures: Molecular Dynamics and Quantitative Structure Activity Relationship. The second section deals with the self-assembly behavior in more detail, in which we focus on several experimental techniques, selected according to the depth of knowledge obtained. The last part will review the advances in drug-protein assembly. Nature provides many examples of proteins that form their substrate binding sites by bringing together the component pieces in a process of self-assembly. We will focus in the understanding of physical properties and applications developing thereof. PMID:24444168

  1. Self-assembly drugs: from micelles to nanomedicine.

    Science.gov (United States)

    Messina, Paula V; Besada-Porto, Jose Miguel; Ruso, Juan M

    2014-03-01

    Self-assembly has fascinated many scientists over the past few decades. Rapid advances and widespread interest in the study of this subject has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nano- and mesoscopic dimensions. Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries for scientists seeking to design novel molecular materials exhibiting unusual properties, and for researchers investigating the structure and function of biomolecules. Consequently, self-assembly transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field including nanotechnology and nanomedicine. Basically, self-assembly focuses on a wide range of discrete molecules or molecular assemblies and uses physical transformations to achieve its goals. In this Review, we present a comprehensive overview of the advances in the field of drug self-assembly and discuss in detail the synthesis, self-assembly behavior, and physical properties as well as applications. We refer the reader to past reviews dealing with colloidal molecules and colloidal self-assembly. In the first part, we will discuss, compare, and link the various bioinformatic procedures: Molecular Dynamics and Quantitative Structure Activity Relationship. The second section deals with the self-assembly behavior in more detail, in which we focus on several experimental techniques, selected according to the depth of knowledge obtained. The last part will review the advances in drug-protein assembly. Nature provides many examples of proteins that form their substrate binding sites by bringing together the component pieces in a process of self-assembly. We will focus in the understanding of physical properties and applications developing thereof.

  2. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    to honor the archaea pioneers Wolfram Zillig and Karl O. Stetter, the book provides a thorough survey of the field from its controversial beginnings to its ongoing expansion to include aspects of eukaryotic biology. The editors have assembled articles from the premier researchers in this rapidly burgeoning...... and technological context, and include accounts of cutting-edge research developments. The book spans archaeal evolution, physiology, and molecular and cellular biology and will be an essential reference for both graduate students and researchers....

  3. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    Science.gov (United States)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  4. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  5. Product Assembly Cost Estimation Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks (ANN). It can support the de signers in cost effectiveness, then help to control the total cost. The method was used in the assembly cost estimation of the crucial parts of some railway stock products. As a compari son, we use the linear regression (LR) model in the same field. The result shows that ANN model performs better than the LR model in assembly cost estimation.

  6. Precharacterization Report for Instrumented Fuel Assembly (IFA)-527

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M. E.; Bradley, E. R.; Daniel, J. L.; Davis, N. C.; Lanning, D. D.; Williford, R. E.

    1981-07-01

    This report is a resource document covering the rationale, design, fabrication, and preirradiation characterization of instrumented fuel assembly (IFA)-527. This assembly is being irradiated in the Halden Boiling Water Reactor (HBWR) in Norway as part of the Experimental Support and Development of Single-Rod Fuel Codes Program conducted by Pacific Northwest laboratory (PNL) and sponsored by the Fuel Behavior Research Branch of the U.S. Nuclear Regulatory Commission (NRC). Data from this assembly will be used to better understand light water reactor (LWR) fuel behavior under normal operating conditions.

  7. Programmed assembly of nanoscale structures using peptoids.

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  8. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  9. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  10. Methodological studies on the VVER-440 control assembly calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hordosy, G.; Kereszturi, A.; Maraczy, C. [KFKI Atomic Energy Research Institute, Budapest (Hungary)

    1995-12-31

    The control assembly regions of VVER-440 reactors are represented by 2-group albedo matrices in the global calculations of the KARATE code system. Some methodological aspects of calculating albedo matrices with the COLA transport code are presented. Illustrations are given how these matrices depend on the relevant parameters describing the boron steel and steel regions of the control assemblies. The calculation of the response matrix for a node consisting of two parts filled with different materials is discussed.

  11. Immune and Genetic Algorithm Based Assembly Sequence Planning

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-guo; LI Bei-zhi; YU Lei; JIN Yu-song

    2004-01-01

    In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system - DSFAS based on the ASPIG is introduced to solve assembly sequence problem. The concept and generation of PDFM and DSFAS are also discussed. DSFAS can prevent premature convergence, and promote population diversity, and can accelerate the learning and convergence speed in behavior evolution problem.

  12. Biomimetics applied to centering in micro-assembly

    DEFF Research Database (Denmark)

    Shu, L.H.; Lenau, Torben Anker; Hansen, Hans Nørgaard;

    2003-01-01

    This paper describes the application of a biomimetic search method to develop ideas for centering objects in micro-assembly. Biomimetics involves the imitation of biological phenomena to solve problems. An obstacle to the use of biomimetics in engineering is knowledge of biological phenomena...... that is relevant to the problem at hand. The method described here starts with an engineering problem, and then systematically searches for analogous biological phenomena using functional keywords. This method is illustrated by finding and using analogies for the problem of positioning and centering objects during...

  13. Plant mitochondrial Complex I composition and assembly: A review.

    Science.gov (United States)

    Subrahmanian, Nitya; Remacle, Claire; Hamel, Patrice Paul

    2016-07-01

    In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  14. Biological Rhythms and Preeclampsia

    OpenAIRE

    Ditisheim, Agnès J.; Dibner, Charna; Philippe, Jacques; Pechère-Bertschi, Antoinette

    2013-01-01

    The impact of impaired circadian rhythm on health has been widely studied in shift workers and trans-meridian travelers. A part from its correlation with sleep and mood disorders, biological rhythm impairment is a recognized risk factor for cardiovascular diseases and breast cancer. Preeclampsia is a major public health issue, associated with a significant maternal and fetal morbidity and mortality worldwide. While the risks factors for this condition such as obesity, diabetes, pre-existing h...

  15. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  16. Cooperativity governs the size and structure of biological interfaces.

    Science.gov (United States)

    Qin, Zhao; Buehler, Markus J

    2012-11-15

    Interfaces, defined as the surface of interactions between two parts of a system at a discontinuity, are very widely found in nature. While it is known that the specific structure of an interface plays an important role in defining its properties, it is less clear whether or not there exist universal scaling laws that govern the structural evolution of a very broad range of natural interfaces. Here we show that cooperativity of interacting elements, leading to great strength at low material use, is a key concept that governs the structural evolution of many natural interfaces. We demonstrate this concept for the cases of β-sheet proteins in spider silk, gecko feet, legs of caterpillars, and self-assembling of penguins into huddles, which range in scales from the submolecular to the macroscopic level. A general model is proposed that explains the size and structure of biological interfaces from a fundamental point of view.

  17. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  18. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  19. Active assembly for large-scale manufacturing of integrated nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Spoerke, Erik David; Bunker, Bruce Conrad; Orendorff, Christopher J.; Bachand, George David; Hendricks, Judy K.; Matzke, Carolyn M.

    2007-01-01

    Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.

  20. Fourier-Bessel reconstruction of helical assemblies.

    Science.gov (United States)

    Diaz, Ruben; Rice, William J; Stokes, David L

    2010-01-01

    Helical symmetry is commonly used for building macromolecular assemblies. Helical symmetry is naturally present in viruses and cytoskeletal filaments and also occurs during crystallization of isolated proteins, such as Ca-ATPase and the nicotinic acetyl choline receptor. Structure determination of helical assemblies by electron microscopy has a long history dating back to the original work on three-dimensional (3D) reconstruction. A helix offers distinct advantages for structure determination. Not only can one improve resolution by averaging across the constituent subunits, but each helical assembly provides multiple views of these subunits and thus provides a complete 3D data set. This review focuses on Fourier methods of helical reconstruction, covering the theoretical background, a step-by-step guide to the process, and a practical example based on previous work with Ca-ATPase. Given recent results from helical reconstructions at atomic resolution and the development of graphical user interfaces to aid in the process, these methods are likely to continue to make an important contribution to the field of structural biology. PMID:20888960

  1. Spatially confined assembly of nanoparticles.

    Science.gov (United States)

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  2. Robotic Thumb Assembly

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  3. 78 FR 16472 - Deposit of Biological Materials

    Science.gov (United States)

    2013-03-15

    ... United States Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection....'' SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part of a patent application is... use the invention as specified by 35 U.S.C. 112. The term ``biological material'' is defined by 37...

  4. 75 FR 6348 - Deposit of Biological Materials

    Science.gov (United States)

    2010-02-09

    ... Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection; comment request....Fawcett@uspto.gov . Include ``0651-0022 Deposit of Biological Materials comment'' in the subject line of....Hanlon@uspto.gov . SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part...

  5. Biology-Derived Algorithms in Engineering Optimization

    CERN Document Server

    Yang, Xin-She

    2010-01-01

    Biology-derived algorithms are an important part of computational sciences, which are essential to many scientific disciplines and engineering applications. Many computational methods are derived from or based on the analogy to natural evolution and biological activities, and these biologically inspired computations include genetic algorithms, neural networks, cellular automata, and other algorithms.

  6. Biology Education Research: Lessons and Future Directions

    Science.gov (United States)

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2013-01-01

    Biologists have long been concerned about the quality of undergraduate biology education. Over time, however, biology faculty members have begun to study increasingly sophisticated questions about teaching and learning in the discipline. These scholars, often called biology education researchers, are part of a growing field of inquiry called…

  7. 9 CFR 311.39 - Biological residues.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Biological residues. 311.39 Section... Biological residues. Carcasses, organs, or other parts of carcasses of livestock shall be condemned if it is determined that they are adulterated because of the presence of any biological residues....

  8. Motorcycle Parts

    Science.gov (United States)

    1993-01-01

    An article in NASA Tech Briefs describing a vacuum bagging process for forming composite parts helped a small Oklahoma Company to improve its manufacturing process. President of Performance Extremes, Larry Ortega, and his partners make motorcycle parts from carbon/epoxy to reduce weight. Using vacuum bags, parts have a better surface and fewer voids inside. When heat used in the vacuum bag process caused deformation upon cooling, a solution found in another tech brief solved the problem. A metal plate inside the vacuum bag made for more even heat transfer. A third article described a simple procedure for repairing loose connector pins, which the company has also utilized.

  9. Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, moored current meters, and meteorological sensors from the GYRE from as part of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX PART A) from 04 November 1992 to 05 August 1994 (NODC Accession 9500054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, and meteorological sensors from the GYRE from...

  10. Engineering Cellular Photocomposite Materials Using Convective Assembly

    Directory of Open Access Journals (Sweden)

    Orlin D. Velev

    2013-05-01

    Full Text Available Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick, organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

  11. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  12. Progress of EMBarrel assembly

    CERN Multimedia

    Chalifour, M

    2002-01-01

    The assembly of the sixteen "M" modules into a vertical axis cylinder has been achieved last Friday, completing the first wheel of the Electromagnetic Barrel Calorimeter (see picture). With this, an important milestone in the construction of the ATLAS detector has been reached. Future steps are the rotation of the cylinder axis into horizontal position, in order to integrate the presamplers and heat exchangers by the end of October. The transportation of the wheel and its insertion into the cryostat is the next major milestone, and is planned for the beginning of 2003. The construction of the modules (the so-called "P" modules) of the second wheel is ongoing at Saclay, Annecy and CERN, and will be completed in the coming months. The assembly of the second wheel should start at CERN in February, and its insertion in the cryostat is scheduled for June 2003. This achievement is the result of a successful collaboration of all institutes involved in the construction of the EM Barrel, namely Annecy, Saclay and CE...

  13. ANNUAL GENERAL ASSEMBLY

    CERN Multimedia

    2001-01-01

    All members and beneficiaries of the Pension Fund are invited to attend the Annual General Asssembly to be held in the CERN Auditorium on Wednesday 3 October 2001 at 14.30 hrs The Agenda comprises:   Opening Remarks (P. Levaux) Some aspects of risk in a pension fund (C. Cuénoud) Annual Report 2000: Presentation and results (C. Cuénoud) Copies of the Report are available from divisional secretariats. Results of the actuarial reviews (G. Maurin) Questions from members and beneficiaries Persons wishing to ask questions are encouraged to submit them, where possible, in writing in advance, addressed to Mr C. Cuénoud, Administrator of the Fund. Conclusions (P. Levaux) As usual, participants are invited to drinks after the assembly. NB The minutes of the 2000 General Assembly are available from the Administration of the Fund (tel. + 41 22 767 91 94; e-mail Graziella.Praire@cern.ch) The English version will be published next week.

  14. Fuel assembly supporting structure

    International Nuclear Information System (INIS)

    For use in forming the core of a pressurized-water reactor, a fuel assembly supporting structure for holding a bundle of interspaced fuel rods, is formed by interspaced end pieces having holes in which the end portions of control rod guide tubes are inserted, fuel rod spacer grids being positioned by these guide tubes between the end pieces. The end pieces are fastened to the end portions of the guide tubes, to integrate the supporting structure, and in the case of at least one of the end pieces, this is done by means which releases that end piece from the guide tubes when the end pieces receive an abnormal thrust force directed towards each other and which would otherwise place the guide tubes under a compressive stress that would cause them to buckle. The spacer grids normally hold the fuel rods interspaced by distances determined by nuclear physics, and buckling of the control rod guide tubes can distort the fuel rod spacer grids with consequent dearrangement of the fuel rod interspacing. A sudden loss of pressure in a pressurized-water reactor pressure vessel can result in the pressurized coolant in the vessel discharging from the vessel at such high velocity as to result in the abnormal thrust force on the end pieces of each fuel assembly, which could cause buckling of the control rod guide tubes when the end pieces are fixed to them in the normal rigid and unyielding manner

  15. Required buffer capacities in assembly systems

    Directory of Open Access Journals (Sweden)

    D. Krenczyk

    2007-07-01

    Full Text Available Purpose: The aim of the realised analysis is the determination of the set of conditions. The fulfilment of those conditions enables the synchronisation of the assembly system work into the steady state. It is necessary to specify the rules controlling the assembly system work. Rhythmic concurrent production with wide assortment in the considered assembly system is realised.Design/methodology/approach: The theoretical roots of the considerations presented in that paper include theory of constraints. The presented approach is consistent with the authority method called Requirements and Possibilities Balance Method (RPBMFindings: Two kinds of system buffers: the entrance buffers and the inter-resources buffers are considered in that paper. The number of buffers elements needed for production during first steady state of the given system has been determined. Mathematical formulas specifying the minimal capacity of the buffers allocated in the assembly system have been outworked.Research limitations/implications: The formulas specifying the minimal buffer capacity constitute the first step towards formulation of the automatic method. That method is designed for the automatic construction of rules controlling the system work during transient phases between two different steady states. The process enables automation of the introduction filling of the system buffers.Practical implications: The presented formulas can become an integrated part of existing authority software. The developed computer system aids the decision-making process connected with production planning and ensures effective utilisation of production resources. Moreover, the formulas correctness during computer simulations has been verified.Originality/value: To develop the formulas specifying the minimal capacity of the system buffers is the main achievement of the given paper. The presented approach permits to solve the problem concerning the synchronisation of the assembly system work

  16. The effects of self-assembly in solutions of polyelectrolytes

    OpenAIRE

    Limberger, Roman E.

    2004-01-01

    The PhD thesis "The Effects of Self-Assembly in Solutions of Polyelectrolytes" written by Roman E. Limberger contains the introduction, the literature review, two original parts, the consequences, the acknowledgements, the list of references and four appendices. In the introduction the relevance of the present thesis is explained. The literature review is divided into two parts. The first part is dedicated to the consideration of the main theoretical models and the results in the study of...

  17. Fixture Variation Diagnosis of Compliant Assembly Using Sensitivity Matrix

    Institute of Scientific and Technical Information of China (English)

    YU Kui-gang; JIN Sun; LAI Xin-min

    2009-01-01

    An automotive body is composed of compliant sheet metal parts. Fast and exactly diagnosing variation sources is very important when assembly variations happen. This paper proposes a diagnosis method of multi fixture variations based on the variation model of compliant sheet metal assembly. The assembly variation model is obtained by using the method of influence coefficients (MIC) and considering the manufacturing variations of compliant parts and multi fixture variations. The measurement point variations induced by part manufacturing variations are firstly removed from the measurement data. The variation patterns of multi fixture variations are constructed by column vectors of fixture variation sensitivity matrix. This method is proved to be feasible for exactly diagnosing the fixture variations and has higher diagnosis efficiency than designated component analysis (DCA).

  18. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  19. Finishing of the cold mass assembly

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 1 Technicians are putting in order the instrumentation wires. The prototype magnets were equipped with numerous sensors to monitor key parameters during the performance tests at cold conditions. Photo 2 The cold mass assembly is resting on special supports in order to allow the finishing operations. Technicians are putting in order the instrumentation wires. The prototype magnets were equipped with numerous sensors to monitor key parameters during the performance tests at cold conditions. Photo 3 View of the lyre-side end of the active part assembly. The extremity of the shrinking cylinder has been bevelled in view of welding the end cover. Photo 4 General view of the finishing station showing the special supporting structures (blue and yellow structures) needed for the geometric measurements and for the alignment operations. One can also see the light building surrounding the finishing station, which purpose is to isolate the laser measuring machines from disturbances. Photo 5 The extremity of the shri...

  20. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  1. Ribosome Assembly as Antimicrobial Target.

    Science.gov (United States)

    Nikolay, Rainer; Schmidt, Sabine; Schlömer, Renate; Deuerling, Elke; Nierhaus, Knud H

    2016-01-01

    Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors. PMID:27240412

  2. Physical and biological data collected off the Florida coast in the North Atlantic Ocean and the Gulf of Mexico as part of the Harmful Algal Bloom Historical Database from February 5, 1954 to December 30, 1998 (NODC Accession 0000585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the later part of 1999, a relational Microsoft Access database was created to accommodate a wide range of data on the phytoplankton Karenia brevis. This...

  3. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  4. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  5. Self-assembly via microfluidics

    OpenAIRE

    Wang, Lei; Sánchez, Samuel

    2015-01-01

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks w...

  6. Coded nanoscale self-assembly

    Indian Academy of Sciences (India)

    Prathyush Samineni; Debabrata Goswami

    2008-12-01

    We demonstrate coded self-assembly in nanostructures using the code seeded at the component level through computer simulations. Defects or cavities occur in all natural assembly processes including crystallization and our simulations capture this essential aspect under surface minimization constraints for self-assembly. Our bottom-up approach to nanostructures would provide a new dimension towards nanofabrication and better understanding of defects and crystallization process.

  7. Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Simon, R.; Polosky, M.; Christenson, T.

    1999-04-01

    This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.

  8. Methanation assembly using multiple reactors

    Science.gov (United States)

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  9. JWST NIRCam flight mirror assemblies

    Science.gov (United States)

    Mammini, Paul V.; Holmes, Howard C.; Huff, Lynn; Jacoby, Mike S.; Lopez, Frank

    2011-10-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which includes numerous fold mirror assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K. The optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the mirror assemblies for the NIRCam instrument. This paper covers the design, analysis, assembly, and test of two of the instruments key fold mirrors.

  10. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  11. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  12. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  13. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  14. Identification based on facial parts

    Directory of Open Access Journals (Sweden)

    Stevanov Zorica

    2007-01-01

    Full Text Available Two opposing views dominate face identification literature, one suggesting that the face is processed as a whole and another suggesting analysis based on parts. Our research tried to establish which of these two is the dominant strategy and our results fell in the direction of analysis based on parts. The faces were covered with a mask and the participants were uncovering different parts, one at the time, in an attempt to identify a person. Already at the level of a single facial feature, such as mouth or eye and top of the nose, some observers were capable to establish the identity of a familiar face. Identification is exceptionally successful when a small assembly of facial parts is visible, such as eye, eyebrow and the top of the nose. Some facial parts are not very informative on their own but do enhance recognition when given as a part of such an assembly. Novel finding here is importance of the top of the nose for the face identification. Additionally observers have a preference toward the left side of the face. Typically subjects view the elements in the following order: left eye, left eyebrow, right eye, lips, region between the eyes, right eyebrow, region between the eyebrows, left check, right cheek. When observers are not in a position to see eyes, eyebrows or top of the nose, they go for lips first and then region between the eyebrows, region between the eyes, left check, right cheek and finally chin.

  15. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  16. Hyper bio assembler for 3D cellular systems

    CERN Document Server

    Arai, Fumihito; Yamato, Masayuki

    2015-01-01

    Hyper Bio Assembler for Cellular Systems is the first book to present a new methodology for measuring and separating target cells at high speed and constructing 3D cellular systems in vitro. This book represents a valuable resource for biologists, biophysicists and robotic engineers, as well as researchers interested in this new frontier area, offering a better understanding of the measurement, separation, assembly, analysis and synthesis of complex biological tissue, and of the medical applications of these technologies. This book is the outcome of the new academic fields of the Ministry of Education, Culture, Sports, Science and Technology’s Grant-in-Aid for Scientific Research in Japan.

  17. Multilayer Thin Films Sequential Assembly of Nanocomposite Materials

    CERN Document Server

    Decher, Gero

    2012-01-01

    This second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces. Praise for the first edition: "... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development..." –Polymer News With contri

  18. Self-assembly of flagellin on Au(111) surfaces.

    Science.gov (United States)

    González Orive, Alejandro; Pissinis, Diego E; Diaz, Carolina; Miñán, Alejandro; Benítez, Guillermo A; Rubert, Aldo; Daza Millone, Antonieta; Rumbo, Martin; Hernández Creus, Alberto; Salvarezza, Roberto C; Schilardi, Patricia L

    2014-11-01

    The adsorption of flagellin monomers from Pseudomonas fluorescens on Au(111) has been studied by Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), Surface Plasmon Resonance (SPR), and electrochemical techniques. Results show that flagellin monomers spontaneously self-assemble forming a monolayer thick protein film bounded to the Au surface by the more hydrophobic subunit and exposed to the environment the hydrophilic subunit. The films are conductive and allow allocation of electrochemically active cytochrome C. The self-assembled films could be used as biological platforms to build 3D complex molecular structures on planar metal surfaces and to functionalize metal nanoparticles.

  19. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  20. Self assembly of interlocked architectures

    International Nuclear Information System (INIS)

    An area of great interest is the synthesis and characterisation of molecules possessing moving parts, with the goal that they can act as 'molecular machine' carrying out tasks that molecules with fixed conventional architectures cannot do. Rotaxanes and catenanes (mechanically interlocked architectures) represent one approach toward achieving these aims as their component wheels and / or threads are connected together but can still move, in certain, controlled directions. This thesis focused on the study of structural rigidity and the preorganisation of thread binding sites as factors of major influence on template efficiency in the synthesis of hydrogen bond assembled supramolecular structures (rotaxanes and catenanes). Chapter One gives a brief outline of the common synthetic approaches to interlocked architectures (catenanes and rotaxanes) that are now being developed to address the problems outlined above. Chapter Two and Chapter Three concerns the synthesis of novel amide-based rotaxanes containing various saturated and unsaturated skeletons in their templating core. These new amide-based rotaxanes (muconic, hydromuconic and glutaconic) were synthesised by a clipping strategy in high yields. Chapter Four concerns the synthesis of a novel class of rotaxanes containing a naphthalene tetramide macrocycle that has a larger cavity (102). Several rotaxanation experiments based on macrocycle 102 precursors and threads containing several possible templating motifs were examined. Chapter Five report on the use of rotaxane wheels as a non-covalent protecting group able to influence the chemical behaviour of the functional groups in the central part of the axle. Chapter Six several heterocircuit [2]catenanes functionalised with various sulphide groups were synthesised and their monolayer forming capability on a gold surface studied. Another approach involving covalent attachment of macrocycles and catenanes on a pre-formed monolayer was also investigated. (author)