WorldWideScience

Sample records for biological oceanography students

  1. Macroecology: A Primer for Biological Oceanography

    Science.gov (United States)

    Li, W. K. W.

    2016-02-01

    Macroecology is the study of ecological patterns discerned at a spatial, temporal, or organization scale higher than that at which the focal entities interact. Such patterns are statistical or emergent manifestations arising from the ensemble of component entities. Although macroecology is a neologism largely based in terrestrial and avian ecology, macroscopic patterns have long been recognised in biological oceanography. Familiar examples include Redfield elemental stoichiometry, Elton trophic pyramids, Sheldon biomass spectrum, and Margalef life-forms mandala. Macroecological regularities can often be found along various continua, such as along body size in power-law scaling or along habitat temperature in metabolic theory. Uniquely in oceanography, a partition of the world ocean continuum into Longhurst biogeochemical provinces provides a spatial organization well-suited for macroecological investigations. In this rational discrete approach, fundamental processes in physical and biological oceanography that differentiate a set of non-overlapping ocean regions also appear to shape the macroecological structure of phytoplankton communities.

  2. Oceanography for Landlocked Classrooms. Monograph V.

    Science.gov (United States)

    Madrazo, Gerry M., Jr., Ed.; Hounshell, Paul B., Ed.

    This monograph attempts to show the importance of bringing marine biology into science classrooms, discusses what makes the ocean so important and explains why oceanography should be included in the science curriculum regardless of where students live. Section I, "Getting Started," includes discussions on the following: (1) "Why Marine Biology?";…

  3. Careers in Oceanography.

    Science.gov (United States)

    Hollister, Charles D., Ed.

    This booklet was prepared by practicing oceanographers to help college students in their search for professional direction. The booklet: (1) points out some frontiers of current research; (2) describes five major subfields of oceanography (marine geology and geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and…

  4. The Biological and Chemical Oceanography Data Management Office

    Science.gov (United States)

    Allison, M. D.; Chandler, C. L.; Groman, R. C.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.

    2011-12-01

    Oceanography and marine ecosystem research are inherently interdisciplinary fields of study that generate and require access to a wide variety of measurements. In late 2006 the Biological and Chemical Oceanography Sections of the National Science Foundation (NSF) Geosciences Directorate Division of Ocean Sciences (OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO). In late 2010 additional funding was contributed to support management of research data from the NSF Office of Polar Programs Antarctic Organisms & Ecosystems Program. The BCO-DMO is recognized in the 2011 Division of Ocean Sciences Sample and Data Policy as one of several program specific data offices that support NSF OCE funded researchers. BCO-DMO staff members offer data management support throughout the project life cycle to investigators from large national programs and medium-sized collaborative research projects, as well as researchers from single investigator awards. The office manages and serves all types of oceanographic data and information generated during the research process and contributed by the originating investigators. BCO-DMO has built a data system that includes the legacy data from several large ocean research programs (e.g. United States Joint Global Ocean Flux Study and United States GLOBal Ocean ECosystems Dynamics), to which data have been contributed from recently granted NSF OCE and OPP awards. The BCO-DMO data system can accommodate many different types of data including: in situ and experimental biological, chemical, and physical measurements; modeling results and synthesis data products. The system enables reuse of oceanographic data for new research endeavors, supports synthesis and modeling activities, provides availability of "real data" for K-12 and college level use, and provides decision-support field data for policy-relevant investigations. We will present an overview of the data management system capabilities including: map

  5. Syllabus for an Associate Degree Program in Applied Marine Biology and Oceanography.

    Science.gov (United States)

    Banerjee, Tapan

    Included is a detailed outline of the content of each course required or offered as an elective in the associate degree program. With an 18 or 19 unit load each semester the program requires two years, and includes 64 hours at sea every semester. In addition to chemistry, physics, biology, and oceanography courses, there is a required course in…

  6. Physical oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Murty, V.S.N.

    The chapter on physical oceanography of the Indian Ocean is written keeping in mind the graduate students and researchers. It starts with a brief introduction (citing latest expeditions) followed by the coastal and near processes (wave climate...

  7. Connecting Oceanography and Music

    Science.gov (United States)

    Beauregard, J. L.

    2016-02-01

    Capturing and retaining the interest of non-science majors in science classes can be difficult, no matter what type of science. At Berklee College of Music, this challenge is especially significant, as all students are music majors. In my Introductory Oceanography course, I use a final project as a way for the students to link class material with their own interests. The students may choose any format to present their projects to the class; however, many students write and perform original music. The performances of ocean-themed music have become a huge draw of the Introductory Oceanography course. In an effort to expand the reach of this music, several colleagues and I organized the first Earth Day event at Berklee, `Earthapalooza 2015.' This event included performances of music originally written for the final projects, as well as other musical performances, poetry readings, guest talks, and information booths. Although the idea of an Earth Day event is not new, this event is unique in that student performances really resonate with the student audience. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of oceanography through music. In this presentation, I will play examples of original student compositions and show video of the live student performances. I will also discuss the benefits and challenges of the final projects and the Earth Day event. Finally, I will highlight the future plans to continue ocean-themed music at Berklee.

  8. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  9. NSF-Sponsored Biological and Chemical Oceanography Data Management Office

    Science.gov (United States)

    Allison, M. D.; Chandler, C. L.; Copley, N.; Galvarino, C.; Gegg, S. R.; Glover, D. M.; Groman, R. C.; Wiebe, P. H.; Work, T. T.; Biological; Chemical Oceanography Data Management Office

    2010-12-01

    Ocean biogeochemistry and marine ecosystem research projects are inherently interdisciplinary and benefit from improved access to well-documented data. Improved data sharing practices are important to the continued exploration of research themes that are a central focus of the ocean science community and are essential to interdisciplinary and international collaborations that address complex, global research themes. In 2006, the National Science Foundation Division of Ocean Sciences (NSF OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO) to serve the data management requirements of scientific investigators funded by the National Science Foundation’s Biological and Chemical Oceanography Sections. BCO-DMO staff members work with investigators to manage marine biogeochemical, ecological, and oceanographic data and information developed in the course of scientific research. These valuable data sets are documented, stored, disseminated, and protected over short and intermediate time frames. One of the goals of the BCO-DMO is to facilitate regional, national, and international data and information exchange through improved data discovery, access, display, downloading, and interoperability. In May 2010, NSF released a statement to the effect that in October 2010, it is planning to require that all proposals include a data management plan in the form of a two-page supplementary document. The data management plan would be an element of the merit review process. NSF has long been committed to making data from NSF-funded research publicly available and the new policy will strengthen this commitment. BCO-DMO is poised to assist in creating the data management plans and in ultimately serving the data and information resulting from NSF OCE funded research. We will present an overview of the data management system capabilities including: geospatial and text-based data discovery and access systems; recent enhancements to data search tools; data

  10. The ecology of plankton in biological oceanography: a tribute to Marta Estrada’s task

    Directory of Open Access Journals (Sweden)

    Jordi Solé

    2016-09-01

    Full Text Available Plankton ecology has been the object of intense research and progress in the last few decades. This has been partly due to technological advances that have facilitated the multidisciplinary and high-resolution sampling of ecosystems and improved experimentation and analytical methodologies, and to sophisticated modelling. In addition, exceptional researchers have had the vision to integrate all these innovative tools to form a solid theoretical background in ecology. Here we provide an overview of the outstanding research work conducted by Professor Marta Estrada and her pioneering contribution to different areas of research in the last four decades. Her research in biological oceanography has mainly focussed on phytoplankton ecology, taxonomy and physiology, the functional structure of plankton communities, and physical and biological interactions in marine ecosystems. She has combined a variety of field and laboratory approaches and methodologies, from microscopy to satellite observations, including in-depth statistical data analysis and modelling. She has been a reference for scientists all over the world. Here, her contributions to plankton ecology are summarized by some of her students and closest collaborators, who had the privilege to share their science and everyday experiences with her.

  11. Using Oceanography to Support Active Learning

    Science.gov (United States)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from

  12. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  13. An oceanography summer school in Ghana, West Africa

    Science.gov (United States)

    Arbic, B. K.; Ansong, J. K.; Johnson, W.; Nyadjro, E. S.; Nyarko, E.

    2016-02-01

    Because oceanography is a global science, it clearly benefits from the existence of a world-wide network of oceanographers. As with most STEM disciplines, sub-Saharan Africa is not as well represented in the field of oceanography as it should be, given its large population. The need for oceanographers in sub-Saharan Africa is great, due to a long list of ocean-related issues affecting African development, including but not limited to fishing, oil drilling, sea level rise, coastal erosion, shipping, and piracy. We view this as an opportunity as well as a challenge. Many of the world's fastest growing economies are in sub-Saharan Africa, and STEM capacity building could further fuel this growth. With support from the US National Science Foundation, we ran an oceanography summer school from August 24-27, 2015, at the Regional Maritime University (RMU) in Ghana, West Africa. This first summer school was lecture-based, with a focus on basic chemical oceanography, basic physical oceanography, ocean modeling, and satellite oceanography. About 35 participants came to almost every lecture, and about 20 other participants came to some of the lectures as their time permitted. The participants included RMU faculty, 12 students from the Kwame Nkrumah University of Science and Technology, one Associate Oceanographer from the University of Ghana, and some participants from private sector companies and Ghanaian governmental agencies. There were long and lively discussions at the end of each lecture, and there was a lengthy discussion at the conclusion of the school on how to improve future summer schools. In 2016 and 2017, we plan to divide into smaller groups so that participants can pursue their particular interests in greater depth, and to allow time for student presentations. We also plan to begin exploring the potential for research partnerships, and to utilize distance learning to involve more faculty and students from locations throughout Ghana and perhaps from even other

  14. Chemical oceanography

    National Research Council Canada - National Science Library

    Millero, F.J

    1996-01-01

    Chemical Oceanography presents a comprehensive examination of the chemistry of oceans through discussions of such topics as descriptive physical oceanography, the composition of seawater and the major...

  15. Teaching Introductory Oceanography through Case Studies: Project based approach for general education students

    Science.gov (United States)

    Farnsworth, K. L.; House, M.; Hovan, S. A.

    2013-12-01

    A recent workshop sponsored by SERC-On the Cutting Edge brought together science educators from a range of schools across the country to discuss new approaches in teaching oceanography. In discussing student interest in our classes, we were struck by the fact that students are drawn to emotional or controversial topics such as whale hunting and tsunami hazard and that these kinds of topics are a great vehicle for introducing more complex concepts such as wave propagation, ocean upwelling and marine chemistry. Thus, we have developed an approach to introductory oceanography that presents students with real-world issues in the ocean sciences and requires them to explore the science behind them in order to improve overall ocean science literacy among non-majors and majors at 2 and 4 year colleges. We have designed a project-based curriculum built around topics that include, but are not limited to: tsunami hazard, whale migration, ocean fertilization, ocean territorial claims, rapid climate change, the pacific trash patch, overfishing, and ocean acidification. Each case study or project consists of three weeks of class time and is structured around three elements: 1) a media analysis; 2) the role of ocean science in addressing the issue; 3) human impact/response. Content resources range from textbook readings, popular or current print news, documentary film and television, and data available on the world wide web from a range of sources. We employ a variety of formative assessments for each case study in order to monitor student access and understanding of content and include a significant component of in-class student discussion and brainstorming guided by faculty input to develop the case study. Each study culminates in summative assessments ranging from exams to student posters to presentations, depending on the class size and environment. We envision this approach for a range of classroom environments including large group face-to-face instruction as well as hybrid

  16. A Retrospective Self-Assessment of the SURFO Summer Internship Program in Oceanography

    Science.gov (United States)

    Pockalny, R. A.; Donohue, K. A.; Fliegler, J.

    2009-12-01

    The Summer Undergraduate Research Fellowships in Oceanography (SURFO) program at the Graduate School of Oceanography/University of Rhode Island is an NSF-funded Research Experience for Undergraduates site program with a programmatic research niche focused on quantitative aspects of Oceanography. Each summer-cohort includes 9-12 participants (rising seniors) who are paired with a primary research advisor and often with a graduate student mentor. The primary components of the 10-week program include a 4-week introductory phase and a 6-week core research phase. A retrospective self-assessment instrument gauged the confidence, attitude and comfort level of participants with; 1) core math and science subjects, 2) oceanography-related subjects, 3) research skills, and 4) SURFO and GSO staff. SURFO participants evaluated themselves at the start of the program, after the introductory phase, and at the end of the program. Participants were also asked to reassess their initial evaluations and provide an updated score. The pre-assessment results indicate that the program recruits students from the target group (e.g., strong physics and math backgrounds, but with limited exposure to oceanography). The results also indicate that the students are initially comfortable with their advising team, but not so comfortable with their research topic and research skills. The post-introductory phase results indicate large increases in comfort level with the advising team and the local research community yet little or no change is indicated for research skills. The final assessments show large changes in oceanography-content knowledge, research topic, and research skills. The retrospective reassessment indicates an initial overconfidence in most categories. Overall, the largest changes occurred during the core research portion of the program. These results reinforce the importance/effectiveness of authentic, hands-on, inquiry-based research for higher learning and training the next

  17. Ocean for all, a different way to see oceanography

    Directory of Open Access Journals (Sweden)

    Bruna Ramos

    2017-11-01

    Full Text Available Oceanography as a science is still not very widespread in Brazilian society, making it difficult to strengthen the ties between society and the ocean. Thus, the creation of methodologies associated with new teaching techniques, improved with the help of technology, may build a more inclusive society and provide the experience of oceanographic phenomena for all. The extension project "Ocean for all", executed between March and July of 2016, performed an experience in oceanography to the elderly members of the Associação Catarinense para Integração do Cego (ACIC in Florianópolis (SC. In order to do so, a methodology was created to pass on knowledge about oceanography in its biological, geological, chemical and physical aspects to the visually impaired. During the execution of the experience, as well as the development of the methodology, problems in the coastal marine environment with anthropological origin were presented.

  18. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  19. Dissertations Initiative for the Advancement of Limnology and Oceanography (DIALOG)

    Science.gov (United States)

    1994-01-01

    The DIALOG Program was founded by the American Society of Limnology and Oceanography (ASLO), in order to reduce the historical, institutional and philosophical barriers that limit the exchange of information between limnologists and oceanographers, and to foster interdisciplinary and inter-institutional research. This was achieved by targeting a recent cohort of Ph.D. recipients whose work included a biological component of limnology or oceanography. The program included: (1) publication of the submitted Ph.D. dissertation abstracts; (2) a symposium to facilitate exchange across institutions and disciplines; and (3) establishment of a centralized data base for applicant characterization and tracking.

  20. In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science

    Science.gov (United States)

    Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.

    2007-12-01

    Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends

  1. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Directory of Open Access Journals (Sweden)

    P. Y. Le Traon

    2013-10-01

    Full Text Available The launch of the French/US mission Topex/Poseidon (T/P (CNES/NASA in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many

  2. Oceanography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, B.N.

    This volume is an outcome of the presentation of selected 74 papers at the International Symposium on the Oceanography of the Indian Ocean held at National Institute of Oceanography during January 1991. The unique physical setting of the northern...

  3. Effective, Active Learning Strategies for the Oceanography Classroom

    Science.gov (United States)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  4. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  5. A Source Book for Teaching Chemical Oceanography.

    Science.gov (United States)

    Loder, Theodore C.; Glibert, Patricia M.

    Chemical oceanography or marine chemistry are taught in many colleges and universities. This publication provides sources for instructors of such courses. The first section of this report is a detailed composite outline of a course in chemical oceanography. It includes fundamental topics taught in many chemical oceanography classes. The outline…

  6. The Fleet Numerical Meteorology and Oceanography Center (FNMOC) - Naval

    Science.gov (United States)

    Meteorology Oceanography Ice You are here: Home › FNMOC FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info The Fleet Numerical Meteorology and Oceanography Center (FNMOC) The Fleet Numerical Meteorology and Oceanography Center (FNMOC

  7. Oceanography and Geoscience Scholars at Texas A&M University Funded through the NSF S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) Program

    Science.gov (United States)

    Richardson, M. J.; Gardner, W. D.

    2016-02-01

    Over the last seven years we have led the creation and implementation of the Oceanography and Geoscience Scholars programs at Texas A&M University. Through these programs we have been able to provide scholarship support for 92 undergraduates in Geosciences and 29 graduate students in Oceanography. Fifty-seven undergraduate scholars have graduated in Geosciences: 30 undergraduate students in Meteorology, 7 in Geology, and 20 in Environmental Geosciences. Two students have graduated in other STEM disciplines. Twenty-four students are in the process of completing their undergraduate degrees in STEM disciplines. Twenty-three students have graduated with MS or PhD degrees in Oceanography and five PhD students are completing their dissertations. As specified in the program solicitation all of the scholars are academically talented students with demonstrated financial need as defined by the FAFSA (Free Application for Federal Student Aid). We have endeavored to recruit students from underrepresented groups. One-third of the undergraduate scholars were from underrepresented groups; 28% of the graduate students. We will present the challenges and successes of these programs.

  8. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  9. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    Science.gov (United States)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  10. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    Science.gov (United States)

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  11. A New Data Management System for Biological and Chemical Oceanography

    Science.gov (United States)

    Groman, R. C.; Chandler, C.; Allison, D.; Glover, D. M.; Wiebe, P. H.

    2007-12-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created to serve PIs principally funded by NSF to conduct marine chemical and ecological research. The new office is dedicated to providing open access to data and information developed in the course of scientific research on short and intermediate time-frames. The data management system developed in support of U.S. JGOFS and U.S. GLOBEC programs is being modified to support the larger scope of the BCO-DMO effort, which includes ultimately providing a way to exchange data with other data systems. The open access system is based on a philosophy of data stewardship, support for existing and evolving data standards, and use of public domain software. The DMO staff work closely with originating PIs to manage data gathered as part of their individual programs. In the new BCO-DMO data system, project and data set metadata records designed to support re-use of the data are stored in a relational database (MySQL) and the data are stored in or made accessible by the JGOFS/GLOBEC object- oriented, relational, data management system. Data access will be provided via any standard Web browser client user interface through a GIS application (Open Source, OGC-compliant MapServer), a directory listing from the data holdings catalog, or a custom search engine that facilitates data discovery. In an effort to maximize data system interoperability, data will also be available via Web Services; and data set descriptions will be generated to comply with a variety of metadata content standards. The office is located at the Woods Hole Oceanographic Institution and web access is via http://www.bco-dmo.org.

  12. The ARMADA Project: Bringing Oceanography and the Arctic to the Midwest

    Science.gov (United States)

    Pazol, J.

    2010-12-01

    In the fall of 2009, I spent 6 weeks aboard the Coast Guard Icebreaker Healy on a mapping expedition in the Arctic Ocean, through participation in the University of Rhode Island's ARMADA Project. Because I grew up in the Midwest, went to college here, and teach in the Chicago suburbs, I had limited first-hand experience in oceanography, as did most of my students. During my time aboard the ship, I primarily served as a member of the mapping team, collecting bathymetric and seismic data. My other science activities included aiding geologists and acoustic engineers in dredging projects and deployment of under-ice recording devices. I collected water data, sent off weather balloons, and assisted marine mammal observers. For the ARMADA Project I kept an on-line journal, which had a far-reaching impact. Students in many schools kept track of my activities and communicated with me via e-mail. Colleagues and friends shared the journal through other media, such as Facebook. Several of my entries were published in blogs belonging to NOAA and the USGS. I received a grant for renting a satellite phone, and through it was able to make "Live from the Arctic" phone calls. After introductory PowerPoints I communicated with more than 420 students in 5 schools in 3 states. When I returned, I made a series of presentations about the Arctic and my adventures to hundreds of people and was featured in an educational magazine with a circulation of more than 90,000. I also participated in an in-depth mentoring program with a new teacher to help her succeed during the first years of her career. The results: My students and I now have a direct connection to the Arctic and to the fields of oceanography, acoustic engineering, and geology. On their own initiative, students have developed individual projects exploring aspects of my research. They have attended presentations from the Extreme Ice Center and have become involved in drilling issues in the Chukchi Sea. A group of students is

  13. Putting the Deep Biosphere on the Map for Oceanography Courses: Gas Hydrates As a Case Study for the Deep Biosphere

    Science.gov (United States)

    Sikorski, J. J.; Briggs, B. R.

    2014-12-01

    The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.

  14. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  15. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  16. Mentoring Women in Physical Oceanography

    Science.gov (United States)

    Gerber, Lisa M.; Lozier, M. Susan

    2010-08-01

    MPOWIR Pattullo Conference; Charleston, South Carolina, 23-26 May 2010; Initiated in 2004, Mentoring Physical Oceanography Women to Increase Retention (MPOWIR) is a community-initiated and community-led program aimed at providing mentoring to junior women in physical oceanography to improve their retention in the field. The centerpiece of the MPOWIR program is the Pattullo Conference, a two-and-a-half-day mentoring event held biannually. The second conference was held in South Carolina. The conference is named for June Pattullo, the first woman to receive a Ph.D. in physical oceanography. The goals of the Pattullo Conference are to build community networks among junior and senior scientists, to provide junior scientists with feedback on their current and planned research projects, to provide advice to junior scientists on their career goals, to introduce both senior and junior scientists to aspects of professional development, and to raise awareness of issues confronting junior women among the senior scientist community.

  17. The Pale Blue Dot: Utilizing Real World Globes in High School and Undergraduate Oceanography Classrooms

    Science.gov (United States)

    Rogers, D. B.

    2017-12-01

    Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings

  18. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    Science.gov (United States)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as

  19. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    Science.gov (United States)

    2013-09-30

    Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound

  20. Estuarine Oceanography. CEGS Programs Publication Number 18.

    Science.gov (United States)

    Wright, F. F.

    Estuarine Oceanography is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. Designed for those interested in coastal oceanography or limnology, the module is structured as a laboratory supplement for undergraduate college classes but should be useful at all levels. The module has two…

  1. Oceanography Branch Hydrographic Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oceanography group maintains and provides Conductivity/Temperature/Depth (CTD) instruments to all Center cruises for measuring water column profiles of...

  2. Crucial times for Spanish physical oceanography

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2012-08-01

    Full Text Available The field of physical oceanography has undergone exponential growth in Spain during the last few decades. From a handful of self-taught researchers in the late 1960s there are now several hundred physical oceanographers distributed in some 20 Spanish institutions, and many more working overseas. The First Spanish Physical Oceanography Meeting (EOF1, held in Barcelona in October 2010, was a good example of the high quality and large variety of this research. The facilities and human resources are excellent but the alarming decrease in public investment in science due to the economic crisis must lead the Spanish physical oceanography community to define its current priorities. In this introductory paper to EOF1 we revise our history and where we are now, and suggest that progress in the near future will rely on our intelligence to sustain and enhance human capital, partnership and society-oriented research.

  3. Introduction to fisheries oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan

    Fisheries oceanography can be applied to fisheries ecology, fisheries management and practical fishing. Physico-chemical parameters of the environment (temperature, currents, waves, light, oxygen and salinity) have profound effect on fish...

  4. Argo workstation: a key component of operational oceanography

    Science.gov (United States)

    Dong, Mingmei; Xu, Shanshan; Miao, Qingsheng; Yue, Xinyang; Lu, Jiawei; Yang, Yang

    2018-02-01

    Operational oceanography requires the quantity, quality, and availability of data set and the timeliness and effectiveness of data products. Without steady and strong operational system supporting, operational oceanography will never be proceeded far. In this paper we describe an integrated platform named Argo Workstation. It operates as a data processing and management system, capable of data collection, automatic data quality control, visualized data check, statistical data search and data service. After it is set up, Argo workstation provides global high quality Argo data to users every day timely and effectively. It has not only played a key role in operational oceanography but also set up an example for operational system.

  5. Science review of the Beaufort Institute of Oceanography, the Halifax Fisheries Research Laboratory, and the St. Andrews Biological Station, 1990-91. Revue des sciences de l'Institut oceanographique de Bedford, du Laboratoire de recherche halieutique de Halifax, et de la Station biologique de St. Andrews, 1990-91

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T E; Cook, J [eds.

    1992-01-01

    A review is presented of the research and survey programs being undertaken in 1990-91 at the Bedford Institute of Oceanography, the Halifax Fisheries Research Laboratory, and the St. Andrews Biological Station (all in Nova Scotia). The broad objectives of these programs are to perform applied research leading to the provision of advice on the management of marine and freshwater environments, including fisheries and offshore hydrocarbon resources; to perform targeted basic research in accordance with the mandates of Canada's Department of Fisheries and Oceans, Environment Canada, and Energy, Mines and Resources; to perform surveys and cartographic work; and to respond to major marine environmental emergencies. The research and survey work encompasses the fields of marine geology and geophysics, physical oceanography, marine chemistry, biological oceanography, fisheries research, seabird research, and navigational surveys and cartography. Topics of specific projects reviewed include marine pollution detection, phytoplankton profiling, seal populations, ocean mapping, geographic information systems, fish and invertebrate nutrition, shellfish culture, lobster habitat ecology, physics and biology of the Georges Bank frontal system, water-level instrumentation, data acquisition techniques, sea ice monitoring, salmon management, nearshore sedimentary processes, and oil/gas distribution in offshore basins. Separate abstracts have been prepared for three project reports from this review.

  6. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  7. Oceanography of the Chilean Patagonia

    Science.gov (United States)

    Pantoja, Silvio; Luis Iriarte, José; Daneri, Giovanni

    2011-03-01

    Chilean Patagonia is one of the most extended fjord regions in the world that covers nearly 240,000 km 2 with an extremely complex coastline and topography in one of the least densely populated areas of the country (1-8 inhabitants every 10 km 2). In recent years, the area has been undergoing somewhat intense pressure since several commercial projects in hydroelectricity, tourism, and commercial salmon and mytilid cultures have been developed, or are in progress. Concomitantly, several large research programs have been devised to study the physical, chemical, and biological environment of Patagonia, such as the CIMAR FIORDO, and recently COPAS Sur-Austral based at Universidad de Concepcion, that attempts to close the bridge between oceanographic knowledge and its use by society. In this introductory article we summarize the collection of papers comprising this Special Issue of Continental Shelf Research. These papers deal with aspects of regional oceanography and geology, inorganic and organic geochemistry, ecology of pelagic and benthic organisms, and past changes in productivity.

  8. CSIR-National Institute of Oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Tapaswi, M.P.

    CSIR-National Institute of Oceanography being one of its kind in the country The article describes the on-going researches and projects in contributing to the science in the field of Marine science....

  9. Greek Secondary School Students' Views about Biology

    Science.gov (United States)

    Mavrikaki, Evangelia; Koumparou, Helen; Kyriakoudi, Margarita; Papacharalampous, Irene; Trimandili, Maria

    2012-01-01

    This paper aims to give a picture of Greek students' views about biology and some of the factors that affect them. A questionnaire measuring students' intrinsic motivation to learn biology, individual interest in biology and perceived difficulty of biology, along with information about students' gender, level, parents' occupation and educational…

  10. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  11. JARE-43 Tangaroa marine science cruise report (Physical oceanography

    Directory of Open Access Journals (Sweden)

    Shigeru Aoki

    2004-11-01

    Full Text Available To understand the seasonal variation of biological and biogeochemical cycles in the seasonal ice zone in the Southern Ocean, the cruise of JARE-STAGE (Japanese Antarctic Research Expedition-Studies on Antarctic Ocean and Global Environment was conducted in February 2002 with R/V Tangaroa. Physical oceanography implementations of the cruise are described. The results of the manufacturers' CTD conductivity calibrations were consistent between before and after the cruise, and the difference in salinity estimate was expected to be within 0.0014. Two casts were made to validate the XCTD accuracy and comparisons with the CTD are discussed. Generally, it is concluded that reasonably accurate observations were completed in this cruise.

  12. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-12-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  13. From Proposal Writing to Data Collection to Presentation: Physical Oceanography Laboratory Class Students Explore the Fundamentals of Science

    Science.gov (United States)

    Buijsman, M. C.; Church, I.; Haydel, J.; Martin, K. M.; Shiller, A. M.; Wallace, D. J.; Blancher, J.; Foltz, A.; Griffis, A. M.; Kosciuch, T. J.; Kincketootle, A.; Pierce, E.; Young, V. A.

    2016-02-01

    To better prepare first-year Department of Marine Science MSc students of the University of Southern Mississippi for their science careers, we plan to execute a semester-long Physical Oceanography laboratory class that exposes the enrolled students to all aspects of interdisciplinary research: writing a proposal, planning a cruise, collecting and analyzing data, and presenting their results. Although some of these aspects may be taught in any such class, the incorporation of all these aspects makes this class unique.The fieldwork will be conducted by boat in the Rigolets in Louisiana, a 13-km long tidal strait up to 1 km wide connecting the Mississippi Sound with Lake Pontchartrain. The students have the opportunity to collect ADCP, CTD, multibeam sonar, sediment and water samples.A second novel characteristic of this class is that the instructor partnered with the Lake Pontchartrain Basin Foundation, a not for profit environmental advocacy group. The foundation will give an hour-long seminar on the natural history of the study area and its environmental problems. This information provides context for the students' research proposals and allows them to formulate research questions and hypotheses that connect their research objectives to societally relevant issues, such as coastal erosion, salt water intrusion, and water quality. The proposal writing and cruise planning is done in the first month of the 3.5-month long semester. In the second month two surveys are conducted. The remainder of the semester is spent on analysis and reporting. Whenever possible we teach Matlab for the students to use in their data analysis. In this presentation, we will report on the successes and difficulties associated with teaching such a multi-faceted class.

  14. An Assessment of Student Learning in an Online Oceanography Course: Five Years After Implementation

    Science.gov (United States)

    Reed, D. L.

    2002-12-01

    The results of assessing student learning in an online oceanography class offered over the past five years are compiled to reveal several general trends. In order to understand the context of these trends, it is important to first note that SJSU has a two-tiered general education program consisting of a category of core courses for frosh and sophomores and an advanced category for juniors and seniors, most of whom are community college transfers. The course described in this study is in the latter category and therefore composed largely of seniors. Enrollments in the course have exploded from 6 students in a pilot section offered during the 1998 fall semester to over 170 students in the summer semester of 2002. The course is now offered in both semesters of the academic year with four sections offered during 2002 summer session as part of a system-wide conversion to year-round operation. No other course, be it classroom, hybrid or online, in the general education category has experienced the level of student demand as this online course. All sections of the online course reach enrollment limits in the first days of registration with an equal or greater number of students turned away each semester. More female, students of color, returning students and K-12 in-service teachers enroll in the online sections than in the equivalent classroom sections of the course. Students enroll in the online section for the convenience of self-paced learning since attending a classroom section is not a viable option. Enrollments in concurrent classroom sections have not been negatively impacted by the addition of online sections. Enrollment attrition is higher in the first few days of the online course, but similar to that experienced in the classroom sections, once the class is underway. However, student requests for incompletes tend to be somewhat higher in the online course, especially during the summer offerings. Learning outcomes are reviewed at the beginning of the course and

  15. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  16. Experiences of ocean literacy with different users of operational oceanography services and with high school students

    Science.gov (United States)

    Agostini, Paola; Coppini, Giovanni; Martinelli, Sara; Bonarelli, Roberto; Lecci, Rita; Pinardi, Nadia; Cretì, Sergio; Turrisi, Giuseppe; Ciliberti, Stefania Angela; Federico, Ivan; Mannarini, Gianandrea; Verri, Giorgia; Jansen, Eric; Lusito, Letizia; Macchia, Francesca; Montagna, Fabio; Buonocore, Mauro; Marra, Palmalisa; Tedesco, Luca; Cavallo, Arturo

    2017-04-01

    According to a common definition, ocean literacy is an understanding of the ocean's influence on people and people influence on the ocean. An ocean-literate person is able to make informed and responsible decisions regarding the ocean and its resources. To this aim, this paper presents operational oceanographic tools developed to meet the needs of different users, and activities performed in collaboration with high school students to support new developments of the same tools. Operational oceanography allows to deal with societal challenges such as maritime safety, coastal and marine environment management, climate change assessment and marine resources management. Oceanographic products from the European Copernicus Marine Monitoring Service - CMEMS are transformed and communicated to public and stakeholders through adding-value chains (downstreaming), which consider advanced visualization, usage of multi-channels technological platforms and specific models and algorithms. Sea Situational Awareness is strategically important for management and safety purposes of any marine domain and, in particular, the Mediterranean Sea and its coastal areas. Examples of applications for sea situational awareness and maritime safety are here presented, through user-friendly products available both by web and mobile channels (that already reach more than 100.000 users in the Mediterranean area). Further examples of ocean literacy are web bulletins used to communicate the technical contents and information related to oceanographic forecasts to a wide public. They are the result of a collaboration with high school students, with whom also other activities on improving products visualization and online communication have been performed.

  17. Student Perceptions of Their Biology Teacher's Interpersonal Teaching Behaviors and Student Achievement

    Science.gov (United States)

    Madike, Victor N.

    Inadequate student-teacher interactions in undergraduate courses have been linked to poor student performance. Researchers have noted that students' perceptions of student-teacher relationships may be an important factor related to student performance. The administration of a Mid-Atlantic community college prioritized increasing undergraduate biology student performance. The purpose of this quantitative study was to examine the relationship between students' biology achievement and their perceptions of interpersonal teaching behaviors and student-teacher interactions in introductory biology courses. Leary's theory on interpersonal communication and the systems communication theory of Watzlawick, Beavin, and Jackson served as the theoretical foundation. The Wubbel's Likert-scale questionnaire on student-teacher interactions was administered to 318 undergraduate biology students. Non-parametric Spearman's rank correlations revealed a significant direct correlation between students' grades and their perceptions of teachers' interpersonal teaching behaviors. The relationship between student achievement and students' perceptions of student-teacher interactions prompted the recommendation for additional study on the importance of student-teacher interactions in undergraduate programs. A recommendation for local practice included faculty development on strategies for improving student-teacher interactions. The study's implications for positive social change include increased understanding for administrators and instructors on the importance of teacher-student interactions at the community college level.

  18. Basic concepts in oceanography

    International Nuclear Information System (INIS)

    Small, L.F.

    1997-01-01

    Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. (author)

  19. The status of coastal oceanography in heavily impacted Yellow and East China Sea: Past trends, progress, and possible futures

    Science.gov (United States)

    Wang, Xiao Hua; Cho, Yang-Ki; Guo, Xinyu; Wu, Chau-Ron; Zhou, Junliang

    2015-09-01

    Coastal environments are a key location for transport, commercial, residential and defence infrastructure, and have provided conditions suitable for economic growth. They also fulfil important cultural, recreational and aesthetic needs; have intrinsic ecosystem service values; and provide essential biogeochemical functions such as primary productivity, nutrient cycling and water filtration. The rapid expansion in economic development and anticipated growth of the population in the coastal zones along the Yellow and East China Sea basin has placed this region under intense multiple stresses. Here we aim to: 1) synthesize the new knowledge/science in coastal oceanography since 2010 within the context of the scientific literature published in English; 2) report on a citation analysis that assesses whether new research topics have emerged and integrated over time, indicate the location of modelling and field-based studies; and 3) suggest where the new research should develop for heavily impacted estuaries and coastal seas of East Asia. The conclusions of the synthesis include: 1) China has emerged as a dominant force in the region in producing scientific literature in coastal oceanography, although the area of publications has shifted from its traditional fields such as physical oceanography; 2) there has been an increasing number of publications with cross-disciplinary themes between physical oceanography and other fields of the biological, chemical, and geological disciplines, but vigorous and systematic funding mechanisms are still lacking to ensure the viability of large scale multi-disciplinary teams and projects in order to support trans-disciplinary research and newly emerging fields; 3) coastal oceanography is responding to new challenges, with many papers studying the impacts of human activities on marine environment and ecology, but so far very few studying management and conservation strategies or offering policy solutions.

  20. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  1. The Relationships between Epistemic Beliefs in Biology and Approaches to Learning Biology among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-01-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and…

  2. Experiences of Judeo-Christian Students in Undergraduate Biology

    Science.gov (United States)

    Barnes, M. Elizabeth; Truong, Jasmine M.; Brownell, Sara E.

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students’ experiences in biology classes influence their sense of belonging and retention. PMID:28232586

  3. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. History of oceanography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, R.

    This paper highlights history of the oceanography of the Indian Ocean. Oceanographic activities during Ancient period, Medieval period, British period, Post-Independence period are briefly discussed. The role of the IIOE, IOC, UNESCO are also...

  5. Student Misconceptions in Introductory Biology.

    Science.gov (United States)

    Fisher, Kathleen M.; Lipson, Joseph I.

    Defining a "misconception" as an error of translation (transformation, correspondence, interpolation, interpretation) between two different kinds of information which causes students to have incorrect expectations, a Taxonomy of Errors has been developed to examine student misconceptions in an introductory biology course for science…

  6. Student Teachers' Conceptions of Teaching Biology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2014-01-01

    The purpose of this qualitative study was to investigate prospective biology teachers' conceptions of teaching biology and identify how these conceptions revealed their strategies for helping their future students' learning of biology. The study utilized drawings, narratives and interviews to investigate the nature of the prospective biology…

  7. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology

    Science.gov (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.

    2013-01-01

    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  8. On the Cultivation of Students' Interests in Biology Teaching

    Science.gov (United States)

    Li, Yan

    2011-01-01

    This paper introduces the importance of middle school students' interests in learning biology. Considering the psychological characteristics of middle school students, this paper suggests several practical ways for inspiring students' interests in learning biology.

  9. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Campbell, A. Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The "Vision and Change" report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area…

  10. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.

  11. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  12. Diploma of Higher Studies in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents four courses for the diploma of higher studies in oceanography conducted by the Department of Oceanography, Faculty of Science, University of Alexandria, Egypt. These courses are organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO). Each course is designed to be taught in one academic year…

  13. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  14. Varied Student Perception of E-Text Use among Student Populations in Biology Courses

    Science.gov (United States)

    McDaniel, Kerrie; Daday, Jerry

    2018-01-01

    The faculty in a biology department at a four-year public comprehensive university adopted e-texts for all 100 and 200 level biology courses with the primary motivation of reducing textbook costs to students. This study examines the students' perceptions of the e-texts adopted for these 100 and 200 level biology courses. An online questionnaire…

  15. Learning Partnerships Between Undergraduate Biology Students and Younger Learners

    Directory of Open Access Journals (Sweden)

    Lee Abrahamsen

    2009-12-01

    Full Text Available In two upper-level elective biology courses and one beginning-level general biology course, college students participated in Learning Partnerships with middle or high school classes to study some aspect of biology. The goals were to enhance learning by providing resources to middle and high school students and teachers and by encouraging college students to consider teaching as a learning tool and a possible career goal. The college students designed lessons, activities, and laboratories that were done at the schools and at Bates College. Feedback and data suggest that the partnerships have helped teachers enrich their curricula, enhanced student learning, encouraged additional high school students to consider applying to college, and encouraged college students to consider teaching science.

  16. Secretary of the Navy Professor of Oceanography

    Science.gov (United States)

    2013-11-18

    of Oceanography, La Jolla, CA; 5-10 June 2011 Attended: Algae + Fish = Ocean Mixing? Conference, La Jolla, CA; 5-6 July 2011 Attended: JASON Summer...the scientific work of Klaus Hasselmann at the Max Planck Institute for Meteorology; Hamburg , Germany; 09 November 2011 Keynote Address: Nansen

  17. Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    Science.gov (United States)

    Garvani, Sara; Carmisciano, Cosmo; Locritani, Marina; Grossi, Luigi; Mori, Anna; Stroobant, Mascha; Schierano, Erika; De Strobel, Federico; Manzella, Giuseppe; Muzi, Enrico; Leccese, Dario; Sinapi, Luigi; Morellato, Claudio; La Tassa, Hebert; Talamoni, Roberta; Coelho, Emanuel; Nacini, Francesca

    2017-04-01

    culture witnesses, related to the naval history of seamanship from the origins up to nowadays), allowed the creation of a special educational format based on Historical Oceanography, for university and high school students as an integration for their curriculum. The Historical Oceanography Society has provided the major knowledges included in the ancient volumes of its archive, thanks to the availability of its members that also held theoretical and practical lessons during the course. The present paper will describe the one-week special course (about 60 hours of theory and practice with technical visits to Research centres and Museums) that has been planned to be carried out on board of the Italian Training Navy Ship (A. Vespucci) and has been organized in order to give the hints about on board life, as well as theoretical lessons on modern and historical oceanography, hands-on labs on oceanographic instruments from public and private collections, physiology of diving techniques and astronomy. The general aim of this course has been, hence, to give to excellent students all those technological but also creative and imaginative features of our past. References M. Locritani, I. Batzu, C. Carmisciano, F. Muccini, R. Talamoni, H.L. Tassa, M. Stroobant, G. Guccinelli, L. Benvenuti, M. Abbate, S. Furia, A. Benedetti, M.I. Bernardini, R. Centi, L. Casale, C. Vannucci, F. Giacomazzi, C. Marini, D. Tosi, S. Merlino, E. Mioni, F. Nacini, Feeling the pulse of public perception of science: Does research make our hearts beat faster?, in: MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World, 2015. National Science Foundation, 50 Years of Ocean Discovery: National Science Foundation 1950-2000. Ocean Studies Board, National Research Council ISBN: 0-309-51744-3, 276 pages, 8.5 x 11, 2000. E.L. Mills, The Historian of Science and Oceanography After Twenty Years, Earth Sciences History. 12 (1993) 5-18. J.A. Bennett, History of Technology - McConnell Anita

  18. Oceanography Information System of Spanish Institute of Oceanography (IEO)

    Science.gov (United States)

    Tello, Olvido; Gómez, María; González, Sonsoles

    2016-04-01

    Since 1914, the Spanish Institute of Oceanography (IEO) performs multidisciplinary studies of the marine environment. In same case are systematic studies and in others are specific studies for special requirements (El Hierro submarine volcanic episode, spill Prestige, others.). Different methodologies and data acquisition techniques are used depending on studies aims. The acquired data are stored and presented in different formats. The information is organized into different databases according to the subject and the variables represented (geology, fisheries, aquaculture, pollution, habitats, etc.). Related to physical and chemical oceanography data, in 1964 was created the DATA CENTER of IEO (CEDO), in order to organize the data about physical and chemical variables, to standardize this information and to serve the international data network SeaDataNet. www.seadatanet.org. This database integrates data about temperature, salinity, nutrients, and tidal data. CEDO allows consult and download the data. http://indamar.ieo.es On the other hand, related to data about marine species in 1999 was developed SIRENO DATABASE. All data about species collected in oceanographic surveys carried out by researches of IEO, and data from observers on fishing vessels are incorporated in SIRENO database. In this database is stored catch data, biomass, abundance, etc. This system is based on architecture ORACLE. Due to the large amount of information collected over the 100 years of IEO history, there is a clear need to organize, standardize, integrate and relate the different databases and information, and to provide interoperability and access to the information. Consequently, in 2000 it emerged the first initiative to organize the IEO spatial information in an Oceanography Information System, based on a Geographical Information System (GIS). The GIS was consolidated as IEO institutional GIS and was created the Spatial Data Infrastructure of IEO (IDEO) following trend of INSPIRE. All

  19. Biology Student Teachers' Cognitive Structure about "Living Thing"

    Science.gov (United States)

    Kurt, Hakan

    2013-01-01

    The current study aims to determine biology student teachers' cognitive structure on the concept of "living thing" through revealing their conceptual framework. Qualitative research method was applied in this study. The data were collected from 44 biology student teachers. A free word association test was used as a data collection…

  20. Evaluating High School Students' Anxiety and Self-Efficacy towards Biology

    Science.gov (United States)

    Çimen, Osman; Yilmaz, Mehmet

    2015-01-01

    Anxiety and self-efficacy are among the factors that impact students' performance in biology. The current study aims to investigate high school students' perception of biology anxiety and self-efficacy, in relation to gender, grade level, interest in biology, negative experience associated with biology classes, and teachers' approaches in the…

  1. Development of biology student worksheets to facilitate science process skills of student

    Science.gov (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  2. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    Science.gov (United States)

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural…

  3. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  4. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  5. NODC Standard Product: Climatic atlas of the Arctic Seas 2004 - Database of the Barents, Kara, Laptev, and White Seas - Oceanography and marine biology (NODC Accession 0098061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents primary data on meteorology, oceanography, and hydrobiology from the Barents, Kara, Laptev, and White Seas, which were collected during the...

  6. Biological processes in the water column of the South Atlantic bight

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhoefer, G.A.; Yoder, J.A.

    1980-01-31

    Progress is reported on research conducted during 1979 on the biological oceanography of the South Atlantic Bight. The presentation consists of a number of published articles and abstracts of oral presentations. (ACR)

  7. Teaching Tree-Thinking to Undergraduate Biology Students.

    Science.gov (United States)

    Meisel, Richard P

    2010-07-27

    Evolution is the unifying principle of all biology, and understanding how evolutionary relationships are represented is critical for a complete understanding of evolution. Phylogenetic trees are the most conventional tool for displaying evolutionary relationships, and "tree-thinking" has been coined as a term to describe the ability to conceptualize evolutionary relationships. Students often lack tree-thinking skills, and developing those skills should be a priority of biology curricula. Many common student misconceptions have been described, and a successful instructor needs a suite of tools for correcting those misconceptions. I review the literature on teaching tree-thinking to undergraduate students and suggest how this material can be presented within an inquiry-based framework.

  8. The social oceanography of top oceanic predators and the decline of sharks: A call for a new field

    Science.gov (United States)

    Jacques, Peter J.

    2010-07-01

    The decline of top oceanic predators (TOPs), such as great sharks, and worldwide erosion of the marine food web is among the most important functional changes in marine systems. Yet, even though human pressures on sharks are one of the most important factors in the collapse of TOPs, the social science of shark fishing has not kept pace with the biophysical science. Such a gap highlights the need for a marine social science, and this paper uses the case of sharks to illustrate some advances that a coherent marine social science community could bring to science and sustainability, and calls for the development of this new field. Social oceanography is proposed as a “discursive space” that will allow multiple social science and humanities disciplines to holistically study and bring insight to a diverse but essential community. Such a community will not provide answers for the physical sciences, but it will add a new understanding of the contingencies that riddle social behavior that ultimately interact with marine systems. Such a field should reflect the broad and diverse approaches, epistemologies, philosophies of science and foci that are in the human disciplines themselves. Social oceanography would complete the triumvirate of biological and physical oceanography where human systems profoundly impact these other areas. This paper tests the theory that institutional rules are contingent on social priorities and paradigms. I used content analysis of all available (1995-2006) State of the World Fisheries and Aquaculture (SOFIA) reports from the United Nations Food and Agricultural Organization (FAO) to measure the symbolic behavior-i.e., what they say-as an indication of the value of sharks in world fisheries. Similar tests were also performed for marine journals and the Convention on Migratory Species of Wild Animals to corroborate these findings. Then, I present an institutional analysis of all international capacity building and regulatory institutions as they

  9. Naval Meteorology and Oceanography Command exhibit

    Science.gov (United States)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  10. On the Concept "Microscope": Biology Student Teachers' Cognitive Structure

    Science.gov (United States)

    Kurt, Hakan; Ekici, Gulay; Aktas, Murat; Aksu, Ozlem

    2013-01-01

    The purpose of the current study is to determine biology student teachers' cognitive structures on the concept of microscope. Qualitative research methodology has been applied in the study. The data were collected from biology student teachers. Free word association test and drawing-writing test were used to collect data. The data collected were…

  11. Scripps Institution of Oceanography Ferromanganese Nodule Analysis File - IDOE Portion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Scripps Institution of Oceanography (SIO) compiled data on the geochemistry of marine ferromanganese nodules, funded by the U.S. National Science Foundation...

  12. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  13. Selected factors associated with achievement of biology preparatory students and their follow-up to higher level biology courses

    Science.gov (United States)

    Biermann, Carol A.; Sarinsky, Gary B.

    This study was undertaken to determine whether a biology preparatory course given at an urban community college was helping students to develop the proper skills and background necessary for them to successfully complete follow-up courses in biology. A group of students who enrolled in a biology preparatory course, and subsequently, a follow-up anatomy and physiology or general biology course (experimental group) was compared to a group of students who should have registered for the preparatory course, but who enrolled directly into the anatomy and physiology or general biology course (control group). It was shown that there was no significant difference in their anatomy and physiology or general biology grades. Furthermore, only 16% of the initial group of preparatory students enrolled in and passed a follow-up biology course. Examination of the preparatory group using discriminant analysis ascertained that mathematics score was the principle discriminator between pass/fail groups. A stepwise multiple regression analysis of the variables explaining the preparatory grade showed that mathematics score, reading score, and type of high school degree explained 33% of the variance. Of the students who did pass the preparatory course and enrolled in a follow-up biology class, their preparatory grade was a good predictor of their achievement (measured by follow-up course grade), as determined by multiple regression.

  14. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  15. Students' perceptions of difficult concepts in biology in senior ...

    African Journals Online (AJOL)

    Students' perceptions of difficult concepts in biology in senior secondary schools in ... that students in Senior Secondary School Two (SSII) have difficulties in learning, the ... However, teaching strategies, students' attitude, inadequate learning ...

  16. SWOT Oceanography and Hydrology Data Product Simulators

    Science.gov (United States)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  17. Data analysis methods in physical oceanography. By Emery, W.J. and Thomson, R.E.

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    . 729-730 September 1999 Book Reviews DATA ANALYSIS METHODS IN PHYSICAL O~EAN~GRAFWY. By Wil- liam J. Emery and Richard E. Thomson. PERGAMON Else&r Sci- ence. 1998. 400 p. U.S. $112 / NLG 177.00. The book Data Analysis Methods in Physical... Oceanography pro- vides a comprehensive and practical compilation of the essential information and analysis techniques required for the advanced processing and interpretation of digital spat&temporal data in physical oceanography, as well as in other...

  18. Dental anxiety: a comparison of students of dentistry, biology, and psychology

    Directory of Open Access Journals (Sweden)

    Storjord HP

    2014-09-01

    Full Text Available Helene Persen Storjord,1 Mari Mjønes Teodorsen,1 Jan Bergdahl,1 Rolf Wynn,2,3 Jan-Are Kolset Johnsen1 1Department of Clinical Dentistry, 2Department of Clinical Medicine, UiT - The Arctic University of Norway, 3Division of Addictions and Specialized Psychiatric Services, University Hospital of North Norway, Tromsø, Norway Introduction: Dental anxiety is an important challenge for many patients and clinicians. It is thus of importance to know more about dental students' own experiences with dental anxiety and their understanding of dental anxiety. The aim was to investigate differences in dental anxiety levels between dental students, psychology students, and biology students at a Norwegian university. Materials and methods: A total of 510 students of dentistry, psychology, and biology at the University of Tromsø received a questionnaire consisting of the Modified Dental Anxiety Scale, demographic questions, and questions relating to their last visit to the dentist/dental hygienist; 169 students gave complete responses. Nonparametric tests were used to investigate differences between the student groups. Results: The respondents were 78% female and 22% male; their mean age was 24 years. The dental students showed a significantly lower degree of dental anxiety than the psychology (P<0.001 and biology students (P<0.001. A significant decrease in dental anxiety levels was found between novice and experienced dentistry students (P<0.001. Discussion: The dental students had less dental anxiety compared to psychology students and biology students. Experienced dental students also had less dental anxiety than novice dental students. This could indicate that the dentistry program structure at the university may influence dental anxiety levels. Conclusion: Dental anxiety seemed to be less frequent in dentistry students compared to students of biology or clinical psychology. The practice-oriented dentistry education at the university might contribute to

  19. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    Science.gov (United States)

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students' perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest…

  20. Improving Students' Critical Thinking Skills through Remap NHT in Biology Classroom

    Science.gov (United States)

    Mahanal, Susriyati; Zubaidah, Siti; Bahri, Arsad; Syahadatud Dinnurriya, Maratusy

    2016-01-01

    Previous studies in Malang, Indonesia, showed that there were the failure biology learning caused by not only the low students' prior knowledge, but also biology learning model has not improved the students' critical thinking skills yet, which affected the low of cognitive learning outcomes. The learning model is required to improve students'…

  1. Shedding Light on the Sea: André Morel's Legacy to Optical Oceanography

    Science.gov (United States)

    Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz

    2014-01-01

    André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

  2. Strategies for Assessing Learning Outcomes in an Online Oceanography Course

    Science.gov (United States)

    Reed, D. L.

    2003-12-01

    All general education courses at the San Jose State University, including those in the sciences, must present a detailed assessment plan of student learning, prior to certification for offering. The assessment plan must state a clear methodology for acquiring data on student achievement of the learning outcomes for the specific course category, as well as demonstrate how students fulfill a strong writing requirement. For example, an online course in oceanography falls into the Area R category, the Earth and Environment, through which a student should be able to demonstrate an understanding of the methods and limits of scientific investigation; distinguish science from pseudo-science; and apply a scientific approach to answer questions about the Earth and environment. The desired learning outcomes are shared with students at the beginning of the course and subsequent assessments on achieving each outcome are embedded in the graded assignments, which include a critical thinking essay, mid-term exam, poster presentation in a symposium-style format, portfolio of web-based work, weekly discussions on an electronic bulletin board, and a take-home final exam, consisting of an original research grant proposal. The diverse nature of the graded assignments assures a comprehensive assessment of student learning from a variety of perspectives, such as quantitative, qualitative, and analytical. Formative assessment is also leveraged into learning opportunities, which students use to identify the acquisition of knowledge. For example, pre-tests are used to highlight preconceptions at the beginning of specific field studies and post-testing encourages students to present the results of small research projects. On a broader scale, the assessment results contradict common misperceptions of online and hybrid courses. Student demand for online courses is very high due to the self-paced nature of learning. Rates of enrollment attrition match those of classroom sections, if students

  3. The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.

    Science.gov (United States)

    Anupama, Jigisha; Francescatto, Margherita; Rahman, Farzana; Fatima, Nazeefa; DeBlasio, Dan; Shanmugam, Avinash Kumar; Satagopam, Venkata; Santos, Alberto; Kolekar, Pandurang; Michaut, Magali; Guney, Emre

    2018-01-01

    Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.

  4. The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.

    Directory of Open Access Journals (Sweden)

    Jigisha Anupama

    2018-01-01

    Full Text Available Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.

  5. Physical oceanography of the Bay of Bengal and Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Murty, V.S.N.; Suryanarayana, A.

    Physical oceanography of the Bay of Bengal and Andaman Sea is reviewed for the first time. All available information for over 50 years is consolidated in this review. To begin with, information on peripheral or related aspects of climate...

  6. Student perceptions of their biology teacher's interpersonal teaching behaviors and student achievement and affective learning outcomes

    Science.gov (United States)

    Smith, Wade Clay, Jr.

    The primary goals of this dissertation were to determine the relationships between interpersonal teaching behaviors and student achievement and affective learning outcomes. The instrument used to collect student perceptions of teacher interpersonal teaching behaviors was the Questionnaire on Teacher Interactions (QTI). The instrument used to assess student affective learning outcomes was the Biology Student Affective Instrument (BSAI). The interpersonal teaching behavior data were collected using students as the observers. 111 students in an urban influenced, rural high school answered the QTI and BSAI in September 1997 and again in April 1998. At the same time students were pre and post tested using the Biology End of Course Examination (BECE). The QTI has been used primarily in European and Oceanic areas. The instrument was also primarily used in educational stratified environment. This was the first time the BSAI was used to assess student affective learning outcomes. The BECE is a Texas normed cognitive assessment test and it is used by Texas schools districts as the end of course examination in biology. The interpersonal teaching behaviors model was tested to ascertain if predictive power in the USA and in a non-stratified educational environment. Findings indicate that the QTI is an adequate predictor of student achievement in biology. The results were not congruent with the non-USA data and results, this indicates that the QTI is a society/culturally sensitive instrument and the instrument needs to be normed to a particular society/culture before it is used to affect teachers' and students' educational environments.

  7. Enhancing Oceanography Classrooms with "Captive and Cultured" Ocean Experiences

    Science.gov (United States)

    Macko, S. A.; Tuite, M.; O'Connell, M.

    2012-04-01

    Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (13 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This new approach to such a course supplement addresses the requests by utilizing local resources and short field trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and actual laboratories. In addition short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture ("cultivated") . Central Virginia is a fortunate location for such a class, with close access for "day travel" to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and National Zoo) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore, Washington and Virginia Beach. Furthermore, visits to local seafood markets at local grocery stores, or larger city markets) enhance the exposure to productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the class was encouraged to post web-based journals of experiences in order to share opinions of observations in each of the settings.

  8. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  9. Data analysis methods in physical oceanography. By Emery, W.J. and Thomson, R.E.

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    in Physical Oceanography. Page 1 of 1 file://C:\\My Documents\\articles30.htm 2/11/05 William J. Emery and Richard E. Thomson. Pergamon Elsevier Science. 1998. hardbound. 400 pp. ISBN: 0-08-031434-1. Price: US$ 112/NLG 177.00 This book provides a comprehensive... and practical compilation of the essential information and analysis techniques required for the advanced processing and interpretation of digital spatio-temporal data in physical oceanography, as well as in other branches of the geophysical sciences. The book...

  10. C-MORE Science Kits: Putting Technology in the Hands of K-12 Teachers and Students

    Science.gov (United States)

    Achilles, K.; Weersing, K.; Daniels, C.; Puniwai, N.; Matsuzaki, J.; Bruno, B. C.

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a NSF Science and Technology Center based at the University of Hawaii. The C-MORE education and outreach program offers a variety of resources and professional development opportunities for science educators, including online resources, participation in oceanography research cruises, teacher-training workshops, mini-grants to incorporate microbial oceanography-related content and activities into their classroom and, most recently, C- MORE science kits. C-MORE science kits provide hands-on classroom, field, and laboratory activities related to microbial oceanography for K-12 students. Each kit comes with complete materials and instructions, and is available free of charge to Hawaii's public school teachers. Several kits are available nationwide. C-MORE science kits cover a range of topics and technologies and are targeted at various grade levels. Here is a sampling of some available kits: 1) Marine Murder Mystery: The Case of the Missing Zooxanthellae. Students learn about the effect of climate change and other environmental threats on coral reef destruction through a murder-mystery experience. Participants also learn how to use DNA to identify a suspect. Grades levels: 3-8. 2) Statistical sampling. Students learn basic statistics through an exercise in random sampling, with applications to microbial oceanography. The laptops provided with this kit enable students to enter, analyze, and graph their data using EXCEL. Grades levels: 6-12. 3) Chlorophyll Lab. A research-quality fluorometer is used to measure the chlorophyll content in marine and freshwater systems. This enables students to compare biomass concentrations in samples collected from various locations. Grades levels: 9-12. 4) Conductivity-Temperature-Depth (CTD). Students predict how certain variables (e.g., temperature, pressure, chlorophyll, oxygen) vary with depth. A CTD, attached to a laptop computer, is deployed into deep water

  11. Naval Meteorology and Oceanography Command exhibit entrance

    Science.gov (United States)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  12. Operationele Oceanografie en Rapid Environmental Assessment (Operational Oceanography and Rapid Environmental Assessment)

    National Research Council Canada - National Science Library

    te Raa, L. A; Lam, F. P; Schouten, M. W

    2008-01-01

    .... Possible applications of operational oceanography in REA include improved sonar performance predictions with three-dimensional sound speed forecasts, support of AUV mission planning with the help...

  13. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    Science.gov (United States)

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  14. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  15. Students' perceptions of motivation in high school biology class: Informing current theories

    Science.gov (United States)

    McManic, Janet A.

    The purpose of this study was to investigate students' perceptions of motivation to achieve while participating in general level high school biology classes. In a national poll of teacher's attitudes, student's motivation was a top concern of teachers (Elam, 1989). The student's perceptions of motivation are important to understand if improvements and advancements in motivation are to be implemented in the science classroom. This qualitative study was conducted in an urban high school that is located in a major metropolitan area in the southeast of the United States. The student body of 1100 is composed of Caucasian, African-American, Hispanic, and Asian students. The focus question of the study was: What are students' perceptions of their motivation in biology class? From general level biology classes, purposeful sampling narrowed the participants to fifteen students. Semi-structured interviews were conducted with the participants having varying measurements of motivation on the Scale of Intrinsic versus Extrinsic Orientation in the Classroom (Harter, 1980). The interviews were recorded and transcribed. After transcription, the interviews were coded by the constant comparative method (Glaser & Strauss, 1967). The coded data of students' responses were analyzed and compared to current theories of motivation. The current theories are the social-cognitive model (Bandura, 1977), attribution theory (Weiner, 1979), basic needs theory (Maslow, 1954) and choice theory (Glasser, 1986). The results of this study support the social cognitive model of motivation (Bandura, 1977) through the description of family structure and its relationship to motivation (Gonzalez, 2002). The study upheld previous research in that extrinsic orientation was shown to be prevalent in older students (Harter, 1981; Anderman & Maehr, 1994). In addition, the students' responses disclosed the difficulties encountered in studying biology. Students expressed the opinion that biology terms are

  16. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  17. Increasing the Use of Student-Centered Pedagogies from Moderate to High Improves Student Learning and Attitudes about Biology.

    Science.gov (United States)

    Connell, Georgianne L; Donovan, Deborah A; Chambers, Timothy G

    2016-01-01

    Student-centered strategies are being incorporated into undergraduate classrooms in response to a call for reform. We tested whether teaching in an extensively student-centered manner (many active-learning pedagogies, consistent formative assessment, cooperative groups; the Extensive section) was more effective than teaching in a moderately student-centered manner (fewer active-learning pedagogies, less formative assessment, without groups; the Moderate section) in a large-enrollment course. One instructor taught both sections of Biology 101 during the same quarter, covering the same material. Students in the Extensive section had significantly higher mean scores on course exams. They also scored significantly higher on a content postassessment when accounting for preassessment score and student demographics. Item response theory analysis supported these results. Students in the Extensive section had greater changes in postinstruction abilities compared with students in the Moderate section. Finally, students in the Extensive section exhibited a statistically greater expert shift in their views about biology and learning biology. We suggest our results are explained by the greater number of active-learning pedagogies experienced by students in cooperative groups, the consistent use of formative assessment, and the frequent use of explicit metacognition in the Extensive section. © 2016 G. L. Connell, D. A. Donovan, and T. G. Chambers. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The Generalizability of Students' Interests in Biology Across Gender, Country and Religion

    Science.gov (United States)

    Hagay, G.; Baram-Tsabari, A.; Ametller, J.; Cakmakci, G.; Lopes, B.; Moreira, A.; Pedrosa-de-Jesus, H.

    2013-06-01

    In order to bridge the existing gap between biology curricula and students' interests in biology, a strategy for identifying students' interest based on their questions and integrating them into the curriculum was developed. To characterize the level of generalizability of students' science interests over 600 high school students from Portugal, Turkey, England and Israel, who chose biology as an advanced subject, their interest level was ranked in 36 questions that were originally raised by Israeli students. Results indicate that students from four different countries show interest in similar science questions. The most intriguing questions were the ones that dealt with human health and new developments in reproduction and genetics. Religious affiliation had the strongest effect on students' interest level, followed by national affiliation and gender. The findings suggest that students' interest in one context is relevant to the development of interest-based learning materials in a different context. However, despite these similarities, cultural and sociological differences need to be taken into account.

  19. Oceanography: 1998 Paris Meeting Abstracts: Coastal and Marginal Seas. Volume 11, Number 2

    National Research Council Canada - National Science Library

    Rhodes, Judith

    1998-01-01

    This grant supported a successful international multidisciplinary scientific meeting addressing the topic "Coastal and Marginal Seas," hosted by The Oceanography Society and UNESCO's Intergovernmental...

  20. Small-Scale Bio-Optical Distributions in the Upper Ocean (AASERT)

    National Research Council Canada - National Science Library

    Cowles, Timothy

    2000-01-01

    This ASSERT project supported a graduate student, Ms. Lisa Eisner, to apply newly-developed, state-of-the-art bio-optical instrumentation to the analysis of phytoplankton processes in biological oceanography. Ms...

  1. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    Science.gov (United States)

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  2. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  3. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  4. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  5. Increasing the Use of Student-Centered Pedagogies from Moderate to High Improves Student Learning and Attitudes about Biology

    Science.gov (United States)

    Connell, Georgianne L.; Donovan, Deborah A.; Chambers, Timothy G.

    2016-01-01

    Student-centered strategies are being incorporated into undergraduate classrooms in response to a call for reform. We tested whether teaching in an extensively student-centered manner (many active-learning pedagogies, consistent formative assessment, cooperative groups; the Extensive section) was more effective than teaching in a moderately student-centered manner (fewer active-learning pedagogies, less formative assessment, without groups; the Moderate section) in a large-enrollment course. One instructor taught both sections of Biology 101 during the same quarter, covering the same material. Students in the Extensive section had significantly higher mean scores on course exams. They also scored significantly higher on a content postassessment when accounting for preassessment score and student demographics. Item response theory analysis supported these results. Students in the Extensive section had greater changes in postinstruction abilities compared with students in the Moderate section. Finally, students in the Extensive section exhibited a statistically greater expert shift in their views about biology and learning biology. We suggest our results are explained by the greater number of active-learning pedagogies experienced by students in cooperative groups, the consistent use of formative assessment, and the frequent use of explicit metacognition in the Extensive section. PMID:26865643

  6. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  7. Evolution Acceptance and Epistemological Beliefs of College Biology Students

    Science.gov (United States)

    Borgerding, Lisa A.; Deniz, Hasan; Anderson, Elizabeth Shevock

    2017-01-01

    Evolutionary theory is central to biology, and scientifically accurate evolution instruction is promoted within national and state standards documents. Previous literature has identified students' epistemological beliefs as potential predictors of evolution acceptance. The present work seeks to explore more directly how student views of evolution…

  8. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting.

    Science.gov (United States)

    Biel, Rachel; Brame, Cynthia J

    2016-12-01

    Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students' learning of key biology skills and concepts.

  9. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting

    Directory of Open Access Journals (Sweden)

    Rachel Biel

    2016-12-01

    Full Text Available Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students’ learning of key biology skills and concepts.

  10. Student Teachers' Approaches to Teaching Biological Evolution

    Science.gov (United States)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-01-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution…

  11. Lack of Evolution Acceptance Inhibits Students' Negotiation of Biology-Based Socioscientific Issues

    Science.gov (United States)

    Fowler, S. R.; Zeidler, D. L.

    2016-01-01

    The purpose of this study was to explore science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. The Socioscientific Issues Questionnaire (SSI-Q) was developed to measure depth of evolutionary…

  12. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  13. Three genetic stocks of frigate tuna Auxis thazard thazard (Lacepede, 1800) along the Indian coast revealed from sequence analyses of mitochondrial DNA D-loop region

    Digital Repository Service at National Institute of Oceanography (India)

    GirishKumar; Kunal, S.P.; Menezes, M.R.; Meena, R.M.

    revealed from sequence analyses of mitochondrial DNA D-loop region Name of authors: 1. Girish Kumar* Biological Oceanography Division (BOD) National Institute of Oceanography (NIO) Dona Paula, Goa 403004, India. Email: girishkumar....nio@gmail.com Tel: +919766548060 2. Swaraj Priyaranjan Kunal Biological Oceanography Division (BOD) National Institute of Oceanography (NIO) Dona Paula, Goa 403004, India. Email: swar.mbt@gmail.com 3. Maria Rosalia Menezes Biological Oceanography...

  14. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  15. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    Science.gov (United States)

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  16. Graduate student training and creating new physics labs for biology students, killing two birds with one stone.

    Science.gov (United States)

    Jones, Barbara

    2001-03-01

    At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.

  17. The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography

    DEFF Research Database (Denmark)

    Lauro, Frederico; Senstius, Svend Jacob; Cullen, Jay

    2014-01-01

    Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipmen...

  18. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

  19. Biology Students' and Teachers' Religious Beliefs and Attitudes towards Theory of Evolution

    Science.gov (United States)

    Ozay Kose, Esra

    2010-01-01

    Evolution has not being well addressed in schools partly because it is a controversial topic in religious views. In the present study, it is explored to what extent Turkish secondary school biology teachers and students accommodate the theory of biological evolution with their religious beliefs. Two-hundred fifty secondary school students and…

  20. Campus Eco Tours: An Integrative & Interactive Field Project for Undergraduate Biology Students

    Science.gov (United States)

    Boes, Katie E.

    2013-01-01

    Outdoor areas within or near college campuses offer an opportunity for biology students to observe the natural world and apply concepts from class. Here, I describe an engaging and integrative project where undergraduate non-major biology students work in teams to develop and present professional "eco tours." This project takes place over multiple…

  1. Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students

    Directory of Open Access Journals (Sweden)

    Kim Rheinlander

    2011-01-01

    Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.

  2. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  3. Applications of 14C-AMS on archaeology, climate, environment, geology, oceanography and biology

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Anjos, R.M.; Macario, K.D.; Santos, G.M.

    2005-01-01

    The first experiment discusses the chronology of prehistoric settlements of the central-south Brazilian coast. In the southern Brazilian coast there is a high density of these shellmounds, dated in general between 6,000 and 2,000 BP. A charcoal sample from a coastal shellmound of Rio de Janeiro State was dated by 14 C-AMS to 7,860±80 years BP. This is an unexpected result that pulls back by some two thousand years the antiquity consensually accepted for the settlement of that region. We performed an experiment concerning the isotopic signature of the local waters of an important Brazilian coastal upwelling, located in Arraial do Cabo, R.J., with applications in the fields of Oceanography and Marine Ecology. We assess the contribution of the wind-driven coastal upwelling of Arraial do Cabo to the local biological production. The variation of the carbon isotopic compositions was investigated in a population of a seaweed. Upwelling events were simulated in the laboratory, in order to study three regimes: total upwelling (SACW), partial upwelling (mixed water) and no-upwelling (TW). Water samples were collected at 70 m depth (SACW) and at 10 m (TW). The seaweed was cultivated during seven days, in controlled conditions, into the three mentioned types of water. The results of 14 C-AMS measurements in the seaweed tissue show a clear indication of difference in the isotopic signature of the water sources, allowing to infer the differences of the water sources. We believe that the present results contribute to opening new perspectives for the use of 14 C as a tracer of the biological production in upwelling areas all over the world. The next reported experiment is on climate at the Amazon region. An increase in the Hg flux is a strong indicator of disturbance in a forest ecosystem related to abrupt changes in the water balance, and its changes reflect changes in the ocean and average regional temperatures. In regions where the geological background of mercury is

  4. Fundamentals of estuarine physical oceanography

    CERN Document Server

    Bruner de Miranda, Luiz; Kjerfve, Björn; Castro Filho, Belmiro Mendes de

    2017-01-01

    This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time. In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.

  5. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  6. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    Science.gov (United States)

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  7. Using the Scientific Method to Motivate Biology Students to Study Precalculus

    Science.gov (United States)

    Fulton, James P.; Sabatino, Linda

    2008-01-01

    During the last two years we have developed a precalculus course customized around biology by using the scientific method as a framework to engage and motivate biology students. Historically, the precalculus and calculus courses required for the Suffolk County Community College biology curriculum were designed using examples from the physical…

  8. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    OpenAIRE

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (postte...

  9. Motivating Students to Learn Biology Vocabulary with Wikipedia

    Directory of Open Access Journals (Sweden)

    Boriana Marintcheva

    2012-02-01

    Full Text Available Timely learning of specialized science vocabulary is critical for building a solid knowledge base in any scientific discipline. To motivate students to dedicate time and effort mastering biology vocabulary, I have designed a vocabulary exercise utilizing the popular web encyclopedia Wikipedia. The exercise creates an opportunity for students to connect the challenge of vocabulary learning to a prior positive experience of self-guided learning using a content source they are familiar and comfortable with.

  10. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  11. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  12. Who Wants a Job in Biology? Student Aspirations and Perceptions

    Science.gov (United States)

    Henderson, Danielle; Stanisstreet, Martin; Boyes, Edward

    2007-01-01

    This paper describes the results of a questionnaire survey of UK Year 3 biology undergraduates' career aspirations, and their perceptions of employment in teaching, research and conservation. Although most students sought material benefits in their potential careers, even more wished to gain job satisfaction. None of the careers in biology was…

  13. Physical oceanography - Developing end-to-end models of the California Current Large Marine Ecosystem

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...

  14. Engagement and skill development in biology students through analysis of art.

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates' curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students' higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, first-hand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material.

  15. Level of Awareness of Biology and Geography Students Related to Recognizing Some Plants

    Science.gov (United States)

    Aladag, Caner; Kaya, Bastürk; Dinç, Muhittin

    2017-01-01

    The aim of this study is to investigate the awareness of the geography and biology students about recognizing some plants which they see frequently around them in accordance with the information they gained during their education process. The sample of the study consists of 37 biology and 40 geography students studying at the Ahmet Kelesoglu…

  16. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Student Manual.

    Science.gov (United States)

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  17. Ranking serials in oceanography: An analysis based on the Indian contributions and their citations

    Digital Repository Service at National Institute of Oceanography (India)

    Tapaswi, M.P.; Maheswarappa, B.S.

    An analysis of serials preferred and cited in various communications by the Indian oceanographers during 1963 to 1992 is presented. A shift in preference of serials from general sciences to oceanography (interdisciplinary) and to core subject...

  18. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    Science.gov (United States)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  19. Marine Biology and Oceanography, Grades Nine to Twelve. Part II.

    Science.gov (United States)

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 9-12. The unit, focusing on sea plants/animals and their interactions with each other and the non-living environment, has sections dealing with: marine ecology; marine bacteriology;…

  20. Gender Inequality in Biology Classes in China and Its Effects on Students' Short-Term Outcomes

    Science.gov (United States)

    Liu, Ning; Neuhaus, Birgit

    2014-01-01

    This study investigated gender inequality in biology lessons and analysed the effects of the observed inequality on students' short-term knowledge achievement, situational interest and students' evaluation of teaching (SET). Twenty-two biology teachers and 803 7th-grade students from rural and urban classrooms in China participated in the study.…

  1. Short Training Course in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents a training course in oceanography intended for Junior Bachelor of Science (B.S.) graduates in physics, mathematics, chemistry, zoology, botany or geology to give them the minimum qualifications required to work in any of the marine science stations. This 14-week course, organized by the Arab League Educational, Cultural and…

  2. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    Science.gov (United States)

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  3. THE CHARACTERIZATION OF DIDACTIC SPEECH OF A BIOLOGY TEACHER AND HIS INFLUENCE IN THE MOTIVATION OF STUDENTS FOR BIOLOGY

    Directory of Open Access Journals (Sweden)

    Lorena Bejarano Beltrán

    2016-10-01

    Full Text Available The Pedagogic practice is the staging of knowledge for consideration and recognition of acquired understanding in the academic and personal level that took place in the Commercial Technical School Manuela Beltran, showing that students present lack of motivation to learn Biology , which is expressed in the limited relationship between reality, scientific concepts together with the technical language. The experiments and innovation are left aside. This is why there is a question in relation to the didactic speech and motivation of seventh and eighth grade students towards Biology. In this way the didactic speech of the teacher has been characterized to allow the identification of elements that facilitate the teaching in terms of motivation. In the same way the space for recognizing the factors that generate in the students pleasure for the subject given, in which the games, the participation and the experiments were aspects that they will like to have in their classes. The present investigation had and interpretative paradigm and a qualitative perspective, such instruments like the nonparticipant observation,six recordings of Biology classes making analyses of information units where categories emerged, as well as a questionnaire applied to 25 students.

  4. Student Teachers' Approaches to Teaching Biological Evolution

    Science.gov (United States)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-06-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution teaching can be particularly challenging for student teachers who are just beginning to gain pedagogical knowledge and pedagogical content knowledge related to evolution teaching and who seek approval from university supervisors and cooperating teachers. Science teacher educators need to know how to best support student teachers as they broach the sometimes daunting task of teaching evolution within student teaching placements. This multiple case study report documents how three student teachers approached evolution instruction and what influenced their approaches. Data sources included student teacher interviews, field note observations for 4-5 days of evolution instruction, and evolution instructional artifacts. Data were analyzed using grounded theory approaches to develop individual cases and a cross-case analysis. Seven influences (state exams and standards, cooperating teacher, ideas about teaching and learning, concerns about evolution controversy, personal commitment to evolution, knowledge and preparation for teaching evolution, and own evolution learning experiences) were identified and compared across cases. Implications for science teacher preparation and future research are provided.

  5. Introductory biology students' conceptual models and explanations of the origin of variation.

    Science.gov (United States)

    Speth, Elena Bray; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy

    2014-01-01

    Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess understanding of the origin of variation. By midterm, only a small percentage of students articulated complete and accurate representations of the origin of variation in their models. Targeted feedback was offered through activities requiring students to critically evaluate peers' models. At semester's end, a substantial proportion of students significantly improved their representation of how variation arises (though one-third still did not include mutation in their models). Students' written explanations of the origin of variation were mostly consistent with their models, although less effective than models in conveying mechanistic reasoning. This study contributes evidence that articulating the genetic origin of variation is particularly challenging for learners and may require multiple cycles of instruction, assessment, and feedback. To support meaningful learning of the origin of variation, we advocate instruction that explicitly integrates multiple scales of biological organization, assessment that promotes and reveals mechanistic and causal reasoning, and practice with explanatory models with formative feedback. © 2014 E. Bray Speth et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  7. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    Science.gov (United States)

    Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (posttest) of the course. Alignment between student perception and determined knowledge was significantly more accurate on the posttest compared with the pretest. Students whose determined knowledge was in the upper quartile had significantly better alignment between their perception and determined knowledge on the pre- and posttest than students in the lower quartile. No difference exists between how students perceived their knowledge between upper- and lower-quartile students. There was a significant difference in alignment of perception and determined knowledge between males and females on the posttest, with females being more accurate in their perception of knowledge. This study provides evidence of discrepancies that exist between what students perceive they know and what they actually know. PMID:26086662

  8. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    Science.gov (United States)

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  9. Authorized Course of Instruction for the Quinmester Program. Science: Introduction to Marine Science; Recreation and the Sea; Oceanography; Marine Ecology of South Florida, and Invertebrate Marine Biology.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    All five units, developed for the Dade County Florida Quinmester Program, included in this collection concern some aspect of marine studies. Except for "Recreation and the Sea," intended to give students basic seamanship skills and experience of other marine recreation, all units are designed for students with a background in biology or…

  10. IEOOS: the Spanish Institute of Oceanography Observing System

    Science.gov (United States)

    Tel, E.; Balbin, R.; Cabanas, J. M.; Garcia, M. J.; Garcia-Martinez, M. C.; Gonzalez-Pola, C.; Lavin, A.; Lopez-Jurado, J. L.; Rodriguez, C.; Ruiz-Villarreal, M.; Sanchez-Leal, R. F.; Vargas-Yanez, M.; Velez-Belchi, P.

    2015-10-01

    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography (OO). Some systems like the tide gauges network has been working for more than 70 years. The IEO standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the IEO Observing System (IEOOS) includes 6 permanent moorings equipped with currentmeters, an open-sea ocean-meteorological buoy offshore Santander and an SST satellital image reception station. It also supports the Spanish contribution to the ARGO international program with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and ADCP onboard the IEO research vessels. The system is completed with the IEO contribution to the RAIA and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands as navigation, resource management, risks management, recreation, etc, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programs Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits following spatio-temporal description of some events, as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  11. Archive of Geosample Data and Information from the Scripps Institution of Oceanography (SIO) Geological Collections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of California San Diego (UCSD) Scripps Institution of Oceanography (SIO) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS)...

  12. Supporting students in building interdisciplinary connections across physics and biology

    Science.gov (United States)

    Turpen, Chandra

    2014-03-01

    Our research team has been engaged in the iterative redesign of an Introductory Physics course for Life Science (IPLS) majors to explicitly bridge biology and physics in ways that are authentic to the disciplines. Our interdisciplinary course provides students opportunities to examine how modeling decisions (e.g. knowing when and how to use different concepts, identifying implicit assumptions, making and justifying assumptions) may differ depending on canonical disciplinary aims and interests. Our focus on developing students' interdisciplinary reasoning skills requires 1) shifting course topics to focus on core ideas that span the disciplines, 2) shifting epistemological expectations, and 3) foregrounding typically tacit disciplinary assumptions. In working to build an authentic interdisciplinary course that bridges physics and biology, we pay careful attention to supporting students in constructing these bridges. This course has been shown to have important impacts: a) students seek meaningful connections between the disciplines, b) students perceive relevance and utility of ideas from different disciplines, and c) students reconcile challenging disciplinary ideas. Although our focus has been on building interdisciplinary coherence, we have succeeded in maintaining strong student learning gains on fundamental physics concepts and allowed students to deepen their understanding of challenging concepts in thermodynamics. This presentation will describe the shifts in course content and the modern pedagogical approaches that have been integrated into the course, and provide an overview of key research results from this project. These results may aid physicists in reconsidering how they can meaningfully reach life-science students. This work is supported by NSF-TUES DUE 11-22818, the HHMI NEXUS grant, and a NSF Graduate Research Fellowship (DGE 0750616).

  13. Assessing Students' Performances in Decision-Making: Coping Strategies of Biology Teachers

    Science.gov (United States)

    Steffen, Benjamin; Hößle, Corinna

    2017-01-01

    Decision-making in socioscientific issues (SSI) constitutes a real challenge for both biology teachers and learners. The assessment of students' performances in SSIs constitutes a problem, especially for biology teachers. The study at hand was conducted in Germany and uses a qualitative approach following the research procedures of grounded theory…

  14. ESL students learning biology: The role of language and social interactions

    Science.gov (United States)

    Jaipal, Kamini

    This study explored three aspects related to ESL students in a mainstream grade 11 biology classroom: (1) the nature of students' participation in classroom activities, (2) the factors that enhanced or constrained ESL students' engagement in social interactions, and (3) the role of language in the learning of science. Ten ESL students were observed over an eight-month period in this biology classroom. Data were collected using qualitative research methods such as participant observation, audio-recordings of lessons, field notes, semi-structured interviews, short lesson recall interviews and students' written work. The study was framed within sociocultural perspectives, particularly the social constructivist perspectives of Vygotsky (1962, 1978) and Wertsch (1991). Data were analysed with respect to the three research aspects. Firstly, the findings showed that ESL students' preferred and exhibited a variety of participation practices that ranged from personal-individual to socio-interactive in nature. Both personal-individual and socio-interactive practices appeared to support science and language learning. Secondly, the findings indicated that ESL students' engagement in classroom social interactions was most likely influenced by the complex interactions between a number of competing factors at the individual, interpersonal and community/cultural levels (Rogoff, Radziszewska, & Masiello, 1995). In this study, six factors that appeared to enhance or constrain ESL students' engagement in classroom social interactions were identified. These factors were socio-cultural factors, prior classroom practice, teaching practices, affective factors, English language proficiency, and participation in the research project. Thirdly, the findings indicated that language played a significant mediational role in ESL students' learning of science. The data revealed that the learning of science terms and concepts can be explained by a functional model of language that includes: (1

  15. First-Year Biology Students' Understandings of Meiosis: An Investigation Using a Structural Theoretical Framework

    Science.gov (United States)

    Quinn, Frances; Pegg, John; Panizzon, Debra

    2009-01-01

    Meiosis is a biological concept that is both complex and important for students to learn. This study aims to explore first-year biology students' explanations of the process of meiosis, using an explicit theoretical framework provided by the Structure of the Observed Learning Outcome (SOLO) model. The research was based on responses of 334…

  16. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    Science.gov (United States)

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  17. Learning can be all Fun and Games: Constructing and Utilizing a Biology Taboo Wiktionary to Enhance Student Learning in an Introductory Biology Course

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Olimpo

    2010-10-01

    Full Text Available Most introductory courses in the biological sciences are inherently content-dense and rich with jargon—jargon that is often confusing and nonsensical to novice students. These characteristics present an additional paradox to instructors, who strive to achieve a balance between simply promoting passive, rote memorization of facts and engaging students in developing true, concrete understanding of the terminology. To address these concerns, we developed and implemented a Biology Taboo Wiktionary that provided students with an interactive opportunity to review and describe concepts they had encountered during their first semester of introductory biology. However, much like the traditional Taboo game, the rules were such that students could not use obvious terms to detail the main term. It was our belief that if the student could synthesize a thoughtful, scientific explanation of the term under these conditions, he or she demonstrated a true understanding of the conceptual context and meaning of the term.

  18. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  19. Dynamic Open Inquiry Performances of High-School Biology Students

    Science.gov (United States)

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  20. Engagement and Skill Development in Biology Students through Analysis of Art

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates’ curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students’ higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, firsthand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material. PMID:24297295

  1. The Effect of Knowledge Linking Levels in Biology Lessons upon Students' Knowledge Structure

    Science.gov (United States)

    Wadouh, Julia; Liu, Ning; Sandmann, Angela; Neuhaus, Birgit J.

    2014-01-01

    Knowledge structure is an important aspect for defining students' competency in biology learning, but how knowledge structure is influenced by the teaching process in naturalistic biology classroom settings has scarcely been empirically investigated. In this study, 49 biology lessons in the teaching unit "blood and circulatory system" in…

  2. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  3. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting

    OpenAIRE

    Biel, Rachel; Brame, Cynthia J.

    2016-01-01

    Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types ...

  4. Comparison of the perceived relevance of oral biology reported by students and interns of a Pakistani dental college.

    Science.gov (United States)

    Farooq, I; Ali, S

    2014-11-01

    The purpose of this study was to analyse and compare the perceived relevance of oral biology with dentistry as reported by dental students and interns and to investigate the most popular teaching approach and learning resource. A questionnaire aiming to ask about the relevance of oral biology to dentistry, most popular teaching method and learning resource was utilised in this study. Study groups encompassed second-year dental students who had completed their course and dental interns. The data were obtained and analysed statistically. The overall response rate for both groups was 60%. Both groups reported high relevance of oral biology to dentistry. Perception of dental interns regarding the relevance of oral biology to dentistry was higher than that of students. Both groups identified student presentations as the most important teaching method. Amongst the most important learning resources, textbooks were considered most imperative by interns, whereas lecture handouts received the highest importance score by students. Dental students and interns considered oral biology to be relevant to dentistry, although greater relevance was reported by interns. Year-wise advancement in dental education and training improves the perception of the students about the relevance of oral biology to dentistry. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Does the nature of science influence college students' learning of biological evolution?

    Science.gov (United States)

    Butler, Wilbert, Jr.

    This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class

  6. Accidents with biological material among undergraduate nursing students in a public Brazilian university.

    Science.gov (United States)

    Reis, Renata Karina; Gir, Elucir; Canini, Silvia Rita M S

    2004-02-01

    During their academic activities, undergraduate nursing students are exposed to contamination by bloodborne pathogens, as well as by others found in body fluids, among which are the Human Immunodeficiency (HIV), Hepatitis B and C viruses. We developed a profile of victimized students, characterizing accidents with biological material occurring among undergraduate nursing students at a public university in São Paulo State, Brazil. We identified the main causes and evaluated the conduct adopted by students and their reactions and thoughts concerning the accidents. Seventy-two accidents were identified, of which 17% involved potentially contaminated biological material. Needles were the predominant cause of accidents. The most frequently involved topographic areas were the fingers. Only five students reported the accidents and sought medical care. Among these, two students were advised to begin prophylactic treatment against HIV infection by means of antiretroviral drugs. It was found that the risk of accidents is underestimated and that strategies such as formal teaching and continual training are necessary in order to make students aware of biosafety measures.

  7. Accidents with biological material among undergraduate nursing students in a public Brazilian university

    Directory of Open Access Journals (Sweden)

    Renata Karina Reis

    Full Text Available During their academic activities, undergraduate nursing students are exposed to contamination by bloodborne pathogens, as well as by others found in body fluids, among which are the Human Immunodeficiency (HIV, Hepatitis B and C viruses. We developed a profile of victimized students, characterizing accidents with biological material occurring among undergraduate nursing students at a public university in São Paulo State, Brazil. We identified the main causes and evaluated the conduct adopted by students and their reactions and thoughts concerning the accidents. Seventy-two accidents were identified, of which 17% involved potentially contaminated biological material. Needles were the predominant cause of accidents. The most frequently involved topographic areas were the fingers. Only five students reported the accidents and sought medical care. Among these, two students were advised to begin prophylactic treatment against HIV infection by means of antiretroviral drugs. It was found that the risk of accidents is underestimated and that strategies such as formal teaching and continual training are necessary in order to make students aware of biosafety measures.

  8. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students.

    Science.gov (United States)

    Cooper, Katelyn M; Brownell, Sara E

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students' LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. © 2016 K. M. Cooper and S. E. Brownell. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. [Injury rate and incidence of accidents with biological risk among infirmary students].

    Science.gov (United States)

    Rodríguez Martín, A; Novalbos Ruiz, J P; Costa Alonso, M J; Zafra Mezcua, J A

    2000-09-09

    A study of the incidence and characteristics of biological accidents among infirmary students during their practicals at the hospital. A retrospective study carried out at five centres by means of two questionnaires, one on the duration of the training and the rate of accidents and the other on the characteristics, precautions and ports exposure behaviour. Out of 397 students, 70,5% had accidents at a rate of 64% (CI 95%, 59-68). Of these, 15% were accidents with biological risk, the majority being jabs (39%) and splashes (32,5%). It is worth note that 49,2% occurred while putting away the material and 58% in the absence of any individual protective measures. One out of 8 accidents implied a biological risk. A very high rate of accidents was observed with important deficiencies in security.

  11. Measuring the Outcome of At-Risk Students on Biology Standardized Tests When Using Different Instructional Strategies

    Science.gov (United States)

    Burns, Dana

    Over the last two decades, online education has become a popular concept in universities as well as K-12 education. This generation of students has grown up using technology and has shown interest in incorporating technology into their learning. The idea of using technology in the classroom to enhance student learning and create higher achievement has become necessary for administrators, teachers, and policymakers. Although online education is a popular topic, there has been minimal research on the effectiveness of online and blended learning strategies compared to the student learning in a traditional K-12 classroom setting. The purpose of this study was to investigate differences in standardized test scores from the Biology End of Course exam when at-risk students completed the course using three different educational models: online format, blended learning, and traditional face-to-face learning. Data was collected from over 1,000 students over a five year time period. Correlation analyzed data from standardized tests scores of eighth grade students was used to define students as "at-risk" for failing high school courses. The results indicated a high correlation between eighth grade standardized test scores and Biology End of Course exam scores. These students were deemed "at-risk" for failing high school courses. Standardized test scores were measured for the at-risk students when those students completed Biology in the different models of learning. Results indicated significant differences existed among the learning models. Students had the highest test scores when completing Biology in the traditional face-to-face model. Further evaluation of subgroup populations indicated statistical differences in learning models for African-American populations, female students, and for male students.

  12. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    Science.gov (United States)

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  13. Fostering Students' Conceptual Knowledge in Biology in the Context of German National Education Standards

    Science.gov (United States)

    Förtsch, Christian; Dorfner, Tobias; Baumgartner, Julia; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2018-04-01

    The German National Education Standards (NES) for biology were introduced in 2005. The content part of the NES emphasizes fostering conceptual knowledge. However, there are hardly any indications of what such an instructional implementation could look like. We introduce a theoretical framework of an instructional approach to foster students' conceptual knowledge as demanded in the NES (Fostering Conceptual Knowledge) including instructional practices derived from research on single core ideas, general psychological theories, and biology-specific features of instructional quality. First, we aimed to develop a rating manual, which is based on this theoretical framework. Second, we wanted to describe current German biology instruction according to this approach and to quantitatively analyze its effectiveness. And third, we aimed to provide qualitative examples of this approach to triangulate our findings. In a first step, we developed a theoretically devised rating manual to measure Fostering Conceptual Knowledge in videotaped lessons. Data for quantitative analysis included 81 videotaped biology lessons of 28 biology teachers from different German secondary schools. Six hundred forty students completed a questionnaire on their situational interest after each lesson and an achievement test. Results from multilevel modeling showed significant positive effects of Fostering Conceptual Knowledge on students' achievement and situational interest. For qualitative analysis, we contrasted instruction of four teachers, two with high and two with low student achievement and situational interest using the qualitative method of thematic analysis. Qualitative analysis revealed five main characteristics describing Fostering Conceptual Knowledge. Therefore, implementing Fostering Conceptual Knowledge in biology instruction seems promising. Examples of how to implement Fostering Conceptual Knowledge in instruction are shown and discussed.

  14. Closing the Social Class Achievement Gap for First-Generation Students in Undergraduate Biology

    Science.gov (United States)

    Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Giffen, Cynthia J.; Blair, Seth S.; Rouse, Douglas I.; Hyde, Janet S.

    2014-01-01

    Many students start college intending to pursue a career in the biosciences, but too many abandon this goal because they struggle in introductory biology. Interventions have been developed to close achievement gaps for underrepresented minority students and women, but no prior research has attempted to close the gap for first-generation students,…

  15. Student world view as a framework for learning genetics and evolution in high school biology

    Science.gov (United States)

    McCoy, Roger Wesley

    Statement of the problem. Few studies in biology education have examined the underlying presuppositions which guide thinking and concept learning in adolescents. The purpose of this study was to describe and understand the biological world views of a variety of high school students before they take biology courses. Specifically, the study examined student world views in the domains of Classification, Relationship and Causation related to the concepts of heredity, evolution and biotechnology. The following served as guiding questions: (1) What are the personal world views of high school students entering biology classes, related to the domain of Classification, Relationship and Causality? (2) How do these student world views confound or enhance the learning of basic concepts in genetics and evolution? Methods. An interpretive method was chosen for this study. The six student participants were ninth graders and represented a wide range of world view backgrounds. A series of three interviews was conducted with each participant, with a focus group used for triangulation of data. The constant comparative method was used to categorize the data and facilitate the search for meaningful patterns. The analysis included a thick description of each student's personal views of classification, evolution and the appropriate use of biotechnology. Results. The study demonstrates that world view is the basis upon which students build knowledge in biology. The logic of their everyday thinking may not match that of scientists. The words they use are sometimes inconsistent with scientific terminology. This study provides evidence that students voice different opinions depending on the social situation, since they are strongly influenced by peers. Students classify animals based on behaviors. They largely believe that the natural world is unpredictable, and that humans are not really part of that world. Half are unlikely to accept the evolution of humans, but may accept it in other

  16. Analysis of undergraduate students' conceptual models of a complex biological system across a diverse body of learners

    Science.gov (United States)

    Dirnbeck, Matthew R.

    Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function

  17. Interest, Attitudes and Self-Efficacy Beliefs Explaining Upper-Secondary School Students' Orientation Towards Biology-Related Careers

    Science.gov (United States)

    Uitto, Anna

    2014-01-01

    The aim of the study was to discover the contribution of students' interest in school biology, as well as their self-efficacy and attitudes towards different science subjects and mathematics when explaining students' orientation towards biology-related careers at upper-secondary school. The data of 321 K-11 students (49% women) were…

  18. 1960-69 Cumulative Index of Articles Related to Oceanography and Limnology Education in The Science Teacher.

    Science.gov (United States)

    Cohen, Maxwell

    Indexed are articles relating to oceanography and limnology published in "The Science Teacher" between 1960 and 1969. Articles are indexed under title, author, and topic. Topics include background information, course descriptions, and laboratory equipment and techniques. (EB)

  19. Students Mental Representation of Biology Diagrams/Pictures Conventions Based on Formation of Causal Network

    Science.gov (United States)

    Sampurno, A. W.; Rahmat, A.; Diana, S.

    2017-09-01

    Diagrams/pictures conventions is one form of visual media that often used to assist students in understanding the biological concepts. The effectiveness of use diagrams/pictures in biology learning at school level has also been mostly reported. This study examines the ability of high school students in reading diagrams/pictures biological convention which is described by Mental Representation based on formation of causal networks. The study involved 30 students 11th grade MIA senior high school Banten Indonesia who are studying the excretory system. MR data obtained by Instrument worksheet, developed based on CNET-protocol, in which there are diagrams/drawings of nephron structure and urinary mechanism. Three patterns formed MR, namely Markov chain, feedback control with a single measurement, and repeated feedback control with multiple measurement. The third pattern is the most dominating pattern, differences in the pattern of MR reveal the difference in how and from which point the students begin to uncover important information contained in the diagram to establish a causal networks. Further analysis shows that a difference in the pattern of MR relate to how complex the students process the information contained in the diagrams/pictures.

  20. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  1. The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology.

    Science.gov (United States)

    Milner-Bolotin, Marina; Nashon, Samson Madera

    2012-02-01

    Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.

  2. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  3. Sequencing Genetics Information: Integrating Data into Information Literacy for Undergraduate Biology Students

    Science.gov (United States)

    MacMillan, Don

    2010-01-01

    This case study describes an information literacy lab for an undergraduate biology course that leads students through a range of resources to discover aspects of genetic information. The lab provides over 560 students per semester with the opportunity for hands-on exploration of resources in steps that simulate the pathways of higher-level…

  4. Simulation of annual cycles of phytoplankton, zooplankton and nutrients using a mixed layer model coupled with a biological model

    OpenAIRE

    Troupin, Charles

    2006-01-01

    In oceanography, the mixed layer refers to the near surface part of the water column where physical and biological variables are distributed quasi homogeneously. Its depth depends on conditions at the air-sea interface (heat and freshwater fluxes, wind stress) and on the characteristics of the flow (stratification, shear), and has a strong influence on biological dynamics. The aim of this work is to model the behaviour of the mixed layer in waters situated to the south of Gr...

  5. Effects of socioscientific issues-based instruction on argumentation ability and biology concepts of upper secondary school students

    Science.gov (United States)

    Faelt, Surasak; Samiphak, Sara; Pattaradilokrat, Sittiporn

    2018-01-01

    Argumentation skill is an essential skill needed in students, and one of the competencies in scientific literacy. Through arguing on socioscientific issues, students may gain deeper conceptual understanding. The purpose of this research is to examine the efficacy of a socioscientific issues-based instruction compared with an inquirybased instruction. This is to determine which one is better in promoting 10th grade students' argumentation ability and biology concepts of digestive system and cellular respiration. The forty 10th grade students included in this study were from two mathematics-science program classes in a medium-sized secondary school located in a suburb of Buriram province, Thailand. The research utilizes a quasi-experimental design; pre-test post-test control group design. We developed and implemented 4 lesson plans for both socioscientific issues-based instruction and inquiry-based instruction. Ten weeks were used to collect the data. A paper-based questionnaire and informal interviews were designed to test students' argumentation ability, and the two-tier multiple-choice test was designed to test their biology concepts. This research explore qualitatively and quantitatively students' argumentation abilities and biology concepts, using arithmetic mean, mean of percentage, standard deviation and t-test. Results show that there is no significant difference between the two group regarding mean scores of the argumentation ability. However, there is significant difference between the two groups regarding mean scores of the biology concepts. This suggests that socioscientific issues-based instruction could be used to improve students' biology concepts.

  6. Attributions of Academic Performance among Third Year and Fourth Year Biology Major Students

    Directory of Open Access Journals (Sweden)

    Nick John B. Solar

    2015-08-01

    Full Text Available This is a descriptive study aimed to determine the attributions of academic performance of third year and fourth year biology major students in the College of Education, West Visayas State University, School Year 2013-2014. The academic performance were categorized or measured in terms of test, projects, workbooks, and laboratory experiments, class participation, and attendance. The Attributions in academic performance were evaluated using the closed-form questionnairechecklist,categorized intoin termsof ability, effort, luck, or task difficulty. Mean frequency, mean percentage, Mann-Whitney U-test, two-sampled test set at 0.05 level of significance were used to determine if there were significant difference in the attribution when the students were taken according to their year level. The result of the study revealed that the Third Year biology majors attributed their academic performance to effort which is shown to have the highest percentage attribution in overall rank. There was no significant difference in the attributions of academic performance for third year and fourth year biology major students in termsof test, whilethe result forprojects, workbooks, and laboratory experiment and class participation and attendance categories,was found out to havea significant difference in the attributionfor the third and fourth years biology Major students’ academic performances.

  7. Biology and physics competencies for pre-health and other life sciences students.

    Science.gov (United States)

    Hilborn, Robert C; Friedlander, Michael J

    2013-06-01

    The recent report on the Scientific Foundations for Future Physicians (SFFP) and the revised Medical College Admissions Test (MCAT) reframe the preparation for medical school (and other health professional schools) in terms of competencies: what students should know and be able to do with that knowledge, with a strong emphasis on scientific inquiry and research skills. In this article, we will describe the thinking that went into the SFFP report and what it says about scientific and quantitative reasoning, focusing on biology and physics and the overlap between those fields. We then discuss how the SFFP report set the stage for the discussion of the recommendations for the revised MCAT, which will be implemented in 2015, again focusing the discussion on biology and physics. Based on that framework, we discuss the implications for undergraduate biology and physics education if students are to be prepared to demonstrate these competencies.

  8. Policy implications of select student characteristics and their influence on the Florida biology end-of-course assessment

    Science.gov (United States)

    Bertolotti, Janine Cecelia

    In an attempt to improve student achievement in science in Florida, the Florida Department of Education implemented end-of-course (EOC) assessments in biology during the 2011-2012 academic school year. Although this first administration would only account for 30% of the student's overall final course grade in biology, subsequent administrations would be accompanied by increasing stakes for students, teachers, and schools. Therefore, this study sought to address gaps in empirical evidence as well as discuss how educational policy will potentially impact on teacher evaluation and professional development, student retention and graduation rates, and school accountability indicators. This study explored four variables- reading proficiency, ethnicity, socioeconomic status, and gender- to determine their influence and relationship on biology achievement on the Biology I EOC assessment at a Title 1 school. To do so, the results of the Biology I EOC assessment administered during the Spring 2012 school year was obtained from a small, rural Title 1 high school in North Florida. Additional data regarding each student's qualification for free and reduced-price lunch, FCAT Reading developmental scale scores, FCAT Reading level, grade level, gender, and ethnicity were also collected for the causal-comparative exploratory study. Of the 178 students represented, 48% qualified for free and reduced-price lunch, 54% were female, and 55% scored at FCAT Reading level 3 or higher. Additionally, 59% were White and 37% Black. A combination of descriptive statistics and other statistical procedures such as independent samples one-tailed t-test, one-way ANOVAs, ANCOVAs, multipleregression, and a Pearson r correlation was utilized in the analysis, with a significance level set at 0.05. Results indicate that of all four variables, FCAT Reading proficiency was the sole variable, after adjusting for other variables; that had a significant impact on biology achievement. Students with higher

  9. The Use of Textbooks for Advanced-Level GCE Courses in Physics, Chemistry and Biology by Sixth-Form Students.

    Science.gov (United States)

    Newton, D. P.

    1984-01-01

    A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)

  10. Active learning and student-centered pedagogy improve student attitudes and performance in introductory biology.

    Science.gov (United States)

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based learning into every lecture, and 3) adopting strategies to create a more student-centered learning environment. Assessment of our instructional design consisted of a student survey and comparison of final exam performance across 3 years-1 year before our course redesign was implemented (2006) and during two successive years of implementation (2007 and 2008). The course restructuring led to significant improvement of self-reported student engagement and satisfaction and increased academic performance. We discuss the successes and ongoing challenges of our course restructuring and consider issues relevant to institutional change.

  11. Science Teacher Efficacy and Outcome Expectancy as Predictors of Students' End-of-Instruction (EOI) Biology I Test Scores

    Science.gov (United States)

    Angle, Julie; Moseley, Christine

    2009-01-01

    The purpose of this study was to compare teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the statewide End-of-Instruction (EOI) Biology I test met or exceeded the state academic proficiency level (Proficient Group) to teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the…

  12. Factors Potentially Influencing Student Acceptance of Biological Evolution

    Science.gov (United States)

    Wiles, Jason R.

    This investigation explored scientific, religious, and otherwise nonscientific factors that may influence student acceptance of biological evolution and related concepts, how students perceived these factors to have influenced their levels of acceptance of evolution and changes therein, and what patterns arose among students' articulations of how their levels of acceptance of evolution may have changed. This exploration also measured the extent to which students' levels of acceptance changed following a treatment designed to address factors identified as potentially affecting student acceptance of evolution. Acceptance of evolution was measured using the MATE instrument (Rutledge and Warden, 1999; Rutledge and Sadler, 2007) among participants enrolled in a secondary-level academic program during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than pre-treatment levels both immediately following and slightly over one year after treatment. Qualitative data from informal questionnaires, from formal course evaluations, and from semi-structured interviews of students engaged in secondary level education and former students at various stages of post-secondary education confirmed that the suspected factors were perceived by participants to have influenced their levels of acceptance of evolution. Furthermore, participant reports provided insight regarding the relative effects they perceived these factors to have had on their evolution acceptance levels. Additionally, many participants reported that their science teachers in public schools had avoided, omitted, or denigrated evolution during instruction, and several of these students expressed frustration regarding what they perceived to have been a lack of education of an important scientific principle. Finally, no students expressed feelings of being offended by having been taught about

  13. Values Affirmation Intervention Reduces Achievement Gap between Underrepresented Minority and White Students in Introductory Biology Classes.

    Science.gov (United States)

    Jordt, Hannah; Eddy, Sarah L; Brazil, Riley; Lau, Ignatius; Mann, Chelsea; Brownell, Sara E; King, Katherine; Freeman, Scott

    2017-01-01

    Achievement gaps between underrepresented minority (URM) students and their white peers in college science, technology, engineering, and mathematics classrooms are persistent across many white-majority institutions of higher education. Attempts to reduce this phenomenon of underperformance through increasing classroom structure via active learning have been partially successful. In this study, we address the hypothesis that the achievement gap between white and URM students in an undergraduate biology course has a psychological and emotional component arising from stereotype threat. Specifically, we introduced a values affirmation exercise that counters stereotype threat by reinforcing a student's feelings of integrity and self-worth in three iterations of an intensive active-learning college biology course. On average, this exercise reduced the achievement gap between URM and white students who entered the course with the same incoming grade point average. This result suggests that achievement gaps resulting from the underperformance of URM students could be mitigated by providing students with a learning environment that removes psychological and emotional impediments of performance through short psychosocial interventions. © 2017 H. Jordt et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. The International System of Units (SI) in Oceanography. Report of IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography (SUN). Unesco Technical Papers in Marine Science 45. IAPSO Publication Scientifique No. 32.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report introduces oceanographers to the International System of Units (SI) in physical oceanography. The SI constitutes a universal language, designed to be understood by all scientists. It facilitates their mutual comprehension and exchange of views and results of their work. The first part of the report is devoted to physical quantities,…

  16. Other relevant papers in physical oceanography

    International Nuclear Information System (INIS)

    Nyffeler, F.

    1989-01-01

    During the past few years, significant progress has occurred in the field of physical oceanography partly as a consequence of developing cooperation and international participation in well-coordinated ocean research programmes. Although these programs were not designed specifically to address CRESP problems, many have proved to be directly relevant to CRESP objectives. For example, MODE, POLYMODE, and Tourbillon were intensive site-specific experiments that included studies of dispersion processes throughout the water column. NOAMP and GME were also site specific, involved the entire water column, and even stressed near-bottom and suspended-sediment processes. Others, (e.g., WOCE) are larger in scope and include extensive observations of the general circulation of entire ocean basins. As a whole, they contribute immensely to improving the data base for exchange and transport processes and thereby for the verification and validation of both regional-scale and general-circulation ocean models. That, in turn, is directly relevant to radiological assessments. Selected papers deriving from experiments such as these are discussed and referenced below

  17. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  18. How biological (fish) noise affects the performance of shallow water passive array system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.; Haris, K.; Vijayakumar, K.; Sundar, D.; Luis, R.A.A.; Mahanty, M.M.; Latha, G.

    =UTF-8 How biological (fish) noise affects the performance of shallow water passive array system William Fernandes, Bishwajit Chakraborty, K. Haris, K. Vijaykumar, D. Sundar, R.A.A. Luis CSIR-National Institute of Oceanography, Dona Paula... source distribution as well as the environmental parameters (i.e., water depth, sound speed profile, and seafloor properties). In a waveguide bounded by sea surface and seabed, multipath propagation prevails and the spatial structure of the noise...

  19. The oceanography programme of the Federal German Government

    International Nuclear Information System (INIS)

    1993-01-01

    The oceanography programme of the Federal German Government has the following general aims: 1. To lay the foundation for better understanding of the role of the ocean as a climate factor and repercussions on the ocean from climate change as a basis for future preventive and protective action. 2. Identification of natural and anthropogenous factors of stress to the coastal seas, the coastal regions and the open ocean, research into their dynamics and impact, and development of bases, methods and concepts for describing and evaluating the condition of the coastal seas, coastal regions and open ocean and for projecting and/or remedying relative changes. 3. Development of methods and techniques for climate and environment-related research into and monitoring of the oceans and for careful exploitation of living and non-living resources. (orig.) [de

  20. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  1. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students

    Directory of Open Access Journals (Sweden)

    Gili Marbach-Ad

    2016-12-01

    Full Text Available This study describes the implementation and effectiveness of small-group active engagement (GAE exercises in an introductory biology course (BSCI207 taught in a large auditorium setting. BSCI207 (Principles of Biology III—Organismal Biology is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section (n = 198 employed three lectures per week. The other section (n = 136 replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students. Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies.

  2. Student anxiety in introductory biology classrooms: Perceptions about active learning and persistence in the major

    Science.gov (United States)

    2017-01-01

    Many researchers have called for implementation of active learning practices in undergraduate science classrooms as one method to increase retention and persistence in STEM, yet there has been little research on the potential increases in student anxiety that may accompany these practices. This is of concern because excessive anxiety can decrease student performance. Levels and sources of student anxiety in three introductory biology lecture classes were investigated via an online survey and student interviews. The survey (n = 327) data revealed that 16% of students had moderately high classroom anxiety, which differed among the three classes. All five active learning classroom practices that were investigated caused student anxiety, with students voluntarily answering a question or being called on to answer a question causing higher anxiety than working in groups, completing worksheets, or answering clicker questions. Interviews revealed that student anxiety seemed to align with communication apprehension, social anxiety, and test anxiety. Additionally, students with higher general anxiety were more likely to self-report lower course grade and the intention to leave the major. These data suggest that a subset of students in introductory biology experience anxiety in response to active learning, and its potential impacts should be investigated. PMID:28771564

  3. The Climate Experiences of Students in Introductory Biology

    Directory of Open Access Journals (Sweden)

    Ramón S. Barthelemy

    2015-08-01

    Full Text Available Understanding course climate is important for improving students’ experiences and increasing the likelihood of their persistence in STEM fields. This study presents climate survey results from 523 students taking introductory biology at the University of Michigan. Principal component analysis revealed that a student’s climate experience is comprised of five main elements: comfort, school avoidance, relationship to course, academic stress, and discomfort. Of these climate factors, comfort, school avoidance, and relationship to course were significant predictors of course satisfaction, and academic stress was a significant predictor of persistence. The results indicated the importance of a positive climate that is facilitated by the instructor in order to promote a positive student experience. Climate may be an important metric for institutions to track across time and course.

  4. Coming out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    Science.gov (United States)

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual,…

  5. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  6. Helping struggling students in introductory biology: a peer-tutoring approach that improves performance, perception, and retention.

    Science.gov (United States)

    Batz, Zachary; Olsen, Brian J; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K

    2015-01-01

    The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly "leaky" point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. © 2015 Z. Batz et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Problem-solving activities in Biology for Open University students [poster session

    OpenAIRE

    Ash, P.; Robinson, D.

    2006-01-01

    Problem-based learning is a valuable tool for enhancing student learning and for providing remedial help in grasping difficult concepts in Biology. Most teaching at the Open University is by course texts, DVDs and television. Teaching material is written by academics and\\ud expert consultants. An important feature of the material is that it includes interactive in-text and self-assessed questions, and also activities which may be home experiments or computer-based.\\ud Students are provided wi...

  8. Learning Styles of the Students of Biology Department and Prospective Biology Teachers in Turkey and Their Relationship with Some Demographic Variables

    Science.gov (United States)

    Günes, M. Handan

    2018-01-01

    This study has been carried out with the aim of researching dominant learning styles of the students studying at the biology departments of the faculty of science or the faculty of arts and sciences as well as the dominant learning styles of the prospective biology teachers studying at the faculty of education of universities in Turkey, by taking…

  9. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology.

    Science.gov (United States)

    Briggs, Amy G; Morgan, Stephanie K; Sanderson, Seth K; Schulting, Molly C; Wieseman, Laramie J

    2016-12-01

    The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids) and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein). Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  10. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology

    Directory of Open Access Journals (Sweden)

    Amy G. Briggs

    2016-12-01

    Full Text Available The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein. Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  11. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    Science.gov (United States)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings

  12. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    Science.gov (United States)

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  13. Perspectives on chemical oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO

    Science.gov (United States)

    Fassbender, Andrea J.; Palevsky, Hilary I.; Martz, Todd R.; Ingalls, Anitra E.; Gledhill, Martha; Fawcett, Sarah E.; Brandes, Jay; Aluwihare, Lihini; Anderson, Robert M.; Bender, Sara; Boyle, Ed; Bronk, Debbie; Buesseler, Ken; Burdige, David J.; Casciotti, Karen; Close, Hilary; Conte, Maureen; Cutter, Greg; Estapa, Meg; Fennel, Katja; Ferron, Sara; Glazer, Brian; Goni, Miguel; Grand, Max; Guay, Chris; Hatta, Mariko; Hayes, Chris; Horner, Tristan; Ingall, Ellery; Johnson, Kenneth G.; Juranek, Laurie; Knapp, Angela; Lam, Phoebe; Luther, George; Matrai, Paty; Nicholson, David; Paytan, Adina; Pellenbarg, Robert; Popendorf, Kim; Reddy, Christopher M.; Ruttenberg, Kathleen; Sabine, Chris; Sansone, Frank; Shaltout, Nayrah; Sikes, Liz; Sundquist, Eric T.; Valentine, David; Wang, Zhao (Aleck); Wilson, Sam; Barrett, Pamela; Behrens, Melanie; Belcher, Anna; Biermann, Lauren; Boiteau, Rene; Clarke, Jennifer; Collins, Jamie; Coppola, Alysha; Ebling, Alina M.; Garcia-Tigreros, Fenix; Goldman, Johanna; Guallart, Elisa F.; Haskell, William; Hurley, Sarah; Janssen, David; Johnson, Winn; Lennhartz, Sinikka; Liu, Shuting; Rahman, Shaily; Ray, Daisy; Sarkar, Amit; Steiner, Zvika; Widner, Brittany; Yang, Bo

    2017-01-01

    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the

  14. High school teachers' perspectives on effective approaches for teaching biology to students with special needs

    Science.gov (United States)

    Kos, Agnieszka

    The demands of national educational reforms require high school biology teachers to provide high quality instruction to students with and without special needs. The reforms, however, do not provide teachers with adequate teaching strategies to meet the needs of all students in the same context. The purpose of this grounded theory study was to understand high school biology teachers' perspectives, practices, and challenges in relation to teaching students with special needs. This approach was used to develop a substantive model for high school biology teachers who are challenged with teaching students with and without special needs. Data were collected via in-depth interviews with 15 high school teachers in a Midwestern school district. The data were analyzed using open coding, axial coding, and selective coding procedures in accordance with the grounded theory approach. Essential model components included skills and training for teachers, classroom management strategies, teaching strategies, and student skills. The emergent substantive theory indicated that that teacher preparation and acquired skills greatly influence the effectiveness of inclusion implementation. Key findings also indicated the importance of using of a variety of instructional strategies and classroom management strategies that address students' special needs and their learning styles. This study contributes to social change by providing a model for teaching students and effectively implementing inclusion in regular science classrooms. Following further study, this model may be used to support teacher professional development and improve teaching practices that in turn may improve science literacy supported by the national educational reforms.

  15. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  16. Evaluating Student Success and Outcomes in the Scripps Institution of Oceanography REU Program

    Science.gov (United States)

    Teranes, J. L.; Kohne, L.

    2013-12-01

    The NSF foundation-wide REU program exists to help attract and retain a diverse pool of talented undergraduate students in STEM fields. These goals are particularly relevant in earth and marine sciences because relatively few minority students traditionally seek careers in these fields and only account for an extremely small percentage of Ph.D. degrees earned. The Scripps Undergraduate Research Fellowship (SURF) REU program is a 10-week summer program currently in its third year of funding. The SURF program invites 10-15 undergraduate students from across the country to Scripps to participate in high quality collaborative research with Scripps faculty and researchers. Program components also include research seminars, career and graduate school preparation, GRE-prep courses, field trips and social activities. The project's goal, broadly, is to increase the participation of underrepresented minorities in marine science and related disciplines at a national level. Our program includes a comprehensive evaluation and assessment plan to help us understand the impact of this REU experience on the student participant. Our assessment consists of paired pre- and post-survey questions to estimate student growth in the following areas as related to earth and marine sciences: (1) increased knowledge and skills (2) increased confidence in ability to conduct research (3) improved attitudes and interest in the field and (4) more ambitious career goals. Assessment results from the last two cohorts have helped refine our recruitment and selection strategies. In the first year of our program, we focused almost exclusively on recruiting underrepresented minority students; over of the participants represented ethic groups considered to be underrepresented in STEM fields. However, participants did not demonstrate overall significant pre/post gains in any of the goal areas, mostly because pre-survey scores indicated that the students were already very strong in all goal areas. In years

  17. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  18. Video and HTML: Testing Online Tutorial Formats with Biology Students

    Science.gov (United States)

    Craig, Cindy L.; Friehs, Curt G.

    2013-01-01

    This study compared two common types of online information literacy tutorials: a streaming media tutorial using animation and narration and a text-based tutorial with static images. Nine sections of an undergraduate biology lab class (234 students total) were instructed by a librarian on how to use the BIOSIS Previews database. Three sections…

  19. Teacher and student actions to construct biology literacy at a community college: A bounded case study

    Science.gov (United States)

    Griesel, Patricia

    2000-10-01

    Science content area literacy, particularly literacy development in college level biology, is the focus of this study. The study investigates the actions and activities of an instructor and six students over the course of 16 weeks. The study is in response to interest in the literate practices in science classes (NSES, 1996) and to the call for contextual studies that facilitate the learning of science (Borasi & Siegel, 1999; Moje, 1996; Nist & Holschuh, 1996; Prentiss, 1998). A collaborative study between the biology teacher and the researcher, this study investigates the practices believed to be effective for the development of biology literacy. Data sources, in the qualitative bounded case study (Bogdin & Biklin, 1982; Glaser & Strauss, 1967; Miles & Huberman, 1994), include: field notes of classroom observations, in-depth interviews (Seidman, 1992), class surveys, and literate artifacts. The data were coded and analyzed using a constant comparative method (Glaser & Strauss, 1967). The six students reveal similarities and differences regarding the actions, patterns, practices and use of materials and their beliefs about effective practice in the development of biology literacy. The results indicate that a variety of actions and activities are needed to facilitate the development of biology literacy. The common themes to develop from the students' data about effective teacher actions are the following: (a) involves and engages students in inquiry learning through group projects, hands-on, and group discussions; (b) relates examples, experiences, and stories; (c) exhibits expertise; (d) encourages a relaxed classroom atmosphere; (e) facilitates and coaches students; and (f) credits creativity. Further, students report their teacher to be an expert, in terms of science knowledge and literate practices, and that her expertise contributes to their understanding of biology literacy. The teachers' data reveals three themes embedded in her classroom actions: science as

  20. Teaching General Education Students How to Write Scientific Arguments Using Real Earth Data

    Science.gov (United States)

    Kelly, G. J.; Prothero, W. A.

    2003-12-01

    Writing activities can improve student understanding of scientific content and processes. We have studied student writing to identify the challenges that students face in composing scientific arguments and to clarify features that constitute quality in scientific writing. We have applied argumentation analysis for the assessment of students' use of evidence in a general education oceanography course. Argumentation analysis refers to the systematic examination of ways that conclusions are supported with evidence. The student writers were supported by an interactive CD-ROM, "Our Dynamic Planet," which provided students with "point and click" access to real earth data and allowed them to solve many problems associated with plate tectonics. Plate boundary types (using quakes, volcanoes, elevation profiles, and heat flow) and plate motion can be determined (seafloor age, island ages/hot spots) with this technology. First, we discuss the structure of scientific argument and how this structure can be made accessible to undergraduate students. Second, we present examples of argumentation analysis applied to student writing. These examples demonstrate how use of large scale geological data sets can be used to support student writing. Third, we present results from a series of studies to show ways that students adhere to the genre conventions of geological writing through use of theoretical claims, multiple lines of evidence, and cohesive terms. These results, combined with our evidence-based orientation to instruction, formed the basis for modifications in the course instruction. These instructional modifications include providing detailed examples of data based observations and interpretations, heuristics for assessing other students' arguments, and quick write exercises with similar but simplified writing tasks. More information about the CD-ROM may be found at http://oceanography.geol.ucsb.edu/.

  1. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    Science.gov (United States)

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  2. In the Footsteps of Roger Revelle: a Partnership between SIO, ONR and Middle School Science Students

    Science.gov (United States)

    Brice, D.; Appelgate, T. B.; Foley, S.; Knox, R. A.; Mauricio, P.

    2010-12-01

    Now in its seventh year, “In the Footsteps of Roger Revelle” (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), National Science Foundation (NSF),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of biogeochemical research in the field as it relates to their classroom studies. The primary impact on these students is an appreciation of ocean science as it relates to their lives. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of

  3. The perspectives of nonscience-major students on success in community college biology

    Science.gov (United States)

    Kim-Rajab, Oriana Sharon

    With more than 36% of nonscience-major community college students unable to successfully complete their general life science courses, graduation and transfer rates to four-year universities are negatively affected. Many students also miss important opportunities to gain some level of science proficiency. In an effort to address the problem of poor science achievement, this research project determined which factors were most significantly related to student success in a community college biology course. It also aimed to understand the student perspectives on which modifications to the course would best help them in the pursuit of success. Drawing heavily on the educational psychology schools of thought on motivation and self-efficacy of science learning, this study surveyed and interviewed students on their perceptions of which factors were related to success in biology and the changes they believed were needed in the course structure to improve success. The data revealed that the primary factors related to student success are the students' study skills and their perceived levels of self-efficacy. The findings also uncovered the critical nature of the professor's role in influencing the success of the students. After assessing the needs of the community college population, meaningful and appropriate curriculum and pedagogical reforms could be created to improve student learning outcomes. This study offered recommendations for reforms that can be used by science practitioners to provide a more nurturing and inspiring environment for all students. These suggestions revolved around the role of the instructor in influencing the self-efficacy and study skills of students. Providing more opportunities for students to interact in class, testing more frequently, establishing peer assistance programs, managing better the course material, and making themselves more available to students were at the forefront of the list. Examples of the potential benefits of increasing

  4. Shaping scientific attitude of biology education students through research-based teaching

    Science.gov (United States)

    Firdaus, Darmadi

    2017-08-01

    Scientific attitude is need of today's society for peaceful and meaningful living of every person in a multicultural world. A case study was conducted at the Faculty of Teacher Training and Education, University of Riau, Pekanbaru in order to describe the scientific attitude that shaped by research-based teaching (RBT). Eighteen students of English for Biology bilingual program were selected from 88 regular students as a subject of the study. RBT designed consists of 9 steps: 1) field observations, 2) developing research proposals, 3) research proposal seminar, 4) field data collecting, 5) data analyzing & ilustrating, 6) writing research papers, 7) preparing power point slides, 8) creating a scientific poster, 9) seminar & poster session. Data were collected by using check list observation instuments during 14 weeks (course sessions), then analyzed by using descriptive-quantitative method. The results showed that RBT were able to shape critical-mindedness, suspended judgement, respect for evidence, honesty, objectivity, and questioning attitude as well as tolerance of uncertainty. These attitudes which shaped were varies according to every steps of learning activities. It's seems that the preparation of scientific posters and research seminar quite good in shaping the critical-mindedness, suspended judgment, respect for evidence, honesty, objectivity, and questioning attitude, as well as tolerance of uncertainty. In conclusion, the application of research-based teaching through the English for Biology courses could shape the students scientific attitudes. However, the consistency of the appearance of a scientific attitude in every stage of Biology-based RBT learning process need more intensive and critical assessment.

  5. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    Science.gov (United States)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social

  6. Promoting Student Learning through the Integration of Lab and Lecture: The Seamless Biology Curriculum

    Science.gov (United States)

    Burrowes, Patricia; Nazario, Gladys

    2008-01-01

    The authors engaged in an education experiment to determine if the integration of lab and lecture activities in zoology and botany proved beneficial to student learning and motivation toward biology. Their results revealed that this strategy positively influenced students' academic achievement, conceptual understanding, and ability to apply…

  7. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  8. Gender Inequality in Biology Classes in China and Its Effects on Students' Short-Term Outcomes

    Science.gov (United States)

    Liu, Ning; Neuhaus, Birgit

    2014-07-01

    This study investigated gender inequality in biology lessons and analysed the effects of the observed inequality on students' short-term knowledge achievement, situational interest and students' evaluation of teaching (SET). Twenty-two biology teachers and 803 7th-grade students from rural and urban classrooms in China participated in the study. Each teacher was videotaped for 1 lesson on the topic blood and circulatory system. Before and after the lessons, the students completed tests and questionnaires. Chi-square analysis was conducted to compare the boys' and girls' participation rates of answering teachers' questions in the lessons. The findings revealed that in the urban classrooms the boys had a significantly higher rate of participation than did the girls, and hence also a higher situational interest. However, no such gender inequity was found among the rural students. The study also revealed that urban students answered more complicated questions compared with the rural students in general. The findings of this study suggest that the teachers should try to balance boys' and girls' participation and involve more students in answering questions in their lessons. The study also raises questions about long-term effects of students' participation in answering teachers' questions on their outcomes-knowledge achievement, situational interest and SET.

  9. From access to success in science: An academic-student affairs intervention for undergraduate freshmen biology students

    Science.gov (United States)

    Aldridge, Jacqueline Nouvelle

    The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.

  10. Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material.

    Science.gov (United States)

    Crossgrove, Kirsten; Curran, Kristen L

    2008-01-01

    Student response systems (clickers) are viewed positively by students and instructors in numerous studies. Evidence that clickers enhance student learning is more variable. After becoming comfortable with the technology during fall 2005-spring 2006, we compared student opinion and student achievement in two different courses taught with clickers in fall 2006. One course was an introductory biology class for nonmajors, and the other course was a 200 level genetics class for biology majors. Students in both courses had positive opinions of the clickers, although we observed some interesting differences between the two groups of students. Student performance was significantly higher on exam questions covering material taught with clickers, although the differences were more dramatic for the nonmajors biology course than the genetics course. We also compared retention of information 4 mo after the course ended, and we saw increased retention of material taught with clickers for the nonmajors course, but not for the genetics course. We discuss the implications of our results in light of differences in how the two courses were taught and differences between science majors and nonmajors.

  11. Learning-style preferences of Latino/Hispanic community college students enrolled in an introductory biology course

    Science.gov (United States)

    Sarantopoulos, Helen D.

    Purpose. The purpose of this study was to identify, according to the Productivity Environment Preference Survey (PEPS) instrument, which learning-style domains (environmental, emotional, sociological, and physiological) were favored among Latino/Hispanic community college students enrolled in introductory biology classes in a large, urban community college. An additional purpose of this study was to determine whether statistically significant differences existed between the learning-style preferences and the demographic variables of age, gender, number of prior science courses, second language learner status, and earlier exposure to scientific information. Methodology. The study design was descriptive and ex post facto. The sample consisted of a total of 332 Latino/Hispanic students enrolled in General Biology 3. Major findings. The study revealed that Latino/Hispanic students enrolled in introductory biology at a large urban community college scored higher for the learning preference element of structure. Students twenty-five years and older scored higher for the learning preference elements of light, design, persistence, responsibility, and morning time (p learning-style preferences were found between second English language learners and those who learned English as their primary language (p tactile (p learning-style model and instruments and on recent learning-style research articles on ethnically diverse groups of adult learners; and (2) Instructors should plan their instruction to incorporate the learning-style preferences of their students.

  12. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from…

  13. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    Science.gov (United States)

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Which Type of Inquiry Project Do High School Biology Students Prefer: Open or Guided?

    Science.gov (United States)

    Sadeh, Irit; Zion, Michal

    2012-01-01

    In teaching inquiry to high school students, educators differ on which method of teaching inquiry is more effective: Guided or open inquiry? This paper examines the influence of these two different inquiry learning approaches on the attitudes of Israeli high school biology students toward their inquiry project. The results showed significant…

  15. A Course in Evolutionary Biology: Engaging Students in the "Practice" of Evolution. Research Report.

    Science.gov (United States)

    Passmore, Cynthia; Stewart, James

    Recent education reform documents emphasize the need for students to develop a rich understanding of evolution's power to integrate knowledge of the natural world. This paper describes a nine-week high school course designed to help students understand evolutionary biology by engaging them in developing, elaborating, and using Charles Darwin's…

  16. Tactile Digital Video Globes: a New Way to Outreach Oceanography.

    Science.gov (United States)

    Poteau, A.; Claustre, H.; Scheurle, C.; Jessin, T.; Fontana, C.

    2016-02-01

    One objective of the "Ocean Autonomous Observation" team of the Laboratory of Oceanography of Villefranche-sur-mer is to develop new means to outreach our science activities to various audiences. Besides the scientific community, this includes students and targets the general public, school pupils, and stakeholders. In this context, we have acquired a digital video globe with tactile capabilities and we will present here the various applications that we have been developing. A first type of products concerns the visualization of oceanic properties (SST, salinity, density, Chla, O2, NO3, irradiance) by diving from the surface (generally from satellite data) into the Ocean interior (through the use of global data bases, Argo, WOA). In second place, specific applications deal with surface animations allowing highlighting the seasonality of some properties (Chla, SST, ice cover, currents; based on satellite as well as modeling outputs). Finally, we show a variety of applications developed using the tactile functionality of the spherical display. In particular real-time vertical profiles acquired by Bio-Argo floats become directly accessible for the entire open ocean. Such a new tool plus its novel applications has been presented to school children, and to the wider public (at the so-called "fête de la science") as well as to potential sponsors of our science-outreach activities. Their feedback has always been highly positive and encouraging in terms of impact. From the scientists point of view, the use of this new support can easily compete with the classical PowerPoint, is much more attractive and fun and undeniably helps to outreach the various aspects of our pluridisciplinary science.

  17. Integrative assessment of Evolutionary theory acceptance and knowledge levels of Biology undergraduate students from a Brazilian university

    Science.gov (United States)

    Tavares, Gustavo Medina; Bobrowski, Vera Lucia

    2018-03-01

    The integrative role that Evolutionary theory plays within Biology is recognised by most scientific authors, as well as in governmental education policies, including Brazilian policies. However, teaching and learning evolution seems problematic in many countries, and Brazil is among those. Many factors may affect teachers' and students' perceptions towards evolution, and studies can help to reveal those factors. We used a conceptual questionnaire, the Measure of Acceptance of the Theory of Evolution (MATE) instrument, and a Knowledge test to assess (1) the level of acceptance and understanding of 23 undergraduate Biology students nearing the end of their course, (2) other factors that could affect these levels, including course structure, and (3) the most difficult topics regarding evolutionary biology. The results of this study showed that the students, on average, had a 'Very High Acceptance' (89.91) and a 'Very Low Knowledge' (59.42%) of Evolutionary theory, and also indicated a moderate positive correlation between the two (r = 0.66, p = .001). The most difficult topics were related to the definition of evolution and dating techniques. We believe that the present study provides evidence for policymakers to reformulate current school and university curricula in order to improve the teachers' acceptance and understanding of evolution and other biological concepts, consequently, helping students reduce their misconceptions related to evolutionary biology.

  18. Using Mini-Reports to Teach Scientific Writing to Biology Students

    Science.gov (United States)

    Simmons, Alexandria D.; Larios-Sanz, Maia; Amin, Shivas; Rosell, Rosemarie C.

    2014-01-01

    Anyone who has taught an introductory biology lab has sat at their desk in front of a towering stack of lengthy lab reports and wondered if there was a better way to teach scientific writing. We propose the use of a one-page format that we have called a "mini-report," which we believe better allows students to understand the structure…

  19. Student selection: are the school-leaving A-level grades in biology and chemistry important?

    Science.gov (United States)

    Green, A; Peters, T J; Webster, D J

    1993-01-01

    This study determined the relationships of grades in A-level biology and chemistry with examination success or failure during the medical course. By inspection of medical student records, A-level grades at entry to medical school and examination performance were obtained for 128 (91%) of the students who sat their final MBBCh examination at the University of Wales College of Medicine in June 1988. The majority, 92 (72%), completed their medical school careers with no professional examination failures; 15 failed examinations just in the period up to 2nd MB; 11 failed examinations in the clinical period only and 10 failed examinations in both periods. Whereas grade achieved in A-level chemistry was not associated with undergraduate examination performance, students with a grade A or B in A-level biology were less likely to have problems than the others (21% compared with 47%; the difference of 26% has a 95% confidence interval of 7% to 44%). Specifically, there appears to be a strong relationship between a low grade in biology and difficulties in the preclinical examinations. Moreover, for those who have difficulties at this stage, this association continues later in the course.

  20. Breaking down Barriers: A Bridge Program Helps First-Year Biology Students Connect with Faculty

    Science.gov (United States)

    Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.

    2018-01-01

    Summer bridge programs often aim to build social connections for first-year students to ease their transition into college, yet few studies have reported on bridge programs successfully leading to these outcomes. We backward designed a summer bridge program for incoming biology majors to increase the comfort and connections among students and…

  1. Teaching About "Brain and Learning" in High School Biology Classes: Effects on Teachers' Knowledge and Students' Theory of Intelligence.

    Science.gov (United States)

    Dekker, Sanne; Jolles, Jelle

    2015-01-01

    This study evaluated a new teaching module about "Brain and Learning" using a controlled design. The module was implemented in high school biology classes and comprised three lessons: (1) brain processes underlying learning; (2) neuropsychological development during adolescence; and (3) lifestyle factors that influence learning performance. Participants were 32 biology teachers who were interested in "Brain and Learning" and 1241 students in grades 8-9. Teachers' knowledge and students' beliefs about learning potential were examined using online questionnaires. Results indicated that before intervention, biology teachers were significantly less familiar with how the brain functions and develops than with its structure and with basic neuroscientific concepts (46 vs. 75% correct answers). After intervention, teachers' knowledge of "Brain and Learning" had significantly increased (64%), and more students believed that intelligence is malleable (incremental theory). This emphasizes the potential value of a short teaching module, both for improving biology teachers' insights into "Brain and Learning," and for changing students' beliefs about intelligence.

  2. Image of Synthetic Biology and Nanotechnology: A Survey among University Students

    Directory of Open Access Journals (Sweden)

    Christian Ineichen

    2017-09-01

    Full Text Available This study explores the image of synthetic biology and nanotechnology in comparison to agricultural biotechnology and communication technology by examining spontaneous associations with, and deliberate evaluations of, these technologies by university students. Data were collected through a self-completion online questionnaire by students from two universities in Switzerland. The survey aimed to capture implicit associations, explicit harm-benefit evaluations and views on regulation. The data suggest overall positive associations with emerging technologies. While positive associations were most pronounced for nanotechnology, agricultural biotechnology was attributed with the least favorable associations. In contrast to its positive result in the association task, respondents attributed a high harm potential for nanotechnology. Associations attributed to synthetic biology were demonstrated to be more positive than for agricultural biotechnology, however, not as favorable as for nanotechnology. Contrary to the evaluations of nanotechnology, the benefit-examples of synthetic biology were evaluated particularly positively. Accordingly, the investigated technologies enjoy different esteem, with synthetic biology and nanotechnology both showing a more “exciting” image. Even though, the image of nanotechnology was demonstrated to be more pronounced it was also more heterogeneous across tasks while agricultural biotechnology remains contested. For all technologies, the predominant spontaneous concerns pertain to risks rather than an immoral nature inherent to these technologies. Our data suggest that harm-benefit analyses reveal only one aspect of the attitude toward emerging technologies. Survey questions addressing spontaneous associations with these technologies are a valuable addition for our picture of the image of emerging technologies.

  3. The use of writing assignments to help students synthesize content in upper-level undergraduate biology courses.

    Science.gov (United States)

    Sparks-Thissen, Rebecca L

    2017-02-01

    Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment. Many instructors have used these assignments in lecture-based courses to help students process information in the literature and apply that information to a novel problem such as design of an antiviral drug or a vaccine. These assignments have been helpful in engaging students in the scientific process in the absence of an inquiry-driven laboratory. This commentary discusses the application of these grant proposal writing assignments to undergraduate biology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Perception analysis of undergraduate students in the health field about the topic Cell Biology

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Andrade Monerat

    2015-06-01

    Full Text Available The Brazilian education has been changing over time, especially with the increased offer on the various levels of education. In undergraduate courses, in the health area, the cell biology becomes an essential discipline, because various sectors are directly influenced by their recent discoveries and research. This work aimed to analyze, with undergraduate students, perceptions about the themes at Cell Biology, revealing, with its results, pertinent aspects, as insufficient knowledge about the proposed theme. The definition of a concept of cell, considered a basic aspect, however relevant in this context, exemplifies this situation, because it showed a considerable rate of unsatisfactory answers. On the other hand, was verified the recognition of Cell Biology as an area that presents important contents in the training of these students, due the numerous scientific researches that show its constant evolution in association with themes of medicine and public health.

  5. What Are They Thinking? Automated Analysis of Student Writing about Acid–Base Chemistry in Introductory Biology

    Science.gov (United States)

    Haudek, Kevin C.; Prevost, Luanna B.; Moscarella, Rosa A.; Merrill, John; Urban-Lurain, Mark

    2012-01-01

    Students’ writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an introductory biology course. Students were asked to predict acid–base behavior of biological functional groups and to explain their answers. Student explanations were rated by two independent raters. Responses were also analyzed using SPSS Text Analysis for Surveys and a custom library of science-related terms and lexical categories relevant to the assessment item. These analyses revealed conceptual connections made by students, student difficulties explaining these topics, and the heterogeneity of student ideas. We validated the lexical analysis by correlating student interviews with the lexical analysis. We used discriminant analysis to create classification functions that identified seven key lexical categories that predict expert scoring (interrater reliability with experts = 0.899). This study suggests that computerized lexical analysis may be useful for automatically categorizing large numbers of student open-ended responses. Lexical analysis provides instructors unique insights into student thinking and a whole-class perspective that are difficult to obtain from multiple-choice questions or reading individual responses. PMID:22949425

  6. Proceedings of a workshop on physical oceanography related to the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Marietta, M.G.

    1981-04-01

    At this workshop a group of expert scientists: (1) assessed the current state of knowledge with regard to the physical oceanographic questions that must be answered generally if high level nuclear waste is to be disposed of on or under the seabed; (2) discussed physical oceanographic science necessarily related to the US Subseabed Disposal Program; (3) recommended necessary research; and (4) identified other ongoing programs with which important liaisons should be made and continued. This report is a collection of workshop presentations, and recommendations, and a synthesis of topical group recommendations into a unified statement of research needs. The US Seabed Disposal Program is described. The goal is to assess the technical, environmental and engineering feasibility of seabed disposal. The environmental studies program will assess possible ecosystem and health effects from radionuclides which may be released due to accidental leakage. Discussion on the following topics are also included: bottom boundary layer; mixing across isopycnal surfaces; circulation modeling; mesoscale dispersion; deep circulation of the Pacific Ocean; vertical transport at edges; instrumentation; chemical oceanography; plutonium distribution in the Pacific; biology report; chemical dumping report; and low-level waste report

  7. The impact of ecolabel knowledge to purchase decision of green producton biology students

    Science.gov (United States)

    Sigit, Diana Vivanti; Fauziah, Rizky; Heryanti, Erna

    2017-08-01

    The world needs real solutions to reduce the impact of environmental damages. Students as agents of changes have a role to overcome these problems. One of the important solution is to be a critical consumer who has purchase decisions in a green product. To show the quality of an environmental friendly product, it is then required an ecolabel on the green product which indicates that the product has been through the production processed and come from environmental friendly substances. The research aimed at finding out whether there was an impact of ecolabel knowledge with purchase decision of green product on biology students. This research was conducted in Biology Department. This research used a survey descriptive method. The population used was biology students of Universitas Negeri Jakarta while the sampling technique was done through simple random sampling technique with 147 respondents. Instrument used were ecolabel knowledge test and a questionnaire of green product purchase decision. The result of prerequisite test showed that the data was normally distributed and homogenous variance. The regression model obtained was Ŷ=77.083+ 0.370X. Meanwhile, the determinant coefficient (r2) obtained was 0.047 or 4.7% that mean ecolabel knowledge just contributed 4,71% to the green product purchase decision. These implied that many factors contributed in the purchase decision of green product instead of ecolabel knowledge.

  8. Memorable Exemplification in Undergraduate Biology: Instructor Strategies and Student Perceptions

    Science.gov (United States)

    Oliveira, Alandeom W.; Bretzlaff, Tiffany; Brown, Adam O.

    2018-03-01

    The present study examines the exemplification practices of a university biology instructor during a semester-long course. Attention is given specifically to how the instructor approaches memorable exemplification—classroom episodes identified by students as a source of memorable learning experiences. A mixed-method research approach is adopted wherein descriptive statistics is combined with qualitative multimodal analysis of video recordings and survey data. Our findings show that memorable experiencing of examples may depend on a multiplicity of factors, including whether students can relate to the example, how unique and extreme the example is, how much detail is provided, whether the example is enacted rather than told, and whether the example makes students feel sad, surprised, shocked, and/or amused. It is argued that, rather than simply assuming that all examples are equally effective, careful consideration needs be given to how exemplification can serve as an important source of memorable science learning experiences.

  9. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    Science.gov (United States)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  10. Anil, Dr Arga Chandrashekar

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 2015 Section: Earth & Planetary Sciences. Anil, Dr Arga Chandrashekar Ph.D. (Karnatak). Date of birth: 23 January 1959. Specialization: Biological Oceanography, Marine Ecology, Marine Biology Address: Chief Scientist, National Institute of Oceanography, Dona Paula 403 004, ...

  11. An Analysis of the Relationship between High School Students' Self-Efficacy, Metacognitive Strategy Use and Their Academic Motivation for Learn Biology

    Science.gov (United States)

    Aydin, Solmaz

    2016-01-01

    This study aimed to analyze the relationship between high school students' self-efficacy perceptions regarding biology, the metacognitive strategies they use in this course and their academic motivation for learn biology. The sample of the study included 286 high school students enrolled in three high schools who attended a biology course in Kars,…

  12. Students' Use of Optional Online Reviews and Its Relationship to Summative Assessment Outcomes in Introductory Biology

    Science.gov (United States)

    Carpenter, Shana K.; Rahman, Shuhebur; Lund, Terry J. S.; Armstrong, Patrick I.; Lamm, Monica H.; Reason, Robert D.; Coffman, Clark R.

    2017-01-01

    Retrieval practice has been shown to produce significant enhancements in student learning of course information, but the extent to which students make use of retrieval to learn information on their own is unclear. In the current study, students in a large introductory biology course were provided with optional online review questions that could be…

  13. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    Science.gov (United States)

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  14. Helping Struggling Students in Introductory Biology: A Peer-Tutoring Approach That Improves Performance, Perception, and Retention

    Science.gov (United States)

    Batz, Zachary; Olsen, Brian J.; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K.

    2015-01-01

    The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly “leaky” point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. PMID:25976652

  15. Student perceptions: Importance of and satisfaction with aspects of an online biology course

    Science.gov (United States)

    Hendry, Sheila R.

    Research of student satisfaction with various facets of an online biology course, as well as the perceived importance of these aspects, was conducted during the summer and fall 2004 semesters within a course, History of Biology, at a university in the southeastern United States. This research is based on the theory of transactional distance, which involves dialogue between the teacher and student, the physical environments of both the student and teacher, and the emotional environments of each. Student ratings of importance and satisfaction regarding aspects of convenience, grade earned/knowledge learned, emotional health, communication, and student support were collected toward the end of each semester, via the online course, using the researcher-designed Student Perceptions Survey. Statistics with repeated measures ANOVA, using an alpha of 0.05, determined differences between importance and satisfaction ratings for each of these aspects. Students perceived grade earned/knowledge learned to be the most important aspect of learning online, although it is not an aspect unique to online courses. All of the aspects included in the study were found to be at least somewhat important. Convenience was the aspect with which students were most satisfied, with students at least somewhat satisfied with the other aspects. Although convenience is an inherent strength of the online course format, instructors should be aware of how important it is to design requirements of the online class to help students acquire knowledge while allowing them to do so at their own pace. Well-structured content, prompt feedback, encouragement of quality student-instructor communication, and student support are all parts of a positive online course experience. The Student Perceptions Survey, created specifically for this research, can have substantial value both in the creation of new online courses and in the evaluation of pre-existing courses. It can provide important information that can be

  16. Research and Teaching: From Gatekeeper to Gateway: Improving Student Success in an Introductory Biology Course

    Science.gov (United States)

    Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.

    2017-01-01

    Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…

  17. Biocinema: the experience of using popular movies with students of Biology

    Directory of Open Access Journals (Sweden)

    Josep-Eladi Baños Díez

    2008-10-01

    Full Text Available Popular movies may be successfully used as a teaching aid in health sciences studies. In the last three years we have been using popular movies in an activity called Biocinema during the first trimester with students of fifth year of Biology at the Universitat Pompeu Fabra. The activity was planned to help the students to consider the social aspects of their future professional career. Six different films were used: Outbreak, Lorenzo's oil, The Boys from Brazil, Frankenstein, Le maladie de Sachs and The Andromeda strain. The activity was organized in three steps. First, students watched the film after a brief introduction by one of the teachers who were responsible for the activity. Second, this teacher organized an open discussion with the students during the next hour. Third, students wrote a brief report on one of the topics portrayed in the film or mentioned in the open discussion. These reports were further evaluated and contributed a maximum extrabonus of 0.5 points over 10 in the scoring of the regular topics covered in the trimester.

  18. "Cancer Cell Biology:" A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    Science.gov (United States)

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. "Cancer Cell Biology," an interactive, multimedia,…

  19. The Respon of IKIP BUDI UTOMO Students Toward The Instructional Book of Cell Biology Subject Aided by Interactive Multimedia

    Directory of Open Access Journals (Sweden)

    Tri Asih Wahyu Hartati

    2017-07-01

    Full Text Available The development of Science and Technology (Science and Technology takes place very rapidly. The development of science and technology will impact on graduate competency changes desired by the industry. This change of course will be followed by updating the curriculum, learning resources and teaching materials are used, one of them teaching materials on the subjects of Cell Biology. In the course of Cell Biology, the students only take textbooks without the support of interactive multimedia. Good teaching materials is the teaching materials arranged in a systematic, according to the needs and character of students, as well as validated by the teaching materials. The purpose of this study was to determine response students Biology Education IKIP Budi Utomo against Cell Biology course textbook aided interactive multimedia. The development method used is the 4D model consisting of stages define, design, develop, and disseminate. This study is limited to the stages develop. Legibility test results showed that students responded well teaching materials and provide proper assessment of the teaching materials.

  20. High School Biology Students' Transfer of the Concept of Natural Selection: A Mixed-Methods Approach

    Science.gov (United States)

    Pugh, Kevin J.; Koskey, Kristin L. K.; Linnenbrink-Garcia, Lisa

    2014-01-01

    The concept of natural selection serves as a foundation for understanding diverse biological concepts and has broad applicability to other domains. However, we know little about students' abilities to transfer (i.e. apply to a new context or use generatively) this concept and the relation between students' conceptual understanding and transfer…

  1. Learning style and concept acquisition of community college students in introductory biology

    Science.gov (United States)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous

  2. Assessment of the U.S. outer continental shelf environmental studies program. 1. Physical oceanography. Final report

    International Nuclear Information System (INIS)

    1990-01-01

    Federal responsibility for oil and gas development on the U.S. outer continental shelf (OCS) resides with the Minerals Management Service (MMS) of the U.S. Department of the Interior (DOI). The DOI's Environmental Studies Program (ESP) is the program through which MMS conducts environmental studies on the OCS and collects information to prepare environmental impact statements (EISs). It appeared to MMS in 1986 that the time was ripe to assess the status of the present program and to explore the needs for future studies. MMS requested an evaluation of the adequacy and applicability of ESP studies, a review of the general state of knowledge in the appropriate disciplines, and recommendations for future studies. Three panels were established, one of which, the Physical Oceanography Panel, investigated the physical oceanographic aspects of the ESP, the subject of the report, which is the first of three in a series. In reviewing the ESP's physical oceanography program, the panel evaluated the quality and relevance of studies carried out in waters under federal control, which extend from the limits of state jurisdictions (3-12 miles offshore) and include the central and outer continental shelf waters and the continental slope

  3. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    Science.gov (United States)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  4. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    Science.gov (United States)

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  5. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  6. Student-oriented learning: an inquiry-based developmental biology lecture course.

    Science.gov (United States)

    Malacinski, George M

    2003-01-01

    In this junior-level undergraduate course, developmental life cycles exhibited by various organisms are reviewed, with special attention--where relevant--to the human embryo. Morphological features and processes are described and recent insights into the molecular biology of gene expression are discussed. Ways are studied in which model systems, including marine invertebrates, amphibia, fruit flies and other laboratory species are employed to elucidate general principles which apply to fertilization, cleavage, gastrulation and organogenesis. Special attention is given to insights into those topics which will soon be researched with data from the Human Genome Project. The learning experience is divided into three parts: Part I is a in which the Socratic (inquiry) method is employed by the instructor (GMM) to organize a review of classical developmental phenomena; Part II represents an in which students study the details related to the surveys included in Part I as they have been reported in research journals; Part III focuses on a class project--the preparation of a spiral bound on a topic of relevance to human developmental biology (e.g.,Textbook of Embryonal Stem Cells). Student response to the use of the Socratic method increases as the course progresses and represents the most successful aspect of the course.

  7. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  8. Development of the Neuron Assessment for Measuring Biology Students' Use of Experimental Design Concepts and Representations

    Science.gov (United States)

    Dasgupta, Annwesa P.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students' competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not…

  9. Exploring the MACH Model’s Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms. PMID:27252295

  10. Student and Teacher Perceptions of a Mobile-Based Biology Vocabulary Study Tool for English Language Learners

    Science.gov (United States)

    Cruz, Maria B.

    English language learners studying biology face a dual challenge of mastering both content and language. Teaching ELLs how to engage in scientific discourse using appropriate language to ask, answer, explain, and make predictions about science requires a foundational knowledge of content-specific vocabulary. This study used qualitative interviews with intermediate-level ELLs at an American high school to learn how a supplemental iPod-based vocabulary review tool influenced their perceptions of learning biology vocabulary outside of classroom hours. Interviews with their biology teacher were also used to complement student testimony from the point of view of an educational professional with ELL teaching experience. Past studies in the area of mobile learning have primarily employed questionnaires to gather feedback from participants. This research study adds greater participant voice to the body of literature that encompasses mobile language learning, second language acquisition, and science education by presenting nuanced opinions from both students and teachers. This dissertation concludes with a discussion on the influence that this study could have on further research in the fields of mobile learning, academic vocabulary, and student learning behaviors.

  11. A Card-Sorting Activity to Engage Students in the Academic Language of Biology.

    Science.gov (United States)

    Wallon, Robert C; Jasti, Chandana; Hug, Barbara

    2017-03-01

    The activity described in this article is designed to provide biology students with opportunities to engage in a range of academic language as they learn the discipline-specific meanings of the terms "drug," "poison," "toxicant," and "toxin." Although intended as part of an introductory lesson in a comprehensive unit for the high school level, this approach to teaching academic language can be adapted for use with older or younger students and can be modified to teach other terms.

  12. A comparison of student reactions to biology instruction by interactive videodisc or conventional laboratory

    Science.gov (United States)

    Leonard, William H.

    This study was designed to learn if students perceived an interactive computer/videodisc learning system to represent a viable alternative to (or extension of) the conventional laboratory for learning biology skills and concepts normally taught under classroom laboratory conditions. Data were collected by questionnaire for introductory biology classes at a large midwestern university where students were randomly assigned to two interactive videodisc/computer lessons titled Respiration and Climate and Life or traditional laboratory investigation with the same titles and concepts. The interactive videodisc system consisted of a TRS-80 Model III microcomputer interfaced to a Pioneer laser-disc player and a color TV monitor. Students indicated an overall level satisfaction with this strategy very similar to that of conventional laboratory instruction. Students frequently remarked that videodisc instruction gave them more experimental and procedural options and more efficient use of instructional time than did the conventional laboratory mode. These two results are consistent with past CAI research. Students also had a strong perception that the images on the videodisc were not real and this factor was perceived as having both advantages and disadvantages. Students found the two approaches to be equivalent to conventional laboratory instruction in the areas of general interest, understanding of basic principles, help on examinations, and attitude toward science. The student-opinion data in this study do not suggest that interactive videodisc technology serve as a substitute to the wet laboratory experience, but that this medium may enrich the spectrum of educational experiences usually not possible in typical classroom settings.

  13. Perceptual Influence of Ugandan Biology Students' Understanding of HIV/AIDS

    Science.gov (United States)

    Mutonyi, Harriet; Nashon, Samson; Nielsen, Wendy S.

    2010-08-01

    In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda’s cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what extent do students’ pre-conceptions of the disease, based on these media messages influence students’ development of conceptual understanding of the disease, its transmission and prevention? Of significant importance is the impact the conceptions students have developed from the indirect media messages on classroom instruction on HIV/AIDS. The study is based in a theoretical framework of conceptual change in science learning. An interpretive case study to determine the impact of Ugandan students’ conceptions or perceptions on classroom instruction about HIV/AIDS, involving 160 students aged 15-17, was conducted in four different Ugandan high schools: girls boarding, boys boarding, mixed boarding, and mixed day. Using questionnaires, focus group discussions, recorded biology lessons and informal interviews, students’ preconceptions of HIV/AIDS and how these impact lessons on HIV/AIDS were discerned. These preconceptions fall into four main categories: religious, political, conspiracy and traditional African worldviews. Results of data analysis suggest that students’ prior knowledge is persistent even after biology instructions. This has implications for current teaching approaches, which are mostly teacher-centred in Ugandan schools. A rethinking of the curriculum with the intent of offering science education programs that promote understanding of the science of HIV/AIDS as opposed to what is happening now—insensitivity to misconceptions about the disease—is needed.

  14. [Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material].

    Science.gov (United States)

    Almeida, Maria Cristina Mendes de; Canini, Silvia Rita Marin da Silva; Reis, Renata Karina; Toffano, Silmara Elaine Malaguti; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2015-04-01

    To assess adherence to clinical appointments by health care workers (HCW) and students who suffered accidents with potentially infectious biological material. A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. A total of 461 individuals exposed to biological material were treated, of which 389 (84.4%) were HCWs and 72 (15.6%) students. Of the 461 exposed individuals, 307 (66.6%) attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83). The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  15. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  16. A statistical analysis of student questions in a cell biology laboratory.

    Science.gov (United States)

    Keeling, Elena L; Polacek, Kelly M; Ingram, Ella L

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students asked about laboratory activities, 2) whether the types or quality of questions changed over time, and 3) whether the quality of questions or degree of improvement was related to academic performance. We found a majority of questions were about laboratory outcomes or seeking additional descriptive information about organisms or processes to be studied. Few questions earned the highest possible ranking, which required demonstration of extended thought, integration of information, and/or hypotheses and future experiments, although a majority of students asked such a question at least once. We found no correlation between types of student questions or improvement in questions and final grades. Only a small improvement in overall question quality was seen despite considerable practice at writing questions about science. Our results suggest that improving students' ability to generate higher-order questions may require specific pedagogical intervention.

  17. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    Science.gov (United States)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  18. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking

    Directory of Open Access Journals (Sweden)

    Brittany J. Gasper

    2013-02-01

    Full Text Available Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.

  19. Monitoring undergraduate student needs and activities at Experimental Biology: APS pilot survey.

    Science.gov (United States)

    Nichols, Nicole L; Ilatovskaya, Daria V; Matyas, Marsha L

    2017-06-01

    Life science professional societies play important roles for undergraduates in their fields and increasingly offer membership, fellowships, and awards for undergraduate students. However, the overall impacts of society-student interactions have not been well studied. Here, we sought to develop and test a pilot survey of undergraduate students to determine how they got involved in research and in presenting at the Experimental Biology (EB) meeting, what they gained from the scientific and career development sessions at the meeting, and how the American Physiological Society (APS) can best support and engage undergraduate students. This survey was administered in 2014 and 2015 to undergraduate students who submitted physiology abstracts for and attended EB. More than 150 students responded (38% response rate). Respondents were demographically representative of undergraduate students majoring in life sciences in the United States. Most students (72%) became involved in research through a summer research program or college course. They attended a variety of EB sessions, including poster sessions and symposia, and found them useful. Undergraduate students interacted with established researchers at multiple venues. Students recommended that APS provide more research fellowships (25%) and keep in touch with students via both e-mail (46%) and social media (37%). Our results indicate that APS' EB undergraduate activities are valued by students and are effective in helping them have a positive scientific meeting experience. These results also guided the development of a more streamlined survey for use in future years. Copyright © 2017 the American Physiological Society.

  20. Impact of Tactile-Cued Self-Monitoring on Independent Biology Work for Secondary Students with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Morrison, Catherine; McDougall, Dennis; Black, Rhonda S.; King-Sears, Margaret E.

    2014-01-01

    Results from a multiple baseline with changing conditions design across high school students with Attention Deficit Hyperactivity Disorder (ADHD) indicated that the students increased the percentage of independent work they completed in their general education biology class after learning tactile-cued self-monitoring. Students maintained high…

  1. Designing and Implementing Service Learning Projects in an Introductory Oceanography Course Using the ``8-Block Model''

    Science.gov (United States)

    Laine, E. P.; Field, C.

    2010-12-01

    The Campus Compact for New Hampshire (Gordon, 2003) introduced a practical model for designing service-learning exercises or components for new or existing courses. They divided the design and implementation process into eight concrete areas, the “8-Block Model”. Their goal was to demystify the design process of service learning courses by breaking it down into interconnected components. These components include: project design, community partner relations, the problem statement, building community in the classroom, building student capacity, project management, assessment of learning, and reflection and connections. The project design component of the “8-Block Model” asks that the service performed be consistent with the learning goals of the course. For science courses students carry out their work as a way of learning science and the process of science, not solely for the sake of service. Their work supports the goals of a community partner and the community partner poses research problems for the class in a letter on their letterhead. Linking student work to important problems in the community effectively engages students and encourages them to work at more sophisticated levels than usually seen in introductory science classes. Using team-building techniques, the classroom becomes a safe, secure learning environment that encourages sharing and experimentation. Targeted lectures, labs, and demonstrations build the capacity of students to do their research. Behind the scenes project management ensures student success. Learning is assessed using a variety of tools, including graded classroom presentations, poster sessions, and presentations and reports to community partners. Finally, students reflect upon their work and make connections between their research and its importance to the well being of the community. Over the past 10 years, we have used this approach to design and continually modify an introductory oceanography course for majors and non

  2. Epigenetic Effects of Diet on Fruit Fly Lifespan: An Investigation to Teach Epigenetics to Biology Students

    Science.gov (United States)

    Billingsley, James; Carlson, Kimberly A.

    2010-01-01

    Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.

  3. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  4. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    Science.gov (United States)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  5. Meteorology, physical oceanography, transport of water, biogeochemistry, and other parameters collected at fixed locations in the open ocean from the OceanSITES network

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection comprises data covering meteorology, physical oceanography, transport of water, biogeochemistry, and parameters relevant to the carbon cycle, ocean...

  6. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  7. The College Student and Marijuana: Research Findings Concerning Adverse Biological and Psychological Effects.

    Science.gov (United States)

    Nicholi, Armand M., Jr.

    1983-01-01

    This paper focuses on current knowledge about adverse biological and psychological affects of marijuana use, with special reference to risks for college students. Short-term effects on intellectual functioning and perceptual-motor coordination and long-term effects on reproduction and motivation are highlighted. (PP)

  8. Strengthening cancer biology research, prevention, and control while reducing cancer disparities: student perceptions of a collaborative master's degree program in cancer biology, preventions, and control.

    Science.gov (United States)

    Jillson, I A; Cousin, C E; Blancato, J K

    2013-09-01

    This article provides the findings of a survey of previous and current students in the UDC/GU-LCCC master's degree program. This master's degree program, Cancer Biology, Prevention, and Control is administered and taught jointly by faculty of a Minority Serving Institution, the University of the District of Columbia, and the Lombardi Comprehensive Cancer Center to incorporate the strengths of a community-based school with a research intensive medical center. The program was initiated in 2008 through agreements with both University administrations and funding from the National Cancer Institute. The master's degree program is 36 credits with a focus on coursework in biostatistics, epidemiology, tumor biology, cancer prevention, medical ethics, and cancer outreach program design. For two semesters during the second year, students work full-time with a faculty person on a laboratory or outreach project that is a requirement for graduation. Students are supported and encouraged to transition to a doctoral degree after they obtain the master's and many of them are currently in doctorate programs. Since the inception of the program, 45 students have initiated the course of study, 28 have completed the program, and 13 are currently enrolled in the program. The survey was designed to track the students in their current activities, as well as determine which courses, program enhancements, and research experiences were the least and most useful, and to discern students' perceptions of knowledge acquired on various aspects of Cancer Biology Prevention, and Control Master's Program. Thirty of the 35 individuals to whom email requests were sent responded to the survey, for a response rate of 85.7%. The results of this study will inform the strengthening of the Cancer Biology program by the Education Advisory Committee. They can also be used in the development of comparable collaborative master's degree programs designed to address the significant disparities in prevalence of

  9. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  10. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ~5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and…

  11. Critical thinking skills profile of senior high school students in Biology learning

    Science.gov (United States)

    Saputri, A. C.; Sajidan; Rinanto, Y.

    2018-04-01

    Critical thinking is an important and necessary skill to confront the challenges of the 21st century. Critical thinking skills accommodate activities that can improve high-order thinking skills. This study aims to determine senior high school students' critical thinking skills in Biology learning. This research is descriptive research using instruments developed based on the core aspects of critical thinking skills according to Facione which include interpretation, analysis, evaluation, explanation, conclusion, and self-regulation. The subjects in this study were 297 students in grade 12 of a senior high school in Surakarta selected through purposive sampling technique. The results of this study showed that the students' critical thinking skills on evaluation and self-regulation are in good criterion with 78% and 66% acquisition while 52% interpretation, 56% analysis, 52% conclusion and 42% explanation indicate sufficient criteria. The conclusion from this research is that critical thinking skill of the students still was in enough category, so that needed a way to enhance it on some indicators.

  12. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems.

    Science.gov (United States)

    Herrmann-Abell, Cari F; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit's promise in improving students' understanding of the targeted ideas. © 2016 C. F. Herrmann-Abell et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. The Effects of a Behavioral Metacognitive Task in High School Biology Students

    Science.gov (United States)

    Sussan, Danielle

    Three studies were conducted to examine the effects of a behavioral metacognitive technique on lessening students' illusions of learning. It was proposed that students' study time strategies, and consequently, final performance on a test, in a classroom setting, could be influenced positively by having students engage in metacognitive processing via making wagers regarding their learning. A novel metacognitive paradigm was implemented in three studies during which high school Biology students made prospective (during study, prior to test) metacognitive judgments, using a "betting" paradigm. This behavioral betting paradigm asked students to select either "high confidence" or "low confidence" based on how confident they felt that they would get a Biology concept correct if they were tested later. If a student chose "high confidence" and got the answer right on a later test, then he would gain 3 points. If he chose "high confidence" and got the answer wrong, he would lose 3 points. If a student chose "low confidence," he would gain one point, regardless of accuracy. Students then made study time allocation decisions by choosing whether they needed to study a particular concept "a lot more," "a little more," or "not at all." Afterwards, students had three minutes to study whichever terms they selected for any duration during those three minutes. Finally, a performance test was administered. The results showed that people are generally good at monitoring their own knowledge, in that students performed better on items judged with high confidence bets than on items judged with low confidence bets. Data analyses compared students' Study time Intentions, Actual Study Time, and Accuracy at final test for those who were required to bet versus those who were not. Results showed that students for whom bets were required tended to select relatively longer study than for whom no bets were required. That is, the intentions of those who bet were less overconfident than those who

  14. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  15. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  16. On the Concept of "Respiration": Biology Student Teachers' Cognitive Structures and Alternative Conceptions

    Science.gov (United States)

    Kurt, Hakan; Ekici, Gulay; Aktas, Murat; Aksu, Ozlem

    2013-01-01

    In researches, the subject of respiration has been determined to be among subjects about whom participants from all educational levels struggle to form their cognitive structures and have many alternative conceptions. This research was carried out in order to determine biology student teachers' cognitive structures and alternative conceptions…

  17. The effect of graphic organizers on students' attitudes and academic performance in undergraduate general biology

    Science.gov (United States)

    Cleveland, Lacy

    High attrition among undergraduate Science Technology Engineering and Mathematics (STEM) majors has led national and business leaders in the United States to call for both research and educational reform within the collegiate STEM classrooms. Included among suggestions for reform are ideas to improve retention of first-year students and to improve critical thinking and depth of knowledge, instead of covering large quantities of materials. Past research on graphic organizers suggest these tools assist students in learning information and facilitate conceptual and critical thinking. Despite their widespread use in high school science departments, collegiate humanities departments, and even medical schools, their use is considerably less prevalent in the undergraduate biology classroom. In addition to their lack of use, little research has been conducted on their academic benefits in the collegiate classroom. Based on national calls for improving retention among undergraduate STEM majors and research suggesting that academic success during an individual first major's related course highly determine if that individual will continue on in their intended major, the researcher of this dissertation chose to conduct research on an introductory general biology class. Using both quantitative and qualitative methods, the research in this dissertation examines the effectiveness of graphic organizers in promoting academic success and also examines their influence on student attitudes. This research is grounded in the theories of constructivism and cognitive load theory. Constructivism suggests that individuals must build their knowledge from their personal experiences, while the cognitive load theory recognizes the limited nature of one's working memory and suggests that instructional practices minimize cognitive overload. The results of this dissertation suggest that the use of graphic organizers in an undergraduate general biology classroom can increase students' academic

  18. Virtual fetal pig dissection as an agent of knowledge acquisition and attitudinal change in female high school biology students

    Science.gov (United States)

    Maloney, Rebecca Scudari

    One way to determine if all students can learn through the use of computers is to introduce a lesson taught completely via computers and compare the results with those gained when the same lesson is taught in a traditional manner. This study attempted to determine if a virtual fetal pig dissection can be used as a viable alternative for an actual dissection for females enrolled in high school biology classes by comparing the knowledge acquisition and attitudinal change between the experimental (virtual dissection) and control (actual dissection) groups. Two hundred and twenty-four students enrolled in biology classes in a suburban all-girl parochial high school participated in this study. Female students in an all-girl high school were chosen because research shows differences in science competency and computer usage between the genders that may mask the performance of females on computer-based tasks in a science laboratory exercise. Students who completed the virtual dissection scored significantly higher on practical test and objective tests that were used to measure knowledge acquisition. Attitudinal change was measured by examining the students' attitudes toward dissections, computer usage in the classroom, and toward biology both before and after the dissections using pre and post surveys. Significant results in positive gain scores were found in the virtual dissection group's attitude toward dissections, and their negative gain score toward virtual dissections. Attitudinal changes toward computers and biology were not significant. A purposefully selected sample of the students were interviewed, in addition to gathering a sample of the students' daily dissection journals, as data highlighting their thoughts and feelings about their dissection experience. Further research is suggested to determine if a virtual laboratory experience can be a substitute for actual dissections, or may serve as an enhancement to an actual dissection.

  19. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  20. Archive of Geosample Data and Information from the University of Rhode Island (URI) Graduate School of Oceanography (GSO), Marine Geological Samples Laboratory (MGSL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Geological Samples Laboratory (MGSL) of the Graduate School of Oceanography (GSO), University of Rhode Island is a partner in the Index to Marine and...

  1. Epidemiological profile of work-related accidents with biological exposure among medical students in a surgical emergency room.

    Science.gov (United States)

    Reis, Phillipe Geraldo Teixeira de Abreu; Driessen, Anna Luiza; da Costa, Ana Claudia Brenner Affonso; Nasr, Adonis; Collaço, Iwan Augusto; Tomasich, Flávio Daniel Saavedra

    2013-01-01

    To evaluate the accidents with biological material among medical students interning in a trauma emergency room and identify key related situations, attributed causes and prevention. we conducted a study with a quantitative approach. Data were collected through a questionnaire applied via internet, with closed, multiple-choice questions regarding accidents with biological material. The sample comprised 100 students. thirty-two had accidents with biological material. Higher-risk activities were local anesthesia (39.47%), suture (18.42%) and needle recapping (15.79%). The main routes of exposure to biological material were the eyes or mucosa, with 34%, and syringe needle puncture, with 45%. After contamination, only 52% reported the accident to the responsible department. The main causes of accidents and routes of exposure found may be attributed to several factors, such as lack of training and failure to use personal protective equipment. Educational and preventive actions are extremely important to reduce the incidence of accidents with biological materials and improve the conduct of post-exposure. It is important to understand the main causes attributed and situations related, so as general and effective measures can be applied.

  2. The teach-learning process of high school students: a case of Educational Biology for teachers formation

    OpenAIRE

    Marisa Laporta Chudo; Maria Cecília Sonzogno

    2007-01-01

    Objective. To analyze the teach-learning process of high school students, in the scope of Educational Biology. To plan and to develop a methodology with lesson strategies that facilitate the learning. To analyze, in the students vision, the positive and negative points in the process. Method. A research was developed -- of which had participated students of the first semester of the Pedagogy of a high school private institution in São Paulo city -- of the type action-research, with increased ...

  3. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    Science.gov (United States)

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  4. Environmental Learning Workshop: Lichen as Biological Indicator of Air Quality and Impact on Secondary Students' Performance

    Science.gov (United States)

    Samsudin, Mohd Wahid; Daik, Rusli; Abas, Azlan; Meerah, T. Subahan Mohd; Halim, Lilia

    2013-01-01

    In this study, the learning of science outside the classroom is believe to be an added value to science learning as well as it offers students to interact with the environment. This study presents data obtained from two days' workshop on Lichen as Biological Indicator for Air Quality. The aim of the workshop is for the students to gain an…

  5. Bacterial Siderophores and their Biotechnological applications

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.

    Siderophores and their Biotechnological applications C. Mohandass Biological Oceanography Division National Institute of Oceanography Dona-paula, Goa.403 004.India. Introduction Siderophore is the Greek phrase for ?iron bearer? and is applied to molecules... the efficiency of the biological carbon pump. Phytoplankton must have developed a sophisticated mechanism to uptake iron. However, little is known about the uptake mechanism. Given the importance of the biological pump in controlling atmospheric CO2, elucidating...

  6. Studies on methanogenic consortia associated with mangrove sediments of Ennore.

    Digital Repository Service at National Institute of Oceanography (India)

    Ahila, N.K.; Kannapiran, E.; Ravindran, J.; Ramkumar, V.S.

    page : www.jeb.co.in « E-mail : editor@jeb.co.in Journal of Environmental Biology, Vol. 35, 649-654, July 2014© Triveni Enterprises, Lucknow (India) Journal of Environmental Biology ISSN: 0254-8704 CODEN: JEBIDP Introduction Mangroves are complex...-National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa – 403 004, India Abstract Key words In this study, methanogenic consortia were isolated and characterized from eight different sediment samples of mangrove ecosystem located...

  7. Fisheries Oceanography in the Virgin Islands: Preliminary Results from a Collaborative Research Endeavor

    Science.gov (United States)

    Smith, R. H.; Gerard, T. L.; Johns, E. M.; Lamkin, J. T.

    2008-05-01

    A multi-species spawning aggregation located on the banks south of St. Thomas includes several economically important fish species, including dog snapper, yellowfin grouper, Nassau grouper, and tiger grouper. Increased fishing pressure on these banks has prompted the Caribbean Fisheries Council to take actions such as seasonally closing fishing grounds and establishing Marine Protected Areas (MPAs). Due to a lack of biological and oceanographic data for the region, these management decisions have been based on professional judgment rather than scientific data. In response to this situation, NOAA scientists from SEFSC and AOML began an interdisciplinary field study in the region in 2007. Research cruises utilize biological sampling techniques such as MOCNESS, neuston, and bongo trawl tows simultaneously with standard physical sampling methods such as CTD/LADCP casts, hull- mounted water velocity measurements, and Lagrangian drifter deployments. The three year project aims to determine how the unprotected banks of the Virgin Islands and surrounding region, the seasonally closed banks and MPAs, and near-shore areas are ecologically linked in terms of larval dispersal, transport, and life history patterns. This collaboration should produce an assessment, based on scientific data, of the effectiveness of Caribbean Research Council management decisions and suggest modifications and improvements to current policy. Additionally, this project will also provide fisheries independent data, and develop ecological indices which can be integrated into stock assessment models. Analysis of data gathered during the project's first research cruise is yielding preliminary results. A total of 26,809 fish larvae were collected from the Grammanik and Red Hind Banks and surrounding regions. Of this total, 585 Serranidae (grouper) and 93 Lutjanidae (snapper) larval specimens were collected. Typical sampling transects included near-shore, shelf-break, and offshore regimes. The most

  8. [Knowledge and adherence to bio-safety measures and biological accidents by nursing students during their clinical practice].

    Science.gov (United States)

    Merino-de la Hoz, Felicitas; Durá-Ros, María Jesús; Rodríguez-Martín, Elías; González-Gómez, Silvia; Mariano López-López, Luis; Abajas-Bustillo, Rebeca; de la Horra-Gutiérrez, Inmaculada

    2010-01-01

    To identify the degree of knowledge and performance of bio-safety measures by nursing students and knowing the type of biological accidents suffered during their clinical practice. A cross-sectional study was conducted on the students of three Nursing courses held in May of 2008. Data was collected by an anonymous self-administered questionnaire, with a return of 54%. A total of 97% of students seemed to know the standard biosafety measures, and all of them (100%) stated that those measures must be applied to every patient. However, the reality of clinical practice shows that biosafety measures are only partially applied. An average of 60.2% implement the personal hygiene measures, 66.1% use physical barriers, and 44% use sharp materials safely. Around 32.25% of the students have suffered some biological accident, with a greater incidence in the second year: administering injections (24%), drawing blood samples with Venojet needles (18%) and recapping used needles (17%). The high level of knowledge shown by the students on standard precautions is not always shown in clinical practice. There are significant deficiencies in student safety practices: recapping of used needles continues to be one of the most common risk practices carried out. Copyright (c) 2009 Elsevier España, S.L. All rights reserved.

  9. Cognitive Difficulty and Format of Exams Predicts Gender and Socioeconomic Gaps in Exam Performance of Students in Introductory Biology Courses.

    Science.gov (United States)

    Wright, Christian D; Eddy, Sarah L; Wenderoth, Mary Pat; Abshire, Elizabeth; Blankenbiller, Margaret; Brownell, Sara E

    2016-01-01

    Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom's level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom's level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students. © 2016 C. D. Wright, S. L. Eddy, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Download this PDF file

    African Journals Online (AJOL)

    USER

    2016-01-23

    Jan 23, 2016 ... Biological Oceanography Department, Nigerian Institute for Oceanography and .... Four active juvenile of O. niloticus of ..... many cigarette additives are carcinogenic to humans, it may follow that they .... Nutrition, 4: 135-141.

  11. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  12. A comparison of hands-on inquiry instruction to lectureinstruction with special needs high school biology students

    Science.gov (United States)

    Jensen-Ruopp, Helga Spitko

    A comparison of hands-on inquiry instruction with lecture instruction was presented to 134 Patterns and Process Biology students. Students participated in seven biology lessons that were selected from Biology Survey of Living Things (1992). A pre and post paper and pencil assessment was used as the data collecting instrument. The treatment group was taught using hands-on inquiry strategies while the non-treatment group was taught in the lecture method of instruction. The team teaching model was used as the mode of presentation to the treatment group and the non-treatment group. Achievement levels using specific criterion; novice (0% to 50%), developing proficiency (51% to 69%), accomplished (70% to 84) and exceptional or mastery level (85% to 100%) were used as a guideline to tabulate the results of the pre and post assessment. Rubric tabulation was done to interpret the testing results. The raw data was plotted using percentage change in test score totals versus reading level score by gender as well as percentage change in test score totals versus auditory vocabulary score by gender. Box Whisker plot comparative descriptive of individual pre and post test scores for the treatment and non-treatment group was performed. Analysis of covariance (ANCOVA) using MINITAB Statistical Software version 14.11 was run on data of the seven lessons, as well as on gender (male results individual and combined, and female results individual and combined) results. Normal Probability Plots for total scores as well as individual test scores were performed. The results suggest that hands-on inquiry based instruction when presented to special needs students including; at-risk; English as a second language limited, English proficiency and special education inclusive students' learning may enhance individual student achievement.

  13. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  14. To Fly or Not to Fly: Teaching Advanced Secondary School Students about Principles of Flight in Biological Systems

    Science.gov (United States)

    Pietsch, Renée B.; Bohland, Cynthia L.; Schmale, David G., III.

    2015-01-01

    Biological flight mechanics is typically taught in graduate level college classes rather than in secondary school classes. We developed an interdisciplinary unit for advanced upper-level secondary school students (ages 15-18) to teach the principles of flight and applications to biological systems. This unit capitalised on the tremendous…

  15. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  16. Representations of homosexuality and prejudice against homosexuals of college students in a course in biology education in Mozambique

    OpenAIRE

    Nota, Juvencio Manuel

    2014-01-01

    This article analyzes the representations (explanations) of future biology teachers about the nature of homosexuality and the type of prejudice expressed against homosexuals. For this we applied questionnaires to 127 students of both sexes from first to fourth year biology course in Pedagogical University in Maputo. The results showed a bipolar representation of homosexuality reasoned explanations psychosocial and biological, but also a widespread prejudice. The analysis of the type of anchor...

  17. The Effect of Using Evolution Textbook Based on ICT and Metacognitive on Cognitive Competence of Biology Students at State University of Padang

    Science.gov (United States)

    Helendra, H.; Fadilah, M.; Arsih, F.

    2018-04-01

    Implementation of evolution lectures at Biology Department Faculty of Mathematics and Natural Sciences State University of Padang has been considered not optimal. The reasons are the limited availability of textbooks and students' learning attitudes. Because currently the students are very familiar with the internet and even has become a necessity, it has developed textbooks of evolution based on ICT and metacognitive. Selection of ICT based is in order to optimize the utilization of multimedia, and this is very compatible with the development of learning technology. While metacognitive based is in order to train students' learning attitudes to be able to think analysis, creative and evaluative. The aim of this study is to determine the effect of the use of evolution textbooks based on ICT and metacognitive to the cognitive competence of students of Biology Department State University of Padang. The data of this research is students' cognitive competence obtained from the implementation of effectiveness test of evolution textbook in the form of student learning outcomes. The research instrument is a learning result test designed to determine students’ cognitive competence. The subject of the study is a group of students in evolution course consisting of 33 students. Lectures are conducted through face-to-face and online lectures on Edmodo’s platform. The result of data analysis shows that there is an increase of cognitive competence of biology students after learning using ICT and metacognitive based evolution textbook, where average achievement is 77.72 with Percentage of achievement of criteria mastery is 81.25%. Therefore, it can be concluded that the evolution textbook based on ICT and metacognitive is effective in improving cognitive competence of students of Biology Department, Universitas Negeri Padang.

  18. PENGEMBANGAN PENUNTUN PRAKTIKUM BIOLOGI UMUM BERBASIS INKUIRI TERBIMBING MAHASISWA BIOLOGI STKIP PAYAKUMBUH

    Directory of Open Access Journals (Sweden)

    Sri Nengsi

    2016-05-01

    Full Text Available One of supporting the implementation of the practicum is the practical guidence. To increase motivation, activities, and learning outcomes it is used inquiry based practical guide for students are invited to experiment with doing practical activities with scientific. The purpose of this study was to reveal the validity, practicalities, and guiding the resulting effectiveness of guidence inquiry based on the general biology lesson for students of biology education STKIP Payakumbuh. This research is the development of Plomp development model which consists of three phases: problem identification and needs analysis, design development and implementation, evaluation. The results of this study indicate that the development of practical guidance guided inquiry based general biology for students of biology education STKIP Payakumbuh valid, practically and effectively.

  19. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  20. Variation in Citational Practice in a Corpus of Student Biology Papers: From Parenthetical Plonking to Intertextual Storytelling

    Science.gov (United States)

    Swales, John M.

    2014-01-01

    This is a corpus-based study of a key aspect of academic writing in one discipline (biology) by final-year undergraduates and first-, second-, and third-year graduate students. The papers come from the Michigan Corpus of Upper-level Student Papers, a freely available electronic database. The principal aim of the study is to examine the extent of…

  1. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    Science.gov (United States)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-01-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…

  2. Extremophilic microbes: Diversity and perspectives

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, T.; Raghukumar, C.; Shivaji, S.

    variety of high temperature, natural and man - made habitats exist. These include volcanic and geothermal areas with te m peratures o f ten greater than boiling, sun - heated litter and soil or sediments reaching 70 ?C, and biological self - heated... Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India 2 Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa 403 004, India 3 Centre for Cellular and Molecular Biology, Uppal Road...

  3. Promoting Student Inquiry Using "Zea Mays" (Corn) Cultivars for Hypothesis-Driven Experimentation in a Majors Introductory Biology Course

    Science.gov (United States)

    Blair, Amy C.; Peters, Brenda J.; Bendixen, Conrad W.

    2014-01-01

    The AAAS Vision and Change report (2011) recommends incorporating student research experiences into the biology curriculum at the undergraduate level. This article describes, in detail, how "Zea mays" (corn) cultivars were used as a model for a hypothesis-driven short-term research project in an introductory biology course at a small…

  4. Characterising the Development of the Understanding of Human Body Systems in High-School Biology Students--A Longitudinal Study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-01-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated…

  5. Cognitive Difficulty and Format of Exams Predicts Gender and Socioeconomic Gaps in Exam Performance of Students in Introductory Biology Courses

    Science.gov (United States)

    Wright, Christian D.; Eddy, Sarah L.; Wenderoth, Mary Pat; Abshire, Elizabeth; Blankenbiller, Margaret; Brownell, Sara E.

    2016-01-01

    Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom’s level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom’s level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students. PMID:27252299

  6. Recovery of deep-sea meiofauna after artificial disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Goltekar, N.R.; Gonsalves, S.; Ansari, Z.A.

    -1 1 Recovery of Deep-sea Meiofauna after Artificial Disturbance in the Central Indian Basin INGOLE B.S*., R. GOLTEKAR, S. GONSALVES and Z. A. ANSARI Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa; 403004...

  7. Using the mixed media according to internet-based on the instructional multimedia for developing students' learning achievements in biology course on foundational cell issue of secondary students at the 10th grade level in Rangsit University demonstration school

    Science.gov (United States)

    Kangloan, Pichet; Chayaburakul, Kanokporn; Santiboon, Toansakul

    2018-01-01

    The aims of this research study were 1) to develop students' learning achievements in biology course on foundational cell issue, 2) to examine students' satisfactions of their learning activities through the mixed media according to internet-based multi-instruction in biology on foundational cell issue at the 10th grade level were used in the first semester in the academic year 2014, which a sample size of 17 students in Rangsit University Demonstration School with cluster random sampling was selected. Students' learning administrations were instructed with the 3-instructional lesson plans according to the 5-Step Ladder Learning Management Plan (LLMP) namely; the maintaining lesson plan on the equilibrium of cell issue, a lesson plan for learning how to communicate between cell and cell division. Students' learning achievements were assessed with the 30-item Assessment of Learning Biology Test (ALBT), students' perceptions of their satisfactions were satisfied with the 20-item Questionnaire on Students Satisfaction (QSS), and students' learning activities were assessed with the Mixed Media Internet-Based Instruction (MMIBI) on foundational cell issue was designed. The results of this research study have found that: statistically significant of students' post-learning achievements were higher than their pre-learning outcomes and indicated that the differences were significant at the .05 level. Students' performances of their satisfaction to their perceptions toward biology class with the mixed media according to internet-based multi instruction in biology on foundational cell issue were the highest level and evidence of average mean score as 4.59.

  8. Education Catching up with Science: Preparing Students for Three-Dimensional Literacy in Cell Biology

    Science.gov (United States)

    Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students…

  9. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  10. A Guide for Graduate Students Interested in Postdoctoral Positions in Biology Education Research

    Science.gov (United States)

    Aikens, Melissa L.; Corwin, Lisa A.; Andrews, Tessa C.; Couch, Brian A.; Eddy, Sarah L.; McDonnell, Lisa; Trujillo, Gloriana

    2016-01-01

    Postdoctoral positions in biology education research (BER) are becoming increasingly common as the field grows. However, many life science graduate students are unaware of these positions or do not understand what these positions entail or the careers with which they align. In this essay, we use a backward-design approach to inform life science graduate students of postdoctoral opportunities in BER. Beginning with the end in mind, we first discuss the types of careers to which BER postdoctoral positions lead. We then discuss the different types of BER postdoctoral positions, drawing on our own experiences and those of faculty mentors. Finally, we discuss activities in which life science graduate students can engage that will help them gauge whether BER aligns with their research interests and develop skills to be competitive for BER postdoctoral positions. PMID:27856554

  11. Turkish students' perceptions of their biology learning environments: the effects of gender and grade level

    NARCIS (Netherlands)

    Telli, S.; Brok, den P.J.; Tekkaya, C.; Cakiroglu, J.

    2009-01-01

    This study investigates the effects of gender and grade level on Turkish secondary school students’ perceptions of their biology learning environment. A total of 1474 high school students completed the What is Happening in This Classroom (WIHIC) questionnaire. The WIHIC maps several important

  12. Accidents with biological material and immunization against hepatitis B among students from the health area.

    Science.gov (United States)

    Gir, Elucir; Netto, Jeniffer Caffer; Malaguti, Silmara Elaine; Canini, Silvia Rita Marin da Silva; Hayashida, Miyeko; Machado, Alcyone Artioli

    2008-01-01

    Undergraduate students from the health area often handle piercing-cutting instruments in their academic activities, which exposes them to the risk of contracting infections. This study aimed to analyze accidents with biological material among these students. Out of 170 accidents registered, 83 (48.8%) occurred with Dentistry students, 69 (40.6%) with Medical students, 11 (6.5%) with Nursing students and in 06 (3.5%) of the cases there was no such information in the files. Most accidents, 106 (62.4%), occurred with students from private schools and 55 (32.3%) with those from public schools. Percutaneous accidents occurred in 133 (78.2%) exposures and there was immediate search for specialized health care in only 38 (21.3%) accidents. In 127 (74.7%) accidents, the immunization schedule against hepatitis B was complete. Therefore, schools need to offer courses and specific class subjects regarding biosafety measures, including aspects related to immunization, especially the vaccine against hepatitis B.

  13. Successes, Challenges and Lessons Learned for Recruiting, Engaging and Preparing a Diverse Student Population for 21st Century Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2015-12-01

    Diversity within the Ocean Sciences workforce is still underperforming relative to other scientific disciplines, a problem that will be only be solved by recruiting, engaging and retaining a more diverse student population. The Monterey Bay Regional Ocean Science Research Experiences for Undergraduates program is housed at California State University, Monterey Bay (CSUMB), an HSI with strong connections to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system. From this unique position, 11 sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students engage in rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for a program designed to prepare students for 21st century Ocean Science careers.

  14. Teaching Cell Biology to Dental Students with a Project-Based Learning Approach.

    Science.gov (United States)

    Costa-Silva, Daniela; Côrtes, Juliana A; Bachinski, Rober F; Spiegel, Carolina N; Alves, Gutemberg G

    2018-03-01

    Although the discipline of cell biology (CB) is part of the curricula of predoctoral dental schools, students often fail to recognize its practical relevance. The aim of this study was to assess the effectiveness of a practical-theoretical project-based course in closing the gaps among CB, scientific research, and dentistry for dental students. A project-based learning course was developed with nine sequential lessons to evaluate 108 undergraduate dental students enrolled in CB classes of a Brazilian school of dentistry during 2013-16. To highlight the relevance of in vitro studies in the preclinical evaluation of dental materials at the cellular level, the students were challenged to complete the process of drafting a protocol and performing a cytocompatibility assay for a bone substitute used in dentistry. Class activities included small group discussions, scientific database search and article presentations, protocol development, lab experimentation, and writing of a final scientific report. A control group of 31 students attended only one laboratory class on the same theme, and the final reports were compared between the two groups. The results showed that the project-based learning students had superior outcomes in acknowledging the relevance of in vitro methods during biocompatibility testing. Moreover, they produced scientifically sound reports with more content on methodological issues, the relationship with dentistry, and the scientific literature than the control group (p<0.05). The project-based learning students also recognized a higher relevance of scientific research and CB to dental practice. These results suggest that a project-based approach can help contextualize scientific research in dental curricula.

  15. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…

  16. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  17. A comparative study of the effect of student and instructor cognitive mapping on student achievement and attitudes in introductory college biology for nonmajors

    Science.gov (United States)

    Dardis, Deborah J. Athas

    Within a single research design, this investigation compared the effects of student and instructor cognitive mapping on student achievement and attitudes in introductory college biology for nonmajors. Subjects self-selected into either a Control Group that experienced no cognitive mapping, an Experimental Group 1 that experienced instructor cognitive mapping, or an Experimental Group 2 in which students constructed cognitive maps. Data were collected by a Students' Opinions of Teaching Poll and instructor prepared tests that included objective questions representing all levels of the cognitive domain. An ANCOVA revealed no significant differences in the academic achievement of students in the control and experimental groups. The academic performance of males and females was similar among all three groups of students and data confirmed a lack of interaction between gender and instructional strategy. This investigation confirmed that cognitive mapping will not disrupt a gender-neutral classroom environment. Students' opinions of teaching were overwhelmingly positive. A Kruskal Wallis analysis, followed by a nonparametric Tukey-type multiple comparison, revealed that students who experienced no mapping consistently rated the instructor with higher scores than did students who experienced instructor mapping. Students who cooperatively constructed cognitive maps reported the lowest scores on the opinion polls.

  18. Influence of Culture and Gender on Secondary School Students' Scientific Creativity in Biology Education in Turkana County, Kenya

    Science.gov (United States)

    Aruan, Susan A.; Okere, Mark I. O.; Wachanga, Samuel

    2016-01-01

    The purpose of this study was to establish the extent to which biology scientific creativity skills are influenced by the students' culture and gender in Turkana County. A mixed method research design was used. This involved cross sectional survey and ethnographic study. The target population comprised all form three students in sub county schools…

  19. Which Type of Inquiry Project Do High School Biology Students Prefer: Open or Guided?

    Science.gov (United States)

    Sadeh, Irit; Zion, Michal

    2012-10-01

    In teaching inquiry to high school students, educators differ on which method of teaching inquiry is more effective: Guided or open inquiry? This paper examines the influence of these two different inquiry learning approaches on the attitudes of Israeli high school biology students toward their inquiry project. The results showed significant differences between the two groups: Open inquiry students were more satisfied and felt they gained benefits from implementing the project to a greater extent than guided inquiry students. On the other hand, regarding documentation throughout the project, guided inquiry students believed that they conducted more documentation, as compared to their open inquiry peers. No significant differences were found regarding `the investment of time', but significant differences were found in the time invested and difficulties which arose concerning the different stages of the inquiry process: Open inquiry students believed they spent more time in the first stages of the project, while guided inquiry students believed they spent more time in writing the final paper. In addition, other differences were found: Open inquiry students felt more involved in their project, and felt a greater sense of cooperation with others, in comparison to guided inquiry students. These findings may help teachers who hesitate to teach open inquiry to implement this method of inquiry; or at least provide their students with the opportunity to be more involved in inquiry projects, and ultimately provide their students with more autonomy, high-order thinking, and a deeper understanding in performing science.

  20. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  1. The Effects of an Active Learning Intervention in Biology on College Students' Classroom Motivational Climate Perceptions, Motivation, and Achievement

    Science.gov (United States)

    Corkin, Danya M.; Horn, Catherine; Pattison, Donna

    2017-01-01

    This study examined differences in students' classroom motivational climate perceptions and motivational beliefs between those enrolled in undergraduate Biology courses that implemented an innovative, active learning intervention and those enrolled in traditional Biology courses (control group). This study also sought to determine whether…

  2. Improving student performance in an introductory biology majors course: A social action project in the scholarship of teaching

    Science.gov (United States)

    Chambers, Sara Lang Ketchum

    This social action study followed an introductory biology course for a three-year period to determine whether changes in teaching personnel, instructional techniques and reorientation to student-centered learning would impact student performance. The course was redirected from a traditional lecture-laboratory format to one emphasizing active learning inquiry methods. Student retention, achievement, and failure were observed for three years in addition to one year prior, and one year following, the study. The study examined the two semester introductory biology course required of all biology majors and those intending a career in science, medicine or dentistry. During the first semester of the study, the dropout rate decreased from 46% to 21%. Prior to the study, 39% of the students completing the course received a grade of D or F while only 4% received a grade of B or above. During the first semester of the study 14% of the students received a grade of D or F while 46% received a B, B+ or A grade. Similar results were seen in other semesters of the study. A statistical comparison of student retention and performance was carried out using grade data for classes taught by the original faculty, the action study faculty and the post-study faculty. The differences between the original faculty and the action study faculty were statistically significant. Effect size calculations indicated large differences between the action study faculty and the two other faculty groups in terms of student retention, achievement and failure. The results are attributed to both the personnel change and, more significantly, the change in teaching methods and emphasis on student-active learning. Comparison between the pre- and post-study teams showed less dramatic effect sizes than when the action study data were compared with the data from either other team. Nevertheless, the post-study results showed that although the retention rate dropped during the year after the study, the improvement

  3. Bottom friction. A practical approach to modelling coastal oceanography

    Science.gov (United States)

    Bolanos, Rodolfo; Jensen, Palle; Kofoed-Hansen, Henrik; Tornsfeldt Sørensen, Jacob

    2017-04-01

    Coastal processes imply the interaction of the atmosphere, the sea, the coastline and the bottom. The spatial gradients in this area are normally large, induced by orographic and bathymetric features. Although nowadays it is possible to obtain high-resolution bathymetry, the details of the seabed, e.g. sediment type, presence of biological material and living organisms are not available. Additionally, these properties as well as bathymetry can also be highly dynamic. These bottom characteristics are very important to describe the boundary layer of currents and waves and control to a large degree the dissipation of flows. The bottom friction is thus typically a calibration parameter in numerical modelling of coastal processes. In this work, we assess this process and put it into context of other physical processes uncertainties influencing wind-waves and currents in the coastal areas. A case study in the North Sea is used, particularly the west coast of Denmark, where water depth of less than 30 m cover a wide fringe along the coast, where several offshore wind farm developments are being carried out. We use the hydrodynamic model MIKE 21 HD and the spectral wave model MIKE 21 SW to simulate atmosphere and tidal induced flows and the wind wave generation and propagation. Both models represent state of the art and have been developed for flexible meshes, ideal for coastal oceanography as they can better represent coastlines and allow a variable spatial resolution within the domain. Sensitivity tests to bottom friction formulations are carried out into context of other processes (e.g. model forcing uncertainties, wind and wave interactions, wind drag coefficient). Additionally, a map of varying bottom properties is generated based on a literature survey to explore the impact of the spatial variability. Assessment of different approaches is made in order to establish a best practice regarding bottom friction and coastal oceanographic modelling. Its contribution is also

  4. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  5. Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, A., E-mail: adrian.constantin@kcl.ac.uk [Department of Mathematics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Johnson, R.S., E-mail: r.s.johnson@ncl.ac.uk [School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2016-09-07

    Highlights: • Systematic theoretical methods in studies of equatorial ocean dynamics. • Linear wave-current interactions in stratified flows. • Exact solutions – Kelvin waves, azimuthal non-uniform currents. • Three-dimensional nonlinear currents. • Hamiltonian formulation for the governing equations and for structure-preserving/enhancing approximations. - Abstract: This essay is a commentary on the pivotal role of systematic theoretical methods in physical oceanography. At some level, there will always be a conflict between theory and experiment/data collection: Which is pre-eminent? Which should come first? This issue appears to be particularly marked in physical oceanography, to the extreme detriment of the development of the subject. It is our contention that the classical theory of fluids, coupled with methods from the theory of differential equations, can play a significant role in carrying the subject, and our understanding, forward. We outline the philosophy behind a systematic theoretical approach, highlighting some aspects of equatorial ocean dynamics where these methods have already been successful, paving the way for much more in the future and leading, we expect, to the better understanding of this and many other types of ocean flow. We believe that the ideas described here promise to reveal a rich and beautiful dynamical structure.

  6. The Effect of Concept Mapping and Problem Solving Teaching Strategies on Achievement in Biology among Nigerian Secondary School Students

    Science.gov (United States)

    Okoye, Nnamdi S.; Okechukwu, Rose N.

    2010-01-01

    The study examined the effect of concept-mapping and problem-solving teaching strategies on achievement in biology among Nigerian secondary school students. The method used for the study was a quasi-experimental pre-test treatment design. One hundred and thirteen senior secondary three (S.S. 111) students randomly selected from three mixed…

  7. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  8. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  10. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  11. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024

  12. Assessing twenty-first century skills through a teacher created video game for high school biology students

    Science.gov (United States)

    Annetta, Leonard A.; Cheng, Meng-Tzu; Holmes, Shawn

    2010-07-01

    As twenty-first century skills become a greater focus in K-12 education, an infusion of technology that meets the needs of today's students is paramount. This study looks at the design and creation of a Multiplayer Educational Gaming Application (MEGA) for high school biology students. The quasi-experimental, qualitative design assessed the twenty-first century skills of digital age literacy, inventive thinking, high productivity, and effective communication techniques of the students exposed to a MEGA. Three factors, as they pertained to these skills, emerged from classroom observations. Interaction with the teacher, discussion with peers, and engagement/time-on-task while playing the MEGA suggested that students playing an educational video game exhibited all of the projected twenty-first century skills while being engrossed in the embedded science content.

  13. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  14. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  15. Biology Reflective Assessment Curriculum

    Science.gov (United States)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  16. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  17. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    Science.gov (United States)

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  18. Effectiveness of a Low-Cost, Graduate Student-Led Intervention on Study Habits and Performance in Introductory Biology.

    Science.gov (United States)

    Hoskins, Tyler D; Gantz, J D; Chaffee, Blake R; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J

    2017-01-01

    Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami University. Our approach aimed to improve performance for underachieving students by combining an existing framework for the process of learning (the study cycle) with concrete tools (outlines and concept maps) that have been shown to encourage deep understanding. To assess the effectiveness of our efforts, we asked 1) how effective our voluntary recruitment model was at enrolling the target cohort, 2) how the course impacted performance on lecture exams, 3) how the course impacted study habits and techniques, and 4) whether there are particular study habits or techniques that are associated with large improvements on exam scores. Voluntary recruitment attracted only 11-17% of our target cohort. While focal students improved on lecture exams relative to their peers who did not enroll, gains were relatively modest, and not all students improved. Further, although students across both semesters of our study reported improved study habits (based on pre and post surveys) and on outlines and concept maps (based on retrospectively scored assignments), gains were more dramatic in the Fall semester. Multivariate models revealed that, while changes in study habits and in the quality of outlines and concept maps were weakly associated with change in performance on lecture exams, relationships were only significant in the Fall semester and were sometimes counterintuitive. Although benefits of the course were offset somewhat by the inefficiency of voluntary recruitment, we demonstrate the effectiveness our course, which is inexpensive to implement and has advantage of providing pedagogical experience to future educators. © 2017 T. D

  19. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  20. A schema theory analysis of students' think aloud protocols in an STS biology context

    Science.gov (United States)

    Quinlan, Catherine Louise

    This dissertation study is a conglomerate of the fields of Science Education and Applied Cognitive Psychology. The goal of this study is to determine what organizational features and knowledge representation patterns high school students exhibit over time for issues pertinent to science and society. Participants are thirteen tenth grade students in a diverse suburban-urban classroom in a northeastern state. Students' think alouds are recorded, pre-, post-, and late-post treatment. Treatment consists of instruction in three Science, Technology, and Society (STS) biology issues, namely the human genome project, nutrition and health, and stem cell research. Coding and analyses are performed using Marshall's knowledge representations---identification knowledge, elaboration knowledge, planning knowledge, and execution knowledge, as well as qualitative research analysis methods. Schema theory, information processing theory, and other applied cognitive theory provide a framework in which to understand and explain students' schema descriptions and progressions over time. The results show that students display five organizational features in their identification and elaboration knowledge. Students also fall into one of four categories according to if they display prior schema or no prior schema, and their orientation "for" or "against," some of the issues. Students with prior schema and orientation "against" display the most robust schema descriptions and schema progressions. Those with no prior schemas and orientation "against" show very modest schema progressions best characterized by their keyword searches. This study shows the importance in considering not only students' integrated schemas but also their individual schemes. A role for the use of a more schema-based instruction that scaffolds student learning is implicated.

  1. ADAPTATION OF THE STUDENTS' MOTIVATION TOWARDS SCIENCE LEARNING QUESTIONNAIRE TO MEASURE GREEK STUDENTS’ MOTIVATION TOWARDS BIOLOGY LEARNING

    OpenAIRE

    Andressa, Helen; Mavrikaki, Evangelia; Dermitzaki, Irini

    2015-01-01

    The purpose of this study was to investigate students’ motivation towards biology learning and to determine the factors that are related to it: students’ gender and their parents’ occupation (relevant with biology or not) were investigated. The sample of the study consisted of 360 Greek high school students of the 10th grade (178 boys and 182 girls). The data were collected through Students’ Motivation Toward Science Learning (SMTSL) questionnaire. It was found that it was a valid and reliabl...

  2. Novelty or knowledge? A study of using a student response system in non-major biology courses at a community college

    Science.gov (United States)

    Thames, Tasha Herrington

    The advancement in technology integration is laying the groundwork of a paradigm shift in the higher education system (Noonoo, 2011). The National Dropout Prevention Center (n.d.) claims that technology offers some of the best opportunities for presenting instruction to engage students in meaningful education, addressing multiple intelligences, and adjusting to students' various learning styles. The purpose of this study was to investigate if implementing clicker technology would have a statistically significant difference on student retention and student achievement, while controlling for learning styles, for students in non-major biology courses who were and were not subjected to the technology. This study also sought to identify if students perceived the use of clickers as beneficial to their learning. A quantitative quasi-experimental research design was utilized to determine the significance of differences in pre/posttest achievement scores between students who participated during the fall semester in 2014. Overall, 118 students (n = 118) voluntarily enrolled in the researcher's fall non-major Biology course at a southern community college. A total of 71 students were assigned to the experimental group who participated in instruction incorporating the ConcepTest Process with clicker technology along with traditional lecture. The remaining 51 students were assigned to the control group who participated in a traditional lecture format with peer instruction embedded. Statistical analysis revealed the experimental clicker courses did have higher posttest scores than the non-clicker control courses, but this was not significant (p >.05). Results also implied that clickers did not statistically help retain students to complete the course. Lastly, the results indicated that there were no significant statistical difference in student's clicker perception scores between the different learning style preferences.

  3. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  4. Reducing Unintentional Plagiarism amongst International Students in the Biological Sciences: An Embedded Academic Writing Development Programme

    Science.gov (United States)

    Divan, Aysha; Bowman, Marion; Seabourne, Anna

    2015-01-01

    There is general agreement in the literature that international students are more likely to plagiarise compared to their native speaker peers and, in many instances, plagiarism is unintentional. In this article we describe the effectiveness of an academic writing development programme embedded into a Biological Sciences Taught Masters course…

  5. Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography

    Science.gov (United States)

    Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.

    2002-12-01

    Science educators working directly with scientists to develop inquiry-based instructional materials in Earth science yield some of the best results. The TEXTEAMS (Texas Teachers Empowered for Achievement in Mathematics and Science) Leadership Training for the Texas high school science course, Geology, Meteorology and Oceanography (GMO) is one example of a successful program that provides high-quality training to master teachers using geophysical data collected by scientists at The University of Texas Institute for Geophysics (UTIG). TEXTEAMS is a certification program of professional development and leadership training sponsored by the National Science Foundation that is part of the Texas Statewide Systemic Initiative. UTIG scientists teamed with science educators at the Charles A. Dana Center for Mathematics and Science Education at UT and the Texas Education Agency to develop inquiry-based instructional materials for eight GMO modules. Our learning activities help students and teachers understand how Earth scientists interpret the natural world and test their hypotheses, and provide opportunities for the use of technology in classroom science learning; they are aligned with national and state teaching standards. Examples of TEXTEAMS GMO learning activities that use geophysical data. 1. Neotectonics: radiocarbon dates and elevation above current sea level of raised coral reefs in the New Georgia Islands are used to calculate rates of tectonic uplift and as a basis for the development of a conceptual model to explain the pattern of uplift that emerges from the data. 2. Large Igneous Provinces:geophysical logging data collected on ODP Leg 183 (Kerguelen Plateau) are analyzed to identify the transition from sediment to basement rock. 3. The Search for Black Gold: petroleum exploration requires the integration of geology, geophysics, petrophysics and geochemistry. Knowledge gained in previous GMO modules is combined with fundamental knowledge about economics to

  6. Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D-loop region

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Kumar, G.; Kunal, S.P.

    Biology (2012) 80, 2198–2212 doi:10.1111/j.1095-8649.2012.03270.x, available online at wileyonlinelibrary.com Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D...-loop region M. R. Menezes*, G. Kumar and S. P. Kunal Biological Oceanography Division, National Institute of Oceanography (CSIR), Dona Paula, Goa 403 004, India (Received 26 May 2011, Accepted 14 February 2012) Genetic structure of skipjack tuna Katsuwonus...

  7. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  8. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M.

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education. PMID:26594328

  9. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course.

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education.

  10. Personal microbiome analysis improves student engagement and interest in Immunology, Molecular Biology, and Genomics undergraduate courses

    Science.gov (United States)

    Bridgewater, Laura C.; Jensen, Jamie L.; Breakwell, Donald P.; Nielsen, Brent L.; Johnson, Steven M.

    2018-01-01

    A critical area of emphasis for science educators is the identification of effective means of teaching and engaging undergraduate students. Personal microbiome analysis is a means of identifying the microbial communities found on or in our body. We hypothesized the use of personal microbiome analysis in the classroom could improve science education by making courses more applied and engaging for undergraduate students. We determined to test this prediction in three Brigham Young University undergraduate courses: Immunology, Advanced Molecular Biology Laboratory, and Genomics. These three courses have a two-week microbiome unit and students during the 2016 semester students could submit their own personal microbiome kit or use the demo data, whereas during the 2017 semester students were given access to microbiome data from an anonymous individual. The students were surveyed before, during, and after the human microbiome unit to determine whether analyzing their own personal microbiome data, compared to analyzing demo microbiome data, impacted student engagement and interest. We found that personal microbiome analysis significantly enhanced the engagement and interest of students while completing microbiome assignments, the self-reported time students spent researching the microbiome during the two week microbiome unit, and the attitudes of students regarding the course overall. Thus, we found that integrating personal microbiome analysis in the classroom was a powerful means of improving student engagement and interest in undergraduate science courses. PMID:29641525

  11. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ∼5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and administered concurrently to all students. New exam questions were developed using Bloom’s taxonomy, and exam results were analyzed statistically with validated assessment tools. All but the comprehensive final exam were returned to students for self-evaluation and remediation. Among other approaches, course rigor was monitored by using an identical set of 60 questions on the final exam across 10 semesters. Analysis of the identical sets of 60 final exam questions revealed that overall averages increased from 72.9% (2010) to 83.5% (2015). Regression analysis demonstrated a statistically significant correlation between high-risk students and their averages on the 60 questions. Additional analysis demonstrated statistically significant improvements for at least one letter grade from midterm to final and a 20% increase in the course pass rates over time, also for the high-risk population. These results support the hypothesis that our data-driven interventions and assessment techniques are successful in improving student retention, particularly for our academically at-risk students. PMID:27543637

  12. Ocean Sense: Student-Led, Real-Time Research at the Bottom of the Ocean - Without Leaving the Classroom

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; McLean, M. A.; Riddell, D. J.; Ewing, N.; Brown, J. C.

    2016-12-01

    This presentation outlines the authentic research experiences created by Ocean Networks Canada's Ocean Sense program, a transformative education program that connects students and teachers with place-based, real-time data via the Internet. This program, developed in collaboration with community educators, features student-centric activities, clearly outlined learning outcomes, assessment tools and curriculum aligned content. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. Data from these observatories are fundamental to lessons and activities in the Ocean Sense program. Marketed as Ocean Sense: Local observations, global connections, the program introduces middle and high school students to research methods in biology, oceanography and ocean engineering. It includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. Connection to place and local relevance of the program is enhanced through an emphasis on Indigenous and place-based knowledge. The program promotes of cross-cultural learning with the inclusion of Indigenous knowledge of the ocean. Ocean Sense provides students with an authentic research experience by connecting them to real-time data, often within their own communities. Using the freely accessible data portal, students can curate the data they need from a range of instruments and time periods. Further, students are not restricted to their local community; if their question requires a greater range of

  13. The Effects of Meiosis/Genetics Integration and Instructional Sequence on College Biology Student Achievement in Genetics.

    Science.gov (United States)

    Browning, Mark

    The purpose of the research was to manipulate two aspects of genetics instruction in order to measure their effects on college, introductory biology students' achievement in genetics. One instructional sequence that was used dealt first with monohybrid autosomal inheritance patterns, then sex-linkage. The alternate sequence was the reverse.…

  14. An Examination of the Impact of a Biological Anti-Stigma Message for Depression on College Students

    Science.gov (United States)

    Boucher, Laura A.; Campbell, Duncan G.

    2014-01-01

    Stigma is one reason that some people avoid seeking mental health treatment. This study tested whether a biologically based anti-stigma message affected various stigma-related outcomes in college students. One hundred eighty-two undergraduate participants were randomly assigned to see a billboard presenting the message, "Depression is a brain…

  15. The influence of interactive technology on student performance in an Oklahoma secondary Biology I program

    Science.gov (United States)

    Feltman, Vallery

    Over the last decade growth in technologies available to teach students and enhance curriculum has become an important consideration in the educational system. The profile of today's secondary students have also been found to be quite different than those of the past. Their learning styles and preferences are issues that should be addressed by educators. With the growth and availability of new technologies students are increasingly expecting to use these as learning tools in their classrooms. This study investigates how interactive technology may impact student performance. This study specifically focuses on the use of the Apple Ipad in 4 Biology I classrooms. This study used an experimental mixed method design to examine how using Ipads for learning impacted student achievement, motivation to learn, and learning strategies. Qualitatively the study examined observed student behaviors and student perceptions regarding the use of interactive technologies. Data was analyzed using descriptive statistics, t-tests, 2-way ANOVAs, and qualitative analysis. Quantitatively the results revealed no significant difference between students who used the interactive technology to learn and those who did not. Qualitative data revealed behaviors indicative of being highly engaged with the subject matter and the development of critical thinking skills which may improve student performance. Student perceptions also revealed overall positive experiences with using interactive technology in the classroom. It is recommended that further studies be done to look at using interactive technologies for a longer period of time using multiple subjects areas. This would provide a more in-depth exploration of interactive technologies on student achievement.

  16. Education catching up with science: preparing students for three-dimensional literacy in cell biology.

    Science.gov (United States)

    Kramer, Ijsbrand M; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students used a single text dealing with signal transduction, which was supplemented with images made in one of three iconographic styles. Typically, we employed realistic renderings, using computer-generated Protein Data Bank (PDB) structures; realistic-schematic renderings, using shapes inspired by PDB structures; or schematic renderings, using simple geometric shapes to represent cellular components. The control group received a list of keywords. When students were asked to draw and describe the process in their own style and to reply to multiple-choice questions, the three iconographic approaches equally improved the overall outcome of the tests (relative to keywords). Students found the three approaches equally useful but, when asked to select a preferred style, they largely favored a realistic-schematic style. When students were asked to annotate "raw" realistic images, both keywords and schematic representations failed to prepare them for this task. We conclude that supplementary images facilitate the comprehension process and despite their visual clutter, realistic representations do not hinder learning in an introductory course.

  17. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    Science.gov (United States)

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. An electronic atlas on the oceanography of the South China Sea

    Science.gov (United States)

    Rostov, I. D.; Moroz, V. V.; Rudykh, N. I.; Rostov, V. I.

    2009-12-01

    The digital atlas on CD ROM includes a set of generalized data on the South China Sea oceanography. The data is presented in the form of spreadsheets, graphics, and text. The atlas contains a brief annotated description of the main physical-geographical characteristics and the particularities of the hydrological regime, water masses, tidal phenomena, and water mass circulation. The atlas is an interactive information-reference system including elements of dynamic data visualization. It contains a body of data on the long-term observations of the temperature and salinity; gridded blocks of the average annual, seasonal, and monthly data at the standard depth horizons; and data on the hydrochemical characteristics and water currents obtained by automatic buoy stations (ABS). A list of existing open access data bases and web sites is given where additional online and archived information on a range of special issues and problems related to regional studies and exploitation is provided. The system allows for fast access to specifically selected online or generalized reference information (via the Internet) and for its imaging.

  19. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    Science.gov (United States)

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  20. Rethinking biology instruction: The application of DNR-based instruction to the learning and teaching of biology

    Science.gov (United States)

    Maskiewicz, April Lee

    Educational studies report that secondary and college level students have developed only limited understandings of the most basic biological processes and their interrelationships from typical classroom experiences. Furthermore, students have developed undesirable reasoning schemes and beliefs that directly affect how they make sense of and account for biological phenomena. For these reasons, there exists a need to rethink instructional practices in biology. This dissertation discusses how the principles of Harel's (1998, 2001) DNR-based instruction in mathematics could be applied to the teaching and learning of biology. DNR is an acronym for the three foundational principles of the system: Duality, Necessity, and Repeated-reasoning. This study examines the application of these three principles to ecology instruction. Through clinical and teaching interviews, I developed models of students' existing ways of understanding in ecology and inferred their ways of thinking. From these models a hypothetical learning trajectory was developed for 16 college level freshmen enrolled in a 10-week ecology teaching experiment. Through cyclical, interpretive analysis I documented and analyzed the evolution of the participants' progress. The results provide empirical evidence to support the claim that the DNR principles are applicable to ecology instruction. With respect to the Duality Principle, helping students develop specific ways of understanding led to the development of model-based reasoning---a way of thinking and the cognitive objective guiding instruction. Through carefully structured problem solving tasks, the students developed a biological understanding of the relationship between matter cycling, energy flow, and cellular processes such as photosynthesis and respiration, and used this understanding to account for observable phenomena in nature. In the case of intellectual necessity, the results illuminate how problem situations can be developed for biology learners

  1. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  2. Practising Conservation Biology in a Virtual Rainforest World

    Science.gov (United States)

    Schedlbauer, Jessica L.; Nadolny, Larysa; Woolfrey, Joan

    2016-01-01

    The interdisciplinary science of conservation biology provides undergraduate biology students with the opportunity to connect the biological sciences with disciplines including economics, social science and philosophy to address challenging conservation issues. Because of its complexity, students do not often have the opportunity to practise…

  3. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  5. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  6. Oceanography of marginal seas

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    in the first two shallow seas are driven by surface densification following evaporation that in the latter is largely influenced by freshwater discharge from Irrawaddy and inflows across the Andaman Ridge from east Bay of Bengal. Biological productivity...

  7. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  8. Enhancing Scientific Communication Through an Undergraduate Biology and Journalism Partnership.

    Science.gov (United States)

    Schwingel, Johanna M

    2018-01-01

    Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk. This was followed by a peer interview with a student in a journalism course, in which the biology students needed to comprehend the article to effectively communicate it to the journalism students, and the journalism students needed to ask questions about an unfamiliar, technical topic. Next, the biology students wrote a summary of their article for a scientific audience. Finally, the students presented a figure from the article to their peers in a scientific, Bio-Minute format. The biology-journalism partnership allowed biology students to develop their ability to communicate scientific information and journalism students their ability to ask appropriate questions and establish a base of knowledge from which to write.

  9. Validation and Application of the Survey of Teaching Beliefs and Practices for Undergraduates (STEP-U): Identifying Factors Associated with Valuing Important Workplace Skills among Biology Students.

    Science.gov (United States)

    Marbach-Ad, Gili; Rietschel, Carly; Thompson, Katerina V

    2016-01-01

    We present a novel assessment tool for measuring biology students' values and experiences across their undergraduate degree program. Our Survey of Teaching Beliefs and Practices for Undergraduates (STEP-U) assesses the extent to which students value skills needed for the workplace (e.g., ability to work in groups) and their experiences with teaching practices purported to promote such skills (e.g., group work). The survey was validated through factor analyses in a large sample of biology seniors (n = 1389) and through response process analyses (five interviewees). The STEP-U skills items were characterized by two underlying factors: retention (e.g., memorization) and transfer (e.g., knowledge application). Multiple linear regression models were used to examine relationships between classroom experiences, values, and student characteristics (e.g., gender, cumulative grade point average [GPA], and research experience). Student demographic and experiential factors predicted the extent to which students valued particular skills. Students with lower GPAs valued retention skills more than those with higher GPAs. Students with research experience placed greater value on scientific writing and interdisciplinary understanding. Greater experience with specific teaching practices was associated with valuing the corresponding skills more highly. The STEP-U can provide feedback vital for designing curricula that better prepare students for their intended postgraduate careers. © 2016 G. Marbach-Ad et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    Science.gov (United States)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to

  11. A comparative analysis of multiple-choice and student performance-task assessment in the high school biology classroom

    Science.gov (United States)

    Cushing, Patrick Ryan

    This study compared the performance of high school students on laboratory assessments. Thirty-four high school students who were enrolled in the second semester of a regular biology class or had completed the biology course the previous semester participated in this study. They were randomly assigned to examinations of two formats, performance-task and traditional multiple-choice, from two content areas, using a compound light microscope and diffusion. Students were directed to think-aloud as they performed the assessments. Additional verbal data were obtained during interviews following the assessment. The tape-recorded narrative data were analyzed for type and diversity of knowledge and skill categories, and percentage of in-depth processing demonstrated. While overall mean scores on the assessments were low, elicited statements provided additional insight into student cognition. Results indicated that a greater diversity of knowledge and skill categories was elicited by the two microscope assessments and by the two performance-task assessments. In addition, statements demonstrating in-depth processing were coded most frequently in narratives elicited during clinical interviews following the diffusion performance-task assessment. This study calls for individual teachers to design authentic assessment practices and apply them to daily classroom routines. Authentic assessment should be an integral part of the learning process and not merely an end result. In addition, teachers are encouraged to explicitly identify and model, through think-aloud methods, desired cognitive behaviors in the classroom.

  12. Improving quantitative skills in introductory geoscience courses at a four-year public institution using online math modules

    Science.gov (United States)

    Gordon, E. S.

    2011-12-01

    Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.

  13. The Effects of Collaborative Care of Living Animals in Biology Lessons on Students' Relatedness Toward Their Teacher Across Gender

    Science.gov (United States)

    Eckes, Alexander; Großmann, Nadine; Wilde, Matthias

    2018-01-01

    The transition from elementary school to the upper grades can lead to ambiguous feelings toward the new, male teachers. This study investigated whether collaborative animal care in biology lessons affects students' feelings of relatedness toward their biology teachers positively during the first year after the school transition. Four hundred twenty fifth graders (M age = 10.5 years, SD age = 0.6 years) of higher types of tracking participated. We designed one experimental group that involved caring for the living animals to be used in the upcoming lessons, and two control groups. The first control group included lessons with living animals, but did not include prior care of those animals, and the second incorporated neither living animals nor prior care. All groups received biology lessons with the same content. To examine the effects of caretaking, we used an adapted version of the scale "relatedness" (Ryan 1982). In both control groups, boys showed lower relatedness toward female teachers and girls toward male teachers, respectively. Collaborative mice care promoted equal relatedness across all gender combinations among teachers and students.

  14. Integrative Assessment of Evolutionary Theory Acceptance and Knowledge Levels of Biology Undergraduate Students from a Brazilian University

    Science.gov (United States)

    Tavares, Gustavo Medina; Bobrowski, Vera Lucia

    2018-01-01

    The integrative role that Evolutionary theory plays within Biology is recognised by most scientific authors, as well as in governmental education policies, including Brazilian policies. However, teaching and learning evolution seems problematic in many countries, and Brazil is among those. Many factors may affect teachers' and students'…

  15. Enabling students to learn: Design, implementation and assessment of a supplemental study strategies course for an introductory undergraduate biology course

    Science.gov (United States)

    Sriram, Jayanthi Sanjeevi

    Attrition in the STEM disciplines is a national problem and one of the important reasons for this is student experiences in introductory courses. A myriad of factors influence students' experiences in those courses; inadequate student preparation is one of the most cited reasons. Incoming freshmen often lack the learning strategies required to meaningfully learn and succeed in college courses. Unfortunately, the instructors have limited time and/or have little experience in teaching learning strategies. In this paper, the design, implementation, and evaluation of a Supplemental Course (SC) model that emphasizes learning strategies is presented. SC was offered concurrently with the introductory biology courses for four consecutive semesters (fall 2011 to spring 2013); for 10 weeks in fall 2012 and 7 weeks in the other semesters at Miami University. 10 weeks SC began earlier in the semester than the shorter SC. This study evaluated the effects of the SC on students' (1) performance in the introductory biology course, (2) perceived changes in self-regulation and social support, and (3) experiences in the introductory biology course before, during, and after participation in the SC. A mixed methods approach was used to address these goals. A pre-post survey was administered to obtain students' use of self-regulation strategies and social-support data. Quantitative methods were utilized to analyze content exam grades and changes in self-regulation strategies and social-support. To explore the experiences of the students, semi-structured interviews were conducted, followed by analysis using grounded theory. The findings reveal that participants of the longer duration SC (with an earlier start date) significantly improved in content exam performance, perceived use of self-regulation strategies, and social support compared to the non-participants. Participants of the shorter duration SC (with a later start date) did not significantly improve in content exam performance

  16. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task,…

  17. Meeting summary housing and registration information

    Science.gov (United States)

    The 1986 Ocean Sciences Meeting of the American Geophysical Union and the American Society of Limnology and Oceanography (ASLO) will be held January 13-17, 1986, in New Orleans, La., at the Fairmont Hotel. Co-sponsoring societies are the Acoustical Society of America (ASA), the American Meteorological Society (AMS), the Marine Technology Society (MTS), and the Institute of Electrical and Electronics Engineers, Oceanic Engineering Society (OES).Some of the most compelling problems in science and technology span two or more disciplines, and this is especially true of oceanography, which is an amalgamation of several sciences with technology. This meeting will cover topics that include physical and biological oceanography, atmospheric sciences, chemical and geological oceanography, underwater acoustics, and ocean technology.

  18. The Respon of IKIP BUDI UTOMO Students Toward the Instructional Book of Cell Biology Subject Aided by Interactive Multimedia

    OpenAIRE

    Hartati, Tri Asih Wahyu; Safitri, Dini

    2017-01-01

    The development of Science and Technology (Science and Technology) takes place very rapidly. The development of science and technology will impact on graduate competency changes desired by the industry. This change of course will be followed by updating the curriculum, learning resources and teaching materials are used, one of them teaching materials on the subjects of Cell Biology. In the course of Cell Biology, the students only take textbooks without the support of interactive multimedia. ...

  19. Teaching information literacy skills to sophomore-level biology majors.

    Science.gov (United States)

    Thompson, Leigh; Blankinship, Lisa Ann

    2015-05-01

    Many undergraduate students lack a sound understanding of information literacy. The skills that comprise information literacy are particularly important when combined with scientific writing for biology majors as they are the foundation skills necessary to complete upper-division biology course assignments, better train students for research projects, and prepare students for graduate and professional education. To help undergraduate biology students develop and practice information literacy and scientific writing skills, a series of three one-hour hands-on library sessions, discussions, and homework assignments were developed for Biological Literature, a one-credit, one-hour-per-week, required sophomore-level course. The embedded course librarian developed a learning exercise that reviewed how to conduct database and web searches, the difference between primary and secondary sources, source credibility, and how to access articles through the university's databases. Students used the skills gained in the library training sessions for later writing assignments including a formal lab report and annotated bibliography. By focusing on improving information literacy skills as well as providing practice in scientific writing, Biological Literature students are better able to meet the rigors of upper-division biology courses and communicate research findings in a more professional manner.

  20. Evolution of meanings of the concept of gen in students of higher education in the teaching of biology

    Directory of Open Access Journals (Sweden)

    Dalia Diez de Tancredi

    2012-01-01

    Full Text Available The aim of the study was to identify initial meanings of the concept of the gene among 50 students from the career training of teachers of biology at the University Pedagogical Experimental Libertador (UPEL, Pedagogical Institute of Caracas, who enrolled in Cell Biology (BC and General Genetics (GG, as well as those built from a didactic intervention that formed part of Participatory Action Research (PAR. The work is based on the Theory of Meaningful Learning of Ausubel, on the principles of critical meaningful learning facilitators of Moreira, and on elements of the educational act of Novak. To investigate the evolution of meaning of this concept were used: questionnaires, interviews, maps and graphic representations of concepts developed by students. The data analysis provides a differentiated evolution of the meaning of the gene in the students, which corresponds to the didactic intervention and teachers, actions in both courses. It shows the importance of organizing the teaching in a potentially meaningful way to reflect on the content and learning, so that abstract concepts such as gene, must be presented with a critical and reflexive epistemology.

  1. Thinking processes of Filipino teachers representation of schema of some biology topics: Its effects to the students conceptual understanding

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This study is a qualitative-quantitative research, where the main concern is to investigate Content knowledge representation of Filipino Teachers in their schema (proposition, linear ordering and imagery) of some biology topics. The five biology topics includes: Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics. The study focuses on the six (6) biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and three (3) under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilizes interpretative case-study method, bracketing method, and concept analysis for qualitative part. For quantitative, it uses a nonparametric statistical tool, Kendall's Tau to determine congruence of students and teachers' concept maps and paired t-test for testing the significant differences of pre-and post-instruction concept maps to determine the effects of students' conceptual understanding before and after the teacher's representation of their schema that requires the teachers' thinking processes. The data were cross-validated with two or more techniques used in the study. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. Results indicate that the teacher utilize six methods to construct meaning of concepts, three methods of representing classification, four methods to represent relationships, seven methods to represent transformation and three methods to represent causation in planning and implementing the lessons. They often modify definitions in the textbook and express these in lingua franca to be better understood by the students. Furthermore, the teachers' analogs given to student are sometimes far

  2. Curricular Activities that Promote Metacognitive Skills Impact Lower-Performing Students in an Introductory Biology Course.

    Science.gov (United States)

    Dang, Nathan V; Chiang, Jacob C; Brown, Heather M; McDonald, Kelly K

    2018-01-01

    This study explores the impacts of repeated curricular activities designed to promote metacognitive skills development and academic achievement on students in an introductory biology course. Prior to this study, the course curriculum was enhanced with pre-assignments containing comprehension monitoring and self-evaluation questions, exam review assignments with reflective questions related to study habits, and an optional opportunity for students to explore metacognition and deep versus surface learning. We used a mixed-methods study design and collected data over two semesters. Self-evaluation, a component of metacognition, was measured via exam score postdictions, in which students estimated their exam scores after completing their exam. Metacognitive awareness was assessed using the Metacognitive Awareness Inventory (MAI) and a reflective essay designed to gauge students' perceptions of their metacognitive skills and study habits. In both semesters, more students over-predicted their Exam 1 scores than under-predicted, and statistical tests revealed significantly lower mean exam scores for the over-predictors. By Exam 3, under-predictors still scored significantly higher on the exam, but they outnumbered the over-predictors. Lower-performing students also displayed a significant increase in exam postdiction accuracy by Exam 3. While there was no significant difference in students' MAI scores from the beginning to the end of the semester, qualitative analysis of reflective essays indicated that students benefitted from the assignments and could articulate clear action plans to improve their learning and performance. Our findings suggest that assignments designed to promote metacognition can have an impact on students over the course of one semester and may provide the greatest benefits to lower-performing students.

  3. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  4. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. PMID:25713093

  5. Structural Molecular Biology 2017 | SSRL

    Science.gov (United States)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating experimental driver for structural biology research, serving the needs of a large number of academic and — Our Mission The SSRL Structural Molecular Biology program operates as an integrated resource and has

  6. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  7. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  8. Implementing recommendations for introductory biology by writing a new textbook.

    Science.gov (United States)

    Barsoum, Mark J; Sellers, Patrick J; Campbell, A Malcolm; Heyer, Laurie J; Paradise, Christopher J

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p biology.

  9. Applications of 14C - AMS on Archaeology, Climate, Environment, Geology, Oceanography and Biology

    International Nuclear Information System (INIS)

    Gomes, P. R. S.; Macario, K. D.; Anjos, R. M.

    2007-01-01

    In this contribution we describe several experiments on 14 C-AMS (Accelerator Mass Spectrometry) related to historical, ecological and environmental questions. We discuss the chronology of prehistoric settlements of the central-south Brazilian coast. The unexpected result pulls back by some two thousand years the antiquity consensually accepted for the settlement of that region. We performed an experiment concerning the isotopic signature of the local waters of an important Brazilian coastal upwelling. The results of 14 C-AMS measurements in seaweed tissue show differences in the isotopic signature of the water sources. The present results contribute to opening new perspectives for the use of 14 C as a tracer of the biological production in upwelling areas all over the world. We performed experiments on climate at the Amazon region. At remote lakes of the Amazon region, the Hg accumulation rate archived in sediment cores is a powerful tool for the interpretation of the paleoclimatology and paleoecology of the region. Different sedimentation regimes are observed from ∼41500 yr. BP to the present. The understanding of sea-level fluctuations are fundamental for human occupation of littoral areas and hydrocarbon industry on offshore exploration. We performed radiocarbon dating of foraminifera shell samples, collected in upper slope of Campos Basin, in Southern Brazil. The mean accumulation ratio for the whole column is 6.17 cm/1000 years. Fluctuations in this mean values indicate that the ocean bottom dynamics has some variation during the period. (Author)

  10. Dynamics of the Outer Planets

    Science.gov (United States)

    1992-01-01

    this is at least partly an illusion; it is amusing to speculate than the human tendency to prefer (16,17) over (4) is rooted in our natural tendency...1 0u 2 2(27) Ir 80 2r 90 ’I which, as 0 is a periodic coordinate, integrates to 0. Thus J dO = -2--r = 0. (28)kTO atar I I 235 To obtain an energy...ept. of Oceanography l.a Jolla, CA 92093-0175 College Station, TX 77843 Hancock Library of Biology & Oceanography Fisheries-Oceanography Library Alan

  11. Yesterday's Students in Today's World—Open and Guided Inquiry Through the Eyes of Graduated High School Biology Students

    Science.gov (United States)

    Dorfman, Bat-Shahar; Issachar, Hagit; Zion, Michal

    2017-12-01

    Educational policy bodies worldwide have argued that practicing inquiry as a part of the K-12 curriculum would help prepare students for their lives as adults in today's world. This study investigated adults who graduated high school 9 years earlier with a major in biology, to determine how they perceive the inquiry project they experienced and its contribution to their lives. We characterized dynamic inquiry performances and the retrospective perceptions of the inquiry project. Data was collected by interviews with 17 individuals—nine who engaged in open inquiry and eight who engaged in guided inquiry in high school. Both groups shared similar expressions of the affective point of view and procedural understanding criteria of dynamic inquiry, but the groups differed in the expression of the criteria changes occurring during inquiry and learning as a process. Participants from both groups described the contribution of the projects to their lives as adults, developing skills and positive attitudes towards science and remembering the content knowledge and activities in which they were involved. They also described the support they received from their teachers. Results of this study imply that inquiry, and particularly open inquiry, helps develop valuable skills and personal attributes, which may help the students in their lives as future adults. This retrospective point of view may contribute to a deeper understanding of the long-term influences of inquiry-based learning on students.

  12. The Benefits of Mouse Keeping--An Empirical Study on Students' Flow and Intrinsic Motivation in Biology Lessons

    Science.gov (United States)

    Meyer, Annika; Klingenberg, Konstantin; Wilde, Matthias

    2016-01-01

    Contact with living animals is an exceptional possibility within biology education to facilitate an intense immersion into the study topic and even allow for a flow experience (Csikszentmihalyi 2000). Further, it might affect the perceptions of the students' basic needs for autonomy and competence and thereby their quality of motivation (Deci and…

  13. Biology Factual Knowledge at Eleventh Grade of Senior High School Students in Pacitan based on Favorite Schools

    Science.gov (United States)

    Yustiana, I. A.; Paidi; Mercuriani, I. S.

    2018-03-01

    This study aimed to determine the Biology factual knowledge at eleventh grade of senior high school students in Pacitan based on favorite schools. This research was a descriptive research by using survey method. The population in this study was all of senior high school students in Pacitan. The sampling technique used purposive sampling technique and obtained 3 favorite schools and 3 non-favorite schools. The technique of collecting data used test form which was as the instrument of the research. Data analysis technique used Mann-Whitney U test. Based on the test, it was obtained p = 0,000 (p <0,05) so there was a significant difference between the factual knowledge of the students in the favorite schools and non-favorite schools in Pacitan. The factual knowledge of students in favorite schools was higher with an average of 5.32 while non-favorite schools were obtained an average of 4.36.

  14. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite…

  15. Use of ERTS-1 pictures in coastal oceanography in British Columbia

    Science.gov (United States)

    Gower, J. F. R.

    1973-01-01

    The ERTS-1 color composite picture of the Vancouver-Victoria region illustrates the value of ERTS data for coastal oceanography. The water of the Fraser River plume which is so clearly visible in the center of the scene has been of interest to oceanographers on the west coast of Canada for a long time as an easily visible tracer of surface water circulation in the strait of Georgia. Maps of the plume at different states of the tide and with different river flow and weather were compiled from oblique aerial photographs in 1950 and used in the siting of sewage and other outfalls in the Vancouver area. More recently high level aerial photomosaics have been used to map the plume area, but the plume can spread over distances of 30 to 40 miles and many photographs, with the uneven illumination inherent in wide angle coverage, are needed for the mosaic. The ERTS satellite gives the first complete view of the plume area. Electronic enhancement of the images shows that the satellite's narrow angle coverage allows very weak surface turbidity features to be made visible to give information on surface currents over a wide area.

  16. Hydrology and Oceanography Analysis Regarding The NPP Site Screening Process at Banten Province

    International Nuclear Information System (INIS)

    Yarianto-S-Budi-Susilo

    2007-01-01

    Regarding the NPP development in the future, it is needed to make inventory of potential site in the Java Island as well as in the outside Java Island. The NPP site inventory availability is to answer the energy demand challenge. Site screening process should be performed in accordance with the IAEA safety standard regarding the site selection, investigating several aspects related to the NPP safety (exclusion, safety and suitability factor) in the large area to obtain potential site candidates. For the site survey stage of hydrology and oceanography aspects, the analysis are more focused on the tidal phenomena along the north coastline, bathymetry, water resource, and hydrology system in the Banten Province. The method used are secondary data collection, field confirmation and internet searching. The result of the study showed that Tanjung Pujut and Tanjung Pasir are suitable based on the bathymetry and water intake facility consideration. Meanwhile Tanjung Kait and Tanjung Pasir more suitable considering tsunami aspects that may be generated by Krakatau Volcano. (author)

  17. Identifying and Remediating Student Misconceptions in Introductory Biology via Writing-to-Learn Assignments and Peer Review.

    Science.gov (United States)

    Halim, Audrey S; Finkenstaedt-Quinn, Solaire A; Olsen, Laura J; Gere, Anne Ruggles; Shultz, Ginger V

    2018-06-01

    Student misconceptions are an obstacle in science, technology, engineering, and mathematics courses and unless remediated may continue causing difficulties in learning as students advance in their studies. Writing-to-learn assignments (WTL) are characterized by their ability to promote in-depth conceptual learning by allowing students to explore their understanding of a topic. This study sought to determine whether and what types of misconceptions are elicited by WTL assignments and how the process of peer review and revision leads to remediation or propagation of misconceptions. We examined four WTL assignments in an introductory biology course in which students first wrote about content by applying it to a realistic scenario, then participated in a peer-review process before revising their work. Misconceptions were identified in all four assignments, with the greatest number pertaining to protein structure and function. Additionally, in certain contexts, students used scientific terminology incorrectly. Analysis of the drafts and peer-review comments generated six profiles by which misconceptions were addressed through the peer-review process. The prevalent mode of remediation arose through directed peer-review comments followed by correction during revision. It was also observed that additional misconceptions were elicited as students revised their writing in response to general peer-review suggestions.

  18. Using student motivation to design groups in a non-majors biology course for team-based collaborative learning: Impacts on knowledge, views, attitudes, and perceptions

    Science.gov (United States)

    Walters, Kristi L.

    The importance of student motivation and its connection to other learning variables (i.e., attitudes, knowledge, persistence, attendance) is well established. Collaborative work at the undergraduate level has been recognized as a valuable tool in large courses. However, motivation and collaborative group work have rarely been combined. This project utilized student motivation to learn biology to place non-major biology undergraduates in collaborative learning groups at East Carolina University, a mid-sized southeastern American university, to determine the effects of this construct on student learning. A pre-test measuring motivation to learn biology, attitudes toward biology, perceptions of biology and biologists, views of science, and content knowledge was administered. A similar post-test followed as part of the final exam. Two sections of the same introductory biology course (n = 312) were used and students were divided into homogeneous and heterogeneous groups (based on their motivation score). The heterogeneous groups (n = 32) consisted of a mixture of different motivation levels, while the homogeneous groups (n = 32) were organized into teams with similar motivation scores using tiers of high-, middle-, and low-level participants. Data analysis determined mixed perceptions of biology and biologists. These include the perceptions biology was less intriguing, less relevant, less practical, less ethical, and less understandable. Biologists were perceived as being neat and slightly intelligent, but not very altruistic, humane, ethical, logical, honest, or moral. Content knowledge scores more than doubled from pre- to post-test. Half of the items measuring views of science were not statistically significantly different from pre- to post-test. Many of the factors for attitudes toward biology became more agreeable from pre- to post-test. Correlations between motivation scores, participation levels, attendance rates, and final course grades were examined at both the

  19. The impact of an introductory college-level biology class on biology self-efficacy and attitude towards science

    Science.gov (United States)

    Thomas, Megan Elizabeth

    Self-efficacy theory was first introduced in a seminal article by Albert Bandura in 1977 entitled "Self-efficacy: Toward a unifying theory of behavioral change". Since its original introduction, self-efficacy has been a major focus of academic performance, anxiety, career development, and teacher retention research. Self-efficacy can be defined as the belief an individual possesses about their ability to perform a given task. Bandura proposed that self-efficacy should be measured at the highest level of specificity due to the fact that different people are efficacious in different areas. Interested in students' efficacy toward biology, Ebert-May, Baldwin, & Allred (1997) created and validated a survey to measure students' biology self-efficacy. Their survey was modeled after the guidelines for science literacy, and loaded to three sub-factors; methods of biology, generalization to other science courses, and application of the concepts. As self-efficacy theory has been related to effort expenditure and persistence (Bandura, 1977; 1997), one might think it would have some effect on students' attitudes toward the topic at hand. The current research investigated what changes in biology self-efficacy occurred after an introductory biology course with an inquiry based laboratory learning environment. In addition, changes in students' attitudes towards science were explored and how self-efficacy might affect them.

  20. Real Students and Virtual Field Trips

    Science.gov (United States)

    de Paor, D. G.; Whitmeyer, S. J.; Bailey, J. E.; Schott, R. C.; Treves, R.; Scientific Team Of Www. Digitalplanet. Org

    2010-12-01

    Field trips have always been one of the major attractions of geoscience education, distinguishing courses in geology, geography, oceanography, etc., from laboratory-bound sciences such as nuclear physics or biochemistry. However, traditional field trips have been limited to regions with educationally useful exposures and to student populations with the necessary free time and financial resources. Two-year or commuter colleges serving worker-students cannot realistically insist on completion of field assignments and even well-endowed universities cannot take students to more than a handful of the best available field localities. Many instructors have attempted to bring the field into the classroom with the aid of technology. So-called Virtual Field Trips (VFTs) cannot replace the real experience for those that experience it but they are much better than nothing at all. We have been working to create transformative improvements in VFTs using four concepts: (i) self-drive virtual vehicles that students use to navigate the virtual globe under their own control; (ii) GigaPan outcrops that reveal successively more details views of key locations; (iii) virtual specimens scanned from real rocks, minerals, and fossils; and (iv) embedded assessment via logging of student actions. Students are represented by avatars of their own choosing and travel either together in a virtual field vehicle, or separately. When they approach virtual outcrops, virtual specimens become collectable and can be examined using Javascript controls that change magnification and orientation. These instructional resources are being made available via a new server under the domain name www.DigitalPlanet.org. The server will log student progress and provide immediate feedback. We aim to disseminate these resources widely and welcome feedback from instructors and students.

  1. An Investigation into Students' Difficulties in Numerical Problem Solving Questions in High School Biology Using a Numeracy Framework

    Science.gov (United States)

    Scott, Fraser J.

    2016-01-01

    The "mathematics problem" is a well-known source of difficulty for students attempting numerical problem solving questions in the context of science education. This paper illuminates this problem from a biology education perspective by invoking Hogan's numeracy framework. In doing so, this study has revealed that the contextualisation of…

  2. Investigating Flipped Learning: Student Self-Regulated Learning, Perceptions, and Achievement in an Introductory Biology Course

    Science.gov (United States)

    Sletten, Sarah Rae

    2017-06-01

    In flipped classrooms, lectures, which are normally delivered in-class, are assigned as homework in the form of videos, and assignments that were traditionally assigned as homework, are done as learning activities in class. It was hypothesized that the effectiveness of the flipped model hinges on a student's desire and ability to adopt a self-directed learning style. The purpose of this study was twofold; it aimed at examining the relationship between two variables—students' perceptions of the flipped model and their self-regulated learning (SRL) behaviors—and the impact that these variables have on achievement in a flipped class. For the study, 76 participants from a flipped introductory biology course were asked about their SRL strategy use and perceptions of the flipped model. SRL strategy use was measured using a modified version of the Motivated Strategies for Learning Questionnaire (MSLQ; Wolters et al. 2005), while the flipped perceptions survey was newly derived. Student letter grades were collected as a measure of achievement. Through regression analysis, it was found that students' perceptions of the flipped model positively predict students' use of several types of SRL strategies. However, the data did not indicate a relationship between student perceptions and achievement, neither directly nor indirectly, through SRL strategy use. Results suggest that flipped classrooms demonstrate their successes in the active learning sessions through constructivist teaching methods. Video lectures hold an important role in flipped classes, however, students may need to practice SRL skills to become more self-directed and effectively learn from them.

  3. Curricular Activities that Promote Metacognitive Skills Impact Lower-Performing Students in an Introductory Biology Course†

    Science.gov (United States)

    Dang, Nathan V.; Chiang, Jacob C.; Brown, Heather M.

    2018-01-01

    This study explores the impacts of repeated curricular activities designed to promote metacognitive skills development and academic achievement on students in an introductory biology course. Prior to this study, the course curriculum was enhanced with pre-assignments containing comprehension monitoring and self-evaluation questions, exam review assignments with reflective questions related to study habits, and an optional opportunity for students to explore metacognition and deep versus surface learning. We used a mixed-methods study design and collected data over two semesters. Self-evaluation, a component of metacognition, was measured via exam score postdictions, in which students estimated their exam scores after completing their exam. Metacognitive awareness was assessed using the Metacognitive Awareness Inventory (MAI) and a reflective essay designed to gauge students’ perceptions of their metacognitive skills and study habits. In both semesters, more students over-predicted their Exam 1 scores than under-predicted, and statistical tests revealed significantly lower mean exam scores for the over-predictors. By Exam 3, under-predictors still scored significantly higher on the exam, but they outnumbered the over-predictors. Lower-performing students also displayed a significant increase in exam postdiction accuracy by Exam 3. While there was no significant difference in students’ MAI scores from the beginning to the end of the semester, qualitative analysis of reflective essays indicated that students benefitted from the assignments and could articulate clear action plans to improve their learning and performance. Our findings suggest that assignments designed to promote metacognition can have an impact on students over the course of one semester and may provide the greatest benefits to lower-performing students. PMID:29904551

  4. The Effect of Cooperative Learning Model Script and Think-Pair-Share to Critical Thinking Skills, Social Attitude and Learning Outcomes Cognitive Biology of multiethnic High School Students

    Directory of Open Access Journals (Sweden)

    Didimus Tanah Boleng

    2015-03-01

    Full Text Available Pengaruh Model Pembelajaran Cooperative Script dan Think-Pair-Share terhadap Keterampilan Berpikir Kritis, Sikap Sosial, dan Hasil Belajar Kognitif Biologi Siswa SMA Multietnis   Abstract: Biological learning process with multiethnic students requires a learning models which allow students to work independently, to work together in small groups, and to share with other groups. The purpose of this study was to determine the effect of learning models, ethnicity, and the interaction of learning model and ethnic on critical thinking skills, social attitudes, and cognitive achievement. This quasi experimental study was conducted in 11th grade of Natural Science Class Highschool students with six ethnicaly and Junior Highschool National score groups consisted of 132 samples. The results of Covarian Analysis showed that the learning models significantly affected the social attitudes and increased the critical thinking skills and cognitive achievement. Ethnicity significantly affected the social attitudes and cognitive achievement. Interaction of learning models and ethnicity significantly affected students social attitudes. Key Words: cooperative script, think-pair-share, critical thinking skills, social attitudes, biology cognitive achievement, multiethnic students Abstrak: Pengelolaan proses pembelajaran biologi pada siswa multietnis memerlukan model pembelajaran yang memungkinkan siswa bekerja mandiri, bekerja sama dalam kelompok kecil, dan berbagi dengan kelompok lain. Tujuan penelitian ini untuk mengetahui pengaruh model pembelajaran, etnis, serta interaksi model pembelajaran dan etnis terhadap keterampilan berpikir kritis, sikap sosial, dan hasil belajar kognitif biologi siswa. Penelitian eksperimen semu ini dilakukan di kelas XI IPA SMA dengan sampel sebanyak 132 orang siswa terbagi dalam enam kelas yang homogen berdasarkan etnis dan nilai ujian nasional SMP siswa. Hasil analisis data dengan menggunakan Analisis Kovarian menunjukkan bahwa model

  5. UPAYA MENINGKATKAN AKTIVITAS DAN HASIL BELAJAR BIOLOGI MELALUI METODE INKUIRI YANG MENGGUNAKAN KOMIK BIOLOGI SISWA KELAS VII A MTs NEGERI METRO TAHUN PELAJARAN 2011/2012

    Directory of Open Access Journals (Sweden)

    Hesty Wahyuningsih

    2013-05-01

    Full Text Available The purposes of this research were (1 to improve students’ learning activity by using inquiry method with biology comics for the students of VII A MTs Negeri Metro (2 to improve students’ achievement in learning biology by using inquiry method with biology comics for the students of VII A MTs Negeri Metro. The results of this research were (1 learning through inquiry method which uses biology comics can improve students’ activity during the learning process. From the data of observation, the students achievements increase from cycle I to cycle II (from 46.6% to 55.28%, it means that the increasing is about 8.68% (2 learning through inquiry method which uses biology comics can improve students’ activity during the learning process, the students achievements increase from cycle II to cycle III (from 60% to 76.7%, it means that the increasing is about 16, 7%.   Kata kunci: metode inkuiri, media komik biologi, aktivitas belajar, hasil belajar biologi

  6. A Survey of First-Year Biology Student Opinions Regarding Live Lectures and Recorded Lectures as Learning Tools

    Science.gov (United States)

    Simcock, D. C.; Chua, W. H.; Hekman, M.; Levin, M. T.; Brown, S.

    2017-01-01

    A cohort of first-year biology students was surveyed regarding their opinions and viewing habits for live and recorded lectures. Most respondents (87%) attended live lectures as a rule (attenders), with 66% attending more than two-thirds of the lectures. In contrast, only 52% accessed recordings and only 13% viewed more than two-thirds of the…

  7. What Do Cells Really Look Like? An Inquiry into Students' Difficulties in Visualising a 3-D Biological Cell and Lessons for Pedagogy

    Science.gov (United States)

    Vijapurkar, Jyotsna; Kawalkar, Aisha; Nambiar, Priya

    2014-01-01

    In our explorations of students' concepts in an inquiry science classroom with grade 6 students from urban schools in India, we uncovered a variety of problems in their understanding of biological cells as structural and functional units of living organisms. In particular, we found not only that they visualised the cell as a two-dimensional (2-D)…

  8. American Institute of Biological Sciences

    Science.gov (United States)

    ... Staff Issues AIBS Position Statements Funding for the Biological Sciences Supporting Scientific Collections Advocating for Research Policy ... Public Policy Leadership Award Graduate students in the biological sciences who have demonstrated initiative and leadership in ...

  9. Three forms of assessment of prior knowledge, and improved performance following an enrichment programme, of English second language biology students within the context of a marine theme

    Science.gov (United States)

    Feltham, Nicola F.; Downs, Colleen T.

    2002-02-01

    The Science Foundation Programme (SFP) was launched in 1991 at the University of Natal, Pietermaritzburg, South Africa in an attempt to equip a selected number of matriculants from historically disadvantaged schools with the skills, resources and self-confidence needed to embark on their tertiary studies. Previous research within the SFP biology component suggests that a major contributor to poor achievement and low retention rates among English second language (ESL) students in the Life Sciences is the inadequate background knowledge in natural history. In this study, SFP student background knowledge was assessed along a continuum of language dependency using a set of three probes. Improved student performance in each of the respective assessments examined the extent to which a sound natural history background facilitated meaningful learning relative to ESL proficiency. Student profiles and attitudes to biology were also examined. Results indicated that students did not perceive language to be a problem in biology. However, analysis of the student performance in the assessment probes indicated that, although the marine course provided the students with the background knowledge that they were initially lacking, they continued to perform better in the drawing and MCQ tools in the post-tests, suggesting that it is their inability to express themselves in the written form that hampers their development. These results have implications for curriculum development within the constructivist framework of the SFP.

  10. A Dual Case Study: Students' Perceptions, Self-Efficacy and Understanding of the Nature of Science in Varied Introductory Biology Laboratories

    Science.gov (United States)

    Quigley, Dena Beth Boans

    Since World War II, science education has been at the forefront of curricular reforms. Although the philosophical approach to science education has changed numerous times, the importance of the laboratory has not waned. A laboratory is meant to allow students to encounter scientific concepts in a very real, hands-on way so that they are able to either recreate experiments that have given rise to scientific theories or to use science to understand a new idea. As the interactive portion of science courses, the laboratory should not only reinforce conceptual ideas, but help students to understand the process of science and interest them in learning more about science. However, most laboratories have fallen into a safe pattern having teachers and students follow a scientific recipe, removing the understanding of and interest in science for many participants. In this study, two non-traditional laboratories are evaluated and compared with a traditional laboratory in an effort to measure student satisfaction, self-efficacy, attitudes towards science, and finally their epistemology of the nature of science (NOS). Students in all populations were administered a survey at the beginning and the end of their spring 2016 laboratory, and the survey was a mixture of qualitative questions and quantitative instruments. Overall, students who participated in one of the non-traditional labs rated their satisfaction higher and used affirming supportive statements. They also had significant increases in self-efficacy from pre to post, while the students in the traditional laboratory had a significant decrease. The students in the traditional laboratory had significant changed in attitudes towards science, as did the students in one of the non-traditional laboratories. All students lacked a firm grasp of the tenets of NOS, although one laboratory that includes explicit discussions of NOS saw improvement in at least on tenet. Data for two non-major biology laboratory populations was

  11. New Approaches in Cancer Biology Can Inform the Biology Curriculum.

    Science.gov (United States)

    Jones, Lynda; Gordon, Diana; Zelinski, Mary

    2018-03-01

    Students tend to be very interested in medical issues that affect them and their friends and family. Using cancer as a hook, the ART of Reproductive Medicine: Oncofertility curriculum (free, online, and NIH sponsored) has been developed to supplement the teaching of basic biological concepts and to connect biology and biomedical research. This approach allows integration of up-to-date information on cancer and cancer treatment, cell division, male and female reproductive anatomy and physiology, cryopreservation, fertility preservation, stem cells, ethics, and epigenetics into an existing biology curriculum. Many of the topics covered in the curriculum relate to other scientific disciplines, such as the latest developments in stem cell research including tissue bioengineering and gene therapy for inherited mitochondrial disease, how epigenetics occurs chemically to affect gene expression or suppression and how it can be passed down through the generations, and the variety of biomedical careers students could pursue. The labs are designed to be open-ended and inquiry-based, and extensions to the experiments are provided so that students can explore questions further. Case studies and ethical dilemmas are provided to encourage thoughtful discussion. In addition, each chapter of the curriculum includes links to scientific papers, additional resources on each topic, and NGSS alignment.

  12. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    OpenAIRE

    C. R. C. Cruz et al.

    2017-01-01

    "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource manag...

  13. Temperature, salinity, chlorophyll pigments, nutrients and other parameters as part of the ECOHAB-GOM: The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine project (NODC Accession 0064309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The subproject described here is one of several components of ECOHAB-GOM: The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine, a multi-PI,...

  14. Using Biology Education Research and Qualitative Inquiry to Inform Genomic Nursing Education.

    Science.gov (United States)

    Ward, Linda D

    Decades of research in biology education show that learning genetics is difficult and reveals specific sources of learning difficulty. Little is known about how nursing students learn in this domain, although they likely encounter similar difficulties as nonnursing students. Using qualitative approaches, this study investigated challenges to learning genetics among nursing students. Findings indicate that nursing students face learning difficulties already identified among biology students, suggesting that nurse educators might benefit from biology education research.

  15. The Effect of Using Cooperative Learning Method on Tenth Grade Students' Learning Achievement and Attitude towards Biology

    Science.gov (United States)

    Rabgay, Tshewang

    2018-01-01

    The study investigated the effect of using cooperative learning method on tenth grade students' learning achievement in biology and their attitude towards the subject in a Higher Secondary School in Bhutan. The study used a mixed method approach. The quantitative component included an experimental design where cooperative learning was the…

  16. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  17. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  18. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  19. Marine parasites as biological tags in South American Atlantic waters, current status and perspectives.

    Science.gov (United States)

    Cantatore, D M P; Timi, J T

    2015-01-01

    Many marine fisheries in South American Atlantic coasts (SAAC) are threatened by overfishing and under serious risk of collapsing. The SAAC comprises a diversity of environments, possesses a complex oceanography and harbours a vast biodiversity that provide an enormous potential for using parasites as biological tags for fish stock delineation, a prerequisite for the implementation of control and management plans. Here, their use in the SAAC is reviewed. Main evidence is derived from northern Argentine waters, where fish parasite assemblages are dominated by larval helminth species that share a low specificity, long persistence and trophic transmission, parasitizing almost indiscriminately all available fish species. The advantages and constraints of such a combination of characteristics are analysed and recommendations are given for future research. Shifting the focus from fish/parasite populations to communities allows expanding the concept of biological tags from local to regional scales, providing essential information to delineate ecosystem boundaries for host communities. This new concept arose as a powerful tool to help the implementation of ecosystem-based approaches to fisheries management, the new paradigm for fisheries science. Holistic approaches, including parasites as biological tags for stock delineation will render valuable information to help insure fisheries and marine ecosystems against further depletion and collapse.

  20. Evaluation rate of aging person based on determination of biological age

    Directory of Open Access Journals (Sweden)

    V. Fil

    2015-01-01

    2Kazimierz Wielki University, Bydgoszcz, Poland   Abstract The article considers the value of biological and passport age of student youth. In experiment participated 140 students aged 17-19 years. Calculated their biological age. Reviewed pace of aging of the body of students. Detected indexes that have the strongest relationship with indicators of biological age. The results compared with researchers of other regions of Ukraine.   Keywords: chronological (passport age, biological age, appropriate biological age, pulse blood pressure, rate of aging, static balancing, self-reported level of health.

  1. Physical trajectory profile data from glider sp006 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-12-14 to 2016-03-30 (NCEI Accession 0153787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  2. Physical trajectory profile data from glider sp042 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-11-04 to 2017-02-23 (NCEI Accession 0161310)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. Physical trajectory profile data from glider sp001 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-08-15 to 2016-11-16 (NCEI Accession 0157002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp001 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-01-12 to 2015-04-08 (NCEI Accession 0137973)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  5. Physical trajectory profile data from glider sp018 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2014-06-10 to 2014-09-21 (NCEI Accession 0138030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp053 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-08-29 to 2015-12-13 (NCEI Accession 0145713)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp027 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-06-16 to 2015-09-23 (NCEI Accession 0145712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp018 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-02-18 to 2016-05-28 (NCEI Accession 0153549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Predicting success for college students enrolled in an online, lab-based, biology course for non-majors

    Science.gov (United States)

    Foster, Regina

    Online education has exploded in popularity. While there is ample research on predictors of traditional college student success, little research has been done on effective methods of predicting student success in online education. In this study, a number of demographic variables including GPA, ACT, gender, age and others were examined to determine what, if any, role they play in successfully predicting student success in an online, lab-based biology for non-majors course. Within course variables such as participation in specific categories of assignment and frequency of online visits were also examined. Groups of students including Native American/Non-Native American and Digital Immigrants and Digital Natives and others were also examined to determine if overall course success differed significantly. Good predictors of online success were found to be GPA, ACT, previous course experience and frequency of online visits with the course materials. Additionally, students who completed more of the online assignments within the course were more successful. Native American and Non-Native American students were found to differ in overall course success significantly as well. Findings indicate student academic background, previous college experience and time spent with course materials are the most important factors in course success. Recommendations include encouraging enrollment advisors to advise students about the importance of maintaining high academic levels, previous course experience and spending time with course materials may impact students' choices for online courses. A need for additional research in several areas is indicated, including Native American and Non-Native American differences. A more detailed examination of students' previous coursework would also be valuable. A study involving more courses, a larger number of students and surveys from faculty who teach online courses would help improve the generalizability of the conclusions.

  10. Implementing Recommendations for Introductory Biology by Writing a New Textbook

    Science.gov (United States)

    Barsoum, Mark J.; Sellers, Patrick J.; Campbell, A. Malcolm; Heyer, Laurie J.; Paradise, Christopher J.

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p < 0.05). We conclude that ICB improves critical thinking, metacognition, and disciplinary perceptions without compromising content knowledge in introductory biology. PMID:23463233

  11. Physical trajectory profile data from glider sp024 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2017-01-30 to 2017-05-08 (NCEI Accession 0162888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  12. Physical trajectory profile data from glider sp026 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2017-04-20 to 2017-07-31 (NCEI Accession 0164709)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  13. Using the Biology Card Sorting Task to Measure Changes in Conceptual Expertise during Postsecondary Biology Education

    Science.gov (United States)

    Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.

    2017-01-01

    While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge.…

  14. Publishing activities improves undergraduate biology education.

    Science.gov (United States)

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  15. Taking the conservation biology perspective to secondary school classrooms.

    Science.gov (United States)

    Wyner, Yael; Desalle, Rob

    2010-06-01

    The influence of conservation biology can be enhanced greatly if it reaches beyond undergraduate biology to students at the middle and high school levels. If a conservation perspective were taught in secondary schools, students who are not interested in biology could be influenced to pursue careers or live lifestyles that would reduce the negative impact of humans on the world. We use what we call the ecology-disrupted approach to transform the topics of conservation biology research into environmental-issue and ecology topics, the major themes of secondary school courses in environmental science. In this model, students learn about the importance and complexity of normal ecological processes by studying what goes wrong when people disrupt them (environmental issues). Many studies published in Conservation Biology are related in some way to the ecological principles being taught in secondary schools. Describing research in conservation biology in the language of ecology curricula in secondary schools can help bring these science stories to the classroom and give them a context in which they can be understood by students. Without this context in the curriculum, a science story can devolve into just another environmental issue that has no immediate effect on the daily lives of students. Nevertheless, if the research is placed in the context of larger ecological processes that are being taught, students can gain a better understanding of ecology and a better understanding of their effect on the world.

  16. Physical trajectory profile data from glider sp031 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-09-10 to 2015-12-16 (NCEI Accession 0145667)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  17. Physical trajectory profile data from glider sp053 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2016-07-20 to 2016-10-20 (NCEI Accession 0156796)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  18. Physical trajectory profile data from glider sp050 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2016-03-30 to 2016-07-20 (NCEI Accession 0155979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  19. Physical trajectory profile data from glider sp050 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-02-06 to 2015-05-14 (NCEI Accession 0137988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp020 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-12-16 to 2016-03-30 (NCEI Accession 0153550)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  1. Physical trajectory profile data from glider sp020 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2014-08-03 to 2014-12-12 (NCEI Accession 0137977)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  2. Physical trajectory profile data from glider sp031 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2014-04-12 to 2014-08-02 (NCEI Accession 0138031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  4. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  5. Female high school biology students' biofilm-focused learning: The contributions of three instructional strategies to patterns in understanding and motivation

    Science.gov (United States)

    Ales, Jo Dale Hill

    2000-12-01

    This exploratory study examined three instructional strategies used with female high school biology students. The relative contributions of the strategies to student understanding of microbiology and motivation in science were analyzed. The science education community targeted underachievement in science by implementing changes in content and practices (NRC, 1996). Research suggested that teachers facilitate learnirig environments based on human constructivism (Mintzes, Wandersee, & Novak, 1997) that is rooted in meaningful learning theory (Ausubel, Novak & Hanesian, 1978). Teachers were advised to use both visual and verbal instructional strategies (Paivio, 1983) and encourage students to construct understandings by connecting new experiences to prior knowledge. The American Society for Microbiology supports the study of microorganisms because of their prominence in the biosphere (ASK 1997). In this study, two participating teachers taught selected microbiology concepts while focused on the cutting edge science of biofilms. Biology students accessed digitized biofilm images on an ASM web page and adapted them into products, communicated with biofilm researchers, and adapted a professional-quality instructional video for cross-age teaching. The study revealed improvements in understanding as evidenced on a written test; however, differences in learnirig outcomes were not significant. Other data, including student journal reflections, observations of student interactions, and student clinical interviews indicate that students were engaged in cutting edge science and adapted biofilm images in ways that increased understanding of microbiology (with respect to both science content and as a way of knowing) and motivation. An ASM CD-ROM of the images did not effectively enhance learning and this study provides insights into what could make it more successful. It also identifies why, in most cases, students' E-mail communication with biofilm researchers was unsuccessful

  6. Evaluation of the Teaching Methods Used in Secondary School Biology Lessons

    Directory of Open Access Journals (Sweden)

    Porozovs Juris

    2015-06-01

    Full Text Available The teacher’s skills in conducting the lesson and choice of teaching methods play an essential role in creating students’ interest in biology. The aim of the research was to study the opinion of secondary school students and biology teachers regarding the most successful teaching methods used in biology lessons and viable options to make biology lessons more interesting. The research comprised polling students and biology teachers from several schools, namely: 2 secondary schools in Jelgava, 2 in Riga and 1 in Vecumnieki. The responses revealed that 58% of students find biology lessons interesting. 56% of students indicated that their ability to focus attention during biology lessons depends on the task presented to them. Most of all they prefer watching the teacher’s presentations, listening to their teacher telling about the actual topic as well as performing laboratory work and group-work. Many students like participating in discussions, whereas a far smaller number would do various exercises, individual tasks, fill out worksheets or complete projects. Least of all students wish to work with the textbook. The methods most frequently applied by teachers are as follows: lecture, explanation, demonstration, and discussion. Teachers believe that their students prefer laboratory work and discussions as well as listening to their teacher and watching presentations or films. They also indicate at the necessity to link theory with practice and to involve information technologies. While teaching their subject biology teachers try to establish relationship between theory and real life in order to develop their students’ interest in natural processes.

  7. Doctoral Conceptual Thresholds in Cellular and Molecular Biology

    Science.gov (United States)

    Feldon, David F.; Rates, Christopher; Sun, Chongning

    2017-01-01

    In the biological sciences, very little is known about the mechanisms by which doctoral students acquire the skills they need to become independent scientists. In the postsecondary biology education literature, identification of specific skills and effective methods for helping students to acquire them are limited to undergraduate education. To…

  8. Innovations in Undergraduate Chemical Biology Education.

    Science.gov (United States)

    Van Dyke, Aaron R; Gatazka, Daniel H; Hanania, Mariah M

    2018-01-19

    Chemical biology derives intellectual vitality from its scientific interface: applying chemical strategies and perspectives to biological questions. There is a growing need for chemical biologists to synergistically integrate their research programs with their educational activities to become holistic teacher-scholars. This review examines how course-based undergraduate research experiences (CUREs) are an innovative method to achieve this integration. Because CUREs are course-based, the review first offers strategies for creating a student-centered learning environment, which can improve students' outcomes. Exemplars of CUREs in chemical biology are then presented and organized to illustrate the five defining characteristics of CUREs: significance, scientific practices, discovery, collaboration, and iteration. Finally, strategies to overcome common barriers in CUREs are considered as well as future innovations in chemical biology education.

  9. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  10. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    Science.gov (United States)

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  11. Guiding Development Based Approach Practicum Vertebrates Taxonomy Scientific Study Program for Students of Biology Education

    Science.gov (United States)

    Arieska, M.; Syamsurizal, S.; Sumarmin, R.

    2018-04-01

    Students having difficulty in identifying and describing the vertebrate animals as well as less skilled in science process as practical. Increased expertise in scientific skills, one of which is through practical activities using practical guidance based on scientific approach. This study aims to produce practical guidance vertebrate taxonomy for biology education students PGRI STKIP West Sumatra valid. This study uses a model of Plomp development consisting of three phases: the initial investigation, floating or prototype stage, and the stage of assessment. Data collection instruments used in this study is a validation sheet guiding practicum. Data were analyzed descriptively based on data obtained from the field. The result of the development of practical guidance vertebrate taxonomic validity value of 3.22 is obtained with very valid category. Research and development has produced a practical guide based vertebrate taxonomic scientific approach very valid.

  12. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  13. Darwin, dogs and DNA: Freshman writing about biology

    Science.gov (United States)

    Grant, Michael C.; Piirto, John

    1994-12-01

    We describe a successful interdepartmental program at a major research-oriented university that melds freshman writing with freshman biology to the significant benefit of both disciplines. Extensive, repeated feedback on individual student writing projects from two instructors, one a humanities professor, one a biology professor, appears to work synergistically so that learning by the students is significantly enhanced. Particulars derived from five years of experience with intensive, student-centered strategy are included.

  14. Knowledge base and functionality of concepts of some Filipino biology teachers in five biology topics

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This mixed research, is a snapshot of some Filipino Biology teachers' knowledge structure and how their concepts of the five topics in Biology (Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics) functions and develops inside a biology classroom. The study focuses on the six biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and the other three (3) are under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilized classroom discourses, concept maps, interpretative case-study method, bracketing method, and concept analysis for qualitative part; the quantitative part uses a nonparametric statistical tool, Kendall's tau Coefficient for determining relationship and congruency while measures of central tendencies and dispersion (mean, and standard deviation) for concept maps scores interpretation. Knowledge Base of Biology teachers were evaluated by experts in field of specialization having a doctorate program (e.g. PhD in Genetics) and PhD Biology candidates. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. The evaluation of teachers' knowledge base by experts indicated that teachers' knowledge of (65%) is lower than the minimum (75%) recommended by ABD-el-Khalick and Boujaoude (1997). Thus, the experts believe that content knowledge of the teachers is hardly adequate for their teaching assignment. Moreover, the teachers in this study do not systematically use reallife situation to apply the concepts they teach. They can identify concepts too abstract for their student; however, they seldom use innovative ways to bring the discussion to their students' level of readiness and

  15. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  17. Fostering 21st-Century Evolutionary Reasoning: Teaching Tree Thinking to Introductory Biology Students.

    Science.gov (United States)

    Novick, Laura R; Catley, Kefyn M

    2016-01-01

    The ability to interpret and reason from Tree of Life (ToL) diagrams has become a vital component of science literacy in the 21st century. This article reports on the effectiveness of a research-based curriculum, including an instructional booklet, laboratory, and lectures, to teach the fundamentals of such tree thinking in an introductory biology class for science majors. We present the results of a study involving 117 undergraduates who received either our new research-based tree-thinking curriculum or business-as-usual instruction. We found greater gains in tree-thinking abilities for the experimental instruction group than for the business-as-usual group, as measured by performance on our novel assessment instrument. This was a medium size effect. These gains were observed on an unannounced test that was administered ∼5-6 weeks after the primary instruction in tree thinking. The nature of students' postinstruction difficulties with tree thinking suggests that the critical underlying concept for acquiring expert-level competence in this area is understanding that any specific phylogenetic tree is a subset of the complete, unimaginably large ToL. © 2016 L. R. Novick and K. M. Catley. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Radiation Biology: A Handbook for Teachers and Students

    International Nuclear Information System (INIS)

    2010-01-01

    Knowledge of the radiobiology of normal tissues and tumours is a core prerequisite for the practice of radiation oncology. As such the study of radiobiology is mandatory for gaining qualification as a radiation oncologist in most countries. Teaching is done partly by qualified radiobiologists in some countries, and this is supplemented by teaching from knowledgeable radiation oncologists. In low and middle income (LMI) countries the teachers are often radiation oncologists and/or medical physicists. In Europe, a master's course on radiobiology is taught jointly by a consortium of five European Universities. This is aimed at young scientists from both Western and Eastern Europe, training in this discipline. Recently the European Society for Therapeutic Radiology and Oncology (ESTRO) initiated the launch of a radiobiology teaching course outside Europe (Beijing, 2007; Shanghai, 2009). Radiation protection activities are governed by many regulations and recommendations. These are based on knowledge gained from epidemiological studies of health effects from low as well as from high dose radiation exposures. Organizations like the International Commission on Radiological Protection (ICRP) have put a lot of effort into reviewing and evaluating the biological basis to radiological protection practices. Personnel being trained as future radiation protection personnel should have a basic understanding of the biological and clinical basis to the exposure limitations that they are subject to and that they implement for industrial workers and the public at large. It is for these reasons that aspects of Radiobiology related to protection issues are included in this teaching syllabus. In LMI countries, many more teachers are needed in radiobiology, and the establishment of regional training centres or special regional training courses in radiobiology, are really the only options to solve the obvious deficit in knowledge of radiobiology in such countries. Radiobiology teaching

  19. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-08-17 to 2016-09-16 (NCEI Accession 0156601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-11-25 to 2014-11-27 (NCEI Accession 0137979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...