WorldWideScience

Sample records for biological nitrogen removal

  1. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M.; Saroj, DP; Chikamba, C; Schwarz, J.; Daims, H.; Brdjanovic, D.

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  2. Biological removal of nitrogen from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, T.; Lompe, D.; Wiesmann, U.

    1989-02-01

    The biological treatment of waste water with both a high organic (2500 mg/l DOC) and high ammonia concentration (600 mg/l NH/sub 4//sup +/-N) was investigated. The first step consists of a two step anaerobic cascade of fixed bed loop reactors with polyurethan foam particles as support material for bacterica. The aerobic treatment occurs in two aerated stirred tanks with sedimentation tanks and two separate sludge recycle systems each for heterotrophic and autotrophic biomass resulting in a degradation of organic compounds (first tank) and nitrification (second tank). Finally the nitrate is reduced by biological denitrification. By optimization the total hydraulic retention time could be reduced to 7 hr. Nitrification is the most sensitive step and can be on-line controlled by measurement of oxygen consumption.

  3. Biological phosphorus and nitrogen removal in a single sludge system

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Hans

    1996-05-01

    The primary aim of this thesis was to investigate the process stability of a single sludge activated system designed for the combined operation of enhanced biological phosphorus removal (EBPR) and nitrogen removal. A pilot plant at the Sjoelunda wastewater treatment plant in Malmoe, Sweden, has formed the basis for the investigation. The pilot plant study showed that the concentration of total phosphorus on average was low in the effluent, below 0.5 mg P/l. Simultaneously with the highest concentrations of phosphorus in the effluent, the lowest COD/P ratios in the effluent were recorded. A recurrent pattern of high concentrations of phosphorus was observed every year in July, which is the industrial holiday month in Sweden. Other instances of increased phosphorus concentrations in the secondary effluent illustrate the effect of prolonged periods of rain. Increasing flow rates due to rain lead to a dilution and a change in the composition of the COD in the influent wastewater. The COD/P and VFA/P ratios decrease with decreasing concentrations of COD. It was also shown that high removal ratios of both nitrogen and phosphorus during long periods are possible. The nitrogen removal was stable during the whole investigated period, whereas the phosphorus removal was unstable during prolonged periods with low concentrations of COD in the influent water. The combined biological phosphorus and nitrogen removal process implies that during these periods the risk of recirculating nitrate to the anaerobic reactor increases. Such a recirculation both stabilizes the nitrogen removal and withdraws some of the readily degradable organic material from the bio-P bacteria. The main conclusion of this study is that a phosphorus limited EBPR process can cope with the day to day variations, but occasionally, measures have to be taken if the demands for phosphorus removal are stringent. 49 refs, 8 figs, 1 tab

  4. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants

    Science.gov (United States)

    Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

    2013-12-01

    Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

  5. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...... resulting from open loop simulations with a dynamic dry weather influent scenario. The influence of the dissolved oxygen set point selection on the nitrate control loop performance observed in the simulations further illustrates the need for a plant-wide optimization approach to reach optimal plant...

  6. Effect of nitrogen on phosphate reduction in biological phosphorus removal from wastewater

    OpenAIRE

    Vabolienė, Giedrė; Matuzevičius, Algimantas B.; Valentukevičienė, Marina

    2007-01-01

    Conventional schemes of biological nitrogen removal can be combined with phosphorus removal schemes. One of the common technology schemes for biological nitrogen removal is the aeration zone and the anoxic zone in one tank. The nitrification and denitrification are carried out during the aeration switching on and off. The anaerobic zone is equipped behind the nitrification/denitrification tank for biological phosphorus removal. Exchange of the anaerobic and aerobic conditions is necessary for...

  7. Biological nitrogen removal using a submerged membrane bioreactor system

    International Nuclear Information System (INIS)

    A pilot-scale study was conducted using ZenoGem hollow-fiber microfiltration membrane bioreactor system to investigate the performance of membrane bioreactor process to remove nitrogen from primary effluent at a municipal wastewater treatment plant. Different operating conditions were examined by varying hydraulic retention time (HRT) and sludge retention time (SRT) between 5-8 h and 20-50 days, respectively. In addition, a series of laboratory batch tests were performed to measure the biodegradation kinetic and stoichiometric parameters under the conditions consistent with the pilot testing. The results showed that the process achieved removal efficiencies of 80-98% for COD, 93%-99% for BOD5, and 70-93% for nitrogen. The efficiency and kinetics of COD and nitrogen removal would change greatly from one operating condition to another. However, the measured kinetic parameters still fell within the typical range of those reported in the literature using Activated Sludge Models (ASM)

  8. Effect of Cu(II) shock loads on shortcut biological nitrogen removal in a hybrid biofilm nitrogen removal reactor.

    Science.gov (United States)

    Yin, Jun; Xu, Hengjuan; Shen, Dongsheng; Wang, Kun; Lin, Ying

    2015-06-01

    The effect of Cu(II) shock loads on shortcut biological nitrogen removal during a continuous-flow anoxic/aerobic process was investigated using a hybrid biofilm nitrogen removal reactor. The results demonstrated that [Formula: see text]-N removal was not affected by any Cu(II) shock loads, but TN removal was inhibited by Cu(II) of shock loads of 2 and 5 mg/L, and the performance could not be recovered at 5 mg/L. Furthermore, the TN removal pathway also changed in response to Cu(II) concentrations of 2 and 5 mg/L. Denitrification is more sensitive to Cu(II) shock in SBNR processes. Examination of amoA communities using quantitative PCR showed that the abundance of AOB in the aerobic tank decreased after Cu(II) shock with 5 mg/L, which supported the observed changes in [Formula: see text]-N removal efficiency. The abundance of denitrification genes declined obviously at Cu(II) concentrations of 2 and 5 mg/L, which explained the decreased TN removal efficiency at those concentrations. PMID:25833010

  9. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates.Biological occurrence of simultaneous nitrification and denitrifieation was verified in the aspect of nitrogen mass balance and alkalinity.The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate.In each experimental run the floe sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.

  10. BIOLOGICAL AERATED FILTERS (BAFs FOR CARBON AND NITROGEN REMOVAL: A REVIEW

    Directory of Open Access Journals (Sweden)

    ELSHAFIE AHMED

    2012-08-01

    Full Text Available Biological aerated filters (BAFs are an emerging wastewater treatment technology designed for a wide range of municipal and industrial applications. This review paper presents and discusses of the influence C/N ratio, nitrification and denitrification principle, effect of pH, DO and alkalinity on the nitrification and denitrification systems, organic and hydraulic loading of BAF reactor, etc. Results from upflow and downflow biofilter pilot at different condition, with nitrification and denitrification are reviewed. Under the optimal conditions, significant amount of COD, ammonia-nitrogen and total nitrogen were removed. Removal rates based on reactor volume for different carbon-aceous COD and ammonia loading rate are reported. The BAF system for the nitrification and denitrification processes for carbon and nitrogen removal from the wastewater need to be evaluated and applied properly to protect of our environment and resources.

  11. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian;

    2010-01-01

    Discharge of nitrogenous components to water bodies can cause eutrophication, deterioration of water quality, toxicity to aquatic life, and pose a potential hazard to human and animal health. Biological nitrogen removal can remove nitrogenous components via conversion to harmless nitrogen gas...... with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative....... They can effectively be used for nitrogen removal from low C/N domestic wastewater without external carbon addition. In addition, conventional and alternative carbon sources for enhanced biological nitrogen removal were also reviewed. We conclude that alternative carbon sources such as wine distillery...

  12. Monitoring of Biological Nitrogen Removal in Tannery Wastewater Using a Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Carrasquero-Ferrer Sedolfo José

    2014-04-01

    Full Text Available The objective of this research was to relate the biological nitrogen removal in tannery wastewater with profiles of pH, alkalinity and redox potential (ORP using a sequencing batch reactor (SBR with a working volume of 2 L. The reactor worked under two operational sequences: anoxic-aerobic-anoxic (Ax/Ae/Ax and aerobic-anoxic (Ae/Ax, which were combined with two cell retention times (CRT (15 and 25 days, with an operation cycle time (OCT of 11 hours. The profiles were performed by measuring each 15 minutes the following parameters: pH, dissolved oxygen (DO, ORP, and each hour the parameters: total alkalinity, total chemical oxygen demand (DQOT, soluble chemical oxygen demand (DQOS, total Kjeldahl nitrogen (TKN, nitrite (NO2-, nitrate (NO3- and ammonia nitrogen (N-NH4+. Alkalinity and ORP profile were excellent indicators of the processes of biological nitrogen removal. However, pH could not be used as a control parameter, due to the buffering capacity of tannery wastewater. Finally, this research work showed that alkalinity and ORP values can be used as on-line control parameters to monitor the evolution of the nitrogen removal in tannery wastewater (nitrification and denitrification processes.

  13. Advances in investigation of new technologies on biological nitrogen removal of waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Zhang, J.; Xu, A.; Li, R. [CUMT, Xuzhou (China). School of Environment and Spatial Information

    2004-03-15

    The progresses of biological nitrogen removal from waste water, such as the investigation on shortcut nitrification denitrification, simultaneous nitrification denitrification (SND). Toxic ammonium oxidation (ANAMMOX) and ecology superior nitrification denitrification (ECOSUNIDES) were analyzed and discussed. The advantages of the new technology was compared with the traditional ones. It can be concluded that the new technology is promising for further investigations and applications. 9 refs., 2 figs.

  14. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    Science.gov (United States)

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. PMID:25776916

  15. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system.

    Science.gov (United States)

    Lee, D S; Jeon, C O; Park, J M

    2001-11-01

    Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR). Significant amounts of phosphorus-accumulation organisms (PAOs) capable of denitrification could be accumulated in a single sludge system coexisting with nitrifiers. The ratio of the anoxic phosphate uptake to the aerobic phosphate uptake capacity was increased from 11% to 64% by introducing an anoxic phase in an anaerobic aerobic SBR. The (AO)2 SBR system showed stable phosphorus and nitrogen removal performance. Average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%, respectively. It was found that nitrite (up to 10 mg NO2(-)-N/l) was not detrimental to the anoxic phosphate uptake and could serve as an electron acceptor like nitrate. In fact, the phosphate uptake rate was even faster in the presence of nitrite as an electron acceptor compared to the presence of nitrate. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviours of nutrient concentrations (NH4+, NO3-, and PO4(3-)) in the SBR. These on-line sensor values were used as real-time control parameters to adjust the duration of each operational phase in the (AO)2 SBR. The real-time controlled SBR exhibited better performance in the removal of phosphorus and nitrogen than the SBR with fixed-time operation. PMID:12230180

  16. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Jansen, J.l.C.; Aspegren, H.;

    2002-01-01

    to the pilot plant was periodically manipulated by external addition of phosphorus (P), acetate and glucose, respectively. The population dynamics and the in situ physiology were monitored by quantitative fluorescence in situ hybridization (FISH) and microautoradiography. Significant P removal was observed......The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water...... Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part...

  17. Comparison Between Biological Treatment and Chemical Precipitation for Nitrogen Removal from Old Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Long Tengrui

    2007-01-01

    Full Text Available The study reports the results of a laboratory scale investigation aimed at evaluating the effectiveness of mature municipal landfill leachate treatment by a biological stage (used SBBR as a biological treatment and Chemical precipitation (Used MAP precipitation (magnesium ammonium phosphate to study the nitrogen removal capabilities for treatment of sanitary landfill leachate containing high ammonia concentration, and the comparison between them. The monitored sample taken from the Chang Sheng bridge landfill site in Chongqing city-China, has its concentrations of COD, BOD5, and NH3-N about 1650, 75 and 1100 mg/l respectively. The results from SBBR showed that after two months long period of domestication and one month period of stability, the ammonia nitrogen removal efficiency reached to 99% in the SBBR reactor, at nitrogen loading rate 0.51 kg TN/m3 per day and HRT was 9 hours, met to Chinese standards for discharge. The results of the MAP precipitation was technically effective to remove the high NH3-N strength of over 1100 mg/l from the raw leachate at molar ratio of Mg2+: NH4+: PO4-3 of 1:1:1, they demonstrated a very satisfactory removal of ammonia; an initial NH3+-N concentration of 1100 mg/l contained in the raw leachate was quickly reduced to 28 mg/l within 15 min, while the pH producing a maximum removal of ammonia was 9.0. The percent removal of ammonia after treatment by MAP was 97.5%.

  18. Achieving and maintaining biological nitrogen removal via nitrite under normal conditions

    Institute of Scientific and Technical Information of China (English)

    CUI You-wei; PENG Yong-zhen; GAN Xiang-qing; YE Liu; WANG Ya-yi

    2005-01-01

    The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments applying the sequencing batch reactor(SBR)activated sludge process to domestic wastewater with low C/N ratio. The addition of sodium chloride(NaCl) to influent was established to achieve nitrite build-up. The high nitrite accumulation, depending on the salinity in influent and the application duration of salt, was obtained in SBRs treating saline wastewater. The maintenance results indicated that the real-time SBRs can maintain stable nitrite accumulation, but conversion from shorter nitrification-denitrification to full nitrification-denitrification was observed after some operation cycles in the other SBR with fixed-time control. The presented method is valuable to offer a solution to realize and to maintain nitrogen removal via nitrite under normal conditions.

  19. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  20. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  1. Biological nitrogen removal with enhanced phosphate uptake in (AO)2SBR using single sludge system

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi-feng; WANG Lin; WANG Bao-zhen; HE Sheng-bing; LUI Shuo

    2004-01-01

    Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake via nitrite was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor((AO)2 SBR). The system showed stable phosphorus and nitrogen removal performance, and average removals for COD, TN and TP were 90%, 91% and 96%, respectively. The conditions of pH 7.5-8.0 and temperature 32℃ were found detrimental to nitrite oxidation bacteria but favorable to ammonia oxidizers, and the corresponding specific oxygen uptake rates(SOUR) for phase 1 and 2 of nitrification process were 0.7 and 15 mgO2/(gVSS·h) in respect, which led to the nitrite accumulation in aerobic phase of(AO)2 SBR. Respiratory tests showed that 40 mgNO2-N/L did not deteriorate the sludge activity drastically, and it implied that exposure of sludge to nitrite periodically enabled the biomass to have more tolerance capacity to resist the restraining effects from nitrite. In addition, batch tests were carried out and verified that denitrifying phosphorus accumulation organisms(DPAOs) could be enriched in a single sludge system coexisting with nitrifiers by introducing an anoxic phase in an anaerobic-aerobic SBR, and the ratio of the anoxic phosphate uptake capacity to aerobic phosphate uptake capacity was 45%. It was also found that nitrite(up to 20 mgNO2-N/L) was not inhibitory to anoxic phosphate uptake and could serve as an electron acceptor like nitrate, but presented poorer efficiency compared with nitrate.

  2. BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER BY DENITRIFICATION OF MIX-CULTURING FUNGI AND BACTERIA

    Institute of Scientific and Technical Information of China (English)

    TAKAYA; Naoki; SHOUN; Hirofumi

    2006-01-01

    Denitrificationis a biological processin which nitrateand/or nitrite is reduced to gaseous nitrogen,dinitrogen(N2)or nitrous oxide(N2O)while carbon dioxide is thesecond gaseous product of the process.This is one of themain mechanisms of the global nitrogen cycle,and playsanimportant role as the reverse reaction of nitrogen fixa-tion in maintaining global environmental homeostasis[1].Denitrification has beenlongthought to be a unique char-acteristic of prokaryotes[2,3].Anumber of bacteria(suchasPseudomonas s...

  3. Control of a Biological Nitrogen Removal Process in an Intensified Single Reactor Configuration

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2013-01-01

    The nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remains a challenging problem. In this contribution, a new process oriented approach is used to develop, evaluate and benchmark control strategies to ensure stable operation...

  4. Enhanced biological nutrient removal by the alliance of a heterotrophic nitrifying strain with a nitrogen removing ecosystem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nitrogen removal from synthetic wastewater was investigated in an airlift bioreactor (ALB), augmented with a novel heterotrophic nitrifier Pseudonocardia ammonioxydans H9T under organic carbon to nitrogen ratios (Corg/N) ranging from 0 to 12. Effect of the inoculated strain was also determined on the settling properties and the removal of chemical oxygen demand (COD). Two laboratory scale reactors were set up to achieve a stable nitrifying state under the same physicochemical conditions of hydraulic retention time (HRT), temperature, pH and dissolved oxygen (DO), and operated under the sequencing batch mode. The level of DO was kept at 0.5-1.5 mg/L by periodic stirring and aeration. Each specific Corg/N ratio was continued for duration of 3 weeks. One of the reactors (BR2) was inoculated with P. ammonioxydans H9T periodically at the start of each Corg/N ratio. Sludge volumetric index (SVI) improved with the increasing Corg/N ratio, but no significant difference was detected between the two reactors. BR2 showed higher levels of nitrogen removal with the increasing heterotrophic conditions, and the ammonia removal reached to the level of 82%-88%, up to10% higher than that in the control reactor (BR1) at Corg/N ratios higher than 6; however, the ammonia removal level in experimental reactor was up to 8% lower than that in control reactor at Corg/N ratios lower than 2. The COD removal efficiency progressively increased with the increasing Corg/N ratios in both of the reactors. The COD removal percentage up to peak values of 88%-94% in BR2, up to 11% higher than that in BR1 at Corg/N ratio higher than 4. The peak values of ammonia and COD removal almost coincided with the highest number (18%-27% to total bacterial number) of the exogenous bacterium in the BR2, detected as colony forming units (CFU). Furthermore, the removal of ammonia and COD in BR2 was closely related to the number of the inoculated strain with a coefficient index (R2) up to 0.82 and 0.85 for ammonia

  5. A Combined System for Biological Removal of Nitrogen and Carbon from Nylon-6 Production Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; LIU Guo-hua; TIAN Qing; ZHANG Man; CHEN Ji-hua

    2007-01-01

    A combined system consisting of hydrolysisacidification, denitrification and nitrification reactors wasused to remove carbon and nitrogen from the nylon - 6production wastewater, which was characterized by goodbiodegradability and high nitrogen concentration. Theinfluences of Chemical Oxygen Demand(COD) in theinfluent, recirculation ratio, Hydraulic Residence Time(HRT) and Dissolved Oxygen(DO) concentration on thesystem performances were investigated. From results itcould be seen that good performances have been achievedduring the overall experiments periods, and COD, TotalNitrogen(TN), NH+-N and Suspended Solids(SS) in theeffluent were 53, 16, 2 and 24 mg·L-1, respectively,which has satisfied the first standard of wastewaterdischarge established by Environmental Protection Agency(EPA) of China. Furthermore, results showed thatoperation factors, viz. COD in the influent, recirculationratio, HRT and DO concentration, all had importantinfluences on the system performances.

  6. Mathematical Modeling and Evaluation of Ifas Wastewater Treatment Processes for Biological Nitrogen and Phosphorus Removal

    OpenAIRE

    Sriwiriyarat, Tongchai

    2002-01-01

    The hybrid activated sludge-biofilm system called Integrated Fixed Film Activated Sludge (IFAS) has recently become popular for enhanced nitrification and denitrification in aerobic zones because it is an alternative to increasing the volume of treatment plant units to accomplish year round nitrification and nitrogen removal. Biomass is retained on the fixed-film media and remains in the aerobic reactor, thus increasing the effective mean cell resident time (MCRT) of the biomass and providin...

  7. Biological hydrogen production: Simultaneous saccharification and fermentation with nitrogen and phosphorus removal from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steve; Dixon, Melissa [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road Building E3160, Aberdeen Proving Ground, MD 21010-5424 (United States)

    2010-09-15

    A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hydrolysis and fermentation in one tank). The CBR demonstrated greater stability of hydrogen production and simplicity of operation, while the SBR provided better nitrogen and phosphorus removal efficiencies. Nuclear magnetic resonance analyses showed acetic acid to be the main product from both reactors. Optimal CBR conditions were found to be pH 5, 4 g/L loading, 0.45 ml/g Accellerase 1500, and 38 C. Experiments with an argon purge in place of nitrogen and with ammonium chloride spiking suggested that hydrogenase and nitrogenase enzymes contributed similarly to hydrogen production in the cultures. Analysis of a single fermentation showed that hydrogen production occurred relatively early in the course of TOC removal, and that follow-on treatments might extract more energy from the products. (author)

  8. The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

    1998-09-01

    A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

  9. Optimization of electrochemical reaction for nitrogen removal from biological secondary-treated milking centre wastewater.

    Science.gov (United States)

    Won, Seung-Gun; Jeon, Dae-Yong; Rahman, Md Mukhlesur; Kwag, Jung-Hoon; Ra, Chang-Six

    2016-01-01

    In order to remove the residual nitrogen from the secondary-treated milking centre wastewater, the electrochemical reaction including NH4-N oxidation and NOx-N reduction has been known as a relatively simple technique. Through the present study, the electrochemical reactor using the Ti-coated IrO2 anode and stainless steel cathode was optimized for practical use on farm. The key operational parameters [electrode area (EA) (cm(2)/L), current density (CD) (A/cm(2)), electrolyte concentration (EC) (mg/L as NaCl), and reaction time (RT) (min)] were selected and their effects were evaluated using response surface methodology for the responses of nitrogen and colour removal efficiencies, and power consumption. The experimental design was followed for the central composite design as a fractional factorial design. As a result of the analysis of variance, the p-values of the second-order polynomial models for three responses were significantly fit to the empirical values. The nitrogen removal was significantly influenced by CD, EC, and RT (p NaCl; RT, 240 min] was revealed as an optimal operational condition. The investigation on cathodic reduction of NOx-N may be required with respect to nitrite and nitrate separately as a future work. PMID:26582173

  10. Biological removal of phosphorus and nitrogen from wastewater : new insights from metagenomic and metatranscriptomic approaches

    OpenAIRE

    Mao, Yanping; 毛艷萍

    2014-01-01

    The study was conducted to reveal the insights of microbial diversity, functional profile and gene expression of microorganisms responsible for enhanced biological phosphorus removal (EBPR) and hydrogen-oxidizing autotrophic denitrification mainly by using metagenomic and metatranscriptomic analysis based on high-throughput sequencing. Two sequencing batch reactors (SBRs) were operated to remove phosphorus (15 mg/L) from synthetic wastewater. The integrated metagenomic and metatranscripto...

  11. A DO- and pH-based early warning system of nitrification inhibition for biological nitrogen removal processes.

    Science.gov (United States)

    Hong, Seil; Choi, Il; Lim, Byung Jin; Kim, Hyunook

    2012-01-01

    In Korea, more than 80% of municipal wastewater treatment plants (WWTPs) with capacities of 500 m3·d-1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process) may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L-1 Hg2+, 0.5 mg·L-1 allythiourea, or 0.25 mg·L-1 chloroform could be successfully detected. PMID:23443381

  12. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim

    2012-11-01

    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  13. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    Science.gov (United States)

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. PMID:26204227

  14. Fate of dissolved organic nitrogen during biological nutrient removal wastewater treatment processes.

    Science.gov (United States)

    Liu, Bing; Lin, Huirong; Yu, Guozhong; Zhang, Shenghua; Zhao, Chengmei

    2013-04-01

    Due to its potential to form toxic nitrogenous disinfection byproducts (N-DBPs), dissolved organic nitrogen (DON) is considered as one of the most important parameters in wastewater treatment plants (WWTP). This study describes a comprehensive investigation of variations in DON levels in orbal oxidation ditches. The results showed that DON increased gradually from 0.71 to 1.14 mg I(-1) along anaerobic zone, anoxic zone, aerobic zone 1 and aerobic 2. Molecular weight fractionation of DON in one anaerobic zone and one aerobic zone (aerobic zone 2) was performed. We found that the proportion of small molecular weight ( 20 kDa) showed opposite trend. This variation may have been caused due to the release of different types of soluble microbial products (SMPs) during biological processes. These SMPs contained both tryptophan protein-like and aromatic protein-like substances, which were confirmed by three-dimensional excitation-emission matrix (EEM) analysis. PMID:24620601

  15. Enhanced Biological Phosphorus Removal from Dairy Manure to Meet Nitrogen:Phosphorus Crop Nutrient Requirements

    OpenAIRE

    Yanosek, Kristina Anne

    2002-01-01

    Over the last two decades, livestock operations have become highly concentrated due to growing trends towards larger, more confined facilities and a decrease in cropland on smaller farms. This has led to greater amounts of excess manure nutrients on farms, increasing the potential for nutrient pollution of water bodies from runoff. The purpose of this study was to determine if enhanced biological phosphorus removal (EBPR) is a viable alternative for managing excess manure nutrients on dairy...

  16. 污废水生物脱氮除磷技术研究进展%Research Status of Technologies for Nitrogen and Phosphorus Removal by Biological Processes

    Institute of Scientific and Technical Information of China (English)

    刘启承

    2013-01-01

      总结了目前城市污水生物脱氮除磷技术研究及应用进展,分析了脱氮除磷工艺机理及其特点,探讨了城市污水生物脱氮除磷工艺深入研究的方向。%This paper reviews the advances in the biological nitrogen and phosphorus removal technologies for municipal wastewater .The mechanism and characteristics of nitrogen and phosphorus removal processes are analyzed , and directions of studying the biological nitrogen and phosphorus removal technologies are also discussed .

  17. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.;

    1992-01-01

    A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation...... and sedimentation. Chemical pretreatment resulted in 60% COD-reduction and 75% phosphorus reduction. The chemically precipitated primary sludge was exposed to anaerobic sludge hydrolysis at retention times of 1 and 2 days at temperatures in the range of 15-30°C. At a retention time of two days at 20°C, resulting......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  18. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...... the four denitrification steps, the last one (N2O reduction to N2) seems to be inhibited first when O2 is present. Overall, N2O production can account for 0.1–25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we...

  19. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  20. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer

    International Nuclear Information System (INIS)

    Failure in nitrogen removal of cokes wastewater occurs occasionally during summer season (38 deg. C) due to the instability of nitrification process. The objective of this study was to examine why the nitrification process is unstable especially in summer. Various parameters such as pH, temperature, nutrients and pollutants were examined in batch experiments using activated sludge and wastewater obtained from a full-scale cokes wastewater treatment facility. Batch experiments showed that nitrification rate of the activated sludge was faster in summer (38 deg. C) than in spring or autumn (29 deg. C) and the toxic effects of cyanide, phenol and thiocyanate on nitrification were reduced with increasing temperature. Meanwhile, experiment using continuous reactor showed that the reduction rate in nitrification efficiency was higher at 38 deg. C than at 29 deg. C. In conclusion, the instability of full-scale nitrification process in summer might be mainly due to washing out of nitrifiers by fast growth of competitive microorganisms at higher temperature under increased concentrations of phenol and thiocyanate

  1. Respirometry applied for biological nitrogen removal process; Aplicacion de la respirometria al tratamiento biologico para la eliminacion del nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2004-07-01

    In waste water treatment plants, the Biological Nitrogen Removal (BNR) has acquired a fundamental importance. The BNR processes are Nitrification ( aerobic) and Denitrification (anoxic). Since both processes are carried on living microorganisms, a lack of their bioactivity information might cause serious confusion about their control criteria and following up purposes. For this reason, the Re spirometry applied to those processes has reached an important role by getting an essential information in a timely manner through respiration rate measurements in static and dynamic modes and applications such as AUR (Ammonium Uptake Rate), Nitrification Capacity. RBCOD (Readily Biodegradable COD) as well as AUR related to SRT (Sludge age), RBCOD related to NUR (Specific Nitrate Uptake Rate) and others. By other side in this article we have introduced a not very well known applications related to denitrification, about the methanol acclimatization and generated bioactivity. (Author) 6 refs.

  2. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis.

    Science.gov (United States)

    Liu, Hongbo; Zhao, Fang; Mao, Boyang; Wen, Xianghua

    2012-06-01

    An innovative adsorption/nitrification/denitrification/sludge-hydrolysis wastewater treatment process (ENRS) characterized by carbon source manipulation with a biological adsorption unit and a sludge hydrolysis unit was developed to enhance nitrogen removal and reduce sludge production for municipal wastewater treatment. The system presented good performance in pollutants removal, yielding the effluent with average COD, NH(4)(+)-N, TN and TP of 48.5, 0.6, 13.2 and 1.0 mg/L, respectively. Sixty percent of the total carbon source in the influent was concentrated and separated by the quick adsorption of activated sludge, providing the possibilities of reusing waste carbon source in the denitrification tank and accumulating nitrobacteria in the nitrification tank. Low temperature of 6-15 °C and high hydraulic loading rate of 3.0-15.0 m(3)/d did not affect NH(4)(+)-N removal performance, yielding the NH(4)(+)-N of lower 1.0 mg/L in the effluent. Furthermore, 50% of the residual sludge in the ENRS system could be transformed into soluble COD (SCOD) by alkaline thermal hydrolysis with temperature of 60 °C and pH of 11, and the hydrolyzed carbon could completely substitute methanol as a good quality carbon to support high efficient denitrification.

  3. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems.

    Science.gov (United States)

    Helmer, C; Tromm, C; Hippen, A; Rosenwinkel, K H; Seyfried, C F; Kunst, S

    2001-01-01

    In full scale wastewater treatment plants with at times considerable deficits in the nitrogen balances, it could hitherto not be sufficiently explained which reactions are the cause of the nitrogen losses and which micro-organisms participate in the process. The single stage conversion of ammonium into gaseous end-products--which is henceforth referred to as deammonification--occurs particularly frequently in biofilm systems. In the meantime, one has succeeded to establish the deammonification processes in a continuous flow moving-bed pilot plant. In batch tests with the biofilm covered carriers, it was possible for the first time to examine the nitrogen conversion at the intact biofilm. Depending on the dissolved oxygen (DO) concentration, two autotrophic nitrogen converting reactions in the biofilm could be proven: one nitritation process under aerobic conditions and one anaerobic ammonium oxidation. With the anaerobic ammonium oxidation, ammonium as electron donor was converted with nitrite as electron acceptor. The end-product of this reaction was N2. Ammonium and nitrite did react in a stoichiometrical ratio of 1:1.37, a ratio which has in the very same dimension been described for the ANAMMOX-process (1:1.31 +/- 0.06). Via the oxygen concentration in the surrounding medium, it was possible to control the ratio of nitritation and anaerobic ammonium oxidation in the nitrogen conversion of the biofilm. Both processes were evenly balanced at a DO concentration of 0.7 mg/l, so that it was possible to achieve a direct, almost complete elimination of ammonium without addition of nitrite. One part of the provided ammonium did participate in the nitritation, the other in the anaerobic ammonium oxidation. Through the aerobic ammonium oxidation into nitrite within the outer oxygen supplied layers of the biofilm, the reaction partner was produced for the anaerobic ammonium oxidation within the inner layers of the biofilm. PMID:11379106

  4. Developing and optimizing processes for biological nitrogen removal from tannery wastewaters in Ethiopia

    OpenAIRE

    Leta, Seyoum

    2004-01-01

    In Ethiopia industrial effluents containing high contents of organic matter, nitrogen and heavy metals are discharged into inland surface waters with little or no pre-treatment. Significant pollution concerns related to these effluents include dissolved oxygen depletion, toxicity and eutrophication of the receiving waters. This has not only forced the government to formulate regulations and standards for discharge limits but also resulted in an increasing interest and development of methods a...

  5. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  6. Effect of amended soil and hydraulic load on enhanced biological nitrogen removal in lab-scale SWIS.

    Science.gov (United States)

    Zou, J L; Dai, Y; Sun, T H; Li, Y H; Li, G B; Li, Q Y

    2009-04-30

    To characterize the effect of amended soil on nitrogen removal in subsurface wastewater infiltration system (SWIS), culture, grass carbon, and zeolite were mixed to produce microbial inoculums, and then the optimal microbial inoculums, nutrient substance, cinder, and original soil were mixed to produce the soils through bioaugmentation. Results indicate that the microbial inoculums (culture+50% grass carbon+50% zeolite) and the amended soil (12.5% microbial inoculums+25% nutrient substrate+12.5% cinder+50% original soil) have the optimal biogenic stimulating properties, and the adsorption capacity of the amended soil are 1.216 mg-Pg(-1) and 0.495 mg-Ng(-1). The laboratory soil column experiment indicates that the efficient mode of nitrogen removal in lab-scale SWIS is adsorption-nitrification-denitrification and the nitrification/denitrification can be enhanced by the application of the amended soil. On average, the SWIS filled with amended soil converts 85% of ammonia nitrogen (NH(4)(+)-N) to NO(x)(-)-N and removes 49.8-60.6% of total nitrogen (TN), while the system filled with original soil removes 80% of NH(4)(+)-N and 31.3-43.2% of TN at 4-8 cm day(-1). Two systems are overloads at 10 cm day(-1). It is concluded that the microbial activities and nitrogen removal efficiencies are improved in SWIS after bioaugmentation.

  7. Microfauna communities as performance indicators for an A/O Shortcut Biological Nitrogen Removal moving-bed biofilm reactor.

    Science.gov (United States)

    Canals, O; Salvadó, H; Auset, M; Hernández, C; Malfeito, J J

    2013-06-01

    The microfauna communities present in the mixed liquor and biofilm of an Anoxic/Oxic Shortcut Biofilm Nitrogen Removal moving-bed biofilm process were characterised in order to optimise process control through the use of bioindicators. The system operated at high ammonium concentrations, with an average of 588 ± 220 mg N-NH4(+) L(-1) in the influent, 161 ± 80 mg L(-1) in the anoxic reactor and 74 ± 71.2 mg L(-1) in the aerobic reactor. Up to 20 different taxa were identified, including ciliates (4), flagellates (11), amoebae (4) and nematodes (1). Compared to conventional wastewater treatment processes (WWTPs), this process can be defined as a flagellates-predominant system with a low diversity of ciliates. Flagellates were mainly dominant in the mixed liquor, demonstrating high tolerance to ammonium and the capacity for survival over a long time under anoxic conditions. The data obtained provide interesting values of maximum and minimum tolerance ranges to ammonium, nitrates and nitrites for the ciliate species Cyclidium glaucoma, Colpoda ecaudata, Vorticella microstoma-complex and Epistylis cf. rotans. The last of these was the only ciliate species that presented a constant and abundant population, almost exclusively in the aerobic biofilm. Epistylis cf. rotans dynamics showed a high negative correlation with ammonium variations and a positive correlation with ammonium removal efficiency. Hence, the results indicate that Epistylis cf. rotans is a good bioindicator of the nitrification process in this system. The study of protozoan communities in unexplored WWTPs sheds light on species ecology and their role under conditions that have been little studied in WWTPs, and could offer new biological management tools.

  8. Uncertainty assessment of a model for biological nitrogen and phosphorus removal: Application to a large wastewater treatment plant

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.

  9. Nitrogen Removal From Dairy Manure Wastewater Using Sequencing Batch Reactors

    OpenAIRE

    Whichard, David P

    2001-01-01

    The purpose of this research was to characterize a flushed dairy manure wastewater and to develop the kinetic and stoichiometric parameters associated with nitrogen removal from the wastewater, as well as to demonstrate experimental and simulated nitrogen removal from the wastewater. The characterization showed that all the wastewaters had carbon to nitrogen ratios large enough for biological nitrogen removal. Analysis of carbon to phosphorus ratios showed that enough carbon is available fo...

  10. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    OpenAIRE

    Helness, Herman

    2007-01-01

    Phosphorus (P) and nitrogen (N) removal from municipal wastewater is performed to prevent or reduce eutrophication in the receiving water.Both P and N can be removed physical/chemically as well as biologically. While biological processes have always dominated in N-removal, chemical P-removal is used in many cases. Biological P-removal using enhanced biological phosphorus removal (EBPR) is normally carried out in suspended culture (activated sludge) processes while biological N-removal (throug...

  11. Aerobic/anoxic post-treatment of anaerobically digested sewage sludge as an alternative to biological nitrogen removal from reject water.

    Science.gov (United States)

    Morras, Mikel; Dosta, J; García-Heras, J L

    2015-05-01

    Stabilisation and biological nitrogen removal (BNR) of anaerobically digested sewage sludge were studied in a post-aeration reactor at pilot scale working under alternating anoxic-aerobic conditions. Digested sludge came from a two-stage anaerobic digestion (thermophilic + mesophilic). The best post-aerator performance was achieved when working at an HRT of 10 days (4 days aerobic; dissolved oxygen of 1.8 mg L(-1)) and VS content in the feed no lower than 6.7 g L(-1). Free ammonia concentration values in the effluent above 1.5 mg N L(-1) (around 150 mg NH4 (+)-N L(-1) at pH 7) were necessary to promote the BNR over nitrite. Removal efficiencies up to 80 % NH4 (+)-N, 50-55 % total nitrogen and 15-20 % VS were recorded in this study, with no external addition of chemicals. A nitrogen mass balance revealed that the high percent of NH4 (+)-N assimilated in heterotrophic growth was counteracted with that released in ammonification and fermentation, leading to a NH4 (+)-N removal mainly related to biological nitritation/denitritation. PMID:25407727

  12. Nitrogen removal from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  13. 污水生物脱氮除磷新技术%New Technology of Biological Nitrogen and Phosphorus Removal in Sewage

    Institute of Scientific and Technical Information of China (English)

    丛晓东; 吕勇; 王肇君

    2012-01-01

    首先简单阐述了生物脱氮除磷机理,然后重点介绍了目前几种污水生物处理新技术:厌氧/缺氧/好氧MBR工艺、短程硝化反硝化工艺和倒置A2/O工艺等,最后对污水生物脱氮除磷技术的发展进行了展望,并提出了一些建议。%In the first part,the mechanism of biological nitrogen and phosphorus removal is simply explained firstly,and then several new technology of sewage biological disposal,such as anoxic/anaerobic/aerobic membrane bioreactor(MBR) process、shortcut nitrification—denitrification process and reversed A2/O process are introduced.In the end,the paper generalized the development of new technology of biological nitrogen and phosphorus removal in sewage,and some suggestions are put forward.

  14. The feasibility of an up-flow partially aerated biological filter (U-PABF) for nitrogen and COD removal from domestic wastewater.

    Science.gov (United States)

    Tao, Chen; Peng, Tong; Feng, Chuanping; Chen, Nan; Hu, Qili; Hao, Chunbo

    2016-10-01

    An up-flow partially aerated biological filter (U-PABF) was developed to study the removal of nitrogen and chemical oxygen demand (COD) from synthetic domestic wastewater. The removal of NH4(+)-N was primarily attributed to adsorption in the zeolite U-PABF and to bioprocesses in the ceramic U-PABF. When the hydraulic retention time (HRT) was 5.2h, the ceramic U-PABF achieved a good performance and the NH4(+)-N, total nitrogen (TN), and COD removal efficiency reached 99.08±8.79%, 72.83±0.68%, and 89.38±1.04%, respectively. The analysis of NH4(+)-N, NO3(-)-N, NO2(-)-N, and TN at different depths revealed the simultaneous existence of nitrification-denitrification, and anaerobic ammonium oxidation (anammox) in ceramic U-PABF. Illumina pyrosequencing confirmed the existence of Planctomycetes, which are responsible for anammox. The results indicated that the nitrification-denitrification and anammox all contributed to the high removal of NH4(+)-N, TN, and COD in the U-PABF. PMID:27372011

  15. Intercross real-time control strategy in alternating activated sludge process for short-cut biological nitrogen removal treating domestic wastewater

    Institute of Scientific and Technical Information of China (English)

    WANG Shuying; ZHANG Shanfeng; PENG chengyao; AKIOTAKIGAWA

    2008-01-01

    To develop technically feasible and economically favorable dynamic process control (DPC) strategies for an alternating activated sludge (AAS) system, a bench-scale continuous-flow alternating aerobic and anoxic reactor, performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months. A fixed-time control (FTC) study showed that bending-points on pH and oxidation reduction potential (ORP) profiles accurately coincided with the major biological activities. "Ammonia valley" on the pH profile represented the end of nitrification, whereas, the "nitrite knee" on the ORP profile and "nitrite apex" on the pH profile both indicated the end of denitrification. Therefore, a new reliable and effective real-time control strategy was developed using pH and ORP as control parameters, to improve the performance of the AAS process. The online control strategy could achieve up to 87% of the total nitrogen [G1](TN) removal efficiency on an average, and saving approximately 20% aeration energy, as compared to the conventional steady-state control systems. Moreover, stable short-cut nitrification and denitrification were successfully achieved with an average nitrite accumulation ratio of above 95%.

  16. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  17. Discussion on Biological Nitrogen Removal in Treatment of High Ammonia Nitrogen Wastewater Using MBR%MBR 处理高浓度氨氮废水中生物脱氮问题的探讨

    Institute of Scientific and Technical Information of China (English)

    崔喜勤; 林君锋

    2016-01-01

    在以好氧膜生物反应器( MBR)处理高浓度氨氮废水的试验研究中,针对系统获得极高生物硝化率(氨氮的去除率基本保持在99%以上)的原因、试验初期出现的亚硝态氮积累现象、试验中期总氮去除效果高于理论值的原因三个方面进行了详细分析,结果表明, MBR的运行特点是其实现完全硝化的重要保证,高浓度氨条件下的亚硝化过程是不稳定的,微生物合成代谢对总氮的去除有一定贡献。%In the experiment of treatment of wastewater with high concentration of ammonia nitrogen by a membrane bioreactor , the reason of high biological nitrification rate , the accumulation of nitrite nitrogen in initial experiment and the causation of higher removal rate of total nitrogen than theoretical result in mid test were discussed .The results showed that the operating characteristics of MBR was very key for complete nitrification , nitrosation process was unstabitily under high concentration of ammonia , microbial synthesis and metabolism had the contribution for removal of total nitrogen.

  18. Biological nitrogen removal in one step by nitritation and anaerobic oxidation of ammonia in biofilms; Einstufige biologische Stickstoffelimination durch Nitritation und anaerobe Ammonium-Oxidation im Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, C.; Tromm, C.; Hippen, A.; Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S. [Hannover Univ. (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    For biological treatment of high nitrogenous wastewaters with low C/N ratio autotrophic microorganisms which are able to convert ammonium directly into nitrogen gas are especially interesting. It is exceptionally difficult to verify their presence and importance in mixed populations of full scale wastewater treatment plants. So it could not be clarified finally up to now which basic microbial reactions lead to single stage complete nitrogen removal, here called deammonification, in the nitrification step (biological contactor) of the leachate treatment plant in Mechernich. It succeeded meanwhile to establish the process of deammonification in a continuous flow moving-bed pilot plant. In batch experiments which biomass-covered carriers nitrogen conversions could become investigated at the intact biofilm for the first time. Two autotrophic nitrogen conversion reactions could be proved in the biofilm depending on dissolved oxygen (DO) concentration: A nitritation under aerobic conditions and an anaerobic ammonium oxidation. For the anaerobic ammonium oxidation nitrite was used as electron acceptor with ammonium as electron donor. N{sub 2} was the end product of the reaction. The ratio of ammonium conversion to nitrite conversion was 1:1,37, which was described in the same range for the ANAMMOX-process (1:1,31{+-}0,06). Nitrate could not be used as electron acceptor. Nitrite had to be added to the experiment to obtain oxygen independent oxidation of ammonium. The parts of nitritation and anaerobic ammonium conversion in nitrogen conversion could be controlled by the DO concentration. At a DO concentration of 0.7 mg/l both processes were balanced, so that a direct almost complete elimination of ammonium was possible without any dosage of nitrite. The added ammonium was partially oxidised to nitrite and partially oxidised anaerobically. The aerobic ammonium oxidation to nitrite in the outer oxygen supplied biofilm layers produced the reactant for the anaerobic ammonium

  19. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Nielsen, P.H.; Aspegren, H.;

    2003-01-01

    Quantitative fluorescence in situ hybridization (FISH) and the combination of FISH with microautoradiography (MAR) were used in order to study the long-term population dynamics (2.5 years) and the in situ physiology in two parallel activated sludge pilot systems with enhanced biological phosphoru...

  20. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  1. Kinetic Interpretation of Nitrogen Removal in Pilot Scale Experiments

    DEFF Research Database (Denmark)

    Harremoës, Poul; Sinkjær, Ole

    1995-01-01

    Pilot plant experiments have been performed over a period of four years in order to establish an experimental basis for the upgrading of the treatment plants of The City of Copenhagen to nutrient removal. The choice of design is the alternating mode of operating biological nitrogen removal...... with biological and chemical phosphorus removal. Nitrification and denitrification rates have been measured in batch tests on activated sludge extracted from the pilot plants and by measuring transient concentrations during the alternating mode of operation in the aerobic and anoxic tanks. The data were...

  2. NITROGEN REMOVAL FROM NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

    1999-12-31

    The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest

  3. 复合生物反应器亚硝酸型同步硝化反硝化脱氮%Nitrogen Removal by Simultaneous Nitrification and Denitrification via Nitrite in a Sequence Hybrid Biological Reactor

    Institute of Scientific and Technical Information of China (English)

    王建龙; 彭永臻; 王淑莹; 高永青

    2008-01-01

    Sequence hybrid biological reactor(SHBR)was proposed,and some key control parameters were in-vestigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification(SND)via nitrite.sND via nitrite was achieved in SHBR by controlling demand oxygen(DO)concentration.There was a pro-did not destroy the partial nitrification to nitrite.The results showed that limited air flow rate to cause oxygen defi-ciency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate.Nitrogen removal efficiency was increased with the increase in NAR,that iS,NAR was increased from 60%to 90%,and total nitrogen removal efficiency was increased from 68%t0 85%.The SHBR could tolerate high organic loading rate(OLR),COD and ammonia-nitrogen removal efficiency were greater than92%and 93.5%respectively and it even oper-biofilm positively affected the activated sludge settling capability,and sludge volume index(svi)of activated sludge in SHBR never hit more than 90 ml.g-1 throughout the experiments.

  4. 晚期渗滤液短程生物脱氮的实现%Achievement of Short-cut Biological Nitrogen Removal of Mature Landfill Leachate

    Institute of Scientific and Technical Information of China (English)

    彭永臻; 宋燕杰; 刘牡; 刘甜甜

    2012-01-01

    Stable short-cut nitrification was achieved through the selective inhibition of free ammonia (FA), free nitrous acid (FNA) on the nitrifying bacteria and a real-time control strategy which used pH, DO and ORP as parameters in an SBR reactor. The effects of C/N ratio and initial pH value on the short-cut biological nitrogen removal were studied. It is found that: when influent NH,+ - N concentration was 108-177. 3 mg/L, the nitrite accumulation rate was around 90%. The reasons for the favorable nitrite accumulation rate were both the inhibition of FA and FNA on the NOB and the real-time control strategy through detecting the "ammonia valley" and "nitrite knee" two feature points in pH and ORP profiles, respectively. The optimal C/N ratio was 3 when acetate was used as the carbon source. When the denitrification rate with respect to the concentration of mixed liquor suspended solids was 19. 8 mg o g-1 o h-1 NOx- - N, NH4+ - N, NO2- - N, NO3- - N, TN of the effluent were less than 6,2,1 and 30 mg/L, respectively. When initial pH value was 8. 5, the denitrification rate was maximum. However the differences of denitrification rate were small when pH was in the range of 7. 5~8. 5.%在SBR反应器中利用游离氨(free ammonia,FA)、游离亚硝酸(free nitrous acid,FNA)对NOB(nitrite oxidizing bacteria,NOB)选择性抑制并耦合实时控制策略处理晚期垃圾渗滤液,成功实现持久稳定的短程生物脱氮,并研究了不同碳氮比及初始pH值对短程生物脱氮的影响.结果表明:通过FA和FNA对NOB的选择性抑制,在线检测反应中pH、DO和ORP数值,利用出现的“氨谷”、“ORP平台”“亚硝酸盐膝”等特征点作为运行操作控制时间点,准确得知反应进程,及时开始下一步操作,获得稳定短程生物脱氮.进水NH4+—N浓度为108~177.3 mg/L(平均值为138.7 mg/L)时,亚硝积累率一直稳定达90%左右,乙酸钠为碳源时最佳C、N质量比为3,相对于混合液悬浮固体浓度的反

  5. Effect of carbon sources on biological nitrogen and phosphorus removal in the municipal wastewater treatment system%碳源对污水处理系统脱氮除磷的影响

    Institute of Scientific and Technical Information of China (English)

    林雨倩; 赵军

    2014-01-01

    The performance of biological nutrient removal (BNR) processes is directly connected to the availability of carbon sources. This study introduces the metabolism mechanisms of carbon sources in each step of biological nitrogen and phosphorus removal processes, and the types and concentrations of carbon sources on the nitrogen and phosphorus removal are also discussed. It was revealed that the effective use of organic substrate including external and internal carbon sources could enhance the purifying performance of the system.%在污水强化生物脱氮除磷系统中,碳源种类及浓度对于处理系统去除效果的高效运行起到重要的作用。通过介绍生物脱氮及除磷各步骤碳源需求的机理,探讨碳源类型及碳源浓度对系统脱氮除磷效果的影响,同时对提高污水碳源浓度常用的手段即增加外碳源及内碳源方法进行分析。

  6. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  7. 间歇曝气和连续曝气对生物脱氮除磷效果的比较%Biological Nitrogen and Phosphorus Removal Efficiency by Intermittent Aeration and Continues Aeration Compared

    Institute of Scientific and Technical Information of China (English)

    潘敏; 黄晓鸣

    2015-01-01

    采用序批式生物反应器SBR系统,考察反应阶段的间歇曝气和连续曝气对模拟生活废水中氮和磷的去除效果。研究表明: IASBR和SBR对NH4+-N的去除率分别为99�30%和98�73%;对PO3-4-P的去除率分别为97�02%和67�47%。间歇曝气SBR对氨氮和磷酸根的去除率比连续曝气SBR高,有利于实现强化生物脱磷过程。间歇曝气SBR出水中氮、磷和COD浓度均达到了我国城镇污水处理厂污染物排放标准(GB 18918—2002)一级标准。%Biological nitrogen and phosphorus removal was investigated by an intermittently aerated sequencing batch reactor IASBR and a sequencing batch reactor SBR . The removal efficiencies of ammonium⁃nitrogen NH4+⁃N were 99�30% and 98�73% respectively in IASBR and SBR in steady operation while phosphorus PO3-4 ⁃P removal efficiencies were 97�02% and 67�47% in IASBR and SBR respectively. The intermittent aeration pattern has better effect for biological phosphorus removal. Effluent NH4+⁃N PO3-4 ⁃P and COD concentrations in the IASBR meets ChinaⅠEmission Standards.

  8. 间歇曝气和连续曝气对生物脱氮除磷效果的比较%Biological Nitrogen and Phosphorus Removal Efficiency by Intermittent Aeration and Continues Aeration Compared

    Institute of Scientific and Technical Information of China (English)

    潘敏; 黄晓鸣

    2015-01-01

    Biological nitrogen and phosphorus removal was investigated by an intermittently aerated sequencing batch reactor IASBR and a sequencing batch reactor SBR . The removal efficiencies of ammonium⁃nitrogen NH4+⁃N were 99�30% and 98�73% respectively in IASBR and SBR in steady operation while phosphorus PO3-4 ⁃P removal efficiencies were 97�02% and 67�47% in IASBR and SBR respectively. The intermittent aeration pattern has better effect for biological phosphorus removal. Effluent NH4+⁃N PO3-4 ⁃P and COD concentrations in the IASBR meets ChinaⅠEmission Standards.%采用序批式生物反应器SBR系统,考察反应阶段的间歇曝气和连续曝气对模拟生活废水中氮和磷的去除效果。研究表明: IASBR和SBR对NH4+-N的去除率分别为99�30%和98�73%;对PO3-4-P的去除率分别为97�02%和67�47%。间歇曝气SBR对氨氮和磷酸根的去除率比连续曝气SBR高,有利于实现强化生物脱磷过程。间歇曝气SBR出水中氮、磷和COD浓度均达到了我国城镇污水处理厂污染物排放标准(GB 18918—2002)一级标准。

  9. Operation and control of SBR processes for enhanced biological nutrient removal from wastewater

    OpenAIRE

    Puig Broch, Sebastià

    2008-01-01

    In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with ...

  10. Ammonia-Nitrogen Removal during Startup of Biological Process for Treatment of Source Water%水源水生物处理工艺启动中氨氮的去除

    Institute of Scientific and Technical Information of China (English)

    梅翔; 陈洪斌; 张全兴; 高廷耀

    2001-01-01

    The variations of ammonia-nitrogen and nitrite-nitrogen during startup of the biological contact oxidation process for treating slightly polluted source water have been analyzed by using the experimental system with the sedimentation tank and the biochemical tank in series. The research results showed that the growth of Nitrobacter always depended on the conversion of ammonia-nitrogen to nitrite-nitrogen by Nitrosomonas under both no aeration and aeration. The startup during which ammonia-nitrogen removal approached the steady state was such a stage, during which the growth rates and conversion capacities of two groups of nitrifying bacteria approached the steady state, respectively. Sufficient air supply for the biochemical tank was necessary for the steady growth of nitrifying bacteria on the packing materials and the smooth completion of process startup.%通过沉淀槽与生化槽串联的试验系统,分析了微污染水源水生物接触氧化处理工艺启动过程氨氮和亚硝酸盐氮的变化规律。研究结果表明,在无曝气条件下和曝气条件下,填料上硝酸盐细菌的生长均依赖于亚硝酸盐细菌转化氨氮为亚硝酸盐氮的过程。启动中氨氮去除效果趋于稳定的过程是两类硝化细菌在生长速率和转化能力上趋于稳定的过程。提供生化槽充足的曝气量是保证填料上硝化细菌稳定生长,顺利完成启动过程的必要条件。

  11. Biological Nutrient Removal in Compact Biofilm Systems

    NARCIS (Netherlands)

    Bassin, J.P.

    2012-01-01

    The removal of nutrients such as nitrogen and phosphorus from both domestic and industrial wastewaters is imperative since they potentially harm the environment. One of the main consequences of excessive availability of nitrogen and phosphorus in aquatic ecosystems (freshwater, marine and estuarine)

  12. Review on Production and Control of N2O During Biological Nitrogen Removal from Wastewater%污水生物脱氮过程中N2O的产生与控制研究进展

    Institute of Scientific and Technical Information of China (English)

    胡振; 张建; 谢慧君; 李善评; 张婷婷; 李一冉

    2011-01-01

    N2O是一种重要的温室气体,并且能破坏臭氧层,因而在全球变化研究中受到广泛关注.研究表明,污水生物脱氮过程是N2O的一个重要人为源.为此,对污水生物脱氮过程中N2O的产生与控制进行研究具有重要的意义.文章对污水生物脱氮过程中N2O的产生机理、影响因素和减量化策略进行了论述.N2O通常被认为是不完全硝化作用或不完全反硝化作用的产物,其在生物脱氮过程中释放的影响因素可归纳为污水水质、处理工艺、运行工况以及微生物种群结构四个方面.结合实际情况,N2O减量化策略的研究应该集中于运行工况优化和微生物种群结构调控两个方面.指出N2O产生机理的进一步完善和微生物调控技术的实用化是该领域的重点研究方向.%Nitrous oxide (N2O) is an important greenhouse gas and can destroy the ozone layer. More and more attentions have been paid to its effect on global changes. Biological nitrogen removal of domestic wastewater has been identified as an important anthropogenic source of N2O. Therefore it is important to study the production and control of N2O during biological nitrogen removal process. Review was made on the N2O production mechanisms, affecting factors and reduction strategies of biological nitrogen removal. NJO is usually considered to be the product of incomplete nitrification and denitrification. It was concluded that N2O emission was affected by wastewater characteristic, treatment process, operation condition and microbial community composition. The study of reduction strategy should focus on the latter two aspects. Further improvement of N2O production mechanism and practicality of microbial artificial control technology are the focus of further research in this field.

  13. Nitrogen limited biobarriers remove atrazine from contaminated water: Laboratory studies

    Science.gov (United States)

    Hunter, William J.; Shaner, Dale L.

    2009-01-01

    Atrazine is one of the most frequently used herbicides. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes it a frequently encountered groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil; after which, we inoculated the barriers with a consortium of atrazine-degrading microorganisms and evaluated the ability of the barriers to remove atrazine from a simulated groundwater containing 1 mg L - 1 atrazine. The soybean oil provided a carbon rich and nitrogen poor substrate to the microbial consortium. Under these nitrogen-limiting conditions it was hypothesized that bacteria capable of using atrazine as a source of nitrogen would remove atrazine from the flowing water. Our hypothesis proved correct and the biobarriers were effective at removing atrazine when the nitrogen content of the influent water was low. Levels of atrazine in the biobarrier effluents declined with time and by the 24th week of the study no detectable atrazine was present (limit of detection Poisoning of the biobarriers with mercury chloride resulted in an immediate and large increase in the amount of atrazine in the barrier effluents confirming that biological activity and not abiotic factors were responsible for most of the atrazine degradation. The presence of hydroxyatrazine in the barrier effluents indicated that dehalogenation was one of the pathways of atrazine degradation. Permeable barriers might be formed in-situ by the injection of innocuous vegetable oil emulsions into an aquifer or sandy soil and used to remove atrazine from a contaminated groundwater or to protect groundwater from an atrazine spill.

  14. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  15. Improvement of a manageability of biological nitrogen and phosphorus removal plant using a wastewater treatment process simulator; Gesui shori purosesu shimyureta no riyo ni yoru seibutsuteki chisso/rin jokyo puranto no kanrisei no kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, G. [Toyohashi Univ. of Technology, Aichi (Japan). Faculty of Engineering; Tsumura, K. [Kyoto Univ., Kyoto (Japan). Graduate School; Yamamoto, Y. [Osaka Prefectural Inst. of Public Health, Osaka (Japan)

    1997-02-10

    In this paper, a method for executing a stable management of wastewater treatment process is examined by using a wastewater treatment process simulator with the facilities adopting intermittently aerated 2-tank activated sludge process as the object. The following results are obtained from said examination. Based on a fact that the treatment efficiency is influenced greatly by the comparatively miner parts of the process in biological nitrogen and phosphorus removal, a wastewater treatment process simulator, by which the intrinsic process flow, restricting conditions and behaviors of controlling system of each facility can be dealt with, is developed by using object-directional model. As the results of this development, not only the effects approximate to those of actual process can be obtained, but also the trial error and alternation of process flow can be realized in a short time. The serious influence of disappearance of dissolvable organic substance in flow-adjusting tank upon the deterioration of biological phosphorus removal is clarified by the results of the simulation based on the investigation of flowing-in water quality. 12 refs., 13 figs., 4 tabs.

  16. MICROBIAL ACTION IN N2O PRODUCTION FROM BIOLOGICAL NITROGEN REMOVAL%生物脱氮中N2O产生过程的微生物作用

    Institute of Scientific and Technical Information of China (English)

    王赛; 王淑莹; 彭永臻; 巩有奎

    2011-01-01

    Nitrous oxide (N2O) is an important greenhouse gas. Microbiological nitrification and denitrification were considered to be the major sources of N2O. The microbial processes of N2O production in biological nitrogen removal are elaborated from the microbiological perspective. In addition, the N2O production by microorganisms in different nitrogen removal processes is summarized. In nitrification process, the N2O production is mainly caused by ammonia-oxidizing bacteria (AOB). The existence of nitrite-oxidizing bacteria (NOB) could reduce the production of N2O. The accumulation of nitrite, low DO concentration and carbon lacking can lead to large amount of N2O production in denitrification process. Moreover, some other bacteria participate in nitrogen cycle can produce N2O also. This article proposes strategies and main directions for N2O reduction in nitrogen removal process.%N2O是一种重要的温室气体.微生物的生物硝化反硝化过程是N2O产生的主要来源.从微生物学的角度阐述了脱氮过程中N2O的产生过程,并分析了不同脱氮过程中各菌种对N2O产生过程的作用.硝化过程中N2O主要产生于氨氧化细菌的氨氧化过程,亚硝酸盐氧化细菌的存在可以减少N2O的产量;反硝化过程中亚硝酸盐的积累,低氧和碳源不足都会导致N2O产生量的增加;另外,其他一些参与氮循环的微生物也会产生N2O.文章最后给出了污水脱氮过程中N2O减量化的策略以及今后研究的方向.

  17. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems.

    Science.gov (United States)

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2016-09-01

    Nitrogen and phosphorous are key pollutants in wastewater to be removed and recovered for sustainable development. Traditionally, nitrogen removal is practiced through energy intensive biological nitrification and denitrification entailing a major cost in wastewater treatment. Recent innovations in nitrogen removal aim at reducing energy requirements and recovering ammonium nitrogen. Bioelectrochemical systems (BES) are promising for recovering ammonium nitrogen from nitrogen rich waste streams (urine, digester liquor, swine liquor, and landfill leachate) profitably. Phosphorus is removed from the wastewater in the form of polyphosphate granules by polyphosphate accumulating organisms. Alternatively, phosphorous is removed/recovered as Fe-P or struvite through chemical precipitation (iron or magnesium dosing). In this article, recent advances in nutrients removal from wastewater coupled to recovery are presented by applying a waste biorefinery concept. Potential capabilities of BES in recovering nitrogen and phosphorous are reviewed to spur future investigations towards development of nutrient recovery biotechnologies. PMID:27053446

  18. Theoretical evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process

    Institute of Scientific and Technical Information of China (English)

    ZHU Gui-bing; PENG Yong-zhen

    2006-01-01

    Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.

  19. Partial nitrification for nitrogen removal from sanitary landfill leachate.

    Science.gov (United States)

    Spagni, Alessandro; Psaila, Giuliana; Rizzo, Andrea

    2014-09-19

    Biological nitrogen removal using nitrite as a shortcut has recently been proposed for the treatment of high strength landfill leachate. The aim of this study was to assess the application of the SHARON (Single reactor High activity Ammonium Removal Over Nitrite) process for the partial nitrification of leachate generated in old landfills. Particular attention was given to the start-up phase of the process. This study demonstrated that partial nitrification can be obtained when treating raw leachate after biomass acclimation. Only a fraction (50-70%) of the ammonia present in the leachate can be oxidised due to a limited amount of alkalinity available. Stable nitritation was obtained by applying a hydraulic retention time (HRT) of 4-5 d, which is higher than the values proposed for the effluent of anaerobic digesters. This higher HRT could probably be allowed by the high concentration of free ammonia present in the leachate, which could severely inhibit the growth of nitrite-oxidising bacteria.

  20. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. PMID:23735800

  1. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.

    Science.gov (United States)

    Wang, Yi; Zheng, Shu-Jian; Pei, Li-Ying; Ke, Li; Peng, Dang-Cong; Xia, Si-Qing

    2014-01-01

    The uncontrolled release of nutrients from waste sludge results in nitrogen and phosphorus overloading in wastewater treatment plants when supernatant is returned to the inlet. A controlled release, recovery and removal of nutrient from the waste sludge of a Biological Nutrient Removal system (BNR) are investigated. Results showed that the supernatant was of high mineral salt, high electrical conductivity and poor biodegradability, in addition to high nitrogen and phosphorus concentrations after the waste sludge was hydrolysed through sodium dodecyl sulphate addition. Subsequently, over 91.8% of phosphorus and 10.5% of nitrogen in the supernatants were extracted by the crystallization method under the conditions of 9.5 pH and 400 rpm. The precipitate was mainly struvite according to X-ray diffraction and morphological examination. A multistage anoxic-oxic Moving Bed Biofilm Reactor (MBBR) was then adopted to remove the residual carbon, nitrogen and phosphorus in the supernatant. The MBBR exhibited good performance in simultaneously removing carbon, nitrogen and phosphorus under a short aeration time, which accounted for 31.25% of a cycle. Fluorescence in situ hybridization analysis demonstrated that nitrifiers presented mainly in floc, although higher extracellular polymeric substance content, especially DNA, appeared in the biofilm. Thus, a combination of hydrolysis and precipitation, followed by the MBBR, can complete the nutrient release from the waste sludge of a BNR system, recovers nutrients from the hydrolysed liquor and removes nutrients from leftovers effectively. PMID:25176308

  2. Biological Nutrient Removal in Compact Biofilm Systems

    OpenAIRE

    Bassin, J.P.

    2012-01-01

    The removal of nutrients such as nitrogen and phosphorus from both domestic and industrial wastewaters is imperative since they potentially harm the environment. One of the main consequences of excessive availability of nitrogen and phosphorus in aquatic ecosystems (freshwater, marine and estuarine) is the overgrowth of algae and other aquatic plants, a phenomenon designated as eutrophication. Algae and aquatic plants induce depletion of oxygen in water basins, resulting in massive death of e...

  3. Rape nitrogen nutrition diagnosis using continuum-removed hyperspectral reflectance

    Science.gov (United States)

    Zhang, Xuehong; Tian, Qingjiu

    2008-12-01

    The hyperspectral reflectance for rape fresh leaves and data of chlorophyll and total nitrogen content were acquired in primary growth stages under different nitrogen levels in order to monitor rape status and diagnose nitrogen using remote sensing method. A new method was developed for estimating the nitrogen nutrition of rape using continuum-removed method, which generally used in spectral analysis on rock and mineral. Based on the continuum-removed treatment and the correlation between absorption feature parameters and total nitrogen content of fresh leaves, results show that reflectance at the visible region decreased with increasing in the nitrogen fertilization, and continuum-removed operation can magnify the subtle difference in spectral absorption characteristics arose from the nitrogen stress on rape. During the seeding stage, bud-emerging stage and flowering stage of rape, total area of absorption peak, area left of the absorption peak and area right of the absorption peak in 550-750 nm region increased with increasing in the nitrogen fertilization, but it was opposite for the area-normalized maximal absorption depth. The correlation analysis indicated that it is at seeding stage that the relation between absorption characteristics parameters and leaf total nitrogen was best close. The research demonstrated that continuum-removed method is a feasible method for quantificational evaluation of rape nitrogen nutrition, and the seeding stage of rape is the best stage for assessment of rape nitrogen nutrition based on absorption characteristics of fresh leaves.

  4. 脱氮除磷膜生物反应器工艺耦合混凝过程优化%Optimization of biological nitrogen and phosphorus removal membrane bioreactor process coupling with coagulation process

    Institute of Scientific and Technical Information of China (English)

    王朝朝; 李思敏; 徐宇峰; 任金柱; 李军

    2016-01-01

    A bench-scale biological nitrogen and phosphorus removal membrane bioreactor (UCT-MBR) process was operated to treat carbon-limited municipal wastewater regarding on the influences of ferric chloride (FeCl3·6H2O) addition on the process performance and membrane fouling. FT-IR (Fourier translation infrared spectroscopy, FT-IR) and EDX (energy dispersive X-Ray, EDX) were used to analyze membrane surface foulants. The results show that the phosphorus removal is strengthened with the addition of ferric chloride. The highest removal efficiency of TP (total phosphorus, TP) can be obtained in UCT-MBR process under the condition of the optimal-phosphorus-removal dosing (dosage of 1.8 mmol/L) combined with the biological phosphorus removal process. Membrane fouling is alleviated with the addition of ferric chloride mainly through increasing the sludge particle size and reducing the SMP (soluble microbial products, SMP) fraction concentration with relative molecular mass above 105. The lowest membrane fouling rate in the UCT-MBR process can be obtained under the condition of the optimal-sludge-filterability dosing (dosage of 2.6 mmol/L),while the optimal-sludge-filterability dosing exhibits a strong influence on sludge bioactivities and reduces the sludge capabilities of nitrification and phosphorus release/uptake, which limits the performance of nitrogen and phosphorus removal. The ferric chloride addition has no effects on their compositions. Moreover, the influence of inorganic fouling on membrane fouling rate is found to be smaller than that of organic fouling. Besides, lag effects are found for inorganic elements combined with biopolymers to form a dense cake layer.%采用脱氮除磷膜生物反应器(UCT-MBR)工艺处理碳源受限型市政污水,考察氯化铁(FeCl3·6H2O)的投加对UCT-MBR工艺运行效能与膜污染的影响,用傅里叶红外光谱(FT-IR)和能谱(EDX)对膜污染物质进行分析。研究结果表明:氯化铁的投加强化除磷

  5. 15N in biological nitrogen fixation studies

    International Nuclear Information System (INIS)

    A bibliography with 298 references on the use of the stable nitrogen isotope 15N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  6. Enhanced Biological Phosphorus Removal for Liquid Dairy Manure

    OpenAIRE

    Hong, Yanjuan

    2009-01-01

    Enhanced biological phosphorus removal (EBPR) has been widely used in municipal wastewater treatment, but no previous studies have examined the application of EBPR to treat dairy manure. This study was conducted to evaluate the (i) performance of pilot-scale EBPR systems treating liquid dairy manure, to balance the ratio of nitrogen to phosphorus in manure to meet crop nutrient requirements, (ii) effects of dissolved oxygen and solids retention time on the efficiency of EBPR, and (iii) effect...

  7. Circulating fluidized bed biological reactor for nutrients removal

    Institute of Scientific and Technical Information of China (English)

    Yubo CUI; Hongbo LIU; Chunxue BAI

    2008-01-01

    A new biological nitrogen removal process, which is named herein "The circulating fluidized bed bio-reactor (CFBBR)", was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation rate was 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recir-culation rate of 400% based on the intluent flow rate, the average removal efficiencies of total nitrogen (TN) and sol-uble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentra-tions of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentra-tion, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4+-N/g VSS.d, and 0.016-0.074 g NOx--N/g VSS.d, respectively.

  8. Research progress of biological nitrogen removal by microbial fuel cell%微生物燃料电池在污水生物脱氮中的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵慧敏; 李晓玲; 赵剑强

    2016-01-01

    Microbial fuel cell (MFC) is a new technology for wastewater treatment while generating electricity simultaneously. Applying MFC to nitrogen removal makes the system denitrification MFC or simultaneous nitrification and denitrification (SND) MFC. This paper firstly gave an introduction on the development of biological denitrification in MFC system. Then we analyzed factors influencing MFC nitrogen removal efficiency. The analysis was mainly focused on the MFC configuration (space configuration,electrode materials,separation materials),the operation conditions (nitrogen components concentrations,HRT,dissolved oxygen,carbon source and C/N ratio,temperature,pH,external resistance),as well as the gene expression and diversity of denitrifying bacteria in systems. Finally, suggestions were proposed as following:developing high economic and efficient electrode materials with strong electron transfer ability and ammonia oxidation catalytic function,optimizing the operation conditions of the MFC denitrification systems and analyzing nitrogen removal mechanism,and screening efficient denitrification bacteria through the analysis of microbial community structure in MFC denitrification systems.%微生物燃料电池(MFC)是一种新型污水处理技术,其在处理污水的同时能产生电能,引起众多研究者的关注。将MFC应用于含氮污水的处理中便形成了反硝化或同步硝化反硝化MFC系统。本文回顾了MFC生物脱氮的发展历程,并从 MFC 实验装置的设计构造(空间构型、电极材料、分隔材料)、影响因素(含氮污染物浓度、水力停留时间、溶解氧、碳源与碳氮比、温度、pH 值、外电阻)和反硝化细菌的基因表达与多样性等3个方面进行了综述与分析,提出需要从以下方面进行MFC生物脱氮效能的强化:开发具有强电子传输能力和氨氧化催化功能的廉价高效电极材料,优化 MFC 脱氮的运行条件和探索不同环境下

  9. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants:Influence of Mathematical Model Assumptions

    OpenAIRE

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP...

  10. 强化生物脱碳脱氮及回用工艺处理煤化工废水%Enhanced Biological Carbon and Nitrogen Removal and Reuse Process for Treatment of Coal Chemical Wastewater

    Institute of Scientific and Technical Information of China (English)

    唐秀华

    2011-01-01

    采用以臭氧生物活性炭技术为深度处理单元的强化生物脱碳脱氮及回用工艺处理煤化工综合废水,对工艺流程、主要参数、工程调试和运行情况以及处理效果作了介绍.该工艺对高COD、高氨氮的含油难降解煤化工废水具有很好的处理效果,出水水质达到《城市污水再生利用工业用水水质》( GB/T 19923-2005)标准.%Enhanced biological carbon and nitrogen removal and reuse process using ozone/BAC process as advanced treatment unit is used to treat coal chemical wastewater. The process flow, main parameters , commissioning, operation and treatment effect are introduced. The process can treat high COD and NH3 - N, oily and refractory coal chemical wastewater very well. The effluent quality meets the requirement of Reuse of Urban Recycling Water-Water Quality Standard for Industrial Uses (GB/T 19923 -2005).

  11. Simultaneous nitrogen and phosphorus removal under low dissolved oxygen conditions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 352.9 mg/L-1338.2 mg/L, 34.4 mg/L-96.3 mg/L, and 2.21 mg/L-24.0 mg/L, the average removal efficiencies were 94.9%, 86.7% and 93.0%, respectively. During the test period of two months, effluent meas of CODCr, BOD5, NH3-N, TN and TP were below 50 mg/L, 25 mg/L, 10 mg/L and 1.0 mg/L, respectively. The low dissolved oxygen activated sludge process has a simple flow sheet, fewer facilities and high N and P removal efficiency. It is very convenient to retrofit the conventional activated sludge process with the above process.

  12. Ammoniacal nitrogen removal from groundwaters using natural and synthetic zeolites

    OpenAIRE

    Matsiyevska, Oksana; Chverenchuk, Andrii; Soprunko, Svitlana; Berezyuk, Roman; Pidlisny, Bogdan

    2013-01-01

    In article results of ammoniacal nitrogen occurrence ways into groundwaters analysis was represented. NH4+ removing effectivity from simulative solutions by natural (Sokyrnytsia minefield, Ukraine) and synthetic zeolites was compared.

  13. Removal of nitrogen leaching from vegetable crops in constructed wetlands

    NARCIS (Netherlands)

    Haan, de J.J.; Clevering, O.A.; Schoot, van der J.R.; Verstegen, H.A.G.

    2008-01-01

    Vegetable growing leads to high nitrogen emissions. In the Netherlands, nitrogen emissions can hardly be reduced by reducing fertilization without risks for yield and quality loss. An alternative measure to reduce emissions is to collect nitrate-rich drain water and remove nitrate from the drain wat

  14. Implementation of the anammox process for improved nitrogen removal

    NARCIS (Netherlands)

    Guven, D.; Pas-Schoonen, K.T. van de; Schmid, M.C.; Strous, M.; Jetten, M.S.M.; Sozen, S.; Orhon, D.; Schmidt, I.

    2004-01-01

    Stringent standards for nitrogen discharge necessitate the implementation of new systems for the sustainable removal of ammonium from wastewater. One of such systems is based on the process of anaerobic ammonium oxidation (Anammox), which is a new powerful tool especially for strong nitrogenous wast

  15. Nitrogen Removal from Digested Black Water by One-stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.;

    2009-01-01

    This study assessed the technical feasibility to treat digested black water from vacuum toilets (> 1000 mg NH4+-N L-1) in a lab-scale oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor. After an adaptation period of 2.5 months, a stable. nitrogen removal...

  16. Biological Nitrogen Fixation: Perspective and Limitation

    OpenAIRE

    N.D Purwantari

    2008-01-01

    The demand of chemical fertilizer, N in particular will be increasing until 2020. In Indonesia, the demand of fertilizer from 1999 – 2002 increased 37.5 and 12.4% for urea and ammonium sulphate, respectively. At the same time, the price of this fertilizer is also increasing and it can not be afforded by the farmer. Other problem in using chemical fertilizer is damaging to the soil and environment. One of the problem solvings for this condition is to maximize biological nitrogen fixation (BNF)...

  17. Optimization of an Sbr process for nitrogen removal from concentrated wastewater via nitrite

    International Nuclear Information System (INIS)

    The results of an experimentation carried out on a pilot-scale Sbr for nitrogen removal via nitridation-denitration are reported. The experimentation was carried out in the period July October 2007 and was aimed at achieving design data for the upgrade of a full scale wastewater treatment plant (WWTP), following the new regulations issued by Lombardy Regional Authority for the discharge of effluents into sensitive areas. One aspect that has been considered in the upgrade is nitrogen removal from the supernatant coming from anaerobic sludge digestion. The experimental results provided sound design data based on real biological activity measurements and operational process parameters such as oxygen and organic carbon requirements.

  18. Enhanced biological phosphorus removal employing EDTA disodium

    Energy Technology Data Exchange (ETDEWEB)

    Bojinova, D.; Velkova, R. [Higher Inst. of Chemical Technology, Sofia (Bulgaria)

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  19. A/A/O工艺脱氮除磷运行效果分析%Analysis on running effect for biological nitrogen and phosphorus removal of A/A/O technology

    Institute of Scientific and Technical Information of China (English)

    李曈; 郝瑞霞; 刘峰; 刘京

    2011-01-01

    为提高城市污水处理厂科学运行管理水平和出水质量,通过对某污水处理厂污水处理工艺的沿程采样分析,对比分析了A/A/O工艺脱氮除磷效果与工艺运行控制参数之间的相关关系。结果表明,A/A/O工艺对总氮去除率为83.2%,出水中氮的形态主要为硝酸盐氮;出水中总磷浓度基本达到一级A标准,总磷去除率在86.3%以上;缺氧段具有明显的反硝化聚磷作用;脱氮除磷效果与污泥负荷有反向变化关系,泥龄对磷的去除效果影响明显,当污泥负荷控制在0.15kg BOD5/(kg MLVSS.d)左右,泥龄控制在10~12 d时,可以同时%In order to improve the scientific management level and effluent quality of a municipal wastewater treatment plant(WWTP),the relationship between nitrogen and phosphorus removal effect and operating parameters of the A/A/O technology was studied by sampling and analyzing along the process in WWTP of Beijing.The results showed that the total nitrogen removal rate was 83.2%,and the main form of nitrogen was nitrate nitrogen in effluent.The TP concentration in effluent could reach the 1 grade A level of national discharging standard in China basically,and the TP removal rate was over 86.3%.The denitrifying phosphorus removal played a remarkable role in the anoxic phase of A/A/O process.The relationship between nitrogen and phosphorus removal effect and sludge loading expressed inverse variation.Sludge retain time(SRT) had an obvious impact on phosphorus removal.When the sludge loading was about 0.15 kg BOD5/(kg MLVSS·d)and the SRT was about 10~12 d in A/A/O process,nitrogen and phosphorus removal rates were up to 81% and 88%,respectively.There was an inverse variation relationship between the phosphorus accumulation and the sludge emission capacities in the wastewater treatment system.When the sludge emission capacities maintained about 2~2.5 percent of influent,phosphorus removal can be controlled in the stable and

  20. Emissão de óxido nitroso nos processos de remoção biológica de nitrogênio de efluentes Nitrous oxide emission in the biological nitrogen removal process

    Directory of Open Access Journals (Sweden)

    Marcelo Bortoli

    2012-03-01

    Full Text Available O óxido nitroso (N2O é altamente impactante ao meio ambiente por ser um dos três gases mais importantes quando considerado o alto potencial de efeito estufa e a baixa quantidade emitida para a atmosfera. A preocupação com a geração de N2O no tratamento de efluentes tem crescido nas duas últimas décadas. Muitos estudos vêm sendo realizados com o objetivo de avaliar as condições de geração e emissão de N2O em etapas de remoção de nitrogênio no tratamento, tanto em escala laboratorial quanto em estações de tratamento de efluentes. Essas pesquisas demonstram que, sob certas condições, ambos os processos podem produzir e emitir grandes quantidades de N2O para a atmosfera, o que remete à importância de mais investigações para determinar as condições específicas que minimizem a produção e a emissão de N2O nesse caso.The nitrous oxide (N2O has a high striking power in environmental. It's one of the three most important greenhouse gases, when considered the greenhouse potential and emissions to the atmosphere. The concern in the two last decades with the N2O generation in wastewater treatment has grown. Many studies have been conducted with the objective of evaluate the conditions of N2O generation and emission in the nitrification and denitrification process, in biological nitrogen removal of wastewater treatment, both lab scale and wastewater treatment plants (WWTP. These studies show that under certain conditions, both processes can generate and emit large amounts of N2O to the atmosphere, what demonstrates the importance of conducting further investigations to determine specific conditions that minimize N2O production and emission.

  1. Direct Detection by In Situ PCR of the amoA Gene in Biofilm Resulting from a Nitrogen Removal Process

    OpenAIRE

    Hoshino, Tatsuhiko; Noda, Naohiro; Tsuneda, Satoshi; Hirata, Akira; Inamori, Yuhei

    2001-01-01

    Ammonia oxidation is a rate-limiting step in the biological removal of nitrogen from wastewater. Analysis of microbial communities possessing the amoA gene, which is a small subunit of the gene encoding ammonia monooxygenase, is important for controlling nitrogen removal. In this study, the amoA gene present in Nitrosomonas europaea cells in a pure culture and biofilms in a nitrifying reactor was amplified by in situ PCR. In this procedure, fixed cells were permeabilized with lysozyme and sub...

  2. Development and Experimental Evaluation of a Steady-state Model for the Step-feed Biological Nitrogen Removal Process%分段进水生物脱氮工艺稳态模型的开发与试验评价

    Institute of Scientific and Technical Information of China (English)

    祝贵兵; 彭永臻; 王淑莹; 左金龙; 王亚宜; 郭建华

    2007-01-01

    In this article, a steady-state mathematical model was developed and experimentally evaluated to investigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the total nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods, this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia, nitrate, and total nitrogen in the effluent.To verify the simulation results, pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results, which proved the validity of the developed model.The sensitivity of the model predictions was analyzed.After verification of the validity, the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period, the effluent total nitrogen concentrations were all below 5mg·L-1.with more than 90% removal efficiency.

  3. Nitrogen removal from concentrated latex wastewater by land treatment

    Directory of Open Access Journals (Sweden)

    Vikanda Thongnuekhang

    2004-05-01

    Full Text Available Most of the concentrated latex factories in the South of Thailand discharge treated wastewater that contains high level of nitrogen to a nearby river or canals leading to a water pollution problem. A study of land treatment system was conducted to treat and utilize nitrogen in treated wastewater from the concentrated latex factory. The experimental pilot-scale land treatment system was constructed at the Faculty of Engineering, Prince of Songkla University, Hat Yai Campus. It consisted of water convolvulus (Ipomea aquatica, I. Reptans, tropical carpet grass (Axonopus compresus (Swartz Beav. and control unit (no plantation. The treated wastewater from the stabilization pond system of the selected concentrated latex factoryin Songkhla was used to irrigate each experimental unit. Influent and effluent from the experimental units were analyzed for TKN, NH3-N, Org-N, NO3 --N, NO2 --N, BOD5, sulfate, pH and EC. The land treatment system resulted a high removal efficiency for nitrogen. Tropical carpet grass provided higher removal efficiency than other units for all parameters. The removal efficiency of water convolvulus and control unit were not significantly different. The average removal efficiency of TKN, NH3-N, Org-N, BOD5 and sulfate for tropical carpet grass unit were 92, 97, 61, 88 and 52%, for water convolvulus unit were 75, 80, 43, 41 and 30%, and for control unit were 74, 80, 41, 31 and 28%, respectively. Mass balance of nitrogen transformation was conducted. It revealed that plant uptake was the major mechanism for nitrogen removal in land treatment.

  4. Nitrogen supply of crops by biological nitrogen fixation. 2

    International Nuclear Information System (INIS)

    In the present work the contributions from combined N-sources and symbiotic nitrogen fixation to the nitrogen supply of field-grown peas and field beans were evaluated by means of 15N fertilizer dilution. The effect of N-fertilizer, supplied at sowing and at different stages of plant development, on nitrogen fixation, yield and protein production in peas, was studied in pot experiments. (author)

  5. Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime.

    Science.gov (United States)

    Li, Xiao-ming; Chen, Hong-bo; Yang, Qi; Wang, Dong-bo; Luo, Kun; Zeng, Guang-ming

    2014-06-01

    Previous researches have demonstrated that biological phosphorus removal from wastewater could be induced by oxic/extended-idle (O/EI) regime. In this study, an anoxic period was introduced after the aeration to realize biological nutrient removal. High nitrite accumulation ratio and polyhydroxyalkanoates biosynthesis were obtained in the aeration and biological nutrient removal could be well achieved in oxic/anoxic/extended-idle (O/A/EI) regime for the wastewater used. In addition, nitrogen and phosphorus removal performance in O/A/EI regime was compared with that in conventional anaerobic/anoxic/aerobic (A(2)/O) and O/EI processes. The results showed that O/A/EI regime exhibited higher nitrogen and phosphorus removal than A(2)/O and O/EI processes. More ammonium oxidizing bacteria and polyphosphate accumulating organisms and less glycogen accumulating organisms containing in the biomass might be the principal reason for the better nitrogen and phosphorus removal in O/A/EI regime. Furthermore, biological nutrient removal with O/A/EI regime was demonstrated with municipal wastewater. The average TN, SOP and COD removal efficiencies were 93%, 95% and 87%, respectively. PMID:24393562

  6. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    Science.gov (United States)

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. PMID:24658107

  7. Fuzzy Control of Nitrate Recirculation and External Carbon Addition in A/O Nitrogen Removal Process

    Institute of Scientific and Technical Information of China (English)

    马勇; 彭永臻; 王淑莹; 王晓莲

    2005-01-01

    Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict.Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parazneter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at-86 mV and -90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.

  8. Nitrogen removal via nitrite from municipal landfill leachate

    Institute of Scientific and Technical Information of China (English)

    WU Lina; PENG Chengyao; ZHANG Shujun; PENG Yongzhen

    2009-01-01

    A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB),an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR),was used to treat landfill leachate.During operation,denitrification and methanogenesis took place simultaneously in the first stage UASB (UASB1),and the effluent chemical oxygen demand (COD) was further removed in the second stage UASB (UASB2).Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor,and ammonia was removed via nitrite in it.Last but not least,the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification.A system consisting of a two-stage UASB and an A/O reactor was used to achieve the stable short-cut nitrification in the first stage (60 d).The effluent of stage one was treated by SBR in the second stage (60 d).The results over 120 d were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L,the short-cut nitrification with 85%-90% nitrite accumulation was achieved stably in the A/O reactor.The TN and ammonia nitrogen removal efficiencies of the system were 98% and 97%,respectively.The residual ammonia,nitrite and nitrate which were produced by nitrification in the A/O reactor could be washed out almost completely in SBR.The TN and ammonia nitrogen concentrations of final effluent were about 39 mg/L and 12 mg/L,respectively.

  9. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem;

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...... logic diagnosis tool was developed, utilizing stoichiometric and concentration ratio measurements and removal efficiencies, along with rules derived from process knowledge. The tool could accurately determine the overall performance of the system and can therefore serve as a powerful tool to provide...

  10. Stormwater nitrogen removal performance of a floating treatment wetland.

    Science.gov (United States)

    Borne, Karine E; Tanner, Chris C; Fassman-Beck, Elizabeth A

    2013-01-01

    The nitrogen (N) removal efficiency and effluent quality of two parallel stormwater retention ponds, one retrofitted with a floating treatment wetland (FTW) and one without any vegetation, was compared in a field trial. This study shows that inclusion of FTWs in stormwater retention ponds has potential to moderately improve N removal. Median FTW outlet event mean concentrations (EMCs) were lower than median inlet and control pond outlet EMCs for all species of N, except for NH(4)-N. Performance was statistically better from late spring to end autumn due to higher organic nitrogen (ON) removal and denitrification in presence of the FTW. Low dissolved oxygen (DO), higher temperature and increased organic matter (OM) and microbial activity below the FTW, likely facilitated the higher denitrification rates observed over this period. Greater sediment N accumulation in the FTW pond also contributed to its higher overall N removal. Higher OM availability in the FTW pond due to release of root exudates and supply of detritus from plant die-back may have contributed to floc formation in the water column, increasing particulate ON settlement. Enhanced ON mineralisation may also be responsible but was probably limited in summer due to the low DO induced by the FTW. Direct uptake by the plants appears to be of less importance. PMID:24135117

  11. A Modified Oxidation Ditch with Additional Internal Anoxic Zones for Enhanced Biological Nutrient Removal

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; YANG Dianhai; XU Li; SHEN Changming

    2013-01-01

    A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally,aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process.Under all experimental conditions,the anaerobic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency.The effluent NH+4-N,total nitrogen(TN),PO34--P and total phosphorus(TP)contents were 1.2 mg·L-1,13 mg·L-1,0.3 mg·L-1 and 0.4 mg·L-1,respectively,all met the discharge standards in China.The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%.The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification.It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones,which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source.However,an excess internal recycle would cause nitrite to accumulate in the system.This seems to be harmful to biological phosphorus removal.

  12. Enhanced biological phosphorus removal from activated sludge system; Eliminacion biologica del fosfor en aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Pidre Bocardo, J. R.; Toja Santillana, J.; Alonso Alvarez, E. [Sevilla (Spain)

    1999-06-01

    A literature review of enhanced biological phosphorus removal was performed. This biological removal is based on the selective enrichment of bacteria accumulating inorganic polyphosphate, obtained at a cyclic regime of alternating anaerobic and aerobic conditions; or anaerobic, anoxic and aerobic zones for combined nitrogen and phosphorus removal. Some bacterial groups may to be implicate in this process, the gen Acinetobacter has been the most studied. In this paper a study of phosphorate forms from wastewater for a conventional activated sludge system is presented. (Author) 40 refs.

  13. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  14. Denitrification in an anoxic rotating biological contactor under two carbon/nitrogen ratios

    OpenAIRE

    Cortez, Susana; Teixeira, P; Oliveira, Rosário; Mota, M.

    2008-01-01

    The aim of the present work was to compare the performance of an anoxic bench-scale rotating biological contactor (RBC), in terms of the denitrification process, applied to treat synthetic wastewater under two carbon/nitrogen (C/N) molar ratios (1.5 and 3). The average removal efficiency in terms of nitrogen-nitrate was of about 90.4% at a C/N=1.5 lowering to 73.7% at a C/N=3. Considering carbon-acetate removal an overall efficiency of 82.0% and 63.6% was attained at a C/N rati...

  15. Alternate anoxic/aerobic operation for nitrogen removal in a membrane bioreactor for municipal wastewater treatment.

    Science.gov (United States)

    Guglielmi, G; Andreottola, G

    2011-01-01

    A large pilot-scale membrane bioreactor (MBR) with a conventional denitrification/nitrification scheme for municipal wastewater treatment has been run for one year under two different aeration strategies in the oxidation/nitrification compartment. During the first five months air supply was provided according to the dissolved-oxygen set-point and the system run as a conventional predenitrification MBR; then, an intermittent aeration strategy based on effluent ammonia nitrogen was adopted in the aerobic compartment in order to assess the impact on process performances in terms of N and P removal, energy consumption and sludge reduction. The experimental inferences show a significant improvement of the effluent quality as COD and total nitrogen, both due to a better utilization of the denitrification potential which is a function of the available electron donor (biodegradable COD) and electron acceptor (nitric nitrogen); particularly, nitrogen removal increased from 67% to 75%. At the same time, a more effective biological phosphorus removal was observed as a consequence of better selection of denitrifying phosphorus accumulating organisms (dPAO). The longer duration of anoxic phases also reflected in a lower excess sludge production (12% decrease) compared with the standard pre-denitrification operation and in a decrease of energy consumption for oxygen supply (about 50%). PMID:22335118

  16. Biological anoxic phosphorus removal in a continuous-flow external nitrification activated sludge system

    Energy Technology Data Exchange (ETDEWEB)

    Kapagiannidis, A. G.; Aivasidis, A.

    2009-07-01

    Application of Biological Nutrient Removal (BNR) process in wastewater treatment is necessitated for the protection of water bodies from eutrophication. an alternative BNR method is tested for simultaneous Carbon (C), Nitrogen (N) and Phosphorus (P) removal in a continuous-flow bench scale plant for municipal wastewater treatment. The plant operation is based on the activity of two microbial populations which grow under different operational conditions (two sludge system). (Author)

  17. Removal of nitrogen from wastewater with perennial ryegrass/artificial aquatic mats biofilm combined system

    Institute of Scientific and Technical Information of China (English)

    Chongjun Chen; Rui Zhang; Liang Wang; Weixiang Wu; Yingxu Chen

    2013-01-01

    To develop a cost-effective combined phytoremediation and biological process,a combined perennial ryegrass/artificial aquatic mat biofilm reactor was used to treat synthetic wastewater.Influent ammonium loading,reflux ratio,hydraulic retention time (HRT) and temperature all had significant effects on the treatment efficiency.The results indicated that the effluent concentration of ammonium increased with increasing influent ammonium loading.The reactor temperature played an important role in the nitrification process.The ammonium removal efficiency significantly decreased from 80% to 30%-50% when the reactor temperature dropped to below 10℃.In addition,the optimal nitrogen removal condition was a reflux ratio of 2.The nitrate and ammonium concentration of the effluent were consistent with the HRT of the combined system.The chemical oxygen demand (COD) removal efficiency was at a high level during the whole experiment,being almost 80% after the start-up,and then mostly above 90%.The direct uptake of N by the perennial ryegrass accounted for 18.17% of the total N removal by the whole system.The perennial ryegrass absorption was a significant contributor to nitrogen removal in the combined system.The result-illustrated that the combined perennial ryegrass/artificial aquatic mat biofilm reactor demonstrated good performance in ammonium,total N and COD removal.

  18. Expert systems guide biological phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Krichten, D.J.; Wilson, K.D.; Tracy, K.D. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1991-10-01

    There is a large body of knowledge regarding optimum control strategies for new secondary wastewater treatment technology using an anaerobic selector to provide biological phosphorus removal. However, because the selector technology is new and the concepts differ somewhat from those used in conventional activated sludge wastewater treatment, a method of communicating this knowledge to plant operators is needed. Traditional methods such as classroom training and operating manuals are of limited effectiveness. The commonplace availability and low cost of the personal computer (PC) makes it practical to use a computer program to communicate the type of information required to control a wastewater treatment plant. Knowledge-based systems technology, commonly referred to as expert systems (ES) technology, is easy to use, provides useful information regarding a consistent control strategy, relieves the anxiety associated with learning a new process,' and provides instruction for inexperienced personnel. ES technology does not require special formatted input and is therefore easily accessible. All information required by the program is readily available through routine laboratory analysis, common plant instrumentation, or direct user observation. The program was designed for all levels of computer users and will run on all IBM-compatible or Apple MacIntosh systems.

  19. Possibility in optimization of biological phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, R.

    1989-02-01

    The elimination-efficiency of wastewater treatment plants with biological phosphorus removal is often limited by the following aspects: Low concentrations of organic acids in influent wastewater, hydraulic- and load fluctuations, low anaerobic sludge detention time, transfer of nitrate into the anaerobic zone, phosphorus release in the final clarifier and in sludge treatment units, high effluent suspended solids content. In this context, the following optimization measures seem to be advantageous: 'Activated primary tanks' and 'activated sludge thickeners' are adequate techniques to raise the concentration of organic acids in the wastewater by pre-acidification. Simultaneous acidification takes place in an anaerobic sedimentation basin as realized in the EASC-process (extended anaerobic sludge contact). Below the sludge blanket of an EASC-sedimentation tank, anaerobic conditions can be maintained even in the case of nitrate input. Furthermore, this process is suitable to compensate load- and hydraulic fluctuations of wastewater. To avoid phosphorus release in the final clarifier, it is important to improve sludge settleability. If a low sludge blanket and/or high oxygen concentrations are maintained, phosphorus release in the final clarifier can be limited. Further reduction of total phosphorus is possible with filtration only. Measures against high return flow phosphorus loads are mechanical dewatering of excess sludge and chemical precipitation of digester supernatant.

  20. 污泥固体停留时间对实时控制生物脱氮SBR中亚硝酸盐积累的影响%Effect of Sludge Retention Time on Nitrite Accumulation in Real-time Control Biological Nitrogen Removal Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    吴昌永; 彭永臻; 王淑莹; 李晓玲; 王然登

    2011-01-01

    In this study, four sequencing batch reactors (SBR), with the sludge retention time (SRT) of 5, 10, 20and 40 d, were used to treat domestic wastewater, and the effect of SRT on nitrite accumulation in the biological nitrogen removal SBR was investigated. The real-time control strategy based on online parameters, such as pH, dissolved oxygen (DO) and oxidation reduction potential (ORP), was used to regulate the nitrite accumulation in SBR.The model-based simulation and experimental results showed that with the increase of SRT, longer time was needed to achieve high level of nitritation. In addition, the nitrite accumulation rate (NAR) was higher when the SRT was relatively shorter during a 112-day operation. When the SRT was 5 d, the system was unstable with the mixed liquor suspended solids (MLSS) decreased day after day. When the SRT was 40 d, the nitrification process was significantly inhibited. SRT of 10 to 20 d was more suitable in this study. The real-time control strategy combined with SRT control in SBR is an effective method for biological nitrogen removal via nitrite from wastewater.

  1. Nitrogen and phosphorus removal under intermittent aeration conditions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A practice wastewater treatment plant was operated usingintermittent aeration activated sludge process to enhancebiological nitrogen and phosphorus removal. When the influentconcentrations of CODCr, BOD5, TN, TP, NH3-N, TKN, and SS varied ina range of 207.5-1640 mg/L, 61.8-637 mg/L, 28.5-75.6 mg/L, 4.38-20.2 mg/L, 13.6-31.9 mg/L, 28.5-75.6 mg/L, and 111-1208 mg/L, theeffluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L,5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time ofoperating results, this process is very suitable for nutrientbiological removal for treating the municipal wastewater thosewater characteristics are similar as that of the Songjiang Municipal Waste water Treatment plant(SJMWTP).

  2. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Kroon, Kristel; Rikmann, Ergo; Tenno, Toomas; Tomingas, Martin; Vabamäe, Priit; Vlaeminck, Siegfried E; Tenno, Taavo

    2012-09-01

    In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N₂H₄ and NH₂OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L⁻¹ of each NH₂OH and N₂H₄, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO₂⁻. Various combinations of N₂H₄, NH₂OH, NH₄⁺, and NO₂⁻ were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N₂H₄ concentration (4.38 mg N L⁻¹) present in these batches was 5.43 mg N g⁻¹ TSS h⁻¹, whereas equimolar concentrations of N₂H₄ and NH₂OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.

  3. Investigation of the Effects of COD/TP Ratio on the Performance of a Biological Nutrient Removal System

    OpenAIRE

    Punrattanasin, Warangkana

    1997-01-01

    The laboratory-scale University of Cape Town (UCT) process was designed to investigate the effects of changing COD/TP ratios on the performance of biological nutrient removal (BNR) processes. Specific objectives of the research were to investigate the effects of COD/TP ratio on the rates of phosphorus removal, COD removal, nitrogen removal, PHB utilization and oxygen uptake. The system was fed with municipal wastewater and operated at 20° C. The influent COD concentration was held approximat...

  4. Removal of Nitrogen and Phosphorus From Reject Water Using Chlorella vulgaris Algae After Partial Nitrification/Anammox Process.

    Science.gov (United States)

    Gutwinski, Piotr; Cema, Grzegorz

    2016-01-01

    Wastewater containing nutrients like ammonia, nitrite, nitrate and phosphates have been identified as the main cause of eutrophication in natural waters. Therefore, a suitable treatment is needed. In classical biological processes, nitrogen and phosphorus removal is expensive, especially due to the lack of biodegradable carbon, thus new methods are investigated. In this paper, the new possibility of nitrogen and phosphorus removal in side stream after the partial nitrification/Anammox process is proposed. Research was carried out in a lab-scale vertical tubular photobioreactor (VTR) fed with real reject water, from dewatering of digested sludge, after partial nitrification/Anammox process from lab-scale sequencing batch reactor (SBR). Nitrogen and phosphorus concentrations were measured every three days. The average nitrogen and phosphorus loads were 0.0503 ± 0.036 g N g(vss)/d and 0.0389 ± 0.013 g P g(vss)/d accordingly. Results have shown that microalgae were able to efficiently remove nitrogen and phosphorus. The average nitrogen removal was 36.46% and phosphorus removal efficiency varied between 93 and 100%. PMID:26803028

  5. Biological nitrogen fixation, forms and regulating factors

    NARCIS (Netherlands)

    Giller, K.E.; Mapfumo, P.

    2002-01-01

    Nitrogen fixation is the basis of the global N cycle. Therefore it is not surprising that the ability to fix atmospheric N2 evolved in the "primeval soup" and is deeply rooted in the evolutionary tree of life. Despite this, nitrogenase remains an enzyme exclusive to prokaryotes; no eukaryote has bee

  6. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  7. [Effect of temperature on stability of nitrogen removal in the ANAMMOX reactor].

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Zheng, Yu-Hui; Yuan, Yi; Li, Da-Peng; Pan, Yang; Zhang, Chun-Lei

    2012-04-01

    The effect of temperature on stability of nitrogen removal efficiency was investigated in an ANANMMOX reactor by measuring the nitrogen removal rate. The results showed that the nitrogen removal rate changed between 1.51 kg x (m3 x d)(-1) and 1.84 kg x (m3 x d)(-1) when the temperature was between 26 degrees C and 37 degrees C. Compared with gradually degrading temperature (nitrogen removal rate variation of amplitude 9.03%), the ladder degrading temperature was more advantageous on the stability of nitrogen removal efficiency. Nitrogen removal rate variation of amplitude was 4.35%. The nitrogen removal rate dropped quickly, when the temperature was below 20 degrees C. Moreover, a large number of NO2(-) -N accumulated in the ANAMMOX process, when temperature is below 15 degrees C in the reactor. A strong relationship between temperature and nitrogen removal rate was found, when the temperature was below 20 degrees C. Based on the effect of temperature on nitrogen removal rate, the strategy about temperature control was proposed to achieve the fast start-up and high efficiency of nitrogen removal under low temperature for the ANANMMOX reactors.

  8. Kinetics of nitrogen removal in high rate anammox upflow filter

    International Nuclear Information System (INIS)

    The process kinetics for laboratory-scale anammox (anaerobic ammonium oxidation) upflow filter using synthetic wastewater as feed were investigated. The experimental unit consisted of a 2.0 L reactor filled with three-dimensional plastic media. The filter was tested for different influent substrate concentrations and hydraulic retention time (HRT). The substrate loading removal rate was compared with prediction of Stover-Kincannon, second-order and the first-order substrate removal models. Upon approaching pseudo-steady-state condition, substrate ammonium or nitrite concentrations were increased from 280 to 462 mg N/L, while HRT was stepwise decreased from 14.4 to 2 h, with a concomitant increase in nitrogen loading rate (NLR) from 0.93 to 7.34 g/L day. Based on calculations, Stover-Kincannon model and second-order 'Grau' model were found to be the appropriate models to describe the upflow filter. According to Stover-Kincannon model, the maximum total substrate removal rate constant (Umax) and saturation value constant (KB) were suggested as 12.4 and 12.0 g N/L day, respectively. As Stover-Kincannon model and second-order model gave high correlation coefficients (97.9% and 98.6%, respectively), these models may be used in predicting the behavior or design of the anammox filter.

  9. Stoichiometric deduction of activated sludge process for organic carbon and nitrogen removal

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-yong; ZOU Lian-pei

    2009-01-01

    The activated sludge process (ASP) is the most generally applied biological wastewater treatment method. The ASP for the removal of organic carbon and nitrogen can be looked as the combination of eight processes. In order to set up an ASP model, the stoichiometric coefficients should be deduced so that the stoichiometric matrix can be presented. The important assumptions and simplifications behind the model for ASP are enumerated. Using the matrix, mass balance equation and consistent units, the stoichiometric coefficients in the eight processes are exclusively deduced one by one.

  10. Removal of nitrogen by a layered soil infiltration system during intermittent storm events.

    Science.gov (United States)

    Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong

    2009-07-01

    The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate. PMID:19473686

  11. Simultaneous phosphorus and nitrogen removal in a continuous-flow two-sludge system

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-kun; HUANG Rong-xin; BAO Lin-lin; SHAO Chun-hong; ZHANG Jie

    2006-01-01

    The ability of simultaneous biological phosphorus and nitrogen removal was investigated in a lab-scale continuous-flow two-sludge system. Alternating anaerobic and anoxic conditions were combined with contact oxidation stage for treating raw municipal wastewater. Long-term experiments showed that the contradiction of competing for the organic substrate between denitrifying bacteria and PAOs (phosphorus accumulating organisms) in traditional phosphorus and nitrogen removal system has been resolved. The system can adapt to low influent COD/TN ratio (C/N). Furthermore the SRT (sludge retention time) of nitrifying sludge and denitrifying phosphorus removal sludge can be controlled at optimal conditions respectively. The removal efficiency of COD, TP,TN, and NH4-N was 81.78%, 92.51%, 75.75%, and 84.47% respectively. It was also found that the appropriate influent C/N should be controlled at the range of 3.8-6, while the optimal C/N to the system ranged between 4-5, and the BFR (bypass sludge flow rate)should be controlled at 0.35 around.

  12. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem...

  13. Aerobic and anaerobic incubation: Biological indexes of soil nitrogen availability

    Directory of Open Access Journals (Sweden)

    Kresović Mirjana M.

    2005-01-01

    Full Text Available Our researches have been made on brown forest soil that had been used in long-term experiments set up according to specified fertilization system for over 30 years. We have chosen those experiment variants in which quantities of nitrogen fertilizers were gradually increased. The soil samples taken from 0 cm to 30 cm depth were used to determine biological indexes of nitrogen availability (aerobic and anaerobic incubation. The same samples were also used for pot experiments with oat. Plant and soil parameters obtained in controlled conditions were used for determination of biological indexes reliability in measuring the soil nitrogen availability. On the grounds of correlation analysis, it can be concluded that biological index of nitrogen availability achieved by the anaerobic incubation (without substraction of the initial content of available nitrogen of the investigated brown forest soil is the reliable indicator of soil nitrogen availability. That is not the case with the aerobic incubation in which reliability has not been established.

  14. [Effective nitrogen removal in low C/N wastewater with combined aerobic-low DO biofilm treatment process].

    Science.gov (United States)

    Chen, Xiu-Rong; Ai, Qi-Feng; Xu, Wen-Lu; Wu, Min-Lin

    2011-10-01

    The municipal wastewater in China is characterized by low ratio of carbon to nitrogen, which is the key restrictive factor for effective biological removal of nitrogen. In this study, the aerobic-low DO biofilm process was used for the nitrogen removal of municipal wastewater. By means of adjusting inflow ratios of aerobic section to low-DO section, hydraulic retention time (HRT) and inflow ratio of carbon to nitrogen (C/N), the performances of nitrification in aerobic biofilm section and denitrification in low-DO section could be improved, the good performance of nitrogen removal was achieved. In order to insure the good effluent quality, especially for ammonia nitrogen and total nitrogen indexes, the nitrification and denitrification could be made up in aerobic and low-DO biofilm section respectively due to the coexistence of aerobic and anoxic zone in biofilm. There were 3 stages for the research process. In the first stage, the original C/N, inflow ratios of aerobic section to low-DO section were chosen as 3:1 and 1:1 respectively, then the effects of various HRT (aerobic section + low DO section) values such as (10 + 5) h, (8 + 4) h, (6 + 3) h, (4 + 2) h to nitrogen removal were analyzed. According to the conclusion in the first stage, the original C/N was kept at 3:1, HRT (aerobic section + low DO section) was (10 + 5) h. Then, the effects of various inflow ratios to nitrogen removal were studied in the second stage. In the third stage, when HRT(aerobic section + low DO section) was (10 + 5) h and inflow ratio was 1:1, the original C/N were adjusted from 2:1, 3:1, 5:1 to 10:1. To conclude, the optimal parameters for nitrogen removal in the biofilm system were as follows: original C/N = 5:1, inflow ratio of aerobic to low-DO section = 1:1, HRT of aerobic and low-DO sections were 10 h and 5 h respectively. As a result, COD, ammonia nitrogen and total nitrogen could be removed from 254 mg/L to 48 mg/L, 37.2 mg/L to 9.3 mg/L and 48.2 mg/L to 14.8 mg

  15. Ammonium nitrogen removal from slurry-type swine wastewater by pretreatment using struvite crystallization for nitrogen control of anaerobic digestion.

    Science.gov (United States)

    Kim, B U; Lee, W H; Lee, H J; Rim, J M

    2004-01-01

    Precipitation of ammonium together with phosphate and magnesium is a possible alternative for lowering the nitrogen content of wastewater. In this study we examine the removal of ammonium nitrogen and phosphorus from slurry-type swine wastewater containing high concentrations of nutrients by the addition of phosphoric acid along with either calcium oxide or magnesium oxide, which leads to the crystallization of insoluble salts such as hydroxyapatite and struvite. The struvite crystallization method showed a high capacity for the removal of nitrogen when magnesium oxide and phosphoric acid were used as the magnesium and phosphate sources, respectively. When it was applied to swine wastewater containing a high concentration of nitrogen, the injection molar ratio of Mg2+:NH4+:PO4(3-) that gave maximum ammonium nitrogen removal was 3.0:1.0:1.5. PMID:15137426

  16. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    Science.gov (United States)

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  17. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    Science.gov (United States)

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater. PMID:25693403

  18. A review on the removal of nitrogen oxides from polluted flow by bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H.; Leung, D.Y.C. [Hong Kong Univ., (China). Dept. of Mechanical Engineering

    2010-07-01

    China's emissions of nitrogen oxides (NOx) have increased exponentially over the past decades because of rapid economic growth driven by the generation of energy from fossil fuels. The main pollutants of NOx are nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) which are harmful to the environment and human health. The conventional technologies used to control NOx emission from exhaust gas include selective catalytic reduction, selective non-catalytic reduction, adsorption and absorption scrubbing. This paper discussed the feasibility of removing NOx with conventional gas phase bioreactors such as biofilters, biotrickling filters and bioscrubbers. Alternative processes were also presented, such as membrane bioreactors, rotating drum biofilters and rotating biological contactors. The bioreactor appears to be superior to conventional technologies in terms of simplicity and economy in operation, low process energy requirements, and easy treatment of residual products. Two biologically-based NOx removal theories were also reviewed in this paper, notably nitrification and denitrification. The use of bacteria, fungi and microalgae were discussed and compared. It was concluded that the bioreactor is a promising technology that can be used to control NOx emitted during combustion processes. 15 refs., 1 tab., 2 figs.

  19. Study on one-stage Partial Nitritation-Anammox process in Moving Bed Biofilm Reactors: a sustainable nitrogen removal.

    OpenAIRE

    Bertino, Andrea

    2011-01-01

    In the last decade, several novel and cost-effective biological nitrogen removal technologies have been developed. The discovery of anaerobic ammonium oxidation (Anammox), about 15 years ago, has resulted in new opportunities for research and development of sustainable nitrogen removal systems. Compared to conventional nitrification/denitrification, Anammox eliminates necessity of external organic carbon source, has a smaller production of excess sludge, reduces energy demand for aeration (up...

  20. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...... of the non-reactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive...... settler: (1) increases the hydrolysis of particulates; (2) increases the overall plant's denitrification efficiency by reducing the SNOx concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases XOHO and XANO decay; and, finally, (5) increases the growth...

  1. Removal of high concentrated ammonia nitrogen from landfill leachate by landfilled waste layer

    Institute of Scientific and Technical Information of China (English)

    GUO Hui-dong; HE Pin-jing; SHAO Li-ming; LI Guo-jian

    2004-01-01

    The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and used in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste(MSW) collected in Shanghai, China, which was characterized with high food waste content. The NH4+ removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH4+ in leachate was oxidized to NO2- and NO3-. Then high concentrated NO2- and NO3- was removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were produced from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH4.

  2. An Investigation of the Biochemistry of Biological Phosphorus Removal

    OpenAIRE

    Erdal, Zeynep Kisoglu

    2002-01-01

    Although enhanced biological phosphorus removal (EBPR) and complete biological nutrient removal (BNR) systems can be operated successfully by experienced operators, the accuracy of design and strength of the scientific background need to be reinforced to enable accurate modeling and economically optimal design. One way to accomplish this would be through a better understanding of the biochemical mechanisms and microbial population dynamics that determine the reliability and efficiency of EBPR...

  3. Energy efficient treatment of A-stage effluent: pilot-scale experiences with shortcut nitrogen removal.

    Science.gov (United States)

    Seuntjens, D; Bundervoet, B L M; Mollen, H; De Mulder, C; Wypkema, E; Verliefde, A; Nopens, I; Colsen, J G M; Vlaeminck, S E

    2016-01-01

    Energy autarky of sewage treatment plants, while reaching chemical oxygen demand (COD) and N discharge limits, can be achieved by means of shortcut N-removal. This study presents the results of a shortcut N-removal pilot, located at the biological two-'stage (high/low rate) wastewater treatment plant of Breda, The Netherlands. The pilot treated real effluent of a high-rate activated sludge (COD/N = 3), fed in a continuous mode at realistic loading rates (90-100 g N/(m(3)·d)). The operational strategy, which included increased stress on the sludge settling velocity, showed development of a semi-granular sludge, with average particle size of 280 μm (ø(4,3)), resulting in increased suppression of nitrite-oxidizing bacteria. The process was able to remove part of the nitrogen (51 ± 23%) over nitrite, with COD/N removal ratios of 3.2 ± 0.9. The latter are lower than the current operation of the full-scale B-stage in Breda (6.8-9.4), showing promising results for carbon-efficient N-removal, while producing a well settling sludge (SVI(30) < 100 mL/g). PMID:27148716

  4. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  5. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H.; Livengood, C. David

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  6. Optimization of biological phosphorus and ammonia removal in a combined fixed and suspended growth wastewater treatment system: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This project was conducted to optimize design and operational criteria for enhanced biological phosphorus removal and nitrification of ammonia in the fixed growth reactor-suspended growth reactor (FGR-SGR) process. The research completed the investigation of optimum hydraulic retention times for biological phosphorus removal in both the unaerated and aerated phases of the suspended growth components of the FGR-SGR system, including an assessment of the possibility of reducing suspended growth aeration requirements by using oxidized forms of nitrogen rather than dissolved oxygen for biological phosphorus uptake; investigated the effects on biological phosphorus removal and nitrification of varying the internal recycle flow rates; and investigated the optimum solids retention time, or the optimum operating mixed liquor suspended solids concentration, in the suspended growth component of the system for biological phosphorus removal and nitrification-denitrification.

  7. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  8. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals. PMID:26837833

  9. CARBONACEOUS, NITROGENOUS AND PHOSPHORUS MATTERS REMOVAL FROM DOMESTIC WASTEWATER BY AN ACTIVATED SLUDGE REACTOR OF NITRIFICATION-DENITRIFICATION TYPE

    OpenAIRE

    MOHAMAD ALI FULAZZAKY

    2009-01-01

    This paper proposes an environmental engineering method based on biotechnology approach as one of the expected solutions that should be considered to implementing the activated sludge for improving the quality of water and living environment, especially to remove the major pollutant elements of domestic wastewater. Elimination of 3 major pollutant elements, i.e., carbon, nitrogen and phosphor containing the domestic wastewater is proposed to carry out biological method of an anoxic-aerobic re...

  10. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor

    International Nuclear Information System (INIS)

    A sequencing batch reactor (SBR) with aerobic granular sludge was operated to determine the effect of different DO concentrations on biological nitrogen removal process and to investigate the spatial profiles of DO, ORP and pH as online control parameters in such systems. The results showed that DO concentration had a significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. The specific nitrification rate was decreased from 0.0595 mgNH4+-N/(gMLSS min) to 0.0251 mgNH4+-N/(gMLSS min) after DO concentration was dropped off from 4.5 mg/L to 1.0 mg/L. High DO concentration improved the nitrification and increased the volumetric NH4+-N removal. Low DO concentration enhanced TIN removal, while prolonged the nitrification duration. Also there existed a good correlation between online control parameters (ORP, pH) and nutrient (COD, NH4+-N, NO2--N, NO3--N) variations in aerobic granular sludge reactor when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it was difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion, the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  11. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  12. Microtopography enhances nitrogen cycling and removal in created mitigation wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Natural wetlands often have a heterogeneous soil surface topography, or microtopography (MT), that creates microsites of variable hydrology, vegetation, and soil biogeochemistry. Created mitigation wetlands are designed to mimic natural wetlands in structure and function, and recent mitigation projects have incorporated MT as one way to attain this goal. Microtopography may influence nitrogen (N) cycling in wetlands by providing adjacent areas of aerobic and anaerobic conditions and by increasing carbon storage, which together facilitate N cycling and removal. This study investigated three created wetlands in the Virginia Piedmont that incorporated disking-induced MT during construction. One site had paired disked and undisked plots, allowing an evaluation of the effects of this design feature on N flux rates. Microtopography was measured using conventional survey equipment along a 1-m circular transect and was described using two indices: tortuosity (T), describing soil surface roughness and relief, and limiting elevation difference (LD), describing soil surface relief. Ammonification, nitrification, and net N mineralization were determined with in situ incubation of modified ion-exchange resin cores and denitrification potential was determined using denitrification enzyme assay (DEA). Results demonstrated that disked plots had significantly greater LD than undisked plots one year after construction. Autogenic sources of MT (e.g. tussock-forming vegetation) in concert with variable hydrology and sedimentation maintained and in some cases enhanced MT in study wetlands. Tortuosity and LD values remained the same in one wetland when compared over a two-year period, suggesting a dynamic equilibrium of MT-forming and -eroding processes at play. Microtopography values also increased when comparing the original induced MT of a one-year old wetland with MT of older created wetlands (five and eight years old) with disking-induced MT, indicating that MT can increase by

  13. Identification of microorganisms involved in nitrogen removal from wastewater treatment systems by means of molecular biology techniques; Identificacion de microorganismos implicados en la eliminacion de nitrogeno en sistemas de tratamiento de aguas residuales mediante tecnicas de biologia molecular

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, M.; Alonso-Gutierrez, J.; Campos, J. L.; Mendez, R.; Mosquera-Corral, A.

    2010-07-01

    The identification of the main bacteria populations present in the granular biomass from a biological reactor treating wastewater has been performed by applying two different molecular biology techniques. By means of the DGGE technique five different genera of heterotrophic bacteria (Thiothrix, Thauera, Cloroflexi, Comamanas y Zoogloea) and one of ammonia oxidizing bacteria (Nitrosomanas) were identified. The FISH technique, based on microscopy, allowed the in situ visualization and quantification of those microorganisms. Special attention was paid to filamentous bacteria distribution (Thiothrix and Cloroflexi) which could exert a structural function in aerobic granular sludge. (Author) 26 refs.

  14. CARBONACEOUS, NITROGENOUS AND PHOSPHORUS MATTERS REMOVAL FROM DOMESTIC WASTEWATER BY AN ACTIVATED SLUDGE REACTOR OF NITRIFICATION-DENITRIFICATION TYPE

    Directory of Open Access Journals (Sweden)

    MOHAMAD ALI FULAZZAKY

    2009-03-01

    Full Text Available This paper proposes an environmental engineering method based on biotechnology approach as one of the expected solutions that should be considered to implementing the activated sludge for improving the quality of water and living environment, especially to remove the major pollutant elements of domestic wastewater. Elimination of 3 major pollutant elements, i.e., carbon, nitrogen and phosphor containing the domestic wastewater is proposed to carry out biological method of an anoxic-aerobic reactor therein these types of pollutants should be consecutively processed in three steps. Firstly, eliminate the carbonaceous matter in the aerobic reactor. Secondly, to remove the carbonaceous and nitrogenous matters, it is necessary to modify the reactor’s nature from the aerobic condition to an anoxic-aerobic reactor. And finally, when the cycle of nitrification-denitrification is stable to achieve the target’s efficiency of reactor by adding the ferric iron into the activated sludge, it can be continued to remove the carbonaceous, nitrogenous and phosphorous matters simultaneously. The efficiency of carbonaceous and nitrogenous matters removal was confirmed with the effluent standard, COD is less than 100 mgO2/L and the value of global nitrogen is less than 10 mgN/L. The effectiveness of suspended matter removal is higher than 90% and the decantation of activated sludge is very good as identifying the Molhman’s index is below of 120 mL/L. The total phosphorus matter removal is more effective than the soluble phosphorus matter. By maintaining the reactor’s nature at the suitable condition, identifying the range of pH between 6.92 and 7.16 therefore the excellent abatement of phosphor of about 80% is achieving with the molar Fe/P ratio of 1.4.

  15. Combination of ion exchange system and biological reactors for simultaneous removal of ammonia and organics.

    Science.gov (United States)

    Park, Wooshin; Jang, Eunhee; Lee, Myun-Joo; Yu, Seungho; Kim, Tak-Hyun

    2011-04-01

    A novel process for a simultaneous removal of ammonia and organics was developed on the basis of ion exchange and biological reactions. From batch experiments, it was found out that NH(4)(+) could be removed effectively by combining cation exchange and biological nitrification showing 0.98 mg N/m(2) ∙ s of a maximum flux. On the other hand, the removal of NO(3)(-) was 3.5 times faster than NH(4)(+) and the maximum flux was calculated to be 3.4 mg N/m(2) ∙ s. The systems for NH(4)(+) and NO(3)(-) removal were combined for establishing the IEBR process. When the process was operated in a continuous mode, approximately 95.8% of NH(4)(+) was removed showing an average flux of 0.22 mg N/m(2) · s. The removal efficiency of total nitrogen was calculated as 94.5% whereas that of organics was 99.5%. It was concluded that the IEBR process would be effectively used for a simultaneous removal of NH(4)(+) and organics.

  16. Nitrogen removal from raw landfill leachate by an algae-bacteria consortium.

    Science.gov (United States)

    Sniffen, Kaitlyn D; Sales, Christopher M; Olson, Mira S

    2016-01-01

    A remediation system for the removal of nitrogen from landfill leachate by a mixed algae-bacteria culture was investigated. This system was designed to treat leachate with minimal inputs and maintenance requirements, and was operated as an open semi-batch reactor in an urban greenhouse. The results of this study showed a maximum nitrogen removal rate of 9.18 mg N/(L·day) and maximum biomass density of 480 mg biomass/L. The ammonia removal rates of this culture increased with increasing initial ammonia concentration; maximum nitrogen removal occurred at an ammonia concentration of 80 mg N-NH3/L. At starting ammonia concentrations above 80 mg N-NH3/L a reduction in nitrogen removal was seen; this inhibition is hypothesized to be caused by ammonia toxicity. This inhibiting concentration is considerably higher than that of many other published studies. PMID:26877028

  17. Nitrogen removal from raw landfill leachate by an algae-bacteria consortium.

    Science.gov (United States)

    Sniffen, Kaitlyn D; Sales, Christopher M; Olson, Mira S

    2016-01-01

    A remediation system for the removal of nitrogen from landfill leachate by a mixed algae-bacteria culture was investigated. This system was designed to treat leachate with minimal inputs and maintenance requirements, and was operated as an open semi-batch reactor in an urban greenhouse. The results of this study showed a maximum nitrogen removal rate of 9.18 mg N/(L·day) and maximum biomass density of 480 mg biomass/L. The ammonia removal rates of this culture increased with increasing initial ammonia concentration; maximum nitrogen removal occurred at an ammonia concentration of 80 mg N-NH3/L. At starting ammonia concentrations above 80 mg N-NH3/L a reduction in nitrogen removal was seen; this inhibition is hypothesized to be caused by ammonia toxicity. This inhibiting concentration is considerably higher than that of many other published studies.

  18. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    Science.gov (United States)

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  19. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    International Nuclear Information System (INIS)

    Highlights: ► Aerobic granular sludge SBR was used to treat real landfill leachate. ► COD removal was analyzed kinetically using a modified model. ► Characteristics of nitrogen removal at different ammonium inputs were explored. ► DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L−1, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L−1, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L−1, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  20. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge.

    Science.gov (United States)

    Lochmatter, Samuel; Gonzalez-Gil, Graciela; Holliger, Christof

    2013-10-15

    Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification-denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L(-1) d(-1), 0.2 gN L(-1) d(-1), and 0.08 gP L(-1) d(-1), and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L(-1) d(-1). Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = -0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7-9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.

  1. BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER BY DENITRIFICATION OF MIX-CULTURING FUNGI AND BACTERIA%混合培养真菌和细菌对废水的生物去氮作用

    Institute of Scientific and Technical Information of China (English)

    LIU De-Li; ZHENG Yong-Liang; LI Ping; TAKAYA Naoki; SHOUN Hirofumi

    2006-01-01

    Denitrification has been long thought to be a unique characteristic of prokaryotes, but in recent years, several filamentous fungi and yeasts were found to exhibit denitrifying activities. This paper deals with the examination of denitrification capabilities by mix-cultures of the fungus ( Fusarium oxysporum ) and the bacterium ( Pseudomonas stutzeri TR2) in combination with a specific medium and using a synthetic wastewater of defined quality. The results revealed that P. stutzeri TR2 has strong and fast denitrifying capabilities under anaerobic conditions, and that co-denitrification of mix-cultures with F. oxysporum and P. stutzeri TR2 was more effective to remove nitrate under limited oxygen conditions. P. stutzeri TR2 was able to remove nitrate completely during cultivation for 12 hr in the specific medium and in mixed culture with F. oxysporum. A rapid N2 evolution by mixed culture with F. oxysporum and P. stutzeri TR2 was observed in both mixed culture medium and synthetic wastewater. Using synthetic wastewater with a defined composition, about 87% of the nitrate was eliminated to form about 420μmol of N2 from 1.0mmol of NO3- by co-denitrification of F. oxysporum and P. stutzeri TR2 after incubation for 6days. In co-cultures of F. oxysporum and P. stutzeri TR2, N2O produced by F. oxysporum was rapidly consumed by P. stutzeri TR2. This indicated that mixed culture of F. oxysporum and P. stutzeri TR2 can be used to remove nitrate and nitrite from wastewater effectively.

  2. Development of a method for direct biological removal of ammonium to nitrogen in treatment of waste waters of the anaerobic sludge digestion - deammonification. Final report; Entwicklung eines Verfahrens zur direkten biologischen Umsetzung von Ammonium zu Stickstoff bei der Behandlung von Abwaessern der Anaerob-Klaerschlammfaulung - Deammonifikation. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S.; Diekmann, H.; Hippen, A.; Helmer, C.; Scholten, E.

    2001-07-01

    The nitrogen elimination in municipal and industrial wastewater continues to play a major role in wastewater treatment, especially since the Wastewater Directive (AbwV) from 1997 introduced several changes in the requirements and regulations in regard to the pollutant and nutrient removal. As particularly the nitrogen elimination often makes for a considerable cost factor in wastewater treatment, especially when part-streams with high nitrogen loads must be (co-)treated, there is a constant search for economically viable treatment concepts. In this research project, the method of deammonification was developed, that is the process sequence of aerobic nitritation and anoxic ammonium oxidation ('biological comproportioning' of ammonium and nitrite into molecular nitrogen), which is based completely on the metabolism processes of autotrophic micro-organisms, which leads to saving potentials, especially of the carbon demand. Because of the shortened aerobic oxidation steps and the application of biofilm technology, it is also possible to reduce the oxygen demand and the reaction volume. In regard to the purposeful application of deammonification in operation technology, the project steps were targeted to determine the process-defining parameters and to check suitable method technologies and operation control systems in greater detail. To achieve this, the crucial frame conditions for the realisation and the operation performance of the autotrophic nitrogen elimination were defined on the basis of industrial and pilot-technical examinations under consideration of the (micro-)biological connections. Eventually, directives on the establishment of a stable deammonification operation could be derived. On the one hand, we ran a stock-taking of the operation of three industrial leachate treatment plants, on the other hand we operated test-plants on sludge-water treatment. Furthermore, various examinations with different reactor configurations and purposeful

  3. Role of extracellular exopolymers on biological phosphorus removal

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-nan; XUE Gang; YU Shui-li; ZHAO Fang-bo

    2006-01-01

    Three sequencing batch reactors supplied with different carbon sources were investigated. The system supplied with glucose gained the best enhanced biological phosphorus removal although all of the three reactors were seeded from the same sludge. With the measurement of poly-β-hydroxyalkanoate (PHA) concentration, phosphorus content in sludge and extracellular exopolymers (EPS) with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS), it was found that the biosorption effect of EPS played an important role in phosphorus removal and that the amount of PHA at the end of anaerobic phase was not the only key factor to determine the following phosphorus removal efficiency.

  4. Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification.

    Science.gov (United States)

    Ye, Jun; Zhao, Bin; An, Qiang; Huang, Yuan-Sheng

    2016-09-01

    Providencia rettgeri strain YL shows the capability of nitrogen removal under sole aerobic conditions. By using isotope ratio mass spectrometry, (15)N-labelled N2O and N2 were detected in aerobic batch cultures containing [Formula: see text], [Formula: see text] or [Formula: see text]. Strain YL converted [Formula: see text], [Formula: see text] and [Formula: see text] to produce more N2O than N2 in the presence of [Formula: see text]. An (15)N isotope tracing experiment confirmed that the nitrogen removal pathway of strain YL was heterotrophic nitrification-aerobic denitrification. The optimal treatment conditions for nitrogen removal were pH of 8, C/N ratio of 12, temperature of 25°C and shaking speed of 105 rpm. A continuous aerobic bioreactor inoculated with strain YL was developed. With an influent [Formula: see text] concentration of 90-200 mg/L, the [Formula: see text] removal efficiency ranged from 80% to 97% and the total nitrogen removal efficiency ranged from 72% to 95%. The nitrogen balance in the continuous bioreactor revealed that approximately 35-52% of influent [Formula: see text] was denitrified aerobically to form gaseous nitrogen. These findings show that the P. rettgeri strain YL has potential application in wastewater treatment for nitrogen removal under sole aerobic conditions. PMID:26824874

  5. Nitrogen removal from old landfill leachate with SNAP technology using biofix as a biomass carrier.

    Science.gov (United States)

    Vo, Thanh Tung; Nguyen, Tan Phong

    2016-08-01

    Single-stage nitrogen removal using Anammox and partial nitritation (SNAP) is a novel technology developed in recent years for removing nitrogen. To evaluate the ability of SNAP technology to remove nitrogen in old landfill leachate under the conditions in Vietnam, we conducted a survey with 7 different nitrogen loading rates of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 kg-N/m(3) day and a concentration from 100 to 700 mg-N/L. The operating conditions were as follows: DO at 1.0-5.3 mg/L, HRT at 12 h, and pH at 7.5-7.8. The biomass carrier was a biofix made from acrylic fiber. The maximum ammonium conversion and nitrogen removal efficiency were approximately 98% and 85%, respectively, at 1.2 kg-N/m(3) day. In general, the nitrogen removal efficiency increased and stabilized at the end of each loading rate. The first step showed that SNAP could potentially be applied in real life for removing nitrogen from old landfill leachate. PMID:27005592

  6. Nitrogen removal through different pathways in an aged refuse bioreactor treating mature landfill leachate.

    Science.gov (United States)

    Xie, Bing; Lv, Zhuo; Hu, Chong; Yang, Xuezhi; Li, Xiangzhen

    2013-10-01

    In this study, an aged refuse bioreactor was constructed to remove nitrogen in a mature landfill leachate. The nitrogen removal efficiency and the microbial community composition in the bioreactor were investigated. The results showed that the aged refuse bioreactor removed more than 90 % of total nitrogen in the leachate under the nitrogen loading rate (NLR) of 0.74 g/kg (vs) day, and the total nitrogen removal rate decreased to 62.2 % when NLR increased up to 2.03 g/kg (vs) day. Quantitative polymerase chain reaction results showed that the average cell number of ammonia-oxidizing bacteria in the bioreactor was 1.58 × 10(8) cells/g, which accounted for 0.41 % of total bacteria. The number of anammox bacteria in the reactor was 1.09 × 10(8) cells/g, which accounted for 0.27 % of total bacteria. Isotopic (15)N tracing experiments showed that nearly 10 % of nitrogen was removed by anammox. High-throughout 454 pyrosequencing revealed that the predominant bacteria in the bioreactor were Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Gemmatimonadetes, including various nitrifiers and denitrifiers with diverse heterotrophic and autotrophic metabolic pathways, supporting that nitrogen was removed through different pathways in this aged refuse bioreactor.

  7. Investigating in-stream nitrogen removal at variable flow conditions using new optical sensors

    Science.gov (United States)

    Rode, Michael; Knoeller, Kay; Kiwel, Uwe

    2013-04-01

    Most experimental studies on in-stream nitrogen removal concentrate on low flow conditions. Considerable knowledge gaps exist on nitrogen removal during high flow stages, especially for mid- sized streams. The objective of the study is quantify nitrogen removal during low and high flow conditions in the 4th order Bode river, which is part of the TERENO Hydrological Observatory of UFZ, Germany. To measure nitrogen removal at variable flow conditions we used new optical and conventional water quality multi-parameter sensors for continues measurements (10-15 min frequency) on electric conductivity, temperature, pH-value, nitrate-N, soluble oxygen, turbidity, chlorophyll a and SAC 254 (specific absorption coefficient) at two river stations. Additional automatic samplers were installed to conduct four low flow campaigns and to measure four high flow events at a 30km river reach from 2010 to 2012. Several nitrogen and phosphorus compounds as well as δ18O and δ15N isotopes at nitrate have been analyzed using a two hour sampling interval. The study river reach is an ideal system to investigate the impact of flow conditions on nitrogen removal by mass balances and natural abundance of nitrogen isotopes because upstream inflow is equal with downstream outflow with less the 3% deviation on a yearly basis. Continues sensor measurements show that nitrate removal is occurring throughout the year depending on primary production, temperature and nitrate concentrations. During low flow conditions in the vegetation period a clear diurnal variation of nitrate concentrations is observable. Nitrate-N concentrations, which range between 2 and 8 mgN l-1, can vary by 10% between day and night time during periods with high algae concentration. The nitrogen balance calculations for the four low flow sampling campaigns suggest a loss of nitrogen between 10 and 20 % in the 30km reach. Losses were highest in August 2011 and lowest in October 2010. Surprisingly also during high flow events

  8. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems.

    Science.gov (United States)

    Hu, Yun; He, Feng; Ma, Lin; Zhang, Yi; Wu, Zhenbin

    2016-05-01

    Microbial nitrogen (N) removal pathways in planted (Canna indica L.) and unplanted integrated vertical-flow constructed wetland systems (IVCWs) were investigated. Results of, molecular biological and isotope pairing experiments showed that nitrifying, anammox, and denitrifying bacteria were distributed in both down-flow and up-flow columns of the IVCWs. Further, the N transforming bacteria in the planted IVCWs were significantly higher than that in the unplanted ones (p<0.05). Moreover, the potential nitrification, anammox, and denitrification rates were highest (18.90, 11.75, and 7.84nmolNg(-1)h(-1), respectively) in the down-flow column of the planted IVCWs. Significant correlations between these potential rates and the absolute abundance of N transformation genes further confirmed the existence of simultaneous nitrification, anammox, and denitrification (SNAD) processes in the IVCWs. The anammox process was the major N removal pathway (55.6-60.0%) in the IVCWs. The results will further our understanding of the microbial N removal mechanisms in IVCWs. PMID:26897412

  9. Nitrogen removal from plasma-facing components by ion cyclotron wall conditioning in TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, A.G., E-mail: alvarogc@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Association VR, 100 44 Stockholm (Sweden); Wauters, T. [Laboratory of Plasma Physics, ERM/KMS, Association Belgian State, Brussels (Belgium); Petersson, P. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Association VR, 100 44 Stockholm (Sweden); Drenik, A. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Rubel, M. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Association VR, 100 44 Stockholm (Sweden); Crombé, K. [Laboratory of Plasma Physics, ERM/KMS, Association Belgian State, Brussels (Belgium); Douai, D. [CEA, IRFM, Association Euratom-CEA, 13108 St Paul lez Durance (France); Fortuna, E. [Faculty of Materials Science, Warsaw University of Technology, Association IPPLM, 02-507 Warsaw (Poland); Kogut, D. [CEA, IRFM, Association Euratom-CEA, 13108 St Paul lez Durance (France); Kreter, A. [IEK-4, Forschungszentrum Jülich, Association EURATOM–FZJ (Germany); Lyssoivan, A. [Laboratory of Plasma Physics, ERM/KMS, Association Belgian State, Brussels (Belgium); Möller, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM–FZJ (Germany); Pisarek, M. [Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw (Poland); Vervier, M. [Laboratory of Plasma Physics, ERM/KMS, Association Belgian State, Brussels (Belgium)

    2015-08-15

    The efficiency of ion cyclotron wall conditioning (ICWC) in the removal of nitrogen from plasma-facing components in TEXTOR was assessed. In two experiments the wall was loaded with nitrogen and subsequently cleaned by ICWC in deuterium and helium. The retention and removal of nitrogen was studied in-situ by means of mass spectrometry, and ex-situ by surface analysis of a set of graphite, tungsten and TZM plates installed on test limiter systems. {sup 15}N rare isotope was used as a marker. The results from the gas balance showed that about 25% of the retained nitrogen was removed after ICWC cleaning, whereas surface analysis of the plates based on ToF-HIERDA showed an increase of the deposited species after the cleaning. This indicates that during ICWC operation on carbon devices, nitrogen is not only pumped out but also transported to other locations on the wall. Additionally, deuterium surface content was studied before and after ICWC cleaning.

  10. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    Science.gov (United States)

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  11. Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization

    OpenAIRE

    Cusack, Daniela F.; Silver, Whendee; McDowell, William H.

    2009-01-01

    Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata...

  12. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2014-11-01

    The nitrogen removal performance and microbial characteristics of four completely autotrophic nitrogen removal over nitrite (CANON) biofilters were investigated. These four reactors were simultaneously seeded from a stable CANON biofilter with a seeding ratio of 1:1, which were fed with different ammonia levels. Results suggested that with the ammonia of 200-400 mg L(-1), aerobic ammonia-oxidizing bacteria (AerAOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) could perform harmonious work. The bioactivity and population of the two groups of bacteria were both high, which then resulted in excellent nitrogen removal, while too low or too high ammonia would both lead to worse performance. When ammonia was too high, the bioactivity, biodiversity and population of AerAOB all decreased and then resulted in the lowest nitrogen removal. Nitrosomonas and Candidatus Brocadia were detected as predominant functional microbes in all the four reactors. Finally, strategies for treating sewage with different ammonia levels were proposed.

  13. 氧化沟的脱氮除磷%Nitrogen and phosphorus removal of oxidation ditch

    Institute of Scientific and Technical Information of China (English)

    郭继锋; 杨云龙

    2009-01-01

    阐述了氧化沟脱氮除磷的特点、机理、影响氧化沟脱氮除磷的因素及各种形式氧化沟的脱氮除磷,最后提出了氧化沟的未来发展方向,以期既节约能源又实现最佳的除磷脱氮效果.%The characteristics and working mechanism of nitrogen and phosphorus removal of oxidation ditch are elaborated as well as the fac-tors influencing the removal ratio of nitrogen and phosphorus and various nitrogen and phosphorus removal ways of oxidation ditches. In the end the developmental direction of oxidation ditch is pointed out in order to realize optimal removal effect of nitrogen and phosphorus on the prince of saving energy.

  14. Impact of photosynthesis and transpiration on nitrogen removal in constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    LUO Weiguo; WANG Shihe; HUANG Juan; YAN Lu; HUANG Jun

    2007-01-01

    To determine the impact of photosynthesis and transpiration on nitrogen removal in wetlands,an artificial wetland planted with reeds was constructed to treat highly concentrated domestic wastewater.Under different meteorological and hydraulic conditions,the daily changes of photosynthesis and transpiration of reeds,as well as nitrogen removal efficiency were measured.It was found that net photosynthesis rate per unit leaf area was maintained on a high Photon Flux Density was high during the day.Meanwhile,TN and NH4+-N removal efficiency rose to 79.6% and 89.6%,respectively-the maximum values observed in the test.Correlation coefficient analysis demonstrated a positive correlation among photon flux density,net photosynthetic rate,transpiration rate,and TN and NH4+-N removal efficiency.In contrast,there was a negative correlation between stomatal conductance and TN and NH4+-N removal efficiency.Results suggest that the photosynthesis and transpiration of wetland plants have a great impact on nitrogen removal efficiency of wetlands,which can be enhanced by an increase in the photosynthesis and transpiration rate.In addition,the efficiency of water usage by reeds and nitrogen removal efficiency could be affected by the water level in wetlands;a higher level boosts nitrogen removal efficiency.

  15. Ecological Limits to Terrestrial Biological Carbon Dioxide Removal

    Science.gov (United States)

    Torn, M. S.; Smith, L. J.; Mishra, U.; Sanchez, D.; Williams, J.

    2014-12-01

    Many climate change mitigation scenarios include terrestrial atmospheric carbon dioxide removal (BCDR) or carbon neutral bioenergy production through bioenergy with carbon capture and storage (BECS) or afforestation/reforestation. Very high sequestration potentials for these strategies have been reported, and we evaluate the potential ecological limits (e.g., land and resource requirements) to implementation at the 1 Pg C y-1 scale relevant to climate change mitigation for U.S. and global scenarios. We estimate that removing 1 Pg C y-1 via tropical afforestation would require at least 7×106 ha y-1 of land, 0.09 Tg y-1 of nitrogen, and 0.2 Tg y-1 of phosphorous, and would increase evapotranspiration from those lands by almost 50%. Because of improved carbon capture technologies, we are updating (and reducing) our previous estimates for switchgrass BECS (previous estimate was 2×108 ha land and 20 Tg y-1 of nitrogen (20 % of global fertilizer nitrogen production)). Miscanthus could meet the same biomass production with much lower N demand. Moreover, transitioning the U.S land currently under corn- ethanol production to no-till perennial grasses for bioenergy would meet U.S. needs and have additional environmental benefits (such as improved wildlife habitat and soil restoration). Thus, there are both signficant ecological limits to BCDR as well as potential ecological benefits, depending on implementation.

  16. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-03-01

    Full Text Available Sludge retention time (SRT is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O in biological nutrient removal (BNR processes. Four laboratory-scale sequencing batch reactors (SBRs, namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities.

  17. Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land%林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响

    Institute of Scientific and Technical Information of China (English)

    林贵刚; 赵琼; 赵蕾; 李慧超; 曾德慧

    2012-01-01

    chemical and biological properties in Mongolian pine plantations, and hence, the importance of un-derstory vegetation should not be neglected when the forest management and restoration were implemented. A full factorial experiment was conducted to study the effects of understory removal and nitrogen addition (8 g · m-2) on the soil NO3--N and NH4 + -N concentrations, potential net nitrogen mineralization rate ( PNM) and nitrification rate ( PNN) , microbial biomass C ( MBC) and N ( MBN) , MBC/MBN, urease and acid phosphomonoesterase activities, and Olsen-P concentration in a Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land during a growth season. Understory removal decreased the soil NH4 + -N concentration, PNM, MBC, and MBN/MBN significantly, increased the soil Olsen-P concentration, but had little effects on the soil NO3--N concentration, PNN, and urease and acid phosphomonoesterase activities. Nitrogen addition increased the soil NO3--N concentration, PNM and PNN significantly, but had little effects on the other test properties. The interaction between understory removal and nitrogen addition had significant effects on the soil NH4 + -N concentration, but little effects on the soil NO3--N concentration. However, the soil NO3--N concentration in the plots of understory removal with nitrogen addition was increased by 27% , compared with the plots of nitrogen addition alone, which might lead to the leaching of N03-. It was suggested that understory vegetation could play an important role in affecting the soil chemical and biological properties in Mongolian pine plantations, and hence, the importance of un-derstory vegetation should not be neglected when the forest management and restoration were implemented.%通过析因试验设计,研究了科尔沁沙地樟子松人工林生态系统内土壤无机氮(NO3--N+NH4+-N)含量,潜在净氮矿化(PNM)、硝化速率(PNN),微生物生物量碳(MBC)、氮(MBN)及MBC/MBN,土

  18. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  19. The effect of nitrogen on phosphorus and potassium removal by cauliflower

    NARCIS (Netherlands)

    Everaarts, A.P.; Moel, de C.P.

    2009-01-01

    The effect of the amount of nitrogen applied and of the method of application on the amounts of phosphorus and potassium removed from the field with the product in cauliflower cultivation was studied in three field experiments. Band placement or split application of nitrogen did not influence phosph

  20. [Effect of HCO3- on Nitrogen Removal Efficiency in Partial Nitritation-ANAMMOX Process].

    Science.gov (United States)

    Li, Xiang; Cheng, Zong-heng; Huang, Yong; Yuan, Yi; Liu, Xin; Zhang, Da-lin

    2015-11-01

    The effect of HCO3- on nitrogen removal efficiency in partial nitritation-ANAMMOX process was studied by using the combined process of partial nitritation and ANAMMOX has been started and achieved the stable operation of nitrogen removal. The results showed that, when the ratio of C/N decreased from 2 to 0.17 in influent, the nitrogen removal rate decreased from 1.3 kg- ( M3 x d)(-1) to 0.40 kg x (M3 x d)(-1), the decrease range arrived at 69.3%. The nitrogen conversion efficiency was limited, because of the added amount of HCO3- was decreased, which leading to the pH value declined sharply in nitritation and ANAMMOX zone. In the partial nitritation-ANAMMOX process, the effect of HCO3- limitation on activity of ammonium oxidizing bacteria, ANAMMOX bacteria and nitrifying bacteria was decreased in turn. When the C/N ratio increased to 1, the nitrogen removal rate of combined process was quickly restored to 1 kg x (m3 x d)(-1). It indicated that short HCO3- limitation on nitrogen conversion efficiency of the combined process can be fast recovery. The resulted also showed that the relationship between influent C/N ratio and nitrogen removal efficiency has obvious relativity in partial nitritation-ANAMMOX process. PMID:26911008

  1. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shuai [Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Yang Fenglin, E-mail: yangshuai1125@163.com [Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Fu Zhimin; Wang Tao [Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Lei Ruibo [State Key Laboratory of Coastal and Offshore Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-03-15

    Biological nutrient removal (BNR) was investigated in a sequencing batch membrane bioreactor which used carriers instead of activated sludge named a sequencing batch moving bed membrane bioreactor (SBMBMBR). The SBMBMBR performed well on carbon and nitrogen removal at different COD/TN ratios. COD, TN and ammonium nitrogen removal efficiencies averaged at 93.5%, 82.6% and 95.6%, respectively. The TP removal was closely correlated with the length of anaerobic phase and aerobic phase. When anaerobic time and aerobic time were both 2 h, the average TP removal efficiency reached to 84.1% at influent TP concentration of 12.4 mg/L. DO in aerobic phase was an important factor affecting nutrient removal, and the optimal DO was about 3 mg/L. There was a small amount of denitrifying phosphorus accumulating organisms (DPAOs) in SBMBMBR which resulted from the anoxic microenvironment existed in the inner of the biofilm. Fluorescence in situ hybridization (FISH) results of microbes showed the composition and spatial structure of the microbial community in the reactor. Furthermore, sequencing batch mode operation was propitious to retard membrane fouling.

  2. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment

    International Nuclear Information System (INIS)

    Biological nutrient removal (BNR) was investigated in a sequencing batch membrane bioreactor which used carriers instead of activated sludge named a sequencing batch moving bed membrane bioreactor (SBMBMBR). The SBMBMBR performed well on carbon and nitrogen removal at different COD/TN ratios. COD, TN and ammonium nitrogen removal efficiencies averaged at 93.5%, 82.6% and 95.6%, respectively. The TP removal was closely correlated with the length of anaerobic phase and aerobic phase. When anaerobic time and aerobic time were both 2 h, the average TP removal efficiency reached to 84.1% at influent TP concentration of 12.4 mg/L. DO in aerobic phase was an important factor affecting nutrient removal, and the optimal DO was about 3 mg/L. There was a small amount of denitrifying phosphorus accumulating organisms (DPAOs) in SBMBMBR which resulted from the anoxic microenvironment existed in the inner of the biofilm. Fluorescence in situ hybridization (FISH) results of microbes showed the composition and spatial structure of the microbial community in the reactor. Furthermore, sequencing batch mode operation was propitious to retard membrane fouling.

  3. Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB).

    Science.gov (United States)

    Eldyasti, Ahmed; Chowdhury, Nabin; Nakhla, George; Zhu, Jesse

    2010-09-15

    Biological treatment of landfill leachate is a concern due to toxicity, high ammonia, low biodegradable organic matter concentrations, and low carbon-to-nitrogen ratio. To study the reliability and commercial viability of leachate treatment using an integrated liquid-solid circulating fluidized bed bioreactor (LSCFB), a pilot-scale LSCFB was established at the Adelaide Pollution Control Plant, London, Ontario, Canada. Anoxic and aerobic columns were used to optimize carbon and nutrient removal capability from leachate using 600 microm lava rock with a total porosity of 61%, at empty bed contact times (EBCTs) of 0.55, 0.49, and 0.41 d. The LSCFB achieved COD, nitrogen, and phosphorus removal efficiencies of 85%, 80%, and 70%, respectively at a low carbon-to-nitrogen ratio of 3:1 and nutrients loading rates of 2.15 kg COD/(m(3) d), 0.70 kg N/(m(3) d), and 0.014 kg P/(m(3) d), as compared with 60-77% COD and 70-79% nitrogen removal efficiencies achieved by upflow anaerobic sludge blanket (UASB) and moving bed bioreactor (MBBR), respectively. The LSCFB effluent characterized by biological solids retention times (SRTs) of 31, 38 and 44 d. PMID:20510504

  4. Recovering biological nitrogen removal in pilot-scale variable-velocity oxidation ditch under low concentration%低DO微孔曝气变速氧化沟脱氮能力恢复效果分析

    Institute of Scientific and Technical Information of China (English)

    杨亚红; 彭党聪; 李磊; 郑阳光; 张新艳; 裴立影

    2013-01-01

    Activated sludge bulking, mainly caused by filamentous bacteria-Microthrix Parvicella, was one of the most important reasons in activated sludge process under low temperature. This study was aimed at resolving the problem of sludge bulking and low nitrification ability caused by low temperature, low DO and low influent loading in a variable-velocity oxidation ditch pilot with fine bubble. Experiments results showed that taking the whole DO tank as aerobic zone was benefit for improving nitrifying bacteria content and meeting effluent NH/-N concentration below 5 mg/L. And then A: O ratios of 0, 0.1, 0.5, 1.1, 1.8 were gradually increased the quantity of nitrifying bacteria quickly in accordance with above the standard of effluent NH(+-N. Also identifying filamentous bacteria showed that dominant microorganism was M. Parvicella with hydrophobicity. Floes with mass M. Parvicella was floated due to denitrifying nitrogen and formed foaming on the surface of selector and OD. After the foaming was ripped off in order to decrease the quantity of M. Parvicella, nitrifying as increasing the quantity of nitrifying bacteria was improved. The further analysis of nitrification and denitrification performance under different activated sludge contents of M. parvicella showed that M. parvicella was benificial to denitrifying and adverse to nitrifying.lt also showed that M. parvicella the maijor reason of impacting nitrifying, denitrifying and sludge settleability except for DO concentration, water temperature and influent load.%活性污泥法低温运行中的污泥膨胀主要是由丝状菌引起,微丝菌(M.Parvicella)则是污泥膨胀中的优势丝状菌.针对微孔曝气变速氧化沟中试系统中因低温引起的污泥严重膨胀及其污泥硝化能力降低的问题,采取增大曝气量快速培养污泥硝化菌含量,再逐渐增加A:O比为0,0.1,0.5,1.1,1.8提高反硝化能力,从而恢复污泥脱氮能力.在恢复期间,污泥絮体中的疏水性M.Par

  5. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology.

    Science.gov (United States)

    Ding, Yi; Wang, Wei; Liu, Xingpo; Song, Xinshan; Wang, Yuhui; Ullman, Jeffrey L

    2016-11-01

    High rate algal pond (HRAP) was combined with constructed wetland (CW) to intensify nitrogen removal through optimizing nitrification and denitrification. Nitrification and denitrification process mainly depends on the oxygen content and carbon source level in CWs. Algal biomass was enriched in HRAP, and dissolved oxygen (DO) concentration was increased via photosynthesis. Algal debris increased COD as degradable bioresource. The results showed that HRAP-CW hybrid systems effectively promoted the nitrogen removal performance due to rich DO and COD. The extension of hydraulic retention time in HRAP significantly improved NH4-N and TN removals by 10.9% and 11.1% in hybrid systems, respectively. The highest NH4-N and TN removals in hybrid systems respectively reached 67.2% and 63.5%, which were significantly higher than those in single CW. The study suggested that the hybrid system had the application potentials in nitrogen removal from wastewater. PMID:27544265

  6. Removal of geosmin and 2-methylisoborneol by biological filtration.

    Science.gov (United States)

    Elhadi, S L N; Huck, P M; Slawson, R M

    2004-01-01

    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to

  7. Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    周健; 段送华; 陈垚; 胡斌

    2009-01-01

    The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.

  8. Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique

    Institute of Scientific and Technical Information of China (English)

    Qun WEI; Zhiquan HU; Genbao LI; Bo XIAO; Hao SUN; Meiping TAO

    2008-01-01

    Algal biofilm technology is a new and advanced wastewater treatment method. Experimental study on removing nitrogen and phosphorus from simulated waste-water using algal biofilm under the continuous light of 3500 Lux in the batch and continuous systems was carried out in this paper to assess the performance of algal biofilm in removing nutrients. The results showed that the effect of removing nitrogen and phosphorus by algal biofilm was remarkable in the batch system. The removal efficiencies of total phosphorus (TP), total nitrogen (TN), ammonia-nitrogen (NH3-N), and chemical oxygen demand (COD) reached 98.17%, 86.58%, 91.88%, and 97.11%, respect-ively. In the continuous system, hydraulic retention time (HRT) of 4 days was adopted; the effects of removing TP, TN, NH3-N, and COD by algal biofilm were very stable. During a run of 24 days, the removal efficiencies of TP, TN, NH3-N, and COD reached 95.38%, 83.93%, 82.38%, and 92.31%, respectively. This study demonstrates the feasibility of removing nitrogen and phosphorus from simulated wastewater using algal biofilm.

  9. Enhanced Nutrient Removal with Upflow Biological Aerated Filter for Reclaimed Water

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-dong; PENG Yong-zhen; WANG Shu-ying; ZHANG Yan-ping

    2007-01-01

    A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2mg/L, and total phosphorus of 0.3mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrification.

  10. Effect of solids retention time and wastewater characteristics on biological phosphorus removal

    DEFF Research Database (Denmark)

    Henze, Mogens; Aspegren, H.; Jansen, J.l.C.;

    2002-01-01

    The paper deals with the effect of wastewater, plant design and operation in relation to biological nitrogen and phosphorus removal and the possibilities to model the processes. Two Bio-P pilot plants were operated for 2.5 years in parallel receiving identical wastewater. The plants had SRT of 4...... in the settler. The addition of glucose to the influent seems to have an effect on the performance of the plants similar to that of acetic acid. In spite of great load variations over time to the pilot plants and the different operational modes, the study of population dynamics showed less significant variations...

  11. Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16

    Institute of Scientific and Technical Information of China (English)

    Yuxiang Liu; Yao Wang; Yi Li; Hua An; Yongkang Lv

    2015-01-01

    Alcaligenes faecalis C16 was found to have the ability to heterotrophically nitrify and aerobical y denitrify. In order to further understand its nitrogen removal ability and mechanism, the growth and ammonium removal response were investigated at different C/N ratios and ammonium concentrations in the medium with citrate and acetate as carbon source separately. Furthermore, experiments of nitrogen sources, production of nitrogen gas and enzyme assay were conducted. Results show that the bacterium converts NH4+-N and produces NH2OH during the growing phase and nitrite accumulation is its distinct metabolic feature. A. faecalis C16 is able to tolerate not only high ammonium concentration but also high C/N ratio, and the ammonium tolerance is associated with carbon source and C/N ratio. The nitrogen balance under different conditions shows that approximately 28%–45%of the initial ammonium is assimilated into the cells, 44%–60%is denitrified and several percent is converted to nitrification products. A. faecalis C16 cannot utilize hydroxylamine, nitrite or nitrate as the sole nitrogen source for growth. However, nitrate can be used when ammonium is simultaneously present in the medium. A possible pathway for nitrogen removal by C16 is suggested. The preliminary enzyme assay provides more evidence for this nitrogen removal pathway.

  12. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    Science.gov (United States)

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    2016-01-01

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal. PMID:27508376

  13. Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants.

    Science.gov (United States)

    Barat, R; Serralta, J; Ruano, M V; Jiménez, E; Ribes, J; Seco, A; Ferrer, J

    2013-01-01

    This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions. PMID:23552235

  14. Removal of organic nitrogen compounds in LCO reduce hydrodesulfurization severity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Chen, J.; Ring, Z. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2005-11-01

    This paper presented practical information for achieving ultra-low sulphur diesel fuel in response to the new rule that petroleum refineries in Canada and the United States will be required to reduce the sulphur content in diesel fuel from 500 ppm to 15 ppm in the very near future. Hydrotreating is the main process to reduce the sulphur content in diesel fuel. When the sulphur content is reduced from the current 500 ppm to 15 ppm, refractory sulphur compounds such as dibenzothiophenes (DBT, 4-MDBT and 4,6-DMDBT) will become key targets in the hydrodesulphurization (HDS) process. This study was conducted to examine the inhibition effect of nitrogen compounds on the hydrodesulphurization of dibenzothiophenes using 5 light cycle oil-derived feedstocks with varied nitrogen contents. The objective was to guide refineries in selecting the right feed or feed pre-treatment options for existing HDS units to achieve the required sulphur level at minimum cost. Experiments were performed under conditions close to industrial HDS processes. It was shown that reducing the nitrogen content from 744.9 mg/L to 16.5 mg/L greatly improved the HDS reactivity of 4-MDBT, 4,6-DMDBT, and to a lesser degree, that of DBT. The study also showed that the hydrodenitrogenation rate decreased as the nitrogen content in the feed increased, which may suggest self-inhibition of the nitrogen compounds. New catalysts are under development because commercialized Ni-Mo catalysts do not meet the ultra-low sulphur requirement without increasing HDS severity. The HDS results were analyzed using a modified Langmuir-Hinshelwood type equation, assuming the inhibition only affected the hydrogenation pathway. Experimental data correlated well with predicted data. 19 refs., 3 tabs., 9 figs.

  15. Modelling and evaluation of nitrogen removal performance in subsurface flow and free water surface constructed wetlands.

    Science.gov (United States)

    Tunçsiper, B; Ayaz, S C; Akça, L

    2006-01-01

    With the aim of protecting drinking water sources in rural regions, pilot-scale subsurface water flow (SSF) and free water surface flow (FWS) constructed wetland systems were evaluated for removal efficiencies of nitrogenous pollutants in tertiary stage treated wastewaters (effluent from the Pasaköy biological nutrient removal plant). Five different hydraulic application rates and emergent (Canna, Cyperus, Typhia sp., Phragmites sp., Juncus, Poaceae, Paspalum and Iris) and floating (Pistia, Salvina and Lemna) plant species were assayed. The average annual NH4-N, NO3-N and organic-N treatment efficiencies were 81, 40 and 74% in SSFs and 76, 59 and 75% in FWSs, respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances. Nitrification, denitrification and ammonification rate constants (k20) values in SSF and FWS systems were 0.898 d-1 and 0.541 d(-1), 0.486 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908, respectively. Results show that the first-order plug flow model clearly estimates slightly higher or lower values than observed when compared with the other model. PMID:16889247

  16. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas.

    Science.gov (United States)

    Zheng, Maosheng; Li, Can; Liu, Shufeng; Gui, Mengyao; Ni, Jinren

    2016-11-15

    Conventional biological removal of nitrogen oxides (NOx) from flue gas has been severely restricted by the presence of oxygen. This paper presents an efficient alternative for NOx removal at varying oxygen levels using the newly isolated bacterial strain Pseudomonas aeruginosa PCN-2 which was capable of aerobic and anoxic denitrification. Interestingly, nitric oxide (NO), as the obligatory intermediate, was negligibly accumulated during nitrate and nitrite reduction. Moreover, normal nitrate reduction with decreasing NO accumulation was realized under O2 concentration ranging from 0 to 100%. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that high efficient NO removal was attributed to the coordinate regulation of gene expressions including napA (for periplasmic nitrate reductase), nirS (for cytochrome cd1 nitrite reductase) and cnorB (for NO reductase). Further batch experiments demonstrated the immobilized strain PCN-2 possessed high capability of removing NO and nitrogen dioxide (NO2) at O2 concentration of 0-10%. A biotrickling filter established with present strain achieved high NOx removal efficiencies of 91.94-96.74% at inlet NO concentration of 100-500ppm and O2 concentration of 0-10%, which implied promising potential applications in purifying NOx contaminated flue gas.

  17. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas.

    Science.gov (United States)

    Zheng, Maosheng; Li, Can; Liu, Shufeng; Gui, Mengyao; Ni, Jinren

    2016-11-15

    Conventional biological removal of nitrogen oxides (NOx) from flue gas has been severely restricted by the presence of oxygen. This paper presents an efficient alternative for NOx removal at varying oxygen levels using the newly isolated bacterial strain Pseudomonas aeruginosa PCN-2 which was capable of aerobic and anoxic denitrification. Interestingly, nitric oxide (NO), as the obligatory intermediate, was negligibly accumulated during nitrate and nitrite reduction. Moreover, normal nitrate reduction with decreasing NO accumulation was realized under O2 concentration ranging from 0 to 100%. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that high efficient NO removal was attributed to the coordinate regulation of gene expressions including napA (for periplasmic nitrate reductase), nirS (for cytochrome cd1 nitrite reductase) and cnorB (for NO reductase). Further batch experiments demonstrated the immobilized strain PCN-2 possessed high capability of removing NO and nitrogen dioxide (NO2) at O2 concentration of 0-10%. A biotrickling filter established with present strain achieved high NOx removal efficiencies of 91.94-96.74% at inlet NO concentration of 100-500ppm and O2 concentration of 0-10%, which implied promising potential applications in purifying NOx contaminated flue gas. PMID:27469045

  18. Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater.

    Science.gov (United States)

    Li, Yongmei; Zou, Jinte; Zhang, Lili; Sun, Jing

    2014-02-01

    Lab-scale experiments were conducted to investigate the aerobic granular sludge process for simultaneous phosphorus (P) accumulation by chemical precipitation and biological nitrogen removal via nitrite. The P-rich granules were successfully incubated in a sequencing batch reactor, in which simultaneous nitrification-denitrification occurred via nitrite. The average diameter of the P-rich granules was 2.47 mm and the P content in granules was much higher than that in other granular systems with enhanced biological phosphorus removal process. Filamentous bacteria (genus Thiothrix) in the granules and the long sludge retention time (30 d) of the granular system played a crucial role in accumulation of precipitated phosphate. X-ray diffraction analysis, scanning electron microscopy coupled with energy dispersive X-ray and the experimental design using response surface methodology confirmed that the main mineral patterns in P-rich granules were Ca-Mg phosphate and whitlockite. PMID:24388958

  19. Optimum operation conditions of nitrogen and phosphorus removal by a biofilm-activated-sludge system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the biofilm and activated sludge combined system, denitrifying bacteria attached on the fibrous carriers in the anoxic tank, while the sludge containing nitrifying and phosphorus removal bacteria was only recirculated between the aerobic and anaerobic tanks. Therefore, the factors affected and restricted nitrification, denitrification and phosphorus removal in a traditional A/A/O process were resolved. This paper describes the optimum operation conditions for nitrogen and phosphorus removal using this system.

  20. Investigation of bacterial populations in a biological nutrient removal system

    OpenAIRE

    Kavanaugh, Rathi G.

    1991-01-01

    Bacterial populations proliferating in a pilot scale biological nutrient removal system (BNR) were studied. The objective of the research was to develop media and methods to identify bacterial populations in BNR systems. Samples were obtained from the last aerobic zone of a University of Cape Town (UCT)-type system. The most probable numbers (MPN) of bacteria in the samples were analyzed in liquid media containing volatile fatty acids as sole sources of carbon. Samples...

  1. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    Energy Technology Data Exchange (ETDEWEB)

    Schaar, Heidemarie, E-mail: hschaar@iwag.tuwien.ac.a [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria); Clara, Manfred; Gans, Oliver [Umweltbundesamt, Spittelauer Lande 5, 1090 Vienna (Austria); Kreuzinger, Norbert [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria)

    2010-05-15

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17alpha-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O{sub 3} g DOC{sup -1} increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  2. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater.

    Science.gov (United States)

    Liu, YuXiang; Hu, Tingting; Song, Yujie; Chen, Hongping; Lv, YongKang

    2015-11-01

    A strain of Acinetobacter sp. Y1, which exhibited an amazing ability to remove ammonium, nitrite and nitrate, was isolated from the activated sludge of a coking wastewater treatment plant. The aim of this work was to study the ability, influence factors and possible pathway of nitrogen removal by Acinetobacter sp. Y1. Results showed that maximum removal rate of NH4(+)-N by the strain was 10.28 mg-N/L/h. Carbon source had significant influence on the growth and ammonium removal efficiencies of strain Y1. Pyruvate, citrate and acetate were favourable carbon sources for the strain. Temperature, pH value and shaking speed could affect the growth and nitrogen removal ability. Nitrate or nitrite could be used as a sole nitrogen source for the growth and removed efficiently by the strain. N2 levels increased to 53.74%, 50.21% and 55.13% within 36 h when 100 mg/L NH4(+)-N, NO2(-)-N or NO3(-) -N was used as sole nitrogen source in the gas detection experiment. The activities of hydroxylamine oxidoreductase (HAO), nitrate reductase (NR) and nitrite reductase (NiR), which are key enzymes in heterotrophic nitrification and aerobic denitrification, were all detectable in the strain. Consequently, a possible pathway for ammonium removal by the strain was also suggested. PMID:25910961

  3. Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes

    Institute of Scientific and Technical Information of China (English)

    LI Jun; ZHANG Zhen-jia; LI Zhi-rong; HUANG Guang-yu; Naoki Abe

    2006-01-01

    The distillery wastewater of Guangdong Jiujiang Distillery, which is characteristic of containing high organic matters and rich total nitrogen, was treated by a combination of methane fermentation and denitrification/nitrification processes. 80% of COD in the raw wastewater was However, almost all the organic nitrogen in the raw wastewater was converted into ammonia by ammonification there. Ammonia and volatile fatty acids (VFA) remaining in the anaerobically treated wastewater were simultaneously removed utilizing VFA as an electron donor by denitrification occurring in the other EGSB reactor and nitrification using PEG-immobilized nitrifying bacteria with recirculation process. An aerobic biological contact oxidization reactor was designed between denitrification/nitrification reactor for further COD removal. With the above treatment system,18000-28000 mg/L of COD in raw wastewater was reduced to less than 100 mg/L. Also, ammonia in the effluent of the system was not detected and the system had a high removal rate for 900-1200 mg/L of TN in the raw wastewater, only leaving 400 mg/L of nitrate nitrogen.

  4. On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing batch reactor (SBR)

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Yongjiong NI; Yongzhen PENG; Guowei GU; Jingen LU; Su WEI; Guobiao CHENG; Changjin OU

    2008-01-01

    The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor (SBR). The SBR for municipal wastewater treatment was operated in sequences: filling, anaerobic, oxic, anoxic, oxic, settling and discharge. The reactor was equipped with on-line monitoring sensors for dissolved oxygen (DO), oxidation-reduction potential (ORP) and pH. The variation of DO, ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR. The characteristic points of DO, ORP and pH can be used to judge and control the stages of process that include: phosphate release by the turning points of ORP and pH; nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP; denitrification by the nitrate knee of ORP and nitrate apex ofpH; phosphate uptake by the turning point ofpH; and residual organic carbon oxida-tion by the carbon elbows of DO and ORP. The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.

  5. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants.

    Science.gov (United States)

    Jimenez, Jose; Bott, Charles; Love, Nancy; Bratby, John

    2015-12-01

    Municipal wastewater contains a mixture of brown (feces and toilet paper), yellow (urine), and gray (kitchen, bathroom and wash) waters. Urine contributes approximately 70-80% of the nitrogen (N), 50-70% of the phosphorus (P) load and 60-70% of the pharmaceutical residues in normal domestic sewage. This study evaluated the impact of different levels of source separation of urine on an existing biological nutrient removal (BNR) process. A process model of an existing biological nutrient removal (BNR) plant was used. Increasing the amount of urine diverted from the water reclamation facilities, has little impact on effluent ammonia (NH₃-N) concentration, but effluent nitrate (NO₃-N) concentration decreases. If nitrification is necessary then no reduction in the sludge age can be realized. However, a point is reached where the remaining influent nitrogen load matches the nitrogen requirements for biomass growth, and no residual nitrogen needs to be nitrified. That allows a significant reduction in sludge age, implying reduced process volume requirements. In situations where nitrification is required, lower effluent nitrate (NO₃-N) concentrations were realized due to both the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The external carbon requirement for denitrification decreases as the urine separation efficiency increases due to the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The effluent phosphorus concentration decreases when the amount of urine sent to water reclamation facilities is decreased due to lower influent phosphorus concentrations. In the case of chemical phosphate removal, urine separation reduces the amount of chemicals required. PMID:26652123

  6. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However,the removal efficiencies of NH4+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen.

  7. Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor.

    Science.gov (United States)

    Wang, Chao; Zhao, Youcai; Xie, Bing; Peng, Qing; Hassan, Muhammad; Wang, Xiaoyuan

    2014-05-01

    The nitrogen removal pathways and nitrogen-related functional genes in on-site three-stage aged refuse bioreactor (ARB) treating landfill leachate were investigated. It was found that on average 90.0% of CODCr, 97.6% of BOD5, 99.3% of NH4(+)-N, and 81.0% of TN were removed with initial CODCr, BOD5, NH4(+)-N, and TN concentrations ranging from 2323 to 2754, 277 to 362, 1237 to 1506, and 1251 to 1580 mg/L, respectively. Meanwhile, the functional genes amoA, nirS and anammox 16S rRNA gene were found to coexist in every bioreactor, and their relative proportions in each bioreactor were closely related to the pollutant removal performance of the corresponding bioreactor, which indicated the coexistence of multiple nitrogen removal pathways in the ARB. Detection of anammox expression proved the presence of the anammox nitrogen removal pathway during the process of recirculating mature leachate to the on-site ARB, which provides important information for nitrogen management in landfills.

  8. The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage.

    Science.gov (United States)

    Ma, Bin; Zhang, Shujun; Zhang, Liang; Yi, Peng; Wang, Junmin; Wang, Shuying; Peng, Yongzhen

    2011-09-01

    The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage was examined in this study. The obtained results showed that total nitrogen (TN) could be efficiently removed by 88.38% when influent TN and chemical oxygen demand (COD) were 45.87 and 44.40 mg/L, respectively. In the first stage, nitritation was instantly achieved by the bioaugmentation strategy, and can be maintained under limited oxygen condition (below 0.2mg/L). The ratio of nitrite to ammonium in the effluent of the nitritation reactor can be controlled at approximate 1.0 by adjusting aeration rate. In the second stage, anammox was realized in the upflow anaerobic sludge blanket (UASB) reactor, where the total nitrogen removal rate was 0.40 kg Nm(-3)d(-1) under limited-substrate condition. Therefore, the organic matter in sewage can be firstly concentrated in biomass which could generate biogas (energy). Then, nitrogen in sewage could be removed in a two-stage autotrophic nitrogen removal process. PMID:21719278

  9. Selective Removal of Nitrogen-Containing Heterocyclic Compounds from Transportation Diesel Fuels with Reactive Adsorbent

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; WANG Shengqiang; WANG Ruicong; YU Hongbing

    2013-01-01

    This paper presents a new selective adsorbent to remove nitrogen-containing heterocyclic compounds from model and commercial transportation diesel fuels based on characteristic reaction designed to occur in the pores of substrate.This reactive adsorbent is composed of formaldehyde,phosphotungstic acid and Santa Barbara USA (SBA)-15.The experiment was based on assumed hydroxymethylation reaction of nitrogen-containing heterocyclic compounds with formaldehyde using phosphotungstic acid as catalyst in batch and fixed-bed systems.The nitrogen concentration in the model fuel was 237.33 ng·μl-1,carbazole and toluene were used as model nitrogen-containing heterocyclic compound and solvent,respectively.The effectiveness of reactive adsorbent for removal of nitrogen-containing heterocyclic compounds from commercial 0# diesel fuel containing 224.86 ng· μl-1 nitrogen was examined in a fixed-bed reactor at 70 ℃.The results showed that nitro1gen in the model fuel was very low and the nitrogen concentration in the commercial diesel reduced to 2.44 ng· μl-1.The demand for transportation fuel with ultra-low nitrogen is satisfied.

  10. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR

    International Nuclear Information System (INIS)

    The performance of a sequencing batch reactor (SBR) seeded with aerobic granular sludge was studied. The lab-scale SBR treating domestic wastewater operated at a volumetric loading rate (VLR) of 0.75-3.41 kg COD/(m3 d). The granule stability was related to the organic loading, and high loading would be favorable for granule stability. Analysis of typical cycle showed that granular sludge had good ability to simultaneously remove nitrogen and phosphorus. Most organic substances were removed at the anaerobic stage. At the aerobic stage, simultaneous nitrification and denitrification (SND) happened with phosphorus absorption. The SBR had good removal performance for organic matter and phosphate. However, the total nitrogen (TN) removal performance was ordinary, with average removal efficiency of about 52%. Batch experiments indicated that increases of influent C/N ratio and a large percentage of granule in the sludge were conducive for SND in SBR.

  11. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fen, E-mail: wangfen@tju.edu.cn [School of Environmental Science and Technology, Tianjin University, Tianjin 300072 (China); Lu Shan; Wei Yanjie [School of Environmental Science and Technology, Tianjin University, Tianjin 300072 (China); Ji Min, E-mail: jimin@tju.edu.cn [School of Environmental Science and Technology, Tianjin University, Tianjin 300072 (China)

    2009-05-30

    The performance of a sequencing batch reactor (SBR) seeded with aerobic granular sludge was studied. The lab-scale SBR treating domestic wastewater operated at a volumetric loading rate (VLR) of 0.75-3.41 kg COD/(m{sup 3} d). The granule stability was related to the organic loading, and high loading would be favorable for granule stability. Analysis of typical cycle showed that granular sludge had good ability to simultaneously remove nitrogen and phosphorus. Most organic substances were removed at the anaerobic stage. At the aerobic stage, simultaneous nitrification and denitrification (SND) happened with phosphorus absorption. The SBR had good removal performance for organic matter and phosphate. However, the total nitrogen (TN) removal performance was ordinary, with average removal efficiency of about 52%. Batch experiments indicated that increases of influent C/N ratio and a large percentage of granule in the sludge were conducive for SND in SBR.

  12. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially growth South African sugarcane cultivar

    NARCIS (Netherlands)

    Hoefsloot, G.; Termorshuizen, A.J.; Watt, D.A.; Cramer, M.D.

    2005-01-01

    It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural ab

  13. [Effect of aeration intensity on the nitrogen and phosphorus removal performance of AOA membrane bioreactors].

    Science.gov (United States)

    Chen, Xiao-Yang; Xue, Zhi-Yong; Xiao, Jing-Ni; Zhang, Han-Min; Yang, Feng-Lin; Wang, Wei-Ping; Hong, Chun-Lai; Zhu, Feng-Xiang

    2011-10-01

    The ability of simultaneous phosphorus and nitrogen removal of sequencing batch membrane bioreactor run in anaerobic/oxic/ anoxic mode (AOA MBR) was examined under three aeration intensities [2.5, 3.75 and 5.0 m3 x (m2 x h)(-10]. The results showed that the averaged removals of COD were over 90% at different aeration intensities. And the higher aeration intensity was, the more ammonia nitrogen removal rate achieved. The removal rates of NH4(+) under the three aeration intensities were 84.7%, 90.6% and 93.8%, respectively. Total nitrogen removal rate increased with the increasing aeration intensity. But excessive aeration intensity reduced TN removal. The removal rates of TN under the three aeration intensities were 83.4%, 87.4% and 80.6%, respectively. Aeration intensity affected the denitrifying phosphorus ability of the AOA MBR. The ratio of denitrification phosphorus removal under the three aeration intensities were 20%, 30.2% and 26.7%, respectively.

  14. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  15. Performance of Conventional Activated Sludge to Remove Nitrogen Compounds from Tomato Factory Wastewater

    OpenAIRE

    Meghdad Pirsaheb; Kiomars Sharafi; Golchin Rostami; Serveh Hosainie

    2012-01-01

    Today discharge of raw or treated wastewater containing nutrients (nitrogen and phosphorus compounds) to the surface water causing an Utrification phenomenon, will be due to excessive growth of algae in the receptive water source. Each of the of wastewater treatment system, providing principled design and operation can be reduced nutrients to standard level [1]. The purpose of this study was to evaluate the efficacy of conventional activated sludge systems to remove nitrogen compounds from wa...

  16. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    International Nuclear Information System (INIS)

    Potassium nitrate labeled with 15N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO2- impurity has been found in the batches of K15NO3 enriched to 99 atom % excess 15N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO3- could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO2- impurity from any NO3- solution in a water matrix. The principle is the oxidation of NO2- to NO3- by UV light in the presence of a heterogenous TiO2 catalyst. A NO2- concentration of 0.2 mM in 100 mL of 0.2 M NO3- solution could be oxidized in 12 min using 0.5 g L-1 TiO2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO2-, use of the same TiO2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  17. Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater.

    Science.gov (United States)

    Gouider, Mbarka; Mlaik, Najwa; Feki, Mongi; Sayadi, Sami

    2011-08-01

    The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively. PMID:21905410

  18. Removal design report for the 108-F Biological Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.

  19. Biological methods of dye removal from textile effluents - A review

    Directory of Open Access Journals (Sweden)

    Archna *

    2012-08-01

    Full Text Available Textile dyes are molecules designed to impart permanent colours to textile fabrics. They pose an environmental problem due to their toxicity and decrease the aesthetic value of water bodies into which they are discharged. Current physico-chemical technologies for dye removal cannot remove all classes of dyes, and two or more technologies are usually combined to achieve satisfactory decolourisation efficiencies. Direct biological treatment using fungi or bacteria can also be employed, but nutritional and physiological requirements of microorganisms put constraints on the applicability of such bioremediation processes. The search for efficient and green oxidation technologies has increased the interest in the use of enzymes to replace the conventional non-biological methods. Among the different existing oxidant enzymes, laccase (benzenediol:oxygen oxidoreductases; EC 1.10.3.2 has been the subject of intensive research in the past few decades due to its low substrate specificity. Enzymatic treatment using laccase can be simpler and much more efficient than the traditional physical or chemical treatments. This paper reviews conventional biological processes as well as  laccase-based processes might replace the traditionally energy intensive and water-consuming chemical treatment operations in the textile industry. Keywords: Dyes, Decolourisation, Green Oxidation, Laccase, Textile industry  

  20. Biological removal of dimethyl sulphide from sea water

    Science.gov (United States)

    Kiene, Ronald P.; Bates, Timothy S.

    1990-06-01

    DIMETHYL sulphide (DMS) is an important sulphur-containing trace gas in the atmosphere. It is present in oceanic surface waters at concentrations sufficient to sustain a considerable net flux of DMS from the oceans to the atmosphere, estimated to comprise nearly half of the global biogenic input of sulphur to the atmosphere1. DMS emitted from the oceans may be a precursor of tropospheric aerosols and of cloud condensation nuclei in the remote marine atmosphere, thereby affecting the Earth's radiative balance and thus its climate2-4. Relatively little is known, however, about the biogeochemical and physical processes that control the concentration of DMS in sea water. Here we present data from incubation experiments, carried out at sea, which show that DMS is removed by microbial activity. In the eastern, tropical Pacific Ocean, DMS turnover is dominated by biological processes, with turnover times for biological DMS removal generally more than ten (3-430) times faster than turnover by ventilation to the atmosphere. Thus biological consumption of DMS seems to be a more important factor than atmospheric exchange in controlling DMS concentrations in the ocean, and hence its flux to the atmosphere. These results have significant implications for climate feedback models involving DMS emissions3, and highlight the importance of the microbial food web in oceanic DMS cycling.

  1. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    Science.gov (United States)

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material. PMID:19850316

  2. Removal of organic nitrogen compounds in LCO reduces the hydrodesulphurization severity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Chen, J.; Ring, Z. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2006-07-01

    Canada and the United States committed to reducing diesel sulphur from 500 to 15 part per million by 2006. Refineries could benefit from a better understanding of the effects of feed matrix on sulphur removal by hydrodesulphurization (HDS) in selecting the right feed or feed pre-treatment options for their existing HDS units and achieve the required sulphur level at minimum cost. This paper presented a study that examined the influence of nitrogen compounds on the HDS activities of substituted dibenzothiophenes in light oil cycle over a nitrogen/molybdenum on alumina oxide (Al{sub 2}O{sub 3}) commercial catalyst using five light cycle oil feeds with different concentrations of organic nitrogen compounds. The paper discussed experiments that were conducted under conditions close to industrial HDS processes. The paper addressed feed preparation; the nitrogen effect on HDS reactivity of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyl dibenzothiophene; sulphur composition analysis; hydrodenitrogenation; and kinetic modeling. It was concluded that organic nitrogen compounds have more of an inhibition effect on sulphur removal by the hydrogenation pathway than by the hydrogenolysis pathway. Nitrogen removal by feed pre-treatment was found to be an attractive alternative to achieve the ultra-low sulphur goal. 26 refs., 3 tabs., 9 figs.

  3. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media.

    Science.gov (United States)

    Saeed, Tanveer; Sun, Guangzhi

    2012-12-15

    With the unique advantages of lower operational and maintenance cost, the applications of subsurface flow constructed wetlands for the treatment of wastewater have been increasing rapidly throughout the world. The removal of nitrogen and organics by such systems has gained substantial attention in recent years. In subsurface flow wetlands, the removal of pollutants often relies on a diverse range of co-existing physical, chemical and biological routes, which are vitally dependent on numerous environmental and operational parameters. This paper provides a comprehensive review of wetland structures, classic and novel nitrogen and organics removal mechanisms along with the key environmental parameters and operational conditions that enhance removal in subsurface flow wetland systems. The critical exploration identifies the major environmental parameters such as: pH, DO, and temperature, operational factors i.e. organic carbon availability, loading, feed mode, retention time, recirculation, harvesting, and the complex role (of both parameters) on classical nitrogen and organics removal pathways. Subsequently, the necessity of further extensive research on such factors, for promoting novel nitrogen removal routes in wetland systems has also been highlighted. The expansion of the review on the influence of the unconventional wetland matrix indicates that, the structural differences and inherent properties of these media can support substantial nitrogen and organics removal from wastewater, under optimal operating conditions. Overall, the critical review illustrates the necessity of a profound knowledge on the complicated inter-relationship between nitrogen and organics removal routes, governing environmental and operational parameters, and wetland matrix for improving the treatment performances of subsurface flow wetlands.

  4. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    Science.gov (United States)

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  5. Modified rotating biological contactor for removal of dichloromethane vapours.

    Science.gov (United States)

    Ravi, R; Philip, Ligy; Swaminathan, T

    2015-01-01

    Bioreactors are used for the treatment of waste gas and odour that has gained much acceptance in the recent years to treat volatile organic compounds (VOCs). The different types of bioreactors (biofilter, biotrickling filter and bioscrubber) have been used for waste gas treatment. Each of these reactors has some advantages and some limitations. Though biodegradation is the main process for the removal of the pollutants, the mechanisms of removal and the microbial communities may differ among these bioreactors. Consequently, their performance or removal efficiency may also be different. Clogging of reactor and pressure drop are the main problems. In this study attempts are made to use the principle of rotating biological contactor (RBC) used for wastewater treatment for the removal of VOC. To overcome the above problem the RBC is modified which is suitable for the treatment of VOC (dichloromethane, DCM). DCM is harmful to human health and hazardous to the atmospheric environment. Modified RBC had no clogging problems and no pressure drop. So, it can handle the pollutant load for a longer period of time. A maximum elimination capacity of 25.7 g/m3 h has been achieved in this study for the DCM inlet load of 58 g/m3 h. The average biofilm thickness is 1 mm. The transient behaviour of the modified RBC treating DCM was investigated. The modified RBC is able to handle shutdown, restart and shock loading operations.

  6. Atrazine Removal from Aqueous Solutions using Submerged Biological Aerated Filter

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2013-06-01

    Full Text Available Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs. The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99% in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent

  7. Atrazine removal from aqueous solutions using submerged biological aerated filter.

    Science.gov (United States)

    Baghapour, Mohammad Ali; Nasseri, Simin; Derakhshan, Zahra

    2013-01-01

    Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF) was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs). The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD) removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99%) in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent. PMID:24499572

  8. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands.

    Science.gov (United States)

    Saeed, Tanveer; Sun, Guangzhi

    2011-05-01

    This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.

  9. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Directory of Open Access Journals (Sweden)

    Mary Alldred

    Full Text Available Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  10. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Science.gov (United States)

    Alldred, Mary; Baines, Stephen B; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets. PMID:26914688

  11. Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of Biological Phosphorus Removal

    OpenAIRE

    Peterson, S. Brook; Warnecke, Falk; Madejska, Julita; McMahon, Katherine D.; Hugenholtz, Philip

    2008-01-01

    Members of the uncultured bacterial genus Candidatus Accumulibacter are capable of intracellular accumulation of inorganic phosphate (Pi) in activated sludge wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal (EBPR), but were also recently shown to inhabit freshwater and estuarine sediments. Additionally, metagenomic sequencing of two bioreactor cultures enriched in Candidatus Accumulibacter, but housed on separate continents, revealed the potential for glob...

  12. BIOLOGY OF POLYPHOSPHATE-ACCUMULATING BACTERIA INVOLVED IN ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL

    NARCIS (Netherlands)

    KORTSTEE, GJJ; APPELDOORN, KJ; BONTING, CFC; VANNIEL, EWJ; VANVEEN, HW

    1994-01-01

    Recent research on the process of biological phosphorus removal in lab-scale treatment systems has indicated that: (i) the development of an actively polyP-accumulating bacterial community after the introduction of an anaerobic period may take at least 4 months; (ii) up to 80% of all aerobic bacteri

  13. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    OpenAIRE

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-01-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher ph...

  14. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    OpenAIRE

    Maas,, F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensive catalysts. Therefore, biological NOx removal techniques using denitrification may represent promising alternatives for the conventional SCR techniques. However, water based biofiltration require...

  15. Completely Autotrophic Nitrogen-removal over Nitrite in Two Types of Reactors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Two lab-scale reactors, susponded-sludge and fluidized-bed, were conducted with the feed of ammonium-rich syntheticwa,tewater devoid of COD. Completely autotrophic nitrogen-removal process was fulfilled in both reactors and the maximum efficiencies of nitrogen removal were achieved, 65% in the suspended-sludge reactor and 73% in the fluidized-bed reactor respectively. Different fromn the steady performance of the fluidized-bed reactor, the suspended-sludge reactor came to deteriorate constantly after a period of stable operation, resulting in almost complete loss of the N-removal ability in the suspending system.Molecular methods such as PCR and FISH were employed for describing the microbial characteristics in two systems. This study suggests that a biofilm system is a suitable configuration for completely autotrophic N-removal with more feasibility and stability than a suspending system.

  16. Biological removal of arsenic pollution by soil fungi.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.

  17. Removal of Nitrogen,Phosphorus,and Organic Pollutants From Water Using Seeding Type Immobilized Microorganisms

    Institute of Scientific and Technical Information of China (English)

    LIN WANG; LI-JING HUANG; LUO-JIA YUN; FEI TANG; JING-HUI ZHAO; YAN-QUN LIU; XIN ZENG; QI-FANG LUO

    2008-01-01

    Objective To study the possibility of removing nitrogen.phosphorus,and organic pollutants using seeding type immobilized microorganisms.Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen,phosphorus,and organic pollutants with the seeding type immobilized microorganisms.Correlations between the quantity ofheterotrophic bacteria and the total nitrogen(TN),total phosphorus(TP),and toml organic carbon(TOC)in the two lakes were studied.The dominant bacteria were detected.inoculated to the sludge and acclimated by increasing nitrogen,phosphorus and decreasing carbon source in an intermittent,time-controlled and fixed-quantity way.The bacteria were thenused to prepare the seeding type immobilized microorganisms,selecting diatomim as the adsorbent cairtier.The ability and influence factors of removing nitrogen,phosphorus,and organic pollutant from water samples by the seeding type immobilized microorganismswere studied.Results The coefficients of the heterotrophic bacterial quantity correlatedwith TOC,TP,and TN were 0.9143,0.8229,0.7954 in Lake P and 0.9168,0.7187,0.6022 in Lake M.Ton swains of dominant heterotrophic bacteria belonging to Pseudomonas,Coccus,Aeromonas,Bacillus,and Enterobateriaceae,separately,were isolated.The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24h,pH=7.0-8.0.and quantity of the immobilized microorganisms=0.75-1g/50 mL.The removal rates of TOC,TP,and TN under the above conditions were 80.2%,81.6%,and 86.8%,respectively.Conclusion The amount of heterotrophic bacteria in the two lakes was correlatexl with TOC,TP, and TN.These bacteria could be acclimatized and prepared for the immobilizedmicroorganisms which could effectively remove nitrogen,phosphorus,and mixed organic pollutants in the water sample.

  18. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system

    Institute of Scientific and Technical Information of China (English)

    PENG Yongzhen; HOU Hongxun; WANG Shuying; CUI Youwei; Zhiguo Yuan

    2008-01-01

    To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal(SNDPR),a whole course of SNDPR damage and recovery was studied in a pilot-scale,anaerobicanoxic oxidation ditch(OD),where the volumes of anaerobic zone,anoxic zone,and ditches zone of the OD system were 7,21,and 280L,respectively.The reactor was fed with municipal wastewater with a flow rate of 336 L/d.The concept of simultaneous nitrification and denitrification (SND)rate(rSND) was put forward to quantify SND.The results indicate that:(1)high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase,total nitrogen (TN) and total phosphate(TP) removal rates were 80%and 85%,respectively;(2)when the system was aerated excessively,the stability of SND was damaged,and rSND dropped from 80% to 20%or less;(3)the natural logarithm of the ratio of NOx to MJ4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP);(4)when NO3- was less than 6 mg/L.high phosphorus removal efficiency could be achieved;(5)denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system.The major innovation was that the SND rate was devised and quantified.

  19. Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands.

    Science.gov (United States)

    Zhong, Fei; Liang, Wei; Yu, Tao; Cheng, Shui P; He, Feng; Wu, Zhen B

    2011-01-01

    The nitrogen (N) balance for aquaculture is an important aspect, especially in China, and it is attributed to the eutrophication in many freshwater bodies. In recent years, constructed wetlands (CWs) have been widely used in wastewater treatment and ecosystem restoration. A recirculating aquaculture system (RAS) consisting of CWs and 4 fish ponds was set up in Wuhan, China. Channel catfish (Ictalurus punctatus) fingerlings were fed for satiation daily for 168 days with 2 diets containing 5.49 % and 6.53 % nitrogen, respectively. The objectives of this study were to investigate the N budget in the RAS, and try to find out the feasibility of controlling N accumulation in the fish pond. It is expected that the study can provide a mass balance for the fate of N in the eco-friendly treatment system to avoid eutrophication. The results showed that the removal rates of ammonia (NH(+)(4)-N), sum of nitrate & nitrite (NO(-)(X)-N), and total nitrogen (TN) by the CWs were 20-55%, 38-84 % and 39-57 %, respectively. Denitrification in the CWs was the main pathway of nitrogen loss (41.67 %). Nitrogen accumulation in pond water and sediment accounted for 3.39 % and 12.65 % of total nitrogen loss, respectively. The nitrogen removal efficiency and budget showed that the CW could be used to control excessive nitrogen accumulation in fish ponds. From the viewpoint of the nitrogen pollution control, the RAS combined with the constructed wetland can be applied to ensure the sustainable development for aquaculture. PMID:21644158

  20. Can we trust current estimates for biological nitrogen fixation?

    Science.gov (United States)

    Bellenger, Jean-Philippe; Kraepiel, Anne

    2016-04-01

    Biological nitrogen fixation (BNF) consists on the reduction of atmospheric dinitrogen (N2) into bioavailable ammonium. This reaction accounts for up to 97% of nitrogen (N) input in unmanaged terrestrial ecosystems. Closing the N budget is a long standing challenge in many ecosystems. Recent studies have highlighted that current methods used to assess BNF are affected by critical biases. These findings challenge our confidence in many N budgets and call for a profound reconsideration of our methodological approaches. Beside these methodological issues, our ability to properly assess BNF might be further altered as a result of a misconception regarding the importance of BNF enzymatic diversity in nature. BNF is catalyzed by the enzyme nitrogenase (Nase) for which three isoforms have been identified so far; the molybdenum (Mo), vanadium (V) and iron-only (Fe) isoforms. Currently BNF is mostly considered to primarily depend on the Mo isoform. The contribution of the alternative Nases (V and Fe isoforms) to BNF in natural habitats has been mostly overlooked. However, recent findings have challenged this traditional view of the Nases hierarchy (Mo isoform predominance) with deep implications for BNF assessment in the field. Here, I will present an overview of recent findings, provided by various research groups, challenging current methods used to assess BNF. I will also present a summary of recent studies highlighting the importance of alternative Nases in nature. I will finally illustrate how altering our view on the Mo-Nase predominance can deeply affect our confidence in current BNF estimates. I will conclude by presenting new methodological approaches that will contribute to significantly improve our ability to understand and estimate BNF in the field by improving our capacity to access BNF spatio-temporal variability and enzymatic diversity.

  1. Ammonia nitrogen removal from aqueous solution using zeolite modified by microwave-sodium acetate

    Institute of Scientific and Technical Information of China (English)

    董颖博; 林海

    2016-01-01

    The characteristics of the zeolite modified by microwave and sodium acetate and its sorption of ammonia-nitrogen from simulated water sample were investigated. The results show that the modified zeolite by microwave-sodium acetate (SMMZ) has a high sorption efficiency and removal performance. The ammonia-nitrogen removal rate of SMMZ reaches 92.90%. The surface of SMMZ becomes loose and some pores appear, the specific surface area, total pore volume and average pore diameter increase after modification. Compared to the natural zeolite, SMMZ has a more concentrated pore size distribution in the range of 0−10 nm. The cation exchange capacity (CEC) of SMMZ is higher than that of the natural zeolite. And the ammonia nitrogen removal rate is consistent with the change of CEC. The SMMZ possesses rapid sorption and slow balance characteristics and ammonia-nitrogen sorption is consistent with both Langmuir adsorption isotherm model and Freundlich adsorption isotherm model. The adsorption kinetics of ammonia-nitrogen follows the pseudo-second order kinetic model.

  2. The kinetics of nitrogen removal and biogas production in an anammox non-woven membrane reactor.

    Science.gov (United States)

    Ni, Shou-Qing; Lee, Po-Heng; Sung, Shihwu

    2010-08-01

    The anammox non-woven membrane reactor (ANMR) is a novel reactor configuration to culture the slowly growing anammox bacteria. Different mathematical models were used to study the process kinetics of the nitrogen removal in the ANMR. The kinetics of nitrogen gas production of anammox process was first evaluated in this paper. For substrate removal kinetics, the modified Stover-Kincannon model and the Grau second-order model were more applicable to the ANMR than the first-order model and the Monod model. For nitrogen gas production kinetics, the Van der Meer and Heertjes model was more appropriate than the modified Stover-Kincannon model. Model evaluation was carried out by comparing experimental data with predicted values calculated from suitable models. Both model kinetics study and model testing showed that the Grau second-order model and the Van der Meer and Heertjes model seemed to be the best models to describe the nitrogen removal and nitrogen gas production in the ANMR, respectively.

  3. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  4. Enhanced biological phosphorus removal with different carbon sources.

    Science.gov (United States)

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared. PMID:27087523

  5. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2014-01-01

    The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...

  6. Novel strategy of nitrogen removal from domestic wastewater using pilot Orbal oxidation ditch

    Institute of Scientific and Technical Information of China (English)

    GAO Shou-you; PENG Yong-zhen; WANG Shu-ying; YAN Jun

    2006-01-01

    A pilot-scale Orbal oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average MLSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a series of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon.

  7. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  8. Nitrogen transformations and removal mechanisms in algal and duckweed stabilisation ponds

    NARCIS (Netherlands)

    Zimmo, O.

    2003-01-01

    This thesis describes the results of a comparative study of the performance of algae-based ponds (ABPs) and duckweed-based ponds (DBPs) for wastewater treatment, with emphasis on nitrogen transformations and removal mechanisms.Batch experiments simulating algae and duckweed ( Lemna gibba ) stabilisa

  9. Biological decontamination using high and reduced pressure nitrogen afterglows

    OpenAIRE

    Sarrette, Jean-Philippe; Cousty, Sarah; Clement, Frank; Canal Barnils, Cristina; Ricard, André

    2012-01-01

    Typical results quantifying the antibacterial efficiencies of high and reduced pressure nitrogen afterglows are presented, using the same microbiological protocol. In parallel, the diffusion of the nitrogen atoms through different polymer membranes is studied. Peer Reviewed

  10. Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; PENG Yongzhen; YANG Anming; GUO Jianhua; LI Jianfeng

    2007-01-01

    The feasibility of pH and oxidation reduction potential (ORP) as on-line control parameters to advance nitrogen removal in pulsed sequencing batch reactors (SBR)was evaluated.The pulsed SBR,a novel operational mode of SBR,was utilized to treat real municipal wastewater accompanied with adding ethanol as external carbon source.It was observed that the bending-point (apex and knee) of pH and ORP profiles can be used to control denitrification process at a low influent C/N ratio while dpH/dt can be used to control the nitrification and denitrification process at a high influent C/N ratio.The experimental results demonstrated that the effluent total nitrogen can be reduced to lower than 2 mg/L,and the average total nitrogen (TN) removal efficiency was higher than 98% by using real-time controll strategy.

  11. [Effect of Elodea nuttallii-immobilized Nitrogen Cycling Bacteria on Nitrogen Removal Mechanism in an Inflow River, Gonghu Bay].

    Science.gov (United States)

    Han, Hua-yang; Li, Zheng-kui; Wang, Hao; Zhu, Qian

    2016-04-15

    Undisturbed sediment cores and surface water from Qinshui River in Gonghu Bay were collected to carry out a simulation experiment in our laboratory. The remediation effect of Elodea nuttallii-Immobilized Nitrogen Cycling Bacteria (INCB) was applied in the polluted inflow river. The denitrification rate, ANAMMOX rate and nitrogen microorganism diversity were measured by ¹⁵N isotope pairing technology and high-throughput sequencing technology based on 16S rRNA. The TN, NH₄⁺-N, NO₃⁻-N concentrations were reduced by 72.03%, 46.67% and 76.65% in the treatment with addition of Elodea nuttallii and INCB in our laboratory experiment. Meanwhile, denitrification bacteria and ANAMMOX bacteria had synergistic effect with each other. The denitrification and ANAMMOX rates were increased by 165 µmol (m² · h)⁻¹ and 269.7 µmol · (m² · h)⁻¹, respectively. The diversities of denitrification and ANAMMOX bacteria also increased in our experiment. From the level of major phylum, Proteobacteria, Planctomycetes, Acidobbacteria and Bacteroidetes all increased significantly. The results showed that the Elodea nuttallii-INCB assemblage technology could increase the bio-diversity of nitrogen cycling bacteria and promote the ability of nitrogen removal in Qinshui River.

  12. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  13. Estimation of tomato leaf nitrogen content using continuum-removal spectroscopy analysis technique

    Science.gov (United States)

    Ding, Yongjun; Li, Minzan; Zheng, Lihua; Sun, Hong

    2012-11-01

    In quantitative analysis of spectral data, noises and background interference always degrades the accuracy of spectral feature extraction. Continuum-removal analysis enables the isolation of absorption features of interest, thus increasing the coefficients of determination and facilitating the identification of more sensible absorption features. The purpose of this study was to test continuum-removal methodology with Visual-NIR spectral data of tomato leaf. Through analyzing the correlation between continuum-removal spectrum and nitrogen content, 15 characteristics parameters reflected changing tendency of nitrogen content were chosen, which is at 335, 405, 500, 520, 540, 550, 560, 580, 620, 640, 683, 704, 720, 736 and 770 nm. Finally, the variance inflation analysis and stepwise regression method was used to develop the prediction model of the nitrogen content of tomato leaf. The result showed that the predicted model, which used the values of continuum-removal spectrum at 335 and 720nm as input variables, had high predictive ability, with R2 of 0.755. The root mean square errors of prediction using a leave-one-out cross validation method were 0.513. These results suggest that the continuum-removal spectroscopy analysis has better potential to diagnose tomato growth in greenhouse.

  14. Physico-chemical technologies for nitrogen removal from wastewaters: a review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2015-07-01

    Full Text Available The paper examines the main physico-chemical processes for nitrogen removal from wastewaters, considering both those that have been long known and still widely applied at the industrial scale, and those that are still at the research level. Special attention is paid to the latest technological developments, as well as to operational problems and fields of application. The processes considered are briefly summarized as follows: ammonia air and steam stripping; ammonia vacuum distillation; ammonia precipitation as struvite; ammonia and nitrate removal by selected ion exchange; breakpoint chlorination; chloramine removal by selected activated carbon; ammonia adsorption on charcoal; chemical reduction of nitrate; advanced oxidation processes to convert ammonia and organic-N into nitrogen gas or nitrate. Special attention is given to advanced oxidation processes, as great research efforts are currently addressed to their implementation. These specifically include ozonation, peroxon oxidation, catalytic wet air oxidation, photo-catalytic oxidation and electrochemical oxidation.

  15. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  16. Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Reti Hai; Yiqun He; Xiaohui Wang; Yuan Li

    2015-01-01

    In this study, the performance of a sequencing batch biofilm reactor (SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5%throughout the exper-iment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L−1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) was 98.2%, 95.7%, 95.6%, and 96.2%at effluent concentrations of COD 85.6 mg·L−1, NH4+-N 35.22 mg·L−1, TN 44.64 mg·L−1, and TP 1.13 mg·L−1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L−1 and TN 34 mg·L−1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the fil er surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment (15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.

  17. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    Science.gov (United States)

    Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor

  18. Relationships between loading rates and nitrogen removal effectiveness in subsurface flow constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Rongshe ZHANG; Guanghe LI; Qi ZHOU; Xu ZHANG

    2008-01-01

    Nitrogen removal of wetlands under 40 different inflow loadings were studied in the field during 15 months. The removal efficiency of four different sets of beds, namely the reed bed, the Zizania caduciflor bed, the mixing planting bed, and the control bed were studied. The outflow loading and total nitrogen (TN) removal rate of these beds under different inflow loadings and pollution loadings were investigated. The inflow loadings of 4 sub-surface flow systems (SFS) ranged from 400 to 8000 mg· (m2·d)-1, while outflow loadings were less than 7000 mg· (m2·d)-1. The results showed that the inflow and outflow loading of TN removal rate in SFS presented an obvious linear relationship. The optical inflow loading to run the system was between 2000 to 4000 mg·(m2·d)-1. Average removal rate was between 1062 and 2007 mg·(m2·d)-1. SFS with plant had a better removal rate than the control. TN removal rates of the reed and Zizania caduciflora bed were 63% and 27% higher than the control bed, respectively. The results regarding the TN absorption of plants indicated that the absorption amount was very limited, less than 5% of the total removal. It proved that plants clearly increase TN removal rates by improving the water flow, and increasing the biomass, as well as activities of microorganisms around the roots. The research provided a perspective for understanding the TN removal mechanism and design for SFS.

  19. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  20. Stabilisation of Biological Phosphorus Removal from Municipal Wastewater

    DEFF Research Database (Denmark)

    Krühne, Ulrich

    variations of the influent wastewater concentrations and are not yet always guaranteed. Even though the scientific knowledge and practical experience has reached a high level of understanding of the involved key-processes it is still necessary to apply chemical precipitation of phosphorus during the time......The biological phosphorus removal (BPR) from wastewater has developed considerably during the last decades and is applied in many present wastewater treatment plants (WWTP) all over the world. The process performance and the control of the BPR are under the influences of daily and seasonal...... have been performed on an alternating pilot plant, receiving municipal wastewater. The pilot plant is equipped with an automatic measurement system based on the flow injection analysis (FIA) principle. Continuos analysis of the ammonium (NH4-N), nitrate (as NOx-N) and phosphorus (PO4-P) was performed...

  1. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  2. Nitrogen removal by three types of bioretention columns under wetting and drying regimes

    Institute of Scientific and Technical Information of China (English)

    唐宁远; 李田

    2016-01-01

    The behaviors of inorganic nitrogen species in three types of bioretention columns under an intermittently wetting regime were investigated. The mean NH4+—N, NO3−—N and total N (TN) removal efficiencies for the conventional bioretention column (Col. T1) are 71%, 1% and 41%, for layered bioretention column with less permeable soil layer (Col. T2) the efficiencies are 83%, 84% and 82%, and for the bioretention column with submerged zone (Col. T3) the values are 63%, 31% and 53%, respectively. The best nitrogen removal is obtained using Col. T2 with relatively low infiltration rate. Adsorption during runoff dosing and nitrification during the drying period are the primary NH4+—N removal pathways. Less permeable soil and the elevated outlet promote the formation of anoxic conditions. 30%–70% of NO3−—N applied to columns in a single repetition is denitrified during the draining period, suggesting that the draining period is an important timeframe for the removal of NO3−—N. Infiltration rate controls the contact time with media during the draining periods, greatly influencing the NO3−—N removal effects. Bioretention systems with infiltration rate ranging from 3 to 7 cm/h have a great potential to remove NO3−—N.

  3. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading. PMID:24494501

  4. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui

    2014-12-01

    The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.

  5. Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND

    DEFF Research Database (Denmark)

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela;

    2012-01-01

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can...... offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0.......86 ± 0.04 kg N m–3 biofilter d–1 and an empty bed residence time of 14 s. After 45 days of operation a stable nitrogen removal rate of 0.67 ± 0.06 kg N m–3 biofilter d–1, an ammonia removal efficiency of 99%, a removal of 75–80% of the total nitrogen, and negligible NO/N2O productions were obtained...

  6. [Removal pathway and influence factors of hydroponic bio-filter method for nitrogen and phosphorus].

    Science.gov (United States)

    Li, Xian-ning; Song, Hai-liang; Lü, Xi-wu; Osamu, Nishimura; Yuhei, Inamori

    2007-05-01

    Study was made on the use of hydroponic bio-filter method (HBFM) for eutrophic surface water. Results show that HBFM can remove 16.8% of TN and 30.8% of TP at the hydraulic loading rate (HLR) of 3.0 m3/(m2 x d). The removal loading rate of TN and TP can accordingly reach 1.0 and 0.1 g/(m2 x d) respectively. The sedimentation of particulate nitrogen and particulate phosphorus plays a major role in nitrogen and phosphorus removal, and its contribution is 62.2% and 75.9% respectively. The optimal HLR of HBFM ranges from 3.0 to 4.0 m3/(m x d). The intension of secateur for Nasturtium officinale has some effect on its uptake rate, thus the length of cut when harvesting should be less than 10 cm. The harvesting frequency of once a month for Nasturtium officinale has no effect on nitrogen and phosphorus removal of HBFM.

  7. [Isolation of heterotrophic nitrifiers which can tolerate high concentration of ammonia-nitrogen and the optimization of their nitrogen removal efficiency in wastewater].

    Science.gov (United States)

    Si, Wen-Gong; Lü, Zhi-Gang; Xu, Chao

    2011-11-01

    The removal capabilities and tolerance of high concentration of ammonia-nitrogen of heterotrophic nitrifiers were studied. Methods included multi-point sampling, domestication, gradient dilution of domestication liquid, color indicator as rapid nitrification detection and isolation from streaking plate were conducted to screen heterotrophic nitrifiers. The strains were identified according to the sequence analysis of 16S rDNA. After inoculating the strains into ammonia-nitrogen wastewater, changes of nitrogen compounds were measured in order to understand their denitrification characteristics. The denitrification efficiency was optimized by improving the C/N ratio, changing the compatibility of the strains and mixing the compatible strains with the domesticated bacterial suspension. Finally 8 high-efficiency heterotrohic nitrifiers were obtained, and named as N1-N8 respectively. Phylogenetic analysis showed that 8 strains belonged to Comamonas genus, Rhodococcus genus, Pseudomonos genus, Arthrobacter genus and Paracoccus genus, respectively. When the initial concentration of ammonia nitrogen was 256.9 mg x L(-1) and the C/N was 5.5 of the artificial wastewater, the removal rates of ammonia nitrogen by the strains were about 65%-80%, and the stain N4 was the best. When the C/N ratio of the wastewater increased to 8.0, the ammonia nitrogen removal rates of the strains correspondingly increased to about 80% -90%. As the strains compatibility, the denitrification rate of N4 + N5 + N6 was 88.2% in the artificial wastewater with initial ammonia nitrogen concentration was 261.1 mg x L(-1) and initial C/N ratio was 5.5, which was higher than that of any single strain. The ammonia nitrogen removal rate could reach to 99.8% when N4 + N5 + N6 were combined with the domesticated bacterial suspension. In the artificial wastewater, when the initial ammonia nitrogen increased to 446.9 mg x L(-1) and the C/N ratio decreased to 3.2, the ammonia nitrogen removal rate of the mixed

  8. Nitrogen Removal Improvement by Adding Peat in Deep Soil of Subsurface Wastewater Inifltration System

    Institute of Scientific and Technical Information of China (English)

    CHEN Pei-zhen; CUI Jian-yu; HU Lin; ZHENG Miao-zhuang; CHENG Shan-ping; HUANG Jie-wen; MU Kang-guo

    2014-01-01

    In order to enhance the nitrogen removal, a subsurface wastewater inifltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitriifcation process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different inlfuents (with the total nitrogen (TN) concentration 40 and 80 mg L-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution inlfuent with 40 mg L-1 TN was used, the average concentrations of NO3--N and TN in eflfuents were (4.69±0.235), (6.18±0.079) mg L-1, respectively, decreased by 32 and 30.8%than the control;the NO3--N concentration of all eflfuents was below the maximum contaminant level of 10 mg L-1;as high as 92.67%of the TN removal efifciency was achieved. When relatively heavy pollution inlfuent with 80 mg L-1 TN was used, the average concentrations of NO3--N and TN in eflfuents were (10.2±0.265), (12.5±0.148) mg L-1 respectively, decreased by 20 and 21.2%than the control;the NO3--N concentration of all eflfuents met the grade III of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L-1;the TN removal efifciency of 94.1%was achieved. In summary, adding peat in the underpart of the SWIS signiifcantly decreased TN and NO3--N concentration in eflfuents and the nitrogen removal efifciency improved signiifcantly.

  9. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD−1 d−1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD−1 d−1. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  10. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  11. Treatment of high strength leachate by biological nutrient removal processes

    International Nuclear Information System (INIS)

    This study describes the performance of a pilot-scale A/O system with respect to not only conventional wastewater quality parameters, but also specific volatile and semi-volatile organics. Hydraulic loadings were increased from 1.0 to 3.0 m3/d in two stages. The leachate was characterized by highly variable BOD, COD, TKN, and NH3-N concentrations ranging from 540-7185, 2040-8470, 501-1294, and 321-1000 mg/l respectively with over 91% of the BOD and 95% of the COD in soluble form. Concentrations of VOCs primarily benzene, chlorobenzene, ethylbenzene, toluene, o-xylene, m and p-xylene, 1,1-dichloroethane, and trichloroethylene ranging from 0.2 to 81.4 μg/l were reduced to below detection levels in the A/O system. At the three loadings investigated in the study i.e. 1, 2, and 3 m3 /d, the system affected excellent removals of organics and nitrogen, with reductions of soluble BOD (SBOD), total BOD, soluble COD (SCOD), COD, TKN, NH3-N, and total nitrogen of 91-100%, 87-97%, 65-93%, 57-91%, 84-96%, 99.96-99.97%, and 81-90% respectively. At the various loadings investigated in this study, effluent concentrations of SBOD, BOD,COD, SCOD, TKN, NH3-N, and nitrates as low as 4, 56, 685, 608, 35.2, 0.6, and 28.8 mg/l respectively were routinely achieved. Furthermore, despite operating at high mixed liquor solids in the 5000-6500 mg/l range, and the adversely long hydraulic residence time in the clarifier of 2 days, effluent total and volatile suspended solids concentrations of about 50 and 30 mg/l were achieved. The A/O system was not only capable of achieving the required sewer discharge criteria but it also demonstrated the achievability of surface discharge criteria, thus eliminating the need for additional treatment at the municipal wastewater treatment facilities. The system operated in a very stable fashion resisting the wide fluctuations in influent quality. (author)

  12. Nitrogen-Containing Apigenin Analogs: Preparation and Biological Activity

    Directory of Open Access Journals (Sweden)

    Jinyi Wang

    2012-12-01

    Full Text Available A series of nitrogen-containing apigenin analogs 4a–j was synthesized via Mannich reactions to develop anticancer, antibacterial, and antioxidant agents from plant-derived flavonoids. The chemical structures of these compounds were confirmed using 1H-NMR, 13C-NMR, and ESI-MS. The in vitro biological activities of the analogs were evaluated via assays of their antiproliferative, antibacterial, and antioxidant activities. The prepared apigenin analogs exhibited different antiproliferative activities against four human cancer cell lines, namely human cervical (HeLa, human hepatocellular liver (HepG2, human lung (A549, and human breast (MCF-7 cancer cells. Compound 4i showed the most favorable in vitro antiproliferative activity with IC50 values of 40, 40, 223, and 166 μg/mL against HeLa, HepG2, A549, and MCF-7, respectively. The 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity assay also showed that 4i had the most potent antioxidant activity, with the smallest IC50 value (334.8 μg/mL. The antibacterial activities of the analogs were determined using a two-fold serial dilution technique against four pathogenic bacteria, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. All the prepared apigenin analogs exhibited more potent activities than the parent apigenin. Compounds 4h and 4j, in particular, exhibited the best inhibitory activities against the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values of 3.91 and 1.95 μg/mL, respectively.

  13. Experimental investigation of the external nitrification biological nutrient removal activated sludge (ENBNRAS) system.

    Science.gov (United States)

    Hu, Zhi-Rong; Sötemann, S; Moodley, R; Wentzel, M C; Ekama, G A

    2003-08-01

    A systematic lab-scale experimental investigation is reported for the external nitrification (EN) biological nutrient removal (BNR) activated sludge (ENBNRAS) system, which is a combined fixed and suspended medium system. The ENBNRAS system was proposed to intensify the treatment capacity of BNR-activated sludge (BNRAS) systems by addressing two difficulties often encountered in practice: (a) the long sludge age for nitrification requirement; and (b) sludge bulking. In the ENBNRAS system, nitrification is transferred from the aerobic reactor in the suspended medium activated sludge system to a fixed medium nitrification system. Thus, the sludge age of the suspended medium activated sludge system can be reduced from 20 to 25 days to 8 to 10 days, resulting in a decrease in reactor volume per ML wastewater treated of about 30%. Furthermore, the aerobic mass fraction can also be reduced from 50% to 60% to 55% (if the anaerobic mass fraction is 15%), and thus complete denitrification in the anoxic reactors becomes possible. Research indicates that both the short sludge age and complete denitrification could ameliorate anoxic aerobic (AA) or low food/microorganism (F/M) ratio filamentous bulking, and hence reduce the surface area of secondary settling tanks or increase the treatment capacity of existing systems. The lab-scale experimental investigations indicate that the ENBNRAS system can obtain: (i) very good chemical oxygen demand (COD) removal, even with an aerobic mass fraction as low as 20%; (ii) high nitrogen removal, even for a wastewater with a high total kjeldahl nitrogen (TKN)/COD ratio, up to 0.14; (iii) adequate settling sludge (diluted sludge volume index [DSVI] <100 mL/g); and (iv) a significant reduction in oxygen demand.

  14. Comprehensive analysis of soil nitrogen removal by catch crops based on growth and water use

    Science.gov (United States)

    Yasutake, D.; Kondo, K.; Yamane, S.; Kitano, M.; Mori, M.; Fujiwara, T.

    2016-07-01

    A new methodology for comprehensive analysis of the characteristics of nitrogen (N) removal from greenhouse soil by catch crop was proposed in relation to its growth and water use. The N removal is expressed as the product of five parameters: net assimilation rate, specific leaf area, shoot dry weight, water use efficiency for N removal, and water requirement for growth. This methodology was applied to the data of a greenhouse experiment where corn was cultivated under three plant densities. We analyzed the effect of plant density and examined the effectiveness of the methodology. Higher plant densities are advantageous not only for total N removal but also for water use efficiency in N removal and growth because of the large specific leaf area, shoot dry weight, and decreased soil evaporation. On the other hand, significant positive or negative linear relationships were found between all five parameters and N removal. This should improve the understanding of the N removal mechanisms and the interactions among its components. We show the effectiveness of our analytical methodology, which can contribute to identifying the optimum plant density according to the field situations (available water amount, soil N quantity to be removed) for practical catch crop cultivation.

  15. Research on Nitrogen Removal and Microorganism in a Subsurface Flow Constructed Wetland System in Sihong County

    Institute of Scientific and Technical Information of China (English)

    XIA Ning; LIU Han-hu; GUO Ru-mei; ZHANG Hong-zhen; YANG Kun

    2006-01-01

    Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of microorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The results show that the removal of CODCr agrees with the kinetic equation of a first order reaction. The removal of pollutants varies with different seasons. The removal rates of CODCr, NH3-N, TN in the spring are 15%-23% higher than those in the autumn. The amount of ammonifier is larger than that of denitrifying bacteria and the amount of denitrifying bacteria is larger than that of nitrosomonas. The amount of bacteria around the plant roots is larger than that on the surface of the packing medium. No apparent change is observed for the amount of denitrifying bacteria and nitrosomonas between spring and autumn.

  16. Removal of nitrogen and phosphorus in a combined A2/O-BAF system with a short aerobic SRT

    Institute of Scientific and Technical Information of China (English)

    DING Yong-wei; WANG Lin; WANG Bao-zhen; WANG Zheng

    2006-01-01

    A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A2/O-BAF) combined system was carried out to treat wastewater with lower C/N and C/P ratios. The A2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitrifying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent retum rates should be controlled with 1-4 mg/L nitrate nitrogen in the anoxic zone effluent of A2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.

  17. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    Science.gov (United States)

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions.

  18. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters.

    Science.gov (United States)

    Zhou, Zijun; Xu, Peng; Cao, Xiuyun; Zhou, Yiyong; Song, Chunlei

    2016-10-01

    Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters.

  19. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters.

    Science.gov (United States)

    Zhou, Zijun; Xu, Peng; Cao, Xiuyun; Zhou, Yiyong; Song, Chunlei

    2016-10-01

    Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters. PMID:27428301

  20. Nitrogen removal kinetics in the treatment of landfill leachate by SBR systems

    International Nuclear Information System (INIS)

    In this study, laboratory-scale experiments were conducted applying the SBR activated sludge process to leachate from an old MSW landfill operating for 7 years. Due to the fact that old leachate is characterized with a high concentration of ammonia (approximately 1500 mgN/1) and low availability of readily biodegradable organic matter (BOD5/COD,06), the aim was to examine the nitrogen removal process and to compare the efficiency of one-stage and two stage systems operating at temperature of 20 C and 12 C. The second alternative SBR configuration is based on the coupling of two SBR reactors: the first one specialized in nitrification and the second one in post-denitrification, with external carbon source addition. By the efficient removal of nitrogen, an on-site pretreatment of leachate allows to comply with the limits required for discharging into sewers or into municipal wastewater treatment plant

  1. The Spatial Distribution of Nitrogen Removal Functional Genes in Multimedia Constructed Wetlands for Wastewater Treatment.

    Science.gov (United States)

    Ji, Guodong; He, Chunguang; Tan, Yufei; Yang, Zhonghua

    2015-11-01

    The real-time polymerase chain reaction was used to quantitatively evaluate distribution patterns and nitrogen removal pathways of the amoA, nxrA, narG, napA, nirK, qnorB, nosZ, nas, and nifH genes and 16S rRNA in anaerobic ammonia oxidation bacteria in four multimedia constructed wetlands for rural wastewater treatment. The results indicated that the abundance of functional genes for nitrogen removal in the rhizosphere layer (0 to 30 cm), water distribution layer (30 to 50 cm), multime filler layer (50 to 130 cm), and catchment layer (130 to 170 cm) of the constructed wetlands were closely related. The rhizosphere layer was conducive to the absolute enrichment of dominant genes. The other three layers were favorable to the relative enrichment of rare genes. PMID:26564582

  2. Comparing results of cultured and uncultured biological methods used in biological phosphorus removal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Increasing attention has been paid to phosphate-accumulating organisms (PAOs) for their important role in biological phosphorus removal. In this study, microbial communities of PAOs cultivated under different carbon sources (sewage, glucose, and sodium acetate) were investigated and compared through culture-dependent and culture-independent methods, respectively. The results obtained using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction-amplified 16S rDNA fragments revealed that the diversity of bacteria in a sewage-fed reactor (1#) was much higher than in a glucose-fed one (2#) and a sodium acetate-fed one (3#); there were common PAOs in three reactors fed by different carbon sources. Five strains were separated from three systems by using a phosphate-rich medium; they were from common bacteria isolated and three isolates could not be found in DGGE profile at all. Two isolates had good phosphorus removal ability. When the microbial diversity was studied, the molecular biological method was better than the culture-dependent one. When phosphorus removal characteristics were investigated, culture-dependent approach was more effective. Thus a combination of two methods is necessary to have a comprehensive view of PAOs.

  3. Immobilized periphytic cyanobacteria for removal of nitrogenous compounds and phosphorus from shrimp farm wastewater

    OpenAIRE

    Banerjee, Sanjoy; Khatoon, Helena; Shariff, Mohamed; YUSOFF, FATIMAH

    2015-01-01

    Cyanobacteria can be used to remove nitrogenous compounds from wastewater, but a major bottleneck in the process is the separation of cyanobacterial biomass from the treated water discharge, which may cause eutrophication. The current study assessed the suitability of three periphytic cyanobacteria (Geitlerinema sp., Gloeotrichia sp., and Lyngbya sp.) isolated from shrimp ponds. These cyanobacteria were immobilized by self-adhesion to polyvinyl chloride sheets, forming mats, and were screened...

  4. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist;

    2015-01-01

    based on a process model and then tested experimentally. The resulting batch-to-batch control strategy had the total nitrogen removal efficiency as controlled variable and the setting of the aeration mass flow controller as manipulated variable. Compared to manual operation mode (constant air supply......-scale reactor is a promising result, which brings this control strategy one step closer to full-scale implementation....

  5. Development and Study on Nitrogen Removal Controller in A/O Process

    Institute of Scientific and Technical Information of China (English)

    MA Yong; PENG Yong-zhen; WANG Shu-ying

    2004-01-01

    In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different controllers is to control the nitrate and ammonia concentration. Simulation study demonstrated that these controllers could efficiently control nitrogen removal and meet stricter effluent quality standards at a minimum cost.

  6. Effect of Algal Biofilm and Operational Conditions on Nitrogen Removal in Wastewater Stabilization Ponds

    OpenAIRE

    Babu, M.

    2011-01-01

    Discharge of nutrient rich wastewater causes eutrophication of surface water; therefore wastewater treatment before discharge is required. Wastewater stabilization ponds are low cost technology used by developing countries but not effective in nitrogen removal due to low nitrifier biomass in the water column. Introduction of surface area for attachment of nitrifiers has therefore been proposed. This thesis reports the performance of pilot scale wastewater stabilization ponds fitted with baffl...

  7. Electroflotation clarifier to enhance nitrogen removal in a two-stage alternating aeration bioreactor.

    Science.gov (United States)

    Cho, Kangwoo; Chung, Chong Min; Kim, Yun Jung; Hoffmann, Michael R; Chung, Tai Hak

    2013-01-01

    Stringent water treatment criteria and rapidly growing pollutant loads provoke the demand for retrofitting wastewater treatment plants towards a higher capacity. In this study, we assess a two stage alternating aeration (AA) bioreactor equipped with electroflotation (EF) clarifier, for nitrogen removal within a short hydraulic retention time (HRT). The EF under steady solids loading required a minimum unit height and gas: solids ratio of 0.006 for efficient clarification. The separated sludge blanket was further thickened with retaining stability when the cyclic solids loading was smaller than 1.0 kg m(-2). In the continuous operation of the bioreactor, the returned activated sludge concentration increased to more than 18,000 mg L(-1), while the effluent suspended solids concentration was lowered below 5 mg L(-1). Under influent chemical oxygen demand (COD)/total inorganic nitrogen (TIN) concentration of 300/30 mg L(-1), the TIN removal efficiency was near 70% with cycle time ratios of 0.17 and 0.27. Under higher influent COD concentration of 500mg L(-1), TIN removal efficiency was found to be 73.4% at a carbon:nitrogen (C:N) ratio of 10 and even higher (80.4%) at a C:N ratio of 16.6. The increased mixed liquor suspended solids concentrations (> 6000 mg L(-1)) under the high COD loading were efficiently maintained by using the EF clarifier. The results of this study demonstrate that an EF clarifier with a HRT of less than 1 h can support reliable nitrogen removal in the AA process that has a HRT of 6 h, even under increasing influent loadings. PMID:24527640

  8. Computation of Bond Dissociation Energies for Removal of Nitrogen Dioxide Groups in Certain Aliphatic Nitro Compounds

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; CHENG Xin-Lu; YANG Xiang-Dong; XIANG Shi-Kai

    2006-01-01

    @@ Bond dissociation energies for removal of nitrogen dioxide groups in 10 aliphatic nitro compounds, including nitromethane, nitroethylene, nitroethane, dinitromethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane,2-methyl-2-nitropropane, nitropentane, and nitrohexane, are calculated using the highly accurate complete basis set (CBS-Q) and the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31G** basis set.

  9. Observation of Nitrogen and Phosphorus Removals and Accumulations in Surface Flow Constructed Wetland (SFCW)

    OpenAIRE

    Suntud Sirianuntapiboon; Prapa Sohsalam

    2012-01-01

    The tropical emergent plant species; Cyperus involucratus, Canna siamensis, Heliconia sp., Hymenocallis littoralis, Typha augustifolia and Thalia dealbata were used to observe nutrients (total phosphorus: TP and total nitrogen: TN) removal efficiencies of surface flow constructed wetland (SFCW). The system was operated at different hydraulic retention time (HRT) of 1, 3 and 5 days and the average atmospheric temperature of 29.1 ± 4.9oC. The seafood industrial wastewater was employed as the in...

  10. A possible method for in situ nitrogen removal in landfills by microbial-pumping-iron behavior.

    Science.gov (United States)

    Long, Yuyang; Xu, Jing; Du, Yao; Feng, Huan; Fang, Yuan; Shen, Dongsheng

    2016-06-15

    Nitrogen pollution from landfills needs urgent treatment. A batch experiment was designed to explore the possible in situ nitrogen removal in landfills based on the hypothesis of microbial-pumping-iron behavior, namely anaerobic microbial iron oxidation and reduction. The results confirm that a simultaneous Fe(ii) oxidation, accompanied by nitrate (NO3(-)-N) reduction and dissimilatory Fe(iii) reduction, can happen in aged municipal solid waste (AMSW). This phenomenon can last at least 10 years after landfilling. Organics is an important intermediate medium in that process. The dynamic anaerobic Fe redox cycle has the potential of denitrification without ammonia nitrogen (NH4(+)-N) accumulation. AMSW with deposited ages of 1-3 years is a good choice to enhance this redox cycle behavior coupled with denitrification. Conversely, AMSW with longer deposited ages (8-10 years) has a quicker iron cycle and a smaller NH4(+)-N accumulation. This suggests a possible method for in situ nitrogen removal in landfills. PMID:27194007

  11. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  12. Nitrogen removal in micro-polluted surface water by the combined process of bio-filter and ecological gravel bed.

    Science.gov (United States)

    Sheng-Bing, He; Jian-Wen, Gao; Xue-Chu, Chen; Ding-Li, Dai

    2013-01-01

    Nitrogen removal in micro-polluted surface water by the combined process of a bio-filter and an ecological gravel bed was studied. Sodium acetate was added into micro-polluted surface water as carbon source and the nitrogen removal under different C/N ratio, hydraulic load and temperature were investigated. The results showed that the variations in C/N ratio, hydraulic load and temperature have significant influence on nitrogen removal in bio-filter. It was found that the denitrification rate was above 90% when C/N ratio reached 10; also, the denitrification was inhibited at low water temperature (2-10 °C); at the condition of water temperature above 20 °C, C/N ratio 10, hydraulic load 8 m(3)/(m(2) h), the combined process obtained the nitrogen removal of more than 90%, and the residual organics could be removed in ecological gravel bed.

  13. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Xiuhong; PENG Yi; WU Changyong; AKIO Takigawa; PENG Yongzhen

    2008-01-01

    The production of N2O during nitrogen removal from real domestic wastewater was investigated in a lab-scale aerobic-anoxic sequencing batch reactor with a working volume of 14 L.The results showed that the total N2O-N production reached higher than 1.87 mg/L,and up to 4% of removed nitrogen was converted into N2O.In addition,N2O led to a much higher greenhouse effect than CO2 during aerobic reaction phase,this proved that N2O production could not be neglected.The N2O-N production during nitrification Was 1.85 mg/L,whereas,during denitrification,no N2O was produced,nitrification was the main source of N2O production during nitrogen removal.Furthermore,during denitrification,the dissolved N2O at the end of aeration Was found to be further reduced to N2.Denitrification thus had the potential of controlling N2O production.

  14. Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater

    OpenAIRE

    Erhong Duan; Jingliang Yang; Ping Chen; Yanfang Liu; Jiane Zuo; Zaixing Li; Xuguang Ren; Yongjun Wang

    2012-01-01

    7-Aminocephalosporanic acid wastewater usually contains high concentrations of ammonium (NH4+-N), which is known to inhibit nitrification during biological treatment processes. Chemical precipitation is a useful technology to remove ammonium from wastewater. In this paper, the removal of ammonium from 7-aminocephalosporanic acid wastewater was studied. The optimum pH, molar ratio, and various chemical compositions of magnesium ammonium phosphate (MAP) precipitation were investigated. The resu...

  15. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils.

    NARCIS (Netherlands)

    Pijnenborg, J.W.M.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium meliloti. This thesis deals with the factors affecting biological nitrogen fixat

  16. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    Science.gov (United States)

    Almarri, Masoud S.

    desulfurization of model diesel fuel, which contains equimolar concentrations of nitrogen (i.e., quinoline and indole), sulfur (i.e., dibenzothiophene and 4,6-dimethyldibenzothiophene), and aromatic compounds (naphthalene, 1-methylnaphthalene, and fluorene), was examined. The results revealed that when both nitrogen and sulfur compounds coexist in the fuel, the type and density of oxygen functional groups on the surface of the activated carbon are crucial for selective adsorption of nitrogen compounds but have negligible positive effects for sulfur removal. The adsorption of quinoline and indole is largely governed by specific interactions. There is enough evidence to support the importance of dipole--dipole and acid-base-specific interactions for the adsorption of both quinoline and indole. Modified carbon is a promising material for the efficient removal of the nitrogen compounds from light cycle oil (LCO). Adsorptive denitrogenation of LCO significantly improved the hydrodesulfurization (HDS) performance, especially for the removal of the refractory sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. An essential factor in applying activated carbon for adsorptive denitrogenation and desulfurization of liquid hydrocarbon streams is regeneration after saturation. The regeneration method of the saturated adsorbents consisted of toluene washing followed by heating to remove the remaining toluene. The results show that the spent activated carbon can be regenerated to completely recover the adsorption capacity. The high capacity and selectivity of activated carbon for nitrogen compounds, along with their ability to be regenerated, indicate that activated carbon is a promising adsorbent for the deep denitrogenation of liquid hydrocarbon streams.

  17. Experimental study on the removal of ammonia nitrogen and total nitrogen with algae from coal-gasification wastewater%藻类去除煤气化废水氨氮及总氮的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘肃力; 纪钦洪; 于广欣; 卿人韦

    2013-01-01

    The column photo-bioreactor has been used for algae removing ammonia nitrogen and total nitrogen with algae from coal-gasification wastewater.Experimental results show that under the optimized conditions,Scenedesmus quadricanda,Scnedesmus obliquus and compound algae (Tribonema and Phormidium) can make statistically thorough removal of the ammonia nitrogen from coal-gasification wastewater within 3 d,and the removing efficiency of total nitrogen from coal-gasification wastewater has reached the maximum on the 5th day,which is 86.02% with Scenedesmus quadricanda,83.33% with Senedesmus obliquus,and 71.81% with the compound algae.The results reveal that it is feasible to remove ammonia nitrogen and total nitrogen from coal gasification wastewater by using appropriate algae.Besides,compared with the biological nitrification/denitrification denitrogenation process,the process is also significantly original.%采用柱式光合反应器对藻类去除煤气化废水的氨氮及总氮开展了探索性实验研究.实验结果表明:优化条件下,四尾栅藻、斜生栅藻、混合藻(黄丝藻和席藻)都在3d内完全去除氨氮,同时总氮去除率都在第5天达到最大,分别是四尾栅藻86.02%,斜生栅藻83.33%,混合藻71.81%.说明选用合适的藻类去除煤气化废水的氨氮及总氮可行,同时相比生物硝化/反硝化脱氮工艺该方法具有一定的新颖性.

  18. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.

  19. In-situ nitrogen removal from the eutrophic water by microbial-plant integrated system

    Institute of Scientific and Technical Information of China (English)

    CHANG Hui-qing; YANG Xiao-e; FANG Yun-ying; PU Pei-min; LI Zheng-kui; RENGEL Zed

    2006-01-01

    Objective: This study was to assess the influence of interaction of combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophytes on nitrogen removal from the eutrophic waterbody, and to get insight into different mechanisms involved in nitrogen removal. Methods: The aquatic macrophytes used include Eichhornia crassipes (summer-autumn floating macrophyte), Elodea nuttallii (winter-growing submerged macrophyte), and nitrogen cycling bacteria including ammonifying, nitrosating, nitrifying and denitrifying bacteria isolated from Taihu Lake. The immobilization carriers materials were made from hydrophilic monomers 2-hydroxyethyl acrylate (HEA) and hydrophobic 2-hydroxyethyl methylacrylate (HEMA). Two experiments were conducted to evaluate the roles of macrophytes combined with INCB on nitrogen removal from eutrophic water during different seasons. Results: Eichhornia crassipes and Elodea nuttallii had different potentials in purification of eutrophic water. Floating macrophyte+bacteria (INCB) performed best in improving water quality (during the first experiment)and decreased total nitrogen (TN) by 70.2%, nitrite and ammonium by 92.2% and 50.9%, respectively, during the experimental period, when water transparency increased from 0.5 m to 1.8 m. When INCB was inoculated into the floating macrophyte system,the populations of nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments, but ammonifying bacteria showed no obvious difference between different treatments. Lower values of chlorophyll a, CODMn, and pH were found in the microbial-plant integrated system, as compared to the control. Highest reduction in N was noted during the treatment with submerged macrophyte+INCB, being 26.1% for TN, 85.2% for nitrite, and 85.2% for ammonium at the end of 2nd experiment. And in the treatment, the populations of ammonifying, nitrosating, nitrifying, and denitrifying bacteria increased

  20. Numerical modeling of nitrogen removal processes in biofilters with simultaneous nitritation and anammox.

    Science.gov (United States)

    Shi, Shun; Tao, Wendong

    2013-01-01

    This study developed a simple numerical model for nitrogen removal in biofilters, which was designed to enhance simultaneous nitritation and anaerobic ammonium oxidation (anammox). It is the first attempt to simulate anammox together with two-step nitrification in natural treatment systems, which may have different kinetic parameters and temperature effects from conventional bioreactors. Prediction accuracy was improved by adjusting kinetic coefficients over the startup period of the biofilters. The maximum rates of nitritation and nitrite oxidation increased linearly over time during the startup period. Simulations confirmed successful enhancement of simultaneous nitritation and anammox (SNA) in the biofilters, with anammox contributing 35% of ammonium removal. Effluent ammonium concentration was affected by influent ammonium concentration and the maximum nitritation rate, and was insensitive to the maximum nitrite oxidation rate and anammox substrate factor. Ammonium removal via SNA was likely limited by biomass of aerobic ammonia oxidizing bacteria in the biofilters. The developed model is a promising tool for studying the dynamics of nitrogen removal processes including SNA in natural treatment systems.

  1. Removal of nitrogen and phosphorus from dairy wastewater using constructed wetlands systems operating in batch

    Directory of Open Access Journals (Sweden)

    Ronaldo Rocha Bastos

    2012-08-01

    Full Text Available This work presents the results of a study conducted for a period of seven months on the effectiveness of constructed wetland systems for the treatment of dairy wastewater aiming at removing, nitrogen and phosphorus. Six experimental systems were assembled with a net volume of 115 L using HDPE tanks, with length/width ratio of 2:1. In three of the systems, gravel 0 was used as substrate, while gravel 0 and sand was used in the three others, in the percentage of 80% and 20%, respectively. The systems were operated in batch cycles of 48 hours, applying 7.5 L of influent per cycle. Four of the experimental units were cultivated, and two kept as controls. The selected species chosen were the macrophytes, Typha domingensis and Hedychium coronarium. The removal efficiency concerning nitrogen compounds showed to be quite promising with values ranging from 29.4 to 73.4%, while phosphorus removal from the beds was lower, reaching efficiencies between 18.61 and 34.3%, considered good values, since the removal of these substances is quite difficult through conventional treatment.

  2. Simultaneous Nitrogen and Phosphorus Removal by Denitrifying Dephosphatation in a (AO)2 Sequencing Batch Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-ping; PENG Yong-zhen; WANG Shu-ying; WANG Shao-po

    2005-01-01

    A 24 L working volume reactor was used for the research on simultaneous phosphorus (P) and nitrogen (N) removal by denitrifying dephosphatation in an anaerobic-oxid-anoxic-oxid sequencing batch reactor ((AO)2SBR) system. The durations of each phase are: anaerobic 1.5 h, aerobic 2.5 h, anoxic 1.5 h, post-aerobic 0.5 h, settling 1.0 h, fill 0.5 h. The successful removal of nitrogen and phosphorus is achieved in a stable (AO)2SBR. The effluent P concentrations is below 1 mg/L, and the COD,TN and P average removal efficiency is 88.9%, 77.5% and 88.7%, respectively. The batch experiment results show that the durations of aerobic and anoxic phase influence the P removal efficiency. Some feature points are found on the DO, ORP and pH curves to demonstrate the complete of phosphate release and phosphate uptake. These feature points can be used for the control of (AO)2 SBR.

  3. Nitrogen removal for low-carbon wastewater in reversed A~2/O process by regulation technology

    Institute of Scientific and Technical Information of China (English)

    张智; 陈杰云; 谢丽华; 范功端; 尹晓静; 李勇

    2009-01-01

    Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.

  4. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, R.; Jacinto, M.; Guieysse, B.; Mattiasson, B. [Dept. of Biotechnology, Center for Chemistry and Chemical Engineering, Lund Univ., Lund (Sweden)

    2005-06-01

    When compared with Chlorella vulgaris, Scenedesmus obliquus and Selenastrum capricornutum, C. sorokiniana presented the highest tolerance to acetonitrile and the highest O{sub 2} production capacity. It also supported the fastest acetonitrile biodegradation when mixed with a suitable acetonitrile-degrading bacterial consortium. Consequently, this microalga was tested in symbiosis with the bacterial culture for the continuous biodegradation of acetonitrile at 2 g l{sup -1} in a stirred tank photobioreactor and in a column photobioreactor under continuous illumination (250 {mu}E m{sup -2} s{sup -1}). Acetonitrile removal rates of up to 2.3 g l{sup -1} day{sup -1} and 1.9 g l{sup -1} day{sup -1} were achieved in the column photobioreactor and the stirred-tank photobioreactor, respectively, when operated at the shortest retention times tested (0.4 days, 0.6 days, respectively). In addition, when the stirred-tank photobioreactor was operated with a retention time of 3.5 days, the microbial culture was capable of assimilating up to 71% and nitrifying up to 12% of the NH{sub 4}{sup +} theoretically released through the biodegradation of acetonitrile, thus reducing the need for subsequent nitrogen removal. This study suggests that complete removal of N-organics can be combined with a significant removal of nitrogen by using algal-bacterial systems and that further residual biomass digestion could pay-back part of the operation costs of the treatment plant. (orig.)

  5. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    International Nuclear Information System (INIS)

    Highlights: ► We analyzed biological effects of N+ implantation on dry Jatropha curcas seed. ► N+ implantation greatly decreased seedling survival rate. ► At doses beyond 15 × 1016 ion cm−2, biological repair took place. ► CAT was essential for H2O2 removal. POD mainly functioned as seed was severely hurt. ► HAsA–GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm−2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm−2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm−2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA–GSH cycle appeared to be for regeneration of HAsA.

  6. Dialysis is superior to anion exchange for removal of dissolved inorganic nitrogen from freshwater samples prior to dissolved organic nitrogen determination

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gücker, Björn; Zwirnmann, Elke;

    2012-01-01

    Dissolved organic nitrogen (DON) is usually determined as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN). When applying this approach to samples with high DIN concentrations, there is a risk, that small relative errors in TDN and DIN measurements may...... of AEP and DP for DIN removal in order to increase DON determination accuracy of freshwater samples. The AEP pretreatment performed well for standard compounds, yielding high dissolved organic carbon (DOC) recovery rates and > 99% removal of nitrate, whereas DON recovery rates varied and no removal...... propagate into high absolute errors of the determined DON concentration. To reduce such errors, two pretreatment methods have been suggested for the removal of DIN prior to the determination of DON: anion-exchange pretreatment (AEP) and dialysis pretreatment (DP). In this study, we tested the suitability...

  7. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  8. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 o C. The studies were conducted at different temperatures and the results were discussed.

  9. Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A single-stage plasma-catalytic reactor in which catalytic materials were packedwas used to remove nitrogen oxides. The packing material was scoria being made of various metaloxides including A12O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pelletsbut also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Withoutplasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °Cto 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.

  10. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor.

    Science.gov (United States)

    Sayess, Rassil R; Saikaly, Pascal E; El-Fadel, Mutasem; Li, Dong; Semerjian, Lucy

    2013-02-01

    Integrating microbial fuel cell (MFC) into rotating biological contactor (RBC) creates an opportunity for enhanced removal of COD and nitrogen coupled with energy generation from wastewater. In this study, a three-stage rotating bioelectrochemical contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance of the RBC-MFC unit was compared to a control reactor (referred to as RBC unit) that was operated under the same conditions but without current generation (i.e. open-circuit mode). The effect of hydraulic loading rate (HLR) and COD/N ratio on the performance of the two units was investigated. At low (3.05 gCOD g⁻¹N) and high COD/N ratio (6.64 gCOD g⁻¹N), both units achieved almost similar COD and ammonia-nitrogen removal. However, the RBC-MFC unit achieved significantly higher denitrification and nitrogen removal compared to the RBC unit indicating improved denitrification at the cathode due to current flow. The average voltage under 1000 Ω external resistance ranged between 0.03 and 0.30 V and between 0.02 and 0.21 V for stages 1 and 2 of the RBC-MFC unit. Pyrosequencing analysis of bacterial 16S rRNA gene revealed high bacterial diversity at the anode and cathode of both units. Genera that play a role in nitrification (Nitrospira; Nitrosomonas), denitrification (Comamonas; Thauera) and electricity generation (Geobacter) were identified at the electrodes. Geobacter was only detected on the anode of the RBC-MFC unit. Nitrifiers and denitrifiers were more abundant in the RBC-MFC unit compared to the RBC unit and were largely present on the cathode of both units suggesting that most of the nitrogen removal occurred at the cathode.

  11. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor

    KAUST Repository

    Sayess, Rassil R.

    2013-02-01

    Integrating microbial fuel cell (MFC) into rotating biological contactor (RBC) creates an opportunity for enhanced removal of COD and nitrogen coupled with energy generation from wastewater. In this study, a three-stage rotating bioelectrochemical contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance of the RBC-MFC unit was compared to a control reactor (referred to as RBC unit) that was operated under the same conditions but without current generation (i.e. open-circuit mode). The effect of hydraulic loading rate (HLR) and COD/N ratio on the performance of the two units was investigated. At low (3.05 gCOD g-1N) and high COD/N ratio (6.64 gCOD g-1N), both units achieved almost similar COD and ammonia-nitrogen removal. However, the RBC-MFC unit achieved significantly higher denitrification and nitrogen removal compared to the RBC unit indicating improved denitrification at the cathode due to current flow. The average voltage under 1000 Ω external resistance ranged between 0.03 and 0.30 V and between 0.02 and 0.21 V for stages 1 and 2 of the RBC-MFC unit. Pyrosequencing analysis of bacterial 16S rRNA gene revealed high bacterial diversity at the anode and cathode of both units. Genera that play a role in nitrification (Nitrospira; Nitrosomonas), denitrification (Comamonas; Thauera) and electricity generation (Geobacter) were identified at the electrodes. Geobacter was only detected on the anode of the RBC-MFC unit. Nitrifiers and denitrifiers were more abundant in the RBC-MFC unit compared to the RBC unit and were largely present on the cathode of both units suggesting that most of the nitrogen removal occurred at the cathode. © 2012 Elsevier Ltd.

  12. Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; WANG Shuying; YANG Anming; GUO Jianhua; BO Fengyang

    2007-01-01

    Since eutrophication has become increasingly severe in China,nitrogen and phosphorous have been the concern of wastewater treatment,especially nitrogen removal.The stabilization of the intelligent control system and nitrogen removal efficiency were investigated in a pilot-scale aerobic-anoxic sequencing batch reactor(SBR)with a treatment capacity of 60 m3/d.Characteristic points on the profiles of dissolved oxygen(DO),pH,and oxidation reduction potential(ORP)could exactly reflect the process of nitrification and denitrification.Using the intelligent control system not only could save energy,but also could achieve advanced nitrogen removal.Applying the control strategy water quality of the effluent could stably meet the national first discharge standard during experiment of 10 months.Even at low temperature(t=13℃),chemical oxygen demand(COD)and total nitrogen(TY)in the effluent were under 50 and 5 mg/L,respectively.

  13. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone. PMID:27337890

  14. Influence of environmental factors on removal of oxides of nitrogen by a photocatalytic coating.

    Science.gov (United States)

    Cros, Clement J; Terpeluk, Alexandra L; Crain, Neil E; Juenger, Maria C G; Corsi, Richard L

    2015-08-01

    Nitrogen oxides (NOx) emitted from combustion processes have elevated concentrations in large urban areas. They cause a range of adverse health effects, acid rain, and are precursors to formation of other atmospheric pollutants, such as ozone, peroxyacetyl nitrate, and inorganic aerosols. Photocatalytic materials containing a semi-conductor that can be activated by sunlight, such as titanium dioxide, have been studied for their ability to remove NOx. The study presented herein aims to elucidate the environmental parameters that most influence the NOx removal efficiency of photocatalytic coatings in hot and humid climate conditions. Concrete samples coated with a commercially available photocatalytic coating (a stucco) and an uncoated sample have been tested in a reactor simulating reasonable summertime outdoor sunlight, relative humidity and temperature conditions in southeast Texas. Two-level full factorial experiments were completed on each sample for five parameters. It was found that contact time, relative humidity and temperature significantly influenced both NO and NO₂removal. Elevated concentrations of organic pollutants reduced NO removal by the coating. Ultra-violet light intensity did not significantly influence removal of NO or NO₂, however, ultra-violet light intensity was involved in a two-factor interaction that significantly influenced removal of both NO and NO₂. PMID:26211635

  15. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  16. Present and perspective of enhanced biological phosphorus removal process; Seibutsugakuteki rin jokyoho no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [National Inst. of Bioscience and Human-Technology, Tsukuba (Japan)

    1997-02-05

    Biological phosphorus removal process utilizing anaerobic and aerobic conditions, mechanism of phosphorus removal, and microbes relating to phosphorus removal are outlined, and future problems are discussed. By mixing waste water and sludge under anaerobic condition followed by treatment under aerobic condition, phosphorus content in sludge increases to enable biological phosphorus removal. More microbes with high polyphosphorus accumulating performance are acquired by the anaerobic/aerobic process than other microbes with the result of their preferential increase, and the process has high phosphorus removal characteristic than the general treatment process. Microbes relating to phosphorus removal, immobilization of polyphosphate accumulating microbes, and phosphorus acquiring and releasing characteristics of immobilized mycelium are discussed. Application of gel entrapped immobilized mycelium to phosphorus removal and problems in biological phosphorus removing methods are described. 18 refs., 12 figs.

  17. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.

    Science.gov (United States)

    Demir, Aynur; Arisoy, Münevver

    2007-08-17

    The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.

  18. Nitrification-denitrification biological treatment of a high-nitrogen waste stream for water-reuse applications.

    Science.gov (United States)

    Jackson, W Andrew; Morse, Audra; McLamore, Eric; Wiesner, Ted; Xia, Shu

    2009-04-01

    This research was conducted to evaluate the use of biological nitrification-denitrification systems as pre-processors for recycling wastewater to potable water in support of space exploration. A packed-bed bioreactor and membrane-aerated nitrification reactor were operated in series with a 10:1 recycle ratio over varying loading rates. The dissolved organic carbon (DOC) removal exceeded 80% for all loading rates (theta = 1 to 6.8 days), while total nitrogen removal generally increased with decreasing retention time, with a maximum removal of 55%. The degree of nitrification generally declined with decreasing retention time from a high of 80% to a low of 60%. Maximum DOC and total nitrogen volumetric removal rates exceeded 1000 and 800 g/m3 x d, respectively, and maximum nitrification volumetric conversion rates exceeded 300 g/m3 x d. At low hydraulic loading rates, the system was stoichiometrically limited, while kinetic limitations dominated at high hydraulic loading rates. Incomplete nitrification occurred at high loading rates, likely as a result of the high pH and large concentrations of ammonia.

  19. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.

    Science.gov (United States)

    Regmi, Pusker; Bunce, Ryder; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-10-01

    This work describes the development of an intermittently aerated pilot-scale process (V = 0.45 m(3) ) operated for optimized efficient nitrogen removal in terms of volume, supplemental carbon and alkalinity requirements. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia concentration set-points. The unique feature of the ammonia-based aeration control was that a fixed dissolved oxygen (DO) set-point was used and the length of the aerobic and anoxic time (anoxic time ≥25% of total cycle time) were changed based on the effluent ammonia concentration. Unlike continuously aerated ammonia-based aeration control strategies, this approach offered control over the aerobic solids retention time (SRT) to deal with fluctuating ammonia loading without solely relying on changes to the total SRT. This approach allowed the system to be operated at a total SRT with a small safety factor. The benefits of operating at an aggressive SRT were reduced hydraulic retention time (HRT) for nitrogen removal. As a result of such an operation, nitrite oxidizing bacteria (NOB) out-selection was also obtained (ammonia oxidizing bacteria [AOB] maximum activity: 400 ± 79 mgN/L/d, NOB maximum activity: 257 ± 133 mgN/L/d, P ammonia (COD/NH4 (+) -N) ratio of 10.2 ± 2.2 at 25°C within the hydraulic retention time (HRT) of 4 h and within a total SRT of 5-10 days. The TIN removal efficiency up to 91% was observed during the study, while effluent TIN was 9.6 ± 4.4 mgN/L. Therefore, this pilot-scale study demonstrates that application of the proposed on-line aeration control is capable of relatively high nitrogen removal without supplemental carbon and alkalinity addition at a low HRT.

  20. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal.

    Science.gov (United States)

    Mao, Yanping; Wang, Zhiping; Li, Liguan; Jiang, Xiaotao; Zhang, Xuxiang; Ren, Hongqiang; Zhang, Tong

    2016-01-01

    A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively. PMID:27547976

  1. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal

    Science.gov (United States)

    Mao, Yanping; Wang, Zhiping; Li, Liguan; Jiang, Xiaotao; Zhang, Xuxiang; Ren, Hongqiang; Zhang, Tong

    2016-01-01

    A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively. PMID:27547976

  2. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem. PMID:26086717

  3. Using sludge fermentation liquid to reduce the inhibitory effect of copper oxide nanoparticles on municipal wastewater biological nutrient removal.

    Science.gov (United States)

    Su, Yinglong; Chen, Yinguang; Zheng, Xiong; Wan, Rui; Huang, Haining; Li, Mu; Wu, Lijuan

    2016-08-01

    The deterioration of biological nutrient removal (BNR) can occur with the release of engineering nanomaterials into wastewater treatment plants (WWTPs). Also, large amounts of waste sludge are generated in WWTPs, which can be reutilized as a useful resource. In this study, the use of sludge fermentation liquid to reduce CuO nanoparticles (NPs) toxicity to municipal wastewater BNR was reported. In the BNR system supplemented with sodium acetate, which was widely used as additional carbon source of municipal wastewater in literatures, the appearance of 2.5 mg/L CuO NPs for 5.5 h decreased the total nitrogen (TN) removal efficiency from 81.4% to 59.0%, but the TN removal was recovered to 78.7% after sodium acetate was replaced by sludge fermentation liquid. It was found that CuO NPs induced excessive generation of reactive nitrogen species (RNS), which led to the disorder of redox status, low levels of energy and reduction equivalents generations, and deterioration of denitrification. Further investigation revealed that cysteine in fermentation liquid played a vital biological role in reducing nanotoxicity by facilitating the synthesis of glutathione, which reduced excessive RNS generation, increased key proteins expression, guaranteed the metabolisms of intracellular energy and substrate smoothly, and finally recovered the BNR performance. PMID:27161888

  4. Biochar Addition to Stormwater Treatment Media for Enhanced Removal of Nitrogen

    Science.gov (United States)

    Imhoff, P. T.; Jin, J.; Tian, J.; Chiu, P.; Guo, M.

    2015-12-01

    Urban stormwater management systems, such as bioretention facilities, require substantial land area and are often ineffective in removing nitrogen. This project seeks to improve nitrogen removal in bioretention media by modifying the hydraulic and treatment characteristics of the infiltration medium with biochar addition. A commercial wood biochar pyrolyzed from Southern Yellow Pine at 500°C was used. Laboratory experiments demonstrated that biochar addition to a typical bioretention medium (soil-mix: 4% saw dust, 88% sand, 8% clay) increased ammonium sorption at typical stormwater concentrations (2 mg/L) by a factor of 6, total porosity by 16.6%, and water retention at most matric potentials. The effect of the biochar-amended medium on nitrate removal was evaluated in pilot-scale experiments. Side-by-side experimental cells (91 cm dia., 1.2 m deep) were constructed to treat stormwater runoff from a parking lot. The control cell contained 100% soil mix while the biochar cell contained 4% biochar and 96% soil-mix by mass. Treatment media were 76.2 cm in depth and overlain by 5.1 cm of wood mulch in both cells, with a water table maintained at the bottom of the treatment zones. Cells were instrumented with TDR moisture sensors, pressure transducers, and redox and temperature sensors. Two pilot-scale experiments were conducted that included a bromide tracer and nitrate with a hydraulic loading of 5.5cm/h for 24 h in early spring and 36 h in summer. Effluent was continuously sampled for nitrogen compounds during these tests. Tracer tests and TDR measurements showed that biochar increased the average volumetric water content of the vadose zone by 14.7% and the mean residence time by 12.6%. For the spring field test at 14°C, nitrate in the control cell effluent increased by 6.1% but decreased by 43.5% for the biochar cell. For the summer field test at 22°C, 30.6% and 84.7% of influent nitrate was removed in the control and biochar cells, respectively. In the summer

  5. A modified UCT method for biological nutrient removal: configuration and performance.

    Science.gov (United States)

    Vaiopoulou, E; Aivasidis, A

    2008-07-01

    A pilot-scale prototype activated sludge system is presented, which combines both, the idea of University of Cape Town (UCT) concept and the step denitrification cascade for removal of carbon, nitrogen and phosphorus. The experimental set-up consists of an anaerobic selector and stepwise feeding in subsequent three identical pairs of anoxic and oxic tanks. Raw wastewater with influent flow rates ranging between 48 and 168 l d(-1) was fed to the unit at hydraulic residence times (HRTs) of 5-18 h and was distributed at percentages of 60/25/15%, 40/30/30% and 25/40/35% to the anaerobic selector, 2nd and 3rd anoxic tanks, respectively (influent flow distribution before the anaerobic selector). The results for the entire experimental period showed high removal efficiencies of organic matter of 89% as total chemical oxygen demand removal and 95% removal for biochemical oxygen demand, 90% removal of total Kjeldahl nitrogen and total nitrogen removal through denitrification of 73%, mean phosphorus removal of 67%, as well as excellent settleability. The highest removal efficiency and the optimum performance were recorded at an HRT of about 9h and influent flow rate of 96 l d(-1), in which 60% is distributed to the anaerobic selector, 25% to the second anoxic tank and 15% to the last anoxic tank. Consequently, the plant configuration enhanced removal efficiency, optimized performance, saved energy, formed good settling sludge and provided operational assurance.

  6. Develo pment of Nitrogen and Phosphorus Removal Process of Sewage%污水脱氮除磷工艺发展探讨

    Institute of Scientific and Technical Information of China (English)

    陈威; 李晓梅; 李博

    2009-01-01

    The removal of nitrogen and phosphorus nutrients in waste water is an inevitable development trend. The paper introduces new nitrogen and phosphorus removal processes such as biologic doubling technolo-gy and MSBR process on the basis of large number of domestic and international data, and expounds basic principles, eharaeteristies and future development trends of the new processes.%去除废水中的氮、磷营养元素,是污水处理工艺发展的必然趋势,在参阅大量国内外文献资料的基础上,介绍了城市污水脱氮除磷新工艺--生物倍增工艺、MSBR工艺.对这2种新工艺的基本原理、特点及今后的发展动向等作了详细阐述.

  7. Process of nitrogen transformation and microbial community structure in the Fe(0)-carbon-based bio-carrier filled in biological aerated filter.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Li, Jinlong

    2016-04-01

    Nitrogen pollutants in low-organic carbon wastewater are difficult to biodegrade. Therefore, the Fe(0)-carbon-based bio-carrier (FCBC) was firstly used as hydrogen producer in a biological-aerated filter (BAF) to make up for the lack of organic carbon in biological nitrogen removal. Physical and chemical properties of FCBC were detected and compared in this study. The nitrogen removal rate for low COD/TN ratio wastewater, nitrogen transformation process, and microbial communities in the FCBC filled in BAF were investigated. Results showed that the nitrogen removal rates was 0.38-0.41 kg N m(-3) day(-1) in the FCBC filled BAF and reached 0.62 kg N m(-3) day(-1) within the filter depth of 60-80 cm, under the conditions of the dissolved oxygen 3.5 ± 0.2 mg L(-1) and the inlet pH 7.2 ± 0.1. Hydrogenophaga (using hydrogen as electron donor), Sphaerotilus (absorbing [Fe(3+)]), Nitrospira (nitrificaion), and Nitrosomonas (ammonia oxidation) were found to be the predominant genera in the reactor. The reaction schemes in the FCBC filled in BAF was calculated: hydrogen and [Fe(3+)] were produced by Fe(0)-C galvanic cells in the FCBC, ammonia was oxidized into nitrate by Nitrosomonas and Nitrospira genera, hydrogen was used as electron donors by Hydrogenophaga genus to reduce nitrate into N2, and [Fe(3+)] was partly absorbed by Sphaerotilus and diverted via sludge discharging.

  8. Applying real-time control to enhance the performance of nitrogen removal in CAST system

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-po; PENG Yong-zhen; WANG Shu-ying; GAO Shou-you

    2005-01-01

    A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes:traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in realtime control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode.Moreover, the real-time control made it possible to optimize process operation and save aeration energy.

  9. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    Science.gov (United States)

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. PMID:24784452

  10. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  11. Nitrogen and carbon export from urban areas through removal and export of litterfall

    International Nuclear Information System (INIS)

    We found that up to 52 ± 17% of residential litterfall carbon (C) and nitrogen (N; 390.6 kg C and 6.5 kg N ha−1 yr−1) is exported through yard waste removed from the City of Boston, which is equivalent to more than half of annual N outputs as gas loss (i.e. denitrification) or leaching. Our results show that removing yard waste results in a substantial decrease in N inputs to urban areas, which may offset excess N inputs from atmospheric deposition, fertilizer application and pet waste. However, export of C and N via yard waste removal may create nutrient limitation for some vegetation due to diminished recycling of nutrients. Removal of leaf litter from residential areas disrupts nutrient cycling and residential yard management practices are an important modification to urban biogeochemical cycling, which could contribute to spatial heterogeneity of ecosystems that are either N limited or saturated within urban ecosystems. - Highlights: • We monitored yard waste bags for one complete fall yard waste collection season. • 52% of residential litterfall C and N is exported annually from the City of Boston. • Litterfall export may create nutrient limitation hotspots in urban ecosystems. • C and N export through litterfall collection modifies urban biogeochemical cycling. - Litterfall removal leads to C and N export from urban ecosystems and disrupts nutrient cycling, showing that this activity is an important modification to urban biogeochemical cycling

  12. A GAO hiding among the PAO: The role of the Propionivibrio spp. in biological phosphorus removal

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater...

  13. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor

    OpenAIRE

    Nielsen, Alex T.; Liu, Wen-Tso; Filipe, Carlos; Grady, Leslie; Molin, Søren; Stahl, David A

    1999-01-01

    The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate in the effluent and showed very limited biological phosphorus removal activity. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA was used to investigate the bacterial diversit...

  14. Performance of Combined Anaerobic-Aerobic System in Removal of Nitrogen in the Treatment of Sanitary Sewage

    Directory of Open Access Journals (Sweden)

    Mário Luiz Rodrigues Foco

    2014-10-01

    Full Text Available This paper describes the evaluation of the performance of an anaerobic-aerobic system, consisting of anaerobic filter (AF followed by biological aerated filter (BAF, operated with and without recirculation of treated effluent to mitigate the adverse effects of organic concentrations on nitrification and promote the removal of Total Nitrogen in anoxic ambient. In the first two steps, the application of the organic loading rate (OLR on BAF ranged from 0.49 ± 0.27 and 0.31 ± 0.08 kg BOD m-3 d-1 due to the reduction of surface application rate of 60 to 44 m3 m-2 d-1. In the third stage, with recirculation, OLR and surface application rate were 0.29 ± 0.02 kg BOD m-3 d-1 and 65.8 m3 m-2 d-1, allowing the system to reduce 43 ± 10% of average initial concentration of 72 mg L-1 Total Nitrogen. The application of organic loading rates in BAS, more than 0.30 kg BOD m-3 d-1 inhibited nitrification due to competition for oxygen

  15. Bio-chemical process for nitrogen and phosphorus removal by draining out anaerobic rich phosphate supernatant in ERP-SBR system

    Institute of Scientific and Technical Information of China (English)

    JIFangying; XUXiaoyi; LUOGuyuan

    2003-01-01

    The method of fixed phosphate coming from anaerobic reactor by the auxiliary chemical process is applied in External Recycle Process-SBR (ERP-SBR). This process changes the model of draining out activated sludge in the traditional biological phosphorus removal system to discharge anaerobic poly-phosphate supernatant. This process eliminates the contradiction of control for Solid Removal Time (SRT) in process of biological nitrogen and phosphorus removal. It can obtain high removal efficiency of nitrogen(N) and phosphorus(P) in longer SRT. Experiment results show that: when SRT=50 ~ 80 d, TN=28.6~ 58.3 mg/L, TP=5.5~ 13.5 mg/L in influent, COD≤ 34mg/L, TN≤ 6.02 mg/L, PO43-≤0.23 mg/L in effluent. The amount of lime is only 5% of traditional methods. The phosphorus content in the chemical sludge is 12 %~15 % and the recycle of phosphorus can be realized easily.

  16. Removal of nitrogen from MBT residues by leachate recirculation in combination with intermittent aeration.

    Science.gov (United States)

    Tran, Hoai Nam; Münnich, Kai; Fricke, Klaus; Harborth, Peter

    2014-01-01

    Mechanical-biological treatment (MBT) techniques have been used to reduce the emission potential of waste before placement in landfills for a couple of years, especially in Europe. The main focus of MBT is on the reduction of native organic substances and not on nitrogen compounds. As a result, the concentrations of organic substances in leachate from MBT landfills are considerably reduced in comparison to leachates from municipal solid waste landfills, while the ammonia nitrogen concentrations remain at a high level. From the stabilization of old landfills it is well known that recirculation of leachate and supplementary aeration can reduce emissions to an acceptable level in a comparatively short time. In a series of laboratory-scale tests the efficiency of this technique for MBT residues was investigated under different boundary conditions. While the effect of leachate recirculation is also well known for MBT residues, the additional aeration has so far not been investigated. The results show that this technique has only a limited influence on the reduction of organic carbon compounds. In view of nitrogen compounds, only the additional aeration during recirculation shows a strong effect on the quality of leachate, in which the concentrations of ammonium and total nitrogen are reduced by more than 90%. The results indicate that by using simple techniques the long-term emission behavior of MBT residues can be quickly reduced to an acceptable level. PMID:24293068

  17. Nitrogen reduction by removal of wood fuels, a quantitative analysis; Kvaeveavlastning genom uttag av traedbraenslen, en kvantitativ analys

    Energy Technology Data Exchange (ETDEWEB)

    Vinterbaeck, J.; Parikka, M.; Hektor, B. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest-Industry-Market Studies; Eriksson, Hillevi [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    1998-08-01

    The nitrogen deposition in Sweden is, in the foreseeable future, expected to remain at the heightened levels of today. This implies that the deposition of nitrogen compounds continuously will surpass critical loads (CL) for nitrogen on forest land. In order to improve the nitrogen balance on forest land, it is possible to increase CL e.g. through whole tree harvesting. During whole tree harvesting both logs and nitrogen rich residuals are removed from the forests, the latter used for fuel. This project aims at producing a real estimation of removal, which improve the nitrogen balance in Swedish forestal ecosystems. Counties` specific averages for critical loads of nitrogen have been calculated for all of Sweden. Calculations for every county or even, occasionally, parts of counties of how much biomass that should be removed to balance the nitrogen supply in question, is also presented. In the latter results three alternative levels of removal are used: 1) only stemwood in thinnings and clear-felling; 2) stemwood in thinnings and clear-felling and logging residues in clear-felling; 3) stemwood and logging residues in both thinnings and clear-felling. In the removal calculations, the long-term potentially possible removal levels have been considered. The results show, that there is a positive southwestern gradient in Sweden, both concerning nitrogen deposition and critical load levels for nitrogen. The amount of woody biomass that should be removed to balance nitrogen supply in a specific stand has been calculated on a county level for three classes of site qualities: Low/Medium/High. Low corresponds to site quality indexes up to G20 (Norway spruce) and T20 (Scots pine), respectively; Medium corresponds to site quality indexes G20- G30 and T20-T30 respectively; High corresponds to site quality indexes bigger than or equal to G30 and T30. For each site quality class a column presentation shows the nitrogen amount, in kilograms per ha and year, which corresponds to the

  18. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  19. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...... the optimal operating conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Three control structures are obtained and benchmarked by their capacity to reject the disturbances before...... the Anammox reactor....

  20. Effect of HCO3- concentration on anammox nitrogen removal rate in a moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Vabamäe, Priit; Kroon, Kristel; Loorits, Liis; Saluste, Alar; Tenno, Taavo

    2012-01-01

    Anammox biomass enriched in a moving bed biofilm reactor (MBBR) fed by actual sewage sludge reject water and synthetically added NO2- was used to study the total nitrogen (TN) removal rate of the anammox process depending on bicarbonate (HCO3-) concentration. MBBR performance resulted in the maximum TN removal rate of 1100 g N m(-3) d(-1) when the optimum HCO3- concentration (910 mg L(-1)) was used. The average reaction ratio of NO2- removal, NO3- production and NH4+ removal were 1.18/0.20/1. When the HCO3- concentration was increased to 1760mg L(-1) the TN removal rate diminished to 270 g N m(-3) d(-1). The process recovered from bicarbonate inhibition within 1 week. The batch tests performed with biomass taken from the MBBR showed that for the HCO3- concentration of 615 mg L(-1) the TN removal rate was 3.3 mg N L(-1) h(-1), whereas for both lower (120 mg L(-1)) and higher (5750 mg L(-1)) HCO3- concentrations the TN removal rates were 2.3 (+/- 0.15) and 1.6 (+/- 0.12) mg N L(-1) d(-1), respectively. PCR and DGGE analyses resulted in the detection of uncultured Planctomycetales bacterium clone P4 and, surprisingly, low-oxygen-tolerant aerobic ammonia oxidizers. The ability of anammox bacteria for mixotrophy was established by diminished amounts of nitrate produced when comparing the experiments with an organic carbon source and an inorganic carbon source.

  1. Chapter 3. Use of tracer technology in biological nitrogen fixation research

    International Nuclear Information System (INIS)

    This chapter discusses the use of tracer technology in the measurement and use of biological nitrogen fixation by leguminous crops. Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N2, thus reducing the use of expensive fertilizer-N and enhancing soil fertility. Nitrogen-fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. Use of nitrogen-15 lends understanding of the dynamics and interactions between various pools in agricultural systems, including nitrogen fixation by legumes and utilization of soil and fertilizer nitrogen by crops in general, both in sole and mixed cropping systems (3.1). 15N isotope dilution methodology has been found to be particularly useful to quantify and to enhance biological nitrogen fixation in leguminous crops (3.2). The final section of this chapter explores the data required to quantify a system's nitrogen balance, using crop legumes as an example, with particular emphasis on the methodologies that might be used to quantify the below ground contributions of nitrogen associated with roots and root nodules (3.3). (author)

  2. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  3. Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater.

    Science.gov (United States)

    Lin, Yanzi; Guo, Miao; Shah, Nilay; Stuckey, David C

    2016-09-01

    The driver for waste-based economic growth is long-term strategic design, and a paradigm-shift from waste treatment to resource recovery. This study aims to use an integrated modelling approach to evaluate the holistic economic and environmental profiles of three alternative nitrogen removal and recovery methods integrated into wastewater treatment systems, including conventional nitrification-denitrification, Anammox, and the anaerobic ion exchange route, to provide insights into N recovery system designs which are key elements in building a sustainable circular economy. Our results suggest that ion exchange is a promising technology showing high N removal-recovery efficiency from municipal wastewater and delivering competitive sustainability scores. In comparison with the well-developed conventional route, ion exchange and Anammox are undergoing significant research and development; as highlighted in sensitivity analyses, there is considerable room for process design and optimisation of ion exchange systems to achieve economically and environmentally optimal performance. PMID:27005785

  4. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  5. Effect of Algal Inoculation on COD and Nitrogen Removal, and Indigenous Bacterial Dynamics in Municipal Wastewater.

    Science.gov (United States)

    Lee, Jangho; Lee, Jaejin; Shukla, Sudheer Kumar; Park, Joonhong; Lee, Tae Kwon

    2016-05-28

    The effects of algal inoculation on chemical oxygen demand (COD) and total nitrogen (TN) removal, and indigenous bacterial dynamics were investigated in municipal wastewater. Experiments were conducted with municipal wastewater inoculated with either Chlorella vulgaris AG10032, Selenastrum gracile UTEX 325, or Scenedesmus quadricauda AG 10308. C. vulgaris and S. gracile as fast growing algae in municipal wastewater, performed high COD and TN removal in contrast to Sc. quadricauda. The indigenous bacterial dynamics revealed by 16S rRNA gene amplification showed different bacterial shifts in response to different algal inoculations. The dominant bacterial genera of either algal case were characterized as heterotrophic nitrifying bacteria. Our results suggest that selection of indigenous bacteria that symbiotically interact with algal species is important for better performance of wastewater treatment. PMID:26930350

  6. Start-up and microbial communities of a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater via heterotrophic nitrification.

    Science.gov (United States)

    Chen, Jiahao; Han, Yi; Wang, Yingmu; Gong, Benzhou; Zhou, Jian; Qing, Xiaoxia

    2016-09-01

    In this study, a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater was developed in a pressurized biofilm reactor. The result showed that under the air supply rate of 200Lh(-1), salinity of 3.0±0.2%, organic load of 10kgCODm(-3)d(-1) and nitrogen loading of 0.185kgm(-3)d(-1), the reactor started up rapidly and performed stably after 30days operation. Meanwhile, a simultaneous COD and nitrogen removal was achieved in the single-stage reactor, with COD, NH4(+)-N and TN removal efficiency of 97%, 99% and 98%, respectively. Denaturing gradient gel electrophoresis profile demonstrated that simultaneous nitrogen removal could be achieved through heterotrophic nitrification-aerobic denitrification, and the pivotal microorganisms were Flavobacterium phragmitis and Paracoccus denitrificans. The microbial community of salt-tolerant halophilic microorganisms was developed successfully. This study can provide a more efficient and feasible solution to treat high salinity organic wastewater. PMID:27240235

  7. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment. PMID:27337905

  8. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    Science.gov (United States)

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.

  9. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    Science.gov (United States)

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems. PMID:27054722

  10. Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-jun; PENG Yong-zhen; WANG Shu-ying; ZHENG Shu-wen; GUO Jin

    2007-01-01

    An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leachate, the denitrification of NOx-N in the recirculation effluent from the clarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrification in the UASB. The NH4+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28-0.60 kg NH4+-N/(m3·d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4+-N/(m3·d), the NH4+-N removal efficiency was more than 98%. With the influent NH4+-N of 1200-1800 mg/L, the effluent NH4+-N was less than 15 mg/L. The shortcut nitrification and denitrification can save 40% carbon source, with a highly efficient denitrification taking place in the UASB. When the ratio of the feed COD to feed NH4+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubacterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubacterial population.

  11. Results of activated sludge plants applying enhanced biological phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.; Pinto, M.; Neder, K.; Hoffmann, H.

    1989-02-01

    To stop the eutrophication in lakes and rivers, the input of nutrient and phosphorus compounds must be limited. The biological elimination of phosphorus describes a possibility, to reduce phosphorus in the biological stage of a treatment plant to a considerable extent. In this paper the process-system and the operation-results of a pilot plant and two municipal treatment plants are presented, where biological phosphorus reduction about 80% takes place without any constructional modifications.

  12. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    OpenAIRE

    Bo Li; Guangxue Wu

    2014-01-01

    Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characte...

  13. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  14. A New Approach for Removal of Nitrogen Oxides from Synthetic Gas-streams under High Concentration of Oxygen in Biofilters

    Institute of Scientific and Technical Information of China (English)

    Shao Bin HUANG; Ju Guang ZHANG; He Ping HU; Yue SITU

    2005-01-01

    The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.

  15. Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater

    Directory of Open Access Journals (Sweden)

    Erhong Duan

    2012-02-01

    Full Text Available 7-Aminocephalosporanic acid wastewater usually contains high concentrations of ammonium (NH4+-N, which is known to inhibit nitrification during biological treatment processes. Chemical precipitation is a useful technology to remove ammonium from wastewater. In this paper, the removal of ammonium from 7-aminocephalosporanic acid wastewater was studied. The optimum pH, molar ratio, and various chemical compositions of magnesium ammonium phosphate (MAP precipitation were investigated. The results indicated that ammonium in 7-aminocephalosporanic acid wastewater could be removed at an optimum pH of 9. The Mg2+:NH4+-N:PO43−-P molar ratio was readily controlled at a ratio of 1:1:1.1 to both effectively remove ammonium and avoid creating a higher concentration of PO43−-P in the effluent. MgCl2·6H2O + 85% H3PO4 was the most efficient combination for NH4+-N removal. Furthermore, the lowest concentration of the residual PO43−-P was obtained with the same combination. Struvite precipitation could be considered an effective technology for the NH4+-N removal from the 7-aminocephalosporanic acid wastewater.

  16. Simultaneous enhancement of organics and nitrogen removal in drinking water biofilm pretreatment system with reed addition.

    Science.gov (United States)

    Feng, Li-Juan; Zhu, Liang; Yang, Qi; Yang, Guang-Feng; Xu, Jian; Xu, Xiang-Yang

    2013-02-01

    A novel drinking water biofilm pretreatment process with reed addition was established for enhancement of simultaneously organics and nitrogen removal. Results showed that nitrate removal efficiency was positively related with the influent C/N ratio, reaching to 87.8±2.8% at the C/N ratio of 4.7. However, the predicted trichloromethane (THM) levels based on total organic carbon (TOC) and UV254 were high with the increase of influent C/N ratio. Combined with the pollutants removal performance and microbial community variation, an appropriate C/N ratio via reed addition was determined at 2.2 for the continuous biofilm reactor. With adjustment of hydraulic retention time (HRT), the highest of nitrate removal efficiency (74.2±1.4%) and organics utilization efficiency (0.63 mg NO3--N mg(-1)TOC) were achieved at an optimum HRT of 18 h, with both low effluent NO3--N (0.88±0.03 mg l(-1)) and TOC (2.86±0.67 mg l(-1)).

  17. Inorganic nitrogen removal of toilet wastewater with an airlift external circulation membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WU Lin-lin; DONG Chun-song; WU Guang-xia; FAN Yao-bo

    2007-01-01

    Removal of inorganic nitrogen (inorganic-N) removal of toilet wastewater with a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied in this paper. The results showed that in the AEC-MBR, with a limited addition of alkalinity and the volumetric loading rates of inorganic-N at 0.19-0.40 kg inorganic-N/(m3·d), the desired nitrification and denitrification were achieved. Furthermore, the effects of pH and DO on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BOD5/NH4+-N at 1.0, pH at 7.0-7.5 and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4+-N and inorganic-N were 91.5% and 70.0% respectively in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB Yuan/m3,and the energy consumption was approximately 0.72 kWh/m3 at the flux of 8 L/(m2·h).

  18. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    Directory of Open Access Journals (Sweden)

    Pouyan Talebizadeh

    Full Text Available Non-thermal plasma (NTP has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  19. Simultaneous nitrogen and phosphor removal in an aerobic submerged membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-wei; WU Zhi-chao; GU Guo-wei; YU Guo-ping; MA Lu-ming

    2006-01-01

    Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19-20 g/L. The effects of DO concentration, sludge floc size distribution on SND were studied. Test results suggested that SND was successfully performed in the membrane bioreactor (MBR) and about 70% total nitrogen removal efficiency was achieved when DO concentration was set to 0.2-0.3 mg/L. The main mechanisms governing SND were the suitable sludge floc size and the low DO concentration which was caused by low oxygen transfer rate with such a high MLSS concentration in the MBR. In the meantime, phosphor removal was also studied with polymer ferric sulfate (PFS) addition and 14 mg/L dosage of PFS was proper for the MBR to remove phosphor. PFS addition also benefited the MBR operation owing to its reduction of extracellular polymer substances (EPS) of mixed liquor.

  20. Phycoremediation of landfill leachate with chlorophytes: Phosphate a limiting factor on ammonia nitrogen removal.

    Science.gov (United States)

    Paskuliakova, Andrea; Tonry, Steven; Touzet, Nicolas

    2016-08-01

    The potential of microalgae to bioremediate wastewater has been reported in numerous studies but has not been investigated as extensively for landfill leachate, which may be attributed to its complex nature and toxicity. In this study we explored if microalgal phycoremediation could constitute an alternative biological treatment option for landfill leachate management in regions with temperate climatic conditions. The aim of this study was to assess the performance of microalgae species at relatively low temperature (15 °C) and light intensity (14:10 h, light: dark, 22 μmol m(-2) s(-1)) for reduction in energy inputs. Four chlorophyte strains originating from the North-West of Ireland were selected and used in batch experiments in order to evaluate their ability to reduce total ammonia nitrogen, oxidised nitrogen and orthophosphate in landfill leachate. The Chlamydomonas sp. strain SW15aRL isolated from raw leachate achieved the highest level of pollutant reduction whereby a decrease of 51.7% of ammonia nitrogen was observed in 10% raw leachate (∼100 mg l(-1) NH4(+)-N) by day 24 in experiments without culture agitation. However, in the experiment conducted with 10% raw leachate supplemented with phosphate, a decrease of 90.7% of ammonia nitrogen was obtained by day 24 while also achieving higher biomass production. This series of experiments pointed to phosphorus being a limiting factor in the microalgae based phycoremediation of the landfill leachate. The effective reduction of ammonia nitrogen in landfill leachate can be achieved at lower temperature and light conditions. This was attained by employing native species adapted to such conditions and by improving nutrient balance. PMID:27161884

  1. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    Science.gov (United States)

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 +/- 7% versus 30 +/- 5% in abundance of PAOs and 97 +/- 0.73% versus 82 +/- 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  2. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    OpenAIRE

    José I. Baldani; Vera L.D. Baldani

    2005-01-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspiril...

  3. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    Science.gov (United States)

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified.

  4. Laboratory study on factors influencing nitrogen removal in marble chip biofilters incorporating nitritation and anammox.

    Science.gov (United States)

    Tao, Wendong; Wen, Jianfeng; Norton, Christopher

    2011-01-01

    It remains challenging to integrate nitritation and anammox in ecologically engineered treatment systems such as passive biofilters that are packed with natural materials and have low energy inputs. This study explored the factors influencing nitritation-anammox through parallel operation of two laboratory-scale biofilters packed with large and small marble chips respectively. Clean marble chips (mainly CaCO3) had an alkalinity dissolution rate of 130 mg CaCO3/kg marble d when water pH approached 6.5. Marble chips effectively increased water pH and provided sufficient alkalinity to support nitritation-anammox in the biofilters. Ammonium and total nitrogen removal decreased by 47 and 26%, respectively, when nutrients were not amended to influent. An influent nitrite concentration above 8.9 mg N/L could inhibit anammox in thin biofilms of biofilters. Nitritation-anammox was enhanced with a hydraulic retention time of 2 d relative to 7 d, likely due to enhanced air entrainment. Size of marble chips rarely made a significant difference in nitrogen removal, possibly due to sufficient surface area available for bacterial attachment and alkalinity dissolution.

  5. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    Science.gov (United States)

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified. PMID:27088208

  6. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  7. Enhanced biological phosphorus removal - results of experiences in three large waste water treatment plants

    International Nuclear Information System (INIS)

    Within a scientific project especially the operation of four real-size sewage treatment plants with different processes of enhanced biological phosphorus removal is investigated under the aspect of efficiency, stability, practicability and costs of the enhanced biological phosphorus removal. Three plants and first results are explained and compared as well with one another as with data, which are generally regarded as favourable conditions for the enhanced biological phosphorus removal. Between the plants there are significant differences in the degree of P-elimination mainly due to different characteristics of the wastewater. An important influence on P-effluent concentrations may be exacted by P-resolution in the final clarifier. (orig.)

  8. Biological removal of methanol from process condensate for the purpose of reclamation

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ming; YANG Min; ZHANG Yu; GAO Meng-chun; ZHANG Jing

    2004-01-01

    The biological removal of methanol from condensate of ammonia manufacturing processes for the purpose of reclamation using contact type reactor was studied. Methanol of 60 mg/L was removed completely under an HRT of 1.12 h. Optimal inorganic nutrient dose was determined on evaluating methanol removal performance and dehydrogenase activities (DHA) under different nutrition doses. The optimal inorganic nutrient dose only gave an increase of conductivity of ca. 10 μs/cm2 in the effluent on treating synthetic condensate containing methanol of 30 mg/L. The results demonstrated that biological removal of methanol was effective for the purpose of recovering the methanol-bearing condensate.

  9. Application of Moving Bed Biofilm Process for Biological Organics and Nutrients Removal from Municipal Wastewater

    OpenAIRE

    M. Kermani; B BINA; Haji Movahedian; Amin, M. M.; M. Nikaein

    2008-01-01

    In this study, experiments have been conducted to evaluate the organics and nutrients removal from synthetic wastewater by a laboratory scale moving bed biofilm process. For nutrients removal, moving bed biofilm process has been applied in series with anaerobic, anoxic and aerobic units in four separate reactors. Moving bed biofilm reactors were operated continuously at different loading rates of nitrogen and Phosphorus. During optimum conditions, close to complete nitrification with average ...

  10. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    Science.gov (United States)

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  11. BIOLOGICAL TREATING TECHNOLOGY TO REMOVE PHENOLS IN FCCU EFFLUENT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Baesd on the survey in 1997 fiscal year, we have been making a further survey and study together with 中国石油(Petro China) at Liaohe Refinery since 1998 fiscal year, aiming at the transfer of Japanese waste water treating technologies to China.   Scope is as follows:   (1) Demonstration of a new waste water treating technology, a kind of biological treating methods (Fluidized bed biological treatment), to eliminate phenols in FCCU effluent.   (2) Recommendation of eliminating pollutant and reducing total effluent by improving the operation.    1 Fluidized bed biological treatment 1.1 What is fluidized bed biological treatment   Fluidized bed biological treatment is the process to treat waste water as follows:   (1) To put biologically inert granular matters (fluidized carrier) into an aeration tank;   (2) Homogeneously and entirely to fluidize the particles in the tank to form highly active biofilm on the surface of each particle;   (3) To contact organic substances with these microorganisms to purify the waste water.   The surface area of the particle per unit volume is about ten times as large as that in conventional biofilm treatment process. In addition, no blockade of the filler (carrier) may be caused. Accordingly, volumetric loading of the aeration tank can be improved to attain highly efficient treatment.

  12. Genome reconstruction and gene expression of "Candidatus Accumulibacter phosphatis" Clade IB performing biological phosphorus removal.

    Science.gov (United States)

    Mao, Yanping; Yu, Ke; Xia, Yu; Chao, Yuanqing; Zhang, Tong

    2014-09-01

    We report the first integrated metatranscriptomic and metagenomic analysis of enhanced biological phosphorus removal (EBPR) sludge. A draft genome of Candidatus Accumulibacter spp. strain HKU-1, a member of Clade IB, was retrieved. It was estimated to be ∼90% complete and shared average nucleotide identities of 83% and 88% with the finished genome CAP IIA UW-1 and the draft genome CAP IA UW-2, respectively. Different from CAP IIA UW-1, the phosphotransferase (pap) in polyphosphate metabolism and V-ATPase in orthophosphate transport were absent from CAP IB HKU-1. Additionally, unlike CAP IA UW-2, CAP IB HKU-1 carried the genes for carbon fixation and nitrogen fixation. Despite these differences, the key genes required for acetate uptake, glycolysis and polyhydroxyalkanoate (PHA) synthesis were conserved in all these Accumulibacter genomes. The preliminary metatranscriptomic results revealed that the most significantly up-regulated genes of CAP IB HKU-1 from the anaerobic to the aerobic phase were responsible for assimilatory sulfate reduction, genetic information processing and phosphorus absorption, while the down-regulated genes were related to N2O reduction, PHA synthesis and acetyl-CoA formation. This study yielded another important Accumulibacter genome, revealed the functional difference within the Accumulibacter Type I, and uncovered the genetic responses to EBPR stimuli at a higher resolution. PMID:25089581

  13. Present status and development on biological nitrogen fixation research in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This presentation introduces the advances in biological nitrogen fixation research abroad, in particular, describes the great progress and achievements on its research in China as follows: collection of rhizobial resources and establishment of the largest database of Rhizobium in China, correction and development of Rhizobium taxonomy in international; discovery of a couple of nif genes, identification and unification of linkage among the nif gene operons of Klebsiella pneumoniae, finding of regulative mechanism of positive regulation nif gene and its sensitivity to oxygen, temperature; finding of the activity of nodulation gene nodD3 product in Sinorhizobium meliloti which is not controlled by flavonoid produced from its host alfalfa; finding of the association between expression of genes coding the products for carbon utilization and nitrogen metabolism and their regulations; chemical synthesis of nodulation factor of Sinorhizobium meliloti; constructions of engineered nitrogen fixers and utilization in practice based on the research of gene expression and regulation; chemical simulation of the structure and function of nitrogenase and bringing forward the model of nitrogenase active center for the first time in international and synthesis of model compounds which were paid attention by colleagues abroad. Finally, the development of nitrogen fixation research in China in future has been put forward, suggesting that the nif gene regulation and its role in providing crops with nitrogen element, signal transduction and molecular interactions between Rhizobium and legume, coupling between carbon and nitrogen metabolisms, nitrogen fixation and photosynthesis, and functional genomics of nitrogen-fixing nodule symbiosis, etc., would be actively worked on.

  14. Genetic Improvement of Biological Nitrogen Fixation in Common Bean Genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Golparvar

    2012-06-01

    Full Text Available Fifty common bean genotypes were cultivated in two separately field trials at the research station of Islamic Azad University, Khorasgan Branch during 2008-2009. The experimental design was randomized complete block. Bean seeds were inoculated by Rhizobium legominosarum biovar Phaseoli isolate L-109 in one of the experiments before sowing. The dose of Rhizobium for seed inoculation was 7 miligrams of bacteria for 1 kilogram of seed. The second experiment was control. The second experiment was analyzed in the same way as the first except for biological nitrogen fixation. The results showed definite positive and significant correlation in percentage of nitrogen fixation with some other been characters. Step-wise regression designated that total nitrogen percentage in shoot, number of nodules per plant and biomass yield accounted for 93.8% of variation expect for nitrogen fixation percent. Path analysis indicated that total nitrogen percentage in shoot, number of nodules per plant and biomass yield have direct and positive effect on nitrogen fixation index. Hence, total nitrogen percentage in shoot, number of nodules per plant and biomass yield are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes.

  15. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg335300@yahoo.com.cn [Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025 (China); Institute of Entomology, Guizhou University, Guiyang 550025 (China); Wang Xiaoteng [Department of Agricultural Resources and Environment, College of Agricultural, Guizhou University, Guiyang 550025 (China); Gan Cailing; Fang Yanqiong; Zhang Meng [College of Life Sciences, Guizhou University, Guiyang 550025 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyzed biological effects of N{sup +} implantation on dry Jatropha curcas seed. Black-Right-Pointing-Pointer N{sup +} implantation greatly decreased seedling survival rate. Black-Right-Pointing-Pointer At doses beyond 15 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place. Black-Right-Pointing-Pointer CAT was essential for H{sub 2}O{sub 2} removal. POD mainly functioned as seed was severely hurt. Black-Right-Pointing-Pointer HAsA-GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N{sup +} with energy of 25 keV was applied to treat the dry seed at six different doses. N{sup +} beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 Multiplication-Sign 10{sup 16} to 15 Multiplication-Sign 10{sup 16} ions cm{sup -2} severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 Multiplication-Sign 10{sup 16} ions cm{sup -2} may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  16. Study of nitrogen and organics removal in sequencing batch reactor (SBR) using hybrid media.

    Science.gov (United States)

    Thuan, Tran-Hung; Chung, Yun-Chul; Ahn, Dae-Hee

    2003-03-01

    The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under

  17. Evaluation of biological removal efficiency in a UCT process treating municipal wastewater during start-up stage.

    Science.gov (United States)

    Wang, Zhu; Liu, Bo; Liu, Yong-De; Wan, Fujun

    2013-04-01

    This study reports the performance of University of Cape Town (UCT) municipal wastewater treatment plant, during the startup stage with the focus on the relationship between hydraulic retention time (HRT) and biological nutrient removal (BNR) efficiency. The entire experimental period was 144 days, divided into four periods. Results showed that the removal efficiency of TN, NH4+-N, and Kjeldahl nitrogen (KN) was closely related to the HRT. Furthermore, the biodegradation kinetics analysis was used to calculate the specific degradation rates of pollutants. The GPS-X modeling was also used to examine the effect of the UCT pilot plant on BNR. The UCT pilot plant used in this study achieved high BNR efficiency even during the startup stage. With HRT of 24 hr (Period 1, day 1-40, data set 1-10), the highest levels of TN, NH(4+)-N and KN removal efficiency were approximately 72, 76 and 78%, respectively. The COD showed consistent high removal efficiency, with the highest level of approximately 96% at HRT of 15 hr (Period 3, day 81-120, data set 21-30). The TP removal efficiency rose at first and subsequently decreased abruptly. The maximum removal efficiency was 85% with HRT of 19 hr (Period 2, day 41-80, data set 11-20). With the optimal HRT 19 hr, the average removal efficiency values of COD, TP, TN, NH(4+)-N and KN were 89, 80, 65, 67 and 68%, respectively. The GPS-X modeling results indicated that the UCT process was effective in COD, TP and TN removal. PMID:24620618

  18. Influence of COD/sulfate ratios on the integrated reactor system for simultaneous removal of carbon, sulfur and nitrogen.

    Science.gov (United States)

    Yuan, Ye; Chen, Chuan; Zhao, Youkang; Wang, Aijie; Sun, Dezhi; Huang, Cong; Liang, Bin; Tan, Wenbo; Xu, Xijun; Zhou, Xu; Lee, Duu-Jung; Ren, Nanqi

    2015-01-01

    An integrated reactor system was developed for the simultaneous removal of carbon, sulfur and nitrogen from sulfate-laden wastewater and for elemental sulfur (S°) reclamation. The system mainly consisted of an expanded granular sludge bed (EGSB) for sulfate reduction and organic carbon removal (SR-CR), an EGSB for denitrifying sulfide removal (DSR), a biological aerated filter for nitrification and a sedimentation tank for sulfur reclamation. This work investigated the influence of chemical oxygen demand (COD)/sulfate ratios on the performance of the system. Influent sulfate and ammonium were fixed to the level of 600 mg SO(4)(2-) L⁻¹ and 120 mg NH(4)(+) L⁻¹, respectively. Lactate was introduced to generate COD/SO(4)(2-) = 0.5:1, 1:1, 1.5:1, 2:1, 3:1, 3.5:1 and 4:1. The experimental results indicated that sulfate could be efficiently reduced in the SR-CR unit when the COD/SO(4)(2-) ratio was between 1:1 and 3:1, and sulfate reduction was inhibited by the growth of methanogenic bacteria when the COD/SO(4)(2-) ratio was between 3.5:1 and 4:1. Meanwhile, the Org-C/S²⁻/NO(3)(-) ratios affected the S(0) reclamation efficiency in the DSR unit. When the influent COD/SO(4)(2-) ratio was between 1:1 and 3:1, appropriate Org-C/S²⁻/NO(3)(-) ratios could be achieved to obtain a maximum S° recovery in the DSR unit. For the microbial community of the SR-CR unit at different COD/SO(4)(2-) ratios, 16S rRNA gene-based high throughput Illumina MiSeq sequencing was used to analyze the diversity and potential function of the dominant species. PMID:25768217

  19. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Sen; Wu, Qing; Yan, Lijian

    2015-12-01

    Given that few studies investigated the effects of aeration position (AP) on the performance of aerated constructed wetlands, the aim of this study was to evaluate the effects of AP on organics, nitrogen and phosphorus removal in lab-scale combined oxidation pond-constructed wetland (OP-CW) systems. Results showed that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve greater removals of COD and NH3-N, while the CW under bottom aeration and surface aeration demonstrated more distinct stratification of oxygen distribution and surface aeration brought about better TN removal capacity for the OP-CW system. However, no significant influence of artificial aeration or AP on TP removal was observed. Overall, AP could significantly affect the spatial distribution of dissolved oxygen by influencing the oxygen diffusion paths in aerated CWs, thereby influencing the removal of pollutants, especially organics and nitrogen, which offers a reference for the design of aerated CWs.

  20. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  1. Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-04-01

    An osmotic membrane photobioreactor (OMPBR) was designed and operated for 162days for nitrogen and phosphorus removal from wastewater using Chlorella vulgaris. The removal efficiency for NH4(+)-N, NO3(-)-N and PO4(3-)-P reached as high as 95%, 53% and 89%, whereas the maximum removal rates were 3.41 mg/L-day, 0.20 mg/L-day and 0.8 mg/L-day, respectively. The microalgae exhibited high tendency to aggregate and attached to the bioreactor and membrane surfaces, and total biomass accumulation in the OMPBR was over 5 g/L. Salt accumulation and biofouling had adverse effects on membrane filtration, but the performance could be recovered through periodic backwashing of the membranes. Extracellular polymeric substances characterization indicated higher fraction of polysaccharides as compared to proteins. The biomass in the OMPBR accumulated higher levels of carbohydrates and chlorophyll. These results indicate the suitability of OMPBR in wastewater treatment and in high-density microalgae cultivation. PMID:26859325

  2. Removal of Nitrogen and Pathogens in Agricultural or Urban Channles using Engineered Streambeds

    Science.gov (United States)

    McCray, J. E.; Herzog, S.; Higgins, C. P.

    2015-12-01

    Treating non-point source pollution is one of our greatest challenges in environmental hydrology. Previous efforts in agricultural or urban settings have focused on removing sources or implementing distributed best management practices (BMPs) throughout a watershed. However, for stream pollution, the most efficient point of treatment would be within the stream itself, which integrates flows from the entire watershed. Engineered streambed modifications in urban or agricultural streams and constructed channels have the potential to mitigate nonpoint source pollution. Geomedia designed to treat water pollutants and achieve an optimal residence time via hydraulic conductivity modifications are termed biohydrochemical enhancement structures for stream water treatment (BEST). BEST modules can efficiently drive interchange, attenuating nutrients and pathogens (and can be designed to remove other pollutants such as phosphorus, metals or trace organics). Numerical models, combined with data from bench-top and 2D experiments, demonstrate effective contaminant removal potential for practical applications. Nitrogen and pathogens could be attenuated within a series of BEST on the order of 50 m of stream length, and at a favorable cost compared to traditional BMPs, suggesting that BEST could be an effective best management practice for constructed stormwater channels (particularly outlets of detention ponds) or channels carrying irrigation return flows. New results from a constructed stream demonstrate the real-world applicability of the BEST system.

  3. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  4. NITROGEN REMOVAL FROM HIGH AMMONIA PHARMACEUTICAL WASTEWATER via NITRITE%高氨氮制药废水短程生物脱氮

    Institute of Scientific and Technical Information of China (English)

    李勇智; 彭永臻; 王淑滢

    2003-01-01

    In this study, laboratory-scale experiments were conducted by using Sequencing Batch Reactor (SBR) activated sludge process to treat wastewater stream from a pharmaceutical factory. Biological nitrogen removal can be achieved via partial nitrification and denitrification and its efficiency was above 99% at 23℃±1℃. The experimental results indicated that the nitrite oxidizers were more sensitive than ammonia oxidizers to the free ammonia in wastewater. The ammonia was oxidized at pH 7 and 7.5 respectively, which suggested a critical free ammonia concentration of 0.2mg*L-1 at which the nitrite oxidizers were inhibited.

  5. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...

  6. 交替缺氧/好氧CAST处理低pCOD/pTN生活污水的脱氮研究%Biological Nitrogen Removal by Alternating Anoxic/aerobic CAST Treating Municipal Wastewater With a Low pCOD/pTN Ratio

    Institute of Scientific and Technical Information of China (English)

    彭永臻; 王丽; 马娟; 王少坡; 刘洋; 马宁平

    2012-01-01

    以低pCOD/pTN生活污水为处理对象,在连续和分段2种进水方式下分析了交替缺氧/好氧循环式活性污泥法工艺的脱氮性能及曝气需求量,并研究了分段进水方式下pH、PDO和氧化还原电位(oxidation reduction potential,ORP)的变化规律.结果表明,连续进水方式下,系统TN平均去除率75.1%,系统因长期低负荷运行而发生污泥膨胀,污泥容积指数(sludge volume index,SVD平均值为229mL/g,同时,曝气量升至0.56m^3/h时,才能使NH4^+-N去除率大于99%;采用分段进水方式时,系统TN平均去除率可提高至81.5%,污泥沉降性能良好,并且曝气量降至0.24m^3/h时,系统NH4^+-N去除率仍大于99%,节省了运行费用.此外,当采用分段进水时,反应区内的pH值、pDO和ORP值曲线有较明显的变化规律,并与反应区内污染物浓度的变化有着较好的相关性。%Abstract: This study investigates the effects of continuous-feeding and step-feeding patterns on the nitrogen removal performance and the aeration rate under the anoxic/aerobic (A/O) condition of cyclicactivated sludge technology (CAST) process treating low pCOD/pTN wastewater, and analyzes the profiles of pH, DO and ORP under the step-feed mode. Results show that the average removal rate of pTN is75. 1% and SVI is 229 mL/g when the system runs under the continuous feeding mode, and activated sludge bulking occurs because of the operation under long-term condition of a low influent load. However, the average removal rate of pTN increases to 81. 5% and the average SVI decreases when thesystem runs under the step-feeding mode. Meanwhile, the aeration rate of the continuous-feeding mode is0.56 m^3/h but 0.24 m^3/h under the step-feeding mode when the removal rate of p ( NH4^+-N) is above99%. Consequently, the operation cost can be significantly reduced by using the step-feeding mode. Furthermore, pH, DO

  7. Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems

    DEFF Research Database (Denmark)

    Morgenroth, E.

    1999-01-01

    ) had only a minor effect on overall phosphorus removal. Soluble components fully penetrate the biofilm at certain times during the SBBR cycle as a consequence of SBBR operation with large concentration variations over the cycle time. The limiting processes for EBPR is the efficient removal...... and intensive backwashing resulting in thin biofilms is suggested. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  8. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  9. Nitrogen removal influence factors in A/O process and decision trees for nitrification/denitrification system

    Institute of Scientific and Technical Information of China (English)

    MA Yong; PENG Yong-zhen; WANG Shu-ying; WANG Xiao-lian

    2004-01-01

    In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process.

  10. Effects of dissolved oxygen on microbial community of single-stage autotrophic nitrogen removal system treating simulating mature landfill leachate.

    Science.gov (United States)

    Wen, Xin; Zhou, Jian; Wang, Jiale; Qing, Xiaoxia; He, Qiang

    2016-10-01

    The performance of four identical sequencing biofilm batch reactors (SBBR) for autotrophic nitrogen removal was investigated with 2000mg/L ammonia-containing mature landfill leachate at 30°C. The main objective of this study was to evaluate the effects of dissolved oxygen (DO) on the performance and microbial community of single-stage nitrogen removal using anammox and partial nitritation (SNAP) system. At an applied load of 0.5kgNm(-3)d(-1), average total nitrogen removal efficiency (TNRE) above 90% was long-term achieved with an optimal DO concentration of 2.7mg/L. The microelectrode-measured profiles showed the microenvironments inside the biofilms. 16S ribosomal Ribonucleic Acid (rRNA) amplicon pyrosequencing and denaturing gradient gel electrophoresis (DGGE) were used to analyze the microbial variations of different DO concentrations and different positions inside one reactor. PMID:27450126

  11. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    Science.gov (United States)

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.

  12. Removal of nitrogen and phosphorus from wastewater in a constructed wetland system using vetiver grass

    Directory of Open Access Journals (Sweden)

    Rogério de Araújo Almeida

    2012-12-01

    Full Text Available This study aimed to evaluate the Vetiver grass (Vetiveria zizanioides L. Nash efficiency in removing nitrogen and phosphorus from the wastewater in a constructed wetlands treatment system. The experimental unit had twelve treatment modules, filled with layers of substrate. From the bottom to the surface, the following materials were placed: 0.15 m of gravel # 3; 0.10 m of gravel # 1; 0.20 m of washed sand and 0.05 m of gravel # 1. Inside the modules, the wastewater was maintained at 0.05 m or 0.25 m below the substrate surface, resulting in hydraulic retention times of 3.4 days and 1.9 days, respectively. The influent wastewater was captured in the entrance of a facultative pond, and it was applied to the surface of each treatment module, automatically, on a surface application rate of 51 L.m-2.d-1. The sewage percolated vertically in the system, in a sub-surface flow downward until it was captured in a drain pipe at the bottom of the module. The wastewater concentrations of total phosphorus and ammonium were analyzed before and after passing through the treatment modules. Evapotranspiration rates were measured and the efficiencies in removing the contaminant load were calculated. The results were submitted to F and Tukey tests, at 5% of probability. Treatment with the presence of the plant and sewage at 0.05 m from the surface had higher efficiency in the removal of nutrients reaching 90.5% of phosphorus removal and 93.9% for ammonia.

  13. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    OpenAIRE

    Dipak Paul; Sankar Narayan Sinha

    2015-01-01

    Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobact...

  14. A Comparative Study of the Bacterial Community in Denitrifying and Traditional Enhanced Biological Phosphorus Removal Processes

    OpenAIRE

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-lei; Sun, Fei-Yun

    2014-01-01

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphoru...

  15. Modeling, Experimentation, and Control of Autotrophic Nitrogen Removal in Granular Sludge Systems

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine

    is convenient for treating anaerobic digester liquor, landfill leachate, or special industrial wastewaters, because costs related to the need for aeration and carbon addition are lowered by 60% and 100%, respectively, compared to conventional nitrification denitrification treatment. Energy and capital costs can...... and control perspective, due to the smaller number of actuators available. In this work, an integrated modeling and experimental approach was used to improve the understanding of the process, and subsequently use this understanding to design novel control strategies, providing alternatives to the current ones...... available. First, simulation studies showed that the best removal efficiency was almost linearly dependent on the volumetric oxygen to nitrogen loading ratio. This finding among others, along with experimental results from start-up of lab-scale reactors, served as the basis for development of three single...

  16. Influence of Calcination on the Physical Characteristics and Nitrogen Removal Performance of Clinoptilolites

    Institute of Scientific and Technical Information of China (English)

    LIN Hai; JIN Xin; DONG Yingbo; HUO Hanxin; LIU Quanli

    2014-01-01

    The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified conditions include a calcination temperature at 400℃, a roasting time of 0.5 h, and furnace cooling. The ammonia nitrogen removal rate from analog renewable water of the modified clinoptilolites reached 72%in the optimized conditions, which is 12%higher than that of natural ones. Scanning electron microscopy analysis showed that the surface morphology changed, the micro-hole size increased, and the surface became smoother and more uniform after calcination. The single-point total adsorption average pore width increased from 7.74 nm to 10.64 nm.

  17. Autotrophic nitrogen removal in one lab-scale vertical submerged biofilm reactor

    Science.gov (United States)

    Liang, Zhiwei; Chen, Yingxu; Li, Wenhong; Yang, Shangyuan; Du, Ping

    In this study, the process performance of a new vertical submerged biofilm reactor for complete autotrophic ammonia removal was investigated using synthetic wastewater. The main objectives of this study were to evaluate the flexibility of the reactor, achieve partial autotrophic nitrification with influent ammonium nitrogen ranging from 40 to 280 mg L -1, and achieve a stable half partial autotrophic nitrification by controlling hydraulic retention time (HRT) and alkalinity. A very low concentration of nitrate was observed in the effluent during nitrification. Then autotrophic denitrification revealed Anammox bacteria were present and active in the central anaerobic parts of the bioreactor which was inoculated with a mixed microbial consortium from activated sludge. The results of this study demonstrated that autotrophic denitrification processes can coexist with heterotrophic denitrifying processes in the same environment even if Anammox bacteria were less competitive than heterotrophic denitrifying bacteria.

  18. Flush of CO2 as a biologically based tool to predict nitrogen mineralization from soil

    Science.gov (United States)

    A biologically based tool to improve nitrogen (N) management in cereal crops is currently lacking from soil testing programs, but very much needed to optimize N fertilizer inputs to be able apply enough N fertilizer to achieve high production and avoid excess application that is damaging to the envi...

  19. Isolation of aerobic denitrifier and characteristics of enhanced nitrogen removal in concentric-circles reactor with diversion wall

    Institute of Scientific and Technical Information of China (English)

    许晓毅; 汤丽娟; 罗固源; 蒋真玉

    2009-01-01

    Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three strains are all gram-positive and rod-shaped,and their colonial colors are pale yellow,milk white and pink,respectively. Combined with 16SrDNA sequence homology comparison and biochemical tests,AT3 and AT7 were identified to belong to Rhodococcus,and AT6 to Gordonia. These bacterial strains could grow well in the medium with potassium nitrate as nitrogen source and sodium citrate as carbon source. Based on the enhanced nitrogen removal experiments of selected bacteria mixture for activated sludge,the inoculum amount of 5% was supposed to be proper. The mixed biomass suspension of selected strains with PVA immobilization was put into the concentric-circles reactor in order to study the characteristics of enhanced nitrogen removal after amplifying cultivation with inoculated amount of 5%. The experimental results show that the average removal efficiencies of ammonia nitrogen (NH3-N) and total nitrogen (TN) in the reactor enhanced with aerobic denitrifying bacteria using PVA are 92.18% and 79.14% respectively,increasing by 5.29% and 7.83% respectively compared with removal effects of control group without strains enhancement.

  20. A wooded riparian strip set up for nitrogen removal can affect the water flux microbial composition

    Directory of Open Access Journals (Sweden)

    Mizanur Md. Rahman

    2014-02-01

    Full Text Available This research is part of a project aimed at verifying the potential of a specifically assessed wooded riparian zone in removing excess of combined nitrogen from the Zero river flow for the reduction of nutrient input into Venice Lagoon. Specific objectives were pursued to determine seasonal fluctuations of the microbial populations from the input water to a drainage ditch, conveying back the flux into the river after passing through the soil of the wooded riparian strip. The bacterial communities were determined by combined approaches involving cultivation, microscopic methods and DNA based techniques to determine both culturable and total microbial community in water. The results indicate that the size of the bacterial population, including the culturable fraction, increases from the river to the drainage ditch especially on the warm season. The multiple approach here adopted enabled also to demonstrate that the special condition created in the buffer strip supports the development and the metabolism of the microbial community. The nature of the bacterial population, in terms of phylotypes distribution, was investigated by 16S rDNA analysis indicating that the most represented genera belong to Gamma-proteobacteria, which is known to include an exceeding number of important pathogens. In spring, the effect of the buffer strip seems to significantly reduce such a sub-population. The changes observed for the total bacterial community composition become much evident in summer, as revealed by both denaturing gradient gel electrophoresis cluster analysis and by the diversity index calculation. The hydraulic management coupled to the suspension of farming practices and the development of the woody and herbaceous vegetation resulted in a condition suitable for the containment of undesired microbiota (mainly during the spring season while continuing to support denitrification activity (especially throughout the summer as verified by the total nitrogen

  1. Application of Moving Bed Biofilm Process for Biological Organics and Nutrients Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2008-01-01

    Full Text Available In this study, experiments have been conducted to evaluate the organics and nutrients removal from synthetic wastewater by a laboratory scale moving bed biofilm process. For nutrients removal, moving bed biofilm process has been applied in series with anaerobic, anoxic and aerobic units in four separate reactors. Moving bed biofilm reactors were operated continuously at different loading rates of nitrogen and Phosphorus. During optimum conditions, close to complete nitrification with average ammonium removal efficiency of 99.72% occurred in the aerobic reactor. In the aerobic reactor, the average specific nitrification rate was 1.8 g NOx-N kg VSS-1 h-1. The results of the average effluent soluble COD concentration from each reactor showed that denitrification process in the second anoxic reactor consumed most of the biodegradable organic matter. As seen from the results, denitrification rate has increased with increasing NOx-N loading in the second anoxic reactor. The aerobic phosphate removal rate showed a good correlation to the anaerobic phosphate release rate. Moreover, phosphate removal rate showed a strong correlation to the phosphate loading rate in the aerobic reactor. In optimum conditions, the average SCOD, total nitrogen and phosphorus removal efficiencies were 96.9, 84.6 and 95.8%, respectively. This study showed that the moving bed biofilm process could be used as an ideal and efficient option for the total nutrient removal from municipal wastewater.

  2. Study of control strategy and simulation in anoxic-oxic nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-zhen; WANG Zhi-hui; WANG Shu-ying

    2005-01-01

    The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow rate of external carbon dosage to the anoxic zone, thus the concentration of nitrate plus nitrite( NOx -N) in the anoxic zone was kept closed to the set point. The relationship was studied between the NOx-N concentration in the anoxic zone(SNo) and the dosage of external carbon, and the results showed that the removal efficiency of the total nitrogen(TN) could not be largely improved by double dosage of carbon source when SNO reached about 2mg/L. Through keeping SNO at the level of about 2 mg/L, the demand of effluent quality could be met and the carbon dosage could be optimized. Based on the Activated Sludge Model No. 1 (ASM No. 1 ), a simplified mathematical model of external carbon dosage was developed. Simulation results showed that PI controller and feed-forward PI controller both had good dynamic response and steady precision. And feed-forward PI controller had better control effects due to its consideration of influent disturbances.

  3. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    Science.gov (United States)

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  4. Ammonia-nitrogen removal from urban drainage using modified fresh empty fruit bunches: A case study in Kota Kinabalu, Sabah

    Science.gov (United States)

    Ricky, L. N. S.; Shahril, Y.; Nurmin, B.; Zahrim, AY

    2016-06-01

    Highly concentration of ammonia nitrogen in urban drainage could pollute the river and give pungent smell. The strong pungent odours that coming out from the urban drainage may degrade the image a city and could possibly reduce the present of tourist. To minimize the presence of pungent odours, the ammonia nitrogen can be removed from the urban drainage by applying proper adsorbent. In this study, an adsorbent produced through chemical modification of fresh empty fruit bunch (EFB) fibers has been carried out. The maximum adsorption capacity is between 0.01-0.60 mg/g. The finding also shows that the retention time is vital when designing ammonia nitrogen filter.

  5. The Impact of Temperature on Anaerobic Biological Perchlorate Removal and Aerobic Polishing of the Effluent

    Science.gov (United States)

    This abstract describes a pilot-scale evaluation of anaerobic biological perchlorate (C1O4) removal followed by aerobic effluent polishing. The anaerobic biological contactor operated for 3.5 years. During that period, two effluent polishing evaluations, lasting 311 an...

  6. The Impact of Temperature on Anaerobic Biological Perchlorate Removal and Aerobic Polishing of the Effluent - paper

    Science.gov (United States)

    This abstract describes a pilot-scale evaluation of anaerobic biological perchlorate (C1O4) removal followed by aerobic effluent polishing. The anaerobic biological contactor operated for 3.5 years. During that period, two effluent polishing evaluations, lasting 311 an...

  7. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater.

    Science.gov (United States)

    Pan, Jing; Yuan, Fang; Yu, Long; Huang, Linli; Fei, Hexin; Cheng, Fan; Zhang, Qi

    2016-07-01

    Organics and nitrogen removal in four subsurface wastewater infiltration systems (SWISs), named SWIS A (without intermittent aeration and shunt distributing wastewater), SWIS B (with intermittent aeration), SWIS C (with shunt distributing wastewater) and SWIS D (with intermittent aeration and shunt distributing wastewater) was investigated. High average removal rates of 92.3% for COD, 90.2% for NH4-N and 88.1% for TN were achieved simultaneously in SWIS D compared with SWIS A, B and C. The excellent TN removal of SWIS D was due to intermittent aeration provided sufficient oxygen for nitrification in upper matrix and the favorable anoxic or anaerobic environment for denitrification in subsequent matrix, and moreover, shunt distributing wastewater provided sufficient carbon source for denitrification process. The results indicated that intermittent artificial aeration combined with shunt distributing wastewater could achieve high organics and nitrogen removal in SWISs.

  8. Advanced removal of organic and nitrogen from ammonium-rich landfill leachate using an anaerobic-aerobic system☆

    Institute of Scientific and Technical Information of China (English)

    Hongwei Sun; Huanan Zhao; Baoxia Bai; Yuying Chen; Qing Yang; Yongzhen Peng

    2015-01-01

    A novel system coupling an up-flow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could remove 88.1%of the influent COD at a volumetric loading rate of 6.8 kg COD·m−3·d−1. Nitritation–denitritation was responsible for removing 99.8%of NH4+-N and 25%of total nitrogen in the SBR under alternating aerobic/anoxic modes. Simultaneous denitritation and methanogenesis in the UASB enhanced COD and TN removal, and replenished alkalinity consumed in nitritation. For the activated sludge of SBR, ammonia oxidizing bacteria were preponderant in nitrifying population, indicated by fluorescence in situ hybridization (FISH) anal-ysis. The Monod equation is appropriate to describe the kinetic behavior of heterotrophic denitrifying bacteria, with its kinetic parameters determined from batch experiments.

  9. Biological nutrient removal from municipal wastewater in sequencing batch biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnz, P.

    2001-07-01

    Enhanced biological phosphorus removal (EBPR) has only been put into practice in activated sludge systems. In recent years, the Sequencing Batch Biofilm Reactor (SBBR) has emerged as an alternative allowing EBPR to be achieved in a biofilm reactor. High efficiency of phosphate removal was demonstrated in a SBBR fed with synthetic wastewater containing acetate. The aim of this study was to investigate EBPR from municipal wastewater in semi full-scale and laboratory-scale SBBRs. The focus of the investigation in the semi full-scale reactor was on determination of achievable reaction rates and effluent concentrations under varying influent conditions throughout all seasons of a year. Interactions between nitrogen and phosphorus removal and the influence of backwashing on the reactor performance was examined. Summing up, it can be stated that the SBBR proved to be an attractive alternative to activated sludge systems. Phosphorus elimination efficiency was comparable to common systems but biomass sedimentation problems were avoided. In order to further exploit the potential of the SBBR and to achieve reactor performances superior to those of existing systems designing a special biofilm carrier material may allow to increase the phenomenon of simultaneous nitrification/denitrification while maintaining EBPR activity. (orig.) [German] Die vermehrte biologische Phosphorelimination (Bio-P) aus Abwasser wurde bisher nur in Belebtschlammsystemen praktiziert. In den letzten Jahren konnte jedoch gezeigt werden, dass sich durch die Anwendung des Sequencing Batch Biofilm Reactor (SBBR) - Verfahrens auch in Biofilmreaktoren Bio-P verwirklichen laesst. Versuche in Laboranlagen haben ergeben, dass sich eine weitgehende Phosphorelimination aufrecht erhalten laesst, wenn die Reaktoren mit einem ideal zusammengesetzten, synthetischen Abwasser beschickt werden. Ziel dieser Arbeit war es, Bio-P aus kommunalem Abwasser in SBBR-Versuchsanlagen im halbtechnischen und im Labormassstab zu

  10. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor.

    Science.gov (United States)

    Roy, Dhiriti; Hassan, Komi; Boopathy, Raj

    2010-10-01

    The United States Marine Shrimp Farming Program (USMSFP) introduced a new technology for shrimp farming called recirculating raceway system. This is a zero-water exchange system capable of producing high-density shrimp yields. However, this system produces wastewater characterized by high levels of ammonia, nitrite, and nitrate due to 40% protein diet for the shrimp at a high density of 1,000 shrimp per square meter. The high concentrations of nitrate and nitrite (greater than 25 ppm) are toxic to shrimp and cause high mortality. So treatment of this wastewater is imperative in order to make shrimp farming viable. One simple method of treating high-nitrogen wastewater is the use of a sequencing batch reactor (SBR). An SBR is a variation of the activated sludge process, which accomplishes many treatment events in a single reactor. Removal of ammonia and nitrate involved nitrification and denitrification reactions by operating the SBR aerobically and anaerobically in sequence. Initial SBR operation successfully removed ammonia, but nitrate concentrations were too high because of carbon limitation in the shrimp production wastewater. An optimization study revealed the optimum carbon to nitrogen (C:N) ratio of 10:1 for successful removal of all nitrogen species from the wastewater. The SBR operated with a C:N ratio of 10:1 with the addition of molasses as carbon source successfully removed 99% of ammonia, nitrate, and nitrite from the shrimp aquaculture wastewater within 9 days of operation. PMID:20835881

  11. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor.

    Science.gov (United States)

    Fudala-Ksiazek, S; Luczkiewicz, A; Fitobor, K; Olanczuk-Neyman, K

    2014-06-01

    The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10% by volume). The results indicate that landfill leachate addition of up to 10% (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r(2) = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm(3) and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm(3) in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.

  12. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter

    Science.gov (United States)

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-01-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4+-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter. PMID:27646687

  13. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    XU Zhengyong; YANG Zhaohui; ZENG Guangming; XIAO Yong; DENG Jiuhua

    2007-01-01

    The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors(SBBRs),which was designed independently.At the liquid temperature of(32±0.4)℃,and after a 58-days domestication period and a 33-days stabilization period.the efficiency of ammonium removal in the SBBR went up to 95%.Highly frequent intermittent aeration suppressed the activity of nitratebacteria.and also eliminated the influence on the activity of anaerobic ammonium oxidation(ANAMMOX)bacteria and nitritebacteria.This influence was caused by the accumulation of nitrous acid and the undulation of pH.During the aeration stage,the concentration of dissolved oxygen was controlled at 1.2-1.4 mg/L.The nitritebacteria became dominant and nitrite accumulated gradually.During the anoxic stage,along with the concentration debasement of the dissolved oxygen,ANAMMOX bacteria became dominant;then,the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.

  14. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter.

    Science.gov (United States)

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-01-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4(+)-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter. PMID:27646687

  15. Comparison of biological and chemical phosphorus removals in continuous and sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ketchum, L.H.; Irvine, R.L. Jr.; Breyfogle, R.E.; Manning, J.F. Jr.

    1987-01-01

    A full-scale study of phosphorus removal has been conducted at Culver using continuous-flow operation, SBR operation, and several different chemical treatment schemes. A full-scale demonstration of SBR biological phosphorus removal also has been shown to be effective. Four contributing groups of organisms and their roles in biological SBR phosphorus removal have been described: denitrifying organisms, fermentation product-manufacturing organisms, phosphorus- accumulating organisms, and aerobic autotrophs and heterotrophs. The SBR can provide the proper balance of anoxic, anaerobic, and aerobic conditions to allow these group of organisms to successfully remove phosphorus biologically, without chemical addition. Treatment results using various chemicals for phosphorus removal, both during conventional, continuous-flow operation and after the plant was converted for SBR operation, have also been provided for comparison. Effluent phosphorus concentrations were almost identical for each period, except for the period when phosphorus was removed biologically and without any chemical addition when effluent phosphorus concentrations were the lowest. These removals were made as a result of settling alone; no tertiary rapid stand filter was used or required.

  16. Dimensioning of a plant for enhanced biological phosphorous removal by estimation of partial steps. Berechnungsansatz fuer die biologische Phosphorelimination durch Bewertung prozessbestimmender Teilschritte

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, I.; Schoenborn, C. (Technische Univ. Dresden (Germany))

    1992-05-01

    For the design of wastewater treatment plants with enhanced biological phosphorus removal and simultaneous removal of nitrogen a calculation model is proposed. The model derived from long-term investigations on bench scale plants. The key variables of the P-elimination process can be described by statistically confident equations. The calculation model can be well handled by engineers and designers. The model includes only a small number of variables, which can be measured in routine analysis. Two versions of the model are described in detail. The calculation model has been verified with independent data from five full-scale wastewater treatment plants in Germany. (orig.).

  17. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source. PMID:26988362

  18. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.

  19. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  20. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda

    2016-01-01

    Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.

  1. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    Science.gov (United States)

    Belnap, J.

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (26??C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r2=0.93 for Collema crusts; r2=0.86 for dark crusts and r2=0.83 for light crusts) for temperatures between 1??C and 26??C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha-1 year-1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha-1 year-1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha-1 year-1. The rates in light crusts are expected to be highly variable, as

  2. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils.

    OpenAIRE

    Pijnenborg, J.W.M.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium meliloti. This thesis deals with the factors affecting biological nitrogen fixation by lucerne in acid soils.In a field experiment, lucerne seeds were either inoculated withR.meliloti only,or inoculated and pelleted with lime, before sowing in a sandy soil of pH 5.2. Lime-pelleting significantly im...

  3. Achieving nitrogen removal via nitrite pathway from urban landfill leachate using the synergetic inhibition of free ammonia and free nitrous acid on nitrifying bacteria activity.

    Science.gov (United States)

    Sun, H W; Bai, Y; Peng, Y Z; Xie, H G; Shi, X N

    2013-01-01

    In this study, a biological system consisting of an up-flow anaerobic sludge blanket (UASB) and anoxic-oxic (A/O) reactor was established for the advanced treatment of high ammonium urban landfill leachate. The inhibitory effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrifying bacterial activity was used to achieve stable nitritation in the A/O reactor. The results demonstrated that the biological system achieved chemical oxygen demand (COD), total nitrogen (TN) and NH(4)(+)-N removal efficiencies of 95.3, 84.6 and 99.2%, respectively at a low carbon-to-nitrogen ratio of 3:1. Simultaneous denitritation and methanogenesis in the UASB could improve the removal of COD and TN. Nitritation with above 90% nitrite accumulation was successfully achieved in the A/O reactor by synergetic inhibition of FA and FNA on the activity of nitrite oxidizing bacteria (NOB). Fluorescence in situ hybridization (FISH) analysis showed that ammonia oxidizing bacteria (AOB) was dominant and was considered to be responsible for the satisfactory nitritation performance.

  4. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: the role of filter media, vegetation and saturated zone.

    Science.gov (United States)

    Glaister, Bonnie J; Fletcher, Tim D; Cook, Perran L M; Hatt, Belinda E

    2014-01-01

    Biofilters have been shown to effectively treat stormwater and achieve nutrient load reduction targets. However, effluent concentrations of nitrogen and phosphorus typically exceed environmental targets for receiving water protection. This study investigates the role of filter media, vegetation and a saturated zone (SZ) in achieving co-optimised nitrogen and phosphorus removal in biofilters. Twenty biofilter columns were monitored over a 12-month period of dosing with semi-synthetic stormwater. The frequency of dosing was altered seasonally to examine the impact of hydrologic variability. Very good nutrient removal (90% total phosphorus, 89% total nitrogen) could be achieved by incorporating vegetation, an SZ and Skye sand, a naturally occurring iron-rich filter medium. This design maintained nutrient removal at or below water quality guideline concentrations throughout the experiment, demonstrating resilience to wetting-drying fluctuations. The results also highlighted the benefit of including an SZ to maintain treatment performance over extended dry periods. These findings represent progress towards designing biofilters which co-optimise nitrogen and phosphorus removal and comply with water quality guidelines.

  5. The removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Concrete blocks reinforced with steel bars have been subjected to microwave attack at a frequency of 896 MHz at power levels up to 25 kW. The surface concrete has been explosively removed to the depth of the reinforcement, 10 cm, at a rate of about 2 litres per kWh. Heating was localized around the point of attack, with temperatures up to 3000C at the fractured face being attained. A simple mathematical model of the propagation and absorption of micro-waves was used to estimate the temperature rise of concrete at microwave frequencies of 896 wand 2450 MHz, at different power levels with and without the presence of reinforcing bars. This demonstrated that reinforcement is expected to significantly increase the temperature rise in the concrete between the irradiated surface and the reinforcement, and that near-surface heating should be more rapid at the higher frequency. There was reasonable agreement between predicted and observed temperature at the higher power levels. Further desk and laboratory studies are proposed before proceeding to a fullscale practical demolition machine and the requirements for a prototype remotely-operated demonstration system have been identified. This consists of a static generator of high power (at least 50 kW) transmitting microwaves via a steerable waveguide to a remote applicator mounted on a simple three-axis manipulator capable of traversing realistically large concrete test panels

  6. Biological nitrogen fixation by faba bean, pea and vetch, using isotopic techniques (N-15) and two reference crops

    International Nuclear Information System (INIS)

    A field experiment was carried out on a Typic Dystrandept soil at Santa Catalina Experimental Station, Cutuglagua, Pichincha, Ecuador. The objectives were to quantify faba bean (Vicia faba) pea (Pisum sativum) and vetch (Vicia sativa) biological nitrogen fixation using N-15 isotopic technique and to evaluate suitability of reference crops for such quantification. Higher values of biological nitrogen fixation were obtained using maize (Zea mays L.) than using wheat (Triticum vurgare) as reference crops. The average values were 85 and 81 per cent for vetch; 73 and 69 per cent for faba bean; and 34 and 18 per cent for pea, respectively. It was assumed that nitrogen use efficiency should be the same for fixing and no fixing crop, but it was observed that a reference crop with low nitrogen use efficiency underestimates legume biological nitrogen fixation. Results suggest that greater caution is needed when selecting reference crops for legumes with low nitrogen fixation

  7. Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products

    Institute of Scientific and Technical Information of China (English)

    Thangapalam Jawahar Abraham; Shubhadeep Ghosh; Debasis Sasmal

    2015-01-01

    Objective:To study the influence of biological products on the levels of nitrogen and sulphur cycle bacteria in shrimp culture systems of West Bengal, India. Methods: The pond water and sediment samples were analyzed for physico-chemical parameters as per standard methods. The bacteria involved in ammonification, nitrification, denitrification, sulphate reduction and sulphur oxidation were enumerated by most probable number technique. Results:The semi-intensive and modified extensive shrimp farms used a variety of biological products during various stages of production. No biological products were used in traditional farms. The water and sediment samples of modified extensive system recorded significantly higher mean heterotrophic bacterial counts. The counts of ammonia, nitrite and sulphur oxidizers, and nitrate and sulphate reducers varied among the systems. The cycling of nitrogen and sulphur appeared to be affected with the intensification of culture practices. Conclusions:The application of biological products in certain systems helped to maintain the bacteria involved in nitrogen and sulphur cycles and safe levels of ammonia, nitrite and nitrate. An assessment of these metabolically active bacteria in shrimp culture ponds and the application of right kind microbial products would help ameliorate the organic pollution in shrimp aquaculture.

  8. Implementation of biological nutrient removal from municipal wastewater in Finland - HUT/Savonlinna process, a challenge to the UCT process; Asumisjaeteveden biologisen ravinteiden poiston toteuttaminen Suomen oloissa - HUT/Savonlinna-prosessi UCT-prosessin haastajana

    Energy Technology Data Exchange (ETDEWEB)

    Kiuru, H. [Helsinki Univ. of Technology, Otaniemi (Finland)

    2000-07-01

    The laboratory for Environmental Engineering at the Helsinki University of Technology carried out two successive full-scale R and D projects on biological nutrient removal. As a result of these projects, Pihlajaniemi Wastewater Treatment at Savonlinna in 1991-1996, an activated sludge process, called the HUT/Savonlinna process, was developed. By making use of the organic carbon in wastewater and without any added chemicals, the process is able to reduce the phosphorus content of water by more than 90% and the nitrogen content by about 70%. Total phosphorus contents averaging less than 0.5 mg/l and total nitrogen contents of 8-12 mg/l are usual in the secondary settled wastewater. These projects demonstrated that biological nutrient removal from domestic wastewater would best be started in Finland with year-round complete nitrification. This is the most demanding phase in the removal of biological nutrients from municipal wastewater and also the most expensive way to treat municipal wastewater with the conventional aerated activated sludge process. From there, it would be natural to proceed to effective nitrogen removal by means of denitrification. In that way the operating costs of the treatment plant would be markedly reduced. Nitrogen removal could be implemented without any extension of the treatment plant beyond what would be needed for complete year-round nitrification. The chemical removal of phosphorus from wastewater carried out as simultaneous precipitation could then easily replaced by biological phosphorus removal. This procedure would bring the operating costs of the treatment plant below the level normal in the conventional treatment of municipal wastewaters with an activated sludge process with simultaneous phosphorus precipitation. For this modification the treatment plants would not even have to be enlarged. When biological nutrient removal from municipal wastewaters is implemented in Finland, the HUT/Savonlinna process will surely challenge the UCT

  9. Removal of Organic Matter and Ammonia Nitrogen in Azodicarbonamide Wastewater by a Combination of Power Ultrasound Radiation and Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    李文军; 吴笛; 石鑫; 文利雄; 邵磊

    2012-01-01

    A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well.

  10. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios.

    Science.gov (United States)

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao

    2016-05-01

    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present. PMID:26822218

  11. Effect of dissolved organic matter on nitrate-nitrogen removal by anion exchange resin and kinetics studies

    Institute of Scientific and Technical Information of China (English)

    Haiou Song; Zhijian Yao; Mengqiao Wang; Jinnan Wang; Zhaolian Zhu; Aimin Li

    2013-01-01

    The effects of dissolved organic matter (DOM) on the removal of nitrate-nitrogen from the model contaminated water have been investigated utilizing the strong base anion exchange resins.With the increase of gallic acid concentration from 0 to 400 mg/L,the adsorption amount of nitrate-nitrogen on the commercial resins,including D201,Purolite A 300 (A300) and Purolite A 520E (A520E),would significantly decrease.However,the presence of tannin acid has little impact on nitrate-nitrogen adsorption on them.Compared to D201 and A300 resins,A520E resin exhibited more preferable adsorption ability toward nitrate-nitrogen in the presence of competing organic molecules,such as gallic acid and tannin acid at greater levels in aqueous solution.Attractively,the equilibrium data showed that the adsorption isotherm of nitrate-nitrogen on A520E resin was in good agreement with Langmuir and Freundlich equations.The rate parameters for the intra particle diffusion have been estimated for the different initial concentrations.In batch adsorption processes,nitrate-nitrogen diffuse in porous adsorbent and rate process usually depends on t1/2 rather than the contact time.The pseudo first-and the second-order kinetic models fit better for nitrate-nitrogen adsorption onto A520E resin.The observations reported herein illustrated that A520E resin will be an excellent adsorbent for enhanced removal of nitrate-nitrogen from contaminated groundwater.

  12. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. PMID:27010349

  13. Enhanced biological phosphorus removal in the wastewater treatment plant of Bunnik

    Energy Technology Data Exchange (ETDEWEB)

    Vries, H.P. de; Rensink, J.H.

    1989-02-01

    At several sewage treatment plants in the Netherlands there has been continuously found a remarkable high phosphorus removal rate, without using chemical additions. In Bunnik this is up to 90%. In the effluent we will mostly find less than 1 mg P/l. At the Bunnik plant we deal with biological excess phosphorus removal. Biological phosphorus removal is based on the luxury uptake of phosphorus by some bacteria. On certain circumstances micro-organisms of the genius Acinetobacter stored excess amounts of phosphates in their cells. In 1984 a project started, financed by the institute for inland waters and wastewater treatment (DBW/RIZA). The purpose of this research project was to find factors which were, responsible for the remarkable enhanced phosphorus removal in the Bunnik plant.

  14. Particle size distribution and removal in the chemical-biological flocculation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; ZHAO Jian-fu; XIA Si-qing; LIU Chang-qing; KANG Xing-sheng

    2007-01-01

    The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.

  15. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  16. Inorganic sulfur–nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling

    OpenAIRE

    Miriam M. Cortese-Krott; Butler, Anthony R; Woollins, J. Derek; Feelisch, Martin

    2016-01-01

    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S–N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical ...

  17. Full-scale biological phosphorus removal: quantification of storage polymers, microbial performance and metabolic modelling

    OpenAIRE

    Lanham, Ana Alexandra Barbosa

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) can be applied in wastewater treatment plants (WWTPs), as a sustainable and efficient way to remove phosphorus from wastewater and hence reduce its impact on eutrophication. This work characterises the performance, metabolism and identity of the microbial EBPR communities in full-scale WWTPs. The accurate quantification of the internal storage compounds, namely polyhydroxyalkanoate (PHA) and glycogen, is crucial to the characterisat...

  18. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater

    OpenAIRE

    Ciara eKeating; Chin, Jason P.; Dermot eHughes; Panagiotis eManesiotis; Denise eCysneiros; Therese eMahony; Smith, Cindy J; John W McGrath; Vincent eO'Flaherty

    2016-01-01

    We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  19. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    OpenAIRE

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2011-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria ...

  20. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    OpenAIRE

    Yingyu Law; Rasmus Hansen Kirkegaard; Angel Anisa Cokro; Xianghui Liu; Krithika Arumugam; Chao Xie; Mikkel Stokholm-Bjerregaard; Drautz-Moses, Daniela I.; Per Halkjær Nielsen; Stefan Wuertz; Rohan B. H. Williams

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded b...

  1. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    OpenAIRE

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; John W McGrath; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  2. Application of chemical oxidation processes for the removal of pharmaceuticals in biologically treated wastewater

    OpenAIRE

    Hey, Gerly

    2013-01-01

    The discharge of effluents from wastewater treatment plants (WWTPs) is considered to be the major source of residual pharmaceuticals frequently found in aquatic environments. The complex nature of such compounds tends to make conventional biological treatments aimed at their removal ineffective. The present thesis concerns the removal of 62 different active pharmaceutical ingredients commonly detected in Swedish wastewater effluents by means of chemical oxidation techniques. Techniques wit...

  3. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    Science.gov (United States)

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  4. Observation of Nitrogen and Phosphorus Removals and Accumulations in Surface Flow Constructed Wetland (SFCW

    Directory of Open Access Journals (Sweden)

    Suntud Sirianuntapiboon

    2012-06-01

    Full Text Available The tropical emergent plant species; Cyperus involucratus, Canna siamensis, Heliconia sp., Hymenocallis littoralis, Typha augustifolia and Thalia dealbata were used to observe nutrients (total phosphorus: TP and total nitrogen: TN removal efficiencies of surface flow constructed wetland (SFCW. The system was operated at different hydraulic retention time (HRT of 1, 3 and 5 days and the average atmospheric temperature of 29.1 ± 4.9oC. The seafood industrial wastewater was employed as the influent. The high biomass production plant species; Cyperus involucratus, Typha augustifolia and Thalia dealbata could generate the high oxidative environment. Amount of N and P accumulations in plant tissue were increased with the increase of plant biomass production. The system did not show any significantly different on N and P accumulations among the tested-emergent plant species. But the amount of accumulated-N and P were increased with the increase of HRT. N accumulations in plant tissue, effluent, sediment and media of the system with the tested-emergent plant species under HRT of 1-5 days were in the range of 2.17-43.80%, 7.91-27.75%, 19.62-36.86% and 14.39-31.88%, respectively. Also, P accumulations were 0.79-17.01%, 20.35-28.37%, 40.96-56.27% and 9.09-20.47%, respectively.

  5. Ammonium nitrogen removal from the permeates of anaerobic membrane bioreactors: economic regeneration of exhausted zeolite.

    Science.gov (United States)

    Deng, Qiaosi; Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Lee, Hyung-Sool

    2014-08-01

    This study revealed that ammonium exchange of natural zeolite could be an economical method of nitrogen removal from the permeates of anaerobic membrane bioreactors (AnMBRs). It was found that the mass ratio of Na+ to Zeolite - NH4+ - N significantly affected regeneration efficiency (RE), not simply NaCI concentration. Batch experiments showed that the mass ratio of 750g Na+/g Zeolite - NH4+ - N was required to achieve RE over 90% in 2h at pH 9. However, the alkaline regeneration at pH 12 significantly decreased the mass ratio down to 4.2 in batch tests. It was confirmed that the alkaline regeneration only needed NaCl 10 g/L (the mass of Na+ to Zeolite - NH4+ - N of 4.2) for RE of 85% in 2 h of reaction time in continuous column tests. Economic analysis showed that this alkaline regeneration decreased chemical costs over 10 times as compared with a conventional regeneration method. A significant bottleneck of zeolite processes would be the requirement of substituting exhausted zeolite with virgin one, due to the reductions of ammonium exchange capacity and RE.

  6. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate.

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g(-1) COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L(-1)) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg(-1) N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L(-1) d(-1) was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell(-1) d(-1), which finally led to the stable operation of the system. PMID:27279481

  7. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    Energy Technology Data Exchange (ETDEWEB)

    He Ruo [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)]. E-mail: heruo@zju.edu.cn; Shen Dongsheng [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)

    2006-08-25

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10{sup 6} and 10{sup 8} cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO{sub 3} {sup -}-N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH{sub 4} {sup +}-N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system.

  8. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g‑1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L‑1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg‑1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L‑1 d‑1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell‑1 d‑1, which finally led to the stable operation of the system.

  9. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    Science.gov (United States)

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  10. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.;

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification c...... the total number of ammonium oxidizing bacteria in the column. © 2013 American Water Works Association AWWA WQTC Conference Proceedings All Rights Reserved.......Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification can...

  11. Characterization of the start-up period of single-step autotrophic nitrogen removal in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-song; QIN Yu; FANG Fang; YANG Guo-hong

    2008-01-01

    The characteristics of the start-up period of single-step autotrophic nitrogen removal process were investigated. The autotrophic nitrogen removal process used a sequencing batch reactor to treat wastewater of medium to low ammonia-nitrogen concentration, with dissolved oxygen (DO), hydraulic retention time (HRT) and temperature controlled. The experimental conditions were temperature at (30(2) (C, ammonia concentration of (60 to 120) mg/L, DO of (0.8 to 1.0) mg/L, pH from 7.8 to 8.5 and HRT of 24 h. The rates of nitrification and nitrogen removal turn out to be 77% and 40%, respectively, after a start up period going through three stages divided according to nitrite accumulation: sludge domestication, nitrifying bacteria selection and sludge adaptation. It is demonstrated that dissolved oxygen is critical to nitrite accumulation and elastic YJZH soft compound packing is superior to polyhedral hollow balls in helping the bacteria adhere to the membrane.

  12. EFFICIENCY OF NITROGEN REMOVAL IN CONSTRUCTED WETLAND:A SIMULATION STUDY IN THE WEST JINLIN,CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hu-Cheng; YU Mu-Qing; TIAN Wei; YU Jian; FU You-Bao; WANG Xiao-Dong

    2004-01-01

    Plenty of inorganic nitrogen in wastewater can cause the eutrophication in water bodies, so it is an important task to remove nitrogen. Purification role was realized by absorption, filtration, depositon, evaporation, nitrification and denitrification of microbes. Although the studies of Phragmites austrilis bed in the constructed wetland are popular, the purification performances of constructed wetland filled by saline-alkali soil substrate are less reported. In the paper, the purification efficiency of nitrogen with Phragmites austrilis bed in the constructed wetland filled by saline-alkali soil substrate was discussed through a simulation study. Results to date indicated that the first order plug flow model was adequate to describe the nitrogen removal. The experiment showed that the diminishing concentration of TN, NO2-N, NO3-N, NH4-N were closely related to hydrological retention time (HRT), the correlation coefficient was Re = 0.98499, R2 = 0. 9911, R2 = 0. 89407 and R2 = 0. 95459, respectively. According to the data, the most suitable hydrological retention time (HRT) for this kind of constructed wetland should be determined to 4 days. In addition, the experiment showed the purification efficiency of nitrogen has very broad range and drastic vibration, TN( 17 % - 79%), NO2-N (33 % - 98 %), NO3-N( 13 % - 93 %), NH4-N (28 % - 64%). The study will promote wetland's design and operation procedures in large saline-alkaline soil areas.

  13. Experimental analysis of a nitrogen removal process simulation of wastewater land treatment under three different wheat planting densities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nitrogen contaminant transport,transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat.They were Group A,planting density of 0.0208 plants/cm2,Group B,0.1042 plants/cm2,and Group C,0.1415 plants/cm2 .The capacity and ratio of nitrogen removal were different on three kinds of conditions of wastewater land treatment.From analysis of wastewater treatment capacity,wastewater concentration and irrigation intensity for Group C were suitable and nitrogen quantity added was 2 times of that for Group B,2.6 times for Group A while nitrogen residue was only 7.06%.Hence,wastewater irrigation and treatment design with purpose of waste water treatment should select the design with maximum capacity,optimal removal ratio and least residue in soil,which was closely related to crop planting density,crop growth status and also background nitrogen quantity in soil.

  14. TREATMENT CHARACTERISTICS AND OPERATIONAL PARAMETERS OF A NEWLY DEVELOPED REACTOR WITH SLUDGE SEPARATION FILTER AND AIRLIFT PUMP FOR CARBON AND NITROGEN REMOVAL

    Directory of Open Access Journals (Sweden)

    Fumitake Nishimura

    2014-01-01

    Full Text Available Nutrient removal from sewage is one of the most urgently required issues from the viewpoint of prevention of eutrophication and preservation of water quality for water supply system. Among several nutrient removal methods, biological treatment, which is a modified activated sludge system, is widely applied. However, biological nitrogen removal process, which consists of nitrification and denitrification steps, needs opposite operations at several stages such as necessity of oxygen and requirement of electron donor of organic compounds. In this study, treatment characteristics of a reactor with both sludge separation filter and airlift pump are investigated. This reactor has sludge separation filter in the middle part and airlift pump that supplies oxygen and circulate liquid from aerobic zone to anoxic zone in order to cut down the required energy. From laboratory scale experiments, design and operational parameters are investigated and it is shown that NH4-N loading rate of 35 mgN/(L-media・hr at aerobic zone and DO loading rate of less than 0.15 kgDO/(kgMLSS・d to anoxic zone are required for stable treatment.

  15. Nitrogen Transformations and Removal Mechanisms in Algal and Duckweed Waste Stabilisation Ponds

    NARCIS (Netherlands)

    Zimmo, O.

    2003-01-01

    Effective treatment of nitrogen containing wastewater is required to prevent eutrophication and groundwater pollution. This thesis shows that effective treatment may be combined with substantial nitrogen recovery in duckweed-based waste stabilisation ponds. In these ponds nitrogen is absorbed by rap

  16. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    Directory of Open Access Journals (Sweden)

    Emily G I Payne

    Full Text Available The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(- (nitrate over the course of one inflow event. The immediate partitioning of 15NO3(- between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(- under typical stormwater concentrations (∼1-2 mg N/L, contributing an average 89-99% of 15NO3(- processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  17. Operational strategy for nitrogen removal from centrate in a two-stage partial nitrification--anammox process.

    Science.gov (United States)

    Kosari, S F; Rezania, B; Lo, K V; Mavinic, D S

    2014-01-01

    This paper presents the operational strategy for nitrogen removal in a two-stage, partial nitrification (PN) process coupled with anaerobic ammonium oxidation (Anammox) process. The process was used to remove ammonium from centrate obtained from a full-scale, wastewater treatment plant in British Columbia, Canada. The PN, which was carried out in a sequencing batch reactor (SBR), successfully converted approximately 49.5 +/- 1.0% of ammonium to nitrite. The operation of SBR under higher dissolved oxygen in combination with slow feeding resulted in significant reduced HRT without nitrate accumulation. Partially nitrified centrate was further treated in Anammox reactors, where the mixture of ammonium and nitrite was converted mainly to nitrogen gas. Anammox treatment was carried out in two different types of Anammox reactors: a moving bed hybrid reactor and an up-flow fixed-bed biofilm reactor. The hybrid Anammox reactor removed an average of 55.8% of NH4-N, versus the 48.3% NH4-N removed in the up-flow fixed-bed reactor. Nitrite removal in the hybrid and up-flow fixed-bed Anammox reactors averaged 80.8% and 62.5%, respectively. This study also illustrated that in both Anammox reactors, better ammonium removal was achieved when the nitrite to ammonium ratio is between 1.35 and 1.45. As such, alkalinity was found to neither control nor limit the Anammox reaction. PMID:24701906

  18. Effects of Solid Retention Time (SRT) on Sludge Characteristics in Enhanced Biological Phosphorus Removal (EBPR) Reactor

    OpenAIRE

    Li, N.; X Wang; N Ren; Zhang, K.; Kang, H; You, S.

    2008-01-01

    This study investigated the effects of solid retention time (SRT) on sludge characteristics and operational performance in enhanced biological phosphorus removal (EBPR) reactor. The results showed that the reactor operated at SRT of τ = 8.3 d could achieve phosphate removal efficiency η > 90 % and SVI < 100 mL g–1. In comparison, increasing SRT to τ = 16.6 d led to a decrease of phosphate removal (η < 85 %) and an increase of SVI value (160 mL g–1), implying a performance degradation and wors...

  19. Improving BOD removal at SNJ wastewater treatment plant by biological treatment

    OpenAIRE

    Hantanirina, Jeannine Marie Olga

    2010-01-01

    SNJ uses chemical precipitation method to treat domestic wastewater. With regard to organic removal requirement; chemical treatment alone does not seem to be sufficient at SNJ/IVAR wastewater plant. This thesis is to assess the performance of the aerobic biological treatment on the wastewater of the plant in order to upgrade the existing plant to include biological treatment. The work was to conduct a laboratory scale SBR test for determination of the wastewater characteristics and the effect...

  20. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna; Pulgarin, César

    2007-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  1. Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process

    International Nuclear Information System (INIS)

    Hybrid integrated fixed film activated sludge is a promising process for the enhancement of nitrification, denitrification and phosphorus removal in conventional activated sludge systems that can be used for upgrading biological nutrient removal, particularly when they have space limitations or need modifications that will require large monetary expenses. In this research, successful implementation of hybrid integrated fixed film activated sludge process at temperate zone wastewater treatment facilities has been studied by the placement of fixed film media into aerobic, anaerobic and anoxic zones. The primary objective of this study was to investigate the incorporation of enhanced biological phosphorus removal into hybrid integrated fixed film activated sludge systems and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. A pilot-scale anaerobic-anoxic-oxic configuration system was used. The system was operated at different mean cell residence times and influent chemical oxygen demand/total phosphorus ratios and with split influent flows. The experimental results confirmed that enhanced biological phosphorus removal could be incorporated successfully into hybrid integrated fixed film activated sludge system, but the redistribution of biomass resulting from the integration of fixed film media and the competition of organic substrate between enhanced biological phosphorus removal and denitrification would affect performances. Also, kinetic analysis of the reactor with regarding to phosphorus removal has been studied with different kinetic models and consequently the modified Stover-Kincannon kinetic model has been chosen for modeling studies and experimental data analysis of the hybrid integrated fixed film activated sludge reactor

  2. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic...

  3. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  4. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  5. Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira [Fundacao Universidade Federal do Rio Grande, Rio Grande (Brazil)

    2008-07-01

    The aim of this work was to study the removal of CO{sub 2} and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed {mu}{sub max} and X{sub max} (0.11 d{sup -1}, 1.11 g L{sup -1} d{sup -1}) when treated with CO{sub 2} and NaNO{sub 3}. The maximum CO{sub 2} removal was 22.97% for S. obliquus treated with KNO{sub 3} and atmospheric CO{sub 2}. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO{sub 2}. Coupling the cultivation of these microalgae with the removal of CO{sub 2} and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions. 19 refs., 3 figs., 2 tabs.

  6. Oestrogen removal from biological pre-treated wastewater within decentralised sanitation and re-use concepts

    NARCIS (Netherlands)

    Mes, de T.Z.D.; Urmenyi, A.M.; Poot, A.A.; Wessling, M.; Mulder, M.H.V.; Zeeman, G.

    2006-01-01

    Two parallel researches were performed; one focused on the fate of oestrogens in the biological treatment systems within decentralised sanitation and re-use concepts (DESAR), the second related to the development of a suitable specific removal method. A new affinity membrane was developed using anti

  7. Biological Ammonia Removal: From Theory to Case Studies in 20 Minutes

    Science.gov (United States)

    This presentation documents the results of two pilot-scale treatment studies, in Ohio and Iowa, that investigated the biological removal of ammonia from ground water. Influent ammonia concentrations in the Ohio and Iowa studies averaged 1.3 and 3.3 mg/L - N, respectively. Both ...

  8. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    Advances in on-line monitoring of nutrient salt concentrations and computer technology has created a large potential for the implementation of advanced and complex control strategies in biological nutrient removal systems. The majority of wastewater treatment plants today are operated with very...

  9. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal

    NARCIS (Netherlands)

    Kortstee, GJJ; Appeldoorn, KJ; Bonting, CFC; van Niel, EWJ; van Veen, HW

    2000-01-01

    Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal (EBPR

  10. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content

    NARCIS (Netherlands)

    Liu, WT; Linning, KD; Nakamura, K; Mino, T; Matsuo, T; Forney, LJ

    2000-01-01

    Biomarkers (respiratory quinones and cellular fatty acids) and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes were used to characterize the microbial community structure of lab-scale enhanced biological phosphate-removal (EBPR) systems in response to altering sludge p

  11. Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    胡香; 谢丽; 张善发; 杨殿海

    2014-01-01

    A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and 4NH+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1︰1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A2O-MBR process.

  12. Investigation of possible methods for removal of nitrogen from coal-derived and coal-related materials. [Melt-treated coal; benzylamine, 1,2,3,4-tetrahydroisoquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Frey, D.D.; Vermeulen, T.

    1980-09-01

    A preliminary study was conducted to determine the feasibility of removing nitrogen from hydrogenated coal products by oxidation. Solvent-refined coal, melt-treated coal, and nitrogen containing model-compounds were used as substrates. In addition, various zinc containing catalytic systems were screened for their hydrogenation and hydrocracking activity towards quinoline. Results indicate that nitrogen can be removed from some of the model-compounds used. Both iron and cobalt salts effectively catalyzed the oxidation reaction. Very little nitrogen could be removed from the compounds that are the most representative of hydrogenated coal. In addition, very little nitrogen was removed from the hydrogenated coals themselves. None of the zinc salts tested in the hydrogenation portion of the study were effective in catalyzing the rate of hydrogenation of quinoline.

  13. Enhanced Biological Phosphorus Removal with Pseudomonas putida GM6 from Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The enhanced biological phosphorus removal (EBPR) method is widely adopted for phosphorus removal from wastewater, yet little is known about its microbiological and molecular mechanisms. Therefore, it is difficult to predict and control the deterioration of the EBPR process in a large-scale municipal sewage treatment plant. This study used a novel strain isolated in the laboratory, Pseudomonas putida GM6, which had a high phosphate accumulating ability and could recover rapidly from the deteriorated system and enhance the capability of phosphorus removal in activated sludge. Strain GM6 marked with gfp gene, which was called GMTR, was delivered into a bench-scale sequencing batch reactor (SBR)of low efficiency, to investigate the colonization of GMTR and removal of phosphorus. After 21 days, the proportion of GMTR in the total bacteria of the sludge reached 9.2%, whereas the phosphorus removal rate was 96%, with an effluent concentration of about 0.2 mg L-1. In the reactor with the addition of GMTR, phosphorus was removed quickly, in 1 h under anaerobic conditions, and in 2 h under aerobic conditions. These evidences were characteristic of EBPR processes.Field testing was conducted at a hospital sewage treatment facility with low phosphorus removal capability. Twentyone days after Pseudononas putida GM6 was added, effluent phosphorus concentration remained around 0.3 mg L-1,corresponding to a removal rate of 96.8%. It was therefore demonstrated that Pseudomonas putida GM6 could be used for a quick startup and enhancement of wastewater biological phosphorus removal, which provided a scientific basis for potential large-scale engineering application.

  14. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor

    DEFF Research Database (Denmark)

    Nielsen, Alex Toftgaard; Liu, Wen-Tso; Filipe, Carlos;

    1999-01-01

    The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate...... in the effluent and showed very limited biological phosphorus removal activity. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA was used to investigate the bacterial diversity. Up to 11 DGGE bands representing at least 11 different sequence types were observed; DNA from the 6...... obtained by the PCR-based DGGE method. Further, based on electron microscopy and standard staining microscopic analysis, this novel group was able to accumulate granule inclusions, possibly consisting of polyhydroxyalkanoate, inside the cells....

  15. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Chang; Dong Li; Yuhai Liang; Zhuo Yang; Shaoming Cui; Tao Liu; Huiping Zeng

    2013-01-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated.The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400,300,and 200 mg N/L) but constant influent ammonia load.The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23℃).The average removal rate and removal loading of NH4 +-N and TN was 83.90%,1.26 kg N/(m3.day),and 70.14%,1.09 kg N/(m3.day),respectively.Among the influencing factors like pH,dissolved oxygen and alkalinity,it was indicated that the pH was the key parameter of the performance of the CANON system.Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way.Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria,which had low diversity in different stages,while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable.These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation,which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  16. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  17. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  18. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  19. Towards a plant-wide Benchmark Simulation Model with simultaneous nitrogen and phosphorus removal wastewater treatment processes.

    OpenAIRE

    Flores-Alsina, Xavier; Ikumi, David; Batstone, Damien; Gernaey, Krist; Brouckaert, Chris; Ekama, George A.; Jeppsson, Ulf

    2012-01-01

    It is more than 10 years since the publication of the Benchmark Simulation Model No 1 (BSM1) manual (Copp, 2002). The main objective of BSM1 was creating a platform for benchmarking carbon and nitrogen removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM2, which allowed the evaluation of monitoring and plant-wide control strategies, respectively. The fact that the BSM platforms have resulted in 300+ publications demonstrates the interest for the to...

  20. Nitrogen and Phosphorus Removal in the Recirculating Aquaculture System with Water Treatment Tank containing Baked Clay Beads and Chinese Cabbage

    OpenAIRE

    Aeknarin Thanakitpairin; Wiboonluk Pungrasmi; Sorawit Powtongsook

    2014-01-01

    This research aims to describe the nitrogen and phosphorus removal in Recirculating Aquaculture System (RAS) by crop plants biomass production. The 3 experiment systems consisted of 1 treatment (fish tank + baked clay beads + Chinese cabbage) and 2 controls as control-1 (fish tank only) and control-2 (fish tank + baked clay beads), were performed. With all experimental RAS, Nile tilapia (Oreochromis niloticus) was cultured at 2 kg/m3 density. The baked clay beads (8-16 mm in diameter) were fi...

  1. Removing Iron and Manganese Simultaneously from Ground Water Using One-stage Biological Filter

    Institute of Scientific and Technical Information of China (English)

    XUE Gang; GAO Pin; GONG Qing-jie

    2009-01-01

    A novel process for removing iron and manganese simultaneously in ground water, which consisted of simple aeration and one-stage filtration, was developed in this research. It was found that the biological process had much higher manganese removal efficiency than chemical contact oxidation process. At the same time, the optimal operation parameters of aeration and biological filtration such as DO concentration and pH after aeration, filtration rate before and after startup, filtration operation cycle and backwashing rate, etc., were also obtained by experiments. By analyzing water quafity in different positions of filter bed, it was found that the oxidation of Fe2+ in biological filter bed adapted to first-order reaction, whereas the oxidation of Mn2+ conformed to zero-order reaction, which could be explained by Michaelis-Menten enzyme reaction equation when substrate concentration was far more than bacteria amount.

  2. Removal of nitrogen and phosphorus from the secondary effluent in tertiary denitrifying biofilters combined with micro-coagulation.

    Science.gov (United States)

    Wei, Nan; Shi, Yunhong; Wu, Guangxue; Hu, Hongying; Guo, Yumei; Wu, Yihui; Wen, Hui

    2016-01-01

    Effective control of nitrogen and phosphorus in secondary effluent can reduce or avoid the eutrophication of receiving water bodies. Two denitrifying biofilters (DNBFs) packed with different sizes of quartz sands combined with micro-coagulation were operated for simultaneous removal of nitrogen and phosphorus from the secondary effluent. The quartz sand size in one DNBF was 2-4 mm (DNBFS), and in the other was 4-6 mm (DNBFL). In both DNBFs, methanol was used as the electron donor and different organic carbon to nitrogen (C/N) ratios were applied. Under C/N ratios of 1.5, 1.25, and 0.75 g/g, the nitrate nitrogen (NO3(-)-N) removal percentages were 73%, 77%, and 50% in DNBFS, and 43%, 25%, and 21% in DNBFL; the effluent total phosphorus concentrations were 0.15, 0.14, and 0.18 mg/L in DNBFS, and 0.29, 0.35, and 0.24 mg/L in DNBFL. The performance of both biofilters was quite stable within a backwashing cycle. The NO3(-)-N reduction rates were 1.31, 1.10, and 0.48 mg/(L·min) in DNBFS, and 0.97, 0.27, and 0.10 mg/(L·min) in DNBFL. For biomass detached from both biofilters, their denitrifying activities were similar. Biofilm biomass in DNBFS was higher than that in DNBFL, inducing a high denitrification efficiency in DNBFS.

  3. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism.

    Science.gov (United States)

    Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong

    2015-12-01

    Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance.

  4. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms.

    Science.gov (United States)

    Wang, Lan; Zheng, Ping; Xing, Yajuan; Li, Wei; Yang, Jian; Abbas, Ghulam; Liu, Shuai; He, Zhanfei; Zhang, Jiqiang; Zhang, Hongtao; Lu, Huifeng

    2014-04-01

    The effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor (GSB-ANR) and microbiological mechanisms were investigated. The results indicated that performance of GSB-ANR process decreased gradually with the increase of the granular sludge size. Indeed small granules ranging between 0.5 and 0.9mm had a higher nitrogen removal capacity than large ones. The reasons of this effect were that (i) the aerobic ammonium oxidizing capacity of microorganisms was the bottle neck of nitrogen removal in GSB-ANR process, and the increase of aerobic ammonium oxidizing activity enhances nitrite production in nitrification and promotes subsequent nitrite consumption during anaerobic ammonia oxidation; (ii) the aerobic/anaerobic zone separation in granular sludge was the key factor affecting the aerobic ammonium oxidizing capacity of microorganisms. The small granules had a larger aerobic functional zone (75.1%) which was profitable for up-regulating the expression level of functional gene in aerobic ammonium oxidizing microorganisms. PMID:24561629

  5. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  6. Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions.

    Science.gov (United States)

    Ryu, Byung-Gon; Kim, Woong; Heo, Sung-Woon; Kim, Donghyun; Choi, Gang-Guk; Yang, Ji-Won

    2015-09-01

    This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge. PMID:25881553

  7. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-01-01

    Full Text Available Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobacterium sp. TPSB23 were used for the removal of phosphate. Among the individual strains, Enterobacter sp. TPSB20 was removed maximum phosphate (61.75% from synthetic wastewater in presence of glucose as a carbon source. The consortium was effectively removed phosphate (74.15-82.50% in the synthetic wastewater when compared to individual strains. The pH changes in culture medium with time and extracellular phosphatase activity (acid and alkaline were also investigated. The efficient removal of phosphate by the consortium may be due to the synergistic activity among the individual strains and phosphatase enzyme activity. The use of bacterial consortium in the remediation of phosphate contaminated aquatic environments has been discussed.

  8. Enhanced phosphorus and nitrogen removal from municipal waste water with increased phosphorus release

    Energy Technology Data Exchange (ETDEWEB)

    Rensink, J.H.; Donker, H.J.G.W.; Anink, D.M.

    1989-02-01

    Experiments were carried out in biological P- and N-removal from settled domestic waste water in a pilot activated sludge plant of 1000 l. The pilot plant consisted of 10 interconnected compartments. The compartments 1, 2, 7, 8 and 9 were stirred, while the compartments 3, 4, 5, 6 and 10 were aerated. The waste water was fed into compartment 1 and 7 with a ratio of 3:1. A part of the return sludge was quickly stripped in a tank by dosing 25 mg Na-acetate per g sludge. The stripped sludge was sent back to compartment 3. At dry wheather flow the supernatant of the concentrating phosphate of the stripper tank amounted to 100 mg P/l. The P- and N-content of the settled waste water was respectively reduced to 99,9 and 90%. Further research with this pilot plant is now focussed on the elimination of the phosphate of the supernatant of the strippertank by cristallization of calcium-phosphate in a fluidized bed reactor, developed by DHV Consulting Engineers in the Netherlands. The obtained calcium phosphate pellets can be used in the phosphate industry.

  9. A/O/A 及UCT生物脱氮除磷方法%A/O/A and UCT biological denitrification and phosphorus removal method

    Institute of Scientific and Technical Information of China (English)

    刘微

    2015-01-01

    now, the lack of water resources is more and more, eutrophication of water bodies to make mankind is faced with more severe water problems, and nitrogen and phosphorus is the main cause of eutrophication of water bodies. Conventional wastewater treatment technology is mainly to remove suspended solids and organic matter, the treatment effect of nitrogen and phosphorus. Sewage denitrification and phosphorus removal is commonly used biological method, low cost, wide range of application, simple operation, treatment after water easy to mark. This article mainly expounds biological denitrification and phosphorus removal technology.%现在,水资源越来越缺乏,水体富营养化使人类面临着更严峻的水资源问题,而氮、磷是引起水体富营养化的主要原因。常规的污水处理技术主要是去除悬浮固体和有机物,对氮磷的处理效果一般。污水脱氮除磷常用的是生物法,成本低,适用范围广,操作简单,处理后的水体易达标。本文主要阐述生物脱氮除磷技术。

  10. A/O/A and UCT biological denitrification and phosphorus removal method%A/O/A 及UCT生物脱氮除磷方法

    Institute of Scientific and Technical Information of China (English)

    刘微

    2015-01-01

    现在,水资源越来越缺乏,水体富营养化使人类面临着更严峻的水资源问题,而氮、磷是引起水体富营养化的主要原因。常规的污水处理技术主要是去除悬浮固体和有机物,对氮磷的处理效果一般。污水脱氮除磷常用的是生物法,成本低,适用范围广,操作简单,处理后的水体易达标。本文主要阐述生物脱氮除磷技术。%now, the lack of water resources is more and more, eutrophication of water bodies to make mankind is faced with more severe water problems, and nitrogen and phosphorus is the main cause of eutrophication of water bodies. Conventional wastewater treatment technology is mainly to remove suspended solids and organic matter, the treatment effect of nitrogen and phosphorus. Sewage denitrification and phosphorus removal is commonly used biological method, low cost, wide range of application, simple operation, treatment after water easy to mark. This article mainly expounds biological denitrification and phosphorus removal technology.

  11. Biological nitrogen fixation in common bean and faba bean using N-15 methodology and two reference crops

    International Nuclear Information System (INIS)

    A field was conducted on a Typic ustropepts soil located at 'La Tola', the experimental campus of the Agricultural Sciences Faculty at Tumbaco, Ecuador. The objectives were to quantify faba bean (Vicia faba) and common bean (Phaseolus vulgaris) biological nitrogen fixation, using quinoa (chenopodium quinoa) and maize (Zea mays) as reference crops. The average values were 80 and 70 per cent for faba bean and 42 and 14 per cent for common bean, respectively. It was assumed that nitrogen use eficiency was the same for fixing crops but observed that a crop with high nitrogen use efficiency overestimates legume biological nitrogen fixation. Results suggests that greater caution is needed when selecting reference crops for legumes with nitrogen fixation

  12. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  13. Nitrogen

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  14. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  15. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions

    International Nuclear Information System (INIS)

    Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O3 and O3/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O3 combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O3/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O3/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O3/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated

  16. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    Science.gov (United States)

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation. PMID:25116500

  17. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1.

    Science.gov (United States)

    Sun, Zhiyi; Lv, Yongkang; Liu, Yuxiang; Ren, Ruipeng

    2016-11-01

    A novel heterotrophic nitrifying and metal resistant bacterium was isolated and identified as Cupriavidus sp. S1. The utilization of ammonium, nitrate and nitrite as well as the production of N2 proved the heterotrophic nitrification and aerobic denitrification ability of S1. The ammonium, nitrate and nitrite removal efficiencies were 99.68%, 98.03% and 99.81%, with removal rates of 10.43, 8.64 and 8.36mg/L/h, respectively. A multiple regression equation well described the relationship between carbon source utilization, cell growth and nitrification. Keeping the shaking speed at 120rpm was beneficial for denitrification. Moreover, different forms of nitrogen source could be utilize in simultaneous nitrification and denitrification. Additionally, the efficient removal of ammonium occurred at 20.0mg/LZn(2+), or 10.0mg/LNi(2+) or 8.0mg/LCu(2+) or 5.0mg/LCr(6+), 33.35mmol/L sodium pyruvate, C/N 12-28. These findings demonstrate that S1 was effective for nitrogen removal in industrial wastewater containing heavy metal. PMID:27566522

  18. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  19. Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater.

    Science.gov (United States)

    Yang, Lei; Ren, Yong-Xiang; Liang, Xian; Zhao, Si-Qi; Wang, Jun-Ping; Xia, Zhi-Hong

    2015-10-01

    Acinetobacter junii YB was found to exhibit efficient heterotrophic nitrification and aerobic denitrification ability, with the maximum ammonium, nitrite and nitrate removal rate of 8.82, 8.45 and 7.98 mg/L/h, respectively. Meanwhile, ammonium was found to be removed preferentially in the process of simultaneous nitrification and denitrification in mixed N-sources. The successful PCR amplification of hao, napA and nirS genes further provided additional evidence of heterotrophic nitrification and aerobic denitrification by strain YB. In addition, orthogonal test showed that dissolved oxygen was the most important determinant of nitrite removal, and the optimal conditions were C/N 15, pH 7.0, 37 °C and 200 rpm. Furthermore, stable nitrogen and organics removal were achieved by one-time dosing of enriched bacteria in a sequencing batch reactor. The inoculation of strain YB significantly improved the denitrification efficiency with minimal accumulation of nitrified products, which demonstrated high potential of the isolate for future practical applications. PMID:26141282

  20. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal

    DEFF Research Database (Denmark)

    Meinhold, Jens; Pedersen, Heinz; Arnold, Eva;

    1998-01-01

    The continuous introduction of a biological phosphorus removal (BPR) promoting organic substrate to the denitrifying reactor of a BPR process is examined through a series of batch experiments using acetate as model organic substrate. Several observations are made regarding the influence...... while a net P-release occurs. Whether the introduction of BPR promoting organic substrates to the denitrifying reactor is detrimental to overall P-removal appears to be dependent on the interaction between aerobic P-uptake, which is a function of PHB level, and the aerobic residence time. (C) 1998...