WorldWideScience

Sample records for biological nitrogen fixation

  1. 15N in biological nitrogen fixation studies

    International Nuclear Information System (INIS)

    A bibliography with 298 references on the use of the stable nitrogen isotope 15N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  2. Biological Nitrogen Fixation: Perspective and Limitation

    OpenAIRE

    N.D Purwantari

    2008-01-01

    The demand of chemical fertilizer, N in particular will be increasing until 2020. In Indonesia, the demand of fertilizer from 1999 – 2002 increased 37.5 and 12.4% for urea and ammonium sulphate, respectively. At the same time, the price of this fertilizer is also increasing and it can not be afforded by the farmer. Other problem in using chemical fertilizer is damaging to the soil and environment. One of the problem solvings for this condition is to maximize biological nitrogen fixation (BNF)...

  3. Biological nitrogen fixation, forms and regulating factors

    NARCIS (Netherlands)

    Giller, K.E.; Mapfumo, P.

    2002-01-01

    Nitrogen fixation is the basis of the global N cycle. Therefore it is not surprising that the ability to fix atmospheric N2 evolved in the "primeval soup" and is deeply rooted in the evolutionary tree of life. Despite this, nitrogenase remains an enzyme exclusive to prokaryotes; no eukaryote has bee

  4. Nitrogen supply of crops by biological nitrogen fixation. 2

    International Nuclear Information System (INIS)

    In the present work the contributions from combined N-sources and symbiotic nitrogen fixation to the nitrogen supply of field-grown peas and field beans were evaluated by means of 15N fertilizer dilution. The effect of N-fertilizer, supplied at sowing and at different stages of plant development, on nitrogen fixation, yield and protein production in peas, was studied in pot experiments. (author)

  5. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  6. Can we trust current estimates for biological nitrogen fixation?

    Science.gov (United States)

    Bellenger, Jean-Philippe; Kraepiel, Anne

    2016-04-01

    Biological nitrogen fixation (BNF) consists on the reduction of atmospheric dinitrogen (N2) into bioavailable ammonium. This reaction accounts for up to 97% of nitrogen (N) input in unmanaged terrestrial ecosystems. Closing the N budget is a long standing challenge in many ecosystems. Recent studies have highlighted that current methods used to assess BNF are affected by critical biases. These findings challenge our confidence in many N budgets and call for a profound reconsideration of our methodological approaches. Beside these methodological issues, our ability to properly assess BNF might be further altered as a result of a misconception regarding the importance of BNF enzymatic diversity in nature. BNF is catalyzed by the enzyme nitrogenase (Nase) for which three isoforms have been identified so far; the molybdenum (Mo), vanadium (V) and iron-only (Fe) isoforms. Currently BNF is mostly considered to primarily depend on the Mo isoform. The contribution of the alternative Nases (V and Fe isoforms) to BNF in natural habitats has been mostly overlooked. However, recent findings have challenged this traditional view of the Nases hierarchy (Mo isoform predominance) with deep implications for BNF assessment in the field. Here, I will present an overview of recent findings, provided by various research groups, challenging current methods used to assess BNF. I will also present a summary of recent studies highlighting the importance of alternative Nases in nature. I will finally illustrate how altering our view on the Mo-Nase predominance can deeply affect our confidence in current BNF estimates. I will conclude by presenting new methodological approaches that will contribute to significantly improve our ability to understand and estimate BNF in the field by improving our capacity to access BNF spatio-temporal variability and enzymatic diversity.

  7. Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization

    OpenAIRE

    Cusack, Daniela F.; Silver, Whendee; McDowell, William H.

    2009-01-01

    Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata...

  8. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils.

    NARCIS (Netherlands)

    Pijnenborg, J.W.M.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium meliloti. This thesis deals with the factors affecting biological nitrogen fixat

  9. Genetic Improvement of Biological Nitrogen Fixation in Common Bean Genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Golparvar

    2012-06-01

    Full Text Available Fifty common bean genotypes were cultivated in two separately field trials at the research station of Islamic Azad University, Khorasgan Branch during 2008-2009. The experimental design was randomized complete block. Bean seeds were inoculated by Rhizobium legominosarum biovar Phaseoli isolate L-109 in one of the experiments before sowing. The dose of Rhizobium for seed inoculation was 7 miligrams of bacteria for 1 kilogram of seed. The second experiment was control. The second experiment was analyzed in the same way as the first except for biological nitrogen fixation. The results showed definite positive and significant correlation in percentage of nitrogen fixation with some other been characters. Step-wise regression designated that total nitrogen percentage in shoot, number of nodules per plant and biomass yield accounted for 93.8% of variation expect for nitrogen fixation percent. Path analysis indicated that total nitrogen percentage in shoot, number of nodules per plant and biomass yield have direct and positive effect on nitrogen fixation index. Hence, total nitrogen percentage in shoot, number of nodules per plant and biomass yield are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes.

  10. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially growth South African sugarcane cultivar

    NARCIS (Netherlands)

    Hoefsloot, G.; Termorshuizen, A.J.; Watt, D.A.; Cramer, M.D.

    2005-01-01

    It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural ab

  11. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    Science.gov (United States)

    Belnap, J.

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (26??C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r2=0.93 for Collema crusts; r2=0.86 for dark crusts and r2=0.83 for light crusts) for temperatures between 1??C and 26??C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha-1 year-1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha-1 year-1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha-1 year-1. The rates in light crusts are expected to be highly variable, as

  12. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.

  13. Chapter 3. Use of tracer technology in biological nitrogen fixation research

    International Nuclear Information System (INIS)

    This chapter discusses the use of tracer technology in the measurement and use of biological nitrogen fixation by leguminous crops. Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N2, thus reducing the use of expensive fertilizer-N and enhancing soil fertility. Nitrogen-fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. Use of nitrogen-15 lends understanding of the dynamics and interactions between various pools in agricultural systems, including nitrogen fixation by legumes and utilization of soil and fertilizer nitrogen by crops in general, both in sole and mixed cropping systems (3.1). 15N isotope dilution methodology has been found to be particularly useful to quantify and to enhance biological nitrogen fixation in leguminous crops (3.2). The final section of this chapter explores the data required to quantify a system's nitrogen balance, using crop legumes as an example, with particular emphasis on the methodologies that might be used to quantify the below ground contributions of nitrogen associated with roots and root nodules (3.3). (author)

  14. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  15. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    OpenAIRE

    José I. Baldani; Vera L.D. Baldani

    2005-01-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspiril...

  16. Present status and development on biological nitrogen fixation research in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This presentation introduces the advances in biological nitrogen fixation research abroad, in particular, describes the great progress and achievements on its research in China as follows: collection of rhizobial resources and establishment of the largest database of Rhizobium in China, correction and development of Rhizobium taxonomy in international; discovery of a couple of nif genes, identification and unification of linkage among the nif gene operons of Klebsiella pneumoniae, finding of regulative mechanism of positive regulation nif gene and its sensitivity to oxygen, temperature; finding of the activity of nodulation gene nodD3 product in Sinorhizobium meliloti which is not controlled by flavonoid produced from its host alfalfa; finding of the association between expression of genes coding the products for carbon utilization and nitrogen metabolism and their regulations; chemical synthesis of nodulation factor of Sinorhizobium meliloti; constructions of engineered nitrogen fixers and utilization in practice based on the research of gene expression and regulation; chemical simulation of the structure and function of nitrogenase and bringing forward the model of nitrogenase active center for the first time in international and synthesis of model compounds which were paid attention by colleagues abroad. Finally, the development of nitrogen fixation research in China in future has been put forward, suggesting that the nif gene regulation and its role in providing crops with nitrogen element, signal transduction and molecular interactions between Rhizobium and legume, coupling between carbon and nitrogen metabolisms, nitrogen fixation and photosynthesis, and functional genomics of nitrogen-fixing nodule symbiosis, etc., would be actively worked on.

  17. Biological nitrogen fixation by faba bean, pea and vetch, using isotopic techniques (N-15) and two reference crops

    International Nuclear Information System (INIS)

    A field experiment was carried out on a Typic Dystrandept soil at Santa Catalina Experimental Station, Cutuglagua, Pichincha, Ecuador. The objectives were to quantify faba bean (Vicia faba) pea (Pisum sativum) and vetch (Vicia sativa) biological nitrogen fixation using N-15 isotopic technique and to evaluate suitability of reference crops for such quantification. Higher values of biological nitrogen fixation were obtained using maize (Zea mays L.) than using wheat (Triticum vurgare) as reference crops. The average values were 85 and 81 per cent for vetch; 73 and 69 per cent for faba bean; and 34 and 18 per cent for pea, respectively. It was assumed that nitrogen use efficiency should be the same for fixing and no fixing crop, but it was observed that a reference crop with low nitrogen use efficiency underestimates legume biological nitrogen fixation. Results suggest that greater caution is needed when selecting reference crops for legumes with low nitrogen fixation

  18. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic...

  19. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils.

    OpenAIRE

    Pijnenborg, J.W.M.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium meliloti. This thesis deals with the factors affecting biological nitrogen fixation by lucerne in acid soils.In a field experiment, lucerne seeds were either inoculated withR.meliloti only,or inoculated and pelleted with lime, before sowing in a sandy soil of pH 5.2. Lime-pelleting significantly im...

  20. Biological nitrogen fixation in common bean and faba bean using N-15 methodology and two reference crops

    International Nuclear Information System (INIS)

    A field was conducted on a Typic ustropepts soil located at 'La Tola', the experimental campus of the Agricultural Sciences Faculty at Tumbaco, Ecuador. The objectives were to quantify faba bean (Vicia faba) and common bean (Phaseolus vulgaris) biological nitrogen fixation, using quinoa (chenopodium quinoa) and maize (Zea mays) as reference crops. The average values were 80 and 70 per cent for faba bean and 42 and 14 per cent for common bean, respectively. It was assumed that nitrogen use eficiency was the same for fixing crops but observed that a crop with high nitrogen use efficiency overestimates legume biological nitrogen fixation. Results suggests that greater caution is needed when selecting reference crops for legumes with nitrogen fixation

  1. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  2. Estimation of Biological Nitrogen Fixation Capacity by Sugarcane Using 15 N%15N测定甘蔗生物固氦能力研究

    Institute of Scientific and Technical Information of China (English)

    杨荣仲; 谭裕模; 桂意云; 谭芳; 李杨瑞

    2008-01-01

    [Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [Method] The 15N isotopic fertilizer was solely applied on plants of three sugarcane cuhivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using 15N isotope. [Result] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [Conclusion] The sugarcane cuhivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.

  3. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  4. Technical expert meeting on increasing the use of biological nitrogen fixation (BNF) in agriculture

    International Nuclear Information System (INIS)

    A Technical Expert Meeting on 'Increasing the Use of Biological Nitrogen Fixation (BNF) in Agriculture' was held at FAO, Rome, from 13-15 March 2001. The aims of the meeting were to take stock of current work and identify, in collaboration with experts and major institutions involved in the BNF research and development, those BNF technologies that appear to offer the greatest environmental and economic benefits for specific agro-ecosystems where they may have the largest potential applicability in the short to medium term. Secondly, to discuss and develop an outline strategy and process to further develop proposals and mechanisms for accelerating uptake of known BNF applications and for enhancing the effectiveness of BNF research

  5. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  6. Biological nitrogen fixation in sugar cane: A key to energetically viable biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Boddey, R.M. [Centro Nacional de Pesquisa de Agrobiologia, Rio de Janeiro (Brazil)

    1995-05-01

    The advantages of producing biofuels to replace fossil energy sources are derived from the fact that the energy accumulated in the biomass in captured directly from photosynthesis and is thus renewable, and that the cycle of carbon dioxide fixation by the crop, followed by burning of the fuel makes no overall contribution to atmospheric CO{sub 2} or, consequently, to global warming. However, these advantages are negated if large quantities of fossil fuels need to be used to grow or process the biofuel crop. In this regard, the Brazilian bioethanol program, based on the fermentation/distillation of sugar cane juice, is particularly favorable, not only because the crop is principally hand harvested, but also because of the low nitrogen fertilizer use on sugar cane in Brazil. Recent {sup 15}N and N balance studies have shown that in some Brazilian cane varieties, high yields are possible without N fertilization because the plants are able to obtain large contributions of nitrogen from plant-associated biological N{sub 2} fixation (BNF). The N{sub 2}-fixing acid-tolerant bacterium Acetobacter diazotrophicus was first found to occur within roots, stems, and leaves of sugar cane. Subsequently, two species of Herbaspirillum also have been found to occur within the interior of all sugar cane tissues. The discovery of these, and other N{sub 2}-fixing bacteria that survive poorly in soil but thrive within plant tissue (endophytic bacteria), may account for the high BNF contributions observed in sugar cane. Further study of this system should allow the gradual elimination of N fertilizer use on sugar cane, at least in Brazil, and opens up the possibility of the extension of this efficient N{sub 2}-fixing system to cereal and other crops with consequent immense potential benefits to tropical agriculture. 44 refs., 9 figs., 4 tabs.

  7. Use of isotopes for increasing biological nitrogen fixation and yield of pastures

    International Nuclear Information System (INIS)

    The N-15 natural abundance and N-15 isotope dilution (ID) methods for measuring dinitrogen fixation and nitrogen transfer in alfalfa and alfalfa intercropped with meadow fescue were compared in three experiments. Although both methods gave essentially the same estimates the precision of the values obtained differed, and values obtained by the isotope dilution method were more precise. Similarly, the N-15 natural abundance method was not very suitable for detecting N transfer from legume to non-legume. Greater amounts of N transfer were detected by the ID method, and with a greater precision. Mixed cropping sometimes gave slight to high increases in % nitrogen fixation compared to alfalfa cropped alone. On the whole alfalfa was found to be a high nitrogen fixer, with fixation values from the second harvest onwards almost always greater than 80% and often close to 100%. 23 refs, 30 tabs

  8. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Directory of Open Access Journals (Sweden)

    Baldani José I.

    2005-01-01

    Full Text Available This review covers the history on Biological Nitrogen Fixation (BNF in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali, associative (Azospirillum lipoferum, A. brasilense, A. amazonense and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica. The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus and GENOPAR (Herbaspirillum seropedicae reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  9. Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the Subpolar Urals (European North-East Russia).

    Science.gov (United States)

    Patova, Elena; Sivkov, Michail; Patova, Anna

    2016-09-01

    The nitrogen fixation by biological soil crusts with a dominance of cyanobacteria was studied using the acetylene reduction assay in the territory of the Subpolar Urals (65°11' N, 60°18' E), Russia. The field measurements of nitrogen fixation activity were conducted in situ for two different types of soil crusts dominated by Stigonema (V1 type) and Nostoc with Scytonema (V2 type). The nitrogen fixation process had similar dynamics in both crusts but nitrogen fixation rates were different. The crusts of the V2 type showed a significantly higher acetylene reduction activity, with ethylene production rate of 1.76 ± 0.49 g C2H4 m(-2) h(-1) at 15°C, compared with V1-type soil crusts, with a rate of 0.53 ± 0.21 mg C2H4 m(-2) h(-1) at 15°C. The daily value of acetylene reduction activity in V2-type soil crusts was 32.7 ± 6.2 mg C2H4 m(-2) d(-1) and in V1-type crusts, 12.3 ± 1.8 mg C2H4 m(-2) d(-1) After recalculation for N, the daily values of nitrogen fixation were in the range 3.3-22.3 mg N m(-2) d(-1), which is a few times higher than the values of N input from the precipitation to the soil in the studied regions. The dependence of nitrogen-fixation activity on temperature and light intensity of biological soil crusts was investigated. On the basis of temperature models obtained from the dependence, the nitrogen balance was calculated for the growing season (approximately 120 days). The crusts dominated by Stigonema species were fixing 0.3 g N m(-2) (ethylene production rate, 1.10 g C2H4 m(-2)) and crusts dominated by Nostoc and Scytonema were fixing 1.3 g N m(-2) (4.10 g C2H4 m(-2)). PMID:27306556

  10. Persistence of biological nitrogen fixation in high latitude grass-clover grasslands under different management practices

    Science.gov (United States)

    Tzanakakis, Vasileios; Sturite, Ievina; Dörsch, Peter

    2016-04-01

    Biological nitrogen fixation (BNF) can substantially contribute to N supply in permanent grasslands, improving N yield and forage quality, while reducing inorganic N inputs. Among the factors critical to the performance of BNF in grass-legume mixtures are selected grass and legume species, proportion of legumes, the soil-climatic conditions, in particular winter conditions, and management practices (e.g. fertilization and compaction). In high latitude grasslands, low temperatures can reduce the performance of BNF by hampering the legumés growth and by suppressing N2 fixation. Estimation of BNF in field experiments is not straightforward. Different methods have been developed providing different results. In the present study, we evaluated the performance of BNF, in a newly established field experiment in North Norway over four years. The grassland consisted of white clover (Trifolium repens L.) and red clover (Trifolium pretense L.) sawn in three proportions (0, 15 and 30% in total) together with timothy (Pheum pretense L.) and meadow fescue (Festuca pratensis L.). Three levels of compaction were applied each year (no tractor, light tractor, heavy tractor) together with two different N rates (110 kg N/ha as cattle slurry or 170 kg N/ha as cattle slurry and inorganic N fertilizer). We applied two different methods, the 15N natural abundance and the difference method, to estimate BNF in the first harvest of each year. Overall, the difference method overestimated BNF relative to the 15N natural abundance method. BNF in the first harvest was compared to winter survival of red and white clover plants, which decreased with increasing age of the grassland. However, winter conditions did not seem to affect the grassland's ability to fix N in spring. The fraction of N derived from the atmosphere (NdfA) in white and red clover was close to 100% in each spring, indicating no suppression of BNF. BNF increased the total N yield of the grasslands by up to 75%, mainly due to high

  11. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006....

  12. Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean.

    Science.gov (United States)

    Hungria, Mariangela; Nakatani, André Shigueyoshi; Souza, Rosinei Aparecida; Sei, Fernando Bonafé; de Oliveira Chueire, Ligia Maria; Arias, Carlos Arrabal

    2015-02-01

    Studies on the effects of transgenes in soybean [Glycine max (L.) Merr.] and the associated use of specific herbicides on biological nitrogen fixation (BNF) are still few, although it is important to ensure minimal impacts on benefits provided by the root-nodule symbiosis. Cultivance CV127 transgenic soybean is a cultivar containing the ahas gene, which confers resistance to herbicides of the imidazolinone group. The aim of this study was to assess the effects of the ahas transgene and of imidazolinone herbicide on BNF parameters and soybean yield. A large-scale set of field experiments was conducted, for three cropping seasons, at nine sites in Brazil, with a total of 20 trials. The experiment was designed as a completely randomized block with four replicates and the following treatments: (T1) near isogenic transgenic soybean (Cultivance CV127) + herbicide of the imidazolinone group (imazapyr); (T2) near isogenic transgenic soybean + conventional herbicides; and (T3) parental conventional soybean (Conquista) + conventional herbicides; in addition, two commercial cultivars were included, Monsoy 8001 (M-SOY 8001) (T4), and Coodetec 217 (CD 217) (T5). At the R2 growth stage, plants were collected and BNF parameters evaluated. In general, there were no effects on BNF parameters due to the transgenic trait or associated with the specific herbicide. Similarly, at the final harvest, no grain-yield effects were detected related to the ahas gene or to the specific herbicide. However, clear effects on BNF and grain yield were attributed to location and cropping season.

  13. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  14. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from

  15. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    Science.gov (United States)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  16. Microgravity Effects on the Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2013-02-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of μg on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU’s). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiments were designed to determine if S. meliloti would infect M. truncatula and initiate biomolecular changes associated with nodule formation and if the μg environment altered the host plant and/or bacteria to induce nodule formation upon return to 1g. Initial analysis results demonstrate that the legumes and bacteria cultivated in μg have potential to develop a symbiotic interaction, but suggest that μg alters their ability to form nodules upon return to 1g. (Research supported by NASA ESMD/ Advance Capabilities Division grant NNX10AR09A)

  17. Maximising the use of biological nitrogen fixation in agriculture. Report of an FAO/IAEA technical expert meeting

    International Nuclear Information System (INIS)

    This publication contained invited papers presented at a joint FAO/IAEA Technical Expert Meeting on Increasing the Use of Biological Nitrogen Fixation in Agriculture held in Rome in 2001. The objectives of the Meeting were to take stock of current knowledge and identify opportunities where BNF technologies could offer the greatest environmental and economic benefits for specific agro-ecosystems in developing countries. There is a real opportunity for achieving major benefits from BNF research and development in developing countries through targeted interventions. It is hoped that the information and recommendations provided in this publication will assist and encourage others to explore the potential of BNF to improve the livelihoods of farmers in the developing world

  18. The use of the 15N isotope dilution technique to estimate the contribution of associated biological nitrogen fixation to the nitrogen nutrition of Paspalum notatum cv. batatais

    International Nuclear Information System (INIS)

    This paper reports the results of a field experiment to investigate the use of the 15N-dilution technique to measure the contribution of biological N2 fixation to the N nutrition of the batatais cultivar of Paspalum notatum. The pensacola cultivar of this grass supports little associated N2 fixation as evidenced by the low associated C2H2 reduction activity and was thus used as a nonfixing control plant. The grasses were grown in 60-cm diameter concrete cylinders sunk into the soil, and the effects of four different addition rates of labelled nitrogen (NH4)2SO4, were investigated. The data from seven harvests clearly demonstrated that there was a significant input of plant associated N2 fixation to the nutrition of the batatais cultivar amounting to approximately 20 kg N ha-1 year-1. Problems associated with the conduct of such isotope dilution experiments are discussed including the importance of using nonfixing control plants of similar growth habit, the advantages and disadvantages of growing the plants in cylinders as opposed to field plots, and the various methods of application of labelled N fertilizer

  19. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2015-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments, and many of them are capable of fixing atmospheric nitrogen. However, ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to

  20. Biological Nitrogen Fixation and Microbial Biomass N in the Rhizosphere of Chickpea as Estimated by 15N Isotope Dilution Technique

    International Nuclear Information System (INIS)

    Pot experiment was carried out with chickpea that cultivated in virgin sandy soil and inoculated with Rhizobium (Rh), mycorrhizea (VAM) and mixture of both. The objective of this work is the estimation of biological nitrogen fixation (BNF) and microbial biomass N (MBN) contribution as affected by inoculation and N and P fertilizers levels under chickpea plants. Nitrogen gained from air (Ndf A) was determined using 15N isotope dilution technique, while the MBN was detected through the fumigation-extraction method. Nitrogen and phosphorus fertilizers were applied at three levels, 0; 10 ppm N and 3.3 ppm P and 20 ppm Nand 6.6 ppm P in the form of (15NH4)2SO4 and super-phosphate, respectively. The effect of inoculation and chemical fertilizers on dry matter (DM), N and P uptake (shoot and grain), BNF and MBN were traced. The obtained data revealed that the highest DM and N uptake by chickpea shoot were recorded with the dual inoculation (Rh + VAM) at the moderate level of N and P fertilizers, while the highest DM, N and P uptake by grain were recorded with Rh solely at the same rate of fertilizers. It was clear that inoculation with Rh either alone or in combination with VAM substituted considerable amounts of N via BNF process. In this respect, dual inoculation is still superior over single inoculation. Percentages of N2-fixed was ranged from 45% to 73% in shoot while it was 27% to 69% in grain according to inoculation and fertilization treatments. Fixed N utilized by shoot was positively affected by increasing the N fertilizer rate while that derived by grain was not affected. The fluctuation in the soil microbial biomass N did not gave us a chance to recognize, exactly, the impact of inoculation and/or fertilization levels. (Authors)

  1. Effects of inorganic fertilizers on biological nitrogen fixation and seedling growth of some agroforestry trees in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Mohammad Belal Uddin; Mohammed Abu Sayed Arfin Khan; Sharif Ahmed Mukul; Mohammed Kamal Hossain

    2008-01-01

    The effects of different inorganic fertilizers (Urea and Triple Super Phosphate (TSP)) on seedling growth and nodulation capabilities of four agroforestry tree species (Albizia chinensis,A.saman,Acacia nilotica and Sesbania sesban) were compared.The nodulation of these seedlings were treated with different fertilizer treatments (at the rate of urea 40 kg(hm-2,urea 80 kg(hm-2,TSP 40 kg(hm-2,TSP 80 kg(hm-2,(urea+TSP) 40 kg(hm-2-and (urea+TSP) 80 kg(hm-2) after one month of seed germination.The results revealed that the seedling growth was enhanced significantly with moderate fertilizer treatment.In some cases,the higher levels of fertilizers reduced the seedling growth.The study also revealed that the nodulation in nodule number and size was significantly inhibited by the application of N fertilizer (Urea),while it was increased significantly with the application of P fertilizer (TSP).This study improved our understanding and provided insights that would be useful to the farmers in their efforts to amend the soil with inorganic fertilizers in order to enhance plant growth and biological nitrogen fixation.

  2. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  3. Eighth international congress on nitrogen fixation. Final program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  4. Biological Nitrogen Fixation in Sugarcane and Nitrogen Transfer from Sugarcane to Cassava in the Intercropping System%甘蔗/木薯间作系统中氮素的固定与转移

    Institute of Scientific and Technical Information of China (English)

    周晓舟; 李杨瑞; 杨丽涛

    2012-01-01

    为探讨甘蔗/木薯间作系统中甘蔗的固氮量变化及氮素向术薯的转移情况.利用15N同位素稀释法进行田间示踪试验.结果表明:单作下甘蔗的固氮百分率为29.50%,固氮量为11.31gm2.间作下甘蔗的总固氮百分率为36.43%,它包括供甘蔗自身生长需要的固氮百分率29.90%和转移到木薯的固氮百分率6.53%;间作下甘蔗的固氮量为17.82g/m2,其中82.07%用于自身生长需要,17.93%转移给木薯利用.间作木薯的总氮量中21.42%来自甘蔗固氮.此结果表明在单作和间作下甘蔗固氮对自身贡献的大小基本一致.甘蔗/木薯间作对甘蔗固氮有促进作用,但促进部分转移给木薯利用.%The biological nitrogen fixation in sugarcane and the fixed nitrogen transfer from sugarcane to cassava in an intercropping system were investigated. 15N isotope dilution technique was used in this experiment The experimental results showed that the nitrogen fixation rate and the nitrogen fixation amout was 29.50%, 11.31 g/m2 respectively under sole sugarcane planting. In the sugarcane-cassava intercropping system, the nitrogen fixation rate was 36.43%, including 29.90% in sugarcane for its growth utilization and 6.53% in cassava transferred from sugarcane; and the nitrogen fixation amount was 17.82 g/m2, in which 82.07% for sugarcane growth and 17.93% for utilization in cassava. It is concluded that sugarcane plants received the same amount of nitrogen from biological fixation in both sole planting and intercropping systems, but it could fix more nitrogen and transfer to cassava in the sugarcane-cassava intercropping system.

  5. Nitrogen fixation in trees - 1

    Energy Technology Data Exchange (ETDEWEB)

    Dobereiner, J.; Gauthier, D.L.; Diem, H.G.; Dommergues, Y.R.; Bonetti, R.; Oliveira, L.A.; Magalhaes, F.M.M.; Faria, S.M. de; Franco, A.A.; Menandro, M.S.

    1984-01-01

    Six papers are presented from the symposium. Dobereiner, J.; Nodulation and nitrogen fixation in leguminous trees, 83-90, (15 ref.), reviews studies on Brazilian species. Gauthier, D.L., Diem, H.G., Dommergues, Y.R., Tropical and subtropical actinorhizal plants, 119-136, (Refs. 50), reports on studies on Casuarinaceae. Bonetti, R., Oliveira, L.A., Magalhaes, F.M.M.; Rhizobium populations and occurrence of VA mycorrhizae in plantations of forest trees, 137-142, (Refs. 15), studies Amazonia stands of Cedrelinga catenaeformis, Calophyllum brasiliense, Dipteryx odorata, D. potiphylla, Carapa guianensis, Goupia glabra, Tabebuia serratifolia, Clarisia racemosa, Pithecellobium racemosum, Vouacapoua pallidior, Eperua bijuga, and Diplotropis species. Nodulation was observed in Cedrelinga catenaeformis and V. pallidior. Faria, S.M. de, Franco, A.A., Menandro, M.S., Jesus, R.M. de, Baitello, J.B.; Aguiar, O.T. de, Doebereiner, J; survey of nodulation in leguminous tree species native to southeastern Brazil, 143-153, (Refs. 7), reports on 119 species, with first reports of nodulation in the genera Bowdichia, Poecilanthe, Melanoxylon, Moldenhaurea (Moldenhawera), and Pseudosamanea. Gaiad, S., Carpanezzi, A.A.; Occurrence of Rhizobium in Leguminosae of silvicultural interest for south Brazil, 155-158, (Refs. 2). Nodulation is reported in Mimosa scabrella, Acacia mearnsii, A. longifolia various trinervis, Enterolobium contortisiliquum, and Erythrina falcata. Magalhaes, L.M.S., Blum, W.E.H., Nodulation and growth of Cedrelinga catanaeformis in experimental stands in the Manaus region - Amazonas, 159-164, (Refs. 5). Results indicate that C. catenaeformis can be used in degraded areas of very low soil fertility.

  6. A Mathematic Approach to Nitrogen Fixation Through Earth History

    Science.gov (United States)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier

    Nitrogen is essential for life as we know it. According to phylogenetic studies, all organisms capable of fixing nitrogen are prokaryotes, both bacteria and archaea, suggesting that nitrogen fixation and ammonium assimilation were metabolic features of the Last Universal Common Ancestor of all organisms. At present time the amount of biologically fixed nitrogen is around 2 × 1{0}^{13} g/year (Falkowski 1997), an amount much larger than the corresponding to the nitrogen fixed abiotically (between 2. 6 ×109 and 3 × 1{0}^{11} g/year) (Navarro-González et al. 2001). The current amount of nitrogen fixed is much higher than it was on Earth before the Cambrian explosion, where the symbiotic associations with leguminous plants, the major nitrogen fixer currently, did not exist and nitrogen was fixed only by free-living organisms as cyanobacteria. It has been suggested (Navarro-González et al. 2001) that abiotic sources of nitrogen fixation during Early Earth times could have an important role triggering a selection pressure favoring the evolution of nitrogenase and an increase in the nitrogen fixation rate. In this study we present briefly a method to analyze the amount of fixed nitrogen, both biotic and abiotic, through Earth's history.

  7. Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ 15N labelling

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Sørensen, Peter; Li, F C;

    2015-01-01

    Contributions of legume-based catch crops (LBCCs) to succeeding cereals may be significant. We quantified biological N fixation (BNF) and residual N effects of contrasting CC tops and roots. Methods BNF of three LBCCs (red clover, winter vetch, perennial ryegrass-red clover mixture) was quantified...... N uptake was derived from non-LBCCs. The 15N-based N fertiliser values of LBCC tops were 34–47 % against 26–29 % for non-LBCCs. LBCC roots contributed substantial amounts of N to the system, a source that is usually underestimated. N immobilisation after incorporation of non-LBCCs may hamper...

  8. Evaluation of the tepary bean (Phaseolus acutifolius) diversity panel for response to the NL 3 strain of Bean Common Mosaic Necrosis Virus (BCMNV) and for biological nitrogen fixation with Bradyrhizobium strains

    Science.gov (United States)

    Aphid-transmitted Bean Common Mosaic Necrosis Virus (BCMNV) and Bean Common Mosaic Virus (BCMV) are potyviruses that are seed transmitted in tepary bean. Developing resistance to these viruses will be critical for expanding production in areas where they are endemic. Biological nitrogen fixation (BN...

  9. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    OpenAIRE

    Nara Gavini; Sinny Delacroix; Kelvin Harris Jr.; Lakshmi Pulakat

    2011-01-01

    Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR) that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide) reductase (ChlL) that shares some structural similarity with Nitrog...

  10. Methanotrophy Induces Nitrogen Fixation in Boreal Mosses

    Science.gov (United States)

    Tiirola, M. A.

    2014-12-01

    Many methanotrophic bacterial groups fix nitrogen in laboratory conditions. Furthermore, nitrogen (N) is a limiting nutrient in many environments where methane concentrations are highest. Despite these facts, methane-induced N fixation has previously been overlooked, possibly due to methodological problems. To study the possible link between methanotrophy and diazotrophy in terrestrial and aquatic habitats, we measured the co-occurrence of these two processes in boreal forest, peatland and stream mosses using a stable isotope labeling approach (15 N2 and 13 CH4 double labeling) and sequencing of the nifH gene marker. N fixation associated with forest mosses was dependent on the annual N deposition, whereas methane stimulate N fixation neither in high (>3 kg N ha -1 yr -1) nor low deposition areas, which was in accordance with the nifH gene sequencing showing that forest mosses (Pleurozium schreberi and Hylocomium splendens ) carried mainly cyanobacterial N fixers. On the other extreme, in stream mosses (Fontinalis sp.) methane was actively oxidized throughout the year, whereas N fixation showed seasonal fluctuation. The co-occurrence of the two processes in single cell level was proven by co-localizing both N and methane-carbon fixation with the secondary ion mass spectrometry (SIMS) approach. Methanotrophy and diazotrophy was also studied in peatlands of different primary successional stages in the land-uplift coast of Bothnian Bay, in the Siikajoki chronosequence, where N accumulation rates in peat profiles indicate significant N fixation. Based on experimental evidence it was counted that methane-induced N fixation explained over one-third of the new N input in the younger peatland successional stages, where the highest N fixation rates and highest methane oxidation activities co-occurred in the water-submerged Sphagnum moss vegetation. The linkage between methanotrophic carbon cycling and N fixation may therefore constitute an important mechanism in the rapid

  11. Symposium on nitrogen fixation in tropical trees

    Energy Technology Data Exchange (ETDEWEB)

    Dobereiner, J.

    1984-01-01

    A special issue containing the proceedings of an international symposium held on 19-24 September 1983 at Rio de Janeiro. Some 35 papers were presented in six sessions: Importance of leguminous trees (2 papers); Occurrence of leguminous trees (5); Nitrogen fixation in trees (12); Utilization of nitrogen fixing trees (7); Nutrition of leguminous trees (5); and Agroforestry systems (4). Recommendations of the symposium are presented on p. 341-344 (Pt, En), and a List of nitrogen fixing trees which should receive immediate attention in Brazil (26 species) is given on p. 345.

  12. Nitrogen Fixation by Cyclopentadienyltitanium compounds

    NARCIS (Netherlands)

    van der Weij, Frederik Willem

    1977-01-01

    This thesis describes investigations of the mechanism of reduction of dinitrogen by systems consisting of n5-cyclopentadie-nyltitanium complexes and a reducing agent. Analysis of the reduced nitrogen- and titanium-containing products after hydrolysis of the reaction mixtures has been used to derive

  13. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  14. Regulation of Azorhizobium caulinodans ORS571 nitrogen fixation (nif/fix) genes.

    OpenAIRE

    Stigter, J.

    1994-01-01

    Biological nitrogen fixation is the microbial process by which atmospheric dinitrogen (N 2 ) is reduced to ammonia. In all microbes studied, dinitrogen reduction is catalyzed by a highly conserved enzyme complex, called nitrogenase. The nitrogenase subunits and functions required for nitrogenase assembly and activity are encoded by the nitrogen fixation (nif/fix) genes.Nitrogen-fixing organisms can be roughly divided into two major groups: the free-living nitrogen fixing (diazotrophic) specie...

  15. Nitrogen fixation: key genetic regulatory mechanisms.

    Science.gov (United States)

    Martinez-Argudo, I; Little, R; Shearer, N; Johnson, P; Dixon, R

    2005-02-01

    The necessity to respond to the level of fixed nitrogen and external oxygen concentrations and to provide sufficient energy for nitrogen fixation imposes common regulatory principles amongst diazotrophs. The NifL-NifA system in Azotobacter vinelandii integrates the signals of redox, fixed-nitrogen and carbon status to regulate nif transcription. Multidomain signalling interactions between NifL and NifA are modulated by redox changes, ligand binding and interaction with the signal-transduction protein GlnK. Under adverse redox conditions (excess oxygen) or when fixed nitrogen is in excess, NifL forms a complex with NifA in which transcriptional activation is prevented. Oxidized NifL forms a binary complex with NifA to inhibit NifA activity. When fixed nitrogen is in excess, the non-covalently modified form of GlnK interacts with NifL to promote the formation of a GlnK-NifL-NifA ternary complex. When the cell re-encounters favourable conditions for nitrogen fixation, it is necessary to deactivate the signals to ensure that the NifL-NifA complex is dissociated so that NifA is free to activate transcription. This is achieved through interactions with 2-oxoglutarate, a key metabolic signal of the carbon status, which binds to the N-terminal GAF (cGMP-specific and stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domain of NifA. PMID:15667291

  16. Symbiotic nitrogen fixation in black locust (Robinia pseudoacacia L.)seedlings from four seed sources

    Institute of Scientific and Technical Information of China (English)

    Alireza Moshki; Norbert P. Lamersdoff

    2011-01-01

    We conducted a greenhouse experiment to investigate the role of seed source in growth and symbiotic nitrogen fixation of black locust (Robinia pseudoacacia L).Seeds from different sources were planted in the same environmental conditions and inoculated with a suspension of mixed Rhizobium.We used the modified 15N isotope dilution method to estimate biological nitrogen fixation of Robinia trees.Different Robinia seed sources differed significantly in terms of tissue dry weight (50.6-80.1 g),total N (1.31-2.16 g) and proportion of nitrogen derived from the atmosphere ( 0-51%).A higher nitrogen fixation rate of Robinia trees was associated with higher dry weight.Moreover,the leaves of Robinia proved to adequately represent the nitrogen fixation capacity of entire plants.Our results confirmed that assessment of seed sources is a useful way to improve the nitrogen fixation capacity and therefore the growth rate of Robinia.

  17. Using 15N isotopic dilution method to quantify the biological nitrogen fixation in sugarcane%15N同位素稀释法评估甘蔗的生物固氮量

    Institute of Scientific and Technical Information of China (English)

    周晓舟; 李杨瑞; 杨丽涛

    2012-01-01

    The quantification of biological nitrogen fixation in sugarcane was investigated with 15N isotope dilution technique in greenhouse bucket culture test,using cassava as reference plant. The experimental results showed that Ndfa accounted for 11. 3514%,and the nitrogen fixation rate was 0. 9269 g/bucket for whole growth duration of sugarcane. Ndfa and the nitrogen fixation amount in different organs of the plant showed leaf>stalk>root. Ndfa in leaf accounted for 13. 2668%,a little higher than that in the whole plant,but the difference was not significant. The percentage of nitrogen from air,fertilizer and soil occupying the total nitrogen of the plant was 11. 3514% ,7. 6857% and 80. 9629%, respectively. The nitrogen use efficiency of sugarcane was 58. 7583%. It was concluded that all organs of sugarcane could fix nitrogen through biological nitrogen fixation,and leaves could be used to estimate the amount of biological nitrogen fixation in place of whole plant of sugarcane.%为评估甘蔗生物固氮量,采用15N同位素稀释法,以木薯为参比植物,进行温室桶栽试验.结果表明:甘蔗全生育期植株固氮11.3514% Ndfa,固氮量每桶0.9269 g.甘蔗根、茎、叶的固氮百分率和固氮量大小依序为叶>茎>根.叶的固氮百分率(13.2668% Ndfa)略高于植株,但两者差异不显著.甘蔗植株全氮量中来自空气氮(生物固氮)、肥料氮和土壤氮的比例分别为11.3514%、7.6857%、80.9629%.甘蔗的氮肥利用率为58.7583%.甘蔗根、茎、叶各部位均有固氮现象,生产上可以用叶代替植株来评估甘蔗的生物固氮量.

  18. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems

    International Nuclear Information System (INIS)

    Nitrogen (N) has been gradually depleted from West African soils and now poses serious threats to food production. Many ways of increasing N supply (e.g. judicious use of inorganic fertilizers and nitrogen-fixing plants) have been tried in West African farming systems. Herbaceous and woody legumes commonly contribute 40-70 kg N ha-l season. This represents about 30% of the total N applied as residues. Nevertheless and despite repeated demonstrations of the usefulness of green manures in enhancing soil fertility, their practices and adoption are still limited. Promiscuous soya beans are being used to develop sustainable cropping systems in the moist savannah. Reliable estimates of N2 fixed by soya beans and their residual N benefits to subsequent cereal crops in the savannah zone of southern Guinea have only infrequently been made. The actual amounts measured varied between 38 and 126 kg N ha-l assuming that only seeds of soya beans are removed from the plots, the net N accrual of soil nitrogen ranges between minus 8 kg N ha-l and plus 47 kg N ha-l depending on the soyabean cultivar. Residual soyabean N values of 10-24 kg N ha-l (14-36% of the total N in maize) were obtained in a soyabean-maize rotation. Although cereal yields following legume cultivation have been attributed to greater N accumulation, our data show that the relative increase in maize N was smaller than the relative increase in dry-matter yield. Hence, the increased yields of maize following soy beans are not entirely due to the carry-over of N from soyabean residues (as well as to conservation of soil N) but to other rotational effects as well. It is thus clear that the N benefit of grain legumes to non-legumes is small compared to the level of N fertilizer use in more intensive cereal production systems but is nevertheless significant in the context of the low amounts of input in subsistence farming. (author)

  19. Evaluation of the biological nitrogen fixation (N2) contribution in several forage legumes and the transfer of N to associated grasses

    International Nuclear Information System (INIS)

    The objective of experiment 1 was to compare two different techniques for labelling the soil mineral nitrogen with 15 N, for studies to quantify the contribution of biological nitrogen fixation (BNF) to forage legumes using the 15 N isotope dilution technique. The two techniques for labelling the soil were: incorporation a 15 N labelled organic compost (slow release treatment), and split applications of 15 N labelled ammonium sulphate. The evaluation of the techniques was through the quantification of BNF in the Itaguai Hybrid of Centrosema using two non-Na- fixing control plants (P. maximum K K-16 and Sorghum bicolor). The objective of experiment 2 was to quantify the contribution of BNF to forage legumes and the transfer of fixed nitrogen to associated grasses in mixed swards again using the 15 N isotope dilution technique. This study was conducted on a red podzolic soil (Typic Hapludult), with 7 forage legumes and 3 grasses in monoculture, and 3 mixed swards of Brachiaria brizantha with the Centrosema hybrid, Galactia striata and Desmodium ovalifolium, respectively, with varying ratios of grass to legume (4:1 to 1:4). In order to quantify the BNF contributions to the legumes and the transfer of fixed N to the B. brizantha, the plots were amended 8 times with doses of 0.01 g 15 N m-2 of 15 N labelled ammonium sulphate (12.5 atom % 15 N) each 14 days, giving a total of 0.08 g 15 N m-2 of 15 N during the 97 days of the experiment. In monoculture the different forage legumes obtained the equivalent of between 43 and 100 kg N ha-1 from BNF. Stylosanthes guianensis showed the greatest contributions from BNF at 100 Kg N ha-1. In mixed swards with Brachiaria brizantha the proportion of N derived from BNF in the three legumes studied (Centrosema hybrid, G. striata and D. ovalifolium) was significantly greater than when they were grown in monoculture. (author). 197 refs, 9 figs, 19 tabs

  20. Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii.

    Science.gov (United States)

    Hamilton, Trinity L; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S; Dos Santos, Patricia C; Setubal, João C; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Most biological nitrogen (N(2)) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandii cultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N(2) fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N(2) fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  1. Enzymology of biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Burris, R.H.

    1992-01-01

    Two genes involved in the regulation of nitrogenase activity, draT and draG, were cloned and found to be contiguous on the Azospirillum brasilense chromosome. The nifH gene, encoding dinitrogenase reductase, is near to draT with an intervening gap of 1.9 kb. The organization of these genes in Azospirillum lipoferum and Rhodosprillum rubrum is similar, but nifH and draT are separated by only 400 bp in the organisms. A. brasilense draTG is very similar to draTG in R. rubrum with 91.8% similarity and 85.3% identity at the amino acid level. Apparently A. brasilense uses the normal ATG initiation codon for draT, and draG. The genes for A. brasilense were able to restore function to appropriate mutants of R. rubrum. The heterologous expression of A. brasilense draTG in R. rubrum was not fully normal, as it responded more slowly to darkness and more quickly to ammonia than wild type cells. Our mutational analysis of the draTG region of A. brasilense confirms the function of these genes in the regulation of nitrogenase activity, but it also revealed minor but demonstrable differences in the control systems of R. rubrum and A. brasilense.

  2. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh

    Science.gov (United States)

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-01-01

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability. PMID:26869197

  3. Gupta Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological ac

  4. Selection for nitrogen fixation associative traits in legumes

    International Nuclear Information System (INIS)

    This paper describes investigations carried out to develop screening procedures to select for plant characteristics associated with symbiotic nitrogen fixation. The procedures described are to select for early nodulation, effectiveness in nitrogen fixation, and uniform nodulation by an effective strain of Rhizobium. The use of the acetylene reduction technique to select for nitrogenase activity and its correlation with other plant traits is discussed. The use of nuclear techniques to increase genetic variability in legumes and to evaluate legume germ plasms bred for nitrogen fixation associative traits is also discussed in the context of crop improvement. (author)

  5. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests.

    Directory of Open Access Journals (Sweden)

    Nina Wurzburger

    Full Text Available Biological di-nitrogen fixation (N(2 is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P is thought to limit N(2 fixation in many tropical soils, yet both molybdenum (Mo and P are crucial for the nitrogenase reaction (which catalyzes N(2 conversion to ammonia and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N(2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N(2 fixation. Fixation is uniformly favored in surface organic soil horizons--a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N(2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought.

  6. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    Directory of Open Access Journals (Sweden)

    Nara Gavini

    2011-01-01

    Full Text Available Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide reductase (ChlL that shares some structural similarity with Nitrogenase Reductase (NifH could complement the functions of NifH in biological nitrogen fixation of Azotobacter vinelandii. Approach: Genetic complementation studies were performed to test if the chlL gene and its mutants cloned under transcriptional control of nifH promoter (nifHp in a broad-host range low copy plasmid pBG1380 could render a Nif+ phenotype to NifH-deficient A. vinelandii strains. Results: Expression of ChlL could render Nif+ phenotype to NifH-deficient A. vinelandii only in the absence of NifM, a nif-specific PPIase essential for biogenesis of NifH. The ChlL mutants Cys95Thr and Cys129Thr were unable to substitute for NifH. Thus, the conserved cysteine ligands of [4Fe-4S] cluster in ChlL are essential for successful substitution of NifH by ChlL. Since C-termini of NifH and ChlL demonstrated the least similarity and Pro258, a substrate for the PPIase activity of NifM, is located in the C-terminus of NifH, we posited that replacing the C-terminus of NifH with that of ChlL would render NifM-independence to NifH. The NifH-ChlL chimera could support the growth of NifH- and NifM-deficient A. vinelandii in nitrogen limiting conditions implying that it has acquired NifM-independence. Conclusion/Recommendations: Collectively, these observations suggest that NifM, an evolutionarily conserved nif-specific PPIase, could have contributed to the functional divergence of biological nitrogen fixation and photosynthesis during evolution by virtue of its ability to

  7. Nitrogen fixation during an unusual summer Baltic Sea

    DEFF Research Database (Denmark)

    Voss, Maren; Dalsgaard, Tage; Fabian, Jenny;

    Nitrogen fixation is a major nitrogen source for the open ocean. Also the land-locked, partly anoxic Baltic Sea receives almost as much nitrogen from nitrogen fixation as it receives from eutrophied rivers. Growth conditions for cyanobacteria are usually very favorable with low N/P ratios after...... winter mixing and a strong stratification and high surface temperatures in summer. However, the summer 2012 was quite different with strong winds and cold surface waters. Blooms of cyanobacteria therefore only developed in sheltered regions but not in the central Baltic Proper. Moreover, a greater...

  8. Biological fixation in anterior cruciate ligament surgery

    Directory of Open Access Journals (Sweden)

    Chih-Hwa Chen

    2014-04-01

    Full Text Available Successful anterior cruciate ligament (ACL reconstruction with tendon graft requires extensive tendon-to-bone healing in the bone tunnels and progressive graft ligamentization for biological, structural, and functional recovery of the ACL. Improvement in graft-to-bone healing is crucial for facilitating early, aggressive rehabilitation after surgery to ensure an early return to pre-injury activity levels. The use of various biomaterials for enhancing the healing of tendon grafts in bone tunnels has been developed. With the biological enhancement of tendon-to-bone healing, biological fixation of the tendon graft in the tunnel can be achieved in ACL reconstruction.

  9. NITROGEN FIXATION OF BIOLOGICAL SOIL CRUSTS ON COPPER MINING TAILINGS AND ITS INFLUENCE FACTORS%铜尾矿生物结皮的生物固氮及其影响因素研究

    Institute of Scientific and Technical Information of China (English)

    宋勇生; 龚亚龙; 廖斌; 刘蔚秋

    2011-01-01

    The dumping site for copper mining tailings at Yangshanchong at Tongling city ( Anhui Province) has been deserted for 20-years. The area is characterized by extremely high concentrations of heavy metals, poverty of nutrients, easy acidification and severe desertification. Biological soil crusts ( BSCs) , extensively existing on tailings is a major early stage of the ecological succession of the tailing ecosystem. The method of in situ acetylene reduction was applied to explore characteristics of biological nitrogen-fixation of algae, algae-moss and moss crusts on tailings. It was found that biological crusts significantly increased total nitrogen and lower Cu content in the tailings, and the nitrogen-fixing capability of the crusts varied sharply from type to type. Among the three types, the algae-moss type of crust was the highest in N2 fixation rates, ranging between 1. 32 -8.78 kg hm ~ a , and followed by the algae type and the moss type, ranging between 4. 36 ~ 30. 39 kg hm-2a-1 and between 0 ~16. 34 kg hm -2 a-1, respectively, and followed a decreasing order of algae-moss, moss, and algae BSCs. N2 fixation capacity of the BSCs varied with the season, too showing a decrease order of summer, spring, fall and winter. Besides, a negative line relationship was observed of the capacity with soil bulk density, NO3--N, and total Cu concentration and a positive one with pH, NH4+-N, and water soluble organic carbon. On the whole, BSCs significantly enhanced total nitrogen content, and decrease total Cu concentration in tailings. The anomalous wet conditions experienced during the year of the study may have increased the temporal availability of soil mineral N and decreased N fixation rates. However, the presence of N fixation activity in all crusts analyzed their ability to survive at high Cu concentration, which may contribute to ecosystem resilience and recovery in areas under severe heavy metal stress.%在铜尾矿生态系统自然恢复过程中,生物结皮广

  10. Actual and potential nitrogen fixation in pea and field bean as affected by combined nitrogen

    NARCIS (Netherlands)

    Mil, van M.G.

    1981-01-01

    Actual nitrogen fixation of pea and field-bean plants, grown in soil in the open air, was determined as the acetylene reduction of nodulated roots. During the major part of the vegetative growth of these plants, actual nitrogen fixation was equal to the potential maximum nitrogenase activity of the

  11. IRAT research work on nitrogen fixation

    International Nuclear Information System (INIS)

    The Institut de Recherches Agronomiques Tropicales et des Cultures Vivrieres (IRAT), in co-operation with the IAEA, has carried out research on groundnut and soybean in Senegal at the Institut Senegalais de Recherche Agricole (ISRA) in Bambey. The use of 15N to study dinitrogen fixation as affected by various agronomic factors is discussed. A model to determine the limiting factors in dinitrogen fixation in a given system is presented. (author)

  12. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  13. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...

  14. Regulation of Azorhizobium caulinodans ORS571 nitrogen fixation (nif/fix) genes.

    NARCIS (Netherlands)

    Stigter, J.

    1994-01-01

    Biological nitrogen fixation is the microbial process by which atmospheric dinitrogen (N 2 ) is reduced to ammonia. In all microbes studied, dinitrogen reduction is catalyzed by a highly conserved enzyme complex, called nitrogenase. The nitrogenase subunits and func

  15. Nitrogen fixation improvement in Faidherbia albida

    International Nuclear Information System (INIS)

    A greenhouse experiment investigated growth, N accumulation and N2 fixation (using the 15N-dilution method) by Faidherbia albida in comparison with three species of Acacia, with Parkia biglobosa and Tamarindus indica as non-fixing reference plants. Faidherbia albida was mediocre in comparison with A. seyel, therefore seven provenances of the former were examined in a second pot experiment to investigate within-species variability for the same performance components; a provenance from Kabrousse, Senegal, showed particular promise in terms of dry weight and N accumulation, and fixation of N. This promise was confirmed with a 15-month field experiment, but revealed that there is opportunity for further improvement in N2-fixing ability. Faidherbia albida is a slow-growing tree, therefore further field experiments with provenance Kabrousse should be longer term in scope. The data indicate that trenching of the 15N-labelled area may not be necessary. (author)

  16. Nitrogen fixation in the mucus of Red Sea corals.

    Science.gov (United States)

    Grover, Renaud; Ferrier-Pagès, Christine; Maguer, Jean-François; Ezzat, Leila; Fine, Maoz

    2014-11-15

    Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not permit assessment of the amount of nitrogen incorporated into the different compartments of the coral holobiont. In the present study, the (15)N2 technique was applied for the first time on three Red Sea coral species. Significant (15)N enrichment was measured in particles released by corals to the surrounding seawater. N2 fixation rates were species specific and as high as 1.6-2 ng N day(-1) l(-1). However, no significant enrichment was measured in the symbiotic dinoflagellates or the coral host tissues, suggesting that corals do not benefit from diazotrophic N2 fixation. PMID:25278474

  17. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean.

    Science.gov (United States)

    Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M

    2016-08-01

    Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process.

  18. Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?

    CERN Document Server

    Grula, J W

    2006-01-01

    How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not ...

  19. Nitrogen fixation by the Azolla-Anabaena azollae symbiosis

    International Nuclear Information System (INIS)

    A concise outline is presented on the main characteristics of the Azolla association in relation to tropical wetland rice cultivation and the nitrogen economy of paddy soils. Due to the presence of a nitrogen fixing cyanobiont occurring in a special leaf cavity of the Azolla leaf, the water fern Azolla can grow in a nitrogen-deficient environment and is able to contribute considerably to the nitrogen status of the soil. An experimental set-up is presented for how the nitrogen-fixing capacity of Azolla plants can be measured in the field by means of the acetylene reduction assay using a rather simple glass vessel. A comparison was made between 15N2 fixation by Azolla and acetylene reduction of Azolla plants under identical conditions

  20. Biological fixation and nitrogen transfer by three legume species in mango and soursop organic orchards;Fixacao biologica e transferencia de nitrogenio por leguminosas em pomar organico de mangueira e gravioleira

    Energy Technology Data Exchange (ETDEWEB)

    Paulino, Gleicia Miranda; Barroso, Deborah Guerra, E-mail: gleiciamiranda@yahoo.com.b, E-mail: deborah@uenf.b [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Dept. de Fitotecnia; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo; Espindola, Jose Antonio Azevedo, E-mail: bruno@cnpab.embrapa.b, E-mail: urquiaga@cnpab.embrapa.b, E-mail: jose@cnpab.embrapa.b [EMBRAPA Agrobiologia, Seropedica, RJ (Brazil)

    2009-12-15

    The objective of this work was to evaluate the biological nitrogen fixation (BNF) and the N transfer derived from BNF of the legume species - Gliricidia sepium (gliricidia), Crotalaria juncea (sunnhemp) and Cajanus cajan (pigeon pea) - for an intercropped organic orchard with mango and soursop, through the {sup 15}N natural abundance method. The following inter cropping systems were evaluated: mango and soursop with gliricidia; mango and soursop with sunnhemp; mango and soursop with pigeon pea; and mango and soursop as control. Gliricidia showed the highest BNF potential (80%) , followed by sunnhemp (64.5%) and pigeon pea (45%). After two sunnhemp prunes, 149.5 kg ha{sup -1} of N per year were supplied, with 96.5 kg derived from BNF. After three annual prunes, gliricidia supplied 56.4 and 80.3 kg ha{sup -1} of N per year, with 45 and 64 kg derived from BNF, in two consecutive years. The quantity of N supplied to the system was higher than the mango and soursop requirements. Variations in the natural abundance of {sup 15}N were found only in soursop leaves. Gliricidia and sunnhemp were prominent in N transfer, with approximately 22.5 and 40% respectively. Green manuring using gliricidia permits fractioning of the N supply, which is an advantage in N obtention by the fruit trees (author)

  1. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps

    Science.gov (United States)

    Dekas, A. E.; Orphan, V.

    2011-12-01

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation

  2. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  3. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  4. Local versus basin-scale limitation of marine nitrogen fixation.

    Science.gov (United States)

    Weber, Thomas; Deutsch, Curtis

    2014-06-17

    Nitrogen (N) fixation by diazotrophic plankton is the primary source of this crucial nutrient to the ocean, but the factors limiting its rate and distribution are controversial. According to one view, the ecological niche of diazotrophs is primarily controlled by the ocean through internally generated N deficits that suppress the growth of their competitors. A second view posits an overriding limit from the atmosphere, which restricts diazotrophs to regions where dust deposition satisfies their high iron (Fe) requirement, thus separating N sources from sinks at a global scale. Here we use multiple geochemical signatures of N2 fixation to show that the Fe limitation of diazotrophs is strong enough to modulate the regional distribution of N2 fixation within ocean basins--particularly the Fe-poor Pacific--but not strong enough to influence its partition between basins, which is instead governed by rates of N loss. This scale-dependent limitation of N2 fixation reconciles local observations of Fe stress in diazotroph communities with an inferred spatial coupling of N sources and sinks. Within this regime of intermediate Fe control, the oceanic N reservoir would respond only weakly to enhanced dust fluxes during glacial climates, but strongly to the reduced fluxes hypothesized under anthropogenic climate warming.

  5. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Lett, Signe; Michelsen, Anders

    2012-01-01

    is the main source of new nitrogen to arctic ecosystems. In order to gain information on future nitrogen fixation rates in a changing climate, we studied the effects of two decades of warming with passive greenhouses, shading with sackcloth, and fertilization with NPK fertilizer on nitrogen fixation rates....... To expand the knowledge on species-specific responses, we measured nitrogen fixation associated with two moss species: Hylocomium splendens and Aulacomnium turgidum. Our expectations of decreased nitrogen fixation rates in the fertilizer and shading treatments were met. However, contrary to our expectation...

  6. Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes Avaliação da contribuição da fixação biológica de nitrogênio em cana-de-açúcar originada de sementes e inoculada com endófitos fixadores de nitrogênio

    OpenAIRE

    Erineudo de Lima Canuto; André Luis Martinez de Oliveira; Verônica Massena Reis; José Ivo Baldani

    2003-01-01

    The inoculation technique with endophytic diazotrophic bacteria in sugarcane has been shown as an alternative practice to plant growth promotion. The aim of this work was to evaluate the biological nitrogen fixation (BNF) contribution by different strains of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus in sugarcane plant inoculated from seeds. The seeds were planted in pots filled with non-sterile soil, inoculated with the bacterial strains and grown 10 months outside of th...

  7. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    Science.gov (United States)

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  8. Nitrogen fixation in rice systems: State of knowledge and future prospects

    International Nuclear Information System (INIS)

    Rice is the most important cereal crop. In the next three decades, the world will need to produce about 60% more rice than today's global production to feed the extra billion people. Nitrogen is the major nutrient limiting rice production. Development of fertilizer-responsive varieties in the Green Revolution, coupled with the realization by farmers of the importance of nitrogen, has led to high rates of N fertilizer use on rice. Increased future demand for rice will entail increased application of fertilizer N. Awareness is growing, however, that such an increase in agricultural production needs to be achieved without endangering the environment. To achieve food security through sustainable agriculture, the requirement for fixed nitrogen must increasingly met by biological nitrogen fixation (BNF) rather than by using nitrogen fixed industrially. It is thus imperative to improve existing BNF systems and develop N2-fixing non-leguminous crops such as rice. Here we review the potentials and constraints of conventional BNF systems in rice agriculture, as well as the prospects of achieving in planta nitrogen fixation in rice. (author)

  9. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [Klebsiella penumoniae and Azotobacter vinelandii

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, B.O.; Wallace, C.J.

    1978-08-01

    This economic assessment indicates that ammonia production by Klebsiella penumoniae is not economical with present strains; and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Contamination and reversion of the mutant are major technical problems. This leads to sterilization requirements which are economically prohibitive. Ammonia is a low value product and has been obtained only in dilute solutions with biological systems. Since the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product and attention should be focused on other products. The production of hydrogen by Klebsiella or other anaerobic nitrogen fixers should receive additional study, since the value of hydrogen produced by Klebsiella greatly exceeds the value of the nitrogen fixed and since the activity of nitrogenase offers a significant improvement in hydrogen production. At observed efficiencies, the production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competititve under the assumptions of the economic model employed. The use of nif-derepressed microorganisms, particularly blue--green algae, may have significant potential for in situ fertilization in the environment. Additional work is required to determine: (1) the extent of in situ nitrogen fixation when nif-derepressed strains are added to the environment and; (2) how effective these strains are in increasing crop yields through the production of substances, other than fixed nitrogen, which may enhance plant growth.

  10. Enzymology of biological nitrogen fixation. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Burris, R.H.

    1992-05-01

    Two genes involved in the regulation of nitrogenase activity, draT and draG, were cloned and found to be contiguous on the Azospirillum brasilense chromosome. The nifH gene, encoding dinitrogenase reductase, is near to draT with an intervening gap of 1.9 kb. The organization of these genes in Azospirillum lipoferum and Rhodosprillum rubrum is similar, but nifH and draT are separated by only 400 bp in the organisms. A. brasilense draTG is very similar to draTG in R. rubrum with 91.8% similarity and 85.3% identity at the amino acid level. Apparently A. brasilense uses the normal ATG initiation codon for draT, and draG. The genes for A. brasilense were able to restore function to appropriate mutants of R. rubrum. The heterologous expression of A. brasilense draTG in R. rubrum was not fully normal, as it responded more slowly to darkness and more quickly to ammonia than wild type cells. Our mutational analysis of the draTG region of A. brasilense confirms the function of these genes in the regulation of nitrogenase activity, but it also revealed minor but demonstrable differences in the control systems of R. rubrum and A. brasilense.

  11. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W Golden

    2004-08-05

    because all cells differentiate a few days after nitrogen step-down. Our continued analysis of these genes will provide a better understanding of how a simple prokaryotic organism can perform both photosynthetic carbon fixation and nitrogen fixation simultaneously by separating these processes in different cell types.

  12. Symbiotic nitrogen fixation and nitrate uptake by the pea crop

    International Nuclear Information System (INIS)

    Symbiotic nitrogen fixation and nitrate uptake by pea plants (Pisum sativum L.) were studied in field and pot experiments using the 15N isotope dilution technique and spring barley as a non-fixing reference crop. Barley, although not ideal, seemed to be a suitable reference for pea in the 15N-technique. Maximum N2 fixation activity of 10 kg N fixed per ha per day was reached around the flat pod growth stage, and the activity decreased rapidly during pod-filling. The pea crop fixed between 100 and 250 kg N ha-1, corresponding to from 45 to 80 per cent of total crop N. The amount of symbiotically fixed N2 depended on the climatic conditions in the experimental year, the level of soil mineral N and the pea cultivar. Field-grown pea took up 60 to 70 per cent of the N-fertilizer supplied. The supply of 50 kg NO3-N ha-1 inhibited the N2 fixation approximately 15 per cent. Small amounts of fertilizer N, supplied at sowing (starter-N), slightly stimulated the vegetative growth of pea, but the yields of seed dry matter and protein were not significantly influenced. In the present field experiments the environmental conditions, especially the distribution of rainfall during the growth season, seemed to be more important in determining the protein and dry matter yield of the dry pea crop, than the ability of pea to fix nitrogen symbiotically. However, fertilizer N supplied to pot-grown pea plants at the flat pod growth stage or as split applications significantly increased the yield of seed dry matter and protein. (author)

  13. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, B.O.; Wallace, C.J.

    1978-08-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by Klebsiella or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  14. Effect of butachlor on growth and nitrogen fixation by Anabaena sphaerica.

    Science.gov (United States)

    Suseela, M R

    2001-07-01

    Present study was carried out to examine the effect of Butachlor on growth and nitrogen fixation by Anabaena sphaerica. The increased concentration of the pesticide did not have any adverse effect on the alga. Rather it accelerated the algal contribution in terms of biomass and nitrogen fixation.

  15. Quantifying the effect of fire disturbance on free-living nitrogen fixation in tropical ecosystems

    Science.gov (United States)

    De Oliveira Bomfim, B.; Silva, L. C. R.; Marimon-Junior, B. H.; Marimon, B.; Horwath, W. R.; Neves, L.

    2015-12-01

    Tropical forests and savannas are among the most important biomes on Earth, supporting more than half of all plant and animal species on the planet. Despite growing interest in biogeochemical processes that affect tropical forest dynamics, many, including biological nitrogen fixation (BNF), are still poorly understood. Free-living N-fixers are thought to play a key role in tropical ecosystems, alleviating N and P limitation, supporting above and below ground biomass production, as well as carbon storage in plants and soil, but this influence has yet to be quantified. Of particular interest, the spatial distribution and identity of free-living BNF under disturbance regimes that commonly lead to the conversion of forests to savannas is currently unknown. To address this critical gap in knowledge, we measured free-living BNF quantifying rates of N fixation under contrasting fire regimes in the Amazon-Cerrado transition of central Brazil. Samples were collected in 4 ha of floodable forests affected by fire and 1 ha of unburned (seasonally flooded) forest located at the Araguaia State Park, Mato Grosso State, Brazil. Free-living N-fixation rates were measured by both 15N2 (98 atom% 15N) and acethylene reduction assay (ARA). Samples were incubated in the field and left in the dark at room temperature for 12 hours. In the next few weeks we will quantify N fixation rates that will be presented in the upcoming AGU meeting.

  16. NITROGÊNIO E POTÁSSIO NA FIXAÇÃO SIMBIÓTICA DE N2 POR SOJA CULTIVADA NO INVERNO NITROGEN AND POTASSIUM IN THE BIOLOGICAL N2 FIXATION BY WINTER SOYBEAN

    Directory of Open Access Journals (Sweden)

    Maria do Carmo de Salvo Soares Novo

    1999-01-01

    Full Text Available O efeito do nitrogênio e do potássio sobre a nodulação, fixação simbiótica do nitrogênio, teor de N nos grãos e produtividade de soja, foi avaliado no inverno em experimentos conduzidos nas Estações Experimentais de Mococa, Ribeirão Preto e Votuporanga, do Instituto Agronômico de Campinas, SP, em solos podzólico vermelho-escuro, latossolo roxo e latossolo vermelho-escuro, respectivamente. Doses de nitrogênio na forma de uréia (0, 50 e 100 kg.ha-1 de N, de potássio na forma de cloreto de potássio (0, 30 e 60 kg.ha-1 de K2O e cultivares de soja (IAC-8 e IAC-14, foram arranjados em fatorial e dispostos no campo, em blocos ao acaso, com três repetições. As sementes foram tratadas com inoculante comercial turfoso na dose de 8 g.kg-1 de semente. No florescimento, plantas foram amostradas para avaliações da nodulação e da atividade da nitrogenase. No final do ciclo, avaliou-se a produtividade e o teor de N dos grãos. Os resultados mostraram que apenas a inoculação não forneceu nitrogênio nas quantidades exigidas para maximizar a produtividade da soja. A adubação nitrogenada prejudicou a nodulação e a fixação simbiótica do nitrogênio mas aumentou a produtividade e o teor de N dos grãos de soja nas três localidades. A adubação potássica não prejudicou a nodulação, a fixação simbiótica do nitrogênio e o teor de N dos grãos. A cultivar IAC-14 apresentou nodulação e produtividade de grãos maiores quando foi adicionado potássio.The objective of these experiments was to study the effect of nitrogen and potassium fertilizations on the response to nodulation, nitrogen fixation, nitrogen seed content and yield of two soybean cultivars planted during the winter season. They were installed on the following soils: Eutric Lixisol (Mococa and Rhodic Ferralsol (Ribeirão Preto and Votuporanga, SP, Brazil. The treatments consisted of three rates of nitrogen (0, 50 and 100 kg.ha-1 of N as urea, three of potassium (0

  17. A new perspective on environmental controls of marine nitrogen fixation

    Science.gov (United States)

    Landolfi, A.; Koeve, W.; Dietze, H.; Kähler, P.; Oschlies, A.

    2015-06-01

    Growing slowly, marine N2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of nonfixing phytoplankton. This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1). In this study, we investigate several mechanisms to solve this puzzle: iron limitation, phosphorus enhancement by preferential remineralization or stoichiometric diversity of phytoplankton, and dissolved organic phosphorus (DOP) utilization. Combining resource competition theory and a global coupled ecosystem-circulation model, we find that the additional N and energy investments required for exoenzymatic breakdown of DOP give N2 fixers a competitive advantage in oligotrophic P-starved regions. Accounting for this mechanism expands the ecological niche of N2 fixers also to regions where the nutrient supply is high in N relative to R, yielding, in our model, a pattern consistent with the observed high N2 fixation rates in the oligotrophic North Atlantic.

  18. Fixação biológica de nitrogênio em cultivares de feijão-caupi recomendadas para o Estado de Roraima Biological nitrogen fixation in cowpea cultivars recommended for Roraima state, Brazil

    Directory of Open Access Journals (Sweden)

    Shirlany Ribeiro de Melo

    2009-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a fixação biológica de nitrogênio (FBN em cinco cultivares de feijão-caupi: BR 17 Gurguéia, BRS Guariba, BRS Mazagão, UFRR Grão Verde e Pretinho Precoce 1. Em 2007, foram conduzidos um experimento em casa de vegetação e outro em campo, em esquema fatorial com cinco cultivares de feijão-caupi e quatro fontes de nitrogênio: adubação com ureia (50 kg ha-1 de N, inoculação com a estirpe de Bradyrhizobium BR 3262 ou BR 3267 e um controle absoluto. Aos 35 dias após a emergência das plantas, foram avaliados número e massa de nódulos secos, massa de matéria seca e N total da parte aérea, eficiência nodular em casa de vegetação e rendimento de grãos na colheita em campo. Em casa de vegetação, foi observada alta nodulação e eficiência nodular para ambas as estirpes em todas as cultivares. Em campo, a nodulação e o N total foram menores para todas as cultivares, comparativamente à casa de vegetação, o que indica interferência de fatores edafoclimáticos na FBN. Ocorreu aumento no rendimento de grãos em todas as cultivares em decorrência da inoculação, especialmente com a estirpe BR 3262.The objective of this work was to evaluate the biological nitrogen fixation (BNF in five cowpea cultivars: BR 17 Gurguéia, BRS Guariba, BRS Mazagão, UFRR Grão Verde and Pretinho Precoce 1. In 2007, one greenhouse and one field experiment were performed using a factorial design with five cowpea cultivars and four nitrogen sources: urea fertilization (50 kg ha-1 of N, inoculation with BR 3262 or BR 3267 Bradyrhizobium strains, and absolute control. Thirty-five days after plant emergency, the number and dry weight of nodules, the dry matter weight and the total N of the shoots, the nodule efficiency in greenhouse plants and the grain yield for the field experiment plants were evaluated. In the greenhouse, high nodulation and nodule efficiency were observed for both strains in all cultivars. In

  19. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Lu Wei

    2010-01-01

    Full Text Available Abstract Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif

  20. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Science.gov (United States)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  1. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  2. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    OpenAIRE

    In-Yup Jeon; Hyun-Jung Choi; Myung Jong Ju; In Taek Choi; Kimin Lim; Jaejung Ko; Hwan Kyu Kim; Jae Cheon Kim; Jae-Joon Lee; Dongbin Shin; Sun-Min Jung; Jeong-Min Seo; Min-Jung Kim; Noejung Park; Liming Dai

    2013-01-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene...

  3. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  4. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Liying Wang

    Full Text Available Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70 (σ(A-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  5. Optimising biological N2 fixation by legumes in farming systems

    International Nuclear Information System (INIS)

    Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N2, so reducing the use of expensive fertiliser N and enhancing soil fertility. N2 fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. By exploiting the stable nitrogen isotope 15N, it has been possible to reliably measure rates of N2 fixation in a wide range of agro-ecological field situations involving many leguminous species. The accumulated data demonstrate that there is a wealth of genetic diversity among legumes and their Rhizobium symbionts which can be used to enhance N2 fixation. Practical agronomic and microbiological means to maximise N inputs by legumes have also been identified. (author)

  6. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    Science.gov (United States)

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  7. NifB and NifEN protein levels are regulated by ClpX2 under nitrogen fixation conditions in Azotobacter vinelandii

    OpenAIRE

    Martínez-Noël, Giselle; Curatti, Leonardo; Hernandez, Jose A.; Rubio, Luis M.

    2011-01-01

    The major part of biological nitrogen fixation is catalyzed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to have a [6Fe-9S-X] composition, from simpler [Fe-S] clusters common to other metabolic pathways. Ni...

  8. Seasonally dependent iron limitation of nitrogen fixation in tropical forests of karst landscapes

    Science.gov (United States)

    Winbourne, J. B.; Brewer, S.; Houlton, B. Z.

    2015-12-01

    Limestone tropical forests in karst topography are one of the most poorly studied ecosystems on Earth, and has been substantially cleared by human activities throughout much of Central America. This ecosystem is noted for its high level of plant productivity, biomass, endemism and biological diversity compared to nearby neighboring tropical forests on volcanic rock substrates (Brewer et al. 2002). A question remains as to how limestone tropical forests are able to maintain the high nutrient demands of plant photosynthesis and tree biomass growth. Here, we demonstrate that rates of nitrogen (N) fixation are higher in limestone versus volcanic soil substrates, with direct evidence for the emergence of seasonally dependent iron limitation of N fixation in limestone tropical forest. N fixation rates showed a three-fold increase in response to iron additions, especially during the wet season when N demands of the forest trees are highest. In contrast, adjacent forests growing on the more classical acidic volcanic soils showed no response to iron or other nutrient additions. Biologically available pools of iron were exceedingly low in the limestone forest site, consistent with the complexation of iron under high pH conditions. Biological acquisition of iron, as measured by the concentration of iron chelating compounds (i.e. siderophores), provided additional evidence for iron limitation of microbial processes in limestone tropical forests, where concentrations were six times higher than those at the volcanic site. Our results suggest that the functioning of limestone tropical forest is strongly regulated by interactions between iron, soil pH, and N cycling.

  9. Nitrogen Fixation Control under Drought Stress. Localized or Systemic?1[OA

    Science.gov (United States)

    Marino, Daniel; Frendo, Pierre; Ladrera, Ruben; Zabalza, Ana; Puppo, Alain; Arrese-Igor, Cesar; González, Esther M.

    2007-01-01

    Legume-Rhizobium nitrogen fixation is dramatically affected under drought and other environmental constraints. However, it has yet to be established as to whether such regulation of nitrogen fixation is only exerted at the whole-plant level (e.g. by a systemic nitrogen feedback mechanism) or can also occur at a local nodule level. To address this question, nodulated pea (Pisum sativum) plants were grown in a split-root system, which allowed for half of the root system to be irrigated at field capacity, while the other half was water deprived, thus provoking changes in the nodule water potential. Nitrogen fixation only declined in the water-deprived, half-root system and this result was correlated with modifications in the activities of key nodule's enzymes such as sucrose synthase and isocitrate dehydrogenase and in nodular malate content. Furthermore, the decline in nodule water potential resulted in a cell redox imbalance. The results also indicate that systemic nitrogen feedback signaling was not operating in these water-stressed plants, since nitrogen fixation activity was maintained at control values in the watered half of the split-root plants. Thus, the use of a partially droughted split-root system provides evidence that nitrogen fixation activity under drought stress is mainly controlled at the local level rather than by a systemic nitrogen signal. PMID:17416644

  10. Database of diazotrophs in global ocean: abundances, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-02-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6 Tg C from cell counts and to 89 (40–200 Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize

  11. Diazotrophy in the Deep: Measuring Rates and Identifying Biological Mediators of N2 fixation in Deep-Sea Sediments

    Science.gov (United States)

    Dekas, A. E.; Fike, D. A.; Chadwick, G.; Connon, S. A.; Orphan, V. J.

    2013-12-01

    Biological N2 fixation (the conversion of N2 to NH3) is the largest natural source of bioavailable nitrogen to the biosphere, and dictates the rate of community productivity in many nitrogen-limited environments. Deep-sea sediments are traditionally not thought to host N2 fixation, however evidence from a metagenomics dataset targeting deep-sea methanotrophic archaea (ANME) suggested their ability to fix N2 (Pernthaler, et al., PNAS 2008). Using stable isotope labeling experiments and FISH-NanoSIMS, a technique which allows the visualization of isotopic composition within phylogenetically identified cells on the nanometer scale, we demonstrated that the ANME are capable of N2 fixation (Dekas et al., Science 2009). In the present work, we use FISH-NanoSIMS and bulk Isotope Ratio Mass Spectrometry (IRMS) to show that the ANME are the most significant source of new nitrogen at a Costa Rican methane seep. This suggests that the ANME may play a significant role in N2 fixation in methane seeps worldwide. We expand our investigation of deep-sea diazotrophy to include diverse habitats, including sulfide- and carbon-rich whalefalls, and observe that N2 fixation is widespread in sediments on the seafloor. Outside of methane seeps, N2 fixation appears to be mediated by a diversity of anaerobic microbes potentially including methanogens and sulfate reducing bacteria. Interestingly, deep-sea N2 fixation often occurs in the presence of high levels of NH4+. Our observations challenge long-held hypotheses about where and when N2 fixation occurs, and suggest a bigger role for N2 fixation on the seafloor - and potentially the deep-biosphere - than previously realized.

  12. Genetic regulation of nitrogen fixation in Rhizobium meliloti.

    Science.gov (United States)

    Cebolla, A; Palomares, A J

    1994-12-01

    The soil bacterium Rhizobium meliloti fixes dinitrogen when associated with root nodules formed on its plant host, Medicago sativa (alfalfa). The expression of most of the known genes required for nitrogen fixation (nif and fix genes), including the structural genes for nitrogenase, is induced in response to a decrease in oxygen concentration. Induction of nif and fix gene expression by low oxygen is physiologically relevant because a low-oxygen environment is maintained in root nodules to prevent inactivation of the highly oxygen-sensitive nitrogenase enzyme. The genes responsible for sensing and transducing the low oxygen signal, fixL and fixJ, encode proteins (FixL and FixJ, respectively) that are homologous to a large family of bacterial proteins involved in signal transduction, the two component regulatory system proteins. The two components consist of a sensor protein, to which FixL is homologous, and a response regulator protein, to which FixJ is homologous. The sensor protein respond to an activating signal by autophosphorylating and then transferring the phosphate to its cognate response regulator protein. The phosphorylated response regulator, which is often a transcriptional activator, is then able to activate its target. A cascade model of nif and fix gene regulation in R. meliloti has been proposed, whereby FixL acts as an oxygen sensor as the initial event in the cascade and transmits this information to FixJ. FixJ, which possesses a putative helix-turn-helix DNA-binding motif, then activates transcription of the nifA and fixK genes. The nifA and fixK gene products, are transcriptional activators of at least 14 other nif and fix genes.

  13. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    Science.gov (United States)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  14. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium

    NARCIS (Netherlands)

    Brauer, V.S.; Stomp, M.; Rosso, C.; van Beusekom, S.A.M.; Emmerich, B.; Stal, L.; Huisman, J.

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  15. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, Verena S.; Stomp, Maayke; Rosso, Camillo; van Beusekom, Sebastiaan A. M.; Emmerich, Barbara; Stal, Lucas J.; Huisman, Jef

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  16. Deep placement of lime nitrogen promotes nitrogen fixation and seed yield of soybean with efficient utilization rates

    OpenAIRE

    Ohyama, Takuji; Takahashi, Yoshihiko; Nagumo, Yoshifumi; Tanaka, Kazuya; Sueyoshi, Kuni; Ohtake, Norikuni; Ishikawa, Shinji; Kamiyama, Satoshi; Saito, Masaki; Tewari, Kaushal

    2010-01-01

    Average soybean yield is low compared with the potential yield. N is derived from three sources; N_2 fixation, soil N, and fertilizer N. A heavy supply of N fertilizer often depresses nodule development and N_2 fixation activity, which sometimes results in the reduction of seed yield. We developed a new fertilization technique for soybean cultivation by deep placement (at 20 cm depth from the soil surface) of slow release N fertilizers, coated urea and lime nitrogen (calcium cyanamide) at the...

  17. The Role of Symbiotic Nitrogen Fixation in Sustainable Production of Biofuels

    Directory of Open Access Journals (Sweden)

    Bandana Biswas

    2014-04-01

    Full Text Available With the ever-increasing population of the world (expected to reach 9.6 billion by 2050, and altered life style, comes an increased demand for food, fuel and fiber. However, scarcity of land, water and energy accompanied by climate change means that to produce enough to meet the demands is getting increasingly challenging. Today we must use every avenue from science and technology available to address these challenges. The natural process of symbiotic nitrogen fixation, whereby plants such as legumes fix atmospheric nitrogen gas to ammonia, usable by plants can have a substantial impact as it is found in nature, has low environmental and economic costs and is broadly established. Here we look at the importance of symbiotic nitrogen fixation in the production of biofuel feedstocks; how this process can address major challenges, how improving nitrogen fixation is essential, and what we can do about it.

  18. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion.

    Science.gov (United States)

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-01-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite with N₂, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N₂ at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C--C bonds generated active carbon species that react directly with N₂ to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  19. Regulation of symbiotic nitrogen fixation in root nodules of alfalfa (Medicago sativa) infected with Rhizobium meliloti.

    Science.gov (United States)

    Kamberger, W

    1977-10-24

    Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concetrations. Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.

  20. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before......Nitrogen (N) availability is the main constraint on primary production in most Arctic ecosystems, with microbial fixation of atmospheric N as the primary source of N input. However, there are only few reports on N fixation rates in relation to climate change in the Arctic. In order to investigate...... observed either no change or occasionally even a decrease in N fixation after warming. Both measured on whole-ecosystem level and on the two moss species separately, litter addition increased N fixation rates. The results suggest that warming will lead to a general increased ecosystem N input, but also...

  1. Expression of an alternative nitrogen fixation system in Azotobacter vinelandii.

    OpenAIRE

    Bishop, P E; Jarlenski, D M; Hetherington, D R

    1982-01-01

    Nitrogenase activities were determined from maximum acetylene reduction rates for mutant strains of Azotobacter vinelandii which are unable to fix N2 in the presence of molybdenum (Nif-) but undergo phenotypic reversal to Nif+ under conditions of Mo deficiency. The system responsible for N2 fixation under these conditions is thought to be an alternative N2 fixation system (Bishop et al., Proc. Natl. Acad. Sci. U.S.A. 77:7342-7346, 1980). Phenotypic reversal of Nif- strains to Nif+ strains was...

  2. Biotic nitrogen fixation in the bryosphere is inhibited more by drought than warming.

    Science.gov (United States)

    Whiteley, Jonathan A; Gonzalez, Andrew

    2016-08-01

    The boreal forest is of particular interest to climate change research due to its large circumpolar distribution and accumulated soil carbon pool. Carbon uptake in this ecosystem is nitrogen (N)-limited, therefore factors affecting carbon or nitrogen dynamics in the boreal forest can have consequences for global climate. We used a 2-year field experiment to investigate the response of biotic nitrogen fixation by cyanobacteria associated with boreal forest bryophytes, in a factorial experiment combining simulated climate change with habitat fragmentation treatments. We simulated climate change conditions using open-top greenhouse chambers in the field, which increased mean and maximum temperatures, and created a precipitation gradient from ambient levels in the center to extreme drought conditions at the periphery of the chamber. The dry patches near the chamber walls exhibited almost no N-fixation, despite having similar densities of cyanobacteria (predominantly Stigonema sp.) as other patches. Rates of N-fixation were best explained by a model containing moisture, fragmentation, cyanobacteria density and time; warming was not a significant variable affecting N-fixation. There was no significant interaction between warming and fragmentation. These results suggest that cyanobacteria responded physiologically to drought by reducing N-fixation activity long before any changes in density. Ecosystem processes, such as N-fixation, can respond in the short term to environmental change much more rapidly than changes in the underlying community structure. Such rapid physiological responses may occur faster than demographic insurance effects of biodiversity. PMID:27098528

  3. How can increased use of biological N2 fixation in agriculture benefit the environment?

    International Nuclear Information System (INIS)

    Asymbiotic, associative or symbiotic biological N2 fixation (BNF), is a free and renewable resource, which should constitute an integral part of sustainable agro-ecosystems. Yet there has been a rapid increase in use of fertiliser N and a parallel decline in the cultivation of leguminous plants and BNF, especially in the developed world. Fertilisers have boosted crop yields, but intensive agricultural systems have increasingly negative effects on the atmospheric and aquatic environments. BNF, either alone or in combination with fertilisers and animal manures, may prove to be a better solution to supply nitrogen to the cropping systems of the future. This review focuses on the potential benefit of BNF on the environment especially on soil acidification, rhizosphere processes and plant CO2 fixation. As fertiliser N has supplanted BNF in agriculture the re-substitution of BNF is considered. What is the consequence of fertiliser N production on energy use? The effect of fertiliser use on the release of the greenhouse gas CO2 is estimated at approximately 1 % of the global anthropogenic emission of CO2. The role of BNF on nitrogen cycling, ammonia volatilisation, N2O emission and NO3 leaching suggests that BNF is less likely than fertilisers to cause losses during pre-cropping and cropping. Sometimes however the post-harvest losses may be greater, due to the special qualities of legume residues. Nevertheless, legumes provide other 'ecological services' including improved soil structure, erosion protection and greater biological diversity. (author)

  4. Breeding for traits supportive of nitrogen fixation in legumes

    International Nuclear Information System (INIS)

    As the potential economic benefits of enhancing dinitrogen (N2) fixation of crop, pasture and forage legumes are substantial, the idea that legume breeding could play a role in enhancing N2 fixation was advanced more than 50 years ago. Various programmes have sought to genetically improve a wide range of species, from pasture legumes such as red clover (Trifolium pratense) to the crop legumes like soybean (Glycine max) and common bean (Phaseolus vulgaris). In some the selection trait was yield, whilst in others it was high plant reliance on N2 fixation (%Ndfa). A third strategy was to optimise legume nodulation through specific nodulation traits, e.g. mass, duration, promiscuous and selective nodulation. Plant genetic variation was sought from natural populations or created through mutagenesis. Although methods for assessing single plants and populations of plants for yield and %Ndfa varied over the years, it is now clear that measurements based on either 15N or xylem solute analysis are the most reliable. Methodological issues as well as poor focus plagued many of the earlier programmes, since enhancing N2 fixation essentially involves adapting legumes to fix more N when growing in N-poor soils. Programmes in which plant genotypes are inoculated with effective rhizobia and screened under conditions of low soil N maximise the symbiotic potential of the legume. (author)

  5. Agro-Process Intensification through Synthetic Rhizosphere Media for Nitrogen Fixation and Yield Enhancement in Plants

    Directory of Open Access Journals (Sweden)

    G. Akay

    2012-01-01

    Full Text Available Problem statement: In order to combat global warming and the emerging Food, Energy and Water shortages (FEWs, several approaches have been adopted, including genetic engineering and farming practices. Biomass based energy technology will further stress food and water resources and hence novel holistic approaches to FEWs should be designed. Approach: A novel technique (Agro-Process Intensification, A-PI which simultaneously addresses FEWs in general and food production in particular was described. The technique was based on the enhancement of multiple interactions between plant roots, water, nutrients and bacteria using soil additives in the form of micro-bioreactors which allow plant root growth through them thus generating a micro-environment acting as a Synthetic Rhizo Sphere (SRS. The SRS-media was a nano-structured micro-porous crosslinked, elastic, ionic and highly hydrophilic polymer, facilitating the efficient use of water and nutrients as well as nitrogen fixation in legumes. Results: SRS media, with or without bacteria, was prepared, characterized and used in greenhouse experiments. Grass, for which the enhancement was well above 200% under water stress, was used to evaluate the mechanism of A-PI. The pea plant was used to demonstrate the intensification achievable by biologically active micro-bioreactors in which nitrogen fixing bacteria, Rhizobia, were supported within the SRS-media. Biologically active SRS-media enhanced the plant root infection by nitrogen fixing bacteria and increased both crop yield (ca. 70% and mineral content. Conclusion/Recommendations: A-PI is achieved principally through the elimination of the random nature of the root/water/nutrient/microorganism interactions. The association of SRS-media with plant roots provides a unique and efficient delivery technique for water and nutrients while protecting beneficial bacteria within the SRS for infection enhancement. Focus on the understanding of the molecular

  6. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs.

    Science.gov (United States)

    Karlson, Agnes M L; Duberg, Jon; Motwani, Nisha H; Hogfors, Hedvig; Klawonn, Isabell; Ploug, Helle; Barthel Svedén, Jennie; Garbaras, Andrius; Sundelin, Brita; Hajdu, Susanna; Larsson, Ulf; Elmgren, Ragnar; Gorokhova, Elena

    2015-06-01

    Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.

  7. Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?

    OpenAIRE

    Grula, John W.

    2006-01-01

    How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen cons...

  8. Avaliação qualitativa e quantitativa da microbiota do solo e da fixação biológica do nitrogênio pela soja Quantitative and qualitative evaluations of soil microbes and biological nitrogen fixation in soybean

    Directory of Open Access Journals (Sweden)

    Rosinei Aparecida de Souza

    2008-01-01

    (DGGE, biological nitrogen fixation, number of rhizobial cells, nodule number and nodule dry weight, nodule occupancy by Bradyrhizobium strains, shoot dry weight, total nitrogen in shoot and nitrogen as ureides in shoot. The temporal variability for carbon and nitrogen of microbial biomass, microbial respiration and microbial metabolic quotient was adequate, and the maximum coefficient of variation was estimated at 35%. The homogeneity between replicates, treatments and harvests was confirmed by the DGGE method. In N-poor soils, the parameters of nodules and shoot dry weight, with maximum coefficient of variation 33 and 18%, respectively, were adequate for evaluation of biological nitrogen fixation, which contributed from 72 to 88% of total nitrogen in shoot.

  9. Nitrogen fixation (acetylene reduction) by annual winter legumes on a coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for their ability to fix nitrogen on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi ryegrass, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation was also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the South. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi ryegrass in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greenhouse experiments did not inhibit nitrogen fixation. 11 references, 7 tables.

  10. Nitrogen fixation (Acetylene Reduction) by annual winter legumes on a coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for nitrogen fixing capacity on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi rye, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation were also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the south. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi rye in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greehouse experiments did not inhibit nitrogen fixation. 7 tables.

  11. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus.

    Science.gov (United States)

    Tominaga, Akiyoshi; Gondo, Takahiro; Akashi, Ryo; Zheng, Shao-Hui; Arima, Susumu; Suzuki, Akihiro

    2012-05-01

    Many legumes form nitrogen-fixing root nodules. An elevation of nitrogen fixation in such legumes would have significant implications for plant growth and biomass production in agriculture. To identify the genetic basis for the regulation of nitrogen fixation, quantitative trait locus (QTL) analysis was conducted with recombinant inbred lines derived from the cross Miyakojima MG-20 × Gifu B-129 in the model legume Lotus japonicus. This population was inoculated with Mesorhizobium loti MAFF303099 and grown for 14 days in pods containing vermiculite. Phenotypic data were collected for acetylene reduction activity (ARA) per plant (ARA/P), ARA per nodule weight (ARA/NW), ARA per nodule number (ARA/NN), NN per plant, NW per plant, stem length (SL), SL without inoculation (SLbac-), shoot dry weight without inoculation (SWbac-), root length without inoculation (RLbac-), and root dry weight (RWbac-), and finally 34 QTLs were identified. ARA/P, ARA/NN, NW, and SL showed strong correlations and QTL co-localization, suggesting that several plant characteristics important for symbiotic nitrogen fixation are controlled by the same locus. QTLs for ARA/P, ARA/NN, NW, and SL, co-localized around marker TM0832 on chromosome 4, were also co-localized with previously reported QTLs for seed mass. This is the first report of QTL analysis for symbiotic nitrogen fixation activity traits.

  12. Cyanobacterial nitrogen fixation in the ocean : diversity, regulation and ecology

    NARCIS (Netherlands)

    L.J. Stal; J.P. Zehr

    2008-01-01

    Nitrogen is an essential and major component of biomass. While virtually all life depends on combined forms of nitrogen that are usually limited in availability, some prokaryotes, including many groups of cyanobacteria, can use the ubiquitous atmospheric dinitrogen (N2). As photoautotrophic bacteria

  13. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  14. The value of symbiotic nitrogen fixation by grain legumes in comparison to the cost of nitrogen fertilizer used in developing countries

    International Nuclear Information System (INIS)

    A great challenge lies in devising more sustainable farming systems without compromising food production levels and food security. Obviously, increasing productivity is necessary to accommodate growth in the global population. World wide, the environmental factors that most severely restrict plant growth are the availability of water and nitrogen. The challenges in developing countries are to find ways of meeting this additional nitrogen demand without concomitant degrading natural productivity. Widespread adoption of biological nitrogen fixation (BNF) would contribute to this goal. BNF, together with adequate N management in the ecosystem, appears to be the most promising alternative to increasing the use of inorganic fertiliser nitrogen. BNF technologies represent economic, sustainable and environmentally friendly means of ensuring the nitrogen requirement of an agro-ecosystem. Here we investigate the value of BNF by grain legumes and compares it to the cost of nitrogen fertilizer used in developing countries. Our data show that major grain legumes fix approximately 11.1 million metric tons of nitrogen per annum in developing countries. If this N was supplied by inorganic fertiliser one would have to apply at least double that amount to achieve the same yields, and this would cost approximately 6.7 billion US dollars. As the eight major grain legumes grown in developing countries contribute 30 - 40% of the annual N requirement the contribution of BNF is of great economic and environmental importance. (author)

  15. Selection and breeding of corn to enhance associative bacterial nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Ela, S.W.; Anderson, M.A.; Brill, W.J.

    1980-01-01

    We have increased, through screening and breeding, the ability of corn (maize, Zea mays L.) to support bacterial nitrogen fixation in or on corn roots. Isotopic N fixed from /sup 15/N/sub 2/ was found on the roots. Even though the nitrogen-fixing association depends on germ plasm from tropical corn, the activity can be bred into corn currently used in midwestern United States agriculture.

  16. Influence of Co and B12 on the growth and nitrogen fixation of Trichodesmium

    OpenAIRE

    Irene B. Rodriguez; Ho, Tung-Yuan

    2015-01-01

    We investigated the influence of varying cobalt (Co) and B12 concentrations to growth and nitrogen fixation of Trichodesmium, a major diazotroph in the tropical and subtropical oligotrophic ocean. Here we show that sufficient inorganic Co, 20 pmol L-1, sustains the growth of Trichodesmium either with or without an additional B12 supply. We also found that in these culture conditions, nitrogen levels fixed by Trichodesmium were higher in treatments with insufficient B12 than in treatments with...

  17. Selection and breeding of corn to enhance associative bacterial nitrogen fixation

    International Nuclear Information System (INIS)

    We have increased, through screening and breeding, the ability of corn (maize, Zea mays L.) to support bacterial nitrogen fixation in or on corn roots. Isotopic N fixed from 15N2 was found on the roots. Even though the nitrogen-fixing association depends on germ plasm from tropical corn, the activity can be bred into corn currently used in midwestern United States agriculture

  18. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone

    Science.gov (United States)

    Gier, Jessica; Sommer, Stefan; Löscher, Carolin R.; Dale, Andrew W.; Schmitz, Ruth A.; Treude, Tina

    2016-07-01

    The potential coupling of nitrogen (N2) fixation and sulfate reduction (SR) was explored in sediments of the Peruvian oxygen minimum zone (OMZ). Sediment samples were retrieved by a multiple corer at six stations along a depth transect (70-1025 m water depth) at 12° S, covering anoxic and hypoxic bottom water conditions. Benthic N2 fixation, determined by the acetylene reduction assay, was detected at all sites, with highest rates between 70 and 253 m and lower rates at greater depth. SR rates decreased with increasing water depth. N2 fixation and SR overlapped in sediments, suggesting a potential coupling of both processes. However, a weak positive correlation of their activity distribution was detected by principle component analysis. A potential link between N2 fixation and sulfate-reducing bacteria was indicated by the molecular analysis of nifH genes. Detected nifH sequences clustered with the sulfate-reducing bacteria Desulfonema limicola at the 253 m station. However, nifH sequences of other stations clustered with uncultured organisms, Gammaproteobacteria, and Firmicutes (Clostridia) rather than with known sulfate reducers. The principle component analysis revealed that benthic N2 fixation in the Peruvian OMZ is controlled by organic matter (positive) and free sulfide (negative). No correlation was found between N2 fixation and ammonium concentrations (even at levels > 2022 µM). N2 fixation rates in the Peruvian OMZ sediments were in the same range as those measured in other organic-rich sediments.

  19. N2AFRICA: Putting Nitrogen Fixation to Work for Smallholder Farmers in Africa

    International Nuclear Information System (INIS)

    Capturing free nitrogen from the atmosphere, also called nitrogen fixation, through the use of legumes as a rotation crop is a step forward in feeding the soil and improving farmers' incomes. Nitrogen fixation as measured by the stable nitrogen-15 isotope is a potentially important technique in the following project N2AFRICA, lead by Ken Giller from Wageningen University. N2AFRICA is a large scale research project focused on 'Putting nitrogen fixation to work for smallholder farmers in Africa'. N2AFRICA is funded by 'The Bill and Melinda Gates Foundation' through a grant to Plant Production Systems, Wageningen University, in the Netherlands. It is led by Wageningen University together with CIAT-TSBF, IITA and has many partners in the Democratic Republic of Congo, Ghana, Kenya, Malawi, Mozambique, Nigeria, Rwanda and Zimbabwe. Goals: At the end of the 4-year project we will have: identified niches for targeting nitrogen fixing legumes; tested multi-purpose legumes to provide food, animal feed, and improved soil fertility; promoted the adoption of improved legume varieties; supported the development of inoculum production capacity through collaboration with private sector partners; developed and strengthened capacity for legumes research and technology dissemination; delivered improved varieties of legumes and inoculant technologies to more than 225,000 smallholder farmers in eight countries of sub-Saharan Africa

  20. Crystallization of a flavodoxin involved in nitrogen fixation in Rhodobacter capsulatus

    OpenAIRE

    Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A.

    2008-01-01

    The flavodoxin NifF from R. capsulatus, a candidate for nitrogenase reduction during nitrogen fixation, has been crystallized using the hanging-drop vapour-diffusion method. Preliminary X-ray data processing at 2.17 Å resolution allowed determination of the crystal system and unit-cell parameters.

  1. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. R. Hood

    2007-07-01

    Full Text Available The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997; GS97 anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2-fixation that are required to do so. We present results from a new Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2-fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detrital iron compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr−1 from 25° S–65° N. In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic in the model. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2-fixation rate estimates for the Atlantic (and globally may need to be revised upward, which

  2. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    V. J. Coles

    2006-09-01

    Full Text Available The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997 anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2 fixation that are required to do so. We present results from an Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2 fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detritus compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr from 25° S–65° N. In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2 fixation rate estimates for the Atlantic (and globally may need to be revised upward, which will help resolve imbalances

  3. Midterm results of biologic fixation or mosaicplasty and drilling in osteochondritis dissecans

    Directory of Open Access Journals (Sweden)

    Tuluhan Yunus Emre

    2011-01-01

    Conclusion: Biologic fixation or mosaicplasty and drilling as a technique to treatment of the lesion in OCD by osteochondral autograft transfer has resulted in good and excellent clinical outcomes in our patients and it is considered that providing blood flow to subchondral bone by circumferencial drilling leads to an increase in the robustness of biological internal fixation and shortens the duration of recovery.

  4. Bradyrhizobium strain and the 15N natural abundance quantification of biological N2 fixation in soybean

    International Nuclear Information System (INIS)

    In commercial plantations of soybean in both the Southern and the Cerrado regions, contributions from biological nitrogen fixation (BNF) are generally proportionately high. When using the 15N natural abundance technique to quantify BNF inputs, it is essential to determine, with accuracy, the 15N abundance of the N derived from BNF (the 'B' value). This study aimed to determine the effect of four recommended strains of Bradyrhizobium spp. (two B. japonicum and two B. elkanii) on the 'B' value of soybean grown in pots in an open field using an equation based on the determination of δ15N natural abundance in a non-labelled soil, and estimate of the contribution of BNF derived from the use of 15N-isotope dilution in soils enriched with 15N. To evaluate N2 fixation by soybean, three non-N2-fixing reference crops were grown under the same conditions. Regardless of Bradyrhizobium strain, no differences were observed in dry matter, nodule weight and total N between labelled and non-labelled soil. The N2 fixation of the soybeans grown in the two soil conditions were similar. The mean 'B' values of the soybeans inoculated with the B. japonicum strains were -1.84 per mille and -0.50 per mille, while those inoculated with B. elkanii were -3.67 per mille and -1.0 per mille, for the shoot tissue and the whole plant, respectively. Finally, the 'B' value for the soybean crop varied considerably in function of the inoculated Bradyrhizobium strain, being most important when only the shoot tissue was utilised to estimate the proportion of N in the plant derived from N2 fixation. (author)

  5. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis.

    Science.gov (United States)

    Krupke, Andreas; Mohr, Wiebke; LaRoche, Julie; Fuchs, Bernhard M; Amann, Rudolf I; Kuypers, Marcel M M

    2015-07-01

    Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A-haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.

  6. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    Science.gov (United States)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  7. Nitrogen Fixation into HNO3 and HNO2 by Pulsed High Voltage Discharge

    Institute of Scientific and Technical Information of China (English)

    BIAN Wenjuan; YIN Xiangli

    2007-01-01

    Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as the major nitrogen source bubbled into the discharge reactor. When a discharge occurred, nitrogen was dissociated to active species to take part in the aqueous chemical process. HNO3 and HNO2 were produced. The nitrogen fixation process was influenced distinctly by the presence of hydroxyl radicals. During a discharge of 21 min, HNO3 was the main product and occupied 95% of the total nitrogen content in water. Its concentration was 1.36 × 10-3 mol/L-1 with bubbling air and was 1.53 × 10-3 mol L-1 with bubbling nitrogen, while the yield was 2.32 × 10-3 mol J-1S-1 and 2.06 × 1(T-8 mol J-1S-1, respectively.

  8. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    Full Text Available Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N(2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA, possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS region to determine population dynamics. In parallel, we measured microcystin concentrations, N(2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N(2 fixation rates were observed. Then, following large early summer N(2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N(2 fixation rates and Aphanizomenon abundance increased

  9. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

    Science.gov (United States)

    Berrendero, Esther; Valiente, Eduardo Fernández; Perona, Elvira; Gómez, Claudia L.; Loza, Virginia; Muñoz-Martín, M. Ángeles; Mateo, Pilar

    2016-08-01

    In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats.

  10. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

    Science.gov (United States)

    Berrendero, Esther; Valiente, Eduardo Fernández; Perona, Elvira; Gómez, Claudia L.; Loza, Virginia; Muñoz-Martín, M. Ángeles; Mateo, Pilar

    2016-01-01

    In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats. PMID:27476439

  11. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

    Science.gov (United States)

    Gemperline, Erin; Jayaraman, Dhileepkumar; Maeda, Junko; Ané, Jean-Michel; Li, Lingjun

    2015-01-01

    Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula- Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula- Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

  12. ENUMERATION OF MICROBES AND GAS PRODUCTION DURING DENITRIFICATION AND NITROGEN FIXATION PROCESSES IN SOIL

    Directory of Open Access Journals (Sweden)

    A. E. Ghaly

    2012-01-01

    Full Text Available Dry plant material contains 2-4% nitrogen, making it an essential nutrient for all plants. The nitrogen cycle regulates the pathways which transform nitrogen from a relatively inert dinitrogen gas to forms of organic nitrogen such as proteins and nucleic acids. Denitrification and nitrogen fixation are the two most important processes that remove and add nitrogen to the soil, respectively. The aim of the study was to gain information on the denitrification and nitrogen fixing activities in soil and sediment employing the acetylene technique and assuring the gas chromatography analysis by total plate count and most probably number. The results indicated that acetylene (0.1 atm inhibited N2O reduction and caused stoichiometric accumulation of N2O during the conversion of NO3- to N2. N2O was an obligatory intermediate in the sequence of steps between N2O- and N2. The appearance of CO2 and accumulation of N2O would be suitable criteria for the presence of denitrifiers in appropriately enriched media and the acetylene reduction test is a suitable assay for nitrogen fixing activity. There was an obligatory requirement for organic carbon as a carbon and energy source for denitrification and nitrogen fixation to take place. The results showed that acetylglucosamine can be used as a carbon and energy source for denitrification but not as a nitrogen source (C:N ratio of 5:1. NH4+ has no effect on denitrification activity but it inhibited the nitrogenase activity. The presence of air in the gas phase affects both the denitrification and nitrogen fixing activity while adding H2O encouraged anaerobic conditions.

  13. Nitrogen Fixation by Photosynthetic Bacteria in Lowland Rice Culture

    OpenAIRE

    Habte, M.; M. Alexander

    1980-01-01

    Propanil (3′,4′-dichloropropionanilide) was a potent inhibitor of the nitrogenase activity of blue-green algae (cyanobacteria) in flooded soil, but the herbicide at comparable concentrations was not toxic to rice, protozoa, and nitrogen-fixing bacteria. Ethanol-amended flooded soils treated with propanil exhibited higher rates of nitrogenase activity than those not treated with the herbicide. The enhanced nitrogenase activity in propanil-treated soils was associated with a rise in the populat...

  14. Comparative sequence analysis of nitrogen fixation-related genes in six legumes.

    Science.gov (United States)

    Kim, Dong Hyun; Parupalli, Swathi; Azam, Sarwar; Lee, Suk-Ha; Varshney, Rajeev K

    2013-01-01

    Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e., Medicago truncatula (Mt), Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc), Phaseolus vulgaris (Pv), and Glycine max (Gm). Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks) and non-synonymous substitutions per non-synonymous site (Ka) between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the highest distance between Mt and Pv in six legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reports some interesting observations e.g., no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed. PMID:23986765

  15. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    Directory of Open Access Journals (Sweden)

    Dong Hyun eKim

    2013-08-01

    Full Text Available Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e. Medicago truncatula (Mt, Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc, Phaseolus vulgaris (Pv and Glycine max (Gm. Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks and nonsynonymous substitutions per nonsynonymous site (Ka between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the farthest distance between Mt and Pv in 6 legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reported some interesting observations e.g. no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

  16. Nitrogen fixation in Acacia auriculiformis and Albizia lebbeck and their contributions to crop-productivity improvement

    International Nuclear Information System (INIS)

    Pot and field experiments assessed N2 fixation by Albizia lebbeck and Acacia auriculiformis and contributions from prunings to yields of corn and hibiscus. Nitrogen fixation in these tree legumes was poor, with less than 50% N derived from fixation (%Ndfa) when grown in pots, but higher (>70%) in field conditions, after inoculation with compatible Bradyrhizobium strains. Prunings from A. lebbeck, as green manure improved growth of maize and hibiscus, inducing greater corn-kernel yields than did urea. Acacia auriculiformis prunings were similarly beneficial when mixed with leaves of A. lebbeck or L. leucocephala. Application of slow- and fast-nutrient-releasing leaves is required to maximize their contributions to crop productivity. (author)

  17. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications

    International Nuclear Information System (INIS)

    In Brazil the long-term continuous cultivation of sugarcane with low N fertiliser inputs, without apparent depletion of soil-N reserves, led to the suggestion that N2-fixing bacteria associated with the plants may be the source of agronomically significant N inputs to this crop. From the 1950s to 1970s, considerable numbers of N2-fixing bacteria were found to be associated with the crop, but it was not until the late 1980s that evidence from N balance and 15N dilution experiments showed that some Brazilian varieties of sugarcane were able to obtain significant contributions from this source. The results of these studies renewed the efforts to search for N2-fixing bacteria, but this time the emphasis was on those diazotrophs that infected the interior of the plants. Within a few years several species of such 'endophytic diazotrophs' were discovered including Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans and Burkholderia sp. Work has continued on these endophytes within sugarcane plants, but to date little success has been attained in elucidating which endophyte is responsible for the observed BNF and in what site, or sites, within the cane plants the N2 fixation mainly occurs. Until such important questions are answered further developments or extension of this novel N2-fixing system to other economically important non-legumes (e.g. cereals) will be seriously hindered. As far as application of present knowledge to maximise BNF with sugarcane is concerned, molybdenum is an essential micronutrient. An abundant water supply favours high BNF inputs, and the best medium term strategy to increase BNF would appear to be based on cultivar selection on irrigated N deficient soils fertilised with Mo. (author)

  18. Nitrogen fixation in lichens is important for improved rock weathering

    Indian Academy of Sciences (India)

    Gamini Seneviratne; I K Indrasena

    2006-12-01

    It is known that cyanobacteria in cyanolichens fix nitrogen for their nutrition. However, specific uses of the fixed nitrogen have not been examined. The present study shows experimentally that a mutualistic interaction between a heterotrophic N2 fixer and lichen fungi in the presence of a carbon source can contribute to enhanced release of organic acids, leading to improved solubilization of the mineral substrate. Three lichen fungi were isolated from Xanthoparmelia mexicana, a foliose lichen, and they were cultured separately or with a heterotrophic N2 fixer in nutrient broth media in the presence of a mineral substrate. Cells of the N2-fixing bacteria attached to the mycelial mats of all fungi, forming biofilms. All biofilms showed higher solubilizations of the substrate than cultures of their fungi alone. This finding has bearing on the significance of the origin and existence of N2-fixing activity in the evolution of lichen symbiosis. Further, our results may explain why there are N2-fixing photobionts even in the presence of non-fixing photobionts (green algae) in some remarkable lichens such as Placopsis gelida. Our study sheds doubt on the idea that the establishment of terrestrial eukaryotes was possible only through the association between a fungus and a phototroph.

  19. Ecology of nitrogen fixation in soils and rhizospheres. Pt. 5

    Energy Technology Data Exchange (ETDEWEB)

    Werner, D.; Stripf, R.; Abramowski, R.; Fiedler, U.

    1980-12-01

    The effects of reduced oxygen concentration on root growth and activities of enzymes of N-metabolism of wheat (Triticum aestivum var. Kolibri) have been studied, for low O/sub 2/ tensions are required for N/sub 2/ fixation by microaerophilic bacteria (e.g. Azospirillum) associated with root systems of grasses. In hydrocultures with oxygen concentrations in the range of 0.2 to 1 mg O/sub 2/ x 1/sup -1/ compared to aerated cultures (8-9 mg O/sub 2/ x 1/sup -1/) root growth was reduced from 10 mg fresh weight x day/sup -1/ x plant/sup -1/ to one tenth 15 to 30 d after sowing. Specific activity of NADH and NADPH dependent glutamate dehydrogenase (E.C. 1.4.1.2 and 1.4.1.4) is reduced by 50% in the cultures with low oxygen concentrations 20 to 30 days after sowing, whereas specific activity of aspartate aminotransferase (E.C. 2.6.1.1) and alanine amino transferase (E.C. 2.6.1.2) is enhanced by a factor of two to three. Specific activity of glutamine synthetase is almost unaffected. Specific activity of glutamate dehydrogenase is lowest in the root tips, medium in young root hair zone and highest in the old root hair zone, glutamine synthetase activity is reverse in the three zones with differences by a factor of 3-5; aspartate aminotransferase is similarly active in the three zones. Nitrate concentration used (100 ..mu..M) for cultivation of the wheat plants was tested with Azospirillum brasilense in pure culture on agar surfaces exposed to air at the same pH (5.8), used for cultivation of the wheat plants. Activiy after a 14 day period (peak activity 70 mmol C/sub 2/H/sub 4/ x mg protein/sup -1/ x h/sup -1/) was not affected, however 1 mM and 5 mM nitrate added reduced the total activity to 50% and 10% respectively.

  20. Reducing use of fossil energy by biological N fixation; Biologinen typensidonta fossiilisen energian saeaestaejaenae

    Energy Technology Data Exchange (ETDEWEB)

    Kankanen, H.; Suokannas, A.; Tiilikkala, K.; Nykanen, A.

    2013-06-01

    Biological nitrogen (N) fixation can be increased greatly in Finnish agriculture. Intensive use of legumes in grasslands, utilization of green manure and undersown crops, and maximal growing of pulse crops can reduce use of fertilizer N by 60% compared to current situation. It would save fossil energy, taking account energy use of machines, more than 3000 TJ per year. This corresponds an energy amount, which was used as fuel oil in grain dryers and for heating of farm buildings at Finnish farms in 2010. The potential of biological N fixation for saving fossil energy was examined through current field area of different crops and farm types. The available manure N was taken account, but not the possibly increasing efficiency in using it in the future. Field use was supposed to change only in the context of increasing biological N fixation, not e.g. because of increased use of fields for energy crops. The possibilities of legumes were considered optimistically, but such restrictions like adequate crop rotation and soil type were taken account. The amount of energy in fertilizer N fabrication was calculated according to the most effective techniques in current factories. The calculated change in energy demand of machines at farms was based on energy consumption measures on field. Knowledge concerning crops which are able to fix atmospheric N, and their ability to replace fertilizer N in different cropping situations, was compiled. The N benefit for the subsequent crop after green manure crop was computed in a new, more realistic way. N fertilization replacement value of the legume crop takes account the after effect in case that fertilizer N is used for optimizing the growth of the subsequent non-legume crop. On the other hand, sometimes the biological and even economical optimum must be turned down, if N in green manure is wanted to be used maximally by the subsequent crop. The appraisals are a part of MTT's HiiliN project, which develops technologies which can

  1. BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER BY DENITRIFICATION OF MIX-CULTURING FUNGI AND BACTERIA

    Institute of Scientific and Technical Information of China (English)

    TAKAYA; Naoki; SHOUN; Hirofumi

    2006-01-01

    Denitrificationis a biological processin which nitrateand/or nitrite is reduced to gaseous nitrogen,dinitrogen(N2)or nitrous oxide(N2O)while carbon dioxide is thesecond gaseous product of the process.This is one of themain mechanisms of the global nitrogen cycle,and playsanimportant role as the reverse reaction of nitrogen fixa-tion in maintaining global environmental homeostasis[1].Denitrification has beenlongthought to be a unique char-acteristic of prokaryotes[2,3].Anumber of bacteria(suchasPseudomonas s...

  2. Asoects on the use of isotopes in studies of biological dinitrogen fixation by legumes

    International Nuclear Information System (INIS)

    Techniques used for estimation of N2-fixation by legumes are briefly reviewed. As judged from the literature, acetylene reducing techniques are suitable for assessment of instantaneous N2-fixation techniques in laboratory and greenhouse tests while isotope techniques are suitable for assessment of integrated N2-fixation in field tests. In a field test 15N-enriched calcium nitrate was applied at seeding in a microplot experiment with two pea varieties and one oat variety, the latter used as reference crop. Yield independent criteria were used to calculate the fractional uptake of nitrogen in the plant, derived from soil-N, fertilizer-N and in the pea varieties also from N2-fixation, and to calculate the A-values expressing the available amounts in soil of native nitrogen and of nitrogen obtained by N2-fixation. The figures of fractional uptake were combined with N-yields for supplemental field plots for calculation of the absolute uptake of nitrogen from the three sources concerned and of recoveries of applied fertilizer-N. It was concluded that if certain precautions are taken to ensure acceptable isotopic dilution conditions, the potential of the method tested is obvious. (Author)

  3. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    Science.gov (United States)

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  4. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean

    Directory of Open Access Journals (Sweden)

    T. Moutin

    2007-07-01

    Full Text Available Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years, has shown a decrease in the dissolved inorganic phosphate (DIP pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2 fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise, we present data on DIP, dissolved organic phosphate (DOP, and particulate phosphate (PP pools and DIP turnover times (TDIP along with N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and TDIP were more than a month in the centre of the gyre: DIP availability remained largely above the level required for phosphate limitation. This contrasts with recent observations in the western Pacific Ocean at the same latitude (DIAPALIS cruises where lower DIP concentrations (<20 nmol L−1 and TDIP<50 h were measured during the summer season. During the BIOSOPE cruise, N2 fixation rates were higher within the cold water upwelling near the Chilean coast. This observation contrasts with recently obtained model output for N2 fixation distribution in the South Pacific area and emphasises the importance of studying the main factors controlling this process. The South Pacific gyre can be considered a High P Low Chlorophyll (HPLC oligotrophic area, which could potentially support high N2 fixation rates, and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.

  5. Evaluation of the biological nitrogen fixation (N{sub 2}) contribution in several forage legumes and the transfer of N to associated grasses; Avaliacao da contribuicao da fixacao biologica de N{sub 2} em varias leguminosas forrageiras e transferencia de N para uma graminea consorciada

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.S.V.

    1991-12-01

    The objective of experiment 1 was to compare two different techniques for labelling the soil mineral nitrogen with {sup 15} N, for studies to quantify the contribution of biological nitrogen fixation (BNF) to forage legumes using the {sup 15} N isotope dilution technique. The two techniques for labelling the soil were: incorporation a {sup 15} N labelled organic compost (slow release treatment), and split applications of {sup 15} N labelled ammonium sulphate. The evaluation of the techniques was through the quantification of BNF in the Itaguai Hybrid of Centrosema using two non-Na- fixing control plants (P. maximum K K-16 and Sorghum bicolor). The objective of experiment 2 was to quantify the contribution of BNF to forage legumes and the transfer of fixed nitrogen to associated grasses in mixed swards again using the {sup 15} N isotope dilution technique. This study was conducted on a red podzolic soil (Typic Hapludult), with 7 forage legumes and 3 grasses in monoculture, and 3 mixed swards of Brachiaria brizantha with the Centrosema hybrid, Galactia striata and Desmodium ovalifolium, respectively, with varying ratios of grass to legume (4:1 to 1:4). In order to quantify the BNF contributions to the legumes and the transfer of fixed N to the B. brizantha, the plots were amended 8 times with doses of 0.01 g {sup 15} N m{sup -2} of {sup 15} N labelled ammonium sulphate (12.5 atom % {sup 15} N) each 14 days, giving a total of 0.08 g {sup 15} N m{sup -2} of {sup 15} N during the 97 days of the experiment. In monoculture the different forage legumes obtained the equivalent of between 43 and 100 kg N ha{sup -1} from BNF. Stylosanthes guianensis showed the greatest contributions from BNF at 100 Kg N ha{sup -1}. In mixed swards with Brachiaria brizantha the proportion of N derived from BNF in the three legumes studied (Centrosema hybrid, G. striata and D. ovalifolium) was significantly greater than when they were grown in monoculture. (author). 197 refs, 9 figs, 19 tabs.

  6. Diversity and function from the ground up : microbial mediation of wetland plant structure and ecosystem function via nitrogen fixation

    OpenAIRE

    Moseman, Serena M

    2008-01-01

    Plant-dependent functions of coastal wetlands are strongly influenced by nitrogen availability. Diazotrophs, microbes that fix nitrogen, in surface sediments and rhizospheres (roots and surrounding sediments) of plants may fundamentally affect wetland ecosystems. In testing roles of nitrogen fixing microbes in niche differentiation between two key plants, Spartina foliosa and Salicornia virginica, a mensurative experiment reveals plant-specific diel patterns of nitrogen fixation (acetylene re...

  7. Measurement of dinitrogen fixation by Biological soil crust (BSC) from the Sahelian zone: an isotopic method.

    Science.gov (United States)

    Ehrhardt, F.; Alavoine, G.; Bertrand, I.

    2012-04-01

    Amongst the described ecological roles of Biological Soil Crust, N fixation is of importance for soil fertility, especially in arid and semi-arid ecosystems with low inputs. In BSC, the quantification of N fixation fluxes using an indirect method is widespread, usually with the Acetylene Reduction Assay (ARA) which consists in measuring the nitrogenase activity through the process of acetylene reduction into ethylene. A converting factor, still discussed in the literature and greatly depending of the constitutive organisms of the BSC, is the tool used to convert the amount of reduced ethylene into quantitative fixed Nitrogen. The aim of this poster is to describe an isotopic direct method to quantify the atmospheric dinitrogen fixation fluxes in BSC, while minimizing the variability due to manipulations. Nine different BSC from the Sahelian zone were selected and placed in an incubation room at 28° C in dark and light conditions during three days, while moisture equivalent to pF=2 was regularly adjusted using the gravimetric method with needles and deionized water, in order to activate and reach a dynamic stability of their metabolisms. Subsequently, each crust was placed into a gas-tight glass vial for incubation with a reconstituted 15N2 enriched atmosphere (31.61 % atom 15N, while the proportion of each main gas present in the air was conserved, i.e. 78% N2, 21% O2 and 0.04% CO2). Principal difficulties are to guarantee the airtighness of the system, to avoid crust desiccation and to keep the crust metabolically active under stable conditions for six hours. Several tests were performed to determine the optimum time for 15N2 incubation. Three replicated control samples per crust were also stabilized for three days and then dried at 105° C, without any incubation with 15N2 enriched atmosphere. Total N and 15N were then measured in the grounded (80μm) and dried (105° C) crust, using a Flash EA elemental analyzer (Eurovector, Milan, Italy) coupled to a Delta

  8. The use of 15N-labelled dinitrogen in the study of nitrogen fixation by blue-green algae

    International Nuclear Information System (INIS)

    Prior to the development of the acetylene reduction technique 15N was used as the main qualitative and quantitative measure of nitrogen fixation by free-living cyanobacteria in a variety of aquatic and terrestrial habitats. Despite its expense and the technical difficulty, 15N is a major tool in the study of cyanobacteria, for example, incorporation of 15N2 is the definitive test for nitrogen fixation; it is used in the determination of the correct ratio of acetylene reduction to nitrogen fixation, in in situ nitrogen fixation assays, in tracing the formation and fate of extra-cellular nitrogen and in measuring the turnover and grazing rates of cyanobacterial intra-cellular nitrogen. These latter studies show that 15N-labelled extra-cellular nitrogen can serve as nitrogen sources for a variety of bacteria, fungi, algae and higher plants, and that cyanobacteria are graced and digested by a variety of animals. The turnover rates of cyanobacterial 15N-labelled cells are dependent on the type of cell, species, environmental conditions and the availability of degrading organisms. The breakdown products are rapidly mineralised and used as nitrogen sources by higher plants. (author)

  9. The Effects of Mineral Nitrogen on the Fixation of Atmospheric Nitrogen by Vicia Faba L

    International Nuclear Information System (INIS)

    From 1964 to 1966 a systematic research vas carried out at the Central Research Institute for Plant Production in Prague - Ruzyně, aimed at examining the effect of gradually increased levels of nitrogen and various forms of nitrogen in nitrogen fertilizers on the yield, nitrogen content and the nodulation of the roots of horse bean (Vicia faba LQ. By means of 15N, the proportion of the total nitrogen content of the plant derived from the fertilizer as well as the total utilization of the nitrogen fertilizer by the plant were determined. The experiments were carried out in a series of greenhouse pot tests using a brown soil type, with ammonium sulphate and potassium nitrate as the nitrogen sources. Gradually-increased-levels of nitrogen in ammonium sulphate (0, 5.2, 26.2, 52.5 and 105.0 mgN/kg of soil) applied to the horse bean did not exert any substantial effect on the yield of fresh aerial parts of the horse bean, when harvested at the flowering period. The nitrogen content of tissues of the fertilized plants differed from the control plants (without nitrogen addition) only at the highest nitrogen level (2.7% compared to 3.4% N). The proportion of nitrogen absorbed from the nitrogen fertilizer by whole plant, increased almost as a linear function of nitrogen supplied. Thus the whole plant consumed 51 to 57% of the nitrogen from the first two fertilizer levels, and 64 to 69% from the last two levels of fertilizer, the 52.5-mg and 105-mg levels. In comparing nitrogen supplied as potassium nitrate with nitrogen in ammonium sulphate, at a level of 26.2 mg N/kg of soil, no difference of yield and of percentage nitrogen content in the aerial part of horse bean was found between the plants grown with the nitrogen fertilizers and control plants. The isotopical analysis of nitrogen showed that in the aerial part of horse bean plant the percentage proportion of nitrogen deriving from the fertilizer was higher when potassium nitrate was used (10.8%), than in case of

  10. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice.

    Science.gov (United States)

    Desnoues, Nicole; Lin, Min; Guo, Xianwu; Ma, Luyan; Carreño-Lopez, Ricardo; Elmerich, Claudine

    2003-08-01

    The Pseudomonas stutzeri strain A1501 (formerly known as Alcaligenes faecalis) fixes nitrogen under microaerobic conditions in the free-living state and colonizes rice endophytically. The authors characterized a region in strain A1501, corresponding to most of the nif genes and the rnf genes, involved in electron transport to nitrogenase in Rhodobacter capsulatus. The region contained three groups of genes arranged in the same order as in Azotobacter vinelandii: (1) nifB fdx ORF3 nifQ ORF5 ORF6; (2) nifLA-rnfABCDGEF-nifY2/nafY; (3) ORF13 ORF12-nifHDK-nifTY ORF1 ORF2-nifEN. Unlike in A. vinelandii, where these genes are not contiguous on the chromosome, but broken into two regions of the genome, the genes characterized here in P. stutzeri are contiguous and present on a 30 kb region in the genome of this organism. Insertion mutagenesis confirmed that most of the nif and the rnf genes in A1501 were essential for nitrogen fixation. Using lacZ fusions it was found that nif and rnf gene expression was under the control of ntrBC, nifLA and rpoN and that the rnf gene products were involved in the regulation of the nitrogen fixation process. PMID:12904565

  11. Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes Avaliação da contribuição da fixação biológica de nitrogênio em cana-de-açúcar originada de sementes e inoculada com endófitos fixadores de nitrogênio

    Directory of Open Access Journals (Sweden)

    Erineudo de Lima Canuto

    2003-11-01

    Full Text Available The inoculation technique with endophytic diazotrophic bacteria in sugarcane has been shown as an alternative practice to plant growth promotion. The aim of this work was to evaluate the biological nitrogen fixation (BNF contribution by different strains of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus in sugarcane plant inoculated from seeds. The seeds were planted in pots filled with non-sterile soil, inoculated with the bacterial strains and grown 10 months outside of the greenhouse. The BNF contribution of the inoculated bacteria varied depending on the plant species used as a control. The highest BNF contribution as well as the highest populations of reisolated bacteria was observed with inoculation of H. seropedicae strains. The roots appeared to be the preferential tissues for the establishment of the inoculated species.A técnica de inoculação com bactérias diazotróficas endofíticas na cana-de-açúcar apresenta-se como uma prática alternativa para promover o crescimento vegetal menos dependente da adubação nitrogenada. Este trabalho teve como objetivo avaliar a contribuição da fixação biológica de nitrogênio (FBN por diferentes estirpes de Herbaspirillum seropedicae e Gluconacetobacter diazotrophicus inoculadas em plantas de cana-de-açúcar originadas de semente. As sementes foram plantadas em vasos com solo não estéril, inoculadas com as diferentes bactérias e mantidas por 10 meses ao ar livre. As maiores contribuições da FBN ocorreram com a inoculação de estirpes Herbaspirillum seropedicae, e dependeram da espécie vegetal utilizada como testemunha. As raízes apresentaram-se como o órgão vegetal preferencial para o estabelecimento das espécies inoculadas.

  12. Phylogenetic Diversity of Nitrogen Fixation Genes in the Symbiotic Microbial Community in the Gut of Diverse Termites

    OpenAIRE

    Ohkuma, Moriya; Noda, Satoko; Kudo, Toshiaki

    1999-01-01

    Nitrogen fixation by the microorganisms in the gut of termites is one of the crucial aspects of symbiosis, since termites usually thrive on a nitrogen-poor diet. The phylogenetic diversity of the nitrogen-fixing organisms within the symbiotic community in the guts of various termite species was investigated without culturing the resident microorganisms. A portion of the dinitrogenase reductase gene (nifH) was directly amplified from DNA extracted from the mixed population in the termite gut. ...

  13. Nitrogen fixation by Klebsiella pneumoniae is inhibited by certain multicopy hybrid nif plasmids.

    Science.gov (United States)

    Riedel, G E; Brown, S E; Ausubel, F M

    1983-01-01

    In our studies of nif gene regulation, we have observed that certain hybrid nif plasmids drastically inhibit the expression of the chromosomal nif genes of Klebsiella pneumonia. Wild-type (Nif+) K. pneumoniae strains that acquire certain hybrid nif plasmids also acquire the Nif- phenotype; these strains lose 90 to 99% of all detectable nitrogen fixation activity and grow poorly (or not at all) on solid media with N2 as the sole nitrogen source. We describe experiments which defined this inhibition of the Nif+ phenotype by hybrid nif plasmids and identify and characterize four nif DNA regions associated with this inhibition. We show that plasmids carrying these nif regions could recombine with, but not complement, nif chromosomal mutations. Our results suggest that inhibition of the Nif+ phenotype will provide a useful bioassay for some of the factors that mediate nif gene expression.

  14. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes – a genome comparison

    Science.gov (United States)

    Jones, Frances Patricia; Clark, Ian M.; King, Robert; Shaw, Liz J.; Woodward, Martin J.; Hirsch, Penny R.

    2016-05-01

    The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.

  15. The influence of rate and time of nitrate supply on nitrogen fixation and yield in pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Jensen, Erik Steen

    1986-01-01

    pea, by the lowest rate of nitrate at this application time. The pea very efficiently took up and assimilated the nitrate N supplied. The average fertilizer N recovery was 82%. The later the N was supplied the more efficiently it was recovered. When nitrate was supplied at the flat pod growth stage 88......The influence of nitrate N supply on dry matter production, N content and symbiotic nitrogen fixation in soil-grown pea (Pisum sativum L.) was studied in a pot experiment by means of15N fertilizer dilution. In pea receiving no fertilizer N symbiotic nitrogen fixation, soil and seed-borne N...... contributed with 82, 13 and 5% of total plant N, respectively. The supply of low rates of nitrate fertilizer at sowing (“starter N”) increased the vegetative dry matter production, but not the seed yield significantly. Nitrogen fixation was not significantly decreased by the lower rates of nitrate but higher...

  16. The effect of use of nitrogen-fixators in forage pea production

    Directory of Open Access Journals (Sweden)

    Jokanović Svetlana

    2003-01-01

    Full Text Available Microorganisms are the most numerous group of living organisms in the pedosphere. They encompass bacteria, viruses, fungi, algae, protozoa and lichens. Their numbers amount to several million per one gram of absolutely dry soil while their biomass amounts to 5-20 tons per hectare. The aims of this investigation were to examine the effect of application of root nodule bacteria (single strain, mixture of strains, microbiological fertilizer "Nitragin" on the total number of microorganisms, the numbers of fungi actinomycetes, azotobacters, free nitrogen-fixing bacteria and ammonifiers and the activity of dehydrogenase, as well as how the application of bacteria affects some parameters of nitrogen fixation (dry mater mass, percentage and content of nitrogen. In the variant with "Nitragin", the total number of microorganisms and the numbers of fungi, azotobacters and free N-fixing bacteria increased. The largest number of actino-myceles was found in the variant with the mixture of strains. The largest number of ammonifiers was found in the variant with the single strain. The dehydrogenase activity, dry mater mass, percentage and content of nitrogen were increased in the variants with the single strain and the mixture of strains.

  17. Macroscopic model for biological fixation and its uncover-ing idea in Chinese Mongolian traditional osteopathy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Namula; LI Xue-en; WANG Mei; HU Da-lai

    2009-01-01

    Splintage external fixation in Chinese Mongolian oste-opathy is a biological macroscopic model. In this model, the ideas of self-life "unity of mind and body" and vital natural "correspondence of nature and human" combine the physi-ological and psychological self-fixation with supplementary external fixation of fracture using small splints. This model implies macroscopic ideas of uncovering fixation and healing: structural stability integrating geometrical "dy-namic" stability with mechanical "dynamic" equilibrium and the stability of state integrating statics with dynamics, and osteoblasts with osteoclasts, and psychological stability in-tegrating closed and open systems of human and nature. These ideas indicate a trend of development in modem osteopathy.

  18. Determinação da fixação biológica de nitrogênio no amendoim forrageiro (Arachis spp. por intermédio da abundância natural de 15N Determination of biological nitrogen fixation by the forage groundnut (Arachis spp. using the 15N natural abundance technique

    Directory of Open Access Journals (Sweden)

    Cesar Heraclides Behling Miranda

    2003-12-01

    Full Text Available Quantificou-se a fixação biológica de nitrogênio (FBN em cinco acessos de Arachis pintoi (BRA31534, BRA31828, BRA31796, BRA15121 e BRA30333 e dois de A. repens (BRA31801 e BRA31861. Os mesmos foram estabelecidos em um solo Latosolo Vermelho Escuro sujeito a inundação estacional, sendo a FBN estimada segundo a técnica da abundância natural do isótopo 15N (d15N. Estolões dos acessos foram plantados em novembro de 1999, em parcelas de 2,0 m x 2,0 m, com quatro repetições, distribuídas em blocos ao acaso. A massa verde das plantas acima de cinco centímetros do solo foi colhida em janeiro de 2000 e seca em estufa a 65ºC até peso constante, sendo posteriormente pesada e moída para análise dos conteúdos em N e d15N, em espectrômetro de massa. Verificaram-se diferenças significativas entre os genótipos quanto à produção de matéria seca (MS e N total, sobressaindo-se BRA31534 e BRA31828, com produções de 4,2 t/ha e conteúdos totais de N de 102 e 110 kg/ha, respectivamente. Os acessos BRA30333 e BRA31861 produziram apenas 2,6 t de MS/ha, com 59 e 65 kg/ha de N total, respectivamente. As taxas de FBN dos acessos testados, medidas por comparação dos seus teores de d15N com os de plantas não fixadoras crescendo na mesma área, variaram de 36% (BRA15121 a 90% (BRA31828 do N total das plantas, equivalente a 26 e 99 kg de N/ha, respectivamente. Verificou-se correlação positiva e significativa (r = 0,92, pThe biological nitrogen fixation (BNF of five Arachis pintoi (BRA31534, BRA31828, BRA31796, BRA15121 E BRA30333 and two A. repens (BRA31801 e BRA31861 accessions, grown in a Dark Red Latosol prone to seasonal flooding was evaluated using the 15N natural abundance method (d15N. Stolons of each accession were planted in November 1999, in plots of 2.0 m by 2.0 m, with four replications allotted to randomized blocks. Plant mass above five cm was harvested in January 2000. There were significant differences among the tested

  19. Fixação biológica de nitrogênio e teores foliares de nutrientes na soja em função de doses de molibdênio e gesso agrícola Biological nitrogen fixation and leaf nutrient concentration on soybean as a function of molybdenum and gypsum levels

    Directory of Open Access Journals (Sweden)

    Evandro Gelain

    2011-04-01

    Full Text Available A competitividade econômica da soja brasileira no mercado mundial se deve, em grande parte, aos benefícios da fixação biológica do nitrogênio na cultura. O trabalho foi conduzido a campo, sob sistema plantio direto, em condição de sequeiro, no Município de Maracaju-MS, com o objetivo de avaliar a nodulação, o crescimento, nutrição mineral e produtividade de grãos da soja submetida a diferentes doses de gesso agrícola e molibdênio. Foi utilizado o delineamento experimental de blocos ao acaso, com cinco repetições e esquema de parcelas subdivididas, sendo as parcelas representadas por quatro doses de gesso agrícola (0, 1.000, 2.000 e 3.000 kg ha-1 e as subparcelas, por quatro doses de molibdênio (0, 20, 40 e 60 g ha-1. Não houve efeito da interação gesso x Mo sobre a produtividade da soja. O gesso agrícola não influencia no teor foliar de N e na produtividade. O Mo proporciona incrementos na produtividade e no teor de proteínas dos grãos.The economic competitiveness of Brazilian soybeans on the world market occurs, in large part, due to the benefits of biological nitrogen fixation in this crop. The field experiment was carried out in Maracaju, Mato Grosso do Sul State, Brazil, under no-tillage system, in rainfed condition. The aim was to evaluate nodulation, growth, mineral nutrition and grain yield of soybeans under different doses of gypsum and molybdenum. The experimental design used was a randomized block with five replicates and arranged in a split-plot squeme, with the plot represented by four doses of gypsum (0, 1.000, 2.000 and 3.000 kg ha-1 and the subplots by four doses of molybdenum (0, 20, 40 and 60 g ha-1. There were no interaction effects of Mo x gypsum for grain yield. Gypsum has no influence in the N leaf content and grain yield. Mo increases grain yield and protein levels in the grain.

  20. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle

    Directory of Open Access Journals (Sweden)

    Tobias eGroßkopf

    2012-07-01

    Full Text Available The recent detection of heterotrophic nitrogen (N2 fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N2 fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N2-fixing cyanobacterium, we demonstrated that the presence of high nitrate concentrations (up to 800 µM had no inhibitory effect on growth and N2 fixation over a period of two weeks. In contrast, the environmental oxygen concentration significantly influenced rates of N2 fixation and respiration, as well as carbon and nitrogen cellular content of C. watsonii over a 24 hour period. Cells grown under lowered oxygen atmosphere (5% had a higher nitrogenase activity and respired less carbon during the dark cycle than under normal oxygen atmosphere (20%. Respiratory oxygen drawdown during the dark period could be fully explained (104% by energetic needs due to basal metabolism and N2 fixation at low oxygen, while at normal oxygen these two processes could only account for 40% of the measured respiration rate. Our results revealed that under normal oxygen concentration most of the energetic costs during N2 fixation (~60% are not derived from the process of N2 fixation per se but rather from the indirect costs incurred for the removal of intracellular oxygen or by the reversal of oxidative damage (e.g. nitrogenase de novo synthesis. Theoretical calculations suggest a slight energetic advantage of N2 fixation relative to assimilatory nitrate uptake for heterotrophic and phototrophic growth, when oxygen supply is in balance with the oxygen requirement for cellular respiration (i.e. energy generation for basal metabolism and N2 fixation. Taken together our results imply the existence of a niche for diazotrophic organisms inside oxygen minimum zones, which are predicted to further expand in the future ocean.

  1. NifB and NifEN protein levels are regulated by ClpX2 under nitrogen fixation conditions in Azotobacter vinelandii.

    Science.gov (United States)

    Martínez-Noël, Giselle; Curatti, Leonardo; Hernandez, Jose A; Rubio, Luis M

    2011-03-01

    The major part of biological nitrogen fixation is catalysed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to comprise a [6Fe-9S-X] cluster, from simpler [Fe-S] clusters common to other metabolic pathways. NifB-co is a common intermediate of the biosyntheses of the cofactors present in the molybdenum, vanadium and iron nitrogenases. In this work, the expression of the Azotobacter vinelandii nifB gene was uncoupled from its natural nif regulation to show that NifB protein levels are lower in cells growing diazotrophically than in cells growing at the expense of ammonium. A. vinelandii carries a duplicated copy of the ATPase component of the ubiquitous ClpXP protease (ClpX2), which is induced under nitrogen fixing conditions. Inactivation of clpX2 resulted in the accumulation of NifB and NifEN and a defect in diazotrophic growth, especially when iron was in short supply. Mutations in nifE, nifN and nifX or in nifA also affected NifB accumulation, suggesting that NifB susceptibility to degradation might vary during its catalytic cycle. PMID:21231969

  2. The influence of woody encroachment on the nitrogen cycle: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2015-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs potentially alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates increase with tree age and are influenced by abiotic conditions. A model of soil N accrual around individual trees, accounting for atmospheric inputs and gas losses, generates lifetimes N fixation estimates of up to 9 kg for a 100-year-old tree and current rates of 7 kg N ha-1 yr-1. However, these N inputs and increased soil cycling rates do not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions for both land cover types average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Additional lab experiments suggested that N2 losses are low and that field oxygen conditions are not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of net N accrual under ongoing encroachment.

  3. Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL.

    OpenAIRE

    Austin, S; Buck, M; Cannon, W; Eydmann, T.; Dixon, R

    1994-01-01

    The prokaryotic enhancer-binding protein NifA stimulates transcription at a distance by binding to sequences upstream of nitrogen fixation (nif) promoters and catalyzing the formation of open promoter complexes by RNA polymerase containing the alternative sigma factor, sigma 54. The activity of NifA in vivo is modulated by the negative regulatory protein NifL in response to environmental oxygen and fixed nitrogen. To date, a detailed biochemical analysis of these proteins from the model diazo...

  4. Effect of AMmonium Fixation on Estimation of Soil Microbial Biomass Nitrogen

    Institute of Scientific and Technical Information of China (English)

    YINSHI-XUE; FENGKE; 等

    1994-01-01

    The effect of ammonium fixation on the estimation of soil microbial biomass N was studied by the standard fumigation-incubation(FI) and fumigation-extraction (FE) methods,NO3-N content of fumigated soil changed little during incubation,while the fixed NH4+ in soils capable of fixing NH4+ increased with the increase of K2SO4-extractable NH4-N.one day fumigation increased both extractable NH4+ and fixed NH4+,However,prolonged fumigation gave no further increase.One day fumigation caused significant loss of NO3-N,while prolonged fumigation caused no further loss.For soils tested,the net increases of fixed NH4+ in fumigated soil equaled to 0-94% of NH4-N flush measured by the FI metod,and 1-74% of extractable N measured by the FE method.depending on different soils.It is concluded that the ammonium fixation was one of the processes taking place in soils during fumigation as well as incubation ofter fumigation and should not be neglected in the estimation of microbial biomass nitrogen by either FI or FE method.

  5. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual tri-component annual intercrops

    DEFF Research Database (Denmark)

    Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.;

    2005-01-01

    an initial competitive advantage, an advantage that in the two dual intercrops was strengthened by the addition of N. Apparently the competitive superiority of barley was less strong in the tri-component intercrop, indicating that the impact of the dominant may, through improved growth of both rape and pea......The interspecific complementary and competitive interactions between pea (Pisum sativum L.), barley (Hordeum vulgare L.) and oilseed rape (Brassica napus L.), grown as dual and tri-component intercrops were assessed in a field study in Denmark. Total biomass production and N use at two levels of N......, have been diminished through indirect facilitation. Interspecific competition had a promoting effect on the percent of nitrogen derived from N(2) fixation of pea, and most so at the low N fertilisation level. Results indicate that the benefits achieved from the association of a legume and nonlegume...

  6. Comparison of nitrogen fixation in some Bradyrhizobium Japonicum strains using the N-15 isotopic method

    International Nuclear Information System (INIS)

    Several studies have demonstrated the significant contribution of atmospheric N fixation to soybean nutrition and growth. The variability in N fixing is due to the several factors including rhizobial strain. Hence, this study was conducted to compare some commercial Bradyrhizobium japonicum strains for the amount and proportion of N fixation in soybean (Cv. Williams) which is most commonly cultivated in Iran. Initially, strains were tested for purity, infectiveness and symbiotic effectiveness using Leonard jars and three of the more efficient strains Helinitro, Rhizoking and Gold Coat were selected. A pot experiment (four replicated) was carried out with RCBD on soil without indigenous rhizobia having 530-ppm total nitrogen under greenhouse condition. Treatments included three inoculum of selected strains (separately) and a set of non inoculated blank. For estimating BNF by A-value method, two solutions of N-15 enriched ammonium sulfate, containing 9.616 and 2.086% n-15 atom excess, were applied in amount of 20 and 100 kg N/ha at stage V2 in inoculated pots and stages V2, R2 and R5 to reference pots. During the 4 months of growth, plants were irrigated with distilled water to maintain 80% FC. Plants were harvested at stage R6. The results showed that the effects of rhizobial strains were significantly different. Gold Coat and Rhizoking strains had higher significant results compared with Helinitro. The percentages of fixed nitrogen in plants inoculated with these strains were 92.3, 90.7 and 84.7%, respectively. On the basis of these results, it may be necessary to pre-select more compatible rhizobial strain for supplying the N-requirements of soybean. (Author)

  7. Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1986-04-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CS1-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity(C/sub 2/H/sub 2/ reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. 16 references.

  8. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    Science.gov (United States)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  9. An alternate photosynthetic electron donor system for PSI supports light dependent nitrogen fixation in a non-heterocystous cyanobacterium, Plectonema boryanum.

    Science.gov (United States)

    Misra, Hari S; Khairnar, Nivedita P; Mahajan, Suresh K

    2003-01-01

    Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation. PMID:12685043

  10. Effect of Arsenic on Nodulation and Nitrogen Fixation of Blackgram (Vigna mungo).

    Science.gov (United States)

    Mandal, Santi M; Gouri, Samiran S; De, Debasis; Das, Bidus K; Mondal, Keshab C; Pati, Bikas R

    2011-01-01

    Rhizobium-legume symbiotic interaction is an efficient model system for soil remediation and reclamation. We earlier isolated an arsenic (As) (2.8 mM arsenate) tolerant and symbiotically effective Rhizobium strain, VMA301 from Vigna mungo and in this study we further characterized its efficacy for arsenic removal from the soil and its nitrogen fixation capacity. Although nodule formation is delayed in plants with As-treated composite when the inoculum was prepared without arsenic in culture medium, whereas it attains the significant number of nodules compare to plant grown in As-free soil when the inoculum was prepared with arsenic supplemented medium. Arsenic accumulation was higher in roots than root nodules. Nitrogenase activity is reduced to almost 2 fold in plants with As-treated soil but not abolished. These results suggest that this strain, VMA301, has been able to establish an effective symbiotic interaction in V. mungo in As-contaminated soil and can perform dual role of arsenic bioremediation as well as soil nitrogen improvement.

  11. Azide resistance in Rhizobium ciceri linked with superior symbiotic nitrogen fixation.

    Science.gov (United States)

    Bhaskar, V Vijay

    2004-12-01

    Isolated azide resistant (AzR) native R. ciceri strain 18-7 was resistant to sodium azide at 10 microg/ml. To find if nif-reiteration is responsible for azide resistance and linked to superior symbiotic nitrogen fixation, transposon (Tn5) induced azide sensitive mutants were generated. Using 4 kb nif-reiterated Sinorhizobium meliloti DNA, a clone C4 that complemented azide sensitivity was isolated by DNA hybridization from genomic library of chickpea Rhizobium strain Rcd301. EcoRI restriction mapping revealed the presence of 7 recognition sites with a total insert size of 19.17 kb. Restriction analysis of C4 clone and nif-reiterated DNA (pRK 290.7) with EcoRI and XhoI revealed similar banding pattern. Wild type strain 18-7, mutant M126 and complemented mutant M126(C4) were characterized for symbiotic properties (viz., acetylene reduction assay, total nitrogen content, nodule number and fresh and dry weight of the infected plants) and explanta nitrogenase activity. Our results suggested that azide resistance, nif-reiteration, and superior symbiotic effectiveness were interlinked with no correlation between ex-planta nitrogenase activity and azide resistance in R. ciceri.

  12. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501

    Science.gov (United States)

    Yan, Yongliang; Yang, Jian; Dou, Yuetan; Chen, Ming; Ping, Shuzhen; Peng, Junping; Lu, Wei; Zhang, Wei; Yao, Ziying; Li, Hongquan; Liu, Wei; He, Sheng; Geng, Lizhao; Zhang, Xiaobing; Yang, Fan; Yu, Haiying; Zhan, Yuhua; Li, Danhua; Lin, Zhanglin; Wang, Yiping; Elmerich, Claudine; Lin, Min; Jin, Qi

    2008-01-01

    The capacity to fix nitrogen is widely distributed in phyla of Bacteria and Archaea but has long been considered to be absent from the Pseudomonas genus. We report here the complete genome sequencing of nitrogen-fixing root-associated Pseudomonas stutzeri A1501. The genome consists of a single circular chromosome with 4,567,418 bp. Comparative genomics revealed that, among 4,146 protein-encoding genes, 1,977 have orthologs in each of the five other Pseudomonas representative species sequenced to date. The genome contains genes involved in broad utilization of carbon sources, nitrogen fixation, denitrification, degradation of aromatic compounds, biosynthesis of polyhydroxybutyrate, multiple pathways of protection against environmental stress, and other functions that presumably give A1501 an advantage in root colonization. Genetic information on synthesis, maturation, and functioning of nitrogenase is clustered in a 49-kb island, suggesting that this property was acquired by lateral gene transfer. New genes required for the nitrogen fixation process have been identified within the nif island. The genome sequence offers the genetic basis for further study of the evolution of the nitrogen fixation property and identification of rhizosphere competence traits required in the interaction with host plants; moreover, it opens up new perspectives for wider application of root-associated diazotrophs in sustainable agriculture. PMID:18495935

  13. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  14. Submerged culture of Magne-tospirillum gryphiswaldense under N2-fixing condition and regulation of activity of nitrogen fixation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A submerged culture technique for Magnetospirillum gryphiswaldense under the nitrogen-fixing condition (microaerobic and N-limited) was set up. In N-limited medium with Na-lactate as a sole carbon source, the optical density (A600 nm) and activity of nitrogen fixation of cells were 1.3 and 217 nmol of ethylene produced per hour per A600nm respectively within 21 h by three times of feeds. The pH and temperature were controlled at 7.2 and 30℃ respectively, and the oxygen concentration was controlled by sparging with N2 containing 0.4%-0.8% of O2. The activity of nitrogen fixation of cells was obviously inhibited by oxygen and ammonium. It indicated that the posttranslational regulation of nitrogenase existed in M. gryphiswaldense.

  15. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

    DEFF Research Database (Denmark)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin;

    2005-01-01

    Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen...... fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins...... accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted...

  16. Variações qualitativas e quantitativas na microbiota do solo e na fixação biológica do nitrogênio sob diferentes manejos com soja Qualitative and quantitative changes in soil microbiota and biological nitrogen fixation under different soybean managements

    Directory of Open Access Journals (Sweden)

    Alan Alves Pereira

    2007-12-01

    Eutrudox, in Londrina, PR, Brazil. Treatments were a combination of a crop sequence (S (soybean/wheat and a crop rotation (R (lupin/maize/black oat/soybean/wheat/soybean/wheat/soybean, either under conventional tillage (CT or no-tillage (NT. Evaluations were performed when all systems were under the soybean cropping season, at full flowering. Amounts of microbial biomass carbon and nitrogen (MB-C and MB-N, respectively were 114 and 157 % higher in NT than in CT. Furthermore, the metabolic quotient (qCO2 was lower under NT, indicating higher metabolic efficiency of the soil microbes. These parameters were not affected by the crop sequence/rotation. Genetic diversity of the total soil bacterial community was higher under NT and lower in the CT system with crop sequence. Regarding the biological N2 fixation, it was found that plant biomass, total N and fraction of N-ureides in shoots, as well as nodule efficiency, were higher under NT. Genetic diversity of rhizobia was affected mainly by crop management and was higher under crop rotation, probably due to the greater number of plant species. However, crop rotation decreased the efficiency of the biological N2 fixation process, which may be related to more abundant N in the soil or to a lower selection pressure for efficient rhizobia. For soil microbes with specific functions, e.g., rhizobia, genetic diversity may therefore differ from functionality.

  17. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil.

    Science.gov (United States)

    dos Reis, Fábio Bueno; Simon, Marcelo F; Gross, Eduardo; Boddey, Robert M; Elliott, Geoffrey N; Neto, Nicolau E; Loureiro, M de Fatima; de Queiroz, Luciano P; Scotti, Maria Rita; Chen, Wen-Ming; Norén, Agneta; Rubio, Maria C; de Faria, Sergio M; Bontemps, Cyril; Goi, Silvia R; Young, J Peter W; Sprent, Janet I; James, Euan K

    2010-06-01

    *An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.

  18. Data-based assessment of environmental controls on global marine nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2013-04-01

    Full Text Available There are a number of hypotheses for the environmental controls on marine nitrogen fixation (NF. Most of these hypotheses have not been assessed against direct measurements on the global scale. In this study, we use ~ 500 depth-integrated field measurements of NF covering the Pacific and Atlantic Oceans to test whether the spatial variance of these measurements can be explained by the commonly hypothesized environmental controls, including measurement-based surface solar radiation, mixed layer depth, sea surface temperature, surface nitrate and phosphate concentrations, surface excess phosphate (P*, atmospheric dust deposition and surface wind speed, as well as minimum dissolved oxygen in upper 500 m to identify possible subsurface denitrification zones. By conducting simple linear regression and stepwise multiple linear regression (MLR analyses, solar radiation and/or sea surface temperature as well as subsurface dissolved oxygen are identified as the predictors explaining the most spatial variance in the observed NF data, while dust deposition and wind speed do not appear to influence the spatial patterns of NF on global scale. Our study suggests that marine NF is coupled to regional loss of fixed nitrogen induced by subsurface low oxygen concentration, with its magnitude constrained by solar radiation or temperature. By applying the MLR-derived equation, we estimate the global-integrated NF at 71 (error range 49–104 Tg N yr−1 in the open ocean, acknowledging that it could be substantially higher as the 15N2-assimilation method used by most of the field samples underestimates NF. Our conclusion suggests that marine NF will increase in the future if subsurface nitrogen-losses increase as a consequence of developing deoxygenation with the global warming, a projection that will be modulated by other factors such as warming, elevated carbon dioxide, and changes in macro- and micro-nutrient distributions. More field NF samples in the

  19. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China

    Institute of Scientific and Technical Information of China (English)

    CHENG FengXian; CAO GuiQin; WANG XiuRong; ZHAO Jing; YAN XiaoLong; LIAO Hong

    2009-01-01

    Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different Iow-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest ni-trogenase activity, on a typical Iow-P acid soil in South China. The results showed that, without inocu-lation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inocuiants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respec-tively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on Iow-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering

  20. Avaliação da fixação biológica de nitrogênio em feijão-caupi submetido a diferentes manejos da vegetação natural na savana de Roraima = Evaluation of the biological nitrogen fixation in cowpea subjected to different managements of the natural vegetation of the savanna in Roraima, Brazil.

    Directory of Open Access Journals (Sweden)

    Victorio Jacob Bastos

    2012-08-01

    Full Text Available Objetivou-se com este trabalho avaliar a fixação biológica de nitrogênio em feijão-caupi submetido a diferentes manejos da vegetação natural, com e sem adubação orgânica com esterco bovino, da savana de Roraima. O experimento foi instalado na área experimental do CCA/UFRR, em Boa Vista, Roraima. O plantio das sementes de feijão-caupi, cultivar BRS Aracê, inoculadas com Bradyrhizobium BR 3262, foi realizado em julho de 2011 e os tratamentos foram dispostos em umdelineamento experimental de blocos ao acaso em esquema fatorial (3 x 2 com quatro repetições. O primeiro fator correspondeu ao manejo da vegetação natural: com aplicação de glifosato, com corte da vegetação natural e sem corte da vegetação natural. O segundo fator correspondeu à aplicação de esterco bovino: com e sem aplicação. Aos 35 dias após o plantio foi efetuada a coleta das plantas de feijão-caupi para mensurar o número de nódulos; massa fresca e seca dos nódulos; altura da planta; número de folhas, massa fresca e seca da parte aérea; massa fresca e seca da raiz. A aplicação a lanço de esterco bovino na quantidade de 2,0 L m-2 sobre a vegetação natural da savana de Roraima favorece o aumento do número de nódulos por planta de feijão-caupi.O manejo da vegetação natural com o uso do glifosato, independentemente do uso do esterco, favorece a nodulação das raízese contribui com o maior crescimento e desenvolvimento da planta de feijão-caupi.This study evaluated the biological fixation of nitrogen in cowpea beans subjected to different managements of the natural vegetation of the savannah in Roraima. The experiment was done in the experimental area of the CCA/UFRR, Boa Vista, Roraima, Brazil. The planting of the BRS Aracê cowpea seeds, inoculated with Bradyrhizobium BR 3262, wasdone in July, 2011 and the treatments were arranged in factorial schemes (3 x 2 of experimental randomized blocks with fourrepetitions. The first factor was the

  1. Fixação biológica e transferência de nitrogênio por leguminosas em pomar orgânico de mangueira e gravioleira Biological fixation and nitrogen transfer by three legume species in mango and soursop organic orchards

    Directory of Open Access Journals (Sweden)

    Gleicia Miranda Paulino

    2009-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a fixação biológica de nitrogênio (FBN e a transferência do N derivado da FBN das espécies leguminosas - gliricídia (Gliricidia sepium, crotalária (Crotalaria juncea e feijão-guandu anão (Cajanus cajan - para um pomar orgânico de mangueira e gravioleira, pelo método da abundância natural de N. Foram avaliados os seguintes sistemas de cultivos consorciados: mangueira e gravioleira com gliricídia; mangueira e gravioleira com crotalária; mangueira e gravioleira com feijão-guandu; e a testemunha mangueira e gravioleira. Agliricídia apresentou maior potencial de FBN (80%, seguida da crotalária (64,5% e feijão-guandu (45%. Em dois cortes, a crotalária forneceu 149,5 kg ha-1 por ano de N, com 96,5kg derivados da FBN. A gliricídia com três podas anuais forneceu 56,4 e 80,3 kg ha-1 por ano de N, com 45 e 64 kg derivados da FBN, em dois anos consecutivos. A quantidade de N fornecida foi superior à demandada pela mangueira e gravioleira. Variações na abundância natural de 15N foram detectadas somente na gravioleira. Gliricídia e crotalária destacaram-se na transferência de N, com cerca de 22,5 e 40% do N fixado, respectivamente. A adubação verde com gliricídia possibilita o parcelamento do N, com melhor aproveitamento pelas espécies frutíferas.The objective of this work was to evaluate the biological nitrogen fixation (BNF and the N transfer derived from BNF of the legume species - Gliricidia sepium (gliricidia, Crotalaria juncea (sunnhemp and Cajanus cajan (pigeon pea - for an intercropped organic orchard with mango and soursop, through the 15N natural abundance method. The following intercropping systems were evaluated: mango and soursop with gliricidia; mango and soursop with sunnhemp; mango and soursop with pigeon pea; and mango and soursop as control. Gliricidia showed the highest BNF potential (80% , followed by sunnhemp (64.5% and pigeon pea (45%. After two sunnhemp prunes, 149

  2. Spatial and Temporal Variation in Feather Moss Associated Nitrogen Fixation in Coniferous and Deciduous Dominated Alaskan Boreal Forests

    Science.gov (United States)

    Jean, M.; Mack, M. C.; Johnstone, J. F.

    2015-12-01

    Dominant canopy tree species have strong effects on the composition and function of understory species. In boreal forests, forest floor bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and thus an important process regulating ecosystem productivity. Bryophyte composition and abundance varies with forest composition, yet how such changes can affect ecosystem processes such as N fixation is still poorly understood. Our goal is to investigate how cyanobacteria-based N fixation occurring in the two most common feather mosses in the Alaskan boreal forest (Pleurozium schreberi and Hylocomium splendens) varies among coniferous and deciduous forest types, over the growing season, and across a nutrient availability gradient. Twelve patches of H. splendens and P. schreberi were identified in three pairs (blocks) of adjacent stands of paper birch (Betula neoalaskana) and black spruce (Picea mariana) near Fairbanks, interior Alaska. Sampling occurred in one block in June, July, August, and September 2014, and in the three blocks once in August 2014. Moss leaf area, moisture and weight, as well as environmental variables such as air temperature and canopy cover were recorded. Fixation rates were consistently higher for P. schreberi than for H. splendens. Overall, N fixation rates were lower in birch than in spruce stands and peaked in August, or July for P. schreberi in birch stands. Moreover, fixation rates varied along the nutrient availability gradient, with fixation rates higher where nutrient availability was lower. This difference was especially clear in spruce stands. Our preliminary results suggest that moss species, canopy type, and environmental factors all influence N fixation rates in Alaskan boreal forests. Our results will enhance the knowledge of the processes that drive N fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.

  3. Potential for nitrogen fixation and nitrification in the granite-hosted subsurface at Henderson Mine, CO

    Directory of Open Access Journals (Sweden)

    Elizabeth eSwanner

    2011-12-01

    Full Text Available The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys catalogued a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO (Sahl et al., 2008. The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluids chemistry included N2, NH4+ (5-112 μM, NO2- (27-48 μM and NO3- (17-72 μM. In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier Transform Infrared (FTIR microscopy and none contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archeaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high-NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via nitrification.

  4. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    Directory of Open Access Journals (Sweden)

    Khing Boon Kuan

    Full Text Available Plant growth-promoting rhizobacteria (PGPR may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate, the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50 and ear harvest (D65. The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1 and 25.5% (304 mg N2 fixed plant-1 of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize

  5. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    L.M.P. Passaglia

    1998-11-01

    Full Text Available NifA protein activates transcription of nitrogen fixation operons by the alternative sigma54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  6. Crystallization of a flavodoxin involved in nitrogen fixation in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Dorado, Inmaculada [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Bortolotti, Ana; Cortez, Néstor [Instituto de Biología Molecular y Celular de Rosario (Universidad Nacional de Rosario y CONICET), Suipacha 531, S2002LRK Rosario (Argentina); Hermoso, Juan A., E-mail: xjuan@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2008-05-01

    The flavodoxin NifF from R. capsulatus, a candidate for nitrogenase reduction during nitrogen fixation, has been crystallized using the hanging-drop vapour-diffusion method. Preliminary X-ray data processing at 2.17 Å resolution allowed determination of the crystal system and unit-cell parameters. Flavodoxins are small electron-transfer proteins that contain one molecule of noncovalently bound flavin mononucleotide (FMN). The flavodoxin NifF from the photosynthetic bacterium Rhodobacter capsulatus is reduced by one electron from ferredoxin/flavodoxin:NADP(H) reductase and was postulated to be an electron donor to nitrogenase in vivo. NifF was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of PEG 3350 and PEG 400 at pH 5.5 and belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 66.49, c = 121.32 Å. X-ray data sets have been collected to 2.17 Å resolution.

  7. Crystallization of a flavodoxin involved in nitrogen fixation in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    The flavodoxin NifF from R. capsulatus, a candidate for nitrogenase reduction during nitrogen fixation, has been crystallized using the hanging-drop vapour-diffusion method. Preliminary X-ray data processing at 2.17 Å resolution allowed determination of the crystal system and unit-cell parameters. Flavodoxins are small electron-transfer proteins that contain one molecule of noncovalently bound flavin mononucleotide (FMN). The flavodoxin NifF from the photosynthetic bacterium Rhodobacter capsulatus is reduced by one electron from ferredoxin/flavodoxin:NADP(H) reductase and was postulated to be an electron donor to nitrogenase in vivo. NifF was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of PEG 3350 and PEG 400 at pH 5.5 and belong to the tetragonal space group P41212, with unit-cell parameters a = b = 66.49, c = 121.32 Å. X-ray data sets have been collected to 2.17 Å resolution

  8. Legume N2 fixation - An efficient source of nitrogen for cereal production

    International Nuclear Information System (INIS)

    Nitrogen deficiency is a major factor limiting yields of cereals. With wheat, the most commonly-grown cereal in rain-fed agriculture, the soil must supply 30-40 kg N/ha in a plant-available form (usually as nitrate) for each tonne of grain produced. In some of the developed countries and energy-rich LDC's, N is supplied in sufficient amounts as fertilizers. In the majority of countries, however, this is not possible principally because of the high cost. Research has shown that the soil following an annual crop legume often contains 30-60 kg N/ha more than after a cereal crop and that this increased plant-available N is converted into increased cereal grain yield. The N benefits are due to the legume's capacity to fix atmospheric N2. Amounts fixed by the annual crop legumes range from zero to more than 400 kg/ha. There is, however, scope to manage legume N2 fixation for maximum benefit, through practices that optimize crop growth and minimize the suppressive effects of soil nitrate. One possible aid to management may come through the development and use of simple mathematical functions (models) that will allow farmers to estimate amounts of N2 fixed by a legume crop and the potential net N benefit resulting from that crop. (author). 42 refs, 6 figs, 5 tabs

  9. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense.

    Science.gov (United States)

    Passaglia, L M; Van Soom, C; Schrank, A; Schrank, I S

    1998-11-01

    NifA protein activates transcription of nitrogen fixation operons by the alternative sigma 54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS) located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST)-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  10. Effect of plant photosynthesis, carbon sources and ammonium availability on nitrogen fixation rates in the rhizosphere of Zostera noltii

    OpenAIRE

    Welsh, Dt; Bourgues, S; Dewit, R; Auby, Isabelle

    1997-01-01

    Rates of nitrogen fixation (measured as acetylene reduction) in the rhizosphere of the seagrass Zostera noltii were highly dependent upon plant photosynthetic activity being significantly stimulated at elevated CO2 concentrations and by light, both in the short-term and over diurnal cycles. Stimulation by light became insignificant when 5 mM sucrose was added to the sediment porewater, indicating that in the absence of added carbon sources, light stimulation was due to direct inputs of plant ...

  11. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    Science.gov (United States)

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  12. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Gordon Ng

    Full Text Available BACKGROUND: Nitrogen (N(2 fixation also yields hydrogen (H(2 at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2 as sole N-source bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase, has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase. An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2-fixing and H(2-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2 respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2, specifically that produced by N(2 fixation. To benefit human civilization, H(2 has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As

  13. Nitrogen fixation in sediments along a depth transect through the Eastern Boundary Upwelling Systems off Peru and Mauritania

    Science.gov (United States)

    Gier, J.; Sommer, S.; Löscher, C. R.; Dale, A.; Schmitz, R. A.; Treude, T.

    2015-12-01

    The distribution of benthic nitrogen (N2) fixation and its relevance for N cycling in the Eastern Boundary Upwelling Systems (EBUS) are still unknown. Recent studies confirm that benthic N2 fixation can be coupled to sulfate reduction (SR) and that several species of sulfate reducing bacteria have the genetic ability to fix N due to the presence of the gene encoding for the nitrogenase enzyme. We investigated benthic N2 fixation and SR in the Peruvian oxygen minimum zone at 12°S and in the Mauritanian upwelling system at 18°N along a depth transect. Sediments were retrieved by a multicorer and a benthic lander at six stations in both regions. Benthic N2 fixation occurred throughout the sediment in both EBUS. Off Peru the highest integrated (0-20 cm) N2 fixation rate of 0.4 mmol N/m2/d was measured inside the core of the OMZ at 253 m water depth. Off Mauritania the highest integrated (0-20 cm) N2 fixation rate of 0.15 mmol N/m2/d was measured at 90 m, coinciding with a low bottom water oxygen concentration (30 μM). N2 fixation depth profiles often overlapped with SR activity. Moreover, sequencing data yielded insights into the composition and diversity of the nifH gene pool in EBUS sediments. Interestingly, detected sequences in both EBUS clustered with SR bacteria, such as Desulfovibrio vulgaris and several of the novel detected clades belonged to uncultured diazotrophs. Our results suggest that N2 fixation and SR were coupled to a large extent in both regions. However, potential environmental factors controlling benthic diazotrophs in the EBUS appear to be the availability of sulfide and organic matter. Additionally, no inhibition of N2 fixation at high ammonium concentrations was found, which highlights gaps in our knowledge regards the interaction between ammonium availability and diazotrophy. Our results contribute to a better understanding of N cycling in EBUS sediments and sources of fixed N.

  14. Biological N2-fixation in Boreal Peatlands of Alberta Canada Following Acute N-Deposition: Down-Regulation and Subsequent Post-Recovery Projections.

    Science.gov (United States)

    Vile, M. A.; Fillingim, H.

    2015-12-01

    Globally, boreal peatlands cover a mere 3-4 % of the Earth's land surface, yet store ~ 30% of the world's soil carbon and ~9-16% of global soil nitrogen. Biological N2-fixation is the primary input of new nitrogen (N) to bogs in Alberta. We have demonstrated that this process is down regulated in the presence of enhanced atmospheric N deposition such as that from the growing Oil Sands Mining Operations in northern Alberta Canada. An important question for understanding the long term function of bogs in Alberta is whether N2-fixation can recover upon cessation of N pollution, and if so, how quickly? Here we present our preliminary findings in pursuit of this question. We measured rates of biological N2-fixation using the acetylene reduction assay (ARA), with subsequent calibration using 15N2 on separate, but paired incubations. Sphagnum fuscum from bogs at two different sites from northern Alberta were incubated over the course of 3 years, in 3 experimentally added treatments in the field; controls, plots receiving no added N and no water, water only treatments (no added N), and plots that were fertilized with N at a rate of 20 kg·ha-1·yr-1, and plots which had been fertilized with 20 kg·ha-1·yr-1in 2012-2013, but not since. In 2014, the rates of N2-fixation in the 20 kg·ha-1·yr-1plots and the recovering 20 kg·ha-1·yr-1plots were not significantly different, but both were significantly lower than the controls (p<0.05). In 2015, control plots had significantly higher rates of N2-fixation than the plots that had previously received 20 kg·ha-1·yr-1 in 2012 and 2013, and the plots that had not received 20 kg·ha-1·yr-1 since 2013 had significantly higher rates of biological N2-fixation. These data suggest that in a low atmospheric N deposition scenario, and over a short time frame, peatlands of northern Alberta may be able to recover from chronic atmospheric N deposition.

  15. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    Science.gov (United States)

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  16. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state. PMID:27431195

  17. Efficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9

    Science.gov (United States)

    Wang, Longxiang; Wang, Longlong; Tan, Qian; Fan, Qiuling; Zhu, Hui; Hong, Zonglie; Zhang, Zhongming; Duanmu, Deqiang

    2016-01-01

    The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation) related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predicted nine endogenous U6 genes in Lotus and then demonstrated the efficacy of the LjU6-1 gene promoter in driving expression of single guide RNAs (sgRNAs) by using a split yellow fluorescence protein (YFP) reporter system to restore the fluorescence in Arabidopsis protoplasts. Next, we chose a customized sgRNA targeting SYMRK (symbiosis receptor-like kinase) loci and achieved ~35% mutagenic efficiency in 20 T0 transgenic plants, two of them containing biallelic homozygous mutations with a 2-bp deletion near the PAM region. We further designed two sgRNAs targeting three homologous leghemoglobin loci (LjLb1, LjLb2, LjLb3) for testing the possibility of generating multi-gene knockouts. 20 out of 70 hairy root transgenic plants exhibited white nodules, with at least two LjLbs disrupted in each plant. Compared with the constitutively active CaMV 35S promoter, the nodule-specific LjLb2 promoter was also effective in gene editing in nodules by hairy root transformation. Triple mutant knockout of LjLbs was also obtained by stable transformation using two sgRNAs. Collectively, these studies demonstrate that the CRISPR/Cas9 system should greatly facilitate functional analyses of SNF related genes in Lotus japonicus. PMID:27630657

  18. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9

    Directory of Open Access Journals (Sweden)

    Longxiang Wang

    2016-08-01

    Full Text Available The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predicted nine endogenous U6 genes in Lotus and then demonstrated the efficacy of the LjU6-1 gene promoter in driving expression of single guide RNAs (sgRNAs by using a split yellow fluorescence protein (YFP reporter system to restore the fluorescence in Arabidopsis protoplasts. Next, we chose a customized sgRNA targeting SYMRK (symbiosis receptor kinase loci and achieved ~35% mutagenic efficiency in 20 T0 transgenic plants, two of them containing biallelic homozygous mutations with a 2-bp deletion near the PAM region. We further designed two sgRNAs targeting three homologous leghemoglobin loci (LjLb1, LjLb2, LjLb3 for testing the possibility of generating multi-gene knockouts. 20 out of 70 hairy root transgenic plants exhibited white nodules, with at least two LjLbs disrupted in each plant. Compared with the constitutively active CaMV 35S promoter, the nodule-specific LjLb2 promoter was also effective in gene editing in nodules by hairy root transformation. Triple mutant knockout of LjLbs was also obtained by stable transformation using two sgRNAs. Collectively, these studies demonstrate that the CRISPR/Cas9 system should greatly facilitate functional analyses of SNF related genes in Lotus japonicus.

  19. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium.

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-09-29

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state.

  20. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  1. Soil microbial population and nitrogen fixation in peanut under fly ash and sewage sludge

    International Nuclear Information System (INIS)

    Surface disposal of municipal sludge and industrial wastes is an old practice that recently has been attracting concerns due to associated soil, air and water pollution. Wise utilization and recycling of these wastes in agricultural land brings in the much-needed organic and mineral matter to the soil. However, the assimilative capacity of the soil with respect to its physical, chemical and biological properties and the performance of crop grown, needs thorough investigation. Industrial wastes like fly ash (FA) from Thermal Power Plant and Sewage Sludge from municipal and city activities (untreated and treated CW) are some such important organic based waste resources having a potentiality for recycling in the agricultural land. The characteristics of these wastes with respect to their pH, plant nutrient and heavy metals content differs. Fly ash, being a burnt residue of coal, is rich in essential mineral elements and also has capacity in neutralizing soil acidity and supplying the nutrients to the plants (Molliner and Street, 1982). Sewage sludge application also has a significant influence on the physical, chemical and biological properties of soil. The soil biological systems can be altered by new energy input for the organisms, which is reflected by changes in the micro and macrobiological populations, in turn influencing the synthesis and decomposition of soil organic substances, nutrient availability, interactions with soil inorganic components and other exchanges with physical and chemical properties (Clapp et al, 1986). So far, much information is known regarding changes in physico-chemical properties of soil and performance of crop due to applications of such wastes. However, long term studies are needed to improve our understanding of the effects of land application of such wastes on soil biological systems (McGrath et al. 1995). It is known that native soil microbial population is responsible for decomposition of organic matter and recycling of nutrients

  2. Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume.

    Science.gov (United States)

    Nygren, Pekka; Cruz, Pablo; Domenach, Anne Marie; Vaillant, Victor; Sierra, Jorge

    2000-01-01

    Effects of three forage harvesting regimes-total removal of foliage and branches once (T-12) or twice a year (T-6) and 50% removal every 2 months (P-2)-on growth and biological dinitrogen fixation of Gliricidia sepium (Jacq.) Walp were studied under subhumid tropical conditions in Guadeloupe, French Antilles. Gliricidia sepium was grown in association with the perennial C(4) grass Dichantium aristatum (Poir) C.E. Hubbard in a two-storied fodder production system. The medium-term effects of pruning on N(2) fixation were assessed by the (15)N natural abundance method. Gmelina arborea Roxb. was used as the non-fixing reference. The trees in the T-12 regime followed the natural phenological cycle, and flowering and podfilling at the beginning of the dry season reduced both foliage and nodule biomass. The T-6 regime impeded flowering, and only a few flowers, on older branches, were produced in the P-2 regime. In trees in the T-12, T-6, and P-2 regimes, fixed N comprised 54-87, 54-92, and 60-87%, respectively, of the total N in aboveground biomass, depending on sampling date. Total annual accumulation of N in harvestable aboveground biomass was highest in trees in the T-6 regime at 313 kg ha(-1), of which 204 kg ha(-1) of N was fixed from the atmosphere. In all treatments, about 70% of the N exported per year from the plot in the fodder harvest came from N(2) fixation. Thus, N(2) fixation makes an important contribution to the N economy of the G. sepium-D. aristatum forage production system, and greatly reduces the need for fertilizer application. PMID:12651525

  3. Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    Three woody legumes were planted as two-year 'improved fallows' to evaluate their residual nitrogen (N) effects on two subsequent maize crops under minimum and conventional tillage management. Maize monoculture and cowpea-maize-maize sequence treatments were included as controls. N-2-fixation was es

  4. EFFECT OF MOISTURE LEVELS ON THE GROWTH, NODULATION AND NITROGEN FIXATION IN Dalbergia sissoo BY Azospirillum brasilense AND Acaulospora laevis

    Directory of Open Access Journals (Sweden)

    Gaurav Bhushan

    2014-08-01

    Full Text Available In present study, influence of single and combined inoculation of Azospirillum brasilense and Acaulospora laevis on the growth, nodulation and N2 fixation in Dalbergia sissoo was tested at various moisture levels under pot culture conditions. Combined inoculation of A.brasilense and A.laevis was found best in raising maximum growth, nodulation, nitrogen fixation and percentage of AM colonization in roots. These characters were considerably influenced with the increasing moisture stress from -0.3MPa to -1.5MPa. Furthermore, the values of all the above mentioned parameters show decrement with the increasing of moisture stress. Plants with dual inoculation performed better than single inoculated plants. Observation of the present study counted a protective role played by AM in providing resistance to D.sissoo against injurious effects of moisture stress.

  5. Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation.

    Science.gov (United States)

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  6. Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

    Directory of Open Access Journals (Sweden)

    Faten Ghodhbane-Gtari

    2014-01-01

    Full Text Available Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection.

  7. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M.; Saroj, DP; Chikamba, C; Schwarz, J.; Daims, H.; Brdjanovic, D.

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  8. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  9. Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress.

    Science.gov (United States)

    Ben Salah, Imène; Albacete, Alfonso; Martínez Andújar, Cristina; Haouala, Rabiaa; Labidi, Nehla; Zribi, Fethia; Martinez, Vicente; Pérez-Alfocea, Francisco; Abdelly, Chedly

    2009-03-15

    The effect of salt stress on nitrogen fixation, in relation to sucrose transport towards nodules and other sink organs and the potential of sucrose breakdown by nodules, was investigated in two lines of Medicago ciliaris. Under salt stress conditions, the two lines showed a decrease of total biomass production, but TNC 1.8 was less affected by salt than TNC 11.9. The chlorophyll content was not changed in TNC 1.8, in contrast to TNC 11.9. Shoot, root, and nodule biomass were also affected in the two lines, but TNC 1.8 exhibited the higher potentialities of biomass production of these organs. Nitrogen fixation also decreased in the two lines, and was more sensitive to salt than growth parameters. TNC 1.8 consistently exhibited the higher values of nitrogen fixation. Unlike nodules, leaves of both lines were well supplied in nutrients with some exceptions. Specifically, the calcium content decreased in the sensitive line leaves, and the nodule magnesium content was not changed in either line. The tolerant line accumulated more sodium in its leaves. The two lines did not show any differences in the nodule sodium content. Sucrose allocation towards nodules was affected by salt in the two lines, but this constraint did not seem to affect the repartition of sucrose between sink organs. Salt stress induced perturbations in nodule sucrolytic activities in the two lines. It inhibited sucrose synthase, but the inhibition was more marked in TNC 11.9; alkaline/neutral activity was not altered in TNC 1.8, whereas it decreased more than half in TNC 11.9. Thus, the relative tolerance of TNC 1.8 to salt stress could be attributed to a better use of these photoassimilates by nodules and a better supply of bacteroids in malate. The hypothesis of a competition for sucrose between nodules and other sink organs under salt stress could not be verified. PMID:18804311

  10. Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon)

    Science.gov (United States)

    Berthelot, H.; Moutin, T.; L'Helguen, S.; Leblanc, K.; Hélias, S.; Grosso, O.; Leblond, N.; Charrière, B.; Bonnet, S.

    2015-07-01

    In the oligotrophic ocean characterized by nitrate (NO3-) depletion in surface waters, dinitrogen (N2) fixation and dissolved organic nitrogen (DON) can represent significant nitrogen (N) sources for the ecosystem. In this study, we deployed large in situ mesocosms in New Caledonia in order to investigate (1) the contribution of N2 fixation and DON use to primary production (PP) and particle export and (2) the fate of the freshly produced particulate organic N (PON), i.e., whether it is preferentially accumulated and recycled in the water column or exported out of the system. The mesocosms were fertilized with phosphate (PO43-) in order to prevent phosphorus (P) limitation and promote N2 fixation. The diazotrophic community was dominated by diatom-diazotroph associations (DDAs) during the first part of the experiment for 10 days (P1) followed by the unicellular N2-fixing cyanobacteria UCYN-C for the last 9 days (P2) of the experiment. N2 fixation rates averaged 9.8 ± 4.0 and 27.7 ± 8.6 nmol L-1 d-1 during P1 and P2, respectively. NO3- concentrations ( 0.05) during P1 (9.0 ± 3.3 %) and P2 (12.6 ± 6.1 %). However, the e ratio that quantifies the efficiency of a system to export particulate organic carbon (POCexport) compared to PP (e ratio = POCexport/PP) was significantly higher (p efficient at promoting C export than the production sustained by DDAs. During P1, PON was stable and the total amount of N provided by N2 fixation (0.10 ± 0.02 μmol L-1) was not significantly different (p > 0.05) from the total amount of PON exported (0.10 ± 0.04 μmol L-1), suggesting a rapid and probably direct export of the recently fixed N2 by the DDAs. During P2, both PON concentrations and PON export increased in the mesocosms by a factor 1.5-2. Unlike in P1, this PON production was not totally explained by the new N provided by N2 fixation. The use of DON, whose concentrations decreased significantly (p < 0.05) from 5.3 ± 0.5 μmol L-1 to 4.4 ± 0.5 μmol L-1, appeared to

  11. Aerobic and anaerobic incubation: Biological indexes of soil nitrogen availability

    Directory of Open Access Journals (Sweden)

    Kresović Mirjana M.

    2005-01-01

    Full Text Available Our researches have been made on brown forest soil that had been used in long-term experiments set up according to specified fertilization system for over 30 years. We have chosen those experiment variants in which quantities of nitrogen fertilizers were gradually increased. The soil samples taken from 0 cm to 30 cm depth were used to determine biological indexes of nitrogen availability (aerobic and anaerobic incubation. The same samples were also used for pot experiments with oat. Plant and soil parameters obtained in controlled conditions were used for determination of biological indexes reliability in measuring the soil nitrogen availability. On the grounds of correlation analysis, it can be concluded that biological index of nitrogen availability achieved by the anaerobic incubation (without substraction of the initial content of available nitrogen of the investigated brown forest soil is the reliable indicator of soil nitrogen availability. That is not the case with the aerobic incubation in which reliability has not been established.

  12. Utilisation of CO2, fixation of nitrogen and exhaust gas cleaning in electric discharge with electrode catalysis

    International Nuclear Information System (INIS)

    The method reported here provides a contribution to CO2 utilisation, nitrogen fixation and combustion exhaust cleaning using synergetic effect of electric discharge with heterogeneous catalysis on electrodes. The efficiency of CO2 removal is about 40-65%. The process of CO2 removal is always accompanied by NOx, VOC, SX and other component removal and is connected with O2 formation. The final product of process is powder with fractal microstructure, low specific weight, water insoluble suitable for use as nitrogen containing fertilizer. The main component (95%) of solid product is amorphous condensate of amino acids with about 5% of metal organic compound with catalytic properties. The condensate has character of statistical proteinoid. Its creation seems to play important role during formation of life in pre-biotic Earth

  13. Biological removal of nitrogen from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, T.; Lompe, D.; Wiesmann, U.

    1989-02-01

    The biological treatment of waste water with both a high organic (2500 mg/l DOC) and high ammonia concentration (600 mg/l NH/sub 4//sup +/-N) was investigated. The first step consists of a two step anaerobic cascade of fixed bed loop reactors with polyurethan foam particles as support material for bacterica. The aerobic treatment occurs in two aerated stirred tanks with sedimentation tanks and two separate sludge recycle systems each for heterotrophic and autotrophic biomass resulting in a degradation of organic compounds (first tank) and nitrification (second tank). Finally the nitrate is reduced by biological denitrification. By optimization the total hydraulic retention time could be reduced to 7 hr. Nitrification is the most sensitive step and can be on-line controlled by measurement of oxygen consumption.

  14. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants

    Science.gov (United States)

    Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

    2013-12-01

    Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

  15. The daily integral of nitrogen fixation by planktonic cyanobacteria in the Baltic Sea

    NARCIS (Netherlands)

    Stal, L.J.; Walsby, A.E.

    1998-01-01

    Measurements were made of the rates of nitrogenase activity (acetylene reduction) by cyanobacteria collected from the Baltic Sea at 2-h intervals, over a period of 24 h, and incubated under natural light. By relating the chlorophyll- specific rate of N-2 fixation (P-N) to the mean photon irradiance

  16. Nitrogen fixation and effects of pruning on Gliricidia sepium and Leucaena leucocephala

    International Nuclear Information System (INIS)

    This 7-year study examined genetic variability in N2 fixation by Gliricidia sepium and the N2-fixing capacity in G. sepium and Leucaena leucocephala as influenced by frequency of pruning, age, and shade from coconut. The 15N-dilution method was used with the non-nodulating tree legume Senna siamea as the non-fixing reference. There were significant differences in total dry matter, N yield and N2-fixation capacity among four G. sepium provenances. Gliricidia had higher values than Leucaena for dry matter, N yield, and amount of N fixed; %Ndfa was comparable in both species (47-55%). A substantial amount (18%) of fixed N2 was present in the roots of both species. In a long-term study aimed at comparing the effect of pruning practices and age of trees, G. sepium grown under coconut outperformed L. leucocephala in terms of dry matter, N yield and amounts of N2 fixation. Coconut saplings supplied with G. sepium and L. leucocephala prunings as green manure grew better than those supplied with S. siamea; the fraction of coconut-sapling N obtained from Gliricidia and Leucaena was 40 and 36%, respectively. These results suggest that G. sepium, which demonstrated a high potential for biomass production and N2 fixation, is appropriate for interplanting with coconut palms. Also, S. Siamea was found to be a suitable reference species. (author)

  17. The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum)

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1985-01-01

    The influence of P on N2 fixation and dry matter production of young pea (P. sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth...

  18. Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Alyssa Ann Carrell

    2014-07-01

    Full Text Available Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine and Picea engelmannii (Engelmann spruce growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota—a small number of major species that are consistently associated with the host across individuals and species—is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  19. Incorporation of nitrogen from N2 fixation into amino acids of zooplankton

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Dutz, Jörg; Miltner, Anja;

    2012-01-01

    quantified the direct incorporation of 15N tracer from N2-fixing N. spumigena (diazotroph nitrogen) and ammonium-utilizing R. salina into the amino acid nitrogen (AA-N) of zooplankton using complementary gas chromatography– combustion–isotope ratio mass spectrometry, gas chromatography–mass spectrometry...... consistently low in E. affinis when exposed to N. spumigena, suggesting that these animals were reluctant to feed on N. spumigena. Essential isoleucine received most of the diazotroph nitrogen in field zooplankton, while nonessential amino acids received most 15N tracer in E. affinis. N. spumigena was clearly...... an important amino acid nitrogen source for Baltic Sea zooplankton...

  20. The evolution of nitrogen cycling

    Science.gov (United States)

    Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    The energetics of nitrogen transformation reactions and the evolution of nitrogen cycling are examined. It is suggested that meteor impact-produced fixed nitrogen could have caused the entire reservoir of the earth's N2 to convert into fixed nitrogen at the end of accretion. The abiotic fixation rate on the early earth by lightning is estimated at about 1-3 X 10 to the 16th molecules of NO/J. It is found that biological nitrogen fixation may have evolved after the development of an aerobic atmosphere. It is shown that HNO could eventually become NO2(-) and NO3(-) after reaching the earth's surface. It is concluded that the evolutionary sequence for the biological transformation of nitrogen compounds is ammonification - denitrification - nitrification - nitrogen fixation.

  1. On the influence of "non-Redfield" dissolved organic nutrient dynamics on the spatial distribution of N2 fixation and the size of the marine fixed nitrogen inventory

    Science.gov (United States)

    Somes, Christopher J.; Oschlies, Andreas

    2015-07-01

    Dissolved organic nitrogen (DON) and phosphorus (DOP) represent the most abundant form of their respective nutrient pool in the surface layer of the oligotrophic oceans and play an important role in nutrient cycling and productivity. Since DOP is generally more labile than DON, it provides additional P that may stimulate growth of nitrogen-fixing diazotrophs that supply fixed nitrogen to balance denitrification in the ocean. In this study, we introduce semirecalcitrant components of DON and DOP as state variables in an existing global ocean-atmosphere-sea ice-biogeochemistry model of intermediate complexity to assess their impact on the spatial distribution of nitrogen fixation and the size of the marine fixed nitrogen inventory. Large-scale surface data sets of global DON and Atlantic Ocean DOP are used to constrain the model. Our simulations suggest that both preferential DOP remineralization and phytoplankton DOP uptake are important "non-Redfield" processes (i.e., deviate from molar N:P = 16) that need to be accounted for to explain the observed patterns of DOP. Additional non-Redfield DOP sensitivity experiments testing dissolved organic matter (DOM) production rate uncertainties that best reproduce the observed spatial patterns of DON and DOP stimulate additional nitrogen fixation that increases the size of the global marine fixed nitrogen inventory by 4.7 ± 1.7% compared to the simulation assuming Redfield DOM stoichiometry that underestimates the observed nitrogen inventory. The extra 8 Tg yr-1 of nitrogen fixation stimulated in the Atlantic Ocean is mainly responsible for this increase due to its large spatial separation from water column denitrification, which buffers any potential nitrogen surplus in the Pacific Ocean. Our study suggests that the marine fixed nitrogen budget is sensitive to non-Redfield DOP dynamics because access to the relatively labile DOP pool expands the ecological niche for nitrogen-fixing diazotrophs.

  2. Fiscal 1995 investigation on biological fixation of carbon dioxide; 1995 nendo seibutsuteki CO2 kotei ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To cope with the global warming caused by CO2, an investigation was conducted into biological fixation. It is necessary to make a many-sided and comprehensive study on the mechanism of CO2 fixation, the scale (area and carbon holding density), the rate and the environmental impact of the introduction of the technology and the technical problems, and to make a quantitative evaluation of each of the methods in order to make them practical proposals. The global ecosystem is classified into the land biota and ocean biota, and each typical ecosystem was surveyed in terms of the surface area, the carbon holding amount (presently existing amount), the net primary production amount, the required nutrient salt amount, the transpiration rate, etc. Next, a discussion was made on the increasing effect of the carbon fixation amount by changing the present ecosystem from the aspect of scale and rate. At the same time, a study was carried out of energy efficiency, economical efficiency and problems. Last, elementary technology was taken up which seems to be important for implementing measures for the biological carbon fixation. As to the ocean, it is necessary to obtain information, which is not sufficient to utilize marine biota for CO2 fixation, especially on the mechanism of depth-direction transfer of organism and its quantitative grasp. As to the land, one of the measures is conversion of the ecosystem where the amount of carbon fixed is small to the ecosystem where the amount is large. 249 refs., 58 figs., 51 tabs.

  3. Comparison of inoculant and indigenous rhizobial dinitrogen fixation in cowpeas by direct nitrogen-15 analyses

    International Nuclear Information System (INIS)

    Soil that contained 15N enriched organic matter (0.461 % 15N) was used to determine competitiveness of six strains at different logarithmic inoculum densities against indigenous rhizobia and against a previous surviving inoculant (strain P132). Analyses of N content of plant tissues by direct 15N technique showed that cowpeas (Vigna unguiculata L. Walp.) were capable of deriving 60 to 98% of shoot N from N2 fixation. The two fast-growing strains (176A26 and 176A28) were poorer competitors and fixed less N2 compared to the other slow-growing strains. Inoculum density had no effect upon yield response of cowpeas, but inoculation with strains P132, 401, and 22A1 effected greater seed yield, shoot dry matter, total N, and percentage of N derived from fixation (86-98%) than other strains and the uninoculated control (60-73%). By contrast, N2 fixation and yield parameters in inoculated cowpeas were not significantly different from inoculated controls that contained residual P132 from a previous inoculum study. The higher hydrogen uptake (Hup) efficiency of nodules containing residual P132 (98 ± 2%) facilitated presumptive identification of P132 (100% ± 0 Hup efficiency axenically) as the surviving and infecting inoculant strain since nodules infected by indigenous rhizobia had lower Hup efficiencies (88 ± 2%)

  4. Studies of Radiation Mechanisms as Applied to the Potential Manufacturing Processes: Hydrazine from Ammonia, Nitrogen Fixation and Ozone from Oxygen

    International Nuclear Information System (INIS)

    The slow progress of the past decade toward industrial utilization of radiation in chemical manufacturing is related, among other things, to the tendency to oversimplify or ignore the basic mechanisms and the essential complexity of the radiation chemical systems. The importance of the fundamental approach is illustrated by the radiation systems of hydrazine from ammonia, nitrogen fixation, and ozone from oxygen. Since the First Geneva Conference on the ''Peaceful Uses of Atomic Energy'', radiation production of hydrazine has been of interest because of its high traditional cost and its potential large scale use for rocketry. While considerable efforts had been made on the engineering aspects of such a system, little attention was paid to its radiation chemistry. We have examined this system theoretically and experimentally and have identified the basic mechanism by which yields of hydrazine are limited. On the basis of this mechanism we have proposed a method to increase yields, which has been confirmed by experimental studies. Coincidence mass spectrometry shows a major ionization reaction over a wide energy range forming hydrogen radicals and amino ions, NH2+. Workers.studying the photolysis of ammonia have shown that hydrogen radicals destroy hydrazine. Under radiolysis conditions that allow krypton or xenon to absorb nearly all of the radiation energy, the subsequent charge exchange reactions are unable to form hydrogen atoms directly, since the recombination energy of xenon and krypton are such that direct H formation is strongly endothermic: under these conditions we find a significant increase in the yield of hydrazine. By contrast, the charge exchange of ammonia with neon ions to form hydrogen radicals and the amino ion is strongly exothermic: under these conditions we find a large decrease in the hydrazine yield. For nitrogen fixation by irradiation, there is insufficient experimental data to allow confidence in theoretical predictions. Mass spectrometer

  5. Identification of a cis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana.

    Science.gov (United States)

    Tsujimoto, Ryoma; Kamiya, Narumi; Fujita, Yuichi

    2016-08-01

    The filamentous cyanobacterium Leptolyngbya boryana has the ability to fix nitrogen without any heterocysts under microoxic conditions. Previously, we identified the cnfR gene for a master transcriptional activator for nitrogen fixation (nif) genes in a 50-kb gene cluster containing nif and nif-related genes in L. boryana. We showed that CnfR activates the transcription of nif genes in response to low oxygen conditions, which allows the oxygen-vulnerable enzyme nitrogenase to function. However, the regulatory mechanism that underlies regulation by CnfR remains unknown. In this study, we identified a conserved cis-acting element that is recognized by CnfR. We established a reporter system in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 using luciferase genes (luxAB). Reporter analysis was performed with a series of truncated and modified upstream regulatory regions of nifB and nifP. The cis-element can be divided into nine motifs I-IX, and it is located 76 bp upstream of the transcriptional start sites of nifB and nifP. Six motifs of them are essential for transcriptional activation by CnfR. This cis-acting element is conserved in the upstream regions of nif genes in all diazotrophic cyanobacteria, including Anabaena and Cyanothece, thereby suggesting that the transcriptional regulation by CnfR is widespread in nitrogen-fixing cyanobacteria.

  6. nifH Sequences and Nitrogen Fixation in Type I and Type II Methanotrophs

    OpenAIRE

    Auman, Ann J.; Speake, Catherine C.; Lidstrom, Mary E.

    2001-01-01

    Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified...

  7. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch.

    OpenAIRE

    Hill, S.; Austin, S; Eydmann, T.; Jones, T.; Dixon, R

    1996-01-01

    The NIFL regulatory protein controls transcriptional activation of nitrogen fixation (nif) genes in Azotobacter vinelandii by direct interaction with the enhancer binding protein NIFA. Modulation of NIFA activity by NIFL, in vivo occurs in response to external oxygen concentration or the level of fixed nitrogen. Spectral features of purified NIFL and chromatographic analysis indicate that it is a flavoprotein with FAD as the prosthetic group, which undergoes reduction in the presence of sodiu...

  8. Nitrogen fixation by Gliricidia sepium: decomposition of its leaves in soil and effects on sweet-corn yields

    International Nuclear Information System (INIS)

    Nitrogen fixation by Gliricidia sepium subjected to three pruning regimes (one, two or four cuts per year) was measured using the 15N-dilution technique with Cassia siamea as the reference species. Over a 4-year period, estimates of the fraction of N derived from fixation, generally 2 fixer. Gliricidia sepium leaves were placed in litter-bags, buried in an ultisol and sampled at intervals over 70 days. The half-life for dry matter was 17 days, and about 60% of the N was lost within 10 days; K and Ca were the most rapidly released nutrients, with half-lives of only 1 and 3 days, respectively. The N contributions from G. sepium leaves and roots to alley-cropped sweet corn were quantified by the 15N-dilution technique over three growing seasons. The application of leaves with roots resulted in increased N uptake and dry matter yield in corn. Below-ground competition between hedgerow and corn, assessed using 32P with the third crop, occurred under conditions of low nutrient-availability. The data imply that there is no advantage of the cut-and-carry system over permanent hedgerows, provided that prunings are applied at the time of nutrient demand in the crop. (author)

  9. Studies Regarding the Colonization Capacity of Soils with Permanent Nitrogen Fixating Bacteria, Located on Different Altitudinal Levels

    Directory of Open Access Journals (Sweden)

    Carmen Dragomir

    2012-05-01

    Full Text Available The determination of the colonization capacity with permanent nitrogen fixating bacteria has been achieved indirectly through the method of using soil extracts, taken from the rhizosphere of leguminous species existing in the 4 types of permanent grasslands, located on different altitudinal levels (90m, 330m, 900m, 1800m. Treatments with soil extracts taken have been made at three species of legumes (Lotus corniculatus, Trifolium repens, Trifolium pratense, seeded on a sown perlite layer and grown in the growth chamber. Between the total amount of nodosities formed and the altitude of grasslands there is a negative correlation. At treatments with extracts taken from grasslands situated between 90-330m, there has been observed the highest number of nodosities formed on roots of tested leguminous species.

  10. Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1985-10-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O/sub 2/ (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.

  11. Structural characterization of the protein cce_0567 from Cyanothece 51142, a metalloprotein associated with nitrogen fixation in the DUF683 family

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Robinson, Howard; Addlagatta, Anthony

    2009-03-11

    The genome of many cyanobacacteria contain the sequence for a small protein (<100 amino acids) with a commom "domain of unknown function" grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that fall into the DUF683 family, cce_0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce_0567, to 1.84 Å resolution. Cce_0567 crystallized in space group P21 with two protein molecules and one Ni2+ cation per asymmetric unit. The protein is composed of two α-helices from residues P11 to G41 (α1) and L49-E74 (α2) with the second α-helix containing a short 310-helix (Y46 - N48). A four-residue linker (L42 - D45) between the helices allows them to form an anti-parallel bundle that cross over each other towards their termini. In solution it is likely that two molecules of cce_0567 form a rod-like dimer by the stacking interactions of ~1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer coordinate with Ni2+ in the crystal structure. The divalent cation Ni2+ was titrated into 15N-labelled cce_0567 and chemical shift perturbations were observed only in the 1H-15N HSQC spectra for residues at, or near, the site of Ni2+ binding observed in the crystal structure. There was no evidence for an increase in the size of cce_0567 upon binding Ni2+, even in large molar excess of Ni2+, indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce_0567 was extremely robust, with a melting temperature of ~62ºC that was reversible.

  12. Structural characterization of the protein cce_0567 from Cyanothece 51142, a metalloprotein associated with nitrogen fixation in the DUF683 family.

    Science.gov (United States)

    Buchko, Garry W; Robinson, Howard; Addlagatta, Anthony

    2009-04-01

    The genomes of many cyanobacteria contain the sequence for a small protein with a common "Domain of Unknown Function" grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that falls into the DUF683 family, cce_0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce_0567, to 1.84 A resolution. Cce_0567 crystallized in space group P2(1) with two protein molecules and one Ni(2+) cation per asymmetric unit. The protein is composed of two alpha-helices, residues P11 to G41 (alpha1) and L49-E74 (alpha2), with the second alpha-helix containing a short 3(10)-helix (Y46-N48). A four-residue linker (L42-D45) between the helices allows them to form an anti-parallel bundle and cross over each other towards their termini. In solution it is likely that two molecules of cce_0567 form a rod-like dimer by the stacking interactions of approximately 1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer is coordinated with Ni(2+) in the crystal structure. The divalent cation Ni(2+) was titrated into (15)N-labeled cce_0567 and chemical shift perturbations were observed only in the (1)H-(15)N HSQC spectra for residues at, or near, the site of Ni(2+) binding observed in the crystal structure. There was no evidence for an increase in the size of cce_0567 upon binding Ni(2+), even in large molar excess of Ni(2+), indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce_0567 was extremely robust, with a melting temperature of approximately 62 degrees C

  13. Structural Characterization of the Protein cce_0567 from Cyanothece 51142, a Metalloprotein Associated with Nitrogen Fixation in the DUF683 Family

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, G.; Robinson, H; Addlagatta, A

    2009-01-01

    The genomes of many cyanobacteria contain the sequence for a small protein with a common 'Domain of Unknown Function' grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that falls into the DUF683 family, cce 0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce 0567, to 1.84 A resolution. Cce 0567 crystallized in space group P2(1) with two protein molecules and one Ni(2+) cation per asymmetric unit. The protein is composed of two alpha-helices, residues P11 to G41 (alpha1) and L49-E74 (alpha2), with the second alpha-helix containing a short 3(10)-helix (Y46-N48). A four-residue linker (L42-D45) between the helices allows them to form an anti-parallel bundle and cross over each other towards their termini. In solution it is likely that two molecules of cce 0567 form a rod-like dimer by the stacking interactions of approximately 1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer is coordinated with Ni(2+) in the crystal structure. The divalent cation Ni(2+) was titrated into (15)N-labeled cce 0567 and chemical shift perturbations were observed only in the (1)H-(15)N HSQC spectra for residues at, or near, the site of Ni(2+) binding observed in the crystal structure. There was no evidence for an increase in the size of cce 0567 upon binding Ni(2+), even in large molar excess of Ni(2+), indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce 0567 was extremely robust, with a melting temperature of approximately 62

  14. Conjunto mínimo de parâmetros para avaliação da microbiota do solo e da fixação biológica do nitrogênio pela soja Minimal set of parameters for evaluation soil microbiota and biological nitrogen fixation in soybean

    Directory of Open Access Journals (Sweden)

    Rosinei Aparecida de Souza

    2008-01-01

    Full Text Available O objetivo deste trabalho foi avaliar e validar um conjunto mínimo de parâmetros para o monitoramento, em campo, da microbiota do solo e da fixação biológica do N2 (FBN pela soja. Os ensaios foram conduzidos em áreas de plantios comerciais (safra 2002/2003 e experimentais (safra 2004/2005, em blocos ao acaso. O C e o N da biomassa microbiana (CBM e NBM mostraram-se adequados para a avaliação quantitativa da microbiota do solo e ambos os parâmetros foram correlacionados significativamente, portanto, apenas um deles precisa ser determinado. Foram obtidas correlações positivas e significativas entre a massa da parte aérea seca das plantas (MPAS e o CBM e o NBM. A análise do DNA total do solo por eletroforese em géis desnaturantes (DGGE detectou alterações qualitativas na microbiota do solo, relacionadas à homogeneidade da área e a diferenças entre tratamentos, áreas e coletas. A massa de nódulos secos (MNS foi o melhor parâmetro para a avaliação da nodulação. Correlações significativas foram constatadas entre a MPAS e o N total acumulado na parte aérea (NTPA. Resultados semelhantes foram observados entre a MPAS e o N de ureídos (NTU. O monitoramento da FBN pela soja pode ser realizado apenas pela determinação da MNS e da MPAS.The objective of this work was to evaluate and validate a minimum set of parameters capable of monitoring, under field conditions, soil microbes and/or the biological N2 fixation process with the soybean crop. The field trials were performed in commercial fields (2002/2003 and experimental areas (2004/2004, with complete randomized blocks design. Microbial biomass C (MBC and N (MBN were adequate for the quantitative evaluation of soil microbes; the parameters were significantly correlated therefore the determination of only one of them is sufficient. Positive and significant correlations were also obtained between the parameters of shoot dry weight (SDW and MBC and MBN. The analysis of total

  15. Growth, nodulation and nitrogen fixation of cowpea in soils amended with composted tannery sludge

    OpenAIRE

    Joseany Andrade Santos; Luís Alfredo Pinheiro Leal Nunes; Wanderley José de Melo; Marcia Barreto do Vale Figueiredo; Rajeev Pratap Singh; Antônio Aécio Carvalho Bezerra; Ademir Sérgio Ferreira de Araújo

    2011-01-01

    Tannery wastes generation is increasing every year and a suitable method for tannery sludge management is necessary in order to decrease this environmental problem. The composting is recognized as a suitable method for sludge recycling.. The effect of tannery sludge compost (TSC) rates on growth, nodulation and N fixation of cowpea was investigated. Sandy and clayey soils were amended with TSC at rates of 0, 7.5, 15, 30, and 60 t ha-1. The shoot dry weight of cowpea plants 45 days after emerg...

  16. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    Science.gov (United States)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  17. Biological phosphorus and nitrogen removal in a single sludge system

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Hans

    1996-05-01

    The primary aim of this thesis was to investigate the process stability of a single sludge activated system designed for the combined operation of enhanced biological phosphorus removal (EBPR) and nitrogen removal. A pilot plant at the Sjoelunda wastewater treatment plant in Malmoe, Sweden, has formed the basis for the investigation. The pilot plant study showed that the concentration of total phosphorus on average was low in the effluent, below 0.5 mg P/l. Simultaneously with the highest concentrations of phosphorus in the effluent, the lowest COD/P ratios in the effluent were recorded. A recurrent pattern of high concentrations of phosphorus was observed every year in July, which is the industrial holiday month in Sweden. Other instances of increased phosphorus concentrations in the secondary effluent illustrate the effect of prolonged periods of rain. Increasing flow rates due to rain lead to a dilution and a change in the composition of the COD in the influent wastewater. The COD/P and VFA/P ratios decrease with decreasing concentrations of COD. It was also shown that high removal ratios of both nitrogen and phosphorus during long periods are possible. The nitrogen removal was stable during the whole investigated period, whereas the phosphorus removal was unstable during prolonged periods with low concentrations of COD in the influent water. The combined biological phosphorus and nitrogen removal process implies that during these periods the risk of recirculating nitrate to the anaerobic reactor increases. Such a recirculation both stabilizes the nitrogen removal and withdraws some of the readily degradable organic material from the bio-P bacteria. The main conclusion of this study is that a phosphorus limited EBPR process can cope with the day to day variations, but occasionally, measures have to be taken if the demands for phosphorus removal are stringent. 49 refs, 8 figs, 1 tab

  18. Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL.

    Science.gov (United States)

    Austin, S; Buck, M; Cannon, W; Eydmann, T; Dixon, R

    1994-06-01

    The prokaryotic enhancer-binding protein NifA stimulates transcription at a distance by binding to sequences upstream of nitrogen fixation (nif) promoters and catalyzing the formation of open promoter complexes by RNA polymerase containing the alternative sigma factor, sigma 54. The activity of NifA in vivo is modulated by the negative regulatory protein NifL in response to environmental oxygen and fixed nitrogen. To date, a detailed biochemical analysis of these proteins from the model diazotroph Klebsiella pneumoniae has been hindered by their insolubility. We have now purified NifA and NifL from Azotobacter vinelandii in their native form. NifA is competent in specific DNA binding, transcriptional activation, and response to negative regulation by NifL in vitro. In contrast to the conserved mechanism of phosphotransfer demonstrated by other two-component regulatory systems, our results support a model in which NifL regulates the activity of NifA via a protein-protein steric block interaction rather than a catalytic modification of NifA. PMID:8206822

  19. Characterization of a spontaneous mutant of Azotobacter vinelandii in which vanadium-dependent nitrogen fixation is not inhibited by molybdenum.

    Science.gov (United States)

    Bageshwar, U K; Raina, R; Das, H K

    1998-05-01

    A spontaneous mutant derivative of Azotobacter vinelandii CA12 (delta nif HDK), which vanadium-dependent nitrogen fixation is not inhibited by molybdenum (A. vinelandii CARR), grows profusely on BNF-agar containing 1 microM Na2MoO4, alone or supplemented with 1 microM V2O5. The expression of A. vinelandii vnfH::lacZ and vnfA::lacZ fusions in A. vinelandii CARR was not inhibited by 1 mM Na2MoO4, whereas molybdenum at much lower concentration inhibited the expression of vnfH::lacZ and vnfA::lacZ fusions in A. vinlandii CA12. The mutant also exhibited normal acetylene reduction activity in the presence of 1 microM Na2MoO4. The expression of A. vinelandii nifH::lacZ fusion in A. vinelandii CARR was low even though the cells were cultured under non-repressing conditions with urea as nitrogen source in the presence of Na2MoO4. The molybdenum content of A. vinelandii CARR cells was found to be about one-fourth that of A. vinelandii CA12. No nitrate reductase activity could be detected in A. vinelandii CARR when the cells were cultured in the presence of 10 microM Na2MoO4, whereas A. vinelandii CA12 exhibited some activity even with 100 pM Na2MoO4. PMID:9595678

  20. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    Science.gov (United States)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron

  1. Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants

    Science.gov (United States)

    Bacteria-mediated acquisition of atmospheric dinitrogen by plants serves as a critical nitrogen source in terrestrial ecosystems, and through its key role in agriculture, this phenomenon has shaped the development of human civilizations. Here we show that, paralleling human agriculture, cultivation ...

  2. Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp.

    NARCIS (Netherlands)

    Rabouille, S.A.M.; Staal, M.J.; Stal, L.J.; Soetaert, K.E.R.

    2006-01-01

    A physiological, unbalanced model is presented that explicitly describes growth of the marine cyanobacterium Trichodesmium sp. at the expense of N2 (diazotrophy). The model involves the dynamics of intracellular reserves of carbon and nitrogen and allows the uncoupling of the metabolism of these ele

  3. Multi-Site Evidence for Marine Nitrogen Fixation in Mid-Cretaceous Black Shales

    Science.gov (United States)

    Yum, J.; Meyers, P. A.; Bernasconi, S.

    2004-12-01

    High concentrations of organic carbon in Cretaceous black shales imply levels of sustained export production of organic matter that are unknown in the modern ocean where marine productivity is usually limited by availability of dissolved nitrate. However, if a mid-water anoxic zone expands upward into the photic zone, then nitrogen-fixing cyanobacteria can flourish. These organisms produce organic matter having an isotopic composition close to atmospheric nitrogen (0 per mil). We have compared the carbon and nitrogen isotopic and total organic carbon compositions of Albian to Santonian black shale sequences from the Demerara Rise in the equatorial Atlantic, the Kerguelan Plateau in the southern Indian Ocean, the Hatteras Rise in the western North Atlantic Ocean, the Angola Basin in the eastern South Atlantic Ocean, and the Cape Verde Rise in the eastern North Atlantic Ocean . Nitrogen isotope compositions that become lighter as organic carbon concentrations increase indicate that organic matter production was enhanced by a consortium of primary producers that included nitrogen-fixers. Expansion of an intensified oxygen minimum zone into the photic zone probably permitted coexistence of algae and of cyanobacteria, the latter functioning best under low-oxygen conditions and not being limited by nitrate availability. Improved preservation of the exported organic matter in an intensified near-surface oxygen minimum zone is implied by C/N ratios that increase to 40 as organic carbon concentrations increase. Periods of wetter climate evidently created periods of increased surface stratification of Cretaceous oceans that led to enhanced cyanobacterial primary productivity, magnified organic matter export, and deposition of the organic-carbon-rich black shales. Our multi-site comparison suggests that climate-related gradients in the degree of surface stratification led to associated gradients in export production of organic matter.

  4. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  5. FY 1996 annual report of investigation on biological fixation of carbon dioxide. 2; 1996 nendo seibutsuteki CO2 kotei ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Various kinds of biological fixation processes of CO2 were evaluated from the various viewpoints. Afforestation of tropical and temperate areas, greening of desert, biomass energy production in these areas by energy plantation, coastal mangrove plantation, fertilization with nitrogen and phosphate to outer ocean and coastal, upwelling zone fertilization with iron, and coral reef expansion combined with OTEC (ocean thermal energy conversion) were comparatively investigated as the selected measures. As a result, the cost of CO2 fixation by cultivation of sea weed and plankton was much higher than that of afforestation. The iron fertilization method which was considered to be one of the high CO2 reduction potentials might be economical. However, its effect could not be quantitatively evaluated. The afforestation of tropical and temperate areas seemed to be most feasible in a short term from the viewpoints of economy and environment. It was suggested that the establishment of a systematic water management technology could make greening and afforestation of desert. 76 refs., 27 figs., 28 tabs.

  6. Transformação genética e aplicação de glifosato na microbiota do solo, fixação biológica de nitrogênio, qualidade e segurança de grãos de soja geneticamente modificada Genetic transformation and the use glyphosate on soil microbial, biological nitrogen fixation, quality and safety of genetically modified soybean

    Directory of Open Access Journals (Sweden)

    Giani Mariza Bärwald Böhm

    2010-02-01

    safety of GM RR soybean with or without glyphosate application were collected and investigated. In general, the researches investigated showed some similar characteristics: a few variables were studied; b simulations in green house or in vitro are used to infer possible response on the field. Although scarce, the researches denoted that the genetic transformation did not affect soil microorganisms, biological nitrogen fixation and composition of grains. The factor which could affect these variables is the glyphosate application in weed control, thus the risk of damage to the environment and the safety of products derived from this raw materialare due to the use of the herbicide during cultivation, and not to the genetic transformation. Key words: Transgenic soybean, soil microorganisms, herbicides residue, isoflavones.

  7. 15NO3 assimilation and its inhibitory effect on symbiotic nitrogen fixation in peanut

    International Nuclear Information System (INIS)

    To assess the inhibitory effect of nitrate on the contribution of symbiotic N fixation to total plant N, cultivars of different nodulation capacity were monitored in a growth chamber study. Plants inoculated with Bradyrhizobium sp. (Arachis) strain NC 70.1 were grown in a nutrient solution containing 0, 2.5, 5 or 10 mM NO3 enriched with 2.5 atom % 15N. Plant harvests at 30 and 60 DAP provided tissue for measurement of growth, total N, NO3 and 15N partitioning. Nitrogenase activity was estimated via C2H2 reduction. Data indicates that plant growth was associated to NO3 concentration. Average nodule weight and N plant-1 decreased in excess of 2.5mM NO3. Specific nitrogenase activity diminished markedly with application of NO3 with a decline from 40.2 to 25.0 μmoles C2H2 g hr-1 at 0 and 2.5mM NO3, respectively. Nitrate and fixed N assimilation patterns will be elucidated by 15N analysis

  8. Growth, nodulation and nitrogen fixation of cowpea in soils amended with composted tannery sludge

    Directory of Open Access Journals (Sweden)

    Joseany Andrade Santos

    2011-12-01

    Full Text Available Tannery wastes generation is increasing every year and a suitable method for tannery sludge management is necessary in order to decrease this environmental problem. The composting is recognized as a suitable method for sludge recycling.. The effect of tannery sludge compost (TSC rates on growth, nodulation and N fixation of cowpea was investigated. Sandy and clayey soils were amended with TSC at rates of 0, 7.5, 15, 30, and 60 t ha-1. The shoot dry weight of cowpea plants 45 days after emergence (DAE was greater in the TSC-amended than in the unamended soil. In the sandy soil, nodule dry weight increased with TSC application 45 DAE. In the clayey soil, 45 DAE, nodule dry weight decreased with TSC amendment levels greater than 7.5 t ha-1 compared to the unamended control. The application of TSC increased N accumulation in the cowpea plants. The results suggest that cowpea responds differently to TSC depending on the amendment rate and initial soil type.

  9. Effect of organic fertiliser residues from rice production on nitrogen fixation of soya (Glycine max L. Merrill, Chiang Mai 60 variety

    Directory of Open Access Journals (Sweden)

    Nattida Luangmaka

    2013-09-01

    Full Text Available A field study was undertaken on the residual effect of organic fertilisers applied to the preceding rice cropping on nitrogen fixation of soya in a rice-soya cropping system. The experiment was conducted on a farmer’s lowland paddy in Mae Rim district, Chiang Mai province, Thailand. Organic fertiliser treatments assigned were: 1 control (no fertiliser, 2 animal manure of cattle (AM, 3 compost (CP, 4 azolla (AZ, 5 AM + CP, 6 AM + AZ, 7 CP + AZ and 8 AM + CP + AZ. Soya seeds were planted without rhizobial inoculation in December 2011, four months after the application of organic fertilisers. Nodule weight, total shoot nitrogen accumulation and relative ureide index at various growth stages were recorded as the indices of nitrogen fixation. Results of the study demonstrate that the residues from the application the organic fertilisers of narrow C/N ratios during the land preparation for rice cropping four months before soya cultivation promoted nitrogen fixation by native rhizobia.

  10. Osmoregulation in Klebsiella pneumoniae: enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, gamma-butyrobetaine, and other related compounds.

    Science.gov (United States)

    Le Rudulier, D; Bernard, T; Goas, G; Hamelin, J

    1984-03-01

    Exogenous proline betaine ( stachydrine or N- dimethylproline ) or gamma-butyrobetaine (gamma-trimethylaminobutyrate), at a concentration as low as 1 mM, were found to stimulate the growth rate of Klebsiella pneumoniae, wild type M5A1 , in media of inhibitory osmotic strength (0.8 M NaC1). Simultaneously, nitrogen fixation by whole cells, a process particularly sensitive to osmotic stress, was strongly enhanced by these compounds. However, in the absence of sodium chloride, both the growth and nitrogen fixation were not affected by the addition of the methylammonium derivatives in the medium. The sensitivity of the nitrogen fixation to osmotic stress was used as a bioassay to evaluate the potentiality of osmoprotective compound in relation to the number of methyl groups on the nitrogen atom of glycine, proline, and gamma-aminobutyrate. Experiments with sarcosine ( monomethylglycine ), dimethylglycine, and glycine betaine ( trimethylglycine ), or experiments with mono- and di- methylproline or gamma-mono-, gamma-di, gamma-tri- methylaminobutyrate , indicated that the greatest stress tolerance was always obtained with the more N-methylated compounds. PMID:6372974

  11. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...... resulting from open loop simulations with a dynamic dry weather influent scenario. The influence of the dissolved oxygen set point selection on the nitrate control loop performance observed in the simulations further illustrates the need for a plant-wide optimization approach to reach optimal plant...

  12. Fructose uptake and influence on growth of and nitrogen fixation by Anabaena variabilis.

    OpenAIRE

    Haury, J F; Spiller, H.

    1981-01-01

    Fructose is specifically taken up by nitrogen-fixing cultures of Anabaena variabilis in the light and lowers the doubling time from 24 to 8 h. The kinetics for both fructose-dependent growth and fructose uptake are exponential. The apparent Km for fructose uptake in N2-fixing cultures is 160 microM for cells not previously exposed to fructose and 50 microM in cells adapted to fructose. Picomolar amounts of [14C]fructose are scavenged from the medium and accumulate in filaments. Heterocysts of...

  13. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean

    OpenAIRE

    Ren, H.; Sigman, D. M.; A. N. Meckler; Birgit Plessen; R. S. Robinson; Y. Rosenthal; Haug, G. H.

    2009-01-01

    Fixed nitrogen (N) is a limiting nutrient for algae in the low-latitude ocean, and its oceanic inventory may have been higher during ice ages, thus helping to lower atmospheric CO2 during those intervals. In organic matter within planktonic foraminifera shells in Caribbean Sea sediments, we found that the 15N/14N ratio from the last ice age is higher than that from the current interglacial, indicating a higher nitrate 15N/14N ratio in the Caribbean thermocline. This change and other species-s...

  14. Spatial coupling of nitrogen inputs and losses in the ocean.

    Science.gov (United States)

    Deutsch, Curtis; Sarmiento, Jorge L; Sigman, Daniel M; Gruber, Nicolas; Dunne, John P

    2007-01-11

    Nitrogen fixation is crucial for maintaining biological productivity in the oceans, because it replaces the biologically available nitrogen that is lost through denitrification. But, owing to its temporal and spatial variability, the global distribution of marine nitrogen fixation is difficult to determine from direct shipboard measurements. This uncertainty limits our understanding of the factors that influence nitrogen fixation, which may include iron, nitrogen-to-phosphorus ratios, and physical conditions such as temperature. Here we determine nitrogen fixation rates in the world's oceans through their impact on nitrate and phosphate concentrations in surface waters, using an ocean circulation model. Our results indicate that nitrogen fixation rates are highest in the Pacific Ocean, where water column denitrification rates are high but the rate of atmospheric iron deposition is low. We conclude that oceanic nitrogen fixation is closely tied to the generation of nitrogen-deficient waters in denitrification zones, supporting the view that nitrogen fixation stabilizes the oceanic inventory of fixed nitrogen over time. PMID:17215838

  15. Nitrogen-Dependent Carbon Fixation by Picoplankton In Culture and in the Mississippi River

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey Smith; Marguerite W. Coomes; Thomas E. Smith

    2005-04-30

    The pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC), of the marine cyanobacterium Synechococcus PCC 7002, was isolated and sequenced. PEPC is an anaplerotic enzyme, but it may also contribute to overall CO2 fixation through β-carboxylation reactions. A consensus sequence generated by aligning the pepc genes of Anabaena variabilis, Anacystis nidulans and Synechocystis PCC 6803 was used to design two sets of primers that were used to amplify segments of Synechococcus PCC 7002 pepc. In order to isolate the gene, the sequence of the PCR product was used to search for the pepc nucleotide sequence from the publicly available genome of Synechococcus PCC 7002. At the time, the genome for this organism had not been completed although sequences of a significant number of its fragments are available in public databases. Thus, the major challenge was to find the pepc gene among those fragments and to complete gaps as necessary. Even though the search did not yield the complete gene, PCR primers were designed to amplify a DNA fragment using a high fidelity thermostable DNA polymerase. An open reading frame (ORF) consisting of 2988 base pairs coding for 995 amino acids was found in the 3066 bp PCR product. The pepc gene had a GC content of 52% and the deduced protein had a calculated molecular mass of 114,049 Da. The amino acid sequence was closely related to that of PEPC from other cyanobacteria, exhibiting 59-61% identity. The sequence differed significantly from plant and E. coli PEPC with only 30% homology. However, comparing the Synechococcus PCC 7002 sequence to the recently resolved E. coli PEPC revealed that most of the essential domains and amino acids involved in PEPC activity were shared by both proteins. The recombinant Synechococcus PCC 7002 PEPC was expressed in E. coli.

  16. Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation.

    Science.gov (United States)

    Raven, John A

    2012-06-01

    Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs. Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein

  17. Radiation application for upgrading of bioresources - Development of antifungal and-or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Kim, Soo Ki; Lee, Sung Ho; Lee, Jung Suk [Paichai University, Taejon (Korea)

    1999-04-01

    (1) In this study, the antifungal bacterial eight strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Especially, strain KL2143, 2367 were identified as Bacillus subtilis (KL2143/KL2367) and strain KL2326, KL2314 identified as Pseudomonas aurantiaca have never been reported internationally. Considering antifungal(AF) spectrum of strain KL2143 show the broad range of AF activity on a number of pathogenic fungi. Therefore, strain KL2143 was selected with the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) Optimal conditions for the production of antifungal material were analyzed under various environmental conditions (carbon source, nitrogen source, phosphate concentration, pH, temperature, amino acids, vitamins). Growth rates were different according to carbon and nitrogen source, antifungal material production yield were not different, however. Product of antifungal material according to phosphate is proportional to concentration; the higher in high concentration and the low in lower concentration. And productivity of antifungal material is was generally high in the range 30 - 37 deg C at pH7 and in case of adding vitamin B12, lysine and aginine to medium it was enhanced. (3) Moreover, bio-degradability upon agricultural substance and organic substances by AF bacteria was strikingly effective. (4) AF stains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. (5) Establishment of a new technology for the

  18. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis.

    Science.gov (United States)

    Milcamps, A; Van Dommelen, A; Stigter, J; Vanderleyden, J; de Bruijn, F J

    1996-05-01

    The rpoN (ntrA) gene (encoding sigma 54) of Azospirillum brasilense Sp7 was isolated by using conserved rpoN primers and the polymerase chain reaction, and its nucleotide sequence was determined. The deduced amino acid sequence of the RpoN protein was found to share a high degree of homology with other members of the sigma 54 family. Two additional open reading frames were found in the Azospirillum brasilense rpoN region, with significant similarity to equivalent regions surrounding the rpoN locus in other bacteria. An rpoN mutant of Azospirillum brasilense Sp7 was constructed by gene replacement and found to be defective in nitrogen fixation, nitrate assimilation, and ammonium uptake. Lack of ammonium uptake was also found in previously isolated Azospirillum brasilense ntrB and ntrC mutants, further supporting the role of the ntr system in this process. In addition, the rpoN mutant was found to be nonmotile, suggesting a role of RpoN in Azospirillum brasilense flagellar biosynthesis.

  19. Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a Co-ordinated Research Project on The Use of Isotopes in Studies to Improve Yield and N2 Fixation of Grain Legumes with the Aim of Increasing Food Production and Saving N-fertilizer in the Tropics and Sub-Tropics of Asia that was operational from 1990 to 1995. This Project was underpinned by extensive experience in the use of 15N-labelled fertilizer in quantifying N2 fixation by food and pasture legumes; the isotope-dilution technique, recognized as the most accurate mode of quantifying fixation, was developed at the IAEA and has been used profitably for over 20 years in co-ordinated research projects that were focused on aspects relevant to the sustainability of agriculture in developing countries in which food security is most under threat. This effort to improve N2 fixation by food legumes in Asia, and in so doing to increase productivity of cereal-based farming systems as a whole, was timely in terms of regional needs. It was complemented by an overlapping Co-ordinated Research Project entitled ''The Use of Nuclear and Related Techniques in Management of Nitrogen Fixation by trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils''. The project involved scientists from Australia, Bangladesh, China, India, Malaysia, Pakistan the Philippines, Sri Lanka, Thailand and Viet Nam

  20. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper

  1. Comparative organization of nitrogen fixation-specific genes from Azotobacter vinelandii and Klebsiella pneumoniae: DNA sequence of the nifUSV genes.

    OpenAIRE

    Beynon, J; Ally, A; Cannon, M; Cannon, F.; Jacobson, M.; Cash, V; Dean, D.

    1987-01-01

    In the facultative anaerobe Klebsiella pneumoniae 17 nitrogen fixation-specific genes (nif genes) have been identified. Homologs to 12 of these genes have now been isolated from the aerobic diazotroph Azotobacter vinelandii. Comparative studies have indicated that these diverse microorganisms share striking similarities in the genetic organization of their nif genes and in the primary structure of their individual nif gene products. In this study the complete nucleotide sequence of the nifUSV...

  2. Effects of moisture stress levels at different growth stages on nodulation and nitrogen fixation in common bean (phaseolus vulgaris l. Genotype

    Directory of Open Access Journals (Sweden)

    M. A. Ndimbo

    2015-08-01

    Full Text Available Moisture stress is among the limiting factors to crop yields. The objective of this study was to determine the effects of moisture stress imposed at different growth stages of bean plants on nodulation and nitrogen fixation. The experiment was conducted in greenhouse and in the field, at Sokoine University of Agriculture. The bean genotype “Kijivu” was used, the stages were; (i VC (Cotyledonary and unifoliolate leaves visible, (ii V2 (Second trifoliolate leaf unfolded, (iii V4 (Fourth trifoliolates on the main stem, blossom clusters not opened and (iv R2 (Pods 1/2 inch long. Irrigation treatments were initiated to maintain moisture treatments of 100%, 75%, 50%, or 25% of the soils field capacity for each plant growth stage until plant maturity. Moisture stress significantly affected nodulation, nitrogen fixation, and finally grain yields. Numbers of nodules per plant were reduced by 56.0% in greenhouse and 69.2% in the field between V4 and VC at 25% moisture regime. Shoot biomass was reduced by 40.8% and 26.8% while root biomass was reduced 23.5% and 31.5% in greenhouse and field, respectively. These results suggest that for maximum nodulation and nitrogen fixation to be achieved, moisture stress must be avoided at the VC and V2 growing stages.

  3. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  4. Diversity and nitrogen fixation efficiency of rhizobia isolated from nodules of Centrolobium paraense

    Directory of Open Access Journals (Sweden)

    Alexandre Cardoso Baraúna

    2014-04-01

    Full Text Available The objective of this work was to isolate and characterize rhizobia from nodules of Centrolobium paraense and to evaluate their symbiotic efficiency. Soil samples collected from four sites of the Roraima Cerrado, Brazil, were used to cultivate C. paraense in order to obtain nodules. Isolates (178 were obtained from 334 nodules after cultivation on medium 79. Twenty-five isolates belonging to six morphological groups were authenticated using Vigna unguiculata and they were characterized by 16S rRNA. Isolates identified as Bradyrhizobium were further characterized using rpoB gene sequencing. A greenhouse experiment was carried out with C. paraense to test the 18 authenticated isolates. Approximately 90% of the isolates grew slowly in medium 79. The 16S rRNA analysis showed that 14 authenticated isolates belong to the genus Bradyrhizobium, and rpoB indicated they constitute different groups compared to previously described species. Only four of the 11 fast-growing isolates nodulated V. unguiculata, two of which belong to Rhizobium, and two to Pleomorphomonas, which was not previously reported as a nodulating genus. The Bradyrhizobium isolates ERR 326, ERR 399, and ERR 435 had the highest symbiotic efficiency on C. paraense and showed a contribution similar to the nitrogen treatment. Centrolobium paraense is able to nodulate with different rhizobium species, some of which have not yet been described.

  5. Prebiotic Nitrogen Fixation by FeS Reduction of Nitrite Under Acidic Conditions

    Science.gov (United States)

    Summers, David P.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Theories for the origin of life require the availability of reduced nitrogen for the formation of such species as amino acid and nucleic acids. In a strongly reducing atmosphere, compounds essential to the chemical evolution of life, such as amino acids, can form by reactions between HCN, NH3, and carbonyl compounds produced in spark discharges. However, under non-reducing atmospheres, electric discharges produced NO rather than HCN or NH3. This raises the questions of; how ammonia can be formed under a neutral atmosphere, and what conditions are needed such formation to occur? On possibility is the conversion of NO into nitric and nitrous acids (through HNO) and rained into the oceans. The reduction of nitrite by aqueous Fe(II) (6 Fe(+2) + 7 H(+) + NO2(-) yields 6 Fe(III) + 2 H2O + NH3) such as was present on the early Earth could then have produced ammonia. However, this reaction does not proceed at pHs less than 7.3. An alternative is reduction by other forms of Fe(II), such as FeS. We will present results that show that FeS can reduce nitrite to ammonia at pHs as low as pH 5 under a variety of conditions.

  6. Fixação biológica de N2 no feijoeiro submetido a dosagens de inoculante e tratamento químico na semente comparado à adubação nitrogenada = Biological fixation of N2 in bean plantation at doses of inoculants and chemical treatment to the seed compared with nitrogenous fertilization

    Directory of Open Access Journals (Sweden)

    Fabio Fernando de Araújo

    2007-10-01

    Full Text Available A inoculação do feijoeiro é uma técnica difundida pela pesquisa, mas pouco utilizada pelos agricultores. Entretanto, com o baixo poder aquisitivo da maioria dos agricultores, que cultivam o feijão, e com a baixa produtividade média, a utilização desta técnica de baixo custo pode ser uma excelente alternativa para aumento da produtividade. O presente trabalho teve como objetivo avaliar, no cultivo do feijão, a inoculação com Rhizobium, na presença e ausência de fungicida na semente comparando-se com a adubação nitrogenada. O experimento foi conduzido, em 2004, no município de Colorado, Estado do Paraná. Foi demonstrado que a inoculação é uma técnica eficiente no fornecimento de nitrogênio para a cultura, quando comparado com o fornecimento de nitrogênio mineral. A cultivar de feijão carioca apresentou boa resposta à inoculação, demostrando bons índices denodulação e produtividade. O aumento da dosagem do inoculante não proporcionou ganhos de nodulação e produtividade, porém o uso do fungicida na semente afetou a produtividade.The inoculation of bean is a technique spread out by research, but it is not very much used by farmers. However, considering the low purchasing power of the majority of farmers who cultivate beans and the low average productivity, the use of this low cost technique can be an excellent alternative to increase productivity.The aim of this work was to evaluate the inoculation with Rhizobium and the nitrogenous feeding of beans. The experiment was conducted in 2004, in Colorado, state of Paraná. Results showed that inoculation was anefficient technique in supplying nitrogen to the culture, when compared with the addition of mineral nitrogen. The “carioca” bean variety showed positive response to the inoculation with good levels of nodulation and yield. The increase of inoculation level did not result in nodulation and productivity gains, though the use of fungicide in the seed affected the

  7. Soil animals and nitrogen mineralization under sand-fixation plantations in Zhanggutai region, China

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-sheng; ZENG De-hui; HU Xiao-fei; CHEN Guang-sheng; YU Zhan-yuan

    2007-01-01

    The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distinguished with Tullgren and Baermann methods under three Pinus sylvestris var. mongolica Litv. plantations in Zhanggutai sandy land, China. In addition, soil N mineralization rate was also measured with PVC closed-top tube in situ incubation method. The soil animals collected during growing season belonged to 13 orders, 5groups, 4 phyla, whose average density was 86 249.17 individuals.m-2. There were significant differences in soil animal species, densities,diversities and evenness among three plantations. Permanent grazing resulted in decrease of soil animal species and diversity. The average ammonification, nitrification and mineralization rates were 0.48 g·m-2·a-1, 3.68 g·m-2·a-1 and 4.16 g·m-2·a-1, respectively. The ammonification rate in near-mature forest was higher than that in middle-age forests, while the order of nitrification and net mineralization rates was: middle-age forest without grazing < middle-age forest with grazing < near-mature forest with grazing (P<0.05). Soil N mineralization rate increased with soil animal amounts, but no significant relationship with diversity. The contribution of soil animals to N mineralization was different for different ecosystems due to influences of complex factors including grazing,soil characteristics, the quality and amount of litter on N mineralization.

  8. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  9. Biological N2-FIXATION and Mineral N-Fertilization Effects on Soybean (Glicine max L. Merr.) Yield Under Temperate Climate Conditions

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    Summary In a nitrogen fertilization experiment set up on slightly calcareous Ramann sandy- loam brown forest soil studies were made on the effect of nitrogen (N) x Rhizobium japonicum inoculation (I) x variety (V) interactions on soybean yield in Hungary. The agrochemical parameters of the ploughed layer of soil were as follows: humus 1.3%, CaCO3 2.1%, silty clay 27%, pH (H2O) 7.2, pH (KCl) 7.0. The experiment involved 4N x 3I x 3V = combinations in 4 replications, giving a total of 144 plots. The most important results can be summarized as follows: (a.) 0, (b.) 100, (c.) 150 and (d.) 200 kg ha-1 year-1 of nitrogen application (a.) inoculation effect was maximum at 1 kg t-1 Nitrofix, (b.) yields were linearly and inversely related to the rate of Nitrofix, (c.) presence of any amount of Nitrofix has been a negative effect on yield and (d.) Nitrofix 1 kg t-1 was showed the best results. Both biological N2 fixation (BNF) and nitrate (NO3-) utilization by mineral nitrogen fertilizer (MNF) input were essential for maximum soybean yield. Introduction Nitrogen is the most frequently deficient nutrient in crop production therefore, most cropping system require N- inputs (Johnston 2000, Márton 2000, 2001). Many soursces are available for use in supplying N to crops (Kováts et al. 1985). In addition to from N2 fixation by leguminous crops can supply sufficient N for optimum crop production (Wilcox 1987, Kádár & Márton 1999, Márton & Kádár 1998, László & Jose 2001, László et al. 2001). Understanding the behaviour of N in the soil is essential for maximizing agricultural productivity and profitability while reducing the impacts of N fertilization on the environment. Managing the delicate balance in the soil N- supply in order to meet this goals. Nowadays there is an essential need to use nitrogen to achieve both economic yields and to produce enough food. Because the only way for agriculture to keep pace with population (world's population now exceeds 6 billion and

  10. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  11. Growth and nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non-saline conditions

    International Nuclear Information System (INIS)

    Two field experiments on dhaincha (sesbania aculeata pers) and sorghum (Sorghum bicolor L.) grown in monocropping and intercropping systems was conducted under non-saline and saline conditions to evaluate dry matter production, total nitrogen (N) yield, land equivalent ratio (LER), soil N uptake and N2-fixation using 15N isotope dilution method. The first experiment was conducted under non-saline conditions, three different combinations of sesbania (ses) and sorghum (sor) were investigated in the intercropping system (2ses: 1sor; Ises: 1sor and 1ses: 2sor, row ratio). Whereas, in the second experiment, only one combination (1ses: 1sor row ratio) was tested under saline conditions. Results of the first experiment showed that dry matter yield of sole sorghum was higher than that of sole sesbania, and was similar to that produced by the intercropping treatments; however, its total N uptake was the lowest, with no significant differences being found between sole sesbania and intercropping treatments. The LERs in 2ses: 1sor and 1ses:2sor treatments were higher than one, reflecting a greater advantage of intercropping system in terms of land used efficiency. In the second experiment, dry matter yield of a sole crop of sesbania was significantly higher than that of a sole sorghum or a mixed treatment. Total Nitrogen uptake in sesbania grown alone was four times higher than that of sole sorghum; whereas, the mixed cropping was 260% greater than of the sole sorghum. In both experiments, percentages of N2 fixed by the sesbania in the intercropping system were considerably enhanced relative to sole cropping of sesbania. On the other hand, the magnitude of intraspecific competition of soil N uptake was affected by the different arrangement of crops in the mixture, and it was considerably reduced in the 2ses: 1sor row ratio. Results on the relative growth of plants on saline soil compared with that on non-saline soil clearly demonstrated that sesbania was more salt tolerant

  12. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  13. Nitrogen fixation in the Southern Ocean: a case of study of the Fe-fertilized Kerguelen region (KEOPS II cruise

    Directory of Open Access Journals (Sweden)

    M. L. González

    2014-12-01

    Full Text Available N2 fixation rates were measured during the KEOPS2 cruise in the HNLC area of Southern Ocean and in naturally iron-fertilized waters (Kerguelen Island 49.25° S, 69.58° E using the 15N isotopic technique. We detected N2 fixation within the mixed layer at all stations, from the surface to 140 m depth. The data shows high variability with rates ranging between 0.42 and 20.11 nmol N L−1 d−1. The highest rates were concentrated in the euphotic layer and maximum values were obtained north of polar front (station F-L, which coincide with a positive N* ([NO3]–16[PO4], high chlorophyll concentration and dissolved iron. N2 fixation rates were also obtained in stations with moderate (A3-2; E-4W and also low (R-2 iron levels as well as Chl a, suggesting that beside the microbial biomass, its composition/structure is a driving factor controlling N2 fixation activities. Molecular analysis showed a diazotrophic community dominated by heterotrophic bacterioplankton. Size fractioned experiments indicated that most of N2 fixating activities came from 2 fixation is occurring in the Southern Ocean, at rates exceeding previous reports for high latitudes. Our findings suggest an indirect role of dFe in the regulation of N2 fixation through the enhancement of regenerated primary production and the availability of phytoplankton-derived dissolved organic matter, which in turn may stimulate heterotrophic bacterioplankton.

  14. Biological decontamination using high and reduced pressure nitrogen afterglows

    OpenAIRE

    Sarrette, Jean-Philippe; Cousty, Sarah; Clement, Frank; Canal Barnils, Cristina; Ricard, André

    2012-01-01

    Typical results quantifying the antibacterial efficiencies of high and reduced pressure nitrogen afterglows are presented, using the same microbiological protocol. In parallel, the diffusion of the nitrogen atoms through different polymer membranes is studied. Peer Reviewed

  15. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2009-04-01

    Full Text Available The surface ocean currently absorbs about one-fourth of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts with seawater to form carbonic acid, increasing ocean acidity and shifting the partitioning of inorganic carbon species towards increased CO2 at the expense of CO32− concentrations. While the decrease in [CO32−] and/or increase in [H+] has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium and heterocystous (Nodularia cyanobacteria.

  16. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Directory of Open Access Journals (Sweden)

    Richard Dabundo

    Full Text Available We report on the contamination of commercial 15-nitrogen (15N N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1 d(-1, to 530 nmoles N L(-1 d(-1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of

  17. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of

  18. A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii

    OpenAIRE

    Martinez-Argudo, Isabel; Little, Richard; Dixon, Ray

    2004-01-01

    NifL is an antiactivator that tightly regulates transcription of genes required for nitrogen fixation in Azotobacter vinelandii by controlling the activity of its partner protein NifA, a member of the family of σ54-dependent transcriptional activators. Although the C-terminal region of A. vinelandii NifL shows homology to the transmitter domains of histidine protein kinases, signal transduction between NifL and NifA is conveyed by means of protein-protein interactions rather than by phosphory...

  19. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    Science.gov (United States)

    Bonnet, S.; Berthelot, H.; Turk-Kubo, K.; Fawcett, S.; Rahav, E.; l'Helguen, S.; Berman-Frank, I.

    2015-12-01

    N2 fixation rates were measured daily in large (~ 50 m3) mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia) to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm) UCYN-C cells into large (100-500 μm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to the dissolved pool

  20. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia

    Directory of Open Access Journals (Sweden)

    S. Bonnet

    2015-12-01

    Full Text Available N2 fixation rates were measured daily in large (~ 50 m3 mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L−1 d−1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23 to reach 27.3 ± 1.0 nmol N L−1 d−1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm UCYN-C cells into large (100–500 μm aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to

  1. Effect of nitrogen on phosphate reduction in biological phosphorus removal from wastewater

    OpenAIRE

    Vabolienė, Giedrė; Matuzevičius, Algimantas B.; Valentukevičienė, Marina

    2007-01-01

    Conventional schemes of biological nitrogen removal can be combined with phosphorus removal schemes. One of the common technology schemes for biological nitrogen removal is the aeration zone and the anoxic zone in one tank. The nitrification and denitrification are carried out during the aeration switching on and off. The anaerobic zone is equipped behind the nitrification/denitrification tank for biological phosphorus removal. Exchange of the anaerobic and aerobic conditions is necessary for...

  2. Nitrogen-Containing Apigenin Analogs: Preparation and Biological Activity

    Directory of Open Access Journals (Sweden)

    Jinyi Wang

    2012-12-01

    Full Text Available A series of nitrogen-containing apigenin analogs 4a–j was synthesized via Mannich reactions to develop anticancer, antibacterial, and antioxidant agents from plant-derived flavonoids. The chemical structures of these compounds were confirmed using 1H-NMR, 13C-NMR, and ESI-MS. The in vitro biological activities of the analogs were evaluated via assays of their antiproliferative, antibacterial, and antioxidant activities. The prepared apigenin analogs exhibited different antiproliferative activities against four human cancer cell lines, namely human cervical (HeLa, human hepatocellular liver (HepG2, human lung (A549, and human breast (MCF-7 cancer cells. Compound 4i showed the most favorable in vitro antiproliferative activity with IC50 values of 40, 40, 223, and 166 μg/mL against HeLa, HepG2, A549, and MCF-7, respectively. The 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity assay also showed that 4i had the most potent antioxidant activity, with the smallest IC50 value (334.8 μg/mL. The antibacterial activities of the analogs were determined using a two-fold serial dilution technique against four pathogenic bacteria, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. All the prepared apigenin analogs exhibited more potent activities than the parent apigenin. Compounds 4h and 4j, in particular, exhibited the best inhibitory activities against the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values of 3.91 and 1.95 μg/mL, respectively.

  3. Nitrogen-fixation Potential of Nodules in Four Types of Nitrogen-fixation Plants and Their Influencing Factors in Dry-hot Valley%干热河谷4种固氮植物根瘤固氮潜力及其影响因素

    Institute of Scientific and Technical Information of China (English)

    唐国勇; 李昆; 孙永玉; 张春华

    2012-01-01

    In addition to water, Nitrogen ( N) is often the key limiting factor for biological activity in Dry-hot Valleys, Biological N-fixation by nitrogen-fixation plants is of important source of N for vegetations in those areas. The nitrogenase activities (NAs) of nodules in Acacia auriliformis A. Cunn, Leucaena leucacephala (Lara. ) de Wit, Cajanus cajan ( L). Millspangh and Albiza kalkora Prain plantations were determined at the Dry red soils and Verti-sol spots at four different sampling times in a Dry-hot Valley with the acetylene reduction assay. The results showed that the NAs of nodules in L. leucacephala (16, 25 μmol·g -1·h-1 ) and A. auriliformis ( 15. 85μmol·g-1·h-1) were significantly higher than those in A. kalkora (9,60 μmol·g-1·h-1) and C. cajan (9.42 μmol·g-1h-1 )·The NAs of nodules in rainy season were significantly higher than those in dry season, and approximated 2. 3 times that in dry season. The NAs of nodules at the Dry red soils spots were 1.3 -1.6 times higher than those at the Vertisol spots. The research revealed besides plant type, the NAs of nodules were primarily affected by soil type, season and soil water content, but less affected by soil temperature.%氮是除水分之外影响干热河谷生物活性的关键因子,豆科植物生物固氮是该地区氮素的重要来源之一.采用乙炔还原法测定了干热河谷不同季节燥红土和变性土林地中大叶相思、新银合欢、木豆和山合欢根瘤固氮酶活性(NAs).结果表明:新银合欢(16.25 μmol · g-1·h-1)和大叶相思(15.85 μmol·g-1·h-1)根瘤NAs显著(P<0.001)高于山合欢(9.60 μmol·g-1·h-1)和木豆(9.42 μmol·g-1·h-1).雨季根瘤NAs显著高于旱季,约为旱季的2.3倍.燥红土样地上植物根瘤NAs是变性土样地的1.3~1.6倍.研究揭示:除植被类型外,干热河谷植物根瘤NAs主要受土壤类型、季节和土壤含水量的影响,而受土壤温度的影响较小.

  4. Dinitrogen fixation in aphotic oxygenated marine environments

    Directory of Open Access Journals (Sweden)

    Eyal eRahav

    2013-08-01

    Full Text Available We measured N2 fixation rates from oceanic zones that have traditionally been ignored as sources of biological N2 fixation; the aphotic, fully oxygenated, nitrate (NO3--rich, waters of the oligotrophic Levantine Basin (LB and the Gulf of Aqaba (GA. N2 fixation rates measured from pelagic aphotic waters to depths up to 720 m, during the mixed and stratified periods, ranged from 0.01 nmol N L-1 d-1 to 0.38 nmol N L-1 d-1. N2 fixation rates correlated significantly with bacterial productivity and heterotrophic diazotrophs were identified from aphotic as well as photic depths. Dissolved free amino acid amendments to whole water from the GA enhanced bacterial productivity by 2to 3.5 and N2 fixation rates by ~ 2 fold in samples collected from aphotic depths while in amendments to water from photic depths bacterial productivity increased 2 to 6 fold while N2 fixation rates increased by a factor of 2 to 4 illustrating that both BP an heterotrophic N2 fixation are carbon limited. Experimental manipulations of aphotic waters from the LB demonstrated a significant positive correlation between transparent exopolymeric particles (TEP concentration and N2 fixation rates. This suggests that sinking organic material and high carbon (C: nitrogen (N micro-environments (such as TEP-based aggregates or marine snow could support high heterotrophic N2 fixation rates in oxygenated surface waters and in the aphotic zones. Indeed, our calculations show that aphotic N2 fixation accounted for 37 to 75 % of the total daily integrated N2 fixation rates at both locations in the Mediterranean and Red Seas with rates equal or greater to those measured from the photic layers. Moreover, our results indicate that that while N2 fixation may be limited in the surface waters, aphotic, pelagic N2 fixation may contribute significantly to new N inputs in other oligotrophic basins, yet it is currently not included in regional or global N budgets.

  5. Reduced Carbon Availability to Bacteroids and Elevated Ureides in Nodules, But Not in Shoots, Are Involved in the Nitrogen Fixation Response to Early Drought in Soybean1[OA

    Science.gov (United States)

    Ladrera, Rubén; Marino, Daniel; Larrainzar, Estíbaliz; González, Esther M.; Arrese-Igor, Cesar

    2007-01-01

    Nitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying. This sensitivity has been related to an accumulation of nitrogen compounds, either in shoots or in nodules, and a nodular carbon flux shortage under drought. To assess the relative importance of carbon and nitrogen status on NF regulation, the responses to the early stages of drought were monitored with two soybean cultivars with known contrasting tolerance to drought. In the sensitive cultivar (‘Biloxi’), NF inhibition occurred earlier and was more dramatic than in the tolerant cultivar (‘Jackson’). The carbon flux to bacteroids was also more affected in ‘Biloxi’ than in ‘Jackson’, due to an earlier inhibition of sucrose synthase activity and a larger decrease of malate concentration in the former. Drought provoked ureide accumulation in nodules of both cultivars, but this accumulation was higher and occurred earlier in ‘Biloxi’. However, at this early stage of drought, there was no accumulation of ureides in the leaves of either cultivar. These results indicate that a combination of both reduced carbon flux and nitrogen accumulation in nodules, but not in shoots, is involved in the inhibition of NF in soybean under early drought. PMID:17720761

  6. Effect of Glyphosate on Symbiotic N2 Fixation and Nickel Concentration in Glyphosate-Resistant Soybean

    Science.gov (United States)

    The impact of widespread cultivation of glyphosate-resistant (GR) soybean and the use of one herbicide class on biological processes has received considerable attention. Decreased biological nitrogen fixation in GR soybean has been attributed directly to toxicity of glyphosate or its metabolites to ...

  7. Biological nitrogen removal using a submerged membrane bioreactor system

    International Nuclear Information System (INIS)

    A pilot-scale study was conducted using ZenoGem hollow-fiber microfiltration membrane bioreactor system to investigate the performance of membrane bioreactor process to remove nitrogen from primary effluent at a municipal wastewater treatment plant. Different operating conditions were examined by varying hydraulic retention time (HRT) and sludge retention time (SRT) between 5-8 h and 20-50 days, respectively. In addition, a series of laboratory batch tests were performed to measure the biodegradation kinetic and stoichiometric parameters under the conditions consistent with the pilot testing. The results showed that the process achieved removal efficiencies of 80-98% for COD, 93%-99% for BOD5, and 70-93% for nitrogen. The efficiency and kinetics of COD and nitrogen removal would change greatly from one operating condition to another. However, the measured kinetic parameters still fell within the typical range of those reported in the literature using Activated Sludge Models (ASM)

  8. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes.

    Science.gov (United States)

    Woodley, P; Drummond, M

    1994-08-01

    The NifL protein of Azotobacter vinelandii inhibits NifA, the activator of nif (nitrogen fixation) transcription, in response to oxygen and fixed nitrogen. NifL shows strong homology in its C-terminal domain to the histidine autokinase domains of the canonical two-component sensor proteins, including the region around His-304, which corresponds to the residue known to be phosphorylated in other systems. To examine the mechanism of sensory transduction by NifL, mutations encoding 10 substitutions for His-304 were introduced into the A. vinelandii chromosome. Regulation of nif transcription was measured using acetylene reduction and RNA blots. The substitutions His-304-->Arg and His-304-->Pro impaired regulation by both fixed nitrogen and oxygen, but substitution of Ala, Phe, Ile, Lys, Asn, Ser, Thr, Val had no effect. None of the mutants, including His-304-->Arg and His-304-->Pro, excreted ammonium during diazotrophy, a phenotype of nifL deletion mutants, suggesting that the molecular basis of this effect differs from that responsible for the inhibition of nif transcription. The data show conclusively that phosphorylation of His-304 is not essential for any of the known functions of A. vinelandii NifL. Homology to the family of histidine autokinases is therefore inadequate evidence for a mechanism of sensory transduction involving phosphorylation of the conserved histidine residue. PMID:7997174

  9. Changes in Diversity and Functional Gene Abundances of Microbial Communities Involved in Nitrogen Fixation, Nitrification, and Denitrification in a Tidal Wetland versus Paddy Soils Cultivated for Different Time Periods▿

    OpenAIRE

    Bannert, Andrea; Kleineidam, Kristina; Wissing, Livia; Mueller-Niggemann, Cornelia; Vogelsang, Vanessa; Welzl, Gerhard; Cao, Zhihong; Schloter, Michael

    2011-01-01

    In many areas of China, tidal wetlands have been converted into agricultural land for rice cultivation. However, the consequences of land use changes for soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in inorganic nitrogen turnover (nitrogen fixation, nitrification, and denitrification) based on abundances and relative species richness of the corresponding functional genes along a soil chronosequence ranging between 50 ...

  10. Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation

    Directory of Open Access Journals (Sweden)

    A. M. Waite

    2013-08-01

    Full Text Available We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC; the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification. We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.

  11. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Scharff, A.M.; Egsgaard, H.; Hansen, P.E.;

    2003-01-01

    Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo N-15 nuclear magnetic resonance (NMR) by exposing detached nodules to N-15, via a perfusion medium, while recording a time course of spectra. In vivo P-31 NMR spectroscopy was used to monitor...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...

  12. The use of N-15 in the measurement of symbiotic nitrogen fixation by legumes under field condition

    International Nuclear Information System (INIS)

    The amount of N fixation by legume crop in field condition by using 15N can determine by the addition of labelled 15N fertilizer into the soil and measuring the amount of labelled 15N, soil N, and fixed N taken up by legume crop. This requires a standard crop (reference crop) as a control to determine labelled 15N and soil N taken up by this crop. In case the same rate of labelled 15N fertilizer is added to the legume crop and a standard crop

  13. Tn5-induced mutants of Azotobacter vinelandii affected in nitrogen fixation under Mo-deficient and Mo-sufficient conditions.

    OpenAIRE

    Joerger, R D; Premakumar, R; Bishop, P E

    1986-01-01

    Mutants of Azotobacter vinelandii affected in N2 fixation in the presence of 1 microM Na2MoO4 (conventional system), 50 nM V2O5, or under Mo deficiency (alternative system) have been isolated after Tn5 mutagenesis with the suicide plasmid pSUP1011. These mutants can be grouped into at least four broad phenotypic classes. Mutants in the first class are Nif- under Mo sufficiency but Nif+ under Mo deficiency or in the presence of V2O5. A nifk mutant and a mutant apparently affected in regulation...

  14. Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter vinelandii. Evidence that up-regulation during N2 fixation is independent of nifA but dependent on ntrA.

    Science.gov (United States)

    Moshiri, F; Smith, E G; Taormino, J P; Maier, R J

    1991-12-01

    Cytochrome d has been postulated to be the "respiratory protection" oxidase of Azotobacter vinelandii, allowing this organism to fix nitrogen under aerobic growth conditions. We have previously cloned and characterized the structural genes for the A. vinelandii cytochrome d (cydA and cydB). The cyd genes are co-transcribed, yielding an mRNA of approximately 3.6 kilobase pairs. The level of the cyd message was 2-3-fold higher in cells that were fixing nitrogen, as compared with non-nitrogen-fixing cells. RNase protection analysis was used to determine the transcriptional start site at 275 bases upstream of the initiator ATG of cydA, and this start site was the same for nitrogen-fixing and non-nitrogen-fixing cells. The cyd promoter has sequence similarities to the canonical Escherichia coli promoters, which are transcribed by the major sigma 70 form of RNA polymerase. Plasmid-borne lacZ transcriptional fusions were constructed, using approximately 650 base pairs of 5'-upstream sequences of the cyd structural genes. This region had a strong promoter activity which was further up-regulated 1.5-2.5-fold upon the induction of nitrogen fixation. The cyd-lacZ fusions were characterized in a nifA- as well as an ntrA- background. Mutations in neither of these nif regulatory genes affected the constitutive expression of cyd under non-nitrogen-fixing conditions. However, the up-regulation of this promoter during the induction of nitrogen fixation was abolished only in the ntrA- background. Based on these results, the cytochrome d promoter of A. vinelandii belongs to a new class of nitrogen-regulated promoters which, unlike the authentic nif genes, does not require the ntrA gene product for its expression. The up-regulation of this promoter during nitrogen fixation, however, requires the ntrA gene product. PMID:1660468

  15. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  16. Importance of drought stress and nitrogen fixation in the desert legume Alhagi sparsifolia - Results from 13C and 15N natural-abundance studies in the field

    International Nuclear Information System (INIS)

    Ecological adaptation of plant species to arid environments is poorly understood. Water and nitrogen are likely to be the two major constraints to growth and production in the Taklamakan desert (35 mm annual precipitation). Plants must have special adaptations to avoid lethal water deficits. Moreover, the supply of inorganic nitrogen sources, e.g. nitrate and ammonium, may be restricted due to diminished mineralization. Therefore, as a legume, nitrogen fixation may play an important role in the nutrition of A. sparsifolia. To be able to make recommendations for sustainable use of Alhagi, a study on natural abundance of the stable isotopes, 13C and 15N, was conducted in the foreland of Qira oasis at the southern rim of the Taklamakan desert. Alhagi bushes were sampled monthly during 1999, and carbon-isotope composition of leaves and leaf solutes were investigated as measures of long-term and short-term water restriction, respectively. Preliminary investigations in 1998 of Alhagi plants led to the assumption that individuals growing near the fields of the oasis assimilated inorganic nitrogen forms such as NO3- or NH4+ (δ15N values of 5 to 8), whereas individuals growing close to the desert used N2 fixation as their main source of nitrogen (δ15N values near zero). Therefore, Alhagi plants were sampled along a gradient from the oasis into the desert. The carbon-isotope data revealed that all Alhagi species were well supplied with water throughout the season. The δ13C values of leaves and solutes were consistently negative, indicating no long- or shortterm drought stress at any time, and this was supported by other water-relations data. Thus, Alhagi plants seem to have contact with groundwater and an efficient water-conducting system; moisture deficiency was not a limiting factor. The δ15N values of Alhagi leaves along a 5-km gradient from the Qira Research Station into the desert showed no significant trend. Some plants were clearly fixing atmospheric N2, but most

  17. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2015-01-01

    Full Text Available Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG cultivars. Plants were well-watered with no foliar B (W − B, well-watered with foliar B (W + B, water-stressed with no foliar B (WS − B, and water-stressed with foliar B (WS + B. Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean.

  18. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch.

    Science.gov (United States)

    Hill, S; Austin, S; Eydmann, T; Jones, T; Dixon, R

    1996-03-01

    The NIFL regulatory protein controls transcriptional activation of nitrogen fixation (nif) genes in Azotobacter vinelandii by direct interaction with the enhancer binding protein NIFA. Modulation of NIFA activity by NIFL, in vivo occurs in response to external oxygen concentration or the level of fixed nitrogen. Spectral features of purified NIFL and chromatographic analysis indicate that it is a flavoprotein with FAD as the prosthetic group, which undergoes reduction in the presence of sodium dithionite. Under anaerobic conditions, the oxidized form of NIFL inhibits transcriptional activation by NIFA in vitro, and this inhibition is reversed when NIFL is in the reduced form. Hence NIFL is a redox-sensitive regulatory protein and may represent a type of flavoprotein in which electron transfer is not coupled to an obvious catalytic activity. In addition to its ability to act as a redox sensor, the activity of NIFL is also responsive to adenosine nucleotides, particularly ADP. This response overrides the influence of redox status on NIFL and is also observed with refolded NIFL apoprotein, which lacks the flavin moiety. These observations suggest that both energy and redox status are important determinants of nif gene regulation in vivo. PMID:8700899

  19. Model study on horizontal variability of nutrient N/P ratio in the Baltic Sea and its impacts on primary production, nitrogen fixation and nutrient limitation

    Directory of Open Access Journals (Sweden)

    Z. Wan

    2012-01-01

    Full Text Available The analysis of measured nutrient concentrations suggests that the ratio of dissolved inorganic nitrogen (DIN alteration before and after spring blooms relative to the alteration of dissolved inorganic phosphorus (DIP remains quite constant over the years (2000~2009. This ratio differs from the Redfield ratio and varies from 6.6 : 1 to 41.5 : 1 across basins within the Baltic Sea. If the found N/P ratios are indicators of phytoplankton stoichiometry, this would affect nutrient cycles in ecosystem models. We therefore tested the effects of using horizontally variable N/P ratio instead of fixed ratio (N/P = 10 : 1 or 16 : 1 on phytoplankton uptake and remineralization in a 3-D physical-biogeochemical coupled model ERGOM. The model results using the variable N/P ratio show systematical improvements in model performance in comparison with the fixed ratios. In addition, variable N/P ratios greatly affected the model estimated primary production, nitrogen fixation and nutrient limitation, which highlights the importance of using an accurate N/P ratio.

  20. Nitrogen fixation by U.S. and Middle Eastern chickpeas with commercial and wild Middle Eastern inocula

    Science.gov (United States)

    Chickpeas (Cicer arietinum L.) are native to the Middle East (ME), and must be inoculated with symbiotic bacteria in order to fix nitrogen (N) in North American soils. Commercial inocula for chickpea contain several strains of the known N-fixing symbiont Mesorhizobium ciceri. It is not known whethe...

  1. Biological internal fixation of the fracture and performance analysis of the internal fixation materials%骨折的生物学内固定及内固定材料性能分析

    Institute of Scientific and Technical Information of China (English)

    成翔宇; 纪斌; 庞金辉

    2012-01-01

    BACKGROUND: In recent years, the focus of internal fixation for the fracture has developed from rigidity, stability and anatomic reduction to biological fixation which can preserve soft tissue blood supply, relatively stable and had anatomical axis arrangement.OBJECTIVE: To summarize the clinical characteristics of various materials for fracture fixation, and to analyze the biocompatibility after fixation device implantation.METHODS: A computer-based online retrieval of CNKI database and VIP database from January 1990 to November 2011 was conducted for articles addressing fracture internal fixation materials, by screening the key words of "fracture, internal fixation, plates, screws" in title and "loose, breakage, compatibility" in abstract. Documents related with fracture fixation treatment were involved, and those published in recent years or in authorized journals were preferred in the same field. After preliminary retrieval, 178 literatures were screened out and 24 of them were involved in the retrospective analysis according to inclusion criteria. RESULTS AND CONCLUSION: With the advanced progress on raw materials industry and biomedicine, internal fixation devices are rapidly developing. The vast majority of current orthopedic internal fixation plates and screws used in medical institutions show very good biocompatibility and stiffness. However, fixation materials in different parts and different types of fracture alter, thus resulting in different bending resistance, axial, lateral and anti-rotational stability, as well as complications and compatibility after fixation. Biological fixation for the fracture can greatly reduce the injury at soft tissue and rate of bone graft, thereby shortening fracture healing time and significantly reducing the incidence of fracture non-union, second fracture and infection.%背景:近年来,骨折内固定已经从强调坚强内固定、绝对稳定和解剖复位,转向强调保留软组织血运、相对稳定和解剖

  2. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates.Biological occurrence of simultaneous nitrification and denitrifieation was verified in the aspect of nitrogen mass balance and alkalinity.The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate.In each experimental run the floe sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.

  3. [INFLUENCE OF AZOSPIRILLUM BRASILENSE 10/1 ON ASSOCIATIVE NITROGEN FIXATION AND INTRAVARIETAL POLYMORPHISM OF SPRING TRITICALE].

    Science.gov (United States)

    Patika, V P; Nadkernichna, O V; Shahovnina, O O

    2015-01-01

    It is shown, that the perspective Ukrainian sorts of spring triticale characterizes by considerable polymorphism by associative N2-fixing ability in root zone of plants. Application of active strain Azospirillum brasilense 10/1 promotes the decline of variability of this sign within the limits of sort, increase potential nitrogen activity is on the average in 3,2-4,7 times and also distributing normalizations in the selections of the inoculated plants.

  4. Tn5-induced mutants of Azotobacter vinelandii affected in nitrogen fixation under Mo-deficient and Mo-sufficient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Joerger, R.D.; Premakumar, R.; Bishop, P.E.

    1986-11-01

    Mutants of Azotobacter vinelandii affected in N/sub 2/ fixation in the presence of 1 ..mu..M Na/sub 2/MoO/sub 4/ (conventional system), 50 nM V/sub 2/O/sub 5/, or under Mo deficiency (alternative system) have been isolated after Tn5 mutagenesis with the suicide plasmid pSUP1011. These mutants are grouped into four broad phenotypic classes. Mutants in the first class are Nif/sup -/ under Mo sufficiency but Nif/sup +/ under Mo deficiency or in the presence of V/sub 2/O/sub 5/. Mutants in the second class are Nif/sup -/ under all conditions. An FeMo-cofactor-negative mutant (NifB/sup -/) belongs to this class. The third mutant class consists of mutants incapable of N/sub 2/-dependent growth under Mo deficiency. Most of the mutants of this class are also affected in N/sub 2/ fixation in the presence of 1 ..mu..M Na/sub 2/MoO/sub 4/, with acetylene reduction rates ranging from 28 to 51% of the rates of the wild type. Strains constructed by genetic transfer of the Kan/sup r/ marker of mutants from this class into nifHDK or nifK deletion mutants showed N/sub 2/-dependent growth only in the presence of V/sup 2/O/sub 5/. The only mutant in the fourth class shows wild-type nitrogenase activity under Mo sufficiency, but only 10% of the acetylene reduction activity of the wild type in the presence of 50 nM V/sub 2/O/sub 5/. The acetylene reduction rates of whole cells of this mutant are identical in Mo-deficient medium and in medium containing V/sub 2/O/sub 5/. The conventional nitrogenase subunits are expressed in this mutant even under Mo deficiency or in the presence of V/sub 2/O/sub 5/; however, the NH/sub 4//sup +/-and Mo-repressible proteins normally seen under these conditions could not be detected on two-dimensional gels.

  5. Dependence of Wheat and Rice Respiration on Tissue Nitrogen and the Corresponding Net Carbon Fixation Efficiency Under Different Rates of Nitrogen Application

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices,and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency (Encf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient (Ra). Results from the pot experiments revealed a linear relationship between Ra and tissue N content as Ra = 4.74N-1.45 (R2= 0.85, P<0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the Encf declined as the N application rate increased.

  6. Flush of CO2 as a biologically based tool to predict nitrogen mineralization from soil

    Science.gov (United States)

    A biologically based tool to improve nitrogen (N) management in cereal crops is currently lacking from soil testing programs, but very much needed to optimize N fertilizer inputs to be able apply enough N fertilizer to achieve high production and avoid excess application that is damaging to the envi...

  7. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian;

    2010-01-01

    Discharge of nitrogenous components to water bodies can cause eutrophication, deterioration of water quality, toxicity to aquatic life, and pose a potential hazard to human and animal health. Biological nitrogen removal can remove nitrogenous components via conversion to harmless nitrogen gas...... with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative....... They can effectively be used for nitrogen removal from low C/N domestic wastewater without external carbon addition. In addition, conventional and alternative carbon sources for enhanced biological nitrogen removal were also reviewed. We conclude that alternative carbon sources such as wine distillery...

  8. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2012-06-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2-fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure N2-fixation and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, rates of benthic denitrification were also measured and the active N-fixing community was examined via molecular tools. Integrated rates of N2-fixation and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42−, respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities

  9. Analysis on influencing factors of carbon and nitrogen fixation rates in sludge hydrothermal carbonization%污泥水热炭化中碳氮固定率的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    王定美; 袁浩然; 王跃强; 余震; 周顺桂

    2014-01-01

    Carbon and nitrogen emissions during sewage sludge treatment are important sources of greenhouse gases and environmental pollutants. The fixation degrees of carbon and nitrogen have been an issue deserving significant attention and consideration when choosing a treatment process for sewage sludge. Hydrothermal carbonization (HTC) is an emerging technology to treat wet biomasses aimed at producing biochar materials. Studies have demonstrated that HTC of wet biomasses including sewage sludge results in the formation of biochar in a relatively cheap and sustainable way. However, the data necessary to understand how multiple processing conditions influence carbon and nitrogen fixed in sludge biochar from HTC are currently lacking. In the present study, the influences of hydrothermal temperature (150-250℃), solid content (5%-15%), and reaction time (2-6 h) on the fixations of carbon and nitrogen in sludge biochar were investigated using a 3-level, 3-factor Box-Behnken experimental design. The results showed that the relationships between the carbon and nitrogen fixation and tested factors can be quantitatively described by multivariate quadratic equations with R2 of 0.9925 and 0.9903, respectively. Carbon and nitrogen fixation rates of 36.6%-52.9%, and 20.4%-42.5%, respectively were obtained under the tested hydrothermal carbonization conditions. Both the maximum carbon and nitrogen fixation rates were achieved at a hydrothermal temperature of 150℃, solid content of 10%, and reaction time of 2 h. The carbon fixation rate was negatively correlated with hydrothermal temperature and reaction time, but positively correlated with solid content. The significant effects (p<0.05) of hydrothermal temperature, solid content, and reaction time on carbon fixation rate were in a decreasing order. Yet, the nitrogen fixation rate was only significantly (p<0.05) and negatively related to hydrothermal temperature. The interaction between hydrothermal temperature and solid content

  10. The involvement of the nif-associated ferredoxin-like genes fdxA and fdxN of Herbaspirillum seropedicae in nitrogen fixation.

    Science.gov (United States)

    Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2010-02-01

    The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.

  11. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    Science.gov (United States)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    Filamentous nitrogen fixing (diazotrophic) cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. These bacteria are faced with the challenge of isolating regions of N-fixation (O2 inhibited) and photosynthetic (O2 producing) activity. We used isotope labeling in conjunction with a high-resolution isotope and elemental mapping technique (NanoSIMS) to quantitatively describe 13C and 15N uptake and transport in two aquatic cyanobacteria grown on NaH13CO3 and 15N2. The technical challenges of tracing isotopes within individual bacteria can be overcome with high resolution Secondary Ion Mass Spectrometry (NanoSIMS). In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio 'map' can then be generated for the analyzed area. Using sequentially harvested cyanobacteria in conjunction with enriched H13CO3 and 15N2 incubations, we measured temporal enrichment patterns that evolve over the course of a day's growth and suggest tightly regulated changes in fixation kinetics. With a combination of TEM, SEM and NanoSIMS analyses, we also mapped the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. Our results suggest that NanoSIMS mapping of metal enzyme co-factors may be a powerful method of identifying physiological and morphological characteristics within individual bacterial cells, and could be used to provide a 3-dimensional context for more traditional analyses such as immunogold labeling. Finally, we resolved patterns of isotope enrichment at multiple spatial scales: sub-cellular variation, cell-cell differences along filaments

  12. Monitoring of Biological Nitrogen Removal in Tannery Wastewater Using a Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Carrasquero-Ferrer Sedolfo José

    2014-04-01

    Full Text Available The objective of this research was to relate the biological nitrogen removal in tannery wastewater with profiles of pH, alkalinity and redox potential (ORP using a sequencing batch reactor (SBR with a working volume of 2 L. The reactor worked under two operational sequences: anoxic-aerobic-anoxic (Ax/Ae/Ax and aerobic-anoxic (Ae/Ax, which were combined with two cell retention times (CRT (15 and 25 days, with an operation cycle time (OCT of 11 hours. The profiles were performed by measuring each 15 minutes the following parameters: pH, dissolved oxygen (DO, ORP, and each hour the parameters: total alkalinity, total chemical oxygen demand (DQOT, soluble chemical oxygen demand (DQOS, total Kjeldahl nitrogen (TKN, nitrite (NO2-, nitrate (NO3- and ammonia nitrogen (N-NH4+. Alkalinity and ORP profile were excellent indicators of the processes of biological nitrogen removal. However, pH could not be used as a control parameter, due to the buffering capacity of tannery wastewater. Finally, this research work showed that alkalinity and ORP values can be used as on-line control parameters to monitor the evolution of the nitrogen removal in tannery wastewater (nitrification and denitrification processes.

  13. Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms

    NARCIS (Netherlands)

    Ojiem, J.O.; Vanlauwe, B.; Ridder, de N.; Giller, K.E.

    2007-01-01

    Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N-2-fixation. The N-2-fixation of bean (Phaseolus

  14. Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA.

    Science.gov (United States)

    Schmitz, Ruth A; Klopprogge, Kai; Grabbe, Roman

    2002-05-01

    The enzymatic reduction of molecular nitrogen to ammonia requires high amounts of energy, and the presence of oxygen causes the catalyzing nitrogenase complex to be irreversible inactivated. Thus nitrogen-fixing microorganisms tightly control both the synthesis and activity of nitrogenase to avoid the unnecessary consumption of energy. In the free-living diazotrophs Klebsiella pneumoniae and Azotobacter vinelandii, products of the nitrogen fixation nifLA operon regulate transcription of the other nifoperons. NifA activates transcription of nif genes by the alternative form of RNA-polymerase, sigma54-holoenzyme; NifL modulates the activity of the transcriptional activator NifA in response to the presence of combined nitrogen and molecular oxygen. The translationally-coupled synthesis of the two regulatory proteins, in addition to evidence from studies of NifL/NifA complex formation, imply that the inhibition of NifA activity by NifL occurs via direct protein-protein interaction in vivo. The inhibitory function of the negative regulator NifL appears to lie in the C-terminal domain, whereas the N-terminal domain binds FAD as a redox-sensitive cofactor, which is required for signal transduction of the internal oxygen status. Recently it was shown, that NifL acts as a redox-sensitive regulatory protein, which modulates NifA activity in response to the redox-state of its FAD cofactor, and allows NifA activity only in the absence of oxygen. In K. pneumoniae, the primary oxygen sensor appears to be Fnr (fumarate nitrate reduction regulator), which is presumed to transduce the signal of anaerobiosis towards NifL by activating the transcription of gene(s) whose product(s) function to relieve NifL inhibition through reduction of the FAD cofactor. In contrast, the reduction of A. vinelandii-NifL appears to occur unspecifically in response to the availability of reducing equivalents in the cell. Nitrogen status of the cells is transduced towards the NifL/NifA regulatory system

  15. Denitrification in an anoxic rotating biological contactor under two carbon/nitrogen ratios

    OpenAIRE

    Cortez, Susana; Teixeira, P; Oliveira, Rosário; Mota, M.

    2008-01-01

    The aim of the present work was to compare the performance of an anoxic bench-scale rotating biological contactor (RBC), in terms of the denitrification process, applied to treat synthetic wastewater under two carbon/nitrogen (C/N) molar ratios (1.5 and 3). The average removal efficiency in terms of nitrogen-nitrate was of about 90.4% at a C/N=1.5 lowering to 73.7% at a C/N=3. Considering carbon-acetate removal an overall efficiency of 82.0% and 63.6% was attained at a C/N rati...

  16. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias-Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  17. Box-modeling of the impacts of atmospheric nitrogen deposition and benthic remineralization on the nitrogen cycle of the eastern tropical South Pacific

    Directory of Open Access Journals (Sweden)

    B. Su

    2015-09-01

    Full Text Available Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000–2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3− loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3− loss in the oxygen minimum zone (OMZ. A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3− loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3− source, the ETSP including benthic denitrification might become a NO3− sink.

  18. Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products

    Institute of Scientific and Technical Information of China (English)

    Thangapalam Jawahar Abraham; Shubhadeep Ghosh; Debasis Sasmal

    2015-01-01

    Objective:To study the influence of biological products on the levels of nitrogen and sulphur cycle bacteria in shrimp culture systems of West Bengal, India. Methods: The pond water and sediment samples were analyzed for physico-chemical parameters as per standard methods. The bacteria involved in ammonification, nitrification, denitrification, sulphate reduction and sulphur oxidation were enumerated by most probable number technique. Results:The semi-intensive and modified extensive shrimp farms used a variety of biological products during various stages of production. No biological products were used in traditional farms. The water and sediment samples of modified extensive system recorded significantly higher mean heterotrophic bacterial counts. The counts of ammonia, nitrite and sulphur oxidizers, and nitrate and sulphate reducers varied among the systems. The cycling of nitrogen and sulphur appeared to be affected with the intensification of culture practices. Conclusions:The application of biological products in certain systems helped to maintain the bacteria involved in nitrogen and sulphur cycles and safe levels of ammonia, nitrite and nitrate. An assessment of these metabolically active bacteria in shrimp culture ponds and the application of right kind microbial products would help ameliorate the organic pollution in shrimp aquaculture.

  19. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.

    Science.gov (United States)

    Goh, Chooi-Hua; Nicotra, Adrienne B; Mathesius, Ulrike

    2016-04-01

    All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.

  20. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2013-03-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes, such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, the active N-fixing community was examined via molecular tools. Integrated rates of N2 fixation (approximated from NA and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42− respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm

  1. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the Central Baltic Sea

    Directory of Open Access Journals (Sweden)

    M. Blumenberg

    2012-12-01

    Full Text Available The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea was established. Today, a relatively stable stratification developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs, lipids of specific bacterial groups, in a sediment core from the Central Baltic Sea (Gotland Deep and found considerable differences between the distinct stages of the Baltic Sea's history. Individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer, methanotrophic bacteria (35-aminobacteriohopanetetrol, cyanobacteria (bacteriohopanetetrol cyclitol ether isomer and, through allochthonous input after the Littorina transgression, from soil bacteria (adenosylhopane, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyanobacteria, which is indicated by a good correlation of BHP abundances with Corg and δ15N.

  2. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea

    Directory of Open Access Journals (Sweden)

    M. Blumenberg

    2013-04-01

    Full Text Available The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea was established. Today, a relatively stable stratification has developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and it controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs, lipids of specific bacterial groups, in a sediment core from the central Baltic Sea (Gotland Deep and found considerable differences between the distinct stages of the Baltic Sea's history. Some individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer, methanotrophic bacteria (35-aminobacteriohopanetetrol, cyanobacteria (bacteriohopanetetrol cyclitol ether isomer and from soil bacteria (adenosylhopane through allochthonous input after the Littorina transgression, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyanobacteria, which is indicated by a positive correlation of BHP abundances with Corg and δ15N.

  3. BIOLOGICAL AERATED FILTERS (BAFs FOR CARBON AND NITROGEN REMOVAL: A REVIEW

    Directory of Open Access Journals (Sweden)

    ELSHAFIE AHMED

    2012-08-01

    Full Text Available Biological aerated filters (BAFs are an emerging wastewater treatment technology designed for a wide range of municipal and industrial applications. This review paper presents and discusses of the influence C/N ratio, nitrification and denitrification principle, effect of pH, DO and alkalinity on the nitrification and denitrification systems, organic and hydraulic loading of BAF reactor, etc. Results from upflow and downflow biofilter pilot at different condition, with nitrification and denitrification are reviewed. Under the optimal conditions, significant amount of COD, ammonia-nitrogen and total nitrogen were removed. Removal rates based on reactor volume for different carbon-aceous COD and ammonia loading rate are reported. The BAF system for the nitrification and denitrification processes for carbon and nitrogen removal from the wastewater need to be evaluated and applied properly to protect of our environment and resources.

  4. Sucrose in Cyanobacteria: From a Salt-Response Molecule to Play a Key Role in Nitrogen Fixation

    Directory of Open Access Journals (Sweden)

    María A. Kolman

    2015-01-01

    Full Text Available In the biosphere, sucrose is mainly synthesized in oxygenic photosynthetic organisms, such as cyanobacteria, green algae and land plants, as part of the carbon dioxide assimilation pathway. Even though its central position in the functional biology of plants is well documented, much less is known about the role of sucrose in cyanobacteria. In those prokaryotes, sucrose accumulation has been associated with salt acclimation, and considered as a compatible solute in low-salt tolerant strains. In the last years, functional characterizations of sucrose metabolizing enzymes, metabolic control analysis, cellular localization of gene expressions, and reverse genetic experiments have revealed that sucrose metabolism is crucial in the diazotrophic growth of heterocystic strains, and besides, that it can be connected to glycogen synthesis. This article briefly summarizes the current state of knowledge of sucrose physiological functions in modern cyanobacteria and how they might have evolved taking into account the phylogenetic analyses of sucrose enzymes.

  5. Effect of Cu(II) shock loads on shortcut biological nitrogen removal in a hybrid biofilm nitrogen removal reactor.

    Science.gov (United States)

    Yin, Jun; Xu, Hengjuan; Shen, Dongsheng; Wang, Kun; Lin, Ying

    2015-06-01

    The effect of Cu(II) shock loads on shortcut biological nitrogen removal during a continuous-flow anoxic/aerobic process was investigated using a hybrid biofilm nitrogen removal reactor. The results demonstrated that [Formula: see text]-N removal was not affected by any Cu(II) shock loads, but TN removal was inhibited by Cu(II) of shock loads of 2 and 5 mg/L, and the performance could not be recovered at 5 mg/L. Furthermore, the TN removal pathway also changed in response to Cu(II) concentrations of 2 and 5 mg/L. Denitrification is more sensitive to Cu(II) shock in SBNR processes. Examination of amoA communities using quantitative PCR showed that the abundance of AOB in the aerobic tank decreased after Cu(II) shock with 5 mg/L, which supported the observed changes in [Formula: see text]-N removal efficiency. The abundance of denitrification genes declined obviously at Cu(II) concentrations of 2 and 5 mg/L, which explained the decreased TN removal efficiency at those concentrations. PMID:25833010

  6. Inorganic sulfur–nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling

    OpenAIRE

    Miriam M. Cortese-Krott; Butler, Anthony R; Woollins, J. Derek; Feelisch, Martin

    2016-01-01

    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S–N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical ...

  7. Advances in investigation of new technologies on biological nitrogen removal of waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Zhang, J.; Xu, A.; Li, R. [CUMT, Xuzhou (China). School of Environment and Spatial Information

    2004-03-15

    The progresses of biological nitrogen removal from waste water, such as the investigation on shortcut nitrification denitrification, simultaneous nitrification denitrification (SND). Toxic ammonium oxidation (ANAMMOX) and ecology superior nitrification denitrification (ECOSUNIDES) were analyzed and discussed. The advantages of the new technology was compared with the traditional ones. It can be concluded that the new technology is promising for further investigations and applications. 9 refs., 2 figs.

  8. Ecosystem manipulation for increasing biological N2 fixation by blue-green algae (CYANOBACTERIA) in lowland rice fields

    OpenAIRE

    I. F. Grant; Roger, Pierre-Armand; Watanabe, I

    1986-01-01

    An introduction to the soil/floodwater ecosystem of lowland rice fields is given. Two primary consumers are particularly important in limiting the growth and N2-fixing activities of blue-green algae in irrigated rice ; the OSTRACODA (Class CRUSTACEA) and the PULMONATA (MULUSCA). Control of grazing by neem seeds AZADIRACHTA INDICA A. Juss and cultural practices enhanced BGA biomass and increased N2-fixation ten fold. Significant increases in rice grain protein occur if heterocystous algae bloo...

  9. Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation.

    Science.gov (United States)

    Masepohl, B; Kutsche, M; Riedel, K U; Schmehl, M; Klipp, W; Pühler, A

    1992-05-01

    The Rhizobium meliloti fdxN gene, which is part of the nifA-nifB-fdxN operon, is absolutely required for symbiotic nitrogen fixation. The deduced sequence of the FdxN protein is characterized by two cysteine motifs typical of bacterial-type ferredoxins. The Fix-phenotype of an R. meliloti fdxN::[Tc] mutant could be rescued by the R. leguminosarum fdxN gene, whereas no complementation was observed with nif-associated genes encoding ferredoxins from Bradyrhizobium japonicum, Azotobacter vinelandii, A. chroococcum and Rhodobacter capsulatus. In addition to these heterologous genes, several R. meliloti fdxN mutant genes constructed by site-directed mutagenesis were analyzed. Not only a cysteine residue within the second cysteine motif (position 42), which is known to coordinate the Fe-S cluster in homologous proteins, but also a cysteine located down-stream of this motif (position 61), was found to be essential for the activity of the R. meliloti FdxN protein. Changing the amino acid residue proline in position 56 into methionine resulted in a FdxN mutant protein with decreased activity, whereas changes in positions 35 (Asp35Glu) and 45 (Gly45Glu) had no significant effect on the function of the FdxN mutant proteins. In contrast to bacterial-type ferredoxins, which contain two identical cysteine motifs of the form C-X2-C-X2-C-X3-C, nif-associated ferredoxins, including R. meliloti FdxN, are characterized by two different cysteine motifs. Six "additional" amino acids separate the second (Cys42) and the third cysteine (Cys51) in the C-terminal motif (C-X2-C-X8-C-X3-C).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1603075

  10. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  11. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    Science.gov (United States)

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. PMID:25776916

  12. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system.

    Science.gov (United States)

    Lee, D S; Jeon, C O; Park, J M

    2001-11-01

    Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR). Significant amounts of phosphorus-accumulation organisms (PAOs) capable of denitrification could be accumulated in a single sludge system coexisting with nitrifiers. The ratio of the anoxic phosphate uptake to the aerobic phosphate uptake capacity was increased from 11% to 64% by introducing an anoxic phase in an anaerobic aerobic SBR. The (AO)2 SBR system showed stable phosphorus and nitrogen removal performance. Average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%, respectively. It was found that nitrite (up to 10 mg NO2(-)-N/l) was not detrimental to the anoxic phosphate uptake and could serve as an electron acceptor like nitrate. In fact, the phosphate uptake rate was even faster in the presence of nitrite as an electron acceptor compared to the presence of nitrate. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviours of nutrient concentrations (NH4+, NO3-, and PO4(3-)) in the SBR. These on-line sensor values were used as real-time control parameters to adjust the duration of each operational phase in the (AO)2 SBR. The real-time controlled SBR exhibited better performance in the removal of phosphorus and nitrogen than the SBR with fixed-time operation. PMID:12230180

  13. Fate of dissolved organic nitrogen during biological nutrient removal wastewater treatment processes.

    Science.gov (United States)

    Liu, Bing; Lin, Huirong; Yu, Guozhong; Zhang, Shenghua; Zhao, Chengmei

    2013-04-01

    Due to its potential to form toxic nitrogenous disinfection byproducts (N-DBPs), dissolved organic nitrogen (DON) is considered as one of the most important parameters in wastewater treatment plants (WWTP). This study describes a comprehensive investigation of variations in DON levels in orbal oxidation ditches. The results showed that DON increased gradually from 0.71 to 1.14 mg I(-1) along anaerobic zone, anoxic zone, aerobic zone 1 and aerobic 2. Molecular weight fractionation of DON in one anaerobic zone and one aerobic zone (aerobic zone 2) was performed. We found that the proportion of small molecular weight ( 20 kDa) showed opposite trend. This variation may have been caused due to the release of different types of soluble microbial products (SMPs) during biological processes. These SMPs contained both tryptophan protein-like and aromatic protein-like substances, which were confirmed by three-dimensional excitation-emission matrix (EEM) analysis. PMID:24620601

  14. Achieving and maintaining biological nitrogen removal via nitrite under normal conditions

    Institute of Scientific and Technical Information of China (English)

    CUI You-wei; PENG Yong-zhen; GAN Xiang-qing; YE Liu; WANG Ya-yi

    2005-01-01

    The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments applying the sequencing batch reactor(SBR)activated sludge process to domestic wastewater with low C/N ratio. The addition of sodium chloride(NaCl) to influent was established to achieve nitrite build-up. The high nitrite accumulation, depending on the salinity in influent and the application duration of salt, was obtained in SBRs treating saline wastewater. The maintenance results indicated that the real-time SBRs can maintain stable nitrite accumulation, but conversion from shorter nitrification-denitrification to full nitrification-denitrification was observed after some operation cycles in the other SBR with fixed-time control. The presented method is valuable to offer a solution to realize and to maintain nitrogen removal via nitrite under normal conditions.

  15. Prenatal exposure to a polychlorinated biphenyl (PCB congener influences fixation duration on biological motion at 4-months-old: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Hirokazu Doi

    Full Text Available Adverse effects of prenatal exposure to polychlorinated biphenyl (PCB congeners on postnatal brain development have been reported in a number of previous studies. However, few studies have examined the effects of prenatal PCB exposure on early social development. The present study sought to increase understanding of the neurotoxicity of PCBs by examining the relationship between PCB congener concentrations in umbilical cord blood and fixation patterns when observing upright and inverted biological motion (BM at four-months after birth. The development of the ability to recognize BM stimuli is considered a hallmark of socio-cognitive development. The results revealed a link between dioxin-like PCB #118 concentration and fixation pattern. Specifically, four-month-olds with a low-level of prenatal exposure to PCB #118 exhibited a preference for the upright BM over inverted BM, whereas those with a relatively high-level of exposure did not. This finding supports the proposal that prenatal PCB exposure impairs the development of social functioning, and indicates the importance of congener-specific analysis in the risk analysis of the adverse effects of PCB exposure on the brain development.

  16. Nitrogen

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  17. The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria.

    OpenAIRE

    Contreras, A; Drummond, M; Bali, A.; Blanco, G.; Garcia, E.; Bush, G; Kennedy, C; Merrick, M.

    1991-01-01

    We sequenced the nitrogen fixation regulatory gene nfrX from Azotobacter vinelandii, mutations in which cause a Nif- phenotype, and found that it encodes a 105-kDa protein (NfrX), the N terminus of which is highly homologous to that of the uridylyltransferase-uridylyl-removing enzyme encoded by glnD in Escherichia coli. In vivo complementation experiments demonstrate that the glnD and nfrX products are functionally interchangeable. A vinelandii nfrX thus appears to encode a uridylyltransferas...

  18. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  19. Biologic fixation of nitrogen in irradiated rhizobium strips; Fixacao biologica do nitrogenio em estirpes de rizobianas irradiadas

    Energy Technology Data Exchange (ETDEWEB)

    Caribe, Rebeka Alves; Colaco, Waldeciro [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear

    2002-07-01

    Native Rhizobium sp. and Bradyrhizobium sp. isolates from the root nodules of bean and cowpea were selected. Six isolates, and the SEMIA 4077 (R. leguminosarum bv. phaseolus) and SEMIA 6145 (Bradyrhizobium sp) strains used as references, were irradiated with ultraviolet light (R-uv) and gamma rays (R-{gamma}). The D{sub 37} values for the rhizobial strain SEMIA 4077 were 43 J.m{sup -2} (UV) and 32 Gy (R-{gamma}) and for the SEMIA 6145 were 45 J.m{sup -2} (UV) and 35 Gy (R-gamma). Through a greenhouse experiment the irradiated isolates were inoculated on bean (P. vulgaris L., cv. Princesa) and on cowpea [Vigna unguiculata, (L.) Walp, cv. IPA-206] seedlings, in an attempt to evaluate the sensitivity of the host plants, and possible effects on their nodulation. Differences in responses to nodulation due to the effect of irradiation were observed for the isolates tested. Significantly differences were observed only for nodules dry matter yield of the IPA-206 cultivar. Gamma irradiated treatment were statistically superior to treatments with ultraviolet light in relation. (author)

  20. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor.

    Science.gov (United States)

    Yan, Gang; Xu, Xia; Yao, Lirong; Lu, Liqiao; Zhao, Tingting; Zhang, Wenyi

    2011-04-01

    As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH(3)-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH(3)-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH(3)-N load 0.28-0.48 kg NH(3)-N/m(3) d. On the base of the Eckenfelder mode, the kinetics equation of the NH(3)-N transformation along the reactor was S(e)=S(0) exp(-0.0134D/L(1.2612)).

  1. Comparison Between Biological Treatment and Chemical Precipitation for Nitrogen Removal from Old Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Long Tengrui

    2007-01-01

    Full Text Available The study reports the results of a laboratory scale investigation aimed at evaluating the effectiveness of mature municipal landfill leachate treatment by a biological stage (used SBBR as a biological treatment and Chemical precipitation (Used MAP precipitation (magnesium ammonium phosphate to study the nitrogen removal capabilities for treatment of sanitary landfill leachate containing high ammonia concentration, and the comparison between them. The monitored sample taken from the Chang Sheng bridge landfill site in Chongqing city-China, has its concentrations of COD, BOD5, and NH3-N about 1650, 75 and 1100 mg/l respectively. The results from SBBR showed that after two months long period of domestication and one month period of stability, the ammonia nitrogen removal efficiency reached to 99% in the SBBR reactor, at nitrogen loading rate 0.51 kg TN/m3 per day and HRT was 9 hours, met to Chinese standards for discharge. The results of the MAP precipitation was technically effective to remove the high NH3-N strength of over 1100 mg/l from the raw leachate at molar ratio of Mg2+: NH4+: PO4-3 of 1:1:1, they demonstrated a very satisfactory removal of ammonia; an initial NH3+-N concentration of 1100 mg/l contained in the raw leachate was quickly reduced to 28 mg/l within 15 min, while the pH producing a maximum removal of ammonia was 9.0. The percent removal of ammonia after treatment by MAP was 97.5%.

  2. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    Science.gov (United States)

    Bonnet, Sophie; Berthelot, Hugo; Turk-Kubo, Kendra; Fawcett, Sarah; Rahav, Eyal; L'Helguen, Stéphane; Berman-Frank, Ilana

    2016-05-01

    N2 fixation rates were measured daily in large (˜ 50 m3) mesocosms deployed in the tropical southwest Pacific coastal ocean (New Caledonia) to investigate the temporal variability in N2 fixation rates in relation with environmental parameters and study the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. The mesocosms were fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of 2 during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These later rates measured after the DIP fertilization are higher than the upper range reported for the global ocean. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP), and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during a bloom of the unicellular diazotroph UCYN-C that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ˜ 10 % of UCYN-C from the water column was exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 µm) UCYN-C cells into large (100-500 µm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer-scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labeling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4

  3. Fixação do nitrogênio em alfafa nodulada sob supressão e ressuprimento de fósforo Nitrogen fixation in alfalfa nodulated under phosphorus supression and resupply

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira Gomes

    2002-12-01

    Full Text Available Estudaram-se os efeitos da supressão e do ressuprimento de fósforo (Pi sobre a fixação biológica do nitrogênio atmosférico (N2 em plantas de alfafa cv. Flórida 77 inoculadas com Sinorhizobium meliloti, em diferentes estádios do desenvolvimento vegetativo (V3 e V4 e reprodutivo (R6 e R8. O ensaio foi conduzido em casa de vegetação e as plantas cultivadas em solução nutritiva. O período de supressão de Pi por dez dias reduziu os teores de Pi nas folhas e nos nódulos em todos os estádios do desenvolvimento, enquanto nas raízes essa redução somente foi observada nos estádios vegetativos. Após o ressuprimento de Pi à solução nutritiva por igual período, dez dias, foi observada a recuperação nos teores de Pi nos estádios R6 e R8 para folhas, V3 e V4 para raízes e V3 para os nódulos. A supressão de Pi alterou o processo de fixação do N2, estimado pela concentração de aminoácidos totais nas folhas e nas raízes. Os teores de aminoácidos nas folhas e nas raízes foram significativamente menores nas plantas sob supressão de Pi, em relação aos das plantas do tratamento controle. Após o ressuprimento os teores de aminoácidos totais nas raízes, em todos os estádios do desenvolvimento, alcançaram valores similares àqueles das plantas do tratamento controle, enquanto nas folhas isso só ocorreu nos estádios vegetativos. A supressão de Pi não influenciou a proporção de aminoácidos livres na seiva do xilema.Phosphorus (Pi suppression and resupply effects were studied on nitrogen biological fixation (N2 in alfalfa cv. Florida 77 inoculated with Sinorhizobium meliloti in different vegetative (V3 and V4 and reproductive (R6 and R8 stages. The experiment was carried in greenhouse and the plants cultivated in nutritive solution. The inorganic phosphorus (Pi ten days suppression period decreased Pi levels in leaves and nodules in all growth stages, whereas in the roots this decrease was observed only in the

  4. Improving Carbon Fixation Pathways

    OpenAIRE

    Ducat, Daniel C.; Silver, Pamela A

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing...

  5. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  6. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    International Nuclear Information System (INIS)

    Highlights: ► We analyzed biological effects of N+ implantation on dry Jatropha curcas seed. ► N+ implantation greatly decreased seedling survival rate. ► At doses beyond 15 × 1016 ion cm−2, biological repair took place. ► CAT was essential for H2O2 removal. POD mainly functioned as seed was severely hurt. ► HAsA–GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm−2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm−2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm−2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA–GSH cycle appeared to be for regeneration of HAsA.

  7. Thousand Year Archives of the Bulk and Compound-Specific δ15N of Export Production From the North Pacific Subtropical Gyre Indicate Increasing Nitrogen Fixation Over the Past 150 Years

    Science.gov (United States)

    Sherwood, O.; Batista, F. C.; Brown, J. T.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Stable nitrogen isotopic analysis of amino acids (δ15N-AA) preserved in proteins has emerged as a powerful new tool to explore trophic levels and nutrient cycling in nature. To date, little has been done to explore δ15N-AA in paleo-studies of the marine nitrogen cycle. We analysed the bulk and AA-specific δ15N in the long-lived, deep-sea, proteinaceous coral Gerardia. By feeding on sinking particulate organic matter, proteinaceous corals integrate the biogeochemical signature of recently exported production within discrete skeletal growth layers. Sub-decadal resolution time-series records spanning the time period 1000 AD to present were generated from specimens of Gerardia collected from the main Hawaiian Islands, Cross Seamount, and French Frigate Shoals in the North Pacific Subtropical Gyre (NPSG). Records of bulk δ15N from the three different locations, geographically separated by up to 1000 km, showed remarkably similar long term trends. Bulk δ15N remained relatively stable from ~1000-1850 years AD, and then decreased by a total of 2 ‰ from ~1850 AD to the present. The δ15N-AA of the "trophic" group of amino acids indicated no significant changes in trophic level or microbial re-synthesis of export production over this time period. The δ15N of "source" amino acids was significantly correlated with corresponding values of bulk δ15N, with the δ15N of phenylalanine decreasing from 4.2 to 2.1‰. The latter value is similar to recent measurements of subsurface nitrate δ15N near Hawaii, suggesting that the δ15N of phenylalanine may be used to quantitatively track changes in the isotopic signature of nitrate at the base of the food web. Using a simple isotopic mass balance between upwelled nitrate and nitrogen fixation we calculate a 30% increase in nitrogen fixation in the NPSG since ~1850. These results provide invaluable long-term context for recent observations, and highlight profound changes in the marine biogeochemical cycling of nitrogen over the

  8. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Science.gov (United States)

    Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng

    2012-09-01

    To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  9. Effective Application of the Methanol-Based PreservCyt (TM) Fixative and the Cellient (TM) Automated Cell Block Processor to Diagnostic Cytopathology, Immunocytochemistry, and Molecular Biology

    NARCIS (Netherlands)

    van Hemel, Bettien M.; Suurmeijer, Albert J. H.

    2013-01-01

    We studied the feasibility of immunocytochemistry (ICC), in situ hybridization (ISH), and polymerase chain reaction (PCR) after Cellient automated cell block processing, and tested whether methanol-based PreservCyt fixation could replace formalin fixation, in an attempt to eliminate toxic formaldehy

  10. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    Science.gov (United States)

    >Liyana Yahya, Muhammad Nazry Chik, Mohd Asyraf Mohd Azmir Pang,

    2013-06-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive - observed by increases in optical densities, number of cells and weights - in the presence of actual coal-fired flue gas containing on average 4.08 % O2, 200.21 mg/m3 SO2, 212.29 mg/m3 NOx, 4.73 % CO2 and 50.72 mg/m3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  11. Biological cycling of nitrogen in a Rocky Mountain alpine lake, with emphasis on the physiological and ecological effects of acidification

    International Nuclear Information System (INIS)

    This study examined nitrogen cycling interactions occurring among the heterotrophic and autotrophic plankton of a softwater, oligotrophic alpine lake. Its major objectives were (1) to compare the influences of internal (regenerative) and external nitrogen supply processes on watercolumn primary production, (2) to identify the food web components contributing most to regenerative and assimilative fluxes of nitrogen, and (3) to evaluate the sensitivity of the limnetic nitrogen cycle to lake acidification. Field and laboratory experiments were based on isotopic tracer (15N, 14C, 3H) methodologies plankton size-fractionation and metabolic inhibitor techniques, and short-term bioassay procedures; supporting data were gathered on lake physicochemical and biological properties. Measured aqueous nutrient concentrations, the results of 14CO2-based snowmelt and nutrient enrichment bioassays, and physiological indicators of algal nutrient status collectively demonstrated that phytoplankton nitrogen demand greatly exceeded nitrogen supply. Both NH4+ and NO3- were quantitatively important forms of assimilatable nitrogen under ambient conditions. Mass balance considerations indicated that within-lake biogeochemical processes constituted a net sink for NO3-, whereas NH4+ production and consumption rates were approximately in balance on an ecosystem scale. Water-column regenerative and assimilative fluxes of NH4+ were strongly correlated. Meta- and protozooplankton were the principal sources of regenerated NH4+; heterotrophic bacterioplankton were net consumers of NH4+. Experimental reductions in metazooplankton populations markedly enhanced rates of NH4+ regeneration

  12. Biological nitrogen removal with enhanced phosphate uptake in (AO)2SBR using single sludge system

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi-feng; WANG Lin; WANG Bao-zhen; HE Sheng-bing; LUI Shuo

    2004-01-01

    Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake via nitrite was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor((AO)2 SBR). The system showed stable phosphorus and nitrogen removal performance, and average removals for COD, TN and TP were 90%, 91% and 96%, respectively. The conditions of pH 7.5-8.0 and temperature 32℃ were found detrimental to nitrite oxidation bacteria but favorable to ammonia oxidizers, and the corresponding specific oxygen uptake rates(SOUR) for phase 1 and 2 of nitrification process were 0.7 and 15 mgO2/(gVSS·h) in respect, which led to the nitrite accumulation in aerobic phase of(AO)2 SBR. Respiratory tests showed that 40 mgNO2-N/L did not deteriorate the sludge activity drastically, and it implied that exposure of sludge to nitrite periodically enabled the biomass to have more tolerance capacity to resist the restraining effects from nitrite. In addition, batch tests were carried out and verified that denitrifying phosphorus accumulation organisms(DPAOs) could be enriched in a single sludge system coexisting with nitrifiers by introducing an anoxic phase in an anaerobic-aerobic SBR, and the ratio of the anoxic phosphate uptake capacity to aerobic phosphate uptake capacity was 45%. It was also found that nitrite(up to 20 mgNO2-N/L) was not inhibitory to anoxic phosphate uptake and could serve as an electron acceptor like nitrate, but presented poorer efficiency compared with nitrate.

  13. Biotechnological solutions to the nitrogen problem.

    Science.gov (United States)

    Oldroyd, Giles E D; Dixon, Ray

    2014-04-01

    The availability of nitrogen is one of the major limiting factors to crop growth. In the developed world, farmers use unsustainable levels of inorganic fertilisers to promote crop production. In contrast, in the developing world inorganic fertilisers are often not available and small-holder farmers suffer the resultant poor yields. Finding alternatives to inorganic fertilisers is critical for sustainable and secure food production. Bacteria and Archaea have evolved the capability to fix atmospheric nitrogen to ammonia, a form readily usable in biological processes. This capability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the nitrogen fixing bacteria or the nitrogenase enzyme responsible for nitrogen fixation. While both approaches are challenging, recent advances have laid the groundwork to initiate these biotechnological solutions to the nitrogen problem. PMID:24679253

  14. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg335300@yahoo.com.cn [Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025 (China); Institute of Entomology, Guizhou University, Guiyang 550025 (China); Wang Xiaoteng [Department of Agricultural Resources and Environment, College of Agricultural, Guizhou University, Guiyang 550025 (China); Gan Cailing; Fang Yanqiong; Zhang Meng [College of Life Sciences, Guizhou University, Guiyang 550025 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyzed biological effects of N{sup +} implantation on dry Jatropha curcas seed. Black-Right-Pointing-Pointer N{sup +} implantation greatly decreased seedling survival rate. Black-Right-Pointing-Pointer At doses beyond 15 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place. Black-Right-Pointing-Pointer CAT was essential for H{sub 2}O{sub 2} removal. POD mainly functioned as seed was severely hurt. Black-Right-Pointing-Pointer HAsA-GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N{sup +} with energy of 25 keV was applied to treat the dry seed at six different doses. N{sup +} beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 Multiplication-Sign 10{sup 16} to 15 Multiplication-Sign 10{sup 16} ions cm{sup -2} severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 Multiplication-Sign 10{sup 16} ions cm{sup -2} may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  15. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501

    Science.gov (United States)

    Zhan, Yuhua; Yan, Yongliang; Deng, Zhiping; Chen, Ming; Lu, Wei; Lu, Chao; Shang, Liguo; Yang, Zhimin; Zhang, Wei; Wang, Wei; Li, Yun; Ke, Qi; Lu, Jiasi; Xu, Yuquan; Zhang, Liwen; Xie, Zhihong; Cheng, Qi; Elmerich, Claudine; Lin, Min

    2016-01-01

    Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade. The nfiS-deficient mutant displayed reduced nitrogenase activity, as well as increased sensitivity to multiple stresses, such as osmotic and oxidative stresses. Secondary structure prediction and complementation studies confirmed that a stem-loop structure was essential for NfiS to regulate the nitrogenase gene nifK mRNA synthesis and thus nitrogenase activity. Microscale thermophoresis and physiological analysis showed that NfiS directly pairs with nifK mRNA and ultimately enhances nitrogenase activity by increasing the translation efficiency and the half-life of nifK mRNA. Our data also suggest structural and functional divergence of NfiS evolution in diazotrophic and nondiazotrophic backgrounds. It is proposed that NfiS was recruited by nifK mRNA as a novel regulator to integrate the horizontally acquired nif island into host global networks. PMID:27407147

  16. Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms

    OpenAIRE

    Ojiem, J.O.; Vanlauwe, B.; Ridder, de, N.; Giller, K.E.

    2007-01-01

    Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N-2-fixation. The N-2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbea...

  17. Box-modelling of the impacts of atmospheric nitrogen deposition and benthic remineralisation on the nitrogen cycle of the eastern tropical South Pacific

    Science.gov (United States)

    Su, Bei; Pahlow, Markus; Oschlies, Andreas

    2016-09-01

    Both atmospheric deposition and benthic remineralisation influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations in the eastern tropical South Pacific (ETSP) among nitrogen deposition, benthic denitrification and phosphorus regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. Atmospheric nitrogen deposition ( ≈ 1.5 Tg N yr-1 for the years 2000-2009) is offset by half in the model by reduced N2 fixation, with the other half transported out of the model domain. Model- and data-based benthic denitrification in our model domain are responsible for losses of 0.19 and 1.0 Tg Tg N yr-1, respectively, and both trigger nitrogen fixation, partly compensating for the NO3- loss. Model- and data-based estimates of enhanced phosphate release via sedimentary phosphorus regeneration under suboxic conditions are 0.062 and 0.11 Tg N yr-1, respectively. Since phosphate is the ultimate limiting nutrient in the model, even very small additional phosphate inputs stimulate primary production and subsequent export production and NO3- loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralisation indicates dominant stabilising feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory; i.e. nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3- loss via benthic denitrification is partly compensated for by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly counteracted by stronger water-column denitrification. Even though the water column in our model domain acts as a NO3- source, the ETSP including benthic denitrification might be a NO3- sink.

  18. Fiscal 1997 report on the survey of biological CO2 fixation using arid land and oligotrophic waters; 1997 nendo chosa hokokusho (kansochi, hin`eiyo kaiiki wo riyoshita seibutsuteki CO2 kotei ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This survey is aimed to investigate various measures to be taken for biological CO2 fixation, to synthetically study feasibilities of the measures from various aspects of CO2 fixation mechanism, scale, speed, and environmental effects and technical problems in case of introducing those, and to assess the measures quantitatively. In this fiscal year, a study was proceeded with of possibilities of carbon fixation by afforestation and that by fertilization into ocean. The paper defined significance of afforestation in arid land, and especially advantages in conducting researches in West Australia. Relationships were examined among afforestation, precipitation and topography. The result of the survey was described of water- and salt-transfer simulation methods. Studies of arid land were made in terms of photosynthetic speed, transpiration speed, soil characteristics, measuring methods for precipitation and vaporization amount, and the examples. Seven places of Leonora where water source and water quality were examined were selected, and the measuring results were described. The paper summed up the state of utilization of biomass energy obtained from forest and commented on a scenario on tree-planting. Finally, a possibility was stated of the carbon fixation by fermentation into ocean. 178 refs., 121 figs., 53 tabs.

  19. Biological effects of nitrogen ion implantation on rape M1 generation

    International Nuclear Information System (INIS)

    The biological effects of nitrogen ion implantation (25 keV; 3.2 x 1016; 3.9 x 1016 and 4.6 x 1016 ions/cm2) on rape M1 generation were studied. The results showed that the germination percent of seeds treated at N+ doses between 3.2 x 1016 and 4.6 x 1016 ions/cm2 was not significantly different from control. It was observed that the emergent seedling and survival seedling percent of treated seeds at the dose of 3.9 x 1016 ions/cm2 was increased. Some agronomic and yield characters, such as plant height, number of leaves, fresh weight per plant at seedling stage, number of leaves, perimeter of stem, length and width of the biggest leaf at flower stage, number of primary branches, number of siliques per plant and seed yield per plant at mature stage, were improved and increased at N+ treatment zone. According to the statistical result, the mutation frequency was about 3.2% in the field. (authors)

  20. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: Evaluation, application and recommendations

    Directory of Open Access Journals (Sweden)

    Isabell eKlawonn

    2015-08-01

    Full Text Available Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2 fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15-15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15-15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15-15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥5 min. Optionally, water can be degassed at low-pressure (≥950 mbar for ten minutes prior to the 15-15N2 gas addition to indirectly facilitate the 15-15N2 dissolution. This preparation of 15-15N2-enriched water can be done within one hour using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15-15N2-enriched water. Notably, the addition of 15-15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15-15N2-enriched water with glass, plastic and rubber ware during its preparation. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn increased by up to 0.1 nmol L-1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15-15N2. The 15-15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15-15N2 equilibration. This method achieved a 15N-atom excess of 6.6±1.7% when adding 2 mL 15-15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  1. A DO- and pH-based early warning system of nitrification inhibition for biological nitrogen removal processes.

    Science.gov (United States)

    Hong, Seil; Choi, Il; Lim, Byung Jin; Kim, Hyunook

    2012-01-01

    In Korea, more than 80% of municipal wastewater treatment plants (WWTPs) with capacities of 500 m3·d-1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process) may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L-1 Hg2+, 0.5 mg·L-1 allythiourea, or 0.25 mg·L-1 chloroform could be successfully detected. PMID:23443381

  2. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim

    2012-11-01

    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  3. Spittlebugs in the genus Sphenorhina (Hemiptera:Cercopidae) associated with weedy composite host plants (Asteraceae) that may represent unusual cases of nitrogen fixation%与特殊固氮模式草本菊科寄主植物有关的Sphenorhina属沫蝉(半翅目:沫蝉科)

    Institute of Scientific and Technical Information of China (English)

    Vinton THOMPSON

    2013-01-01

    观察了沫蝉科Sphenorhina属与固氮植物有关的热带木本菊科植物Crassocephalum cerpidioides 和Chromolaena ordorata的3种沫蝉.沫蝉可能作为菊科一些固氮植物的间接指示物,该科的固氮作用尚未得到很好研究.%Three species of the spittlebug genus Sphenorhina (Hemiptera:Cercopidae) have been observed in association with Crassocephalum crepidioides and Chromolaena ordorata,weedy tropical species in the family Asteraceae that have been implicated as nitrogen-fixing plants.The spittlebugs may be serving as indirect indicators of nitrogen fixation in some species of Asteraceae,a group in which nitrogen fixation has not been well established.

  4. Effect of Rhizobia Application on Number of Soil Ammonifying Bacteria, Nitrifying Bacteria, Nitrogen Fixation Bacteria and Soil Nitrogen Fertility%施用根瘤菌对土壤微生物氮素类群数量及土壤氮素的影响

    Institute of Scientific and Technical Information of China (English)

    孟庆英

    2012-01-01

    In order to investigate the effect of rhizobia application on dynamic change of rhizosphere soil microoganisms and soil nitrogen content in different growth stages of soybean, the number of ammonifying bacteria, nitrifying bacteria,nitrogen fixation bacteria of soil and available nitrogen, total nitrogen were determined at seedling stage,flowering stage, bearing pod stage and mature stage of soybean. The results showed that the number of ammonifying bacteria, nitrifying bacteria, nitrogen fixation bacteria of soil of rhizobia application treatment was different from and CK,but rhizobia could effectively increase the number of soil microoganisms. The rhizobia treatment had higher available nitrogen content of soil than CK at all growth stages of soybean except for mature stage. The total nitrogen content of soil was increased by rhizobia on the whole stages of soybean.%为研究施用根瘤茵条件下,大豆不同生育时期土壤微生物数量及土壤氮素含量动态变化,于大豆苗期、花期、结荚期、成熟期分别对大豆根际土壤氧化细菌、硝化细菌、自身固氮茼数量及土壤碱解氮、全氮含量进行测定。结果表明:施用根瘤茼处理与对照相比,在大豆的不同生育时期土壤氨化细菌、硝化细菌、自身固氮茵数量上存在差异,但在大豆的整个生育期根瘤菌有效增加了微生物氮素类群数量。除成熟期土壤中碱解氮含量根瘤菌处理低于对照,各时期土壤中碱解氮含量根瘤菌处理均高于对照,施用根瘤菌在大豆整个生育期增加了土壤全氮的含量。

  5. The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

    1998-09-01

    A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

  6. Model study on horizontal variability of nutrient N/P ratio in the Baltic Sea and its impacts on primary production, nitrogen fixation and nutrient limitation

    OpenAIRE

    Wan, Z.; H. Bi; She, J; Maar, M.; Jonasson, L

    2012-01-01

    The analysis of measured nutrient concentrations suggests that the ratio of dissolved inorganic nitrogen (DIN) alteration before and after spring blooms relative to the alteration of dissolved inorganic phosphorus (DIP) remains quite constant over the years (2000~2009). This ratio differs from the Redfield ratio and varies from 6.6 : 1 to 41.5 : 1 across basins within the Baltic Sea. If the found N/P ratios are indicators of phytoplankton stoichiom...

  7. Synthesis and biological evaluation of novel steroid-linked nitrogen mustards

    Institute of Scientific and Technical Information of China (English)

    Hua Bing Zhang; Ji Jun Xue; Xiao Long Zhao; De Gang Liu; Ying Li

    2009-01-01

    Two novel steroid-linked nitrogen mustard conjugates 1a and 1b were synthesized by using estrogenic acid 4 coupled with aniline mustard 8 and phenol mustard 13 in an esterification or amidation procedure. Preliminary cytotoxic screening on cancer cell lines in vitro showed that, the steroid-ester linked nitrogen mustard conjugate la exhibited obvious increasing of activities.

  8. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13N, 24Na and 22Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  9. Latarjet Fixation

    Science.gov (United States)

    Alvi, Hasham M.; Monroe, Emily J.; Muriuki, Muturi; Verma, Rajat N.; Marra, Guido; Saltzman, Matthew D.

    2016-01-01

    Background: Attritional bone loss in patients with recurrent anterior instability has successfully been treated with a bone block procedure such as the Latarjet. It has not been previously demonstrated whether cortical or cancellous screws are superior when used for this procedure. Purpose: To assess the strength of stainless steel cortical screws versus stainless steel cannulated cancellous screws in the Latarjet procedure. Study Design: Controlled laboratory study. Methods: Ten fresh-frozen matched-pair shoulder specimens were randomized into 2 separate fixation groups: (1) 3.5-mm stainless steel cortical screws and (2) 4.0-mm stainless steel partially threaded cannulated cancellous screws. Shoulder specimens were dissected free of all soft tissue and a 25% glenoid defect was created. The coracoid process was osteomized, placed at the site of the glenoid defect, and fixed in place with 2 parallel screws. Results: All 10 specimens failed by screw cutout. Nine of 10 specimens failed by progressive displacement with an increased number of cycles. One specimen in the 4.0-mm screw group failed by catastrophic failure on initiation of the testing protocol. The 3.5-mm screws had a mean of 274 cycles (SD, ±171 cycles; range, 10-443 cycles) to failure. The 4.0-mm screws had a mean of 135 cycles (SD, ±141 cycles; range, 0-284 cycles) to failure. There was no statistically significant difference between the 2 types of screws for cycles required to cause failure (P = .144). Conclusion: There was no statistically significant difference in energy or cycles to failure when comparing the stainless steel cortical screws versus partially threaded cannulated cancellous screws. Clinical Relevance: Latarjet may be performed using cortical or cancellous screws without a clear advantage of either option. PMID:27158630

  10. Coordinated Expression of fdxD and Molybdenum Nitrogenase Genes Promotes Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Oxygen

    OpenAIRE

    Hoffmann, Marie-Christine; Müller, Alexandra; Fehringer, Maria; Pfänder, Yvonne; Narberhaus, Franz; Masepohl, Bernd

    2014-01-01

    Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contras...

  11. Response of berseem (trifolium alexandrinum) shaftal (trifolium resupinatum) and lucerne (medicago sativa) to phosphorus application for yield, nodulation and nitrogen fixation

    International Nuclear Information System (INIS)

    In a pot culture experiment, increasing levels of phosphorus at 40, 60, 80, 100 Kg P/sub 2/O/sub 5/ ha/sup -1/ in the presence of uniform dressing of nitrogen and potash (K/sub 2/O) each applied at 10 and 40 kg ha-1 increased significantly the nodulation response number and weight of nodules plant/sup -1/, nitrogenase activity, n-uptake and dry mater yield of shoots and roots of berseem, shaflt and lucerne. The increase in shoots n-uptake was in the range of 117 to 233 percent for berseem, 52 to 224 percent for shaftal, 50 to 330 percent for lucerne: whereas the increase in the root n-uptake was in the range of 67 to 266 percent for berseem, 64 to 240 percent for shaftal and 23 to 114 percent for lucerne. The improvement in the n-uptake of shoots ad roots in obviously due to marked improvement in nodulation response number and weight of nodules plant-1) and nitrogen activity of the test crops as a result of all the applied doses of phosphorus. (author)

  12. Non-coating fixation techniques or redundancy of conductive coating, low kV FE-SEM operation and combined SEM/TEM of biological tissues

    NARCIS (Netherlands)

    Jongebloed, WL; Stokroos, [No Value; Van der Want, JJL; Kalicharan, D

    1999-01-01

    Non-coating fixation methods, in particular the tannic acid/arginine/osmium tetroxide procedure, are employed for a number of reasons on the guinea-pig organ of Corti hair cell stereocilia glycocalyx and the imprints of the stereocilia at the bottom side of the tectorial membrane, and on the rat and

  13. Denitrification and N2 fixation in the Pacific Ocean

    Science.gov (United States)

    Deutsch, Curtis; Gruber, Nicolas; Key, Robert M.; Sarmiento, Jorge L.; Ganachaud, Alexandre

    2001-06-01

    We establish the fixed nitrogen budget of the Pacific Ocean based on nutrient fields from the recently completed World Ocean Circulation Experiment (WOCE). The budget includes denitrification in the water column and sediments, nitrogen fixation, atmospheric and riverine inputs, and nitrogen divergence due to the large-scale circulation. A water column denitrification rate of 48±5 Tg N yr -1 is calculated for the Eastern Tropical Pacific using N* [Gruber and Sarmiento, 1997] and water mass age tracers. On the basis of rates in the literature, we estimate sedimentary denitrification to remove an additional 15±3 Tg N yr-1. We then calculate the total nitrogen divergence due to the large scale circulation through the basin, composed of flows through a zonal transect at 32°S, and through the Indonesian and Bering straits. Adding atmospheric deposition and riverine fluxes results in a net divergence of nitrogen from the basin of -4±12 Tg N yr-1. Pacific nitrogen fixation can be extracted as a residual component of the total budget, assuming steady state. We find that nitrogen fixation would have to contribute 59±14 Tg N yr-1 in order to balance the Pacific nitrogen budget. This result is consistent with the tentative global extrapolations of Gruber and Sarmiento [1997], based on nitrogen fixation rates estimated for the North Atlantic. Our estimated mean areal fixation rate is within the range of direct and geochemical rate estimates from a single location near Hawaii [Karl et al., 1997]. Pacific nitrogen fixation occurs primarily in the western part of the subtropical gyres where elevated N* signals are found. These regions are also supplied with significant amounts of iron via atmospheric dust deposition, lending qualitative support to the hypothesis that nitrogen fixation is regulated in part by iron suppy.

  14. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.;

    1992-01-01

    A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation...... and sedimentation. Chemical pretreatment resulted in 60% COD-reduction and 75% phosphorus reduction. The chemically precipitated primary sludge was exposed to anaerobic sludge hydrolysis at retention times of 1 and 2 days at temperatures in the range of 15-30°C. At a retention time of two days at 20°C, resulting......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  15. Nitrogen in Ancient Mud: A Biosignature?

    Science.gov (United States)

    Stüeken, Eva E.

    2016-09-01

    Nitrogen is an essential nutrient for all life on Earth and possibly elsewhere. Burial of nitrogen bound to organic matter constitutes the major flux of nitrogen into sediments today, which has led to the inference that nitrogen enrichments in sedimentary rocks may be a biosignature. However, abiotic processes such as lightning or volcanism can fix atmospheric N2 and contribute to sedimentary nitrogen burial in the absence of life. It is therefore uncertain whether observed nitrogen enrichments of up to 430 ppm in Paleoarchean metasedimentary biotite grains are indeed biogenic. This study seeks to address that problem with a numerical model. The NH4+ concentration of an abiotic ocean is modeled as a function of source fluxes, pH-dependent NH3 volatilization, and equilibrated adsorption of NH4+ onto clay particles. The results suggest that the observed nitrogen concentrations in Paleoarchean biotite can only be reconciled with purely abiotic processes if the ocean was more acidic (pH origin. While this does not necessitate a particular metabolism such as biological N2 fixation, the data provide evidence of nitrogen utilization back to 3.8 Gyr. Nitrogen abundances could thus provide useful information in extraterrestrial missions.

  16. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  17. The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria.

    Science.gov (United States)

    Contreras, A; Drummond, M; Bali, A; Blanco, G; Garcia, E; Bush, G; Kennedy, C; Merrick, M

    1991-12-01

    We sequenced the nitrogen fixation regulatory gene nfrX from Azotobacter vinelandii, mutations in which cause a Nif- phenotype, and found that it encodes a 105-kDa protein (NfrX), the N terminus of which is highly homologous to that of the uridylyltransferase-uridylyl-removing enzyme encoded by glnD in Escherichia coli. In vivo complementation experiments demonstrate that the glnD and nfrX products are functionally interchangeable. A vinelandii nfrX thus appears to encode a uridylyltransferase-uridylyl-removing enzyme, and in this paper we report the first sequence of such a protein. The Nif- phenotype of nfrX mutants can be suppressed by a second mutation in a recently identified nifL-like gene immediately upstream of nifA in A. vinelandii. NifL mediates nif regulation in response to the N status in A. vinelandii, presumably by inhibiting NifA activator function as occurs in Klebsiella pneumoniae; thus, one role of NfrX is to modify, either directly or indirectly, the activity of the nifL product. PMID:1683868

  18. 污废水生物脱氮除磷技术研究进展%Research Status of Technologies for Nitrogen and Phosphorus Removal by Biological Processes

    Institute of Scientific and Technical Information of China (English)

    刘启承

    2013-01-01

      总结了目前城市污水生物脱氮除磷技术研究及应用进展,分析了脱氮除磷工艺机理及其特点,探讨了城市污水生物脱氮除磷工艺深入研究的方向。%This paper reviews the advances in the biological nitrogen and phosphorus removal technologies for municipal wastewater .The mechanism and characteristics of nitrogen and phosphorus removal processes are analyzed , and directions of studying the biological nitrogen and phosphorus removal technologies are also discussed .

  19. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis.

    Science.gov (United States)

    Park, Jeong-Jin; Wang, Hongxia; Gargouri, Mahmoud; Deshpande, Rahul R; Skepper, Jeremy N; Holguin, F Omar; Juergens, Matthew T; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-02-01

    Drastic alteration in macronutrients causes large changes in gene expression in the photosynthetic unicellular alga Chlamydomonas reinhardtii. Preliminary data suggested that cells follow a biphasic response to this change hinging on the initiation of lipid accumulation, and we hypothesized that drastic repatterning of metabolism also followed this biphasic modality. To test this hypothesis, transcriptomic, proteomic, and metabolite changes that occur under nitrogen (N) deprivation were analyzed. Eight sampling times were selected covering the progressive slowing of growth and induction of oil synthesis between 4 and 6 h after N deprivation. Results of the combined, systems-level investigation indicated that C. reinhardtii cells sense and respond on a large scale within 30 min to a switch to N-deprived conditions turning on a largely gluconeogenic metabolic state, which then transitions to a glycolytic stage between 4 and 6 h after N depletion. This nitrogen-sensing system is transduced to carbon- and nitrogen-responsive pathways, leading to down-regulation of carbon assimilation and chlorophyll biosynthesis, and an increase in nitrogen metabolism and lipid biosynthesis. For example, the expression of nearly all the enzymes for assimilating nitrogen from ammonium, nitrate, nitrite, urea, formamide/acetamide, purines, pyrimidines, polyamines, amino acids and proteins increased significantly. Although arginine biosynthesis enzymes were also rapidly up-regulated, arginine pool size changes and isotopic labeling results indicated no increased flux through this pathway.

  20. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  1. Spatial and temporal variations in dissolved and particulate organic nitrogen in the equatorial Pacific: biological and physical influences

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2008-12-01

    Full Text Available To quote Libby and Wheeler (1997, "we have only a cursory knowledge of the distributions of dissolved and particulate organic nitrogen" in the equatorial Pacific. A decade later, we are still in need of spatial and temporal analyses of these organic nitrogen pools. To address this issue, we employ a basin scale physical-biogeochemical model to study the spatial and temporal variations of dissolved organic nitrogen (DON and particulate organic nitrogen (PON. The model is able to reproduce many observed features of nitrate, ammonium, DON and PON in the central and eastern equatorial Pacific, including the asymmetries of nitrate and ammonium, and the meridional distributions of DON and PON. Modeled DON (5–8 mmol m−3 shows small zonal and meridional variations in the mixed layer whereas modeled PON (0.4–1.5 mmol m−3 shows considerable spatial variability. While there is a moderate seasonality in both DON and PON in the mixed layer, there is a much weaker interannual variability in DON than in PON. The interannual variability in PON is largely associated with the El Niño/Southern Oscillation (ENSO phenomenon, showing high values during cold ENSO phase but low values during warm ENSO phase. Overall, DON and PON have significant positive correlations with phytoplankton and zooplankton in the mixed layer, indicting the biological regulation on distribution of organic nitrogen. However, the relationships with phytoplankton and zooplankton are much weaker for DON (r=0.18–0.71 than for PON (r=0.25–0.97. Such a difference is ascribed to a relatively larger degree of physical control (e.g., upwelling of low-organic-N deep waters into the surface on DON than PON.

  2. A Combined System for Biological Removal of Nitrogen and Carbon from Nylon-6 Production Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; LIU Guo-hua; TIAN Qing; ZHANG Man; CHEN Ji-hua

    2007-01-01

    A combined system consisting of hydrolysisacidification, denitrification and nitrification reactors wasused to remove carbon and nitrogen from the nylon - 6production wastewater, which was characterized by goodbiodegradability and high nitrogen concentration. Theinfluences of Chemical Oxygen Demand(COD) in theinfluent, recirculation ratio, Hydraulic Residence Time(HRT) and Dissolved Oxygen(DO) concentration on thesystem performances were investigated. From results itcould be seen that good performances have been achievedduring the overall experiments periods, and COD, TotalNitrogen(TN), NH+-N and Suspended Solids(SS) in theeffluent were 53, 16, 2 and 24 mg·L-1, respectively,which has satisfied the first standard of wastewaterdischarge established by Environmental Protection Agency(EPA) of China. Furthermore, results showed thatoperation factors, viz. COD in the influent, recirculationratio, HRT and DO concentration, all had importantinfluences on the system performances.

  3. Atmospheric nitrogen evolution on Earth and Venus

    Science.gov (United States)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  4. Nitrogenated compounds' biofiltration under alternative bacterium fixation substrates Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos

    Directory of Open Access Journals (Sweden)

    Carlos Carroza

    2012-09-01

    Full Text Available This study compares the behavior of nitrification (NH4+, NO2- and NO3-, and performance, in terms of the surface TAN conversion rate (STR, volumetric TAN conversion rate (VTR and removal percentage of TAN (PTR among three fixation media of nitrifying bacteria (two alternatives (S1, S2 and one commercial (Co. The experiment was performed in two tests of 42 days each. Three isolated biofiltration systems were built for the experience, to which were added media colonized by bacteria as a "seed" to start the process of nitrification. Ammonium chloride (NH4Cl was attached as source of ammonium in reconditioned freshwater, also gradually adding inorganic carbon (HCO3- to maintain moderate water hardness. The average results for both tests indicate that the substrates S1 and S2 show a statistically similar behavior to the substrate Co (P > 0.05 during the first 33 days (until steady state. For the second test in terms of performance, STR values were 0.40, 0.39, 0.39 g TAN m-2 d-1 recorded for S2 and Co respectively; in terms of PRN, values were 92(3 9־/ and 93% for S1, S2 and Co, respectively. Regarding VTR, values of 72.31, 114.94, and 39.02 g TAN m-3 d-1 were recorded for S2 and Co respectively. Statistical analysis provided that for STR and PRN, no significant differences, were found. But for VTR, statistically significant differences between means were evaluated, registering for the S2 media the highest value of VTR.Se compara el comportamiento del proceso de nitrificación (NH4+, NO2- y NO3-, y el rendimiento, en términos de la tasa superficial de conversión de NAT, tasa volumétrica de conversión de NAT y porcentaje de remoción de NAT (PRN entre tres medios de fijación de bacterias nitrificantes, dos alternativos (S1, S2 y uno comercial (Co. La experiencia se realizó en dos pruebas de 42 días cada una. Se construyeron tres sistemas aislados para la experiencia, a los cuales se adicionaron medios colonizados por bacterias a modo de

  5. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...... the four denitrification steps, the last one (N2O reduction to N2) seems to be inhibited first when O2 is present. Overall, N2O production can account for 0.1–25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we...

  6. The CO2 footprint of new nitrogen creation

    Science.gov (United States)

    Houlton, B. Z.

    2012-12-01

    For billions of years, in the absence of substantial human influence, the essential nutrient nitrogen (N) entered terrestrial ecosystems at naturally low rates. Today, human actions (i.e., Haber-Bosch fertilizer production, fossil fuel combustion) have dramatically reshaped the N cycle from its background state, more than doubling terrestrial N circulation, resulting in large increases in anthropogenic N deposition inputs to ecosystems globally. While producing many unwanted side-effects, increased N in both rain water and dry particulate matter has been purported in accelerated rates of forest CO2 uptake, thus slowing the pace of climate change. However, this perspective does not consider the amount of CO2 released to the atmosphere during new N creation. Here I analyze the gross CO2 footprint of N input pathways, including the CO2 released during N fixation vs. that which is consumed by forest vegetation per unit of N input. This analysis indicates the following C/N conversion efficiencies during fixation: lightening = 0; Haber-Bosch = 0.49; symbiotic fixation = 10; asymbiotic fixation = 50; fossil fuel fixation = 220. Thus, lightening envisions the highest forest CO2 uptake return (100 %) followed by Haber-Bosch N (99), symbiotic N fixation (88) and asymbiotic N fixation (neutral), and lastly, fossil fuel fixation (-279). In addition, widespread and well-documented negative interactions between excess N and biological N fixation further undermine any potential positive effects of fossil-fuel N deposition on terrestrial C storage. Thus, recapturing Haber-Bosch N by natural vegetation combined with policies that target reductions in fossil fuel N sources are proposed as the most effective means for maximizing the positive benefits of anthropocene N on terrestrial CO2 uptake and storage.

  7. Nitrogen Fixing Legumes in the Plant Communities

    Directory of Open Access Journals (Sweden)

    M. A.A. Al-Fredan

    2011-01-01

    Full Text Available Problems statement: Numerous authors have used energetic to explain the ecological success of N-fixing plants. Legume biodiversity assessment, species dynamics, nitrogen fixation monitoring and environment impact assessment of these ecological events in Al-Hassa Oasis, Saudi Arabia are rare and need to be continuous and more frequent. Approach: Thus the objectives of this study were to analyze legume abundance within and outside Al-Hassa Oasis and relate it to the distribution of the different genera. Results: Thirty two legume plant species from 20 genera have been recorded within and outside the Oasis. The largest genera were Cassia (4 species, Indigofera (4 and Acacia (3. Annual herbs were the dominant growth form (34% of species recorded, followed by shrubs (28%, perennial herbs (19% and trees (19%. Eighteen alien plant species were recorded (maybe an underestimated number. The nitrogen fixation of the legume plant species in Al-Hassa Oasis was estimated/analyzing the fixing potentiality of these species and nonfixing reference species (Panicum turgidum using the 15N natural abundance method. Species with great nitrogen fixing capacity in Al-Hassa include: Medicago sativa, Vicia faba, Vicia sativa, Melitotus indicus, Dolicus lablab, Melitotus alba and Cliforia ternate. The mean biological fixation contribution of most of the recorded legume plants were high, varying from 3.9% (Indigofera argentea to 64.6% (Medicago sativa. Conclusion: Al-Hassa Oasis is richer than expected based on its location within the desert zone. This study confirms the importance of the Oasis for national flora conservation in the Kingdom. results showed a good potential for use of the 15N natural abundance methodology for evaluating the nitrogen fixation ability of the legume plants under field conditions as well as for the estimation of %Ndfa.

  8. Control of a Biological Nitrogen Removal Process in an Intensified Single Reactor Configuration

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2013-01-01

    The nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remains a challenging problem. In this contribution, a new process oriented approach is used to develop, evaluate and benchmark control strategies to ensure stable operation...

  9. Biological hydrogen production: Simultaneous saccharification and fermentation with nitrogen and phosphorus removal from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steve; Dixon, Melissa [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road Building E3160, Aberdeen Proving Ground, MD 21010-5424 (United States)

    2010-09-15

    A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hydrolysis and fermentation in one tank). The CBR demonstrated greater stability of hydrogen production and simplicity of operation, while the SBR provided better nitrogen and phosphorus removal efficiencies. Nuclear magnetic resonance analyses showed acetic acid to be the main product from both reactors. Optimal CBR conditions were found to be pH 5, 4 g/L loading, 0.45 ml/g Accellerase 1500, and 38 C. Experiments with an argon purge in place of nitrogen and with ammonium chloride spiking suggested that hydrogenase and nitrogenase enzymes contributed similarly to hydrogen production in the cultures. Analysis of a single fermentation showed that hydrogen production occurred relatively early in the course of TOC removal, and that follow-on treatments might extract more energy from the products. (author)

  10. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems.

    Science.gov (United States)

    Helmer, C; Tromm, C; Hippen, A; Rosenwinkel, K H; Seyfried, C F; Kunst, S

    2001-01-01

    In full scale wastewater treatment plants with at times considerable deficits in the nitrogen balances, it could hitherto not be sufficiently explained which reactions are the cause of the nitrogen losses and which micro-organisms participate in the process. The single stage conversion of ammonium into gaseous end-products--which is henceforth referred to as deammonification--occurs particularly frequently in biofilm systems. In the meantime, one has succeeded to establish the deammonification processes in a continuous flow moving-bed pilot plant. In batch tests with the biofilm covered carriers, it was possible for the first time to examine the nitrogen conversion at the intact biofilm. Depending on the dissolved oxygen (DO) concentration, two autotrophic nitrogen converting reactions in the biofilm could be proven: one nitritation process under aerobic conditions and one anaerobic ammonium oxidation. With the anaerobic ammonium oxidation, ammonium as electron donor was converted with nitrite as electron acceptor. The end-product of this reaction was N2. Ammonium and nitrite did react in a stoichiometrical ratio of 1:1.37, a ratio which has in the very same dimension been described for the ANAMMOX-process (1:1.31 +/- 0.06). Via the oxygen concentration in the surrounding medium, it was possible to control the ratio of nitritation and anaerobic ammonium oxidation in the nitrogen conversion of the biofilm. Both processes were evenly balanced at a DO concentration of 0.7 mg/l, so that it was possible to achieve a direct, almost complete elimination of ammonium without addition of nitrite. One part of the provided ammonium did participate in the nitritation, the other in the anaerobic ammonium oxidation. Through the aerobic ammonium oxidation into nitrite within the outer oxygen supplied layers of the biofilm, the reaction partner was produced for the anaerobic ammonium oxidation within the inner layers of the biofilm. PMID:11379106

  11. Nitrogen balance in grasses of the genus Brachiaria

    International Nuclear Information System (INIS)

    A 15 N aided nitrogen balance experiment was performed in posts in the greenhouse to quantify the contribution of biological nitrogen fixation to four species of Brachiaria grow in two soils. The effects of adding molybdenum to the pots was also investigated. Among various methods for the analysis of total nitrogen in plant material and soil, a technique utilizing a pre-digestion with Devarda's alloy was found to be most efficient. In the nitrogen analyses the sample size and particle size were found to be factors limiting the precision of the analyses. In an analysis of the sources of error, the sampling of the soil was found to be the greatest source of variation on the nitrogen balance. (author)

  12. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    Science.gov (United States)

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. PMID:26204227

  13. Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas Nitrogen fixation and in vitro production of indolacetic acid by endophytic diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Anelise Vicentini Kuss

    2007-10-01

    Full Text Available O objetivo deste trabalho foi isolar e quantificar bactérias diazotróficas associadas a raízes de arroz, e avaliar a produção de ácido indolacético e o potencial de fixação biológica de nitrogênio dessas bactérias, a fim de selecionar isolados promissores para inoculação em plantas. Bactérias fixadoras de nitrogênio, habitantes do interior das raízes de cultivares de arroz do Rio Grande do Sul, foram isoladas e quantificadas em nove cultivares. Raízes de arroz superficialmente esterilizadas foram maceradas e introduzidas em meios de crescimento, elaborados sem fonte de nitrogênio e em condições semi-sólidas. Entre os 58 isolados nos meios NFb, LGI e LGI-P, foram escolhidos UFSM-BD-02-06, UFSM-BD-08-06, UFSM-BD-14-06, UFSM-BD-20-06, UFSM-BD-26-06, UFSM-BD-31-06, UFSM-BD-36-06, UFSM-BD-42-06, UFSM-BD-48-06, UFSM-BD-54-06. Avaliaram-se a fixação biológica de nitrogênio e a produção de ácido indolacético in vitro, pelos métodos Kjeldahl e colorimétrico, respectivamente. Azospirillum brasilense e A. lipoferum apresentam maiores valores para N total, 41,08 e 46,82 µg mL-1, respectivamente. A. brasilense e UFSM-BD-31-06 são os maiores produtores de ácido indolacético, 41,09 mg mL-1 e 13,47 µg mL-1, respectivamente.The aim of this work was to isolate and to quantify diazotrophic bacteria associated with rice root, and evaluate their acid indolacetic production and their potential for biological nitrogen fixation, with the purpose of selecion promissing isolates for plant inoculation. N-fixing bactéria, settlers of the root interior of rice cultivars used in Rio Grande do Sul, Brazil, were isolated and quantified in nine cultivars. Rice root superficialy sterilized were macerated and introduced in specific culture media. Among 58 isolates obtained in the culture media NFB, LGI and LGI-P, the following were selected: UFSM-BD-02-06, UFSM-BD-08-06, UFSM-BD-14-06, UFSM-BD-20-06, UFSM-BD-26-06, UFSM-BD-31-06, UFSM-BD-36

  14. Developing and optimizing processes for biological nitrogen removal from tannery wastewaters in Ethiopia

    OpenAIRE

    Leta, Seyoum

    2004-01-01

    In Ethiopia industrial effluents containing high contents of organic matter, nitrogen and heavy metals are discharged into inland surface waters with little or no pre-treatment. Significant pollution concerns related to these effluents include dissolved oxygen depletion, toxicity and eutrophication of the receiving waters. This has not only forced the government to formulate regulations and standards for discharge limits but also resulted in an increasing interest and development of methods a...

  15. Mathematical Modeling and Evaluation of Ifas Wastewater Treatment Processes for Biological Nitrogen and Phosphorus Removal

    OpenAIRE

    Sriwiriyarat, Tongchai

    2002-01-01

    The hybrid activated sludge-biofilm system called Integrated Fixed Film Activated Sludge (IFAS) has recently become popular for enhanced nitrification and denitrification in aerobic zones because it is an alternative to increasing the volume of treatment plant units to accomplish year round nitrification and nitrogen removal. Biomass is retained on the fixed-film media and remains in the aerobic reactor, thus increasing the effective mean cell resident time (MCRT) of the biomass and providin...

  16. Optimization of electrochemical reaction for nitrogen removal from biological secondary-treated milking centre wastewater.

    Science.gov (United States)

    Won, Seung-Gun; Jeon, Dae-Yong; Rahman, Md Mukhlesur; Kwag, Jung-Hoon; Ra, Chang-Six

    2016-01-01

    In order to remove the residual nitrogen from the secondary-treated milking centre wastewater, the electrochemical reaction including NH4-N oxidation and NOx-N reduction has been known as a relatively simple technique. Through the present study, the electrochemical reactor using the Ti-coated IrO2 anode and stainless steel cathode was optimized for practical use on farm. The key operational parameters [electrode area (EA) (cm(2)/L), current density (CD) (A/cm(2)), electrolyte concentration (EC) (mg/L as NaCl), and reaction time (RT) (min)] were selected and their effects were evaluated using response surface methodology for the responses of nitrogen and colour removal efficiencies, and power consumption. The experimental design was followed for the central composite design as a fractional factorial design. As a result of the analysis of variance, the p-values of the second-order polynomial models for three responses were significantly fit to the empirical values. The nitrogen removal was significantly influenced by CD, EC, and RT (p NaCl; RT, 240 min] was revealed as an optimal operational condition. The investigation on cathodic reduction of NOx-N may be required with respect to nitrite and nitrate separately as a future work. PMID:26582173

  17. Running hotter, faster, shallower: acceleration of the marine nitrogen cycle from the Last Glacial Maximum to the pre-industrial, and implications for the future

    Science.gov (United States)

    Galbraith, E. D.

    2015-12-01

    Biologically-available nitrogen is the primary limiting nutrient in the global ocean. The complex physical-biological interdependencies of nitrogen fixation and denitrification, the source and sink of bioavailable nitrogen, have led to uncertainty over their future trajectories under higher CO2. Sedimentary nitrogen isotope evidence suggests that the global rate of denitrification was on the order of 50% lower during the last glacial maximum, and reveals that significant changes in denitrification have occurred on a decadal-centennial timescale. Coupled atmosphere-ocean-biogeochemistry models simulate similar changes, through physically-driven changes in anoxia, which then feed back on nitrogen fixation through the availability of phosphorus to diazotrophs. In addition, diazotroph culture experiments suggest that nitrogen fixation was further limited during glacial maxima by low CO2, causing an additional slowdown of the nitrogen cycle. The emergent picture suggests that deglaciation accelerated both sides of the N cycle, with more rapid loss encouraged by expanded shallow anoxia, and more rapid gain encouraged by higher CO2. It will be argued that the net effect on the nitrogen inventory can be approximated by knowing the distribution of surface ocean PO4, given the observed correlation of surface PO4 concentrations on the P:C ratio of exported organic matter.

  18. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  19. Atmospheric nitrogen evolution on Earth and Venus

    CERN Document Server

    Wordsworth, R D

    2016-01-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0 - 3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to s...

  20. Five decades of N2 fixation research in the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Mar eBenavides

    2015-06-01

    Full Text Available Dinitrogen (N2 fixation (the reduction of atmospheric N2 to ammonium by specialized prokaryotic microbes, represents an important input of fixed nitrogen and contributes significantly to primary productivity in the oceans. Marine N2 fixation was discovered in the North Atlantic Ocean (NA in the 1960s. Ever since, the NA has been subject to numerous studies that have looked into the diversity and abundance of N2-fixing microbes (diazotrophs, the spatial and temporal variability of N2 fixation rates, and the range of physical and chemical variables that control them. The NA provides 10-25% of the globally fixed N2, ranking as the third basin with the largest N2 fixation inputs in the world’s oceans. This basin suffers a chronic depletion in phosphorus availability, more aeolian dust deposition than any other basin in the world’s oceans, and significant nutrient inputs from important rivers like the Amazon and the Congo. These characteristics make it unique in comparison with other oceanic basins. After five decades of intensive research, here we present a comprehensive review of our current understanding of diazotrophic activity in the NA from both a geochemical and biological perspective. We discuss the advantages and disadvantages of current methods, future perspectives, and questions which remain to be answered.

  1. Options for acetabular fixation surfaces.

    Science.gov (United States)

    Klika, Alison K; Murray, Trevor G; Darwiche, Hussein; Barsoum, Wael K

    2007-01-01

    Aseptic loosening is the most common cause for revision total hip arthroplasty (THA). Due to poor long-term results with cemented acetabular components, cementless implants that rely on biologic fixation became popular in the United States for both primary and revision procedures in the early 1980s. Cementless acetabular components used in THA have been reported to have superior radiographic performance compared with cemented fixation, although the optimal method of acetabular fixation remains controversial. Cementless acetabular components require initial implant stability to allow for bone ingrowth and remodeling into the acetabular shell, providing long-term durability of the prosthesis. Many improved implant materials are available to facilitate bone growth and remodeling, including the 3 most common surface treatments; fibermesh, sintered beads, and plasma spray coatings. Recently added to these are porous metal surfaces, which have increased porosity and optimal pore sizes when compared with titanium fibermesh. The most studied of these materials is the titanium fibermesh fixation surface, which has demonstrated a mechanical failure rate of 1% at 10 to 15 years. This technology utilizes the diffusion bonding process to attach fiber metal pads to a titanium substrate using heat and pressure. The sintered bead fixation surface offers a porous coating of various sizes of spherical beads, achieved by the sintering process, and has been shown to provide long-term fixation. While there are less long-term published data regarding the titanium plasma spray surface, its early results have provided evidence of its durability, even in the face of significant osteolysis. The most recently added alternative fixation surface is porous tantalum metal, which offers potentially greater bone ingrowth and bone graft incorporation due to its high porosity (80%) and low modulus of elasticity (3 MPa). Porous tantalum implants have shown early favorable clinical results and have

  2. Options for acetabular fixation surfaces.

    Science.gov (United States)

    Klika, Alison K; Murray, Trevor G; Darwiche, Hussein; Barsoum, Wael K

    2007-01-01

    Aseptic loosening is the most common cause for revision total hip arthroplasty (THA). Due to poor long-term results with cemented acetabular components, cementless implants that rely on biologic fixation became popular in the United States for both primary and revision procedures in the early 1980s. Cementless acetabular components used in THA have been reported to have superior radiographic performance compared with cemented fixation, although the optimal method of acetabular fixation remains controversial. Cementless acetabular components require initial implant stability to allow for bone ingrowth and remodeling into the acetabular shell, providing long-term durability of the prosthesis. Many improved implant materials are available to facilitate bone growth and remodeling, including the 3 most common surface treatments; fibermesh, sintered beads, and plasma spray coatings. Recently added to these are porous metal surfaces, which have increased porosity and optimal pore sizes when compared with titanium fibermesh. The most studied of these materials is the titanium fibermesh fixation surface, which has demonstrated a mechanical failure rate of 1% at 10 to 15 years. This technology utilizes the diffusion bonding process to attach fiber metal pads to a titanium substrate using heat and pressure. The sintered bead fixation surface offers a porous coating of various sizes of spherical beads, achieved by the sintering process, and has been shown to provide long-term fixation. While there are less long-term published data regarding the titanium plasma spray surface, its early results have provided evidence of its durability, even in the face of significant osteolysis. The most recently added alternative fixation surface is porous tantalum metal, which offers potentially greater bone ingrowth and bone graft incorporation due to its high porosity (80%) and low modulus of elasticity (3 MPa). Porous tantalum implants have shown early favorable clinical results and have

  3. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  4. Photographic fixative poisoning

    Science.gov (United States)

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Quinones Sodium thiosulfate Sodium sulfite/bisulfite Boric acid Photographic fixative can also break down (decompose) to form ...

  5. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Jansen, J.l.C.; Aspegren, H.;

    2002-01-01

    to the pilot plant was periodically manipulated by external addition of phosphorus (P), acetate and glucose, respectively. The population dynamics and the in situ physiology were monitored by quantitative fluorescence in situ hybridization (FISH) and microautoradiography. Significant P removal was observed......The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water...... Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part...

  6. Respirometry applied for biological nitrogen removal process; Aplicacion de la respirometria al tratamiento biologico para la eliminacion del nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2004-07-01

    In waste water treatment plants, the Biological Nitrogen Removal (BNR) has acquired a fundamental importance. The BNR processes are Nitrification ( aerobic) and Denitrification (anoxic). Since both processes are carried on living microorganisms, a lack of their bioactivity information might cause serious confusion about their control criteria and following up purposes. For this reason, the Re spirometry applied to those processes has reached an important role by getting an essential information in a timely manner through respiration rate measurements in static and dynamic modes and applications such as AUR (Ammonium Uptake Rate), Nitrification Capacity. RBCOD (Readily Biodegradable COD) as well as AUR related to SRT (Sludge age), RBCOD related to NUR (Specific Nitrate Uptake Rate) and others. By other side in this article we have introduced a not very well known applications related to denitrification, about the methanol acclimatization and generated bioactivity. (Author) 6 refs.

  7. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  8. Nitrification-denitrification biological treatment of a high-nitrogen waste stream for water-reuse applications.

    Science.gov (United States)

    Jackson, W Andrew; Morse, Audra; McLamore, Eric; Wiesner, Ted; Xia, Shu

    2009-04-01

    This research was conducted to evaluate the use of biological nitrification-denitrification systems as pre-processors for recycling wastewater to potable water in support of space exploration. A packed-bed bioreactor and membrane-aerated nitrification reactor were operated in series with a 10:1 recycle ratio over varying loading rates. The dissolved organic carbon (DOC) removal exceeded 80% for all loading rates (theta = 1 to 6.8 days), while total nitrogen removal generally increased with decreasing retention time, with a maximum removal of 55%. The degree of nitrification generally declined with decreasing retention time from a high of 80% to a low of 60%. Maximum DOC and total nitrogen volumetric removal rates exceeded 1000 and 800 g/m3 x d, respectively, and maximum nitrification volumetric conversion rates exceeded 300 g/m3 x d. At low hydraulic loading rates, the system was stoichiometrically limited, while kinetic limitations dominated at high hydraulic loading rates. Incomplete nitrification occurred at high loading rates, likely as a result of the high pH and large concentrations of ammonia.

  9. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    International Nuclear Information System (INIS)

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (topical review)

  10. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    Science.gov (United States)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  11. Enhanced Biological Phosphorus Removal from Dairy Manure to Meet Nitrogen:Phosphorus Crop Nutrient Requirements

    OpenAIRE

    Yanosek, Kristina Anne

    2002-01-01

    Over the last two decades, livestock operations have become highly concentrated due to growing trends towards larger, more confined facilities and a decrease in cropland on smaller farms. This has led to greater amounts of excess manure nutrients on farms, increasing the potential for nutrient pollution of water bodies from runoff. The purpose of this study was to determine if enhanced biological phosphorus removal (EBPR) is a viable alternative for managing excess manure nutrients on dairy...

  12. Biological removal of phosphorus and nitrogen from wastewater : new insights from metagenomic and metatranscriptomic approaches

    OpenAIRE

    Mao, Yanping; 毛艷萍

    2014-01-01

    The study was conducted to reveal the insights of microbial diversity, functional profile and gene expression of microorganisms responsible for enhanced biological phosphorus removal (EBPR) and hydrogen-oxidizing autotrophic denitrification mainly by using metagenomic and metatranscriptomic analysis based on high-throughput sequencing. Two sequencing batch reactors (SBRs) were operated to remove phosphorus (15 mg/L) from synthetic wastewater. The integrated metagenomic and metatranscripto...

  13. Biologic dinitrogen fixation and nutrient cycling in cover crops and their effect on organic Conilon coffeeFixação biológica de nitrogênio e ciclagem de nutrientes por plantas de cobertura e seus efeitos sobre café Conilon orgânico

    Directory of Open Access Journals (Sweden)

    José Antonio Azevedo Espindola

    2011-08-01

    Full Text Available Notwithstanding its relevance, studies regarding nutrient cycling and biological dinitrogen fixation in Conilon coffee (Coffee canephora cv. Conilon associated with cover plants are very scarce. Aiming to evaluate the contribution of cover crops for organic conilon production, a field experiment was carried out consisting of Pennisetum glaucum, and legume species Canavalia ensiformis, Mucuna deeringiana and Cajanus cajan (inoculated and non inoculated cultivated between coffee trees, and spontaneous vegetation as cover crops. The experiment was carried out in Espírito Santo State- Brazil, in a 6.5 years old coffee crop production system. Chemical analyses of soil and vegetative parts of spontaneous and cover crops, as well as coffee leaf nutrients concentration were performed. Biological Nitrogen Fixation (BNF was determined by the natural abundance method. BNF contributed with about 80% of the nitrogen accumulated by the leguminous plants, corresponding to 27 - 35 kg of N ha-1. Concentration and accumulation of nutrients varied among cover crops. Rhizobium inoculation did not influence nutrient cycling or BNF. Legume plants partially supplied the nitrogen requirements of Conilon coffee. No significant effect of the treatments was observed on the nutrient concentration of Conilon coffee or on plant growth.Apesar de sua relevância, estudos sobre a ciclagem de nutrientes e fixação biológica do nitrogênio (FBN em café Conilon (Coffea canephora cv. Conilon, associadas com plantas de cobertura, são escassos. Objetivou-se, com este trabalho avaliar a ciclagem de nutrientes, a FBN e o efeito que plantas de cobertura podem causar em lavoura de C. canephora cv. Conilon, sob manejo orgânico. O experimento foi conduzido no Estado do Espírito Santo - Brasil, em uma lavoura de café sob manejo orgânico, com 6,5 anos. Os tratamentos consistiram de testemunha (ausência de plantas de cobertura, Pennisetum glaucum e as leguminosas Canavalia

  14. A nitrogen mass balance for California

    Science.gov (United States)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  15. Nitrogen Substituted Polycyclic Aromatic Hydrocarbon As Capable Interstellar Infrared Spectrum Source Considering Astronomical Chemical Evolution Step To Biological Organic Purine And Adenine

    CERN Document Server

    Ota, Norio

    2016-01-01

    In order to find out capable chemical evolution step from astronomically created organic in interstellar space to biological organic on the earth, infrared spectrum of nitrogen substituted carbon pentagon-hexagon coupled polycyclic aromatic hydrocarbon was analyzed by the density functional theory. Ionization was modeled from neutral to tri-cation. Among one nitrogen and two nitrogen substituted NPAH, we could find good examples showing similar IR behavior with astronomically well observed one as like C8H6N1, C7H5N2, and C7H5N2. We can imagine that such ionized NPAH may be created in interstellar space by attacks of high energy nitrogen and photon. Whereas, in case of three and four nitrogen substituted cases as like C6H4N3 and C5H3N4, there were no candidate showing similar behavior with observed one. Also, IR of typical biological organic with four and five nitrogen substituted one as like purine and adenine resulted no good similarity with observed one. By such theoretical comparison, one capable story of ...

  16. Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process.

    Science.gov (United States)

    Milia, S; Cappai, G; Perra, M; Carucci, A

    2012-01-01

    Wastewater discharges containing high nitrogen levels can be toxic to aquatic life and cause eutrophication. In this study, the application of the SHARON (Single reactor for High activity Ammonium Removal Over Nitrite) process for the treatment of refinery wastewater (sour water) was evaluated, in view of its coupling with the ANAMMOX (ANaerobic AMMonium OXidation) process. A Continuous Flow Stirred Tank Reactor was initially fed with a synthetic medium, and the applied NH4-N concentration and wastewater/synthetic medium ratio were progressively increased up to 2000 mgN/L and 100%, respectively. Despite the high potential toxic effect of the real wastewater, overall SHARON performance did not decrease with the increasing real wastewater/synthetic medium ratio, and biomass showed progressive acclimation to the toxic compounds in the real wastewater, as demonstrated by toxicity assessments. NH4-N and dissolved organic carbon removal efficiency were around 50% and 65%, respectively. Moreover, the effluent was characterized by a NO2-N/NH4-N ratio of 0.9 +/- 0.01 and low nitrate concentration (<30 mgN/L), in line with the requirements for the subsequent treatment by the ANAMMOX process. PMID:22988604

  17. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer

    International Nuclear Information System (INIS)

    Failure in nitrogen removal of cokes wastewater occurs occasionally during summer season (38 deg. C) due to the instability of nitrification process. The objective of this study was to examine why the nitrification process is unstable especially in summer. Various parameters such as pH, temperature, nutrients and pollutants were examined in batch experiments using activated sludge and wastewater obtained from a full-scale cokes wastewater treatment facility. Batch experiments showed that nitrification rate of the activated sludge was faster in summer (38 deg. C) than in spring or autumn (29 deg. C) and the toxic effects of cyanide, phenol and thiocyanate on nitrification were reduced with increasing temperature. Meanwhile, experiment using continuous reactor showed that the reduction rate in nitrification efficiency was higher at 38 deg. C than at 29 deg. C. In conclusion, the instability of full-scale nitrification process in summer might be mainly due to washing out of nitrifiers by fast growth of competitive microorganisms at higher temperature under increased concentrations of phenol and thiocyanate

  18. Guide to radiation fixatives

    International Nuclear Information System (INIS)

    This report identifies and then characterizes a variety of substances available in the market place for potential effectiveness as a fixative on radiologically contaminated surfaces. The substances include both generic chemicals and proprietary products. In selecting a fixative for a particular application, several attributes of the fixative may be relevant to the choice. These attributes include: toxicity, durability, and cleanliness and removability. In addition to the attributes of the fixative, one should also take into account certain characteristics of the site to be treated. These characteristics relate to climate, nature of the surface, use to which the treated surface will be put, subsequent cleanup operations, and type of neighboring surfaces. Finally, costs and potential environmental effects may influence the decision. A variety of fixatives are evaluated with respect to these various attributes and summarized in a reference table

  19. The use of postoperative irradiation for the prevention of heterotopic bone after total hip replacement with biologic fixation (porous coated) prosthesis: An animal model

    International Nuclear Information System (INIS)

    Radiation has been shown to be effective in the prevention of heterotopic bone. The exact etiology of heterotopic bone is unknown. Total hip prosthetic devices that do not depend upon bone cement for fixation have become increasingly popular. The mechanism by which the bone forms around the prosthesis is similar to the process by which fractures heal which has been shown to be sensitive to irradiation. Using a rabbit model we have undertaken a study to investigate the effect of irradiation on the bony ingrowth on porous coated implants. Forty-five rabbits had porous coated implants surgically placed in the tibiae bilaterally. Each rabbit had one tibia randomly irradiated with 1,000 cGy in 5 fractions starting on the first post-operative day. Animals were sacrificed weekly starting 2 weeks post-operatively and the tibae were sent for pullout studies. The amount of force necessary to pullout the treated tibae was statistically less than the amount of force necessary to remove the untreated tibae at 2 weeks. From 3 weeks on there was no difference in the force necessary to remove the prosthesis from the untreated or treated tibae. Histologically, the untreated tibae showed bone formation while the treated tibae did not. Because of these results, it is suggested that the treatment of patients at risk for development of heterotopic bone be modified to only include the area between the femur and pelvis avoiding treatment of the prosthetic device

  20. STRUCTURE AND SOME BIOLOGICAL PROPERTIES OF Fe(III COMPLEXES WITH NITROGEN-CONTAINING LIGANDS

    Directory of Open Access Journals (Sweden)

    Ion Bulhac

    2016-06-01

    Full Text Available Four coordination compounds of iron(III with ligands based on hydrazine and sulfadiazine: FeCl3·digsemi·2H2O (I (digsemi-semicarbazide diacetic acid dihydrazide, [Fe(HLSO4] (II (НL - sulfadiazine, [Fe(H2L1(H2O2](NO33·5H2O (III (H2L1-2,6-diacetylpyridine bis(nicotinoylhydrazone and [Fe(H2L2(H2O2](NO33•1.5H2O (IV (H2L2 - 2,6-diacetylpyridine bis(isonicotinoylhydrazone were synthesized. The spectroscopic and structural characterisation as well as their biological, properties are presented.

  1. Behind the discovery of "Nissenbaum's fixative".

    Science.gov (United States)

    Nissenbaum, G

    2001-01-01

    The author describes the serendipitous discovery, conception, development, and history of Nissenbaum's Fixative while an undergraduate biology major in the early 1950s. The subsequent uses, applications, and modifications over the past forty-seven years are also described. Some of the modifications omitted from his short original paper are mentioned. Highlights of his subsequent career in the field of medicine are noted.

  2. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor.

    Science.gov (United States)

    Jeswani, Hansa; Mukherji, Suparna

    2012-05-01

    The degradation of phenolics, heterocyclics and polynuclear aromatic hydrocarbons (PAHs) in a synthetic biomass gasifier wastewater with average COD of 1388 mg/L was studied in a three stage rotating biological contactor (RBC) using the pyrene degrader, Exiguobacterium aurantiacum and activated sludge consortia (1:3 v/v). As the organic loading rate (OLR) was varied from 3.3 to 14 g/m(2)/d, the COD removal ranged from 63.3% to 92.6%. Complete removal of all the constituents was observed at the lowest OLR of 3.3g/m(2)/d. At 24h hydraulic retention time (HRT) and OLR of 6.6g/m(2)/d complete removal of pyridine, quinoline and benzene and 85-96% removal of phenol, naphthalene, phenanthrene, fluoranthene and pyrene was observed. E. aurantiacum was found to be the dominant bacteria in the biofilm. Clark's model provided good fits to data for all the three stages of the RBC.

  3. Process of nitrogen transformation and microbial community structure in the Fe(0)-carbon-based bio-carrier filled in biological aerated filter.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Li, Jinlong

    2016-04-01

    Nitrogen pollutants in low-organic carbon wastewater are difficult to biodegrade. Therefore, the Fe(0)-carbon-based bio-carrier (FCBC) was firstly used as hydrogen producer in a biological-aerated filter (BAF) to make up for the lack of organic carbon in biological nitrogen removal. Physical and chemical properties of FCBC were detected and compared in this study. The nitrogen removal rate for low COD/TN ratio wastewater, nitrogen transformation process, and microbial communities in the FCBC filled in BAF were investigated. Results showed that the nitrogen removal rates was 0.38-0.41 kg N m(-3) day(-1) in the FCBC filled BAF and reached 0.62 kg N m(-3) day(-1) within the filter depth of 60-80 cm, under the conditions of the dissolved oxygen 3.5 ± 0.2 mg L(-1) and the inlet pH 7.2 ± 0.1. Hydrogenophaga (using hydrogen as electron donor), Sphaerotilus (absorbing [Fe(3+)]), Nitrospira (nitrificaion), and Nitrosomonas (ammonia oxidation) were found to be the predominant genera in the reactor. The reaction schemes in the FCBC filled in BAF was calculated: hydrogen and [Fe(3+)] were produced by Fe(0)-C galvanic cells in the FCBC, ammonia was oxidized into nitrate by Nitrosomonas and Nitrospira genera, hydrogen was used as electron donors by Hydrogenophaga genus to reduce nitrate into N2, and [Fe(3+)] was partly absorbed by Sphaerotilus and diverted via sludge discharging.

  4. TECHNIQUES FOR MAKING BIOLOGICS AND MINERAL NITROGEN AND THEIR INFLUENCE ON THE YIELD OF THE MIXED CROPS IN THE CONDITIONS OF GREY FOREST SOILS

    Directory of Open Access Journals (Sweden)

    Shkotova O. N.

    2016-04-01

    Full Text Available In the conditions of grey forest soils in the Bryansk region among the fodder crops widespread mixed legume-cereal crops. The results showed that the photosynthetic activity of cereals and leguminous crops and their yields in mixed crops depended on made of biological and mineral nitrogen fertilizers. It is established that the nitrogen in the form of ammonium nitrate has a positive impact on the formation of assimilating leaf surface, photosynthetic potential and net productivity and yield of grain mixture in lupine-barley and soybean -barley cropping and pea-barley crops the use of nitrogen in the form of potassium nitrate was more favorable. It was found that in lupine-barley crops the active symbiotic potential has increased by 25,5% and the yield increased by 21,3% , in soybean-barley crops 28,5% and 19,2% respectively, due to the joint use of a mixture of symbiotic and associative rhizobacteria and mineral nitrogen in the form of ammonium nitrate in the dose of N60. In pea-barley agrocenosis it has improved the efficiency of cultivation of joint application of mixed inoculant symbiotic and associative rhizobacteria on the background of the application of mineral nitrogen in the form of potassium nitrate in the dose of N60, where there was an increase of the active symbiotic potential by 34,7% and grain yield by 24,7% compared to the option when adding the mixture of biological products

  5. An ultra-micro method for the determination of total nitrogen in biological fluids based on Kjeldahl digestion and enzymatic estimation of ammonia.

    Science.gov (United States)

    Smit, E M

    1979-06-01

    An ultra-micro method for the determination of the total nitrogen-content of biological fluids and suspensions is described, based on a digestion in sulphuric acid and a enzymatic determination of the ammonia formed with glutamate dehydrogenase (EC 1.4.1.3). The proposed method yields the same results as the classical Kjeldahl procedure, but is less time-consuming. The detection-limit of the nitrogen, without loss of precision and accuracy, is much lower than in the original Kjeldahl procedure, and is in the order of 35 ng N per sample.

  6. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    H S Jayasinghearachchi; Gamini Seneviratne

    2004-09-01

    It is generally reported that fungi like Pleurotus spp. can fix nitrogen (N2). The way they do it is still not clear. The present study hypothesized that only associations of fungi and diazotrophs can fix N2. This was tested in vitro. Pleurotus ostreatus was inoculated with a bradyrhizobial strain nodulating soybean and P. ostreatus with no inoculation was maintained as a control. At maximum mycelial colonization by the bradyrhizobial strain and biofilm formation, the cultures were subjected to acetylene reduction assay (ARA). Another set of the cultures was evaluated for growth and nitrogen accumulation. Nitrogenase activity was present in the biofilm, but not when the fungus or the bradyrhizobial strain was alone. A significant reduction in mycelial dry weight and a significant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be attributed to C transfer from the fungus to the bradyrhizobial strain, because of high C cost of biological N2 fixation. This needs further investigations using 14C isotopic tracers. It is clear from the present study that mushrooms alone cannot fix atmospheric N2. But when they are in association with diazotrophs, nitrogenase activity is detected because of the diazotrophic N2 fixation. It is not the fungus that fixes N2 as reported earlier. Effective N2 fixing systems, such as the present one, may be used to increase protein content of mushrooms. Our study has implications for future identification of as yet unidentified N2 systems occurring in the environment.

  7. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis.

    Science.gov (United States)

    Liu, Hongbo; Zhao, Fang; Mao, Boyang; Wen, Xianghua

    2012-06-01

    An innovative adsorption/nitrification/denitrification/sludge-hydrolysis wastewater treatment process (ENRS) characterized by carbon source manipulation with a biological adsorption unit and a sludge hydrolysis unit was developed to enhance nitrogen removal and reduce sludge production for municipal wastewater treatment. The system presented good performance in pollutants removal, yielding the effluent with average COD, NH(4)(+)-N, TN and TP of 48.5, 0.6, 13.2 and 1.0 mg/L, respectively. Sixty percent of the total carbon source in the influent was concentrated and separated by the quick adsorption of activated sludge, providing the possibilities of reusing waste carbon source in the denitrification tank and accumulating nitrobacteria in the nitrification tank. Low temperature of 6-15 °C and high hydraulic loading rate of 3.0-15.0 m(3)/d did not affect NH(4)(+)-N removal performance, yielding the NH(4)(+)-N of lower 1.0 mg/L in the effluent. Furthermore, 50% of the residual sludge in the ENRS system could be transformed into soluble COD (SCOD) by alkaline thermal hydrolysis with temperature of 60 °C and pH of 11, and the hydrolyzed carbon could completely substitute methanol as a good quality carbon to support high efficient denitrification.

  8. Nitrogen Eutrophication on the Colorado Plateau: Using Biological Indicators to Detect Nutrient Enrichment in the Grand Canyon Region

    Science.gov (United States)

    Kenkel, J. A.; Johnson, N.; Hultine, K. R.; Sesnie, S.; Sisk, T.

    2012-12-01

    Human activities have more than doubled the availability of biologically reactive forms of nitrogen (N) since the industrial and agricultural revolutions. Though N is an important plant nutrient, increased deposition initiates a cascade of deleterious effects including ecosystem acidification, biodiversity loss, and increased smog and haze. Atmospheric pollution continues to threaten the air quality of the 16 Class 1 Wilderness areas on the Colorado Plateau, including Grand Canyon National Park (GCNP). However, the ecological impacts of N deposition in these historically N-limited, nutrient sensitive arid regions, are little- known. Here, we report baseline atmospheric and terrestrial responses to anthropogenic N deposition derived from vehicular exhaust in GCNP and long-range deposition from a local coal-fired power plant, the Navajo Generating Station (NGS). We used passive air samplers, natural abundance δ15N stable isotope analysis, and nutrient analysis to observe N patterns in air, soils, and pinyon pine (Pinus edulis) foliage. In GCNP, samples were collected from ten sites over an eight-month period in areas of projected low to high vehicular N deposition (i.e. distance from primary roadways). On the Paria Plateau, northeast of GCNP and in close proximity to the NGS, samples were collected along a distance gradient from the NGS, across the Plateau. In both study areas, atmospheric deposition, as well as soil and pine- needle nutrient concentrations show significant negative relationships with increased distance from N-source (pbiodiversity and air quality standards for the southwestern U.S.

  9. Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen?

    Directory of Open Access Journals (Sweden)

    W. Elbert

    2009-07-01

    Full Text Available Microbiotic crusts consisting of bacteria, fungi, algae, lichens, and bryophytes colonize most terrestrial surfaces, and they are able to fix carbon and nitrogen from the atmosphere. Here we show that microbiotic crusts are likely to play major roles in the global biogeochemical cycles of carbon and nitrogen, and we suggest that they should be further characterized and taken into account in studies and models of the Earth system and climate.

    For the global annual net uptake of carbon by microbiotic crusts we present a first estimate of ~3.6 Pg a−1. This uptake corresponds to ~6% of the estimated global net carbon uptake by terrestrial vegetation (net primary production, NPP: ~60 Pg a−1, and it is of the same magnitude as the global annual carbon turnover due to biomass burning. The estimated rate of nitrogen fixation by microbiotic crusts (~45 Tg a−1 amounts to ~40% of the global estimate of biological nitrogen fixation (107 Tg a−1. With regard to Earth system dynamics and global change, the large contribution of microbiotic crusts to nitrogen fixation is likely to be important also for the sequestration of CO2 by terrestrial plants (CO2 fertilization, because the latter is constrained by the availability of fixed nitrogen.

  10. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology; Efeitos da adubacao nitrogenada em algodoeiro sobre a biologia de Aphis gossypii Glover (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F. [Universidade Federal da Grande Dourados, MS (Brazil). Faculdade de Ciencias Agrarias]. E-mail: rbarrosufms@yahoo.com.br, degrande@ufgd.edu.br

    2007-09-15

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  11. Alpha process with biological elimination of nitrogen. Application of mathematical models; Proceso alpha con eliminacion biologica de nitrogeno. Aplicacion de modelos matematicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. C.; Lopez-Carrasco, M. D.; Cortacans, J. A.; Larrea, L.; Larrea, A.

    1999-07-01

    This article illustrates the advantages of a step feed process for the biological elimination of nitrogen by presenting the experiments carried out by INFILCO at a pilot plant in San Sebastian. This arrangement, also known as the alpha (alternative phase step feed) process, reduces the volume of the biological reactor, eliminates the need for internal recycling and optimised the consumption of the organic matter used for denitrication. This article also demonstrates the possibility of employing a mathematical model as a tool in assessing, designing and operating full scale treatment plants for typically urban sewage. (Author) 6 refs.

  12. Options for reducing the negative effects of nitrogen in agriculture

    Institute of Scientific and Technical Information of China (English)

    J. R. Freney

    2005-01-01

    After addition to farms by fertilizer, crop residues, biological fixation and animal excreta, nitrogen can be lost through gaseous emission, runoff and leaching to contaminate the atmosphere and water bodies, and cause adverse health effects. The efficiency of fertilizer hitrogen can be increased and losses reduced, by matching supply with crop demand, optimizing split application schemes, changing the form to suit the conditions, and use of slow-release fertilizers and inhibitors. In addition, agronomic practices such as higher plant densities, weed and pest control and balanced fertilization with other nutrients can also increase efficiency of nitrogen use. Efficiency of use by animals can be increased by diet manipulation. Feeding dairy cattle low degradable protein and high starch diets, and grazing sheep and cattle on grasses high in water soluble carbohydrate result in less nitrogen excretion in urine and reduced ammonia volatilization.

  13. Microfauna communities as performance indicators for an A/O Shortcut Biological Nitrogen Removal moving-bed biofilm reactor.

    Science.gov (United States)

    Canals, O; Salvadó, H; Auset, M; Hernández, C; Malfeito, J J

    2013-06-01

    The microfauna communities present in the mixed liquor and biofilm of an Anoxic/Oxic Shortcut Biofilm Nitrogen Removal moving-bed biofilm process were characterised in order to optimise process control through the use of bioindicators. The system operated at high ammonium concentrations, with an average of 588 ± 220 mg N-NH4(+) L(-1) in the influent, 161 ± 80 mg L(-1) in the anoxic reactor and 74 ± 71.2 mg L(-1) in the aerobic reactor. Up to 20 different taxa were identified, including ciliates (4), flagellates (11), amoebae (4) and nematodes (1). Compared to conventional wastewater treatment processes (WWTPs), this process can be defined as a flagellates-predominant system with a low diversity of ciliates. Flagellates were mainly dominant in the mixed liquor, demonstrating high tolerance to ammonium and the capacity for survival over a long time under anoxic conditions. The data obtained provide interesting values of maximum and minimum tolerance ranges to ammonium, nitrates and nitrites for the ciliate species Cyclidium glaucoma, Colpoda ecaudata, Vorticella microstoma-complex and Epistylis cf. rotans. The last of these was the only ciliate species that presented a constant and abundant population, almost exclusively in the aerobic biofilm. Epistylis cf. rotans dynamics showed a high negative correlation with ammonium variations and a positive correlation with ammonium removal efficiency. Hence, the results indicate that Epistylis cf. rotans is a good bioindicator of the nitrification process in this system. The study of protozoan communities in unexplored WWTPs sheds light on species ecology and their role under conditions that have been little studied in WWTPs, and could offer new biological management tools.

  14. Uncertainty assessment of a model for biological nitrogen and phosphorus removal: Application to a large wastewater treatment plant

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.

  15. Contribución relativa del nitrógeno del suelo y del fijado biológicamente a la economía de la nutrición nitrogenada de maní (Arachis hypogaea L. en diferentes condiciones de fertilidad Relative contribution of biological fixed nitrogen and soil nitrogen to the nutrition economy of peanut (Arachis hypogaea L. under different conditions of soil fertility

    Directory of Open Access Journals (Sweden)

    S. Castro

    2006-12-01

    Full Text Available La producción de maní en Argentina se concentra en la región central de la provincia de Córdoba, la cual experimentó últimamente una pérdida importante de la productividad de los suelos y una declinación aleatoria del rendimiento de los cultivos. La contribución relativa de la fijación biológica (FBN de nitrógeno al maní en suelos de diferente fertilidad no ha sido suficientemente estudiada. Entonces, se evaluó el efecto de cepas de rizobios (TTOO2R, SEMIA 6144R y TAL 1000R sobre el rendimiento y el balance de nitrógeno de maní cultivado en suelos con alto y bajo contenido del nutriente. No hubo diferencias significativas en los parámetros simbióticos y de rendimiento del cultivo entre las cepas introducidas y las nativas, pero se observó una contribución relativa mayor de la FBN en el suelo con bajo contenido de nitrógeno (~58% de contribución que en el suelo con alto contenido (~27% de contribución. Esta comprobación del aporte relativo de la FBN asociada a la fertilidad del suelo, no registra antecedentes en la región central de Córdoba y debería recibir mayor consideración en el manejo del cultivo particularmente por su localización actual al sur de la provincia, donde los suelos presentan menores niveles de fertilidad. El rendimiento de maní confitería mostró mayores valores, si bien no significativos, con la inoculación en los 3 años del estudio.The peanut production in Argentina is concentrated in the central region of Córdoba province. At present, losses of soil fertility and a random decline peanut yield have been reported for this area. The relative contribution of biological nitrogen fixation (FBN in peanut plants cropped in soils with different fertility, has not been extensively studied. An experiment was carried out to determine the effects of rhizobia strains (TTOO2R, SEMIA 6144R and TAL 1000R on peanut crop yield and plant nitrogen balance under different conditions of soil nitrogen. The results

  16. Nitrogen oxide air pollution: biological effects. 1964-August, 1980 (citations from the NTIS data base). Report for 1964-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    The effects of nitrogen oxide air pollution on humans, plants, and animals are covered in the bibliography. Toxicology, epidemiology, pathology, and the synergistic effects of nitrogen oxides and other pollutants are covered. (This updated bibliography contains 210 citations, 28 of which are new entries to the previous edition.)

  17. Hydroponic Growth and the Nondestructive Assay for Dinitrogen Fixation 1

    Science.gov (United States)

    Imsande, John; Ralston, Edward J.

    1981-01-01

    Hydroponic growth medium must be well buffered if it is to support sustained plant growth. Although 1.0 millimolar phosphate is commonly used as a buffer for hydroponic growth media, at that concentration it is generally toxic to a soybean plant that derives its nitrogen solely from dinitrogen fixation. On the other hand, we show that 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid, pKa 6.1, has excellent buffering capacity, and it neither interferes with nor contributes nutritionally to soybean plant growth. Furthermore, it neither impedes nodulation nor the assay of dinitrogen fixation. Hence, soybean plants grown hydroponically on a medium supplemented with 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid and 0.1 millimolar phosphate achieve an excellent rate of growth and, in the absence of added fixed nitrogen, attain a very high rate of dinitrogen fixation. Combining the concept of hydroponic growth and the sensitive acetylene reduction technique, we have devised a simple, rapid, reproducible assay procedure whereby the rate of dinitrogen fixation by individual plants can be measured throughout the lifetime of those plants. The rate of dinitrogen fixation as measured by the nondestructive acetylene reduction procedure is shown to be approximately equal to the rate of total plant nitrogen accumulation as measured by Kjeldahl analysis. Because of the simplicity of the procedure, one investigator can readily assay 50 plants individually per day. PMID:16662112

  18. Integration of nitrogen dynamics into the Noah-MP land model v1.1 for climate and environmental predictions

    Directory of Open Access Journals (Sweden)

    X. Cai

    2015-05-01

    Full Text Available Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP is unique in that it is the next generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN plant model and the Soil and Water Assessment Tool (SWAT soil nitrogen dynamics. This incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long-term Ecological Research site within the U.S. Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching. Furthermore, the addition of nitrogen dynamics improves the modeling of the carbon and water cycles (e.g., net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.

  19. Modeling evolution using the probability of fixation: history and implications.

    Science.gov (United States)

    McCandlish, David M; Stoltzfus, Arlin

    2014-09-01

    Many models of evolution calculate the rate of evolution by multiplying the rate at which new mutations originate within a population by a probability of fixation. Here we review the historical origins, contemporary applications, and evolutionary implications of these "origin-fixation" models, which are widely used in evolutionary genetics, molecular evolution, and phylogenetics. Origin-fixation models were first introduced in 1969, in association with an emerging view of "molecular" evolution. Early origin-fixation models were used to calculate an instantaneous rate of evolution across a large number of independently evolving loci; in the 1980s and 1990s, a second wave of origin-fixation models emerged to address a sequence of fixation events at a single locus. Although origin fixation models have been applied to a broad array of problems in contemporary evolutionary research, their rise in popularity has not been accompanied by an increased appreciation of their restrictive assumptions or their distinctive implications. We argue that origin-fixation models constitute a coherent theory of mutation-limited evolution that contrasts sharply with theories of evolution that rely on the presence of standing genetic variation. A major unsolved question in evolutionary biology is the degree to which these models provide an accurate approximation of evolution in natural populations.

  20. Aerobic/anoxic post-treatment of anaerobically digested sewage sludge as an alternative to biological nitrogen removal from reject water.

    Science.gov (United States)

    Morras, Mikel; Dosta, J; García-Heras, J L

    2015-05-01

    Stabilisation and biological nitrogen removal (BNR) of anaerobically digested sewage sludge were studied in a post-aeration reactor at pilot scale working under alternating anoxic-aerobic conditions. Digested sludge came from a two-stage anaerobic digestion (thermophilic + mesophilic). The best post-aerator performance was achieved when working at an HRT of 10 days (4 days aerobic; dissolved oxygen of 1.8 mg L(-1)) and VS content in the feed no lower than 6.7 g L(-1). Free ammonia concentration values in the effluent above 1.5 mg N L(-1) (around 150 mg NH4 (+)-N L(-1) at pH 7) were necessary to promote the BNR over nitrite. Removal efficiencies up to 80 % NH4 (+)-N, 50-55 % total nitrogen and 15-20 % VS were recorded in this study, with no external addition of chemicals. A nitrogen mass balance revealed that the high percent of NH4 (+)-N assimilated in heterotrophic growth was counteracted with that released in ammonification and fermentation, leading to a NH4 (+)-N removal mainly related to biological nitritation/denitritation. PMID:25407727

  1. Do foliar endophytic bacteria fix nitrogen?

    Science.gov (United States)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  2. Microbial nitrogen cycling on the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    J. Telling

    2011-10-01

    Full Text Available Microbial nitrogen cycling was investigated along a 79 km transect into the Greenland Ice Sheet (GrIS in early August 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt in cryoconite holes within 7.5 km of the ice sheet margin suggested microbial uptake and ammonification respectively. Nitrogen fixation (<4.2 μmoles C2H4 m−2 day−1 to 16.3 μmoles C2H4 m−2 day−1 was active in some cryoconite holes at sites up to 5.7 km from the ice sheet margin, with nitrogen fixation inversely correlated to concentrations of inorganic nitrogen. There may be the potential for the zone of nitrogen fixation to progressively extend further into the interior of the GrIS as the melt season progresses as reserves of available nitrogen are depleted. Estimated annual inputs of nitrogen from nitrogen fixation along the transect were at least two orders of magnitude lower than inputs from precipitation, with the exception of a 100 m long marginal debris-rich zone where nitrogen fixation could potentially equal or exceed that of precipitation. The average estimated contribution of nitrogen fixation to the nitrogen demand of net microbial growth at sites along the transect ranged from 0% to 17.5%.

  3. Posterior transodontoid fixation: A new fixation (Kotil technique

    Directory of Open Access Journals (Sweden)

    Kadir Kotil

    2011-01-01

    Full Text Available Anterior odontoid screw fixation or posterior C1-2 fusion techniques are routinely used in the treatment of Type II odontoid fractures, but these techniques may be inadequate in some types of odontoid fractures. In this new technique (Kotil technique, through a posterior bilateral approach, transarticular screw fixation was performed at the non-dominant vertebral artery (VA side and posterior transodontoid fixation technique was performed at the dominant VA side. C1-2 complex fusion was aimed with unilateral transarticular fixation and odontoid fixation with posterior transodontoid screw fixation. Cervical spinal computed tomography (CT of a 40-year-old male patient involved in a motor vehicle accident revealed an anteriorly dislocated Type II oblique dens fracture, not reducible by closed traction. Before the operation, the patient was found to have a dominant right VA with Doppler ultrasound. He was operated through a posterior approach. At first, transarticular screw fixation was performed at the non-dominant (left side, and then fixation of the odontoid fracture was achieved by directing the contralateral screw (supplemental screw medially and toward the apex. Cancellous autograft was scattered for fusion without the need for structural bone graft or wiring. Postoperative cervical spinal CT of the patient revealed that stabilization was maintained with transarticular screw fixation and reduction and fixation of the odontoid process was achieved completely by posterior transodontoid screw fixation. The patient is at the sixth month of follow-up and complete fusion has developed. With this new surgical technique, C1-2 fusion is maintained with transarticular screw fixation and odontoid process is fixed by concomitant contralateral posterior transodontoid screw (supplemental screw fixation; thus, this technique both stabilizes the C1-2 complex and fixes the odontoid process and the corpus in atypical odontoid fractures, appearing as an

  4. 污水生物脱氮除磷新技术%New Technology of Biological Nitrogen and Phosphorus Removal in Sewage

    Institute of Scientific and Technical Information of China (English)

    丛晓东; 吕勇; 王肇君

    2012-01-01

    首先简单阐述了生物脱氮除磷机理,然后重点介绍了目前几种污水生物处理新技术:厌氧/缺氧/好氧MBR工艺、短程硝化反硝化工艺和倒置A2/O工艺等,最后对污水生物脱氮除磷技术的发展进行了展望,并提出了一些建议。%In the first part,the mechanism of biological nitrogen and phosphorus removal is simply explained firstly,and then several new technology of sewage biological disposal,such as anoxic/anaerobic/aerobic membrane bioreactor(MBR) process、shortcut nitrification—denitrification process and reversed A2/O process are introduced.In the end,the paper generalized the development of new technology of biological nitrogen and phosphorus removal in sewage,and some suggestions are put forward.

  5. Effect of amended soil and hydraulic load on enhanced biological nitrogen removal in lab-scale SWIS.

    Science.gov (United States)

    Zou, J L; Dai, Y; Sun, T H; Li, Y H; Li, G B; Li, Q Y

    2009-04-30

    To characterize the effect of amended soil on nitrogen removal in subsurface wastewater infiltration system (SWIS), culture, grass carbon, and zeolite were mixed to produce microbial inoculums, and then the optimal microbial inoculums, nutrient substance, cinder, and original soil were mixed to produce the soils through bioaugmentation. Results indicate that the microbial inoculums (culture+50% grass carbon+50% zeolite) and the amended soil (12.5% microbial inoculums+25% nutrient substrate+12.5% cinder+50% original soil) have the optimal biogenic stimulating properties, and the adsorption capacity of the amended soil are 1.216 mg-Pg(-1) and 0.495 mg-Ng(-1). The laboratory soil column experiment indicates that the efficient mode of nitrogen removal in lab-scale SWIS is adsorption-nitrification-denitrification and the nitrification/denitrification can be enhanced by the application of the amended soil. On average, the SWIS filled with amended soil converts 85% of ammonia nitrogen (NH(4)(+)-N) to NO(x)(-)-N and removes 49.8-60.6% of total nitrogen (TN), while the system filled with original soil removes 80% of NH(4)(+)-N and 31.3-43.2% of TN at 4-8 cm day(-1). Two systems are overloads at 10 cm day(-1). It is concluded that the microbial activities and nitrogen removal efficiencies are improved in SWIS after bioaugmentation.

  6. Discussion on Biological Nitrogen Removal in Treatment of High Ammonia Nitrogen Wastewater Using MBR%MBR 处理高浓度氨氮废水中生物脱氮问题的探讨

    Institute of Scientific and Technical Information of China (English)

    崔喜勤; 林君锋

    2016-01-01

    在以好氧膜生物反应器( MBR)处理高浓度氨氮废水的试验研究中,针对系统获得极高生物硝化率(氨氮的去除率基本保持在99%以上)的原因、试验初期出现的亚硝态氮积累现象、试验中期总氮去除效果高于理论值的原因三个方面进行了详细分析,结果表明, MBR的运行特点是其实现完全硝化的重要保证,高浓度氨条件下的亚硝化过程是不稳定的,微生物合成代谢对总氮的去除有一定贡献。%In the experiment of treatment of wastewater with high concentration of ammonia nitrogen by a membrane bioreactor , the reason of high biological nitrification rate , the accumulation of nitrite nitrogen in initial experiment and the causation of higher removal rate of total nitrogen than theoretical result in mid test were discussed .The results showed that the operating characteristics of MBR was very key for complete nitrification , nitrosation process was unstabitily under high concentration of ammonia , microbial synthesis and metabolism had the contribution for removal of total nitrogen.

  7. 华北地区几种冬闲覆盖作物碳氮蓄积及其对土壤理化性质的影响%Carbon-nitrogen fixation and effects on the physical and chemical properties in winter cover crop in north China

    Institute of Scientific and Technical Information of China (English)

    赵秋; 高贤彪; 宁晓光; 曹卫东

    2011-01-01

    充分利用华北地区冬季空闲耕地及光热资源,以冬闲耕地为对照,研究二月兰(Orychophragmus violaceus)、毛苕(Vicia uillosa Roth.)、黑麦草(Secale cereale L.)、草木樨(Melilotus officinalis)、紫花苜蓿(Medicago satiua L.)5种不同冬闲覆盖作物地上部、地下部以及总碳、氮的蓄积量及其对土壤理化性质的影响.结果表明:5种覆盖作物总干物质质量在4.6~8.82t·hm-2之间,是冬闲田干物质质量的1.6~3.1倍.5种覆盖作物全碳蓄积量在1.80~3.14 t·hm-2之间,是冬闲田碳蓄积量的1.9~3.3倍.与对照相比,各覆盖处理均明显提高氮素蓄积,尤以苜蓿最佳,达到了202.8 kg·hm-2,差异显著.试验选择5种肥覆盖均可提高土壤有机质质量分数(0.90~2.86 g·kg);黑麦草覆盖可明显降低土壤容重(0.08 g·cm3);毛苕和苜蓿栽培均可显著降低土壤pH,但同时土壤盐分有所增加;二月兰和黑麦草栽培在提高土壤水分含量方面表现最好.%In this paper, using idle farmland and light and beat resources in winter in North China, compared winter idle land, effect of five cover crops planted in China's north region as winter cover crops on carbon-nitrogen fixation and effects on the physical and chemical properties. Results showed that dry matter yield of five crops were 4.6-8.82 t·hm-2, respectively, which was significantly higher than that of a fallow field. Carbon fixation of five crops were 1.80-3.14 t·hm-2, Compared with fallow, planting winter cover crops increased Carbon fixation. Compared with fallow, planting winter cover crops increased nitrogen fixation, the better crop was alfalfa, its yield was 202.8 kg·hm-2, respectively. The treatments of five cover crops got significantly higher organic matter contents.Ryegrass cover can significantly reduce soil bulk density; vetch and alfalfa cultivation could significantly reduce soil pH, but increased soil salt; Orychophragmus Violaeeus and ryegrass have shown to

  8. Nitrogen fixation in seedlings of sabia and leucena grown in the caatinga soils under different vegetation covers; Fixacao de nitrogenio em mudas de sabia e leucena cultivadas em solos da caatinga sob diferentes coberturas vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Augusto Cesar de Arruda; Nascimento, Luciana Remigio Santos; Silva, Arthur Jorge da; Freitas, Ana Dolores Santiago de, E-mail: augusto.arruda26@yahoo.com.br, E-mail: lucaremigio@yahoo.com.br, E-mail: arthur.floresta.jorge@gmail.com, E-mail: ana.freitas@depa.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Agronomia

    2013-07-01

    The aim of this study was to evaluate the efficiency differences of populations forming bacteria in legume nodules (BNL) in areas under different vegetation cover in semi-arid Pernambuco state, Brazil, using the methodology of the natural abundance of {sup 15}N to estimate the amount of N fixed symbiotically. The highest levels of nitrogen was found in plants of leucena, and the sabia had levels that did not differ from reference species. The analysis by the technique of 15N showed that in all areas the leucena and the sabia showed signs of 15N different of the average signal of the control plants. The largest nitrogen accumulation was observed for leucena in the Caatinga and Capoeira. The sabia got greater accumulation of N from the Caatinga. The areas of Capoeira and Caatinga has showed the native populations of rhizobia with greater ability to fix nitrogen for the leucena.

  9. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  10. Uptake rate of nitrogen from soil and fertilizer, and N derived from symbiotic fixation in cowpea (Vigna unguiculata (L.) Walp.) and common bean (Phaseolus vulgaris L.) determined using the {sup 15}N isotope; Marcha de absorcao do nitrogenio do solo, do fertilizante e da fixacao simbiotica em feijao-caupi (Vigna unguiculata (L.) Walp.) e feijao-comum (Phaseolus vulgaris L.) determinada com uso de {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Marciano de Medeiros Pereira; Muraoka, Takashi; Silva, Edson Cabral da [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba SP (Brazil)], e-mail: marcianobrito@hotmail.com, e-mail: muraoka@cena.usp.br, e-mail: ecsilva@cena.usp.br

    2009-07-15

    Common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp.) are among the main sources of plant protein for a large part of the world population, mainly that of low income, and nitrogen is the main constituent of these proteins. The objectives of this study were to evaluate, through the {sup 15}N-dilution technique and using rice and non-nodulating soybean as control plants, the relative contributions of nitrogen sources (symbiotically fixed N, soil native N and fertilizer N) on the growth of common bean and cowpea and to compare the isotopic technique (ID) with the difference methods (DM) for the evaluation of symbiotic N{sub 2} fixation. The study was carried out in a greenhouse of the Center for Nuclear Energy in Agriculture - CENA/USP, Sao Paulo State, Brazil, using 5 kg pots with a Typic Haplustox (Dystrophic Red-Yellow Latosol). The experiment was arranged in completely randomized blocks, with 16 treatments and three replications, in an 8 x 2 factorial design. The treatments were eight sampling times: 7, 24, 31, 38, 47, 58, 68 and 78 days after sowing (DAS) and two crops: common bean and cowpea. An N rate of 10 mg kg{sup -1} soil was used, as urea, enriched with an excess of 10 % of {sup 15}N atoms. Symbiotic N fixation supplied the bean and cowpea plants with the greatest amount of accumulated N, followed, in decreasing order, by soil and fertilizer. The highest rate of N symbiotic fixation was observed at the pre-flowering growth stage of the bean and cowpea plants. After the initial growth stage, 24 DAS, rice and non nodulating soybean were appropriate control plants to evaluate symbiotic N fixation. There was a good agreement between ID and DM, except in the initial growth stage of the crops. (author)

  11. Nitrogen Cascade: An Opportunity to Integrate Biogeochemistry and Policy

    Science.gov (United States)

    Galloway, J. N.; Moomaw, W. R.; Theis, T. L.

    2008-12-01

    It began with micro-organisms millions of years ago, was enhanced by the burning of fossil carbon in the last several hundred years, and was magnified by a patent filed one hundred years ago. Today, the combined actions of cultivation-induced biological nitrogen fixation, fossil fuel combustion and the Haber-Bosch process have exceeded natural terrestrial processes in converting N22 to nitrogen compounds that are biologically, chemically or physically reactive (reactive nitrogen, Nr). While the benefits of Nr are well understood, many of the adverse consequences of excessive Nr are invisible from a policy perspective. Over the past century, the fundamental knowledge on nitrogen processes has advanced to the point where we have a good understanding of nitrogen's biogeochemical cycle, the role of humans in altering the cycle, and the consequences of the alterations. This knowledge has collectively led us to two conclusions-the consequences of intensive human influence on the nitrogen cycle leads to a cascade of ecosystem and human effects which need to be managed. Secondly, the management is complicated by the facts that it not only has to be integrated, but it also has to take into account that the management should not lower the ability of managed ecosystems to produce food for the world's peoples. The framework of the nitrogen cascade provides us with a structure for better identifying intervention points, and more effective policies, technologies and measures to prevent or mitigate the adverse impacts of reactive nitrogen, while enhancing its beneficial uses. We can now begin to use our understanding of science to set priorities and craft new policy strategies. For many regions of the world, the science is strong enough to manage nitrogen and there are existing tools to do so. However, the tools are not integrated, critical tools are missing and most importantly, there are nitrogen-rich regions of the world where the science is lacking, and nitrogen-poor regions

  12. Potential use of the N2/Ar ratio as a constraint on the oceanic fixed nitrogen loss

    Science.gov (United States)

    Shigemitsu, M.; Gruber, N.; Oka, A.; Yamanaka, Y.

    2016-04-01

    Using a global ocean biogeochemical model, we investigate the suitability of the N2/Ar supersaturation ratio (ΔN2/Ar) as a tracer of marine nitrogen fixation and denitrification, i.e., the main biological processes that add or remove fixed nitrogen to or from the ocean. In a series of factorial simulations, we demonstrate that, in regions away from the oxygen minimum zones (OMZs), the ΔN2/Ar characteristics are mostly determined by benthic denitrification occurring in the deep ocean with minor contributions from benthic and water column denitrification at shallower depths. In the OMZs, the subsurface maxima of ΔN2/Ar are mainly determined by water column denitrification. In contrast, nitrogen fixation has little impact on ΔN2/Ar owing to the rapid loss of the N2 supersaturation signal through air-sea exchange. We thus conclude that ΔN2/Ar can act as a powerful constraint on water column and benthic denitrification occurring in intermediate to deep waters, but it cannot be used to estimate nitrogen fixation. A comparison between the currently very limited observations of the ΔN2/Ar with our model results shows an acceptable level of agreement, suggesting that the model's prescribed rates and distributions of benthic and water column denitrification (i.e., 140 and 52 Tg N yr-1, respectively) are reasonable and confirm the results derived from other constraints.

  13. Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

    Science.gov (United States)

    Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.

    2016-01-01

    Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.

  14. Impact of climate change and ocean acidification on the marine nitrogen cycle

    International Nuclear Information System (INIS)

    The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO2. Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O3) depletion agent called nitrous oxide (N2O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N2-fixation, nitrification, denitrification and N2O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO2 emissions scenario in global scale N2-fixation rates, nitrification rates, N2O production and N2O sea-to-air fluxes adding CO2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N2O radiative forcing feedbacks are also evaluated in this thesis. (author)

  15. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  16. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem.

    Science.gov (United States)

    Chen, Xinxin; Song, Beizhou; Yao, Yuncong; Wu, Hongying; Hu, Jinghui; Zhao, Lingling

    2014-02-15

    Aromatic plants can substantially improve the diversity and structure of arthropod communities, as well as reduce the number of herbivore pests and regulate the abundance of predators and parasitoids. However, it is not clear whether aromatic plants are also effective in improving soil quality by enhancing nutrient cycling. Here, field experiments are described involving intercropping with aromatic plants to investigate their effect on soil nitrogen (N) cycling in an orchard ecosystem. The results indicate that the soil organic nitrogen and available nitrogen contents increased significantly in soils intercropped with aromatic plants. Similarly, the activities of soil protease and urease increased, together with total microbial biomass involved in N cycling, including nitrifying bacteria, denitrifying bacteria and azotobacters, as well as the total numbers of bacteria and fungi. This suggests that aromatic plants improve soil N cycling and nutrient levels by enriching the soil in organic matter through the regulation of both the abundance and community structure of microorganisms, together with associated soil enzyme activity, in orchard ecosystems.

  17. Study on the Acceptance of the Determination of the Acceptance of the Nitrogen Fixation by the Recovery Rate%回收率测定用于凯氏定氮仪验收的研究

    Institute of Scientific and Technical Information of China (English)

    张聪; 刘大伟; 马莉; 刘超群; 许文涛

    2015-01-01

    The kjeldahl nitrogen determination apparatus to protein effcient quantitative detection technology has been widely used in food, feed and other industries, and in the process of acceptance of the raw materials and products and thus play an irreplaceable role. At present domestic has yet to develop the kjeldahl nitrogen determination instrument calibration acceptance criteria. In this paper, the study found that can verify the accuracy of titration system by ammonium sulfate, L - tryptophan to verify the stability of the digestive system, so as to identify veriifcation kjeldahl nitrogen determination apparatus is simple and rapid method of acceptance.%凯氏定氮仪对蛋白的高效定量检测技术已在食品、饲料等行业中广泛应用,并在原料的验收和产品建业过程中发挥着不可替代的作用。目前国内尚未制定出对凯氏定氮仪的校准验收标准。本文通过研究发现,可以通过硫酸铵来验证滴定系统的准确性,L-色氨酸来验证消化系统的稳定性,从而确定出检定凯氏定氮仪简单、快速的验收方法。

  18. Nitrogen-15 labeling of Crotalaria juncea green manure

    International Nuclear Information System (INIS)

    Most studies dealing with the utilization of 15 N labeled plant material do not present details about the labeling technique. This is especially relevant for legume species since biological nitrogen fixation difficult plant enrichment. A technique was developed for labeling leguminous plant tissue with 15 N to obtain labeled material for nitrogen dynamics studies. Sun hemp (Crotalaria juncea L.) was grown on a Paleudalf, under field conditions. An amount of 58.32 g of urea with 70.57± 0.04 atom % 15 N was sprayed three times on plants grown on eight 6-m2-plots. The labelled material presented 2.412 atom % 15 N in a total dry matter equivalent to 9 Mg ha-1 This degree of enrichment enables the use of the green manure in pot or field experiments requiring 15 N-labeled material. (author)

  19. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...

  20. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  1. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok;

    2011-01-01

    The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the u...

  2. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investiga

  3. Biological nitrogen removal in one step by nitritation and anaerobic oxidation of ammonia in biofilms; Einstufige biologische Stickstoffelimination durch Nitritation und anaerobe Ammonium-Oxidation im Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, C.; Tromm, C.; Hippen, A.; Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S. [Hannover Univ. (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    For biological treatment of high nitrogenous wastewaters with low C/N ratio autotrophic microorganisms which are able to convert ammonium directly into nitrogen gas are especially interesting. It is exceptionally difficult to verify their presence and importance in mixed populations of full scale wastewater treatment plants. So it could not be clarified finally up to now which basic microbial reactions lead to single stage complete nitrogen removal, here called deammonification, in the nitrification step (biological contactor) of the leachate treatment plant in Mechernich. It succeeded meanwhile to establish the process of deammonification in a continuous flow moving-bed pilot plant. In batch experiments which biomass-covered carriers nitrogen conversions could become investigated at the intact biofilm for the first time. Two autotrophic nitrogen conversion reactions could be proved in the biofilm depending on dissolved oxygen (DO) concentration: A nitritation under aerobic conditions and an anaerobic ammonium oxidation. For the anaerobic ammonium oxidation nitrite was used as electron acceptor with ammonium as electron donor. N{sub 2} was the end product of the reaction. The ratio of ammonium conversion to nitrite conversion was 1:1,37, which was described in the same range for the ANAMMOX-process (1:1,31{+-}0,06). Nitrate could not be used as electron acceptor. Nitrite had to be added to the experiment to obtain oxygen independent oxidation of ammonium. The parts of nitritation and anaerobic ammonium conversion in nitrogen conversion could be controlled by the DO concentration. At a DO concentration of 0.7 mg/l both processes were balanced, so that a direct almost complete elimination of ammonium was possible without any dosage of nitrite. The added ammonium was partially oxidised to nitrite and partially oxidised anaerobically. The aerobic ammonium oxidation to nitrite in the outer oxygen supplied biofilm layers produced the reactant for the anaerobic ammonium

  4. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571

    DEFF Research Database (Denmark)

    Lee, KB; De Backer, P; Aono, T;

    2008-01-01

    contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have......BACKGROUND: Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast......-growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem. RESULTS: The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC...

  5. Enhanced biological nutrient removal by the alliance of a heterotrophic nitrifying strain with a nitrogen removing ecosystem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nitrogen removal from synthetic wastewater was investigated in an airlift bioreactor (ALB), augmented with a novel heterotrophic nitrifier Pseudonocardia ammonioxydans H9T under organic carbon to nitrogen ratios (Corg/N) ranging from 0 to 12. Effect of the inoculated strain was also determined on the settling properties and the removal of chemical oxygen demand (COD). Two laboratory scale reactors were set up to achieve a stable nitrifying state under the same physicochemical conditions of hydraulic retention time (HRT), temperature, pH and dissolved oxygen (DO), and operated under the sequencing batch mode. The level of DO was kept at 0.5-1.5 mg/L by periodic stirring and aeration. Each specific Corg/N ratio was continued for duration of 3 weeks. One of the reactors (BR2) was inoculated with P. ammonioxydans H9T periodically at the start of each Corg/N ratio. Sludge volumetric index (SVI) improved with the increasing Corg/N ratio, but no significant difference was detected between the two reactors. BR2 showed higher levels of nitrogen removal with the increasing heterotrophic conditions, and the ammonia removal reached to the level of 82%-88%, up to10% higher than that in the control reactor (BR1) at Corg/N ratios higher than 6; however, the ammonia removal level in experimental reactor was up to 8% lower than that in control reactor at Corg/N ratios lower than 2. The COD removal efficiency progressively increased with the increasing Corg/N ratios in both of the reactors. The COD removal percentage up to peak values of 88%-94% in BR2, up to 11% higher than that in BR1 at Corg/N ratio higher than 4. The peak values of ammonia and COD removal almost coincided with the highest number (18%-27% to total bacterial number) of the exogenous bacterium in the BR2, detected as colony forming units (CFU). Furthermore, the removal of ammonia and COD in BR2 was closely related to the number of the inoculated strain with a coefficient index (R2) up to 0.82 and 0.85 for ammonia

  6. Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions.

    Science.gov (United States)

    Ryu, Byung-Gon; Kim, Woong; Heo, Sung-Woon; Kim, Donghyun; Choi, Gang-Guk; Yang, Ji-Won

    2015-09-01

    This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge. PMID:25881553

  7. Intercross real-time control strategy in alternating activated sludge process for short-cut biological nitrogen removal treating domestic wastewater

    Institute of Scientific and Technical Information of China (English)

    WANG Shuying; ZHANG Shanfeng; PENG chengyao; AKIOTAKIGAWA

    2008-01-01

    To develop technically feasible and economically favorable dynamic process control (DPC) strategies for an alternating activated sludge (AAS) system, a bench-scale continuous-flow alternating aerobic and anoxic reactor, performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months. A fixed-time control (FTC) study showed that bending-points on pH and oxidation reduction potential (ORP) profiles accurately coincided with the major biological activities. "Ammonia valley" on the pH profile represented the end of nitrification, whereas, the "nitrite knee" on the ORP profile and "nitrite apex" on the pH profile both indicated the end of denitrification. Therefore, a new reliable and effective real-time control strategy was developed using pH and ORP as control parameters, to improve the performance of the AAS process. The online control strategy could achieve up to 87% of the total nitrogen [G1](TN) removal efficiency on an average, and saving approximately 20% aeration energy, as compared to the conventional steady-state control systems. Moreover, stable short-cut nitrification and denitrification were successfully achieved with an average nitrite accumulation ratio of above 95%.

  8. The feasibility of an up-flow partially aerated biological filter (U-PABF) for nitrogen and COD removal from domestic wastewater.

    Science.gov (United States)

    Tao, Chen; Peng, Tong; Feng, Chuanping; Chen, Nan; Hu, Qili; Hao, Chunbo

    2016-10-01

    An up-flow partially aerated biological filter (U-PABF) was developed to study the removal of nitrogen and chemical oxygen demand (COD) from synthetic domestic wastewater. The removal of NH4(+)-N was primarily attributed to adsorption in the zeolite U-PABF and to bioprocesses in the ceramic U-PABF. When the hydraulic retention time (HRT) was 5.2h, the ceramic U-PABF achieved a good performance and the NH4(+)-N, total nitrogen (TN), and COD removal efficiency reached 99.08±8.79%, 72.83±0.68%, and 89.38±1.04%, respectively. The analysis of NH4(+)-N, NO3(-)-N, NO2(-)-N, and TN at different depths revealed the simultaneous existence of nitrification-denitrification, and anaerobic ammonium oxidation (anammox) in ceramic U-PABF. Illumina pyrosequencing confirmed the existence of Planctomycetes, which are responsible for anammox. The results indicated that the nitrification-denitrification and anammox all contributed to the high removal of NH4(+)-N, TN, and COD in the U-PABF. PMID:27372011

  9. Periosteal augmentation of allograft bone and its effect on implant fixation - an experimental study on 12 dogs()

    DEFF Research Database (Denmark)

    Barckman, Jeppe; Baas, Jorgen; Sørensen, Mette;

    2013-01-01

    Periosteum provides essential cellular and biological components necessary for fracture healing and bone repair. We hypothesized that augmenting allograft bone by adding fragmented autologous periosteum would improve fixation of grafted implants.......Periosteum provides essential cellular and biological components necessary for fracture healing and bone repair. We hypothesized that augmenting allograft bone by adding fragmented autologous periosteum would improve fixation of grafted implants....

  10. Framework for Construction of Multi-scale Models for Biological Wastewater Treatment Processes - Case Study: Autotrophic Nitrogen Conversion

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist;

    2011-01-01

    In wastewater treatment technologies, employing biofilms or granular biomass, processes might occur at very different spatial and temporal scales. Model development for such systems is typically a tedious, complicated, and time consuming task, which involves selecting appropriate model equations...... for the different scales, making appropriate and simplifying assumptions, connecting them through a defined linking scheme, analyzing and solving the model equations numerically, and performing parameter estimations if necessary. In this study, a structured framework for modeling such systems is developed. It aims...... to support the user at the various steps and to reduce the time it takes to generate a model ready for application. An implementation of the framework is illustrated using a simple case study, which considers treatment of a nitrogen-rich wastewater via nitritation....

  11. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.