WorldWideScience

Sample records for biological nitrification inhibition

  1. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems.

    Science.gov (United States)

    Subbarao, G V; Rao, I M; Nakahara, K; Sahrawat, K L; Ando, Y; Kawashima, T

    2013-06-01

    Agriculture and livestock production systems are two major emitters of greenhouse gases. Methane with a GWP (global warming potential) of 21, and nitrous oxide (N2O) with a GWP of 300, are largely emitted from animal production agriculture, where livestock production is based on pasture and feed grains. The principal biological processes involved in N2O emissions are nitrification and denitrification. Biological nitrification inhibition (BNI) is the natural ability of certain plant species to release nitrification inhibitors from their roots that suppress nitrifier activity, thus reducing soil nitrification and N2O emission. Recent methodological developments (e.g. bioluminescence assay to detect BNIs in plant root systems) have led to significant advances in our ability to quantify and characterize the BNI function. Synthesis and release of BNIs from plants is a highly regulated process triggered by the presence of NH4 + in the rhizosphere, which results in the inhibitor being released precisely where the majority of the soil-nitrifier population resides. Among the tropical pasture grasses, the BNI function is strongest (i.e. BNI capacity) in Brachiaria sp. Some feed-grain crops such as sorghum also have significant BNI capacity present in their root systems. The chemical identity of some of these BNIs has now been established, and their mode of inhibitory action on Nitrosomonas has been characterized. The ability of the BNI function in Brachiaria pastures to suppress N2O emissions and soil nitrification potential has been demonstrated; however, its potential role in controlling N2O emissions in agro-pastoral systems is under investigation. Here we present the current status of our understanding on how the BNI functions in Brachiaria pastures and feed-grain crops such as sorghum can be exploited both genetically and, from a production system's perspective, to develop low-nitrifying and low N2O-emitting production systems that would be economically profitable and

  2. Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment.

    Science.gov (United States)

    Kreuzinger, N; Farnleitner, A; Wandl, G; Hornek, R; Mach, R

    2003-01-01

    Incomplete nitrification at an activated sludge plant for biological pre-treatment of rendering plant effluents led to a detailed investigation on the origin and solution of this problem. Preliminary studies revealed that an inhibition of ammonia oxidising microorganisms (AOM) by process waters of the rendering plant was responsible for the situation. We were able to show a correlation between the existence of specific AOM and nitrification capacity expressed as oxygen uptake rate for maximal nitrification (OURNmax). Only Nitrosospira sp. was found in the activated sludge of the rendering plant and another industrial wastewater treatment plant with problems in nitrification, while reference plants without nitrification problems showed Nitrosomonas spp. as the predominant ammonia oxidising bacteria. By accompanying engineering investigations and experiments (cross-feeding experiments, operation of a two-stage laboratory plant) with molecular biological methods (DGGE--Denaturing Gradient Gel Electrophoresis) we were able to elaborate an applicable solution for the rendering plant. Laboratory experiments with a two-stage process layout finally provided complete nitrification overcoming the inhibiting nature of process waters from the rendering plant. DGGE analysis of the second stage activated sludge from the laboratory plant showed a shift in population structure from Nitrosospira sp. towards Nitrosomonas spp. simultaneous to the increase of nitrification capacity. Nitrification capacities comparable to full-scale municipal wastewater treatment plants could be maintained for more than two months. As the design of wastewater treatment plants for nitrification is linked to the growth characteristics of Nitrosomonas spp., established criteria can be applied for the redesign of the full-scale plant.

  3. Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology.

    Science.gov (United States)

    Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M

    2017-09-01

    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI).

    Science.gov (United States)

    Subbarao, G V; Sahrawat, K L; Nakahara, K; Rao, I M; Ishitani, M; Hash, C T; Kishii, M; Bonnett, D G; Berry, W L; Lata, J C

    2013-07-01

    Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed 'biological nitrification inhibition' (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4(+))-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the

  5. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    Science.gov (United States)

    Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.

    2013-01-01

    Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and

  6. Nitrogen management in grasslands and forage-based production systems – Role of biological nitrification inhibition (BNI

    Directory of Open Access Journals (Sweden)

    G.V. Subbarao

    2013-12-01

    Full Text Available Nitrogen (N, the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive and intensive grassland systems. Nitrification and denitrification processes in the soil are the primary drivers of generating reactive N (NO3-, N2O and NO, largely responsible for N loss and degradation of grasslands. Suppressing nitrification can thus facilitate retention of soil N to sustain long-term productivity of grasslands and forage-based production systems. Certain plants can suppress soil nitrification by releasing inhibitors from roots, a phenomenon termed ‘biological nitrification inhibition’ (BNI. Recent methodological developments [e.g. bioluminescence assay to detect biological nitrification inhibitors (BNIs from plant-root systems] led to significant advances in our ability to quantify and characterize BNI function in pasture grasses. Among grass pastures, BNI capacity is strongest in low-N environment grasses such as Brachiaria humidicola and weakest in high-N environment grasses such as Italian ryegrass (Lolium perenne and B. brizantha. The chemical identity of some of the BNIs produced in plant tissues and released from roots has now been established and their mode of inhibitory action determined on nitrifying Nitrosomonas bacteria. Synthesis and release of BNIs is a highly regulated and localized process, triggered by the presence of NH4+ in the rhizosphere, which facilitates release of BNIs close to soil-nitrifier sites. Substantial genotypic variation is found for BNI capacity in B. humidicola, which opens the way for its genetic manipulation. Field studies suggest that Brachiaria grasses suppress nitrification and N2O emissions from soil. The potential for exploiting BNI function (from a genetic improvement and a system perspective to develop production systems, that are low-nitrifying, low N2O-emitting, economically efficient and ecologically sustainable, is discussed.

  7. Evaluation of Nitrification Inhibition Using Sequencing Batch Reactors and BioWin Modeling, and the Effect of Aqueous Film Forming Foam on Biological Nutrient Removal

    OpenAIRE

    Hingley, Daniel McCabe

    2011-01-01

    To evaluate continuous and sporadic nitrification inhibition at the HRSD Nansemond Wastewater Treatment Plant, which has a history of nitrification upsets, continuous sequencing batch reactors (SBRs) were operated to simulate the full-scale plant. Four reactors were operated in this study. One reactor was fed with raw influent (RWI) from the Nansemond Wastewater Treatment Plant (NP). Another was fed with NP primary clarifier influent (PCI), which includes the raw influent, as well as plant re...

  8. Bioassays for the determination of nitrification inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Grunditz, Camilla

    1999-07-01

    Requirements for nitrogen reduction in wastewater treatment plants were introduced in Sweden in the early 1990's. This was a governmental move to reduce the nitrogen discharges to the Baltic and Kattegat in order to prevent eutrophication. The nitrification process in wastewater treatment plants is performed by nitrifying bacteria. These are susceptible to inhibition and it is of great importance that the influent water does not contain toxic compounds. Therefore, there is a need for assays for the determination of nitrification inhibition. This thesis describes the development and applications of such bioassays. Pure cultures of Nitrosomonas sp. and Nitrobacter sp. were isolated from activated sludge of a wastewater treatment plant. These cultures were used as test organisms in the development of bioassays for nitrification inhibition measurements. The assays are based on two different principles; cell suspensions of the bacteria, performed in test tubes, and mediated amperometric biosensors with the bacteria immobilised. Ammonia oxidation and nitrite oxidation are studied separately without interference from other organisms, which makes it easier to interpret the results. The cell suspension assays were applied to samples of industrial and municipal wastewater. The Nitrosomonas and Nitrobacter assays showed to have different inhibition patterns. A large percentage of the Swedish municipal wastewater treatment plants were found to receive inhibitory influent water, but the inhibition level was generally low. Compared to an assay based on activated sludge, the screening method, the pure culture assays found more samples of influent water strongly inhibitory or stimulating. The highest correlation was found between the screening method and the Nitrosomonas assay. The Nitrobacter assay was found to be the most sensitive method. Assessment of toxicity of a number of chemical substances was studied using the biosensors, together with the cell suspension assays

  9. Applying Molecular Tools for Monitoring Inhibition of Nitrification by Heavy Metals

    Science.gov (United States)

    The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification and denitrification as sequential steps. The first step in nitrification, the oxidation of ammonia to nitrite by ammonia oxidizing bacteria (AOB), is sens...

  10. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  11. Optimizing nitrification in biological rapid sand filters: Diagnosing and supplementing micronutrients needed for proper filter performance

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Wagner, Florian Benedikt; Boe-Hansen, Rasmus

    Nitrification is an important biological process commonly used in biological drinking water filters to remove ammonium from drinking water. Recent research has shown that a lack of micronutrients could be limiting the performance of these filters. Because nitrification is a biological process, ca...... to be an important diagnostic tool that could decrease regulatory hurdles, and save time and money....

  12. Optimizing nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Smets, Barth F.; Lee, Carson Odell

    Addition of phosphate or trace metals or better management e.g. in terms of anmonium load can improve the nitrification rate and efficiency in biological rapid sand filters.......Addition of phosphate or trace metals or better management e.g. in terms of anmonium load can improve the nitrification rate and efficiency in biological rapid sand filters....

  13. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    Science.gov (United States)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  14. Nitrification inhibition as measured by RNA- and DNA-based function-specific assays and microbial community structure analyses

    Science.gov (United States)

    Abstract: The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification, which transforms ammonia into nitrate, which in turn is converted into nitrogen gas by denitrifying bacteria. The first step in nitrification, ...

  15. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential...... enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium...... to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L-1, and had a long-term effect on nitrification performance....

  16. Importance of copper for nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt

    When anoxic groundwater is treated to produce drinking water, ammonium is commonly removed through nitrification in rapid sand filters. Nitrification is a biological process, and is mediated by chemoautotrophic microorganisms. Ammonia oxidizing bacteria (AOB) and archaea (AOA) oxidize ammonium...... to remove ammonium to below the national drinking water quality standard of 0.05 mg NH4+/L. A better process understanding of nitrifying biofilters is needed to optimize treatment performance, remediate existing filters, and to prevent future nitrification problems. The frequent incidents of insufficient...... in the oxidation of ammonia to hydroxylamine. Thus, slow and incomplete nitrification could be caused by a lack of sufficient amounts of copper. The overall aim of this PhD project was therefore to determine whether copper supplementation could enhance nitrification in rapid sand filters with incomplete...

  17. How inhibiting nitrification affects nitrogen cycle and reduces ...

    Science.gov (United States)

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI along with nitrogen (N) fertilizer increased crop nitrogen use efficiency, crop yield, and altered the pathways and the amount of N loss to environment. NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9% of the total N loss. The cost and benefit analysis showed that the economic benefit of reducing N’s environmental impacts offset the cost of NI. NI application could bring additional revenue of $163.72 ha-1 for a maize farm. Taken together, our findings show that NI application may create a win-win scenario that increases agricultural output, while reducing the negative impact on the environment. Policies that encourage NI application would reduce N’s environmental impacts. A group from Chinese Academy of Sciences, US EPA-ORD and North Carolina examined the net environmental and economic effects of nitrification inhibitors to reduce nitrate leaching associated with farm fertilizers. They conducted a meta-analysis of studies examining nitrification inhibitors, and found that NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9

  18. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    Science.gov (United States)

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, H.

    1996-01-01

    the nitrification capacity monitored at the pilot plants has been in agreement with the design basis. The recycling of the scrubber water from the cleaning of sludge incineration flue gas was found to be an important internal source of inhibition at the Lynetten WWTP. Investigations show that it is possible...

  20. Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate.

    Science.gov (United States)

    Shi, Xiuzhen; Hu, Hang-Wei; Zhu-Barker, Xia; Hayden, Helen; Wang, Juntao; Suter, Helen; Chen, Deli; He, Ji-Zheng

    2017-12-01

    Soil ecosystem represents the largest contributor to global nitrous oxide (N 2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N 2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the 15 N- 18 O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N 2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N 2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N 2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N 2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N 2 O production from nitrifier-induced denitrification, a potential significant source of N 2 O production in agricultural soils. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. The inhibition of marine nitrification by ocean disposal of carbon dioxide

    International Nuclear Information System (INIS)

    Huesmann, M.H.; Skillman, A.D.; Crecelius, E.A.

    2002-01-01

    In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO 2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO 2 -induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO 2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO 2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the

  2. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment.

    Science.gov (United States)

    Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P

    2001-08-01

    The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.

  3. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    Science.gov (United States)

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.

  4. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled...

  5. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Boe-Hansen, Rasmus; Musovic, Sanin

    2014-01-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification...... operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal...... rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot...

  6. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  7. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  8. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    Science.gov (United States)

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  9. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Science.gov (United States)

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. Copyright

  10. Trait-based representation of biological nitrification: Model development, testing, and predicted community composition

    Directory of Open Access Journals (Sweden)

    Nick eBouskill

    2012-10-01

    Full Text Available Trait-based microbial models show clear promise as tools to represent the diversity and activity of microorganisms across ecosystem gradients. These models parameterize specific traits that determine the relative fitness of an ‘organism’ in a given environment, and represent the complexity of biological systems across temporal and spatial scales. In this study we introduce a microbial community trait-based modeling framework (MicroTrait focused on nitrification (MicroTrait-N that represents the ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA and nitrite oxidizing bacteria (NOB using traits related to enzyme kinetics and physiological properties. We used this model to predict nitrifier diversity, ammonia (NH3 oxidation rates and nitrous oxide (N2O production across pH, temperature and substrate gradients. Predicted nitrifier diversity was predominantly determined by temperature and substrate availability, the latter was strongly influenced by pH. The model predicted that transient N2O production rates are maximized by a decoupling of the AOB and NOB communities, resulting in an accumulation and detoxification of nitrite to N2O by AOB. However, cumulative N2O production (over six month simulations is maximized in a system where the relationship between AOB and NOB is maintained. When the reactions uncouple, the AOB become unstable and biomass declines rapidly, resulting in decreased NH3 oxidation and N2O production. We evaluated this model against site level chemical datasets from the interior of Alaska and accurately simulated NH3 oxidation rates and the relative ratio of AOA:AOB biomass. The predicted community structure and activity indicate (a parameterization of a small number of traits may be sufficient to broadly characterize nitrifying community structure and (b changing decadal trends in climate and edaphic conditions could impact nitrification rates in ways that are not captured by extant biogeochemical models.

  11. Nitrification in inland waters

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bollmann, A.; B. Ward, B.; J. Arp, D.; G. Klotz, M.

    2011-01-01

    Over the past 15 years, the use of modern molecular biological approaches has radically advanced our understanding of nitrification processes. With chapters contributed by leading experts in the field, Nitrification fully reviews all the latest research findings on microbes involved in conventional

  12. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  13. Inhibition of the Nitrification Process of Activated Sludge Micro-Organism by Scrubber Water from an Industrial Flue Gas Cleaning Process

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter

    2007-01-01

    the nitrogen removal. A major sewage cleaning plant in the southern part of Denmark is a recipient of industrial sewage from a major fish meal industry. Severe nitrification inhibition was observed in scrubber water from an incineration of process air, and the processes that lead to the production were stopped......The microbial transformation of ammonia to nitrate, the nitrification, is a central process in the nitrogen biogeochemical cycle. In a modern wastewater treatment plant, the nitrification process is a key process in the removal of nitrogen and inhibitory compounds in sewage can seriously affect....... In order to investigate the relation between incineration temperatures and the production of inhibitory compounds, the process air was burned at temperatures from 800°C to 1000°C. The termically affected condensate was collected and the nitrification inhibition effect of the condensate was tested using...

  14. Suppression of soil nitrification by plants.

    Science.gov (United States)

    Subbarao, Guntur Venkata; Yoshihashi, Tadashi; Worthington, Margaret; Nakahara, Kazuhiko; Ando, Yasuo; Sahrawat, Kanwar Lal; Rao, Idupulapati Madhusudhana; Lata, Jean-Christophe; Kishii, Masahiro; Braun, Hans-Joachim

    2015-04-01

    Nitrification, the biological oxidation of ammonium to nitrate, weakens the soil's ability to retain N and facilitates N-losses from production agriculture through nitrate-leaching and denitrification. This process has a profound influence on what form of mineral-N is absorbed, used by plants, and retained in the soil, or lost to the environment, which in turn affects N-cycling, N-use efficiency (NUE) and ecosystem health and services. As reactive-N is often the most limiting in natural ecosystems, plants have acquired a range of mechanisms that suppress soil-nitrifier activity to limit N-losses via N-leaching and denitrification. Plants' ability to produce and release nitrification inhibitors from roots and suppress soil-nitrifier activity is termed 'biological nitrification inhibition' (BNI). With recent developments in methodology for in-situ measurement of nitrification inhibition, it is now possible to characterize BNI function in plants. This review assesses the current status of our understanding of the production and release of biological nitrification inhibitors (BNIs) and their potential in improving NUE in agriculture. A suite of genetic, soil and environmental factors regulate BNI activity in plants. BNI-function can be genetically exploited to improve the BNI-capacity of major food- and feed-crops to develop next-generation production systems with reduced nitrification and N2O emission rates to benefit both agriculture and the environment. The feasibility of such an approach is discussed based on the progresses made. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  16. Importance of copper for nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt

    nitrification during drinking water production provided the motivation to investigate if a lack of copper could be responsible for the problems in nitrifying biofilters. Copper is believed to be an essential cofactor in the enzyme ammonia monooxygenase (AMO), which catalyzes the first essential step...... be supplied in a controlled fashion, and that little maintenance and no chemicals are required. Copper dosing through the novel electrolysis method, as well as through passive dosing from solid copper and active dosing of copper solution, was studied at nine more DWTPs, which all shared a long history...... and chemical speciation modelling were carried out for Nærum DWTP. Results showed that substantial amounts of copper were bound to iron oxide-hydroxides in the filter and that bicarbonate heavily complexed copper in the water phase. Only total copper...

  17. Effects of Cr(III) and CR(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data generated to test nitrification inhibition of chromium. This dataset is associated with the following publication: Kapoor, V., M. Elk, X. Li, C. Impellitteri ,...

  18. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    Science.gov (United States)

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  20. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  1. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments.

    Science.gov (United States)

    Nunoura, Takuro; Nishizawa, Manabu; Kikuchi, Tohru; Tsubouchi, Taishi; Hirai, Miho; Koide, Osamu; Miyazaki, Junichi; Hirayama, Hisako; Koba, Keisuke; Takai, Ken

    2013-11-01

    There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory-scale biological aerated filter reactor.

    Science.gov (United States)

    He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei

    2017-03-01

    Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.

  3. Development of a Biochar-Plant-Extract-Based Nitrification Inhibitor and Its Application in Field Conditions

    Directory of Open Access Journals (Sweden)

    Jhónatan Reyes-Escobar

    2015-10-01

    Full Text Available The global use of nitrogen (N fertilizer has increased 10-fold in the last fifty years, resulting in increased N losses via nitrate leaching to groundwater bodies or from gaseous emissions to the atmosphere. One of the biggest problems farmers face in agricultural production systems is the loss of N. In this context, novel biological nitrification inhibitors (BNI using biochar (BC as a renewable matrix to increase N use efficiency, by reducing nitrification rates, have been evaluated. The chemical and morphological characteristics of BC were analyzed and BC-BNI complexes were formulated using plant extracts from pine (Pinus radiata, eucalyptus (Eucalyptus globulus and peumo (Cryptocarya alba. In field experiments, fertilizer and treatments, based on crude plant extracts and BC-BNI complexes, were applied and the effect on nitrification was periodically monitored, and at the laboratory level, a phytotoxicity assay was performed. The biochar-peumo (BCPe complex showed the highest nitrification inhibition (66% on day 60 after application compared with the crude plant extract, suggesting that BCPe complex protects the BNI against biotic or abiotic factors, and therefore BC-BNI complexes could increase the persistence of biological nitrification inhibitors. None of the biochar complexes had toxic effect on radish plants.

  4. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  5. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    Science.gov (United States)

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  6. Inhibitory effect of cyanide on wastewater nitrification ...

    Science.gov (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at

  7. Effect of arsenic on nitrification of simulated mining water.

    Science.gov (United States)

    Papirio, S; Zou, G; Ylinen, A; Di Capua, F; Pirozzi, F; Puhakka, J A

    2014-07-01

    Mining and mineral processing of gold-bearing ores often release arsenic to the environment. Ammonium is released when N-based explosives or cyanide are used. Nitrification of simulated As-rich mining waters was investigated in batch bioassays using nitrifying cultures enriched in a fluidized-bed reactor (FBR). Nitrification was maintained at 100mg AsTOT/L. In batch assays, ammonium was totally oxidized by the FBR enrichment in 48 h. As(III) oxidation to As(V) occurred during the first 3h attenuating arsenic toxicity to nitrification. At 150 and 200mg AsTOT/L, nitrification was inhibited by 25%. Candidatus Nitrospira defluvii and other nitrifying species mainly colonized the FBR. In conclusion, the FBR enriched cultures of municipal activated sludge origins tolerated high As concentrations making nitrification a potent process for mining water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nitrification and in-situ uranium solution mining

    International Nuclear Information System (INIS)

    Johnson, D.; Humenick, M.J.

    1980-01-01

    The objective of this research was to determine the potential for conversion of ammonia to nitrate as a result of uranium solution mining operations. The work included literature evaluation and laboratory experimentation in both batch and continuous systems. Results indicate that a potential for nitrification could exist for some portions of the solution mining operating cycle. However, inhibition of nitrification was observed due to high ammonia and peroxide concentrations. Nitrification of ammonia also was observed to occur due to chemical oxidation by peroxide. 28 refs

  9. Nitrification of highly contaminated waste water with retention of biomass

    International Nuclear Information System (INIS)

    Weichgrebe, D.

    1992-09-01

    The AIF Research Project No 7698 was concerned with the nitrification of highly contaminated waste water with retention of biomass. A compact system for the nitrification was developed and optimized in the investigations. This is an over-dammed fixed bed reactor with structured packing elements and membrane gasification. The fixed bed reactor was successfully installed in a multi-stage compact plant on the laboratory scale for the biological treatment of dump trickled water. With the conclusion of the investigations, design data are available for the technical scale realisation of nitrification in fixed bed reactors. (orig.) [de

  10. From Partial nitrification to canon in an aerobic granular SBR

    International Nuclear Information System (INIS)

    Vazquez-Padin, J.; Figueroa, M.; Campos, J. L.; Mosquera-Corral, A.; Mendez, R.

    2009-01-01

    Nitrogen removal via nitrification-denitrification processes is commonly used in biology wastewater treatment plants to remove nitrogen compounds. In recent years new technologies emerged bringing solutions to remove nitrogen from wastewaters with not enough COD content to complete the denitrification process. An alternative strategy to the conventional nitrification-denitrification processes has been developed in the nine tries consisting of a combination of the oxidation of half of the ammonium from the wastewater to nitrite via partial nitrification and the removal of both, ammonium and formed nitrite by the Anammox process. (Author)

  11. Some plant extracts retarde nitrification in soil

    Directory of Open Access Journals (Sweden)

    Abdul–Mehdi S. AL-ANSARI

    2015-12-01

    Full Text Available An incubation experiment was conducted to evaluate the effect of aqueous extracts of 17 plant materials on nitrification inhibition of urea- N in soil as compared with chemical inhibitor Dicyandiamide (DCD. Plant materials used in study were collected from different areas of Basrah province, south of Iraq. Aqueous extracts were prepared at ratio of 1:10 (plant material: water and added at conc. of 0.05, 0.10 and 0.20 ml g– 1 soil to loamy sand soil. DCD was added to soil at rate of 50 µg g-1 soil . Soil received urea at rate of 1000 µg N g-1 soil. Treated soils were incubated at 30 OC for 40 days. Results showed that application of all plant extracts, except those of casuarina, date palm and eucalyptus to soil retarded nitrification in soil. Caper, Sowthistle ,bladygrass and pomegranate extracts showed highest inhibition percentage (51, 42, 40 and 40 %, respectively and were found to be more effective than DCD (33 %. Highest inhibition was achieved by using those extracts at conc. of 0.1 ml g-1 soil after 10 days of incubation . Data also revealed that treated soil with these plant extracts significantly increased amount of NH4+–N and decreased amount of NO3-–N accumulation in soil compared with DCD and control treatments. Results of the study suggested a possibility of using aqueous extracts of some studied plants as potent nitrification inhibitor in soil.

  12. A New Approach for Biologically-Inhibiting Surfaces

    DEFF Research Database (Denmark)

    Møller, Per; Hilbert, Lisbeth Rischel; Corfitzen, Charlotte B.

    2007-01-01

    in nanometers. Due to the difference in potentials, the biologically-inhibiting material will act as a galvanic element in contact with an electrolyte. The electrochemical processes taking place at the metal surface seem to exhibit a catalytic oxidation character more than an oligomeric effect from the silver....

  13. Complete nitrification by Nitrospira bacteria

    DEFF Research Database (Denmark)

    Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra

    2015-01-01

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetic...

  14. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    Science.gov (United States)

    Smith, Jason M; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  15. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    Directory of Open Access Journals (Sweden)

    Jason M Smith

    Full Text Available Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA, are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1 to those in well-lit layers (<1 nmol L-1 d-1. During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  16. Stratification of nitrification activity in rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Musovic, Sanin

    2013-01-01

    Rapid sand filters used in groundwater treatment remove ammonium, iron and manganese from the water. Ammonium is removed biologically by nitrifying microorganisms attached on the sand surface. Nitrification kinetics and activity is strongly affected by filter design and operation, which are the key...... and maximum nitrification capacity are derived and used to quantify nitrification activity. Nitrification activity was concentrated at the top 10 cm of filter depth, and maximum nitrification capacity was 7 g NH4+-N/ m3 sand/h compared with 0.8-0.4 g NH4+-N/ m3 sand/h in the middle and bottom layers. A water...... of this study is to investigate nitrification activity in a rapid sand filter, with focus on its homogeneity and how it relates to filter performance. Two groundwater treatment plants in Denmark were selected for the experimental investigations. Plant 1 operates a single line of pre and after filters and has...

  17. Nitrification in agricultural soils: impact, actors and mitigation.

    Science.gov (United States)

    Beeckman, Fabian; Motte, Hans; Beeckman, Tom

    2018-04-01

    Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Adaptation and monitoring of microorganisms in petroleum industry wastewater nitrification processes

    Directory of Open Access Journals (Sweden)

    A. Madero

    1998-07-01

    Full Text Available Biological removal of ammonia nitrogen is carried out in two successive stages, nitrification and denitrification. This work studied the nitrification process on microorganisms isolated from different aquifer sources: a eutrophicate pond and residual waters from two treatment plants (petrochemical and domestic

  19. Effect of pesticides on nitrification in aquatic sediment

    Directory of Open Access Journals (Sweden)

    A. Enrich-Prast

    Full Text Available The aim of this work was to study the effect of the herbicides glyphosate, nonanoic acid, and dichlorprop-P and the insecticides potassium oil, malation and Pyretrin and their combinations on nitrification. Nitrification was measured in slurries from the eutrophic and shallow Brabrand Lake (Aarhus, Denmark, by inhibiting oxidation of nitrite to nitrate with chloride. All herbicides and insecticides influenced nitrification. The No Observed Effect Concentration (NOEC was assessed to be 30 µg.L-1 for glyphosate and nonanoic acid and 1 µg.L-1 for dichlorprop-P. The NOEC for malation and Pyretrin on nitrification was assessed to be 3 µg.L-1. No accumulation effect on nitrification of the insecticides malation and Pyretrin, or of the studied herbicides, was observed, indicating that their environmental impact is low at reduced concentrations, even in combination. The procedure used in this study can provide a useful tool for obtaining concentration limits for pesticides or other chemicals in a short period of time.

  20. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  1. Dicyandiamide as nitrification inhibitor of pig slurry ammonium nitrogen in soil

    Directory of Open Access Journals (Sweden)

    Rogério Gonzatto

    2016-05-01

    Full Text Available ABSTRACT: Inhibition of nitrification of ammoniacal nitrogen pig slurry after its application to the soil can mitigate nitrogen (N losses by nitrate (NO3 - denitrification and leaching, with economical and environmental benefits. However, the use of this strategy is incipient in Brazil and, therefore, requires further assessment. The aim of this study was to evaluate the efficiency of dicyandiamide (DCD nitrification inhibitor in slowing the nitrification of ammoniacal N applied to the soil with pig slurry (PS. For this, incubation was performed in laboratory, where nitrification was assessed by NO3 - accumulation in the soil. Rates of 2.8, 5.7 and 11.3kg DCD ha-1 were compared, being applied to the soil during PS addition. Nitrification was inhibited by DCD, and inhibition magnitude and duration depended on DCD applied rate. At a dose of 11.3kg ha-1 DCD, nitrification was completely inhibited in the first 12 days. During the first month after PS application, each 2.8kg of DCD increase applied per hectare promoted NO3 --N reduction in the soil of 13.3kg ha-1, allowing longer ammoniacal N maintenance in the soil.

  2. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  3. Effect of acid orange 7 on nitrification process

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongjie (ManTech Environmental Tech., Inc., Dayton, OH (United States)); Bishop, P.L. (Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering)

    The effect of Acid Orange 7 (AO7), an azo dye commonly used in textile, pharmaceutical, food, and cosmetic industries, on the nitrification process is studied using completely stirred tank reactors (CSTR) and batch treatment systems. Azo dyes are of concern because many of the dyes or their metabolic intermediates are carcinogenic. AO7 biodegradation is found to be essentially complete when solids retention times (SRT) are maintained above 7.5 days, but systems with lower SRTs are unstable. It is shown that AO7 inhibits all stages of the nitrification process. Nitrite oxidizers are found to be more sensitive to AO7 than ammonium oxidizers. The results of kinetic studies indicate that the inhibition of ammonium oxidation is typified by noncompetitive inhibition; the presence of AO7 decreases the maximum substrate utilization rate and very slightly increases K[sub s], the half-saturation constant. AO7 is found to be less toxic to nitrification than some metal and phenolic compounds, but more toxic than some common organic compounds such as formalin, methanol, or acetone.

  4. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    Science.gov (United States)

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  5. Recovery of soil nitrification after long-term zinc exposure and its co-tolerance to Cu in different soils.

    Science.gov (United States)

    Liu, Aiju; Fang, Dianmei; Wang, Chao; Li, Menghong; Young, Robert B

    2015-01-01

    Soils sampled from different locations of China were used to manipulate soil microbial diversity and to assess the effect of the diversity of the soil nitrifying community on the recovery of the soil nitrification to metal stress (zinc). Ten treatments were either or not amended with ZnCl2. Subsequently, a spike-on-spike assay was set up to test for the tolerance of soil nitrification to zinc (Zn) and copper (Cu). Initially, Zn amendment completely inhibited nitrification. After a year of Zn exposure, recovery of the potential nitrification rate in Zn-amended soils ranged from 28 to 126% of the potential nitrification rate in the corresponding Zn-nonamended soils. This recovery was strongly related to the potential nitrification rate before Zn amendment and soil pH. Increased Zn tolerance of the soil nitrification was consistently observed in response to corresponding soil contamination. Co-tolerance to Cu was obtained in all 1,000-mg kg(-1) Zn-amended soils. This tolerance was also strongly related to the potential nitrification rate before Zn amendment and soil pH. Our data indicate that inherently microbial activity can be a significant factor for the recovery of soil functioning derived from metal contamination.

  6. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  7. Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: microbial ecology through nitrous oxide production.

    Science.gov (United States)

    Ahn, Joon Ho; Kwan, Tiffany; Chandran, Kartik

    2011-04-01

    The goal of this study was to compare the microbial ecology, gene expression, biokinetics, and N2O emissions from a lab-scale bioreactor operated sequentially in full-nitrification and partial-nitrification modes. Based on sequencing of 16S rRNA and ammonia monooxygenase subunit A (amoA) genes, ammonia oxidizing bacteria (AOB) populations during full- and partial-nitrification modes were distinct from one another. The concentrations of AOB (XAOB) and their respiration rates during full- and partial-nitrification modes were statistically similar, whereas the concentrations of nitrite oxidizing bacteria (XNOB) and their respiration rates declined significantly after the switch from full- to partial-nitrification. The transition from full-nitrification to partial nitrification resulted in a protracted transient spike of nitrous oxide (N2O) and nitric oxide (NO) emissions, which later stabilized. The trends in N2O and NO emissions correlated well with trends in the expression of nirK and norB genes that code for the production of these gases in AOB. Both the transient and stabilized N2O and NO emissions during partial nitrification were statistically higher than those during steady-state full-nitrification. Based on these results, partial nitrification strategies for biological nitrogen removal, although attractive for their reduced operating costs and energy demand, may need to be optimized against the higher carbon foot-print attributed to their N2O emissions.

  8. The effect of temperature on the efficiency of industrial wastewater nitrification and its (genotoxicity

    Directory of Open Access Journals (Sweden)

    Gnida Anna

    2016-03-01

    Full Text Available The paper deals with the problem of the determination of the effects of temperature on the efficiency of the nitrification process of industrial wastewater, as well as its toxicity to the test organisms. The study on nitrification efficiency was performed using wastewater from one of Polish chemical factories. The chemical factory produces nitrogen fertilizers and various chemicals. The investigated wastewater was taken from the influent to the industrial mechanical-biological wastewater treatment plant (WWTP. The WWTP guaranteed high removal efficiency of organic compounds defined as chemical oxygen demand (COD but periodical failure of nitrification performance was noted in last years of the WWTP operation. The research aim was to establish the cause of recurring failures of nitrification process in the above mentioned WWTP. The tested wastewater was not acutely toxic to activated sludge microorganisms. However, the wastewater was genotoxic to activated sludge microorganisms and the genotoxicity was greater in winter than in spring time. Analysis of almost 3 years’ period of the WWTP operation data and laboratory batch tests showed that activated sludge from the WWTP under study is very sensitive to temperature changes and the nitrification efficiency collapses rapidly under 16°C. Additionally, it was calculated that in order to provide the stable nitrification, in winter period the sludge age (SRT in the WWTP should be higher than 35 days.

  9. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from southern China.

    Science.gov (United States)

    Tong, Deli; Xu, Renkou

    2012-01-01

    The mechanisms for the effects of ammonium-based fertilizers on soil acidification in subtropical regions are not well understood. Two Ultisols collected from cropland and a tea garden in Anhui and Jiangxi Provinces in subtropical southern China, respectively, were used to study the effects of urea and (NH4)2SO4 on the nitrification and acidification of soils with incubation experiments. Nitrification occurred at very low pH with no N fertilizer added and led to lowering of the soil pH by 0.53 and 0.30 units for the soils from Jiangxi and Anhui, respectively. Addition of urea accelerated nitrification and soil acidification in both Ultisols; while nitrification was inhibited by the addition of (NH4)2SO4, and greater input of (NH4)2SO4 led to greater inhibition of nitrification. Ammonia-oxidizing bacteria (AOB) played an important role in nitrification in cropland soil under acidic conditions. Addition of urea increased the soil pH at the early stages of incubation due to hydrolysis and stimulated the increase in the AOB population, and thus accelerated nitrification and soil acidification. At the end of incubation, the pH of Ultisol from Jiangxi had decreased by 1.25, 1.54 and 1.84 units compared to maximum values for the treatments with 150, 300 and 400 mg/kg of urea-N added, respectively; the corresponding figures were 0.95, 1.25 and 1.69 for the Ultisol from Anhui. However, addition of (N-H4)2SO4 inhibited the increase in the AOB population and thus inhibited nitrification and soil acidification. Soil pH for the treatments with 300 and 400 mg/kg of (NH4)2SO4-N remained almost constant during the incubation. AOB played an important role in nitrification of the cropland soil under acidic conditions. Addition of urea stimulated the increase in the AOB population and thus accelerated nitrification and soil acidification; while addition of (NH4)2SO4 inhibited the increase in the AOB population and thus inhibited nitrification.

  10. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Hu Baolan

    2007-01-01

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L -1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10 5 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10 5 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10 5 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  11. Fundamentals and control of nitrification in chloraminated drinking water distribution systems

    National Research Council Canada - National Science Library

    American Water Works Association

    2006-01-01

    ... Introduction, 25 Nitrification in Drinking Water Distribution System, 25 Nitrification in Pipelines and Effects of Biofilms, 31 Nitrification in Water Storage Facilities, 34 Conclusions, 39 Refere...

  12. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Newell, Silvia E; Yin, Guoyu; Yu, Chendi; Zhang, Hongli; Li, Xiaofei; Gao, Dengzhou; Gao, Juan; Wang, Rong; Liu, Cheng

    2017-08-01

    Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N 2 O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N 2 O production to AgNPs exhibited low-dose stimulation (production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N 2 O production pathway, and its contribution to N 2 O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N 2 O emission.

  13. Effectiveness of Biology-Based Methods for Inhibiting Orthodontic Tooth Movement. A Systematic Review.

    Science.gov (United States)

    Cadenas de Llano-Pérula, M; Yañez-Vico, R M; Solano-Reina, E; Palma-Fernandez, J C; Iglesias-Linares, A

    Several experimental studies in the literature have tested different biology-based methods for inhibiting or decreasing orthodontic tooth movement (OTM) in humans. This systematic review investigated the effects of these interventions on the rate of tooth movement. Electronic [MedLine; SCOPUS; Cochrane Library; OpenGrey;Web of Science] and manual searches were conducted up to January 26th, 2016 in order to identify publications of clinical trials that compared the decreasing or inhibiting effects of different biology-based methods over OTM in humans. A primary outcome (rate of OTM deceleration/inhibition) and a number of secondary outcomes were examined (clinical applicability, orthodontic force used, possible side effects). Two reviewers selected the studies complying with the eligibility criteria (PICO format) and assessed risk of bias [Cochrane Collaboration's tool]. Data collection and analysis were performed following the Cochrane recommendations. From the initial electronic search, 3726 articles were retrieved and 5 studies were finally included. Two types of biology-based techniques used to reduce the rate of OTM in humans were described: pharmacological and low-level laser therapy. In the first group, human Relaxin was compared to a placebo and administered orally. It was described as having no effect on the inhibition of OTM in humans after 32 days, while the drug tenoxicam, injected locally, inhibited the rate of OTM by up to 10% in humans after 42 days. In the second group, no statistically significant differences were reported, compared to placebo, for the rate of inhibition of OTM in humans after 90 days of observation when a 860 nm continuous wave GaAlA slow-level laser was used. The currently available data do not allow us to draw definitive conclusions about the use of various pharmacological substances and biology-based therapies in humans able to inhibit or decrease the OTM rate. There is an urgent need for more sound well-designed randomized

  14. Brassicaceae tissues as inhibitors of nitrification in soil.

    Science.gov (United States)

    Brown, Paul D; Morra, Matthew J

    2009-09-09

    Brassicaceae crops often produce an unexplained increase in plant-available soil N possibly related to bioactive compounds produced from glucosinolates present in the tissues. Our objective was to determine if glucosinolate-containing tissues inhibit nitrification, thereby potentially explaining this observation. Ammonium, NO(2)(-), and NO(3)(-) N were measured in soils amended with Brassicaceae ( Isatis tinctoria L., Brassica napus L., Brassica juncea L., and Sinapis alba L.) tissues containing different glucosinolate types and concentrations or Kentucky bluegrass ( Poa pratensis L.) residues with equivalent C/N ratios as the Brassicaceae samples. There was greater accumulation of NH(4)(+) N in soils amended with tissues containing high glucosinolate concentrations as compared to soils amended with tissues containing no or low glucosinolate concentrations. Nitrite N was detected only in soils amended with Brassicaceae tissues having the highest glucosinolate concentrations. The positive correlation of both NH(4)(+) and NO(2)(-) N accumulation with the glucosinolate concentration indicates the participation of glucosinolate hydrolysis products in nitrification inhibition.

  15. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Directory of Open Access Journals (Sweden)

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  16. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems - Interference Corrections and Feasibility Assessment

    Science.gov (United States)

    Do, T. D.; Pifer, A.; Chowdhury, Z.; Wahman, D.; Zhang, W.; Fairey, J.

    2017-12-01

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events that necessitate extensive flushing, resulting in the loss of billions of gallons of finished water. Biological techniques used to quantify the activity of nitrifying bacteria are impractical for real-time monitoring because they require significant laboratory efforts and/or lengthy incubation times. At present, DWU and CoH regularly rely on physicochemical parameters including total chlorine and monochloramine residual, and free ammonia, nitrite, and nitrate as indicators of nitrification, but these metrics lack specificity to nitrifying bacteria. To improve detection of nitrification in chloraminated drinking water distribution systems, we seek to develop a real-time fluorescence-based sensor system to detect the early onset of nitrification events by measuring the fluorescence of soluble microbial products (SMPs) specific to nitrifying bacteria. Preliminary data indicates that fluorescence-based metrics have the sensitivity to detect these SMPs in the early stages of nitrification, but several remaining challenges will be explored in this presentation. We will focus on benchtop and sensor results from ongoing batch and annular reactor experiments designed to (1) identify fluorescence wavelength pairs and data processing techniques suitable for measurement of SMPs from nitrification and (2) assess and correct potential interferences, such as those from monochloramine, pH, iron, nitrite, nitrate and humic substances. This work will serve as the basis for developing fluorescence sensor packages for full-scale testing and validation in the DWU and CoH systems. Findings from this research could be leveraged to identify nitrification events in their early stages, facilitating proactive

  17. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  18. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  19. Complete nitrification by a single microorganism

    DEFF Research Database (Denmark)

    van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads

    2015-01-01

    Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 18901, this division of labour between the two functional groups is a general...

  20. Simplified modeling of simultaneous reaction kinetics of carbon oxidation and nitrification in biofilm processes

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, S.; Auresenia, J.; Hibiya, K.; Hirata, A. [Waseda University, Department of Chemical Engineering, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2004-06-01

    Batch experiments with varying initial substrate concentrations and biomass volumes were performed in a three-phase fluidized bed biofilm reactor treating simulated domestic wastewater to study the simultaneous carbon oxidation and nitrification in the biofilm process. A simplified mass balance equation for the biofilm was proposed and five different kinetic rate equations were used to match the actual data. The kinetic parameters were obtained by nonlinear regression analysis on a set of two differential equations representing the simultaneous carbon oxidation and nitrification. The competitive inhibition model incorporating the effects of total organic carbon (TOC) concentrations on nitrification rates was the best-suited model based on the average r{sup 2}. In this model, oxygen concentration and its affinity constants were not included. Instead, it was assumed that the rate of carbon oxidation is independent of the NH{sub 4}{sup +}-N, while nitrification is affected by TOC. The number of parameters was successfully minimized without reducing its ability to accurately predict the bulk concentration time course, which would reduce computational complexity and possibly enhance the availability for an actual wastewater treatment process. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  1. A dynamic model for the nitrification of higher concentrated wastewaters and control by experiments; Ein dynamisches Prozessmodell fuer die Nitrifikation hoeher belasteter Abwaesser und praktische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Pirsing, A. [Siemens AG, Anlagentechnik ANL A73, Karlsruhe (Germany); Wiesmann, U. [Inst. fuer Verfahrenstechnik, Technische Univ. Berlin (Germany)

    1995-07-01

    Wastewater with high ammonia concentration is produced by many industries. However, the removal of higher loaded industrial effluents still poses many questions. Dynamic modelling is helpful to understand the process of nitrification and to investigate algorithms of process control. Therefore, a dynamic model of nitrification in completely mixed reactors is proposed based on mass balances for the components ammonia, nitrite, nitrate, dissolved oxygen, carbon dioxide, pH, nitrosomonas and nitrobacter. The biological reaction rates consider oxygen limitation and substrate inhibition. The process model presented it tested by lab scale experiments using an aerated stirred tank reactor. (orig.) [Deutsch] Es wird ein mathematisches Prozessmodell fuer die Nitrifikation von Industrieabwaessern mit hoher Ammoniumkonzentration vorgestellt, das bislang vernachlaessigte Phaenomene wie z.B. Substratueberschusshemmung und Sauerstofflimitierung beruecksichtigt. Als theoretische Grundlage dienen Bilanzgleichungen fuer insgesamt acht Komponenten. Das Simulationsmodell wird durch den Vergleich mit experimentellen Ergebnissen aus einer Laborversuchsanlage auf seine Richtigkeit ueberprueft. In dem Beitrag werden auf diesem Modell basierende Anwendungsbeispiele behandelt. So werden die Moeglichkeiten der dynamischen Prozesssimulation zur Steigerung der Betriebsstabilitaet bei schwankenden Zulaufkonzentrationen und -volumenstroemen gezeigt. Darueber hinaus gelingt die Rekonstruktion der Umsatzraten r(O{sub 2}) und r(NH{sub 3}) aus der Sauerstoff- und Kohlendioxidkonzentration in der Abluft. (orig.)

  2. Effect of heavy metals on nitrification activity as measured by RNA- and DNA-based function-specific assays

    Science.gov (United States)

    Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of functional genes (amoA, hao, nirK and norB) were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures...

  3. EFFECTS OF NITRIFICATION INHIBITORS ON MINERAL NITROGEN DYNAMICS IN AGRICULTURE SOILS

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon

    2011-10-01

    Full Text Available Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dimethylpyrazo-lephosphate (DMPP, 4-Chlormethylpyrazole (ClMP and dicyandiamide (DCD on mineral nitrogen dynamics of (NH42SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC was measured gas chromatographically. DMPP, ClMP and DCD were used on recommended rates of 90kg N ha-1 corresponding to 0.36µg DMPP; 0.25µg ClMP and 10µg DCD g-1 dry soil. In all treatments, the influence of 1, 10, 50, 100, 250 and 500 times of the recommended-concentrations were examined. Results suggested that DMPP, ClMP and DCD applied at rates generally recommended for agricultural use may not be effective to inhibit nitrification. Thus even at the highest tested NIs-concentrations, nitrate and nitrite formation still occurred. Application of high concentrations of these chemicals up to 180µg DMPP, 125µg ClMP and 2500µg DCD were needed for inhibiting nitrification completely. The three NIs began to inhibit PDC at 10 to 50 times recommended concentration and were more effective in sandy than in loamy or clay soils. ClMP influenced PDC at much lower concentration as DMPP or DCD.

  4. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    Science.gov (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  5. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  6. Online measurement of nitrification inhibitors in sewage received by an industrial sewage treatment plant. Development of a nitrification toximeter; Online-Messung nitrifikationshemmender Stoffe im Zulauf einer Industrieklaeranlage - Entwicklung eines Nitrifikationstoximeters

    Energy Technology Data Exchange (ETDEWEB)

    Haid, M. [BASF AG, Ludwigshafen am Rhein (Germany)

    1999-07-01

    At an industrial sewage treatment plant, the ammonium freight in the effluent is to be further reduced in the future through nitrification. But constantly low effluent concentrations are only possible if the nitrification process is not inhibited. Bouts of critical concentrations of nitrification inhibitors in sewage received by treatment plant are potentially disturbing. Online measurement of nitrification inhibitors in sewage arriving at the treatment plant is to recognize such bouts and permit timely alert so that counter-measures can be taken, which may consist in routing sewage with such toxic concentrations into a storage basin, whereby a sharp slump in the nitrification process can be avoided. (orig.) [German] In einer Industrieklaeranlage soll kuenftig durch Nitrifikation die Ammoniumfracht im Auslauf weiter gesenkt werden. Konstant niedrige Ablaufwerte sind aber nur dann moeglich, wenn der Nitrifikationsprozess ungestoert ablaufen kann. Stoesse nitrifikationshemmender Stoffe in kritischen Konzentrationen im Zulauf zur Klaeranlage sind eine moegliche Stoergroesse. Mit Hilfe einer Online-Nitrifikationshemmmessung im Klaeranlagenzulauf sollen solche Stoesse erkannt und rechtzeitig alarmiert werden, damit Gegenmassnahmen, wie z.B. das Auffangen des toxischen Stosses durch eine Sicherheitsschaltung in einem Speicherbecken, eingeleitet und so signifikante Einbrueche des Nitrifikationsprozesses vermieden werden koennen. (orig.)

  7. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    Science.gov (United States)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  8. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2017-01-01

    Full Text Available The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  9. Inhibition of biological activity of staphylococcal enterotoxin A (SEA) by apple juice and apple polyphenols.

    Science.gov (United States)

    Rasooly, Reuven; Do, Paula M; Friedman, Mendel

    2010-05-12

    The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single-chain protein that consists of 233 amino acid residues with a molecular weight of 27 078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, diarrhea, atopic dermatitis, arthritis, and toxic shock) syndromes. Changes of the native structural integrity may inactivate the toxin by preventing molecular interaction with cell membrane receptor sites of their host cells. In the present study, we evaluated the ability of one commercial and two freshly prepared apple juices and a commercial apple polyphenol preparation (Apple Poly) to inhibit the biological activity of SEA. Dilutions of freshly prepared apple juices and Apple Poly inhibited the biological activity of SEA without any significant cytotoxic effect on the spleen cells. Additional studies with antibody-coated immunomagnetic beads bearing specific antibodies against the toxin revealed that SEA added to apple juice appears to be largely irreversibly bound to the juice constituents. The results suggest that food-compatible and safe anti-toxin phenolic compounds can be used to inactivate SEA in vitro and possibly also in vivo, even after induction of T-cell proliferation by long-term exposure to SEA. The significance of the results for microbial food safety and human health is discussed.

  10. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    Science.gov (United States)

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  11. Inhibitory effect of cyanide on nitrification process and its eliminating method in a suspended activated sludge process.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Yuan; Liu, Yongdi; Chen, Xiurong

    2014-02-01

    Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.

  12. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch

    NARCIS (Netherlands)

    Hao, X.; Doddema, H.J.; Groenestijn, J.W. van

    1997-01-01

    Simultaneous nitrification and denitrification in a Pasveer oxidation ditch was studied. The purpose was to evaluate the performances of both nitrification and dentrification in oxidation ditches, and to pursue some possible approaches to enhance nitrogen removal. Almost complete nitrification was

  13. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Borch Nielsen, Peter; Boe-Hansen, Rasmus

    2018-01-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters...... groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH4+/L by a factor of 2–12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification...... was fully established, with ammonium effluent concentrations of water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time...

  14. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    Science.gov (United States)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  15. Review of the inhibition of biological activities of food-related selected toxins by natural compounds.

    Science.gov (United States)

    Friedman, Mendel; Rasooly, Reuven

    2013-04-23

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.

  16. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2009-09-01

    Full Text Available Abstract Background Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide novel opportunities for therapeutic intervention. Results We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and a dynamic cell population growth model, we quantitatively modeled and predicted the dose-response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl adenosine inhibitor in a medium with low-iron concentration. Conclusion The predicted results quantitatively reproduced the experimentally measured dose-response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/constraints, and growth media, our model captured the essential chemical and biological factors that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.

  17. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  18. Effects of Nitrification Inhibitors and Sulphur Coated Urea(SCU on Different Nitrogen Sources and Wheat Yield

    Directory of Open Access Journals (Sweden)

    LI Yong-qiang

    2016-05-01

    Full Text Available Nitrogen is essential for plant growth and health, and it is also a limiting factor for the growth in most agricultural systems. Intensive N fertilizer application has become the traditional habit for agricultural producers in China because of its importance to plant productivity and agricultural land profitability. But some problems have appeared with the increase of the amount of nitrogen fertilizer applied, urea used in crops is easy to lose from volatilization or leaching. Therefore, current crop management practices lead to a highly nitrifying soil environments. Nitrogen emission is the main source of soil acidity and environmental pollution. Several methods for the use of slow controlled release urea have been reported to be used to control the pollution and to enhance nitrogen use efficiency. There is a growing interest in the formulations of coated chemical fertilizers with both urease inhibitor and nitrification inhibitor. Urease inhibitor and nitrification inhibitor may improve urea N-use efficiency and minimize N losses by gaseous emissions of ammonia(NH3 to the atmosphere and nitrate(NO3- leaching into the surface and ground water. Dicyandiamide(DCD is a nitrification inhibitor that has been studied for many years, it can effectively inhibit nitrification and N2O emission in many agricultural ecosystems. However, limited information is available on the use of the combination of nitrification inhibitor and urease inhibitor applied with urea fertilizer, especially for thiourea(THU and thiourea formaldehyde resin(TFR applications. Therefore the purpose of this study is to investigate the effect of urea with different inhibitors to improve the efficiency of nitrogen utilization. A field pot experiment was conducted to explore how to increase the concentration of DCD/THU/TFR/sulfur-coated urea(SCU to affect the transformation of soil nitrogen and wheat yield. The experiment was designed for twelve treatments which included no nitrogen

  19. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach.

    Directory of Open Access Journals (Sweden)

    Giulia eBettas Ardisson

    2014-12-01

    Full Text Available The progressive application of new biodegradable plastics in agriculture calls for improved testing approaches to assure their environmental safety. Full biodegradation (≥ 90% prevents accumulation in soil, which is the first tier of testing. The application of specific ecotoxicity tests is the second tier of testing needed to show safety for the soil ecosystem. Soil microbial nitrification is widely used as a bioindicator for evaluating the impact of chemicals on soil but it is not applied for evaluating the impact of biodegradable plastics. In this work the International Standard test for biodegradation of plastics in soil (ISO 17556, 2012 was applied both to measure biodegradation and to prepare soil samples needed for a subsequent nitrification test based on another International Standard (ISO 14238, 2012. The plastic mulch film tested in this work showed full biodegradability and no inhibition of the nitrification potential of the soil in comparison with the controls. The laboratory approach suggested in this Technology Report enables (i to follow the course of biodegradation, (ii a strict control of variables and environmental conditions, (iii the application of very high concentrations of test material (to maximize the possible effects. This testing approach could be taken into consideration in improved testing schemes aimed at defining the biodegradability of plastics in soil.

  20. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach.

    Science.gov (United States)

    Bettas Ardisson, Giulia; Tosin, Maurizio; Barbale, Marco; Degli-Innocenti, Francesco

    2014-01-01

    The progressive application of new biodegradable plastics in agriculture calls for improved testing approaches to assure their environmental safety. Full biodegradation (≥90%) prevents accumulation in soil, which is the first tier of testing. The application of specific ecotoxicity tests is the second tier of testing needed to show safety for the soil ecosystem. Soil microbial nitrification is widely used as a bioindicator for evaluating the impact of chemicals on soil but it is not applied for evaluating the impact of biodegradable plastics. In this work the International Standard test for biodegradation of plastics in soil (ISO 17556, 2012) was applied both to measure biodegradation and to prepare soil samples needed for a subsequent nitrification test based on another International Standard (ISO 14238, 2012). The plastic mulch film tested in this work showed full biodegradability and no inhibition of the nitrification potential of the soil in comparison with the controls. The laboratory approach suggested in this Technology Report enables (i) to follow the course of biodegradation, (ii) a strict control of variables and environmental conditions, (iii) the application of very high concentrations of test material (to maximize the possible effects). This testing approach could be taken into consideration in improved testing schemes aimed at defining the biodegradability of plastics in soil.

  1. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  2. Ureic nitrogen transformation in multi-layer soil columns treated with urease and nitrification inhibitors.

    Science.gov (United States)

    Giovannini, Camilla; Garcia-Mina, Josè M; Ciavatta, Claudio; Marzadori, Claudio

    2009-06-10

    The use of N-(n-butyl)thiophosphoric triamide (NBPT), as a urease inhibitor, is one of the most successful strategies utilized to increase the efficiency of urea-based fertilization. To date, NBPT has been added to the soil incorporated in fertilizers containing either urea or the inhibitor at a fixed percentage on the urea weight. The possibility of using NBPT physically separated from urea-based fertilizers could make its use more flexible. In particular, a granulated product containing NBPT could be utilized in soils treated with different urea-based fertilizers including livestock urine, the amount depending on soil characteristics and/or the urea source (e.g., mineral fertilizer, organo-mineral fertilizer, or animal slurry). In this study, a multilayer soil column device was used to investigate the influence of an experimental granular product (RV) containing NBPT and a garlic extract, combining the ability to protect NBPT by oxidation and nitrification inhibition activity, on (a) spatial variability of soil urease and nitrification activities and (b) timing of urea hydrolysis and mineral-N form accumulation (NO(2)(-), NO(3)(-), NH(4)(+)) in soil treated with urea. The results clearly demonstrated that RV can, effectively, inhibit the soil urease activity along the soil column profile up to 8-10 cm soil layer depth and that the inhibition power of RV was dependent on time and soil depth. However, nitrification activity is not significantly influenced by RV addition. In addition, the soil N transformations were clearly affected by RV; in fact, RV retarded urea hydrolysis and reduced the accumulation of NH(4)(+)-N and NO(2)(-)-N ions along the soil profile. The RV product was demonstrated to be an innovative additive able to modify some key ureic N trasformation processes correlated with the efficiency of the urea-based fertilization, in a soil column higher than 10 cm.

  3. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions

    International Nuclear Information System (INIS)

    Fernandez-Fontaina, E.; Gomes, I.B.; Aga, D.S.; Omil, F.; Lema, J.M.; Carballa, M.

    2016-01-01

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. - Highlights: • The removal of pharmaceuticals in nitrifying activated sludge (NAS) was studied. • Nitrifying activity increases biotransformation rate of ibuprofen and naproxen. • Hydroxylation of ibuprofen by ammonia monooxygenase of ammonia oxidizing bacteria • Heterotrophic activity enhances biotransformation of sulfamethoxazole in NAS. • Recalcitrance of trimethoprim, diclofenac, carbamazepine and diazepam in NAS

  4. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fontaina, E., E-mail: eduardo.fernandez.fontaina@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Gomes, I.B. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Aga, D.S. [Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Omil, F.; Lema, J.M.; Carballa, M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. - Highlights: • The removal of pharmaceuticals in nitrifying activated sludge (NAS) was studied. • Nitrifying activity increases biotransformation rate of ibuprofen and naproxen. • Hydroxylation of ibuprofen by ammonia monooxygenase of ammonia oxidizing bacteria • Heterotrophic activity enhances biotransformation of sulfamethoxazole in NAS. • Recalcitrance of trimethoprim, diclofenac, carbamazepine and diazepam in NAS.

  5. Nitrification at different salinities: Biofilm community composition and physiological plasticity.

    Science.gov (United States)

    Gonzalez-Silva, Blanca M; Jonassen, Kjell Rune; Bakke, Ingrid; Østgaard, Kjetill; Vadstein, Olav

    2016-05-15

    This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Full-scale implementation of external nitrification biological nutrient ...

    African Journals Online (AJOL)

    driniev

    scale at the Daspoort Waste Water Treatment Works (DWWTW) in Central Pretoria, South Africa. This paper describes ..... 250 m3, with the balance of Compartment 1 as anaerobic (Fig. 2). .... cantly higher than the 140 ml/gTSS rec- ommended ...

  7. Heterogeneous Nitrification in a Full Scale Rapid Sand Filter Treating Groundwater

    DEFF Research Database (Denmark)

    Lopato, Laure; Röttgers, Nina; Binning, Philip John

    2013-01-01

    Experiments were conducted to determine ammonium removal kinetics in an operating biologically active sand filter at a waterworks treating anaerobic groundwater. The ammonium load varied between 0.7 and 3 g N/h/m2 (concentration ranged from 0.23 to 0.78 mg N/l) and the inlet water flux varied...... nitrification rate constant was closely related to the water pore velocity which implies that the rate is strongly determined by the resistance to mass transport in the diffusion boundary layer around the sand grains. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000653...

  8. Effect of heavy metals on nitrification performance in different activated sludge processes

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Tsai, Yung-Pin; Huang, Ru-Yi

    2009-01-01

    To understand the toxic effect of heavy metals on the nitrification mechanisms of activated sludge, this study identified the specific ammonia utilization rate (SAUR) inhibited by Pb, Ni and/or Cd shock loadings. Seven different heavy metal combinations (Pb, Ni, Cd, Pb + Ni, Ni + Cd, Pb + Cd, and Pb + Ni + Cd) with seven different heavy metal concentrations (0, 2, 5, 10, 15, 25, and 40 ppm, respectively) were examined by batch experiments, where the activated sludge was taken from either sequencing batch reactor (SBR) or anaerobic-anoxic-oxic (A 2 O) processes. The experimental results showed the SAUR inhibition rate was Ni > Cd > Pb. No significant inhibition in the nitrification reaction of the activated sludge was observed even when as much as 40 ppm Pb was added. In addition, no synergistic effect was found when different heavy metals were simultaneously added in different concentrations, and the overall inhibition effect depended on the heavy metal with the highest toxicity. Further, first order kinetic reaction could model the behavior of SAUR inhibition on activated sludge when adding heavy metals, and the SAUR inhibition formula was derived as SAUR=(SAUR max -SAUR min )xe -r i c +SAUR min . On the other hand, the heavy metal adsorption ability in both the activated sludge system was Pb = Cd > Ni. The specific adsorption capacity of activated sludge on heavy metal increased as the heavy metal concentration increased or the mixed liquid volatile suspended solid (MLVSS) decreased. The batch experiments also showed the heavy metal adsorption capacity of the SBR sludge was larger than the A 2 O sludge. Finally, the most predominant bacteria in the phylogenetic trees of SBR and A 2 O activated sludges were proteobacteria, which contributed to 42.1% and 42.8% of the total clones.

  9. Challenges in using allylthiourea and chlorate as specific nitrification inhibitors

    DEFF Research Database (Denmark)

    Tatari, Karolina; Gülay, Arda; Thamdrup, B.

    2017-01-01

    Allylthiourea (ATU) and chlorate (ClO3-) are often used to selectively inhibit nitritation and nitratation. In this work we identified challenges with use of these compounds in inhibitory assays with filter material from a biological rapid sand filter for groundwater treatment. Inhibition...... was stronger at higher ATU levels and resulted in no NH4+ detection at 0.5 mM ATU. ClO3- at typical concentrations for inhibition assays (1-10 mM) inhibited nitratation by less than 6%, while nitritation was instead inhibited by 91% when NH4+ was supplied. On the other hand, nitratation was inhibited by 67......-71% at 10-20 mM ClO3- when NO2- was supplied, suggesting significant nitratation inhibition at higher NO2- concentrations. No chlorite (ClO2-) was detected in the effluent, and thus we could not confirm that nitritation inhibition was caused by ClO3- reduction to ClO2-. In conclusion, ATU and ClO3- should...

  10. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  11. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  12. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  13. Overview of Causes and Control of Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    This chapter provides an integrated overview of nitrification causes and control in chloraminated drinking water distribution systems, leading to an in-depth discussion of nitrification microbiology, monitoring, prevention, response, and engineering improvements in subsequent man...

  14. Lack of Evolution Acceptance Inhibits Students' Negotiation of Biology-Based Socioscientific Issues

    Science.gov (United States)

    Fowler, S. R.; Zeidler, D. L.

    2016-01-01

    The purpose of this study was to explore science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. The Socioscientific Issues Questionnaire (SSI-Q) was developed to measure depth of evolutionary…

  15. Pythium species and isolate diversity influence inhibition by the biological control agent Streptomyces lydicus

    Science.gov (United States)

    Disease control of soilborne pathogens by biological control agents has often been inconsistent under field conditions. One factor that may contribute to this inconsistency is the variability in response among pathogen populations and/or communities to the selected biological control agent. One hund...

  16. Denitrification, nitrification, and atmospheric nitrous oxide

    National Research Council Canada - National Science Library

    Delwiche, C. C

    1981-01-01

    In this book, a number of unanswered questions particularly demanding of attention are analyzed to determine the significance of various chemical and biological processes involved with the atmospheric...

  17. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  18. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  19. Complete nutrient recovery from source-separated urine by nitrification and distillation.

    Science.gov (United States)

    Udert, K M; Wächter, M

    2012-02-01

    In this study we present a method to recover all nutrients from source-separated urine in a dry solid by combining biological nitrification with distillation. In a first process step, a membrane-aerated biofilm reactor was operated stably for more than 12 months, producing a nutrient solution with a pH between 6.2 and 7.0 (depending on the pH set-point), and an ammonium to nitrate ratio between 0.87 and 1.15 gN gN(-1). The maximum nitrification rate was 1.8 ± 0.3 gN m(-2) d(-1). Process stability was achieved by controlling the pH via the influent. In the second process step, real nitrified urine and synthetic solutions were concentrated in lab-scale distillation reactors. All nutrients were recovered in a dry powder except for some ammonia (less than 3% of total nitrogen). We estimate that the primary energy demand for a simple nitrification/distillation process is four to five times higher than removing nitrogen and phosphorus in a conventional wastewater treatment plant and producing the equivalent amount of phosphorus and nitrogen fertilizers. However, the primary energy demand can be reduced to values very close to conventional treatment, if 80% of the water is removed with reverse osmosis and distillation is operated with vapor compression. The ammonium nitrate content of the solid residue is below the limit at which stringent EU safety regulations for fertilizers come into effect; nevertheless, we propose some additional process steps that will increase the thermal stability of the solid product. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils

    Science.gov (United States)

    Xinda Lu; Peter J. Bottomley; David D. Myrold

    2015-01-01

    Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA-and AOB-supported nitrifi-cation determined both in soil-water slurries and in unsaturated...

  1. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands.

    Science.gov (United States)

    He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid

    2012-11-15

    Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    Science.gov (United States)

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200%, recycle ratio 2 of 100%, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51%, while the role of denitrification and phosphorus removal removed partial TN (14%). Furthermore, nitrogen was further removed (11%) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84%. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination.

  4. Estimation of nitrification capacity of rock media trickling filters in ...

    African Journals Online (AJOL)

    To address this deficiency, a full-scale ENBNRAS prototype was implemented at the Daspoort Wastewater Treatment Works (DWWTW) in Tshwane, South Africa. In this investigation an average apparent nitrification capacity of approximately 1.25 to 1.29 gN per m2 of media surface area per day [gN/(ms2Ed)] ammonia ...

  5. Modelling and simulation of a nitrification biofilter for drinking water ...

    African Journals Online (AJOL)

    For the purification of pure and microbiologically safe drinking water, different treatment steps are necessary. One of those steps is the removal of ammonium, which can, e.g. be accomplished through nitrification in a biofilter. In this study, a model for such a nitrifying biofilter was developed and the model was ...

  6. The effect of modifying rooting depths and nitrification inhibitors on nutrient uptake from organic biogas residues in maize

    Science.gov (United States)

    Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.

    2017-04-01

    shallower layers, where their effect on plant growth was temporarily most pronounced. At final harvest (21 DAS) however, effects of nitrification inhibitors on plant height were visible only in deeper layers. Furthermore, the statistically significant interaction between the factors time x layer depths x nitrification inhibitors underlined the dynamic influence of nitrification inhibitors on plant growth over time and across rooting depths. This study offers insights into optimizing nutrient uptake and plant productivity by (re-) using residues from the biogas industry. It is among the first to monitor and try to explain the dynamics of nitrification inhibitors on root system architecture over time. A modified N-fertilization application scheme might also serve as a promising tool in optimizing phytoremediation and phytomining techniques through predictably altering root structure in fertilized layers. References: Nagel, K. A. ; Putz, A. ; Gilmer, F. ; Heinz, K. ; Fischbach, A. ; Pfeifer, J. ; Faget, M. ; Blossfeld, S. ; Ernst, M. ; Dimaki, C. ; Kastenholz, B. ; Kleinert, A.-K. ; Galinski, A. ; Scharr, H. ; Fiorani, F. ; Schurr, U. (2012): GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons.
Functional plant biology 39(11), 891-904.

  7. Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF.

    Science.gov (United States)

    Pontejo, Sergio M; Alejo, Ali; Alcami, Antonio

    2015-10-01

    Poxviruses encode up to four different soluble TNF receptors, named cytokine response modifier B (CrmB), CrmC, CrmD and CrmE. These proteins mimic the extracellular domain of the cellular TNF receptors to bind and inhibit the activity of TNF and, in some cases, other TNF superfamily ligands. Most of these ligands are released after the enzymic cleavage of a membrane precursor. However, transmembrane TNF (tmTNF) is not only a precursor of soluble TNF but also exerts specific pro-inflammatory and immunological activities. Here, we report that viral TNF receptors bound and inhibited tmTNF and describe some interesting differences in their activity against the soluble cytokine. Thus, CrmE, which does not inhibit mouse soluble TNF, could block murine tmTNF-induced cytotoxicity. We propose that this anti-tmTNF effect should be taken into consideration when assessing the role of viral TNF decoy receptors in the pathogenesis of poxvirus.

  8. Decreased Soil Nitrification Rate with Addition of Biochar to Acid Soils

    Institute of Scientific and Technical Information of China (English)

    Shiyu LI; Xiangshu DONG; Dandan LIU; Li LIU; Feifei HE

    2017-01-01

    This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A 15N tracer experiment with (15NH4)2SO4 was conducted to determine the nitrification rates of 4 acidic agricultural soils with pH 4.03-6.02in Yunnan Province, Southern China. The accumulation of 15N-NO3 - and nitrification rates decreased with the addition of biochar at the end of incubation, suggesting that biochar could be a nitrification inhibitor in acidic fertilized soil. Nitrification rates in soil with pH 4.03 were evidently lower than those in soil with pH 4.81 -6.02 with or without biochar. Decreased nitrification rates were detected in the acidic soils with biochar. Soil pH controlled nitrification more than biochar in certain strongly acidic soils.

  9. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate.

    Science.gov (United States)

    Yang, Qin; Shen, Nan; Lee, Zarraz M-P; Xu, Guangjing; Cao, Yeshi; Kwok, Beehong; Lay, Winson; Liu, Yu; Zhou, Yan

    The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed.

  10. MicroRNA-223 Targeting STIM1 Inhibits the Biological Behavior of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yanfang Yang

    2018-01-01

    Full Text Available Background/Aims: To investigate the cellular effects and clinical significance of microRNA-223 (miR-223 in breast cancer by targeting stromal interaction molecule1 (STIM1. Methods: Breast cancer cell lines (T47D, MCF-7, SKB-R3, MDA-MB-231 and MDA-MB-435 and a normal breast epithelial cell line (MCF-10A were prepared for this study. MiR-223 mimics, anti-miR-223 and pcDNA 3.1-STIM1 were transiently transfected into cancer cells independently or together, and then RT-qPCR was performed to detect the expressions of miR-223 and STIM1 mRNA, dual-luciferase reporter assay was conducted to examine the effects of miR-223 on STIM1, Western blotting was used to measure the expressions of the STIM1 proteins, MTT and Trans-well assays were performed to detect cell proliferation and invasion. Finally, the correlation of miR-223 and STIM1 was investigated by detecting with ISH and IHC in breast cancer specimens or the corresponding adjacent normal tissues. Results: Compared with normal cells and tissues, breast cancer tissues and cells exhibited significantly lower expression of miR-223, but higher expression of STIM1. MiR-223 could inhibit the proliferation and invasiveness of breast cancer cells by negatively regulating the expressions of STIM1. Reimplantation with STIM1 partially rescued the miRNA-223-induced inhibition of breast cancer cells. Clinical data revealed that high expression of STIM1 and miR-223 was respectively detrimental and beneficial factor impacting patient’s disease-free survival (DFS rather than overall survival (OS. Moreover, Pearson correlation analysis also confirmed that STIM1 was inversely correlated with miR-223. Conclusion: MiR-223 inhibits the proliferation and invasion of breast cancer by targeting STIM1. The miR-223/STIM1 axis could possibly be a potential therapeutic target for treating breast cancer patients.

  11. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    Science.gov (United States)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  12. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    Science.gov (United States)

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Transport zonation limits coupled nitrification-denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Kessler, Adam John; Glud, R.N.; Cardenas, M.B.

    2013-01-01

    - and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification......-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments....

  14. An integrated chemical biology approach identifies specific vulnerability of Ewing's sarcoma to combined inhibition of Aurora kinases A and B.

    Science.gov (United States)

    Winter, Georg E; Rix, Uwe; Lissat, Andrej; Stukalov, Alexey; Müllner, Markus K; Bennett, Keiryn L; Colinge, Jacques; Nijman, Sebastian M; Kubicek, Stefan; Kovar, Heinrich; Kontny, Udo; Superti-Furga, Giulio

    2011-10-01

    Ewing's sarcoma is a pediatric cancer of the bone that is characterized by the expression of the chimeric transcription factor EWS-FLI1 that confers a highly malignant phenotype and results from the chromosomal translocation t(11;22)(q24;q12). Poor overall survival and pronounced long-term side effects associated with traditional chemotherapy necessitate the development of novel, targeted, therapeutic strategies. We therefore conducted a focused viability screen with 200 small molecule kinase inhibitors in 2 different Ewing's sarcoma cell lines. This resulted in the identification of several potential molecular intervention points. Most notably, tozasertib (VX-680, MK-0457) displayed unique nanomolar efficacy, which extended to other cell lines, but was specific for Ewing's sarcoma. Furthermore, tozasertib showed strong synergies with the chemotherapeutic drugs etoposide and doxorubicin, the current standard agents for Ewing's sarcoma. To identify the relevant targets underlying the specific vulnerability toward tozasertib, we determined its cellular target profile by chemical proteomics. We identified 20 known and unknown serine/threonine and tyrosine protein kinase targets. Additional target deconvolution and functional validation by RNAi showed simultaneous inhibition of Aurora kinases A and B to be responsible for the observed tozasertib sensitivity, thereby revealing a new mechanism for targeting Ewing's sarcoma. We further corroborated our cellular observations with xenograft mouse models. In summary, the multilayered chemical biology approach presented here identified a specific vulnerability of Ewing's sarcoma to concomitant inhibition of Aurora kinases A and B by tozasertib and danusertib, which has the potential to become a new therapeutic option.

  15. Detoxification of Pesticide-Containing Wastewater with FeIII, Activated Carbon and Fenton Reagent and Its Control Using Three Standardized Bacterial Inhibition Tests

    Directory of Open Access Journals (Sweden)

    Eduard Rott

    2017-12-01

    Full Text Available Discharge of toxic industrial wastewaters into biological wastewater treatment plants may result in inhibition of activated sludge bacteria (ASB. In order to find an appropriate method of detoxification, the wastewater of a pesticide-processing plant in Vietnam was treated with three different methods (FeIII, powdered activated carbon (PAC, Fenton (FeII/H2O2 analyzing the detoxification effect with the nitrification inhibition test (NIT, respiration inhibition test (RIT and luminescent bacteria test (LBT. The heterotrophic ASB were much more resistant to the wastewater than the autotrophic nitrificants. The NIT turned out to be more suitable than the RIT since the NIT was less time-consuming and more reliable. In addition, the marine Aliivibrio fischeri were more sensitive than the nitrificants indicating that a lack of inhibition in the very practical and time-efficient LBT correlates with a lack of nitrification inhibition. With 95%, the Fenton method showed the highest efficiency regarding the chemical oxygen demand (COD removal. Although similar COD removal (60–65% was found for both the FeIII and the PAC method, the inhibitory effect of the wastewater was reduced much more strongly with PAC. Both the NIT and the LBT showed that the PAC and Fenton methods led to a similar reduction in the inhibitory effect.

  16. Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM

    Science.gov (United States)

    Young, M. E.; Alakomi, H.-L.; Fortune, I.; Gorbushina, A. A.; Krumbein, W. E.; Maxwell, I.; McCullagh, C.; Robertson, P.; Saarela, M.; Valero, J.; Vendrell, M.

    2008-12-01

    Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates.

  17. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Moumita, E-mail: ghoshiisc@gmail.com [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ghosh, Siddharth [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Seibt, Michael [IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Schaap, Iwan A.T. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Schmidt, Christoph F. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Mohan Rao, G. [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-30

    Graphical abstract: To retain atomic structure and morphology of ZnO nanostructures (caused by deoxidation of ZnO) in water/bio-fluids, we propose and demonstrate a robust and inexpensive encapsulation technique using bio-compatible non-ionic surfactant. - Highlights: • Aqueous solutions of ZnO nanorods with and without surfactant are prepared. • With time ZnO nanorods show structural deterioration in different aqueous solutions. • Crystallinity of ZnO nanorods in absence of aqueous solution remain unaffected. • Encapsulation of bio-compatible surfactant in alchohol avoid ZnO deoxidation. • Crystallinity and structure of ZnO nanorods after encapsulation remain unaffected. - Abstract: Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  19. Proposal to support the 4th international conference on nitrification and related processes (ICoN4)

    International Nuclear Information System (INIS)

    Klotz, Martin Gunter

    2016-01-01

    The 4th International Conference on Nitrification and Related Processes (ICoN4) commencing between June 27 and July 1, 2015, at the University of Alberta in Edmonton, Alberta, Canada brings together an international collection of academic, government, and private sector researchers of the global biogeochemical nitrogen cycle to share their scientific discoveries, innovations and pertinent societal impacts. The classical understanding of “nitrification” describes the two-step transformation of ammonium to nitrite and nitrite to nitrate; however, we now know from the analysis genome sequences, the application of ‘omics technologies, microbial ecology, biogeochemistry, and microbial physiology that the transformation of ammonium is not performed by a few particular groups of microorganisms nor is it confined to oxic environments. Past ICoN meetings have explored the interconnections between ammonium- and nitrite-consuming processes in all ecosystems, the emission of greenhouse gases by these processes and their control, and the intersection between intermediates of the nitrification process and other elemental cycles; this has generated tremendous progress in our understanding of the global nitrogen cycle and it has generated excitement in the next generation of N cycle researchers. Nitrification research has a long-standing connection to the Community Science Program of the DOE. Between 1999 and 2001, the JGI generated the first genome sequence of an ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718, and it has subsequently sequenced, or is in the process of sequencing over 50 additional genomes from ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and ammonia-oxidizing archaea. Autotrophic ammonia- and nitrite-transforming microorganisms play also a critical role in carbon cycling and sequestration in nearly all ecosystems. Not only do they control the concentration and speciation of biologically available N to plants and other

  20. Proposal to support the 4th international conference on nitrification and related processes (ICoN4)

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Martin Gunter [Univ. of North Carolina, Charlotte, NC (United States)

    2016-11-04

    The 4th International Conference on Nitrification and Related Processes (ICoN4) commencing between June 27 and July 1, 2015, at the University of Alberta in Edmonton, Alberta, Canada brings together an international collection of academic, government, and private sector researchers of the global biogeochemical nitrogen cycle to share their scientific discoveries, innovations and pertinent societal impacts. The classical understanding of “nitrification” describes the two-step transformation of ammonium to nitrite and nitrite to nitrate; however, we now know from the analysis genome sequences, the application of ‘omics technologies, microbial ecology, biogeochemistry, and microbial physiology that the transformation of ammonium is not performed by a few particular groups of microorganisms nor is it confined to oxic environments. Past ICoN meetings have explored the interconnections between ammonium- and nitrite-consuming processes in all ecosystems, the emission of greenhouse gases by these processes and their control, and the intersection between intermediates of the nitrification process and other elemental cycles; this has generated tremendous progress in our understanding of the global nitrogen cycle and it has generated excitement in the next generation of N cycle researchers. Nitrification research has a long-standing connection to the Community Science Program of the DOE. Between 1999 and 2001, the JGI generated the first genome sequence of an ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718, and it has subsequently sequenced, or is in the process of sequencing over 50 additional genomes from ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and ammonia-oxidizing archaea. Autotrophic ammonia- and nitrite-transforming microorganisms play also a critical role in carbon cycling and sequestration in nearly all ecosystems. Not only do they control the concentration and speciation of biologically available N to plants and other

  1. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    International Nuclear Information System (INIS)

    Zhong Qi; Li Daping; Tao Yong; Wang Xiaomei; He Xiaohong; Zhang Jie; Zhang Jinlian; Guo Weiqiang; Wang Lan

    2009-01-01

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l -1 d -1 and 3.84 g COD l -1 d -1 , respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t -1 TS d -1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t -1 TS d -1 and the inhibition was enhanced with the increase of TON loading

  2. The side effects of nitrification inhibitors on leaching water and soil salinization in a field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diez, J. A.; Arauzo, M.; Hernaiz, P.; Sanz, A.

    2010-07-01

    In experiments carried out in greenhouses, some authors have shown that ammonium sulphate induces greater soil acidity and salinity than other sources of N. Moreover, nitrification inhibitors (NI) tend to cause ammonium to accumulate in soil by retarding its oxidation to nitrate. This accumulated ammonium would also have an effect on soil salinity. Consequently, the aim of this paper was to evaluate the soil and leaching water salinization effects associated with adding NI, dicyandiamide (DCD) and dimethylpyrazole-phosphate (DMPP) to ammonium sulphate nitrate (ASN) fertilizer. This experiment was carried out in the field with an irrigated maize crop. Drainage and Na concentration were measured during both seasons (2006 and 2007) and leached Na was determined. The treatments with NI (DCD and DMPP) were associated with greater Na concentrations in soil solutions and consequently higher rates of Na leaching (in 2007, ASN-DCD 1,292 kg Na ha{sup -}1, ASN-DMPP 1,019 kg Na ha{sup -}1). A treatment involving only ASN also increased the Na concentration in soil and the amount of Na leached in relation to the Control (in 2007, ASN 928 kg Na ha{sup -}1 and Control 587 kg Na ha{sup -}1). The increase in the ammonium concentration in the soil due to the NI treatments could have been the result of the displacement of Na ions from the soil exchange complex through a process which finally led to an increase in soil salinity. Treatments including ammonium fertilizer formulated with NI produced a greater degree of soil salinization due to the presence of ammonium from the fertilizer and accumulated ammonium from the nitrification inhibition. (Author) 31 refs.

  3. Rapid Start-up and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew

    2015-01-01

    Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.

  4. On the role of proteasomes in cell biology and proteasome inhibition as a novel frontier in the development of immunosuppressants.

    Science.gov (United States)

    Wu, Jiangping

    2002-11-01

    The proteasome, a large protease complex in cells, is the major machinery for protein degradation. It was previously considered a humble garbage collector, performing housekeeping duties to remove misfolded or spent proteins. Until recently, the interests of immunologists in proteasomes were focused largely on its role in antigen processing. Its real importance in cell biology has only been revealed contemporarily due to the availability of relatively specific inhibitors. It has now become increasingly clear that many aspects of immune responses highly depend on proper proteasome activity. Recently, a proteasome inhibitor has been successfully used to prevent acute as well as ongoing heart allograft rejection in mice. Such inhibitors are also efficacious in treating several autoimmune diseases, such as arthritis, psoriasis, and probably type I diabetes, in animal models. Phase II and III clinical trials of proteasome inhibitors in treating various tumors have shown promising results, and the side-effects of these drugs are tolerable. Therefore, proteasome inhibition represents a new and promising frontier in immunosuppressant development.

  5. Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-induced Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2010-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848

  6. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  7. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  8. Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hirofumi, E-mail: jm-tsutsuih@kochi-u.ac.jp [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Fujiwara, Taku [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Inoue, Daisuke [Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa (Japan); Japan Science and Technology Agency, CREST (Japan); Ito, Ryusei [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan); Matsukawa, Kazutsugu [Research and Education Faculty, Multidisciplinary Science Cluster, Life and Environmental Medicine Science Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Funamizu, Naoyuki [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan)

    2015-08-15

    Highlights: • RQ can be an indicator of N{sub 2}O emission in forced aerated composting process. • Emission of N{sub 2}O with nitrification was observed with RQ decrease. • Mass balances demonstrated the RQ decrease was caused by nitrification. • Conversion ratio of oxidized ammonia and total N to N{sub 2}O were ∼2.7%. - Abstract: We assessed the relationship between respiratory quotient (RQ) and nitrification and nitrous oxide (N{sub 2}O) emission in forced aerated composting using lab-scale reactors. Relatively high RQ values from degradation of readily degradable organics initially occurred. RQ then stabilized at slightly lower values, then decreased. Continuous emission of N{sub 2}O was observed during the RQ decrease. Correlation between nitrification and N{sub 2}O emission shows that the latter was triggered by nitrification. Mass balances demonstrated that the O{sub 2} consumption of nitrification (∼24.8 mmol) was slightly higher than that of CO{sub 2} emission (∼20.0 mmol), indicating that the RQ decrease was caused by the occurrence of nitrification. Results indicate that RQ is a useful index, which not only reflects the bioavailability of organics but also predicts the occurrence of nitrification and N{sub 2}O emission in forced aerated composting.

  9. Full-scale trials of external nitrification on plastic media nitrifying ...

    African Journals Online (AJOL)

    The apparent ammonia nitrification rate (ApANR, gN/m2 media surface∙d) of the NTF was sensitive to ... est in integrating them with NDBEPRAS systems in an external nitrification flow scheme ... The NTF tower was tested over a period of 2 years (Sept 05 to Sept 07) to ...... leak badly, in particular at high HLRs. References.

  10. An Operations Manual for Achieving Nitrification in an Activated Sludge Plant.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    In Ontario, the attainment of nitrification (oxidation of ammonia) in activated sludge plants is receiving increased attention. Nitrification of waste water is a necessary requirement because it reduces plant discharge of nitrogenous oxygen demand and/or toxic ammonia. However, this new requirement will result in added responsibility for…

  11. Comparison of Simultaneous Nitrification and Denitrification for Three Different Reactors

    Directory of Open Access Journals (Sweden)

    W. Khanitchaidecha

    2015-01-01

    Full Text Available Discharge of high NH4-N containing wastewater into water bodies has become a critical and serious issue due to its negative impact on water and environmental quality. In this research, the performance of three different reactors was assessed and compared with regard to the removal of NH4-N from wastewater. The highest nitrogen removal efficiency of 98.3% was found when the entrapped sludge reactor (ESR, in which the sludge was entrapped in polyethylene glycol polymer, was used. Under intermittent aeration, nitrification and denitrification occurred simultaneously in the aerobic and anaerobic periods. Moreover, internal carbon was consumed efficiently for denitrification. On the other hand, internal carbon consumption was not found to occur in the suspended sludge reactor (SSR and the mixed sludge reactor (MSR and this resulted in nitrogen removal efficiencies of SSR and MSR being 64.7 and 45.1%, respectively. Nitrification and denitrification were the main nitrogen removal processes in the aerobic and anaerobic periods, respectively. However, due to the absence of sufficient organic carbon, denitrification was uncompleted resulting in high NO3-N contents in the effluent.

  12. Is polymeric substrate in influent an indirect impetus for the nitrification process in an activated sludge system?

    Science.gov (United States)

    Wang, Bin-Bin; Gu, Ya-Wei; Chen, Jian-Meng; Yao, Qian; Li, Hui-Juan; Peng, Dang-Cong; He, Feng

    2017-06-01

    Different from monomeric substrate, polymeric substrate (PS) needs to undergo slow hydrolysis process before becoming available for consumption by bacteria. Hydrolysis products will be available for the heterotrophs in low concentration, which will reduce competitive advantages of heterotrophs to nitrifiers in mixed culture. Therefore, some links between PS and nitrification process can be expected. In this study, three lab-scale sequencing batch reactors with different PS/total substrate (TS) ratio (0, 0.5 or 1) in influent were performed in parallel to investigate the influence of PS on nitrification process in activated sludge system. The results showed that with the increase of PS/TS ratio, apparent sludge yields decreased, while NO 3 - -N concentration in effluent increased. The change of PS/TS ratio in influent also altered the cycle behaviors of activated sludge. With the increase of PS/TS ratio from 0 to 0.5 and 1, the ammonium and nitrite utilization rate increased ∼2 and 3 times, respectively. The q-PCR results showed that the abundance of nitrifiers in activated sludge for PS/TS ratio of 0.5 and 1 were 0.7-0.8 and 1.4-1.5 orders of magnitude higher than that for PS/TS ratio of 0. However, the abundance of total bacteria decreased about 0.5 orders of magnitude from the former two to the latter. The FISH observation confirmed that the nitrifiers' microcolony became bigger and more robust with the increase of PS/TS ratio. This paper paves a path to understand the role of PS/TS in affecting the nitrification process in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    Science.gov (United States)

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  15. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Science.gov (United States)

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  16. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater.

    Science.gov (United States)

    Capodici, Marco; Corsino, Santo Fabio; Torregrossa, Michele; Viviani, Gaspare

    2018-02-15

    Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L -1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2018-04-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and

  18. Effect of Potassium Chlorate on the Treatment of Domestic Sewage by Achieving Shortcut Nitrification in a Constructed Rapid Infiltration System.

    Science.gov (United States)

    Fang, Qinglin; Xu, Wenlai; Yan, Zhijiao; Qian, Lei

    2018-04-04

    A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO₃) to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO₃ to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO₃ had no obvious effect. The addition of 5mM KClO₃ in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover, if the shortcut

  19. Effect of Potassium Chlorate on the Treatment of Domestic Sewage by Achieving Shortcut Nitrification in a Constructed Rapid Infiltration System

    Directory of Open Access Journals (Sweden)

    Qinglin Fang

    2018-04-01

    Full Text Available A constructed rapid infiltration (CRI system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO3 to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO3 to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO3 had no obvious effect. The addition of 5mM KClO3 in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB and nitrite-oxidizing bacteria (NOB, but inhibition of nitrite-oxidizing bacteria (NOB was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover, if the

  20. Partial nitrification of non-ammonium-rich wastewater within biofilm filters under ambient temperature.

    Science.gov (United States)

    Wang, Hongyu; He, Jiajie; Yang, Kai

    2010-01-01

    This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.

  1. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    Science.gov (United States)

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  2. Monitoring the nitrification and identifying the endpoint of ammonium oxidation by using a novel system of titrimetry.

    Science.gov (United States)

    Zhang, Xin; Zhang, Daijun; Lu, Peili; Bai, Cui; Xiao, Pengying

    2011-01-01

    Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.

  3. Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.

    Science.gov (United States)

    Li, Ji; Huang, Yizong; Hu, Ying; Jin, Shulan; Bao, Qiongli; Wang, Fei; Xiang, Meng; Xie, Huiting

    2016-06-01

    The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds. Copyright © 2016. Published by Elsevier B.V.

  4. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  5. Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

    Directory of Open Access Journals (Sweden)

    Seung-Gun Won

    2015-06-01

    Full Text Available Milking center wastewater (MCW has a relatively low ratio of carbon to nitrogen (C/N ratio, which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR of 0.14, 0.28, 0.43, and 0.58 kg m−3 d−1 and aeration rate of 0.06, 0.12, and 0.24 m3 h−1 were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of 0.45 kg m−3 d−1 was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of 0.12 m3 h−1 showed the best performance of NH4-N removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ~0.5 mg DO L−1. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.

  6. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  7. Subsurface aeration of anaerobic groundwater : iron colloid formation and the nitrification process

    NARCIS (Netherlands)

    Wolthoorn, A.

    2003-01-01

    Keywords: Iron, anaerobic groundwater, groundwater purification, heterogeneous oxidation, iron colloid formation, electron microscopy, nitrification In anaerobic groundwater iron and ammonium can be found in relatively high concentrations. These substances need to be removed when groundwater is used

  8. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  9. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  10. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  11. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Shahmoradi, Behzad

    2011-01-01

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y obs ) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  12. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  13. Nitrification and the ammonia-oxidizing communities in the central Baltic Sea water column

    Science.gov (United States)

    Jäntti, Helena; Ward, Bess B.; Dippner, Joachim W.; Hietanen, Susanna

    2018-03-01

    The redoxclines that form between the oxic and anoxic water layers in the central Baltic Sea are sites of intensive nitrogen cycling. To gain better understanding of nitrification, we measured the biogeochemical properties along with potential nitrification rates and analyzed the assemblages of ammonia-oxidizing bacteria and archaea using functional gene microarrays. To estimate nitrification in the entire water column, we constructed a regression model for the nitrification rates and applied it to the conditions prevailing in the area in 2008-2012. The highest ammonia oxidation rates were found in a thin layer at the top of the redoxcline and the rates quickly decreased below detection limit when oxygen was exhausted. This is probably because extensive suboxic layers, which are known to harbor pelagic nitrification, are formed only for short periods after inflows in the Baltic Sea. The nitrification rates were some of the highest measured in the water columns, but the thickness of the layer where conditions were favorable for nitrification, was very small and it remained fairly stable between years. However, the depth of the nitrification layer varied substantially between years, particularly in the eastern Gotland Basin (EGB) due to turbulence in the water column. The ammonia oxidizer communities clustered differently between the eastern and western Gotland Basin (WGB) and the composition of ammonia-oxidizing assemblages correlated with the environmental variables. The ammonia oxidizer community composition was more even in the EGB, which may be related to physical instability of the redoxcline that does not allow predominance of a single archetype, whereas in the WGB, where the position of the redoxcline is more constant, the ammonia-oxidizing community was less even. Overall the ammonia-oxidizing communities in the Baltic Sea redoxclines were very evenly distributed compared to other marine environments where microarrays have been applied previously.

  14. Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile

    OpenAIRE

    Moya, Héctor; Verdejo, José; Yáñez, Carolina; Álvaro, Juan E.; Sauvé, Sébastien; Neaman, Alexander

    2017-01-01

    Microbiological bioassays of nitrification and nitrogen mineralization have been used for evaluation of soil quality on metal-contaminated soils. We evaluated the effectiveness of nitrification and nitrogen mineralization bioassays as quality indicators of soil degradation caused by metal contamination. We performed standard tests based on protocols of ISO 14238 (2012) and ISO 15685 (2012) on 90 soil samples collected from agricultural areas in central Chile that were historically contaminate...

  15. Spatial patterns of soil nitrification and nitrate export from forested headwaters in the northeastern United States

    Science.gov (United States)

    Ross, D.S.; Shanley, J.B.; Campbell, J.L.; Lawrence, G.B.; Bailey, S.W.; Likens, G.E.; Wemple, B.C.; Fredriksen, G.; Jamison, A.E.

    2012-01-01

    Nitrogen export from small forested watersheds is known to be affected by N deposition but with high regional variability. We studied 10 headwater catchments in the northeastern United States across a gradient of N deposition (5.4 - 9.4 kg ha -1 yr -1) to determine if soil nitrification rates could explain differences in stream water NO 3 - export. Average annual export of two years (October 2002 through September 2004) varied from 0.1 kg NO 3 --N ha -1 yr -1 at Cone Pond watershed in New Hampshire to 5.1 kg ha -1 yr -1 at Buck Creek South in the western Adirondack Mountains of New York. Potential net nitrification rates and relative nitrification (fraction of inorganic N as NO 3 -) were measured in Oa or A soil horizons at 21-130 sampling points throughout each watershed. Stream NO 3 - export was positively related to nitrification rates (r 2 = 0.34, p = 0.04) and the relative nitrification (r 2 = 0.37, p = 0.04). These relationships were much improved by restricting consideration to the 6 watersheds with a higher number of rate measurements (59-130) taken in transects parallel to the streams (r 2 of 0.84 and 0.70 for the nitrification rate and relative nitrification, respectively). Potential nitrification rates were also a better predictor of NO 3 - export when data were limited to either the 6 sampling points closest to the watershed outlet (r 2 = 0.75) or sampling points <250 m from the watershed outlet (r 2 = 0.68). The basal area of conifer species at the sampling plots was negatively related to NO 3 - export. These spatial relationships found here suggest a strong influence of near-stream and near-watershed-outlet soils on measured stream NO 3 - export. Copyright 2012 by the American Geophysical Union.

  16. Fact and Fiction of Nitrous Oxide Production By Nitrification

    Science.gov (United States)

    Stein, L. Y.; Kozlowski, J.; Stieglmeier, M.; Klotz, M. G.; Schleper, C.

    2014-12-01

    An accepted dogma in nitrification research is that ammonia-oxidizing bacteria (AOB) produce a modicum of nitrous oxide (N2O) during nitritation via incomplete oxidation of hydroxylamine, and substantially more at low oxygen concentrations via nitrifier denitrification.The nitrifier denitrification pathway involves the reduction of nitrite to N2O via nitric oxide and was thought to require activities of a copper-containing nitrite reductase (NirK) and nitric oxide reductase (NorB); inventory encoded in most, but not all AOB genome sequences. The discovery of nirK genes in ammonia-oxidizing Thaumarchaeota (AOA) resulted in a slew of publications stating that AOA must also perform nitrifier denitrification and, due to their high abundance, must control the majority of nitrification-linked N2O emissions. Prior to a publication by Stieglmeier et al. (2014), which definitively showed a lack of nitrifier denitrification by two axenic AOA cultures, other researchers relied on enrichment cultures, negative data, and heavy inferencing without direct demonstration of either a functional pathway or involvement of specific genes or enzymes. AOA genomes lack recognizable nitric oxide reductases and thermophilic AOA also lack nirK genes. Physiological and microrespirometry experiments with axenic AOB and AOA cultures allowed us to demonstrate that: 1) AOB produce N2O via nitrifier denitrification even though some lack annotated nirK and/or norB genes; 2) nitrifier denitrification by AOB is reliant on nitric oxide but ammonia oxidation is not; 3) ammonia oxidation by AOA is reliant on production of nitric oxide; 4) AOA are incapable of generating N2O via nitrifier denitrification; 5) N2O production by AOA is from chemical interactions between NO and media components, most likely not by enzyme activity. Our results reveal operation of different N oxide transformation pathways in AOB and AOA governed by different environmental controls and involving different mechanisms of N2O

  17. Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon

    Directory of Open Access Journals (Sweden)

    Kamil Kuca

    2018-05-01

    Full Text Available Nerve agents and oxon forms of organophosphorus pesticides act as strong irreversible inhibitors of two cholinesterases in the human body: acetylcholinesterase (AChE; EC 3.1.1.7 and butyrylcholinesterase (BChE; EC 3.1.1.8, and are therefore highly toxic compounds. For the recovery of inhibited AChE, antidotes from the group of pyridinium or bispyridinium aldoxime reactivators (pralidoxime, obidoxime, HI-6 are used in combination with anticholinergics and anticonvulsives. Therapeutic efficacy of reactivators (called “oximes” depends on their chemical structure and also the type of organophosphorus inhibitor. Three novel oximes (K131, K142, K153 with an oxime group in position four of the pyridinium ring were designed and then tested for their potency to reactivate human (Homo sapiens sapiens AChE (HssACHE and BChE (HssBChE inhibited by the pesticide paraoxon (diethyl 4-nitrophenyl phosphate. According to the obtained results, none of the prepared oximes were able to satisfactorily reactivate paraoxon-inhibited cholinesterases. On the contrary, extraordinary activity of obidoxime in the case of paraoxon-inhibited HssAChE reactivation was confirmed. Additional docking studies pointed to possible explanations for these results.

  18. Influence of soil humus content on the effect of nitrification inhibitors applied with liquid manure and slurry

    International Nuclear Information System (INIS)

    Peschke, H.

    1986-01-01

    The effect of the nitrification inhibitors nitrapyrin (NP), 1-carbomoyl-3-(5)-methyl-pyrazole (CMP) and dicyandiamide (DCD) applied with 15 N-labelled liquid manure and slurry was investigated in incubation experiments with ten soils of different humus content, including soils from three selected plots of both the Thyrow soil fertility experiment and the Lauchstaedt static experiment. A significant negative relation was found for liquid manure between the nitrification delay of the three inhibitors in relation to the C/sub t/ content, nitrification capacity, and nitrification turnover of the soil. This relationship was found in the slurry variants only when DCD was applied. (author)

  19. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jinwook [R& D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-dong, Youngtong-gu, Suwon, Gyeonggi-do 443-823 (Korea, Republic of); Kim, Seungjin; Baek, Seungcheon [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Nam-Hoon [Department of Environmental & Energy Engineering, Anyang University, 22 Samdeok-ro, 37 Beon-gil, Manan-gu, Anyang, Gyeonggi-do 430-714 (Korea, Republic of); Park, Seongjun; Lee, Junghun; Lee, Heechang [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-03-21

    Highlights: • To solve the drawbacks (NH{sub 4}{sup +} accumulation) of leachate recirculation, ex-situ SBR was applied. • Produced NO{sub 2}{sup −} was recirculated and denitrified to N{sub 2} in landfill with insufficient carbon source. • Despite the inhibition of methanogenesis by DO and nitrate, CH{sub 4} fraction eventually increased. - Abstract: Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  20. Regulation and role of epiphytic nitrification and denitrification in macrophyte-dominated systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Peder G.

    2000-02-01

    This thesis examines mechanisms regulating bacterial nitrification and denitrification in attached microbial communities on surfaces of aquatic macrophytes. It also evaluates the role of epiphytic nitrification and denitrification for the nitrogen turnover in macrophyte-dominated nutrient-rich freshwater. Epiphytic nitrification is promoted in light and epiphytic denitrification occurs mainly in dark, because the metabolic activity of the aquatic macrophyte and its epiphytes induce in light high and in dark low oxygen concentrations in epiphytic communities. Epiphytic nitrification and denitrification are also affected by the physical and chemical characteristics of the aquatic macrophyte. The spatial distribution of nitrification in emergent macrophyte wetlands is related to the species composition of the emergent vegetation, possibly because of a macrophyte species-related release of organic nitrification inhibitors. Contrasting to nitrifying bacteria, which are lithotrophic, denitrifying bacteria use organic substances as an energy source and are therefore stimulated by the release of organic matter from aquatic macrophytes. Epiphytic communities support more denitrification in nutrient-rich than in nutrient-poor environments. In lakes and ponds, epiphytic denitrification is higher at sheltered locations than at locations exposed to wind-induced water movements or currents. In flowing water, epiphytic denitrification occurs mainly at low oxygen concentrations in the surrounding water. However, because aquatic macrophytes impede water flow and induce low oxygen concentrations in dark, epiphytic denitrification can be present within dense vegetation despite of high oxygen concentrations in the surrounding water. Epiphytic nitrification is almost unaffected by flow conditions, and can occur both in light and in dark. In shallow-water systems such as treatment wetlands, aquatic macrophytes often provide most of the accessible surface area for attached nitrifying and

  1. Potential Nitrification and Nitrogen Mineral of Soil in Coffee Agroforestry System with Various Shading Trees

    Directory of Open Access Journals (Sweden)

    Purwanto .

    2007-05-01

    Full Text Available The role of shading trees in coffee farms has been well understood to establish suitable condition for the growth of coffee trees, on the other hand their role in nitrogen cycle in coffee farming is not yet well understood. The objectives of this study are to investigate the influence of various legume shading trees on the concentration of soil mineral N (N-NH4 + and N-NO3-, potential nitrification and to study the controlling factors of nitrification under field conditions. This field explorative research was carried out in Sumberjaya, West Lampung. Twelve observation plots covered four land use systems (LUS, i.e. 1 Coffee agroforestry with Gliricidiasepium as shade trees; 2 Coffee agroforestry with Gliricidiaas shade trees and Arachis pintoias cover crops; 3Coffee agroforestry with Paraserianthes falcataria as shade trees; and 4 Mixed/multistrata coffee agroforestry with Gliricidiaand other fruit crops as shade trees. Measurements of soil mineral-N concentration were carried out every three weeks for three months. Results showed that shade tree species in coffee agroforestry significantly affected concentrations of soil NH4 +, NO3- and potential nitrification. Mixed coffee agroforestry had the highest NH4+/N-mineral ratio (7.16% and the lowest potential nitrification (0.13 mg NO2-kg-1 hour -1 compared to other coffee agroforestry systems using single species of leguminous shade trees. Ratio of NH4 + /N-mineral increased 0.8—21% while potential nitrification decreased 55—79% in mixed coffee agroforestry compared to coffee agroforestry with Gliricidia or P. falcatariaas shade trees. Coffee agroforestry with P. falcatariaas shade trees had potential nitrification 53% lower and ratio of NH4 + /N-mineral concentration 20% higher than that with Gliricidia. Coffee agroforestry with P. falcataria as shade trees also had organic C content 17% higher, total N 40% higher, available P 112% higher than that with Gliricidia. The presence of A. pintoiin

  2. Use of 15N in nitrification inhibitor studies with special reference to indigenous materials

    International Nuclear Information System (INIS)

    Sahrawat, K.L.

    1988-01-01

    Non-edible oil seed cakes and their constituents have been advantageously used for increasing the efficiency of fertilizer nitrogen (N) for crop production. The beneficial effects of these materials have been attributed to retardation of nitrification, which lessen the loss of N associated with nitrification by leaching and denitrification in situations where these losses are high. However, it is possible that some of the effects of these materials could be due to immobilization-remineralization of N particularly when the carbonaceous materials are added with fertilizers at high rates. A methodology involving the use of 15 N-labelled fertilizers is advanced to sort out whether the beneficial effects of non-edible oil seed cakes and other materials are due to retardation of nitrification and or immobilization-remineralization of fertilizer N. Using the proposed technique it would be possible to make realistic evaluation of the wealth of indigenous products as nitrification inhibitors. Following the proposed approach it would also be possible to widen the scope and depth of research in this area for ultimately better exploitation of indigenous materials as nitrification inhibitors. (author). 18 refs

  3. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor.

    Science.gov (United States)

    Cho, Sunja; Fujii, Naoki; Lee, Taeho; Okabe, Satoshi

    2011-01-01

    Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (±0.19) kg-N m(-3) d(-1) than the reactor initiated as the partial nitrifying reactor (0.23 (±0.16) kg-N m(-3) d(-1)). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  5. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    OpenAIRE

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2013-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK...

  6. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification-denitrification.

    Science.gov (United States)

    Schneider, Andrew G; Townsend-Small, Amy; Rosso, Diego

    2015-02-01

    Water reclamation has the potential to reduce water supply demands from aquifers and more energy-intensive water production methods (e.g., seawater desalination). However, water reclamation via biological nitrification-denitrification is also associated with the direct emission of the greenhouse gases (GHGs) CO₂, N₂O, and CH₄. We quantified these direct emissions from the nitrification-denitrification reactors of a water reclamation plant in Southern California, and measured the (14)C content of the CO₂ to distinguish between short- and long-lived carbon. The total emissions were 1.5 (±0.2) g-fossil CO₂ m(-3) of wastewater treated, 0.5 (±0.1) g-CO₂-eq of CH₄ m(-3), and 1.8 (±0.5) g-CO₂-eq of N₂O m(-3), for a total of 3.9 (±0.5) g-CO₂-eqm(-3). This demonstrated that water reclamation can be a source of GHGs from long lived carbon, and thus a candidate for GHG reduction credit. From the (14)C measurements, we found that between 11.4% and 15.1% of the CO₂ directly emitted was derived from fossil sources, which challenges past assumptions that the direct CO₂ emissions from water reclamation contain only modern carbon. A comparison of our direct emission measurements with estimates of indirect emissions from several water production methods, however, showed that the direct emissions from water reclamation constitute only a small fraction of the plant's total GHG footprint. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Inhibition of the nitrification process in municipal wastewater treatment plants by industrial discharges

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Winther-Nielsen, M.; Jorgensen, L.

    1994-01-01

    of inhibitory substances are to be found among the industries, and that nearly all of the industries investigated exhibited some kind of inhibitory effect. Further, is was demonstrated that the toxic unit calculation might be used in the quantification of the sources, and that the observed effects could...... be explained by the chemical substances in the wastewater from the industries. Based on the above described results, a strategy for control of the inhibitory effects at the different levels of the catchment area was suggested....

  8. ANALYSIS OF TRICKLE BED AND PACKED BUBBLE COLUMN BIOREACTORS FOR COMBINED CARBON OXIDATION AND NITRIFICATION

    Directory of Open Access Journals (Sweden)

    Iliuta I.

    2002-01-01

    Full Text Available Biological removal of nitrogen and carbon by combined nitrification-oxidation in gas-liquid trickle-bed reactors (TBRs and packed bubble columns (PBCs was analyzed theoretically using a transient two-dimensional model. The model describes TBR and PBC performances at steady state as well as their transient response to a pulse or step increase in inlet methanol and NH4+-nitrogen concentrations. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the piston-dispersion-exchange model was used to interpret the residence time distribution curves obtained. Gas-liquid mass transfer parameters were determined by a stationary method based on the least-squares fit of the calculated concentration profiles in gas phase to the experimental values. Analysis of steady-state performances showed that under like operating conditions, the TBR outperforms the PBC in terms of conversions. A pulse change in the inlet methanol or NH4+-nitrogen concentration causes a negligible transient change in the outlet methanol concentration and a negligible or high transient change in the outlet NH4+-nitrogen concentration. A step change in the inlet methanol concentration causes the negligible transient change in the methanol outlet concentration and a relatively important transient change in the NH4+-nitrogen outlet concentration. A step increase in the NH4+-nitrogen inlet concentration induces a drastic transient change in the NH4+-nitrogen outlet concentration but a negligible transient change in the methanol outlet concentration.

  9. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2012-07-01

    Full Text Available Summer cyanobacterial blooms caused an elevation in pH (9 to ~10.5 that lasted for weeks in the shallow and tidal-fresh region of the Sassafras River, a tributary of Chesapeake Bay (USA. Elevated pH promoted desorption of sedimentary inorganic phosphorus and facilitated conversion of ammonium (NH4+ to ammonia (NH3. In this study, we investigated pH effects on exchangeable NH4+ desorption, pore water diffusion and the flux rates of NH4+, soluble reactive phosphorus (SRP and nitrate (NO3, nitrification, denitrification, and oxygen consumption. Elevated pH enhanced desorption of exchangeable NH4+ through NH3 formation from both pore water and adsorbed NH4+ pools. Progressive penetration of high pH from the overlying water into sediment promoted the mobility of SRP and the release of total ammonium (NH4+ and NH3 into the pore water. At elevated pH levels, high sediment-water effluxes of SRP and total ammonium were associated with reduction of nitrification, denitrification and oxygen consumption rates. Alkaline pH and the toxicity of NH3 may inhibit nitrification in the thin aerobic zone, simultaneously constraining coupled nitrification–denitrification with limited NO3 supply and high pH penetration into the anaerobic zone. Geochemical feedbacks to pH elevation, such as enhancement of dissolved nutrient effluxes and reduction in N2 loss via denitrification, may enhance the persistence of cyanobacterial blooms in shallow water ecosystems.

  10. Roughness and temperature effects on the filter media of a trickling filter for nitrification.

    Science.gov (United States)

    Kishimoto, Naoyuki; Ohara, Tetsuya; Hinobayashi, Jouji; Hashimoto, Tsutomu

    2014-01-01

    The performance of trickling filters using two types of plastic media with the same material, the same shape and different roughness was evaluated during a temperature-decreasing period to understand the roughness and temperature effects on the filter media. Real restaurant wastewater was used for the experiments. The chemical oxygen demand (COD) removal and nitrification performance of plastic media with a rough surface (LT-15) was superior to that with a smooth surface (KT-15). Because the biomass of microorganisms attached on the LT-15 was twice that attached on the KT-15, the larger biomass attached on the LT-15 was thought to be responsible for the higher performance. During the operation, the COD loading and water temperature varied in the range from 0.37 to 1.9 kg m(-3) d(-1) and 17.0--10.0 degrees C, respectively. However, the COD removal performance was not dependent on the COD loading or water temperature. On the contrary, the COD loading and the water temperature influenced the nitrification performance. Although a nitrification efficiency of 100% was recorded at a COD loading of 0.37 kg m(-3) d(-1), it deteriorated to 17-28% at higher COD loading. Moreover, a decline in the water temperature decreased the nitrification performance. The temperature-activity coefficient for nitrification was estimated to be 1.096. Based on this value, it was inferred that the COD loading should be set at less than 0.20 kg m(-3) d(-1) for the complete nitrification of the restaurant wastewater in winter, when the water temperature usually drops to around 10 degrees C.

  11. cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents.

    Directory of Open Access Journals (Sweden)

    Santiago A Plano

    Full Text Available The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN and is synchronized by several environmental stimuli, mainly the light-dark (LD cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2. The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC, cGMP and its related protein kinase (PKG. Pharmacological manipulation of cGMP by phosphodiesterase (PDE inhibition (e.g., sildenafil increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.

  12. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta.

    Science.gov (United States)

    Hirota, Tsuyoshi; Lewis, Warren G; Liu, Andrew C; Lee, Jae Wook; Schultz, Peter G; Kay, Steve A

    2008-12-30

    The circadian clock controls daily oscillations of gene expression at the cellular level. We report the development of a high-throughput circadian functional assay system that consists of luminescent reporter cells, screening automation, and a data analysis pipeline. We applied this system to further dissect the molecular mechanisms underlying the mammalian circadian clock using a chemical biology approach. We analyzed the effect of 1,280 pharmacologically active compounds with diverse structures on the circadian period length that is indicative of the core clock mechanism. Our screening paradigm identified many compounds previously known to change the circadian period or phase, demonstrating the validity of the assay system. Furthermore, we found that small molecule inhibitors of glycogen synthase kinase 3 (GSK-3) consistently caused a strong short period phenotype in contrast to the well-known period lengthening by lithium, another presumed GSK-3 inhibitor. siRNA-mediated knockdown of GSK-3beta also caused a short period, confirming the phenotype obtained with the small molecule inhibitors. These results clarify the role of GSK-3beta in the period regulation of the mammalian clockworks and highlight the effectiveness of chemical biology in exploring unidentified mechanisms of the circadian clock.

  13. Effects of Applying Lime and CalciumMontmorillonite on Nitrification Dynamics in Acidic Soil

    Directory of Open Access Journals (Sweden)

    WANG Mei

    2017-01-01

    Full Text Available Soil acidification is known as a natural and slow process along with clay mineral weathering. In recent years however, with inten sive soil utilization in agriculture, soil acidification has increased dramatically and nitrification of ammonium nitrogen fertilizer is one of the main contributors to soil acidification. Lime application is the traditional practice to improve acidic soils but it often makes the soil acidic a gain leading to soil compaction in most cases. Montmorillonite is the main clay mineral component of alkaline or neutral soils, more so it is known to undergo further weathering processes during soil acidification. The laboratory-based incubations were used in this study, and nitri fication was measured while kinetic curves were fitted to check the effects of decreasing soil acidity by lime(Ca-OHand montmorillonite (Ca-Mon nitrification of the acidic soil. The results showed that significant nitrification was observed both in Ca-OH and Ca-M treatments, and the nitrification process was fitted in the first-order kinetic model, NNO3=N0+Np(1-exp(-k1t(P-1·d-1was significantly higher than that of Ca-M treatment(2.381 mg·kg-1·d-1. The potential nitrifi cation rate(Vpwere 6.42, 8.58 mg N·kg-1·d-1 at pH 5.7 and 6.2 respectively, and the average nitrification rate(Vaof Ca-OH treatment were 2.71, 3.88 mg N·kg-1·d-1 respectively, which were significantly greater than those of Ca-M treatment(Vp were 3.40, 4.56 mg N·kg-1·d-1 and Va were 2.36, 3.04 mg N·kg-1·d-1 at pH 5.7 and 6.2 respectively. Therefore the net nitrification rate, potential nitrification rate(Vp and average nitrification rate(Vaof Ca-OH treatment were significantly higher than that of Ca-M treatment, suggesting that the possibili ty and degree of soil reacidification by using lime to improve acidic soil is greater than using calcium montmorillonite. This study will provide a new reference for the improvement of acid soils.

  14. Bacterial Peptide Deformylase Inhibition of Tetrazole-Substituted Biaryl Acid Analogs: Synthesis, Biological Evaluations, and Molecular Docking Study.

    Science.gov (United States)

    Khan, Firoz A Kalam; Patil, Rajendra H; Patil, Manjiri; Arote, Rohidas; Shinde, Devanand B; Sangshetti, Jaiprakash N

    2016-12-01

    The synthesis and screening of tetrazole-substituted biaryl acid analogs 7a-l as bacterial peptide deformylase (PDF) enzyme inhibitors is reported. The compounds 7e (IC 50 value = 5.50 μM) and 7g (IC 50 value = 7.25 μM) showed good PDF inhibition activity. The compounds 7e (MIC range = 10.75-11.66 μg/mL) and 7g (MIC range = 8.91-12.83 μg/mL) also showed potent antibacterial activity when compared with the standard ciprofloxacin (MIC range = 25-50 μg/mL). Thus, the active derivatives were not only potent PDF enzyme inhibitors but also efficient antibacterial agents. In order to gain more insight into the binding mode of the compounds with the PDF enzyme, the most active compounds 7e and 7g, the moderately active compound 7k, and the least active compound 7h were docked against the PDF enzyme of Escherichia coli. The docking study of the most active compounds 7e and 7g against the PDF enzyme exhibited good binding properties. Hence, we believe our synthesized compounds 7a-l could serve as reservoir for bacterial PDF inhibitor development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biological nanoparticles carrying the Hmda-7 gene are effective in inhibiting pancreatic cancer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Qingyun Zhu

    Full Text Available Pancreatic cancer is one of the most common malignancies of the digestive system, and remains a clinical challenge. This study aimed to assess the effects of bovine serum albumin (BSA nanoparticles carrying the hMDA-7 gene (BSA-NP-hMDA-7 in the treatment of pancreatic cancer.BSA-NP-hMDA-7 was generated by nanotechnology and gene recombination technology. A total of 5 BXPC-3 or PANC-1 pancreatic cancer cell groups were examined, including Control, BSA-NPs, Empty vector, hMDA-7 plasmid, and hMDA-7 BSA-NPs groups, respectively. Proliferation and apoptosis of cultured cells were assessed by the MTT method and flow-cytometry, respectively. In addition, pancreatic cancer models were established with both cell lines in nude mice, and the expression profiles of hMDA-7 and VEGF in cancer tissues were measured by Western blot and immunohistochemistry.BSA-NP-hMDA-7 nanoparticles were successfully generated, and significantly inhibited the proliferation of BXPC-3 and PANC-1 cells; in addition, apoptosis rates were higher in both cell lines after treatment with BSA-NP-hMDA-7 (P<0.05. Nude mouse xenograft studies indicated that treatment with BSA-NP-hMDA-7 nanoparticles resulted in decreased tumor size. Moreover, the hMDA-7 protein was found in tumor tissues after hMDA-7 gene transfection, while BSA-NP-hMDA-7 significantly suppressed VEGF expression in tumor tissues. Similar results were obtained for both BXPC-3 and PANC-1 xenograft models.BSA nanoparticles carrying the hMDA-7 gene effectively transfected BXPC-3 and PANC-1 pancreatic cancer cells, causing reduced cell proliferation and enhanced apoptosis in vitro. In mouse xenografts, BSA-NP-hMDA-7 treatment decreased tumor size and reduced VEGF expression. These findings indicated that BSA-NP-hMDA-7 might exert anticancer effects via VEGF suppression.

  16. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joshua C., E-mail: joshchang@ucla.edu [Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA and Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210 (United States); Miura, Robert M., E-mail: miura@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2016-04-21

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  17. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere

    NARCIS (Netherlands)

    De Wilde, H.; De Bie, M.J.M.

    2000-01-01

    Concentrations of nitrous oxide (N2O), oxygen, nitrate, and ammonium, as well as nitrification activity were determined along the salinity gradient of the Schelde Estuary, Northwest Europe, in October 1993, March 1994, and July 1996, The entire estuary was always supersaturated with N2O.

  18. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  19. Effects of moisture level and potassium on NH4+ nitrification and ...

    African Journals Online (AJOL)

    To understand the impact of moisture level and potassium on NH4+ nitrification a greenhouse and laboratory studies were conducted using surface soil of Typic Hapludert (0–30 cm) of Ginchi, central Ethiopia. The treatments were two levels of moisture and three levels of fertilizer (six combinations replicated three times).

  20. Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria

    Science.gov (United States)

    Hampel, Justyna J.; McCarthy, Mark J.; Gardner, Wayne S.; Zhang, Lu; Xu, Hai; Zhu, Guangwei; Newell, Silvia E.

    2018-02-01

    Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium (NH4+). We measured NH4+ regeneration and potential uptake rates and total nitrification using stable-isotope techniques. Nitrification studies included abundance of the functional gene for NH4+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential NH4+ uptake rates ranged from 0.02 to 6.80 µmol L-1 h-1 in the light and from 0.05 to 3.33 µmol L-1 h-1 in the dark, and NH4+ regeneration rates ranged from 0.03 to 2.37 µmol L-1 h-1. Nitrification rates exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 200 nmol L-1 d-1 and was > 1000 nmol L-1 d-1 at one station near a river discharge. AOA amoA gene copies were more abundant than AOB gene copies (p Internal NH4+ regeneration exceeded external N loading to the lake by a factor of 2 but was ultimately fueled by external N loads. Our results thus support the growing literature calling for watershed N loading reductions in concert with existing management of P loads.

  1. Effects of graphite nanoparticles on nitrification in an activated sludge system.

    Science.gov (United States)

    Dong, Qian; Liu, Yanchen; Shi, Hanchang; Huang, Xia

    2017-09-01

    Graphite nanoparticles (GNPs) might result in unexpected effects during their transportation and transformation in wastewater treatment systems, including strong thermo-catalytic and catalytic effects and microbial cytotoxicity. In particular, the effects of GNPs on the nitrification process in activated sludge systems should be addressed. This study aimed to estimate the influence of GNPs on the nitrification process in a short-term nitrification reactor with exposure to different light sources. The results indicated that GNPs could only improve the efficiency of photothermal transformation slightly in the activated sludge system because of its photothermal effects under the standard illuminant (imitating 1 × sun). However, even with better photothermal effects, the nitrification efficiency still decreased significantly with GNP dosing under the standard illuminant, which might result from stronger cytotoxic effects of GNPs on the nitrifying bacteria. The disappearance of extracellular polymeric substances (EPS) around bacterial cells was observed, and the total quantity of viable bacteria decreased significantly after GNP exposuring. Variation in bacterial groups primarily occurred in nitrifying microbial communities, including Nitrosomonas sp., Nitrosospira sp., Comamonas sp. and Bradyrhizobiace sp. Nitrifiers significantly decreased, while the phyla Gammaproteobacteria, Deinocccus, and Bacteroidetes exhibited greater stability during GNP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soil properties associated with net nitrification following watershed conversion with Appalachian hardwoods to Norway spruce

    Science.gov (United States)

    Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth Adams

    2011-01-01

    Nitrate (NO3-N) in soil solution and streamwater can be an important vector of nitrogen (N) loss from forested watersheds, and nitrification is associated with negative consequences of soil acidification and eutrophication of aquatic ecosystems. The purpose of this study was to identify vegetation-mediated soil properties that may control...

  3. Sustainable nitrification in fluidised bed reactor with immobilised ...

    African Journals Online (AJOL)

    TOC concentration above 800 mg·ℓ-1 was not able to cause the inhibition of the heterotrophs over the nitrifiers. PCR-DGGE results indicated the presence of Nitrosomonas (ammonia-oxidising bacteria) and Nitrobacter (nitrite-oxidising bacteria) in the immobilised pellets. Keywords: bioimmobilisation, ammonium, partial ...

  4. Characteristics of N2O production and hydroxylamine variation in short-cut nitrification SBR process.

    Science.gov (United States)

    Hu, Bo; Ye, Junhong; Zhao, Jianqiang; Ding, Xiaoqian; Yang, Liwei; Tian, Xiaolei

    2018-01-01

    In order to study the characteristics of nitrous oxide (N 2 O) production and hydroxylamine (NH 2 OH) variation under oxic conditions, concentrations of NH 2 OH and N 2 O were simultaneously monitored in a short-cut nitrification sequencing batch reactor (SBR) operated with different influent ammonia concentrations. In the short-cut nitrification process, N 2 O production was increased with the increasing of ammonia concentration in influent. The maximum concentrations of dissolved N 2 O-N in the reactor were 0.11 mg/L and 0.52 mg/L when ammonia concentrations in the influent were 50 mg/L and 70 mg/L respectively. Under the low and medium ammonia load phases, the concentrations of NH 2 OH-N in the reactor were remained at a low level which fluctuated around 0.06 mg/L in a small range, and did not change with the variation of influent NH 4 + -N concentration. Based on the determination results, the half-saturation of NH 2 OH in the biochemical conversion process of NH 2 OH to NO 2 - -N was very small, and the value of 0.05 mg NH 2 OH-N/L proposed in the published literature was accurate. NH 2 OH is an important intermediate in the nitrification process, and the direct determination of NH 2 OH in the nitrification process was beneficial for revealing the kinetic process of NH 2 OH production and consumption as well as the effects of NH 2 OH on N 2 O production in the nitrification process.

  5. Developing a chloramine decay index to understand nitrification: A case study of two chloraminated drinking water distribution systems.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification. Copyright © 2016. Published by Elsevier B.V.

  6. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria.

    Science.gov (United States)

    Taylor, Anne E; Vajrala, Neeraja; Giguere, Andrew T; Gitelman, Alix I; Arp, Daniel J; Myrold, David D; Sayavedra-Soto, Luis; Bottomley, Peter J

    2013-11-01

    Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤ 20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4(+)-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4(+)-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4(+)-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.

  7. Biological removal of algae in an integrated pond system

    CSIR Research Space (South Africa)

    Meiring, PGJ

    1995-01-01

    Full Text Available A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected...

  8. Exploiting the MDM2-CK1α Protein-Protein Interface to Develop Novel Biologics That Induce UBL-Kinase-Modification and Inhibit Cell Growth

    Science.gov (United States)

    Huart, Anne-Sophie; MacLaine, Nicola J.; Narayan, Vikram; Hupp, Ted R.

    2012-01-01

    Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between

  9. Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Huart

    Full Text Available Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2 oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i ELISA with recombinant MDM2; (ii cell lysate pull-down towards endogenous MDM2; (iii MDM2-CK1α complex-based competition ELISA; and (iv MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii be used as a tool to study NEDDylation of CK1α, and (iii reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross

  10. Bacteria, not archaea, restore nitrification in a zinc contaminated soil.

    NARCIS (Netherlands)

    Mertens, J.; Broos, K.; Wakelin, S.A.; Kowalchuk, G.A.; Springael, D.; Smolders, E.

    2009-01-01

    Biological ammonia oxidation had long been thought to be mediated solely by discrete clades of Β- and γ-proteobacteria (ammonia-oxidizing bacteria; AOB). However, ammonia-oxidizing Crenarchaeota (ammonia-oxidizing archaea; AOA) have recently been identified and proposed to be the dominant agents of

  11. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    Science.gov (United States)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative

  12. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    Science.gov (United States)

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  13. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities.

    Science.gov (United States)

    Jin, Qing; Jiang, Qiuyue; Zhao, Lei; Su, Cuizhu; Li, Songshuo; Si, Fangyi; Li, Shanshan; Zhou, Chenhao; Mu, Yonglin; Xiao, Ming

    2017-10-10

    Antagonistic soil microorganisms, which are non-toxic, harmless non-pollutants, can effectively reduce the density of pathogenic species by some ways. Bacillus velezensis strain S3-1 was isolated from the rhizosphere soil of cucumber, and was shown to inhibit plant pathogens, promote plant growth and efficiently colonize rhizosphere soils. The strain produced 13 kinds of lipopeptide antibiotics, belonging to the surfactin, iturin and fengycin families. Here, we presented the complete genome sequence of S3-1. The genome consists of one chromosome without plasmids and also contains the biosynthetic gene cluster that encodes difficidin, macrolactin, surfactin and fengycin. The genome contains 86 tRNA genes, 27 rRNA genes and 57 antibiotic-related genes. The complete genome sequence of B. velezensis S3-1 provides useful information to further detect the molecular mechanisms behind antifungal actions, and will facilitate its potential as a biological pesticide in the agricultural industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Prehn, Jonas; Waul, Christopher Kevin; Pedersen, Lars-Flemming

    2012-01-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study was to det...... biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems......Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study...

  15. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable

  16. [Effects of biochar and nitrification inhibitor incorporation on global warming potential of a vegetable field in Nanjing, China].

    Science.gov (United States)

    Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin

    2014-09-01

    The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.

  17. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater.

    Science.gov (United States)

    Duan, Jinming; Fang, Hongda; Su, Bing; Chen, Jinfang; Lin, Jinmei

    2015-03-01

    A novel halophilic bacterium capable of heterotrophic nitrification-aerobic denitrification was isolated from marine sediments and identified as Vibrio diabolicus SF16. It had ability to remove 91.82% of NH4(+)-N (119.77 mg/L) and 99.71% of NO3(-)-N (136.43 mg/L). The nitrogen balance showed that 35.83% of initial NH4(+)-N (119.77 mg/L) was changed to intracellular nitrogen, and 53.98% of the initial NH4(+)-N was converted to gaseous denitrification products. The existence of napA gene further proved the aerobic denitrification ability of strain SF16. The optimum culture conditions were salinity 1-5%, sodium acetate as carbon source, C/N 10, and pH 7.5-9.5. When an aerated biological filter system inoculated with strain SF16 was employed to treat saline wastewater, the average removal efficiency of NH4(+)-N and TN reached 97.14% and 73.92%, respectively, indicating great potential of strain SF16 for future full-scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Nitrification of leachates from manure composting under field conditions and their use in horticulture.

    Science.gov (United States)

    Cáceres, Rafaela; Magrí, Albert; Marfà, Oriol

    2015-10-01

    This work aimed to demonstrate the feasibility of nitrification applied to the treatment of leachates formed during composting of cattle and pig manure in order to promote their further use as liquid fertilizer in horticulture. Nitrification trials were successfully conducted in summer and winter seasons under Mediterranean climate conditions. Subsequently, effect of using the nitrified effluents as nutritive solution in the fertigation of lettuce (Lactuca sativa L.) was assessed in terms of productivity and nutrient uptake. Similar productivities were obtained when using the nitrified effluents and a standard nutritive solution. However, results also evidenced high nutrient uptake, which indicates that dosage should be adjusted to culture requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  20. Effect of temperate climate tree species on gross ammonification, gross nitrification and N2O formation

    Science.gov (United States)

    Brüggemann, N.; Rosenkranz, P.; Papen, H.; Butterbach-Bahl, K.

    2003-04-01

    Microbial nitrogen turnover processes in the soil, like ammonification, nitrification and denitrification, play an important role in the formation of nitrous oxide (N2O): (i) ammonification, because it releases nitrogen from organic material in the form of ammonium (NH4+), which in turn can serve as substrate for nitrification; (ii) nitrification itself (i.e. the turnover of NH4+ to nitrate, NO3-), during which nitric oxide (NO) and N2O can be released as by-products at varying ratios; (iii) denitrification, in which NO3- serves as electron acceptor and is converted to molecular nitrogen (N2) via NO and N2O as intermediates, that can also be partially lost to the atmosphere. Temperate forest soils are a substantial source of atmospheric N2O contributing up to 10% to the total atmospheric N2O budget. However, this figure is afflicted with a huge uncertainty due to a number of factors governing the soil N2O formation, consumption, release and uptake, which are not fully understood at present. To one of these factors belongs the influence of the tree species on nitrogen turnover processes in the soil and the formation of N trace gases related with them. The aim of the present work was to analyse this tree species effect for the temperate climate region. For this purpose the effect of five different temperate tree species, having the same age and growing on the same soil in direct vicinity to each other, on gross ammonification and gross nitrification as well as on N2O formation was investigated. The trees (common beech, Fagus sylvatica; pedunculate oak, Quercus robur; Norway spruce, Picea abies; Japanese larch, Larix leptolepis; mountain pine, Pinus mugo) were part of a species trial in Western Jutland, Denmark, established in 1965 on a former sandy heathland. Samples from the soil under these five tree species were taken in spring and in summer 2002, respectively, differentiating between organic layer and mineral soil. The gross rates of ammonification as well of

  1. [Effect of prescribed burning on grassland nitrogen gross mineralization and nitrification].

    Science.gov (United States)

    Li, Yuzhong; Zhu, Tingcheng; Li, Jiandong; Zhou, Daowei

    2003-02-01

    The seasonal dynamics of nitrogen gross mineralization, nitrification, and mineral nitrogen consumption rates in burned and unburned Leymus chinensis grasslands were studied with 15N pool dilution technique. The results indicated that the gross mineralization and nitrification rates in burned area were higher than those in unburned area in April and May, and lower than those in unburned area in September. NH4(+)-N consumption rates were higher than unburned area in April and May, and lower in September. NO3(-)-N consumption rates were higher than control in April and May, and lower than control in July and September. The NH4(+)-N concentrations were higher in burned area in April, May and July, and no difference in September. NO3(-)-N concentrations were no difference between burned and unburned areas in April and May, and higher in burned areas in July and September.

  2. Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Warner, Mark J.; Devol, Allan H.; Ward, Bess B.

    2016-03-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrite (NO2-) and to nitrate (NO3-), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2- oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2- oxidation rates were primarily controlled by NH4+ and NO2- availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2- oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situNH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.

  3. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils

    International Nuclear Information System (INIS)

    Liu, Yu-Rong; Dong, Ji-Xin; Han, Li-Li; Zheng, Yuan-Ming; He, Ji-Zheng

    2016-01-01

    Currently, rice straw return in place of burning is becoming more intensive in China than observed previously. However, little is known on the effect of returned rice straw on mercury (Hg) methylation and microbial activity in contaminated paddy fields. Here, we conduct a microcosm experiment to evaluate the effect of rice straw amendment on the Hg methylation and potential nitrification in two paddy soils with distinct Hg levels. Our results show that amended rice straw enhanced Hg methylation for relatively high Hg content soil, but not for low Hg soil, spiking the same additional fresh Hg. methylmercury (MeHg) concentration was significantly correlated to the dissolved organic carbon (DOC) content and relative abundance of dominant microbes associated with Hg methylation. Similarly, amended rice straw was found to only enhance the potential nitrification rate in soil with relatively high Hg content. These findings provide evidence that amended rice straw differentially modulates Hg methylation and nitrification in Hg contaminated soils possibly resulting from different characteristics in the soil microbial community. This highlights that caution should be taken when returning rice straw to contaminated paddy fields, as this practice may increase the risk of more MeHg production. Main finding: Rice straw amendment enhanced both Hg methylation and nitrification potential in the relatively high, but not low, Hg soil. - Highlights: • Rice straw enhanced Hg methylation in relatively high Hg content paddy soils. • Microbial community directly correlated to the Hg methylation. • Mercury methylation in soils depend on Hg bioavailability and microbial activities. • Hg input affects microbial community associated with decomposition of rice straw.

  4. Influence of dissolved oxygen on the nitrification kinetics in a circulating bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.; Melo, L.F. [University of Minho, Braga (Portugal). Dept. Bioengineering; Lazarova, V.; Manem, J. [Centre of International Research for Water and Environment (CIRSEE), Lyonnaise des Eaux, Le Pecq (France)

    1998-12-01

    The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5-2 gO{sub 2}/gN-NH{sub 4}{sup +} for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k{sub L}a) determined in the laboratory scale reactor was 0.017 s{sup -1} for a superficial air velocity of 0.02 m s{sup -1}, and the one determined in the pilot scale reactor was 0.040 s{sup -1} for a superficial air velocity of 0.031 m s{sup -1}. The k{sub L}a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm. (orig.) With 7 figs., 5 tabs., 24 refs.

  5. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    Science.gov (United States)

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  6. Stand-replacing wildfires increase nitrification for decades in southwestern ponderosa pine forests.

    Science.gov (United States)

    Kurth, Valerie J; Hart, Stephen C; Ross, Christopher S; Kaye, Jason P; Fulé, Peter Z

    2014-05-01

    Stand-replacing wildfires are a novel disturbance within ponderosa pine (Pinus ponderosa) forests of the southwestern United States, and they can convert forests to grasslands or shrublands for decades. While most research shows that soil inorganic N pools and fluxes return to pre-fire levels within a few years, we wondered if vegetation conversion (ponderosa pine to bunchgrass) following stand-replacing fires might be accompanied by a long-term shift in N cycling processes. Using a 34-year stand-replacing wildfire chronosequence with paired, adjacent unburned patches, we examined the long-term dynamics of net and gross nitrogen (N) transformations. We hypothesized that N availability in burned patches would become more similar to those in unburned patches over time after fire as these areas become re-vegetated. Burned patches had higher net and gross nitrification rates than unburned patches (P < 0.01 for both), and nitrification accounted for a greater proportion of N mineralization in burned patches for both net (P < 0.01) and gross (P < 0.04) N transformation measurements. However, trends with time-after-fire were not observed for any other variables. Our findings contrast with previous work, which suggested that high nitrification rates are a short-term response to disturbance. Furthermore, high nitrification rates at our site were not simply correlated with the presence of herbaceous vegetation. Instead, we suggest that stand-replacing wildfire triggers a shift in N cycling that is maintained for at least three decades by various factors, including a shift from a woody to an herbaceous ecosystem and the presence of fire-deposited charcoal.

  7. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    OpenAIRE

    Johannes Carl Gottlieb Ottow; Gero Benckiser; Ferisman Tindaon

    2011-01-01

    Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlormethylpyrazole phosphate = ClMPP and dicyandiamide = DCD) on non target microbial processes in soils. Side effects and dose response curve of three NIs were quanti...

  8. EFFECTS OF NITRIFICATION INHIBITORS ON MINERAL NITROGEN DYNAMICS IN AGRICULTURE SOILS

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; ohannes Carl Gottlieb Ottow

    2011-01-01

    Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dimethylpyrazo-lephosphate (DMPP), 4-Chlormethylpyrazole (ClMP) and dicyandiamide (DCD) on mineral nitrogen dynamics of (NH4)2SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC) was measured gas chromatographically. DMPP, ClMP and DCD ...

  9. Effects of Nitrification Inhibitors on Mineral Nitrogen Dynamics in Agriculture Soils

    OpenAIRE

    Tindaon, Ferisman; Benckiser, Gero; Ottow, Johannes Carl Gottlieb

    2011-01-01

    Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dime-thylpyrazo-lephosphate (DMPP), 4-Chlormethylpyrazole (ClMP) and dicyandiamide (DCD) on mineral nitrogen dynamics of (NH4)2SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC) was measured gas chromatographically. DMPP, ClMP and DCD...

  10. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  11. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    International Nuclear Information System (INIS)

    Ritvos, O.; Ranta, T.; Jalkanen, J.; Suikkari, A.M.; Voutilainen, R.; Bohn, H.; Rutanen, E.M.

    1988-01-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purified 34 K IGF-BP specifically bound [125I]iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of [125I] iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of [125I] iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with [125I]iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-[3H]aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells

  12. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    Directory of Open Access Journals (Sweden)

    Karen L Casciotti

    2012-10-01

    Full Text Available The microbial nitrogen (N cycle involves a variety of redox processes that control the availability and speciation of N in the environment and are involved with the production of nitrous oxide (N2O, a climatically important greenhouse gas. Isotopic measurements of ammonium (NH4+, nitrite (NO2-, nitrate (NO3-, and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO3- and NO2- have shown that there is NO3- regeneration in the ocean’s euphotic zone, as well as in and around oxygen deficient zones, indicating that nitrification may play more roles in the ocean’s N cycle than generally thought. Likewise, the inverse isotope effect associated with NO2- oxidation yields unique information about the role of this process in NO2- cycling in the primary and secondary NO2- maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process, the insights provided by this information, and provide a prospectus for future work in this area.

  13. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH(+) (4)), nitrite (NO(-) (2)), nitrate (NO(-) (3)), and N(2)O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO(-) (3) and NO(-) (2) have shown that there is NO(-) (3) regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO(-) (2) oxidation yields unique information about the role of this process in NO(-) (2) cycling in the primary and secondary NO(-) (2) maxima. Finally, isotopic measurements of N(2)O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area.

  14. An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture

    International Nuclear Information System (INIS)

    Misselbrook, T H; Cardenas, L M; Camp, V; Thorman, R E; Williams, J R; Rollett, A J; Chambers, B J

    2014-01-01

    A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N 2 O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH 3 ) volatilization, nitrate (NO 3 − ) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N 2 O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N 2 O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH 3 volatilization, NO 3 − leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N 2 O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N 2 O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted. (paper)

  15. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    Science.gov (United States)

    Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.

    2015-12-01

    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.

  16. How partial nitrification could improve reclaimed wastewater transport in long pipes.

    Science.gov (United States)

    Delgado, S; Alvarez, M; Rodríguez-Gómez, L E; Elmaleh, S; Aguiar, E

    2001-01-01

    Reclaimed wastewater transport is studied in a concrete-lined cast iron pipe, where a nitrification-denitrification process occurs. The pipe is part of the Reuse System of Reclaimed Wastewater of South Tenerife (Spain), 0.6 m in diameter and 61 km long. In order to improve wastewater quality, at 10 km from the inlet there is injection of fresh water saturated in dissolved oxygen (DO), after which a fast nitrification process usually appears (less than two hours of space time). The amount of oxidized nitrogen compounds produced varies between 0.8 and 4.4 mg/l NOx(-)-N. When DO has disappeared, a denitrification process begins. The removal of nitrite is complete at the end of the pipe, whereas the nitrate does not disappear completely, leaving a concentration of about 0.4-0.5 mg/l. For a COD/NOx(-)-N ratio higher than 5, a first order nitrification rate in NOx(-)-N has resulted, with the constant k20 = 0.079 h-1, for a NOx(-)-N concentration range of 0.8-4.4 mg/l. Finally the following temperature dependency for the first order denitrification rate constant has been found: k = k20 x 1 x 15T-20. Although nitrogen could be used as nutrient in the agricultural reuse, its removal from reclaimed wastewater could be useful in order to diminish the chlorine needs for reclaimed wastewater disinfection.

  17. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    Science.gov (United States)

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  18. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    Science.gov (United States)

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.

    Science.gov (United States)

    Modin, Oskar; Fukushi, Kensuke; Rabaey, Korneel; Rozendal, René A; Yamamoto, Kazuo

    2011-04-01

    In wastewater treatment plants, the reject water from the sludge treatment processes typically contains high ammonium concentrations, which constitute a significant internal nitrogen load in the plant. Often, a separate nitrification reactor is used to treat the reject water before it is fed back into the plant. The nitrification reaction consumes alkalinity, which has to be replenished by dosing e.g. NaOH or Ca(OH)(2). In this study, we investigated the use of a two-compartment microbial fuel cell (MFC) to redistribute alkalinity from influent wastewater to support nitrification of reject water. In an MFC, alkalinity is consumed in the anode compartment and produced in the cathode compartment. We use this phenomenon and the fact that the influent wastewater flow is many times larger than the reject water flow to transfer alkalinity from the influent wastewater to the reject water. In a laboratory-scale system, ammonium oxidation of synthetic reject water passed through the cathode chamber of an MFC, increased from 73.8 ± 8.9 mgN/L under open-circuit conditions to 160.1 ± 4.8 mgN/L when a current of 1.96 ± 0.37 mA (15.1 mA/L total MFC liquid volume) was flowing through the MFC. These results demonstrated the positive effect of an MFC on ammonium oxidation of alkalinity-limited reject water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The effect of soil properties on the toxicity of silver to the soil nitrification process.

    Science.gov (United States)

    Langdon, Kate A; McLaughlin, Mike J; Kirby, Jason K; Merrington, Graham

    2014-05-01

    Silver (Ag) is being increasingly used in a range of consumer products, predominantly as an antimicrobial agent, leading to a higher likelihood of its release into the environment. The present study investigated the toxicity of Ag to the nitrification process in European and Australian soils in both leached and unleached conditions. Overall, leaching of soils was found to have a minimal effect on the final toxicity data, with an average leaching factor of approximately 1. Across the soils, the toxicity was found to vary by several orders of magnitude, with concentrations of Ag causing a 50% reduction in nitrification relative to the controls (EC50) ranging from 0.43 mg Ag/kg to >640 mg Ag/kg. Interestingly, the dose-response relationships in most of the soils showed significant stimulation in nitrification at low Ag concentrations (i.e., hormesis), which in some cases produced responses up to double that observed in the controls. Soil pH and organic carbon were the properties found to have the greatest influence on the variations in toxicity thresholds across the soils, and significant relationships were developed that accounted for approximately 90% of the variability in the data. The toxicity relationships developed from the present study will assist in future assessment of potential Ag risks and enable the site-specific prediction of Ag toxicity. © 2014 SETAC.

  1. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment

    Directory of Open Access Journals (Sweden)

    M. Alkhatib

    2012-05-01

    Full Text Available The nitrogen (N stable isotopic composition of pore water nitrate and total dissolved N (TDN was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. N isotope effects on the water column associated with the benthic exchange of nitrate (εapp and TDN (εsed during benthic nitrification-denitrification coupling were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+. We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net fixed N loss was barely expressed at the scale of sediment-water exchange, with ϵapp values <3‰. The strongest under-expression (i.e. lowest εapp of the biological N isotope fractionation was observed at the most oxygenated sites with the least reactive organic matter, indicating that, through their control on the depth of the denitrification zone, bottom water oxygen concentrations and the organic matter reactivity can modulate εapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of εsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly elevate εsed above εapp. Calculated εsed values were within the range of 4.6 ± 2

  2. Fate of nanosilver in wastewater treatment plants and their impact on nitrification activity in sewage sludge; Verhalten von Nanosilber in Klaeranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, Michael [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); HSR Hochschule fuer Technik, Rapperswil (CH). Inst. fuer Umwelt- und Verfahrenstechnik (UMTEC); Zuleeg, Steffen [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); KUSTER + HAGER Ingenieurbuero AG, St. Gallen (Switzerland); Kaegi, Ralf; Sinnet, Brian; Eugster, Jakob; Boller, Markus; Siegrist, Hansruedi [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland)

    2010-10-15

    %). The mass fluxes are similar to metallic colloidal nanosilver investigated under the same conditions. The mass balance has been consistently confirmed by the full-scale study in a municipal wastewater treatment plant. The silver fluxes correspond to the fluxes of the suspended solids in sludge and effluent. Overall, it is estimated that from public wastewater treatment plants about 4-40 mg/a Ag per inhabitant equivalent are discharged annually to the receiving water. The analysis by SEM-EDX demonstrates adsorption and incorporation of nanosilver on biological flocs. This method yields first insight into complex building and transformation of silver associated with sulfide after adding metallic nanosilver and silver chloride to wastewater. Silver ions released from nanosilver react immediately with large amounts of chloride present in wastewater to form silver chloride. Silver ions may react with organic ligands or sulfide groups additionally. Consequently, even silver nitrate added with 1 mg/L Ag (250 mg Ag/kg TS) to activated sludge did not inhibit nitrification activity. Very high amounts of nanosilver, i. e. 100 mg/L Ag, overburdened the system and equilibrium condition between silver ion release and ligands was not reached. The mass balance reflects the excellent attachment of nanosilver to activated sludge and biological flocs. Therefore, the main elimination process of nanosilver is attachment to the activated sludge. The elimination of nanosilver is high compared to organic and inorganic micro pollutants omnipresent in wastewater. Any further reduction of suspended solids in the effluent water will reduce the silver load. Generally, in wastewater nanosilver occurs bonded to activated sludge flocs and therefore the elimination of nanosilver is efficient under operation conditions typical for wastewater treatment plants. The major fraction of nanosilver is removed from the system by the excess sludge withdrawal. Nonetheless, the efficiency may be further improved

  3. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  4. The rate of aucubin, a secondary metabolite in Plantago lanceolata and potential nitrification inhibitor, needed to reduce ruminant urine patch nitrous oxide emissions

    Science.gov (United States)

    Gardiner, C. A.; Clough, T.; Cameron, K.; Di, H.; Edwards, G. R.

    2017-12-01

    Nitrous oxide (N2O) losses derived from grazing ruminant livestock urine patches account for 40% of global N2O emissions. It has been shown that Plantago lanceolata, an herb species used in grazed pastures, contains an active secondary metabolite (aucubin) that has the potential to be excreted by grazing ruminants and inhibit nitrification in the urine patch, a key step in soil N2O production. However, the urinary excretion rate of aucubin needed to significantly reduce urine patch N2O emissions remains unknown. Aucubin was dissolved in bovine urine at three rates (47, 243, and 486 kg ha-1), based on rates used in Dietz et al. (2013) and the calculated highest potential aucubin application rate, from Gardiner et al. (2017). A control, along with a urine treatment and the three aucubin treatments (all urine applied at 700 kg N ha-1), was applied to 20 g soil and incubated in the laboratory for 35 d. Soils were monitored for surface pH, inorganic N concentration (NH4+/NO3-), and gas (N2O and CO2) fluxes. This experiment is currently underway and the results will be presented at the conference. Dietz M, Machill S, Hoffmann H, Schmidtke K 2013. Inhibitory effects of Plantago lanceolata L. on soil N mineralization. Plant and Soil 368: 445-458. Gardiner CA, Clough TJ, Cameron KC, Di HJ, Edwards GR, de Klein CAM 2017. The potential inhibitory effects of Plantago lanceolata and its active secondary metabolite aucubin on soil nitrification and nitrous oxide emissions under ruminant urine patch conditions. Manuscript submitted for publication.

  5. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  6. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV

  7. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Scior, Thomas; Guevara-García, José Antonio; Melendez, F J; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-09-24

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [V(V)O(2)(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm(-1) 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C-N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); (13)C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and (1)H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH(2) shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD(50)) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC(50)) and extended solution stability will be tested.

  8. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond

    Directory of Open Access Journals (Sweden)

    Misha eMiazga-Rodriguez

    2012-07-01

    Full Text Available Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to nine months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4 °C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya, as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g was added to retention pond water (100 mL amended with 5 mM ammonium and incubated at 12 °C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4 °C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year round by concentrating active nitrifying biomass.

  10. Succession of Biofilm Microbial Community during Nitrification in Lab-Scale Reactors Simulating Chloraminated Drinking Water Distribution System Conditions: the Impact of Simultaneously Increasing Monochloramine and Chlorine to Nitrogen Mass Ratios

    Science.gov (United States)

    Chloramination has been shown to promote nitrifying bacteria and 30 to 63% of utility plants using secondary chloramine disinfection experience nitrification episodes. Although nitrifying bacteria are not considered human pathogens, nitrification can affect drinking water qualit...

  11. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor.

    Science.gov (United States)

    Park, Seongjun; Chung, Jinwook; Rittmann, Bruce E; Bae, Wookeun

    2015-01-01

    To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2-4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate. © 2014 Wiley Periodicals, Inc.

  12. Continuous ammonium enrichment of a woodland stream: uptake kinetics, leaf decomposition, and nitrification

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; Schulze, M S; Stark, R W; Barmeier, J C

    1983-01-01

    In order to test for nitrogen limitation and examine ammonium uptake by stream sediments, ammonium hydroxide was added continuously at concentrations averaging 100 /sup +/gl/sup -1/ for 70 days to a second-order reach of Walker Branch, an undisturbed woodland stream in Tennessee. Ammonium uptake during the first 4 h of addition corresponded to adsorption kinetics rather than to first-order uptake or to Michaelis-Menten kinetics. However, the calculated adsorption partition coefficient was two to four orders of magnitude greater than values reported for physical adsorption of ammonium, suggesting that the uptake was largely biotic. Mass balance indicated that the uptake of ammonium from the water could be accounted for by increased nitrogen content in benthic organic detritus. Nitrification, inferred from longitudinal gradients in NO/sub 3/, began soon after enrichment and increased dramatically near the end of the experiment. Both ammonium and nitrate concentrations dropped quickly to near background levels when input ceased, indicating little desorption or nitrification of excess nitrogen stored in the reach. There was no evidence of nitrogen limitation as measured by weight loss, oxygen consumption, phosphorus content, and macroinvertebrate density of red oak leaf packs, or by chlorophyll content and aufwuchs biomass on plexiglass slides. A continuous phosphorus enrichment 1 year earlier had demonstrated phosphorus limitation in Walker Branch. 38 references, 6 figures, 3 tables.

  13. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy.

    Science.gov (United States)

    Watanabe, Keiji; Kohzu, Ayato; Suda, Wataru; Yamamura, Shigeki; Takamatsu, Takejiro; Takenaka, Akio; Koshikawa, Masami Kanao; Hayashi, Seiji; Watanabe, Mirai

    2016-01-01

    To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ(18)O and δ(15)N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.

  14. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: comparative study.

    Science.gov (United States)

    Li, Y Z; He, Y L; Ohandja, D G; Ji, J; Li, J F; Zhou, T

    2008-09-01

    This study assessed the performance of different single-stage continuous aerated submerged membrane bioreactors (MBR) for nitrogen removal. Almost complete nitrification was achieved in each MBR irrespective of operating mode and biomass system. Denitrification was found to be the rate-limiting step for total nitrogen (T-N) removal. The MBR with internal-loop airlift reactor (ALR) configuration performed better as regards T-N removal compared with continuous stirred-tank reactor (CSTR). It was demonstrated that simultaneous nitrification and denitrification (SND) is the mechanism leading to nitrogen removal and the contribution of microenvironment on SND is more remarkable for the MBRs with hybrid biomass. Macroenvironment analyses showed that gradient distribution of dissolved oxygen (DO) level in airlift MBRs imposed a significant effect on SND. Higher mixed liquor suspended solid (MLSS) concentration led to the improvement in T-N removal by enhancing anoxic microenvironment. Apparent nitrite accumulation coupled with higher nitrogen reduction was accomplished at MLSS concentration exceeded 12.6 g/L.

  15. A sensitive inhibition chemiluminescence method for the determination of 6-mercaptopurine in tablet and biological fluid using the reaction of luminol-Ag(III) complex in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hanwen, E-mail: hanwen@hbu.edu.cn [College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002 (China); Wang, Ting; Liu, Xuyang; Chen, Peiyun [College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002 (China)

    2013-02-15

    A sensitive inhibition chemiluminescence (CL) method for the determination of 6-mercaptopurine (6-MP) is developed. The mechanism of the CL reaction between Ag(III) complex {l_brace}[Ag(HIO{sub 6}){sub 2}]{sup 5-}{r_brace} and luminol in alkaline solution was proposed, along with the inhibition mechanism of 6-MP on the CL emission. The inhibition degree of CL emission was proportional to the logarithm of 6-MP concentration. The effects of the reaction conditions on CL emission and inhibition were examined. Under the optimized conditions, the detection limit (s/n=3) was 3.7 Multiplication-Sign 10{sup -10} g ml{sup -1}. The recoveries of 6-MP were in the range of 97.7-105% with the RSD of 2.1-3.4% (n=5) for tablet samples, 103-106% with the RSDs of 1.1-2.1% for spiked serum sample, and 97.2-101% with the RSD of 2.0-4.5% for spiked urine sample. The accuracy of this method for the tablet analysis was examined by comparing with the pharmacopoeia method. The proposed method was used for the determination of 6-MP at clinically relevant concentrations in real urine and serum samples with satisfactory results. - Highlights: Black-Right-Pointing-Pointer A sensitive inhibition chemiluminescence (CL) method for the determination of 6-MP is developed. Black-Right-Pointing-Pointer The inhibition mechanism of 6-MP on the CL emission was proposed. Black-Right-Pointing-Pointer The detection limit was 3.7 Multiplication-Sign 10{sup -10} g ml{sup -1}. Black-Right-Pointing-Pointer The accuracy was examined by comparing with the pharmacopoeia method.

  16. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS

    DEFF Research Database (Denmark)

    Suhr, Karin; Pedersen, Per Bovbjerg

    2010-01-01

    The nitrification performance of two fixed bed (FB) biofilters and two moving bed (MB) biofilters was evaluated. They received the same cold (8 degrees C) influent water from a commercial outdoor RAS facility producing rainbow trout (average density 32 kg m(-3)). The filters were constructed as f...

  17. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficience

    NARCIS (Netherlands)

    Abalos, D.; Jeffery, S.L.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A.

    2014-01-01

    Nitrification and urease inhibitors are proposed as means to reduce nitrogen losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly

  18. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification.

    Science.gov (United States)

    Huang, Fei; Pan, Luqing; Lv, Na; Tang, Xianming

    2017-11-01

    The development of an intensive aquaculture industry has been accompanied by increasing environmental impacts, especially nitrogen pollution. In this study, a novel halophilic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from mariculture water and identified as Bacillus litoralis N31. The efficiency of ammonium, nitrite and nitrate removal by N31 were 86.3%, 89.3% and 89.4%, respectively, after a 48-h cultivation in sole N-source medium with initial nitrogen approximately 20 mg/L. However, ammonium was removed preferentially, and no obvious nitrite accumulated during the simultaneous nitrification and denitrification process in mixed N-source media. The existence of hao, napA and nirS genes further proved the heterotrophic nitrification-aerobic denitrification capability of N31. The optimal conditions for ammonium removal were 30°C, initial pH 7.5-8.5, C/N ratio 5-20 and salinity 30-40‰, and the nitrification rate of N31 increased with increasing initial [Formula: see text] from 10 to 250 mg/L. Biosecurity assessment with shrimp indicated that strain N31 could be applied in the marine aquaculture industry safely for culture water remediation and effluent treatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Effect of iron ions and electric field on nitrification process in the periodic reversal bio-electrocoagulation system.

    Science.gov (United States)

    Qian, Guangsheng; Hu, Xiaomin; Li, Liang; Ye, Linlin; Lv, Weijian

    2017-11-01

    This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Inhibitory effect of cyanide on wastewater nitrification determined using SOUR and RNA-based gene-specific assays

    Science.gov (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes inv...

  1. Relative nitrogen mineralization and nitrification potentials in relation to soil chemistry in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1996-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oak-dominated, unmanaged forest stands in seven USDA Forest Service experimental forests (EF) ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia.

  2. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    Science.gov (United States)

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly

  3. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.

    Science.gov (United States)

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.

  4. Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-09-01

    Full Text Available Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A 15N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate (NO3− and ammonium (NH4+ concentration and15N2O, 15NO3− and 15NH4+ enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB. Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O value varied across different soils, with the highest PN2O value (0.26‰ found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil type and land-use might have strongly affected the

  5. Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils.

    Science.gov (United States)

    Liu, Rui; Hu, Hangwei; Suter, Helen; Hayden, Helen L; He, Jizheng; Mele, Pauline; Chen, Deli

    2016-01-01

    Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However, very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A (15)N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate ([Formula: see text]), and ammonium ([Formula: see text]) concentration and (15)N2O, (15)[Formula: see text], and (15)[Formula: see text] enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O-value) varied across different soils, with the highest PN2O-value (0.26‰) found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil

  6. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    Science.gov (United States)

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.

  7. In situ net N mineralisation and nitrification under organic and conventionally managed olive oil orchards

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Hinojosa, M. B.; García-Ruiz, R.

    2015-01-01

    Olive oil orchard occupies a great percentage of the cropland in southern Spain. Thus, changes in nitrogen (N) fertilization might have a great effect on N dynamics at least at regional scale, which should be investigated for a sustainable N fertilization program. In situ net N mineralization (NM......) and nitrification (NN) were investigated during a year in comparable organic (OR) and conventional (CV) olive oil orchards of two locations differing their N input. Soil samples were collected in two soil positions (under and between trees canopy) and both buried-bags and soil core techniques were used to quantify...... soil TN. Soil TN and PMN explained together a 50 % of the variability in soil N availability, which suggests that these two variables are good predictors of the potential of a soil to provide available N. The highest rates of soil N availability were found in spring, when olive tree demand for N...

  8. Cancer stem cells CD133 inhibition and cytotoxicity of certain 3-phenylthiazolo[3,2-a]benzimidazoles: design, direct synthesis, crystal study and in vitro biological evaluation.

    Science.gov (United States)

    Al-Ansary, Ghada H; Eldehna, Wagdy M; Ghabbour, Hazem A; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Eladwy, Radwa A; Al-Dhfyan, Abdullah; Kabil, Maha M; Abdel-Aziz, Hatem A

    2017-12-01

    Cancer stem cells (CSCs) have been objects of intensive study since their identification in 1994. Adopting a structural rigidification approach, a novel series of 3-phenylthiazolo[3,2-a]benzimidazoles 4a-d was designed and synthesised, in an attempt to develop potent anticancer agent that can target the bulk of tumour cells and CSCs. The anti-proliferative activity of the synthesised compounds was evaluated against two cell lines, namely; colon cancer HT-29 and triple negative breast cancer MDA-MB-468 cell lines. Also, their inhibitory activity against the cell surface expression of CD133 was examined. In particular, compound 4b emerged as a promising hit molecule as it manifested good antineoplastic potency against both tested cell lines (IC 50  = 9 and 12 μM, respectively), beside its ability to inhibit the cell surface expression of CD133 by 50% suggesting a promising potential of effectively controlling the tumour by eradicating the tumour bulk and inhibiting the proliferation of the CSCs. Moreover, compounds 4a and 4c showed moderate activity against HT-29 (IC 50  = 21 and 29 μM, respectively) and MDA-MB-468 (IC 50  = 23 and 24 μM, respectively) cell lines, while they inhibited the CD133 expression by 14% and 48%, respectively. Finally, a single crystal X-ray diffraction was recorded for compound 4d.

  9. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  10. Nitrogen management and nitrification inhibitor effects on nitrogen-15 urea: 2. Nitrogen leaching and balance

    International Nuclear Information System (INIS)

    Walters, D.T.; Malzer, G.L.

    1990-01-01

    Nitrification inhibitors (NI) may reduce N leaching losses, and should have the greatest effect on sandy soils where leaching potential is high. This study used 27 lysimeters to evaluate the effect of a NI, nitrapyrin [2-chloro-6(trichloromethyl) pyridine], on soil water percolation (SWP) and N leaching losses from an irrigated sandy loam soil (Typic Hapludoll) planted with corn (Zea mays L.), and monitor the fate of a single application of 15 N-enriched urea over a multiyear period. Urea was applied at 90 and 180 kg N ha -1 yr -1 for a 3-yr period, with and without NI, and with and without incorporation. Urea + NI reduced SWP between planting and silking in 2 out of 3 yr when growing degree days (GDD) were high. After silking, SWP was reduced when urea + NI was incorporated and leaching load was high. A twofold increase in N rate resulted in an average of 3.4 times more N leached over 3 yr. The NI influenced time of N loss but not total N loss. Leaching losses of fertilizer-derived N (FDN) were delayed 25 to 50d when urea + NI were incorporated. The leaching load required to reach the maximum rate of FDN loss was higher with urea + NI. Leaching losses of fertilizer N were three times greater when determined by the difference method than by isotope-ratio analysis. Differing results with these two calculations are attributed to isotope dilution with indigenous soil N as a result of microbial activity. Nitrification inhibitors may reduce the potential for nonpoint-source pollution by delaying NO 3 leaching, but will be most effective if coupled with proper N rates and conservative irrigation water management

  11. Achieving partial nitrification in a novel six basins alternately operating activated sludge process treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Rusul Naseer; Arab, Saad; Xiwu, Lu [Southeast University, Nanjing (China)

    2013-11-15

    A novel technology was developed to achieve partial nitrification at moderately low DO and short HRT, which would save the aeration cost and have the capacity to treat a wide range of low-strength real wastewater. The process enables a relatively stable whereas nitrite accumulation rate (NO{sub 2}-AR) was stabilized over 94% in the last aerobic basin on average of each phase through a combination of short HRT and low DO level. Low DO did not produce sludge with poorer settleability. The morphology and internal structure of the granular sludge was observed by using a scanning electron microscope (SEM) analysis during a long-term operation. The images indicated that thick clusters of spherical cells and small rod-shaped cells (NOB and AOB are rod-shaped to spherical cells) were the dominant population structure, rather than filamentous and other bacteria under a combination of low DO and short HRT, which gives a good indication of nitrite accumulation achievement. MPN method was used to correlate AOB numbers with nutrient removal. It showed that an ammonia-oxidizing bacterium (AOB) was the dominant nitrifying bacteria, whereas high NO{sub 2}-AR was achieved at AOB number of 5.33x10{sup 8} cell/g MLSS. Higher pollutant removal efficiency of 86.2%, 98% and 96.1%, for TN, NH{sub 4}{sup +}-N, and TP, respectively, was achieved by a novel six basin activated sludge process (SBASP) at low DO level and low C/N ratio which were approximately equal to the complete nitrification-denitrification with the addition of sodium acetate (NaAc) at normal DO level of (1.5-2.5 mg/L)

  12. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Avaliação de um reator de lodo ativado aplicado à nitrificação utilizando ensaios cinéticos = Evaluation of an activated sludge reactor applied to nitrification using kinetic assays

    Directory of Open Access Journals (Sweden)

    Valeria Reginatto

    2008-01-01

    Full Text Available Neste trabalho, um reator em escala laboratorial de lodo ativado, aplicado ao processo da nitrificação, foi acompanhado por meio de ensaios cinéticos de atividade específica. A atividade de nitrificação da biomassa foi determinada por respirometria nacaracterização do inóculo e na avaliação da biomassa do reator em duas condições: durante a alimentação do reator com meio sintético autotrófico; e após a sua alimentação com efluente de um reator UASB, utilizado para desnitrificação. O reator atingiu uma eficiência em torno de 90% de nitrificação em ambas as condições de operação. O modelo cinético de Andrews, que inclui uma constante da inibição pelo substrato (Ki, ajustou-se melhor aos resultados obtidos nos testes de atividade do que o de Monod. Entretanto, observou-se aumento daconstante de inibição (Ki do lodo após operação do reator em relação ao inóculo, demonstrando a adaptação da biomassa às novas condições (cargas de nitrificação.In this work, an activated sludge lab-scale reactor used fornitrification was monitored by specific activity kinetic assays. The nitrification biomass activity was carried out by respirometric methods in order to characterize the inoculum and the reactor sludge after two different operation conditions: during the feeding of the reactor with synthetic autotrophic medium, and after feeding it with effluent from an UASB reactor used for denitrification. The efficiency of nitrification reached 90% in both operation conditions. Results obtained by the kinetic activity assays were better adjusted by the kinetic model of Andrews, which includes the inhibition constant by the substrate (Ki, than the Monod model. However, an increase was observed in the inhibition constant (Ki of the sludge after the operation of the reactor as compared with the inoculum. This effect demonstrates an adaptation of the biomass to the new nitrification conditions (loading rate.

  14. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard

    Energy Technology Data Exchange (ETDEWEB)

    Maris, S.C., E-mail: stefania@macs.udl.cat [University of Lleida, Environment and Soil Science Department, Av. Alcalde Rovira Roure 191, E-25198 Lleida (Spain); Teira-Esmatges, M.R. [University of Lleida, Environment and Soil Science Department, Av. Alcalde Rovira Roure 191, E-25198 Lleida (Spain); Arbonés, A.; Rufat, J. [Programa Ús Eficient de l’Aigua, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Parc Científic i Tecnològic Agroalimentari de Lleida (PCiTAL). Parc de Gardeny, Edifici Fruitcentre, E-2503 Lleida (Spain)

    2015-12-15

    Drip irrigation combined with nitrogen (N) fertigation is applied in order to save water and improve nutrient efficiency. Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted to compare the emissions of nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) associated with the application of N fertiliser through fertigation (0 and 50 kg N ha{sup −1}), and 50 kg N ha{sup −1} + nitrification inhibitor in a high tree density Arbequina olive orchard. Spanish Arbequina is the most suited variety for super intensive olive groves. This system allows reducing production costs and increases crop yield. Moreover its oil has excellent sensorial features. Subsurface drip irrigation markedly reduced N{sub 2}O and N{sub 2}O + N{sub 2} emissions compared with surface drip irrigation. Fertiliser application significantly increased N{sub 2}O + N{sub 2}, but not N{sub 2}O emissions. Denitrification was the main source of N{sub 2}O. The N{sub 2}O losses (calculated as emission factor) ranging from − 0.03 to 0.14% of the N applied, were lower than the IPCC (2007) values. The N{sub 2}O + N{sub 2} losses were the largest, equivalent to 1.80% of the N applied, from the 50 kg N ha{sup −1} + drip irrigation treatment which resulted in water filled pore space > 60% most of the time (high moisture). Nitrogen fertilisation significantly reduced CO{sub 2} emissions in 2011, but only for the subsurface drip irrigation strategies in 2012. The olive orchard acted as a net CH{sub 4} sink for all the treatments. Applying a nitrification inhibitor (DMPP), the cumulative N{sub 2}O and N{sub 2}O + N{sub 2} emissions were significantly reduced with respect to the control. The DMPP also inhibited CO{sub 2} emissions and significantly increased CH{sub 4} oxidation. Considering global warming potential, greenhouse gas intensity, cumulative N{sub 2}O emissions and oil production, it can be concluded that applying DMPP with 50 kg N ha{sup −1

  15. Impact of paint shop decanter effluents on biological treatability of automotive industry wastewater.

    Science.gov (United States)

    Güven, Didem; Hanhan, Oytun; Aksoy, Elif Ceren; Insel, Güçlü; Çokgör, Emine

    2017-05-15

    A lab-scale Sequencing Batch Reactor (SBR) was implemented to investigate biological treatability and kinetic characteristics of paint shop wastewater (PSW) together with main stream wastewater (MSW) of a bus production factory. Readily biodegradable and slowly biodegradable COD fractions of MWS were determined by respirometric analysis: 4.2% (S S ), 10.4% (S H ) and 59.3% (X S ). Carbon and nitrogen removal performance of the SBR feeding with MSW alone were obtained as 89% and 58%, respectively. When PSW was introduced to MSW, both carbon and nitrogen removal were deteriorated. Model simulation indicated that maximum heterotrophic growth rate decreased from 7.2 to 5.7day -1 , maximum hydrolysis rates were reduced from 6 to 4day -1 (k hS ) and 4 to 1day -1 (k hX ). Based on the dynamic model simulation for the evaluation of nitrogen removal, a maximum specific nitrifier growth rate was obtained as 0.45day -1 for MSW feeding alone. When PSW was introduced, nitrification was completely inhibited and following the termination of PSW addition, nitrogen removal performance was recovered in about 100 days, however with a much lower nitrifier growth rate (0.1day -1 ), possibly due to accumulation of toxic compounds in the sludge. Obviously, a longer recovery period is required to ensure an active nitrifier community. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell - Nitrification system

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2018-01-01

    with synthetic ammonia-rich wastewater. A good linear relationship (R2 = 0.9419) was observed between current (0.5130–3.906 mA) and ammonia levels (0–62.1 mg NH4+-N/L). Such linear relationship was always obtained regardless of the tested external power supply or wastewater pH. The external electrochemical cell......A key challenge for ammonia monitoring during nitrogen removal process is the extra cost and toxic reagent consuming. Herein the feasibility of current generated by an integrated microbial electrolysis cell (MEC) - nitrification reactor as an indicator of initial ammonia levels (NH3/NH4......+) in wastewater was explored. In this loop system, ammonia was first oxidized to nitrate in the nitrification reactor, and then the effluent was introduced into the cathode of MEC where nitrate was reduced as electron acceptor. The correlation between current and ammonia concentration was first investigated...

  17. [Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin

    2016-02-15

    A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.

  18. Engineering hyporheic zones to target nitrification versus denitrification: performance data from constructed stream flumes

    Science.gov (United States)

    Herzog, S.; Portmann, A. C.; Halpin, B. N.; Higgins, C.; McCray, J. E.

    2017-12-01

    Nonpoint source nitrogen pollution from agricultural and urban runoff is one of the leading causes of impairment to US rivers and streams. The hyporheic zone (HZ) offers a natural biogeochemical hotspot for the attenuation of nitrogen within streams, thereby complementing efforts to prevent aquatic nitrogen pollution in the first place. However, HZ in urban and agricultural streams are often degraded by scouring and colmation, which limit their potential to improve stream water quality at the reach scale. A recent effort to mitigate nitrogen pollution in the Chesapeake Bay region provides denitrification credits for hyporheic restoration projects. Unfortunately, many of the featured hyporheic zone best management practices (BMP) (e.g., weirs, cross-vanes) tend to create only localized, aerobic hyporheic flows that are not optimal for the anaerobic denitrification reaction. In short, practitioners lack an adaptable BMP that can both 1) increase hyporheic exchange, and 2) tailor HZ residence times to match reactions of interest. Here we present new performance data for an HZ engineering technique called Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange and control residence times, along with reactive geomedia to increase reaction rates within HZ sediments. This research utilized two artificial stream flumes: One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). Two different BEST media were tested: a coarse sand module with K 0.5 cm/s, and a fine sand module with K 0.15 cm/s. The flume with coarse sand BEST modules created aerobic HZ conditions and demonstrated rapid nitrification of ammonia at rates significantly higher than the control. However, denitrification was much slower and not significantly different between the two streams. In contrast, the fine sand

  19. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    Science.gov (United States)

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluid chemistry included N2, NH4+ (5–112 μM), NO2− (27–48 μM), and NO3− (17–72 μM). In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier transform infrared (FTIR) microscopy and none-contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via

  20. Cooperation for Better Inhibiting.

    Science.gov (United States)

    Novoa, Eva Maria; Ribas de Pouplana, Lluís

    2015-06-18

    Cladosporin is an antimalarial drug that acts as an ATP-mimetic to selectively inhibit Plasmodium lysyl-tRNA synthetase. Using multiple crystal structures, Fang et al. (2015) reveal in this issue of Chemistry & Biology the fascinating mechanism responsible for cladosporin selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Organic carbon and iron modulate nitrification rates in mangrove swamps of Goa, south west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnan, K.P.; LokaBharathi, P.A.

    . The nitrification rates at the control and experimental sites are comparable and ranged from 3.2 plus or minus 1.2 to 18.4 plus or minus 1.9 ng at-N g(sediment) sup(-1) h sup(-1) and 2.7 plus or minus 1.5 to 18.2 plus or minus 0.6 ng at-N g(sediment) sup(-1) h sup...

  2. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    Science.gov (United States)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen

  3. Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment

    Science.gov (United States)

    Welsh, David T.; Nizzoli, Daniele; Fano, Elisa A.; Viaroli, Pierluigi

    2015-03-01

    The influence of the manila clam (Ruditapes philippinarum) on N-cycle processes, and oxygen and nutrient fluxes in a farmed sediment was investigated using a multiple core incubation approach and parallel incubations of individual clams. Clam population/biomass density varied ∼8-fold between cores and all sediment-water column solute (O2. N2, N2O, NH4+, NOX and DIN) fluxes and benthic process (N-regeneration, nitrification and denitrification) rates were strongly and significantly correlated with clam density/biomass. Isolated clams exhibited high rates of respiration, N-excretion, nitrification and denitrification of 2050 ± 70, 395 ± 49, 201 ± 42 and 235 ± 40 nmol individual-1 h-1, respectively. The direct contribution of the clams and their associated microbiota to benthic processes was estimated by multiplying the per individual rates by the number of clams in each incubated core. The clams on average directly accounted for 64-133% of total rates of sediment oxygen demand, N-regeneration, nitrification and denitrification, indicating that they regulated processes primarily through their own metabolic activity and that of bacteria that colonise them. Clams and the farmed sediments were significant sources of the greenhouse gas N2O, but this was primarily due to their high nitrification and denitrification rates, rather than high specific N2O yields, as N2O emissions represented farmed sediments had a high denitrification efficiency of 67 ± 10%, but this ecosystem service came at the environmental cost of increased N-regeneration and N2O emission rates. The measured N2O emissions indicate that bivalve aquaculture may be a significant source of N2O. It is therefore recommended that N2O emissions should be included in the impact assessments of current and future bivalve-farming projects.

  4. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    Science.gov (United States)

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  5. Growth modelling of Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25391: A new online indicator of the partial nitrification.

    Science.gov (United States)

    Cruvellier, Nelly; Poughon, Laurent; Creuly, Catherine; Dussap, C-Gilles; Lasseur, Christophe

    2016-11-01

    The aim of the present work was to study the growth of two nitrifying bacteria. For modelling the nitrifying subsystem of the MELiSSA loop, Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25931 were grown separately and in cocultures. The kinetic parameters of a stoichiometric mass balanced Pirt model were identified: μmax=0.054h(-1), decay rate b=0.003h(-1) and maintenance rate m=0.135gN-NH4(+)·gX(-1)·h(-1) for Nitrosomonas europaea; μmax=0.024h(-1), b=0.001h(-1) and m=0.467gN-NO2(-)·gX(-1)·h(-1) for Nitrobacter winogradskyi. A predictive structured model of nitrification in co-culture was developed. The online evolution of the addition of KOH is correlated to the nitritation; the dissolved oxygen concentration is correlated to both nitritation and nitratation. The model suitably represents these two variables so that transient partial nitrification is assessed. This is a clue for avoiding partial nitrification by predictive functional control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bacterial Peptide deformylase inhibition of cyano substituted biaryl analogs: Synthesis, in vitro biological evaluation, molecular docking study and in silico ADME prediction.

    Science.gov (United States)

    Khan, Firoz A Kalam; Patil, Rajendra H; Shinde, Devanand B; Sangshetti, Jaiprakash N

    2016-08-15

    Herein, we report the synthesis and screening of cyano substituted biaryl analogs 5(a-m) as Peptide deformylase (PDF) enzyme inhibitors. The compounds 5a (IC50 value=13.16μM), 5d (IC50 value=15.66μM) and 5j (IC50 value=19.16μM) had shown good PDF inhibition activity. The compounds 5a (MIC range=11.00-15.83μg/mL), 5b (MIC range=23.75-28.50μg/mL) and 5j (MIC range=7.66-16.91μg/mL) had also shown potent antibacterial activity when compared with ciprofloxacin (MIC range=25-50μg/mL). Thus, the active derivatives were not only potent PDF inhibitors but also efficient antibacterial agents. In order to gain more insight on the binding mode of the compounds with PDF, the synthesized compounds 5(a-m) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. In silico ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nitrogen management and nitrification inhibitor effects on nitrogen-15 urea: 1. Yield and fertilizer use efficiency

    International Nuclear Information System (INIS)

    Walters, D.T.; Malzer, G.L.

    1990-01-01

    Nitrification inhibitors (NI) are sometimes recommended for use with ammoniacal fertilizers in corn (Zea mays L.) production to improve fertilizer N use efficiency (FUE). The objectives of this experiment were to evaluate the effects of the NI nitrapyrin [2-chloro-6-(trichloromethyl) pyridine] application on yield and FUE of irrigated corn, and to monitor the fate of a single application of 15 N-enriched urea during a multiyear period in both soil and plant. Treatments included a factorial combination of two N rates (90 or 180 kg urea-N ha -1 yr -1 ) applied during a 3-yr period, with or without a NI and with or without incorporation, plus a zero-N control. Twenty-seven nonweighing lysimeters were used to quantify leaching load. Treatment effects on yield and FUE differed each year due to interactions of climate and N-management variables. Nonincorporated urea + NI reduced grain yield when leaching load was low and increased yield at the 90 kg ha -1 N rate when leaching load was low. The NI increased FUE only at the 90 kg ha -1 N rate when leaching load was high. Incorporation of urea + NI reduced plant recovery of fertilizer-derived N (FDN) in the year of application, but resulted in increased uptake of residual FDN in subsequent years. Incorporation of NI with moderate N rates coupled with conservative irrigation management should reduce the risk of yield loss and minimize NO 3 movement to groundwater

  8. Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration

    Science.gov (United States)

    Mo, Qifeng; Li, Zhi'An; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming

    2016-01-01

    Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.

  9. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor.

    Science.gov (United States)

    Liu, Tao; Mao, Yan-Jun; Shi, Yan-Ping; Quan, Xie

    2017-03-01

    Partial nitrification (PN) has been considered as one of the promising processes for pretreatment of ammonium-rich wastewater. In this study, a kind of novel carriers with enhanced hydrophilicity and electrophilicity was implemented in a moving bed biofilm reactor (MBBR) to start up PN process. Results indicated that biofilm formation rate was higher on modified carriers. In comparison with the reactor filled with traditional carriers (start-up period of 21 days), it took only 14 days to start up PN successfully with ammonia removal efficiency and nitrite accumulation rate of 90 and 91%, respectively, in the reactor filled with modified carriers. Evident changes of spatial distributions and community structures had been detected during the start-up. Free-floating cells existed in planktonic sludge, while these microorganisms trended to form flocs in the biofilm. High-throughput pyrosequencing results indicated that Nitrosomonas was the predominant ammonia-oxidizing bacterium (AOB) in the PN system, while Comamonas might also play a vital role for nitrogen oxidation. Additionally, some other bacteria such as Ferruginibacter, Ottowia, Saprospiraceae, and Rhizobacter were selected to establish stable footholds. This study would be potentially significant for better understanding the microbial features and developing efficient strategies accordingly for MBBR-based PN operation.

  10. Using Pure Cultures to Define the Site Preference of Nitrous Oxide Produced by Microbial Nitrification and Denitrification

    Science.gov (United States)

    Sutka, R. L.; Breznak, J. A.; Ostrom, N. E.; Ostrom, P. H.; Gandhi, H.

    2004-12-01

    Defining the site preference of nitrous oxide (N2O) produced in pure culture studies is crucial to interpreting field data. We have previously demonstrated that the intramolecular distribution of nitrogen isotopes (isotopomers) can be used to differentiate N2O produced by nitrifier denitrification and nitrification in cultures of Nitrosomonas europaea. Here, we have expanded on our initial results and evaluated the isotopomeric composition of N2O produced during nitrification and nitrifier denitrification with cultures of Nitrosospira multiformis. In addition, we have analyzed N2O produced during methanotrophic nitrification, denitrification, and fungal denitrification. To evaluate N2O production during nitrification and nitrifier denitrification, we compared the site preference of N2O formed as a result of nitrite reduction and hydroxylamine oxidation with Nitrosomonas europaea and Nitrosospira multiformis. The average site preference of N2O produced by hydroxylamine oxidation was similar for Nitrosomonas europaea (33.0 ± 3.5 ‰ ) and Nitrosospira multiformis (33.1 ± 4.2 ‰ ). Nitrous oxide produced by nitrifier-denitrification by Nitrosomonas europaea and Nitrosospira multiformis had a similar site preference of - 1.4 ± 4.4 ‰ and - 1.1 ± 2.6 ‰ respectively. The results indicate that it is possible to differentiate between N2O produced by nitrite reduction and hydroxylamine oxidation by ammonia oxidizing bacteria. Methanotrophic nitrification was evaluated by analyzing the N2O produced during hydroxylamine oxidation in concentrated cell suspensions of two methane oxidizing bacteria. The site preference of N2O produced by the two methane oxidizers, Methylococcus capsulatus Bath and Methylosinus trichosporium was 31.8 ± 4.7 ‰ and 33.0 ± 4.5 ‰ respectively. The results indicate that a site preference of 33 ‰ is applicable for nitrification regardless of whether a methane oxidizer or ammonia oxidizer is involved in the reaction. To determine the site

  11. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Impact of long term applications of cotton pesticides on soil biological properties, dissipation of [14C]-methyl parathion and persistence of multi-pesticide residues

    International Nuclear Information System (INIS)

    Andrea, M.M.; Peres, T.B.; Luchini, L.C.; Marcondes, M.A.; Pettinelli, A. Jr.; Nakagawa, L.E.

    2001-01-01

    Biological parameters were followed in soils from a cotton farm (Tatui) where the recommended pesticides have been used for years, and from an experimental field (Sao Paulo) which was subdivided in two areas: one received the recommended pesticides and the other was maintained untreated. The soil bioactivities monitored from 1995 to 1998, after different pesticide applications, were: basal and glucose-induced respiration; anaerobic activity; nitrification rate; activity of the enzymes: dehydrogenase, aryl sulfatase and arginine deaminase; the soil capacity to mineralize an aromatic pesticide molecule ([ 14 C]-2,4-D), fungal and bacterial contributions for soil respiration until the beginning of 1998, and fungal and bacterial numbers from the beginning of 1998. The dissipation of [ 14 C]-methyl parathion - one of the recommended pesticides - was followed by radiometric techniques only in Sao Paulo, but persistence of multi-residues was determined in both soils by gas-liquid chromatography. All the biological parameters varied each sampling time and values also varied among soil samples, being inhibited or stimulated by the different pesticide applications, but they mostly recovered the initially detected activity. Dissipation of methyl parathion was fast and not affected by the other pesticide applications. Pesticide residues varied between the two soils but were mostly low after all applications, which indicates their dissipation. (author)

  13. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    Science.gov (United States)

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  15. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  16. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  17. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  18. Partial nitrification enhances natural attenuation of nitrogen in a septic system plume.

    Science.gov (United States)

    Caschetto, M; Robertson, W; Petitta, M; Aravena, R

    2018-06-01

    Natural attenuation of nitrogen (N) was investigated in a well characterized septic system plume at a campground in Ontario, Canada. Total inorganic N (TIN) concentrations in deeper portions of the plume were about one third of the septic tank value of 40.7mgL -1 . NH 4 + and NO 3 - isotopic characterization were used to provide insight into potential attenuation processes. Concentrations of NH 4 + and NO 3 - were highly variable in the plume, but approached the septic tank TIN value in some shallow zones and exhibited δ 15 N values like the tank value of +6‰. However, isotopic enrichment (up to +24‰ for NH 4 + and +45‰ for NO 3 - ) and declining TIN concentrations in the deeper zones indicated that anaerobic ammonium oxidation contributed to the TIN attenuation. The degree of isotopic enrichment increased at lower NH 4 + concentrations and was consistent with Rayleigh-type distillation with an enrichment factor (Ɛ) of -5.1‰. Additionally, decreasing DOC values with depth and the concomitant enrichment of δ 15 N NO3 and δ 18 O NO3 , suggested that denitrification was also active. The N attenuation observed in the Killarney plume was partly due to incomplete nitrification that occurred because of the shallow water table, which varied from only 0.2-0.7m below the tile bed infiltration pipes. Moreover, some of the monitoring locations with the shallowest water table distances from the infiltration pipes, had the highest degree of TIN attenuation (70-90%) in the plume. This behavior suggests that controlling water table distance from the infiltration pipes could be a useful mechanism for enhancing N attenuation in septic system plumes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  20. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  1. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  2. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Science.gov (United States)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  3. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  4. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    no boundary layer between the fibrous material and bulk liquid, was 5.85 m/d at an air pressure of 27 kPa, which was comparable to that value of the MABR (5.54 m/d). The amount of biomass on the fibrous support with a silicone tube was 2.48 times larger than on the bare silicone. The biomass loss after a high...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  5. On-line monitoring and modelling based process control of high rate nitrification - lab scale experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Pirsing, A. [Technische Univ. Berlin (Germany). Inst. fuer Verfahrenstechnik; Wiesmann, U. [Technische Univ. Berlin (Germany). Inst. fuer Verfahrenstechnik; Kelterbach, G. [Technische Univ. Berlin (Germany). Inst. fuer Mess- und Regelungstechnik; Schaffranietz, U. [Technische Univ. Berlin (Germany). Inst. fuer Mess- und Regelungstechnik; Roeck, H. [Technische Univ. Berlin (Germany). Inst. fuer Mess- und Regelungstechnik; Eichner, B. [Technische Univ. Berlin (Germany). Inst. fuer Anorganische und Analytische Chemie; Szukal, S. [Technische Univ. Berlin (Germany). Inst. fuer Anorganische und Analytische Chemie; Schulze, G. [Technische Univ. Berlin (Germany). Inst. fuer Anorganische und Analytische Chemie

    1996-09-01

    This paper presents a new concept for the control of nitrification in highly polluted waste waters. The approach is based on mathematical modelling. To determine the substrate degradation rates of the microorganisms involved, a mathematical model using gas measurement is used. A fuzzy-controller maximises the capacity utilisation efficiencies. The experiments carried out in a lab-scale reactor demonstrate that even with highly varying ammonia concentrations in the influent, the nitrogen concentrations in the effluent can be kept within legal limits. (orig.). With 11 figs.

  6. Impact of solid retention time and nitrification capacity on the ability of activated sludge to remove pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Andersen, Henrik Rasmus; Ledin, Anna

    2012-01-01

    Removal of five acidic pharmaceuticals (ibuprofen, ketoprofen, naproxen, diclofenac and clofibric acid) by activated sludge from five municipal activated sludge treatment processes, with various sludge ages and nitrification capacities, was assessed through batch experiments. The increase...... in aerobic sludge age from 1-3 to 7 days seemed to be critical for the removal of naproxen and ketoprofen, with markedly higher rates of removal at sludge ages of 7 days or more. No removal was shown for diclofenac and clofibric acid, while high rates were observed for ibuprofen in all investigated sludges...

  7. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the {sup 15}N isotopic technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Sheng, E-mail: jszs@cc.tuat.ac.jp [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403 (China); Sakiyama, Yukina; Riya, Shohei [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Song, Xiangfu [Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403 (China); Terada, Akihiko; Hosomi, Masaaki [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2012-07-15

    Using livestock wastewater for rice production in paddy fields can remove nitrogen and supplement the use of chemical fertilizers. However, paddy fields have complicated water dynamics owing to varying characteristics and would influence nitrogen removal through nitrification followed by denitrification. Quantification of nitrification and denitrification is of great importance in assessing the influence of water dynamics on nitrogen removal in paddy fields. In this study, nitrification and nitrate reduction rates with different water dynamics after liquid cattle waste application were evaluated, and the in situ denitrification rate was determined directly using the {sup 15}N isotopic technique in a laboratory experiment. A significant linear regression correlation between nitrification and the nitrate reduction rate was observed and showed different regression coefficients under different water dynamics. The regression coefficient in the continuously flooded paddy soil was higher than in the drained-reflooded paddy soil, suggesting that nitrate would be consumed faster in the flooded paddy soil. However, nitrification was limited and the maximum rate was only 13.3 {mu}g N g{sup -1} day{sup -1} in the flooded paddy soil with rice plants, which limited the supply of nitrate. In contrast, the drained-reflooded paddy soil had an enhanced nitrification rate up to 56.8 {mu}g N g{sup -1} day{sup -1}, which was four times higher than the flooded paddy soil and further stimulated nitrate reduction rates. Correspondingly, the in situ denitrification rates determined directly in the drained-reflooded paddy soil ranged from 5 to 1035 mg N m{sup -2} day{sup -1}, which was higher than the continuously flooded paddy soil (from 5 to 318 mg N m{sup -2} day{sup -1}) during the vegetation period. The nitrogen removal through denitrification accounted for 38.9% and 9.9% of applied nitrogen in the drained-reflooded paddy soil and continuously flooded paddy soil, respectively

  8. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  9. Effect of nitrification inhibitors on the content of available nitrogen forms in the soil under maize (Zea mays, L. growing

    Directory of Open Access Journals (Sweden)

    Zuzana PANAKOVA

    2016-12-01

    Full Text Available The objective of this research was to investigate the effect of nitrification inhibitors (dicyandiamide and 1,2,4 triazole on the content of nitrate and ammonium nitrogen in the soil and the effectiveness of nitrogen-sulphur nutrition of maize. The research was conducted in field small-plot experiment with maize on Haplic Luvisol with dominance of clay fraction in experimental years 2012 to 2015. The dose of nitrogen in all experimental treatments was 160 kg*ha-1 and was applied at one shot or split in three partial doses. Soil samples from all examined treatments were taken from three soil depths (0.0-0.3 m, 0.3-0.6 m and 0.6-0.9 m, respectively by probe rod in 4-5 week intervals. Achieved results indicate that on the average of four years and three depths of the soil profile, application of nitrification inhibitors contained in fertilizer ENSIN considerably reduced portion of nitrate nitrogen from the content of mineral nitrogen in the soil by 7-32 relative %. The application of fertilizer ENSIN considerably increased content of ammonium nitrogen in the soil by 10-59 relative %. A favourable effect on increase of ammonium nitrogen content and reduction of nitrate nitrogen content was found out in spite of the fact that in this treatment the total dose of fertilizer was applied at one shot.

  10. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.

  11. Profitability of Nitrification Inhibitors for Abatement of Nitrate Leaching on a Representative Dairy Farm in the Waikato Region of New Zealand

    Directory of Open Access Journals (Sweden)

    Upa H. Paragahawewa

    2011-11-01

    Full Text Available Direct policies for the management of nonpoint source pollution are difficult to apply given asymmetric information, spatial and temporal variability, and uncertainty. There is increasing awareness that these limitations may be overcome where profitable mitigation practices are broadly adopted by polluters. Nitrification inhibitors (chemicals applied to paddocks that retard the nitrification process in soils are a rare example of a mitigation practice that reduces pollutant loads and potentially increases farm profit through promoting pasture production. This study investigates their capacity to achieve both goals to inform policy makers and producers of their potential for simultaneously improving farm profit and water quality. With an assumed 10 percent increase in pasture production in response to nitrification inhibitor application, nitrification inhibitors are a profitable innovation because greater pasture production supports higher stocking rates. Nonetheless, their overall impact on farm profit is low, even when the cost of inhibitors or their impact on subsequent pasture production is substantially altered. However, inhibitors are found to be a critical mitigation practice for farmers posed with decreasing leaching loads to satisfy regulatory requirements. These findings suggest that, despite their shortcomings for nonpoint pollution regulation, direct policies appear to be the only way to motivate producers to account for their impact on environmental values given the current lack of profitable mitigations.

  12. Contribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil

    NARCIS (Netherlands)

    Kester, R.A.; Meijer, M.L.; Libochant, J.A.; De Boer, W.; Laanbroek, H.J.

    1997-01-01

    Most studies determining the contribution of nitrification and denitrification to NO and N2O emissions from soils have been performed in agricultural systems, often with homogenized soil samples. More information about the nitrifier and denitrifier contribution in non-agricultural systems may

  13. Nitrification in trickling filters applied to the post-treatment of effluents from UASB reactor: correlation between ammonia removal and the relative abundance of nitrifying bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Missagia, B. S.; Almeida, P. G. S. de; Silva, S. Q.; Chernicharo, C. A. L.

    2009-07-01

    The number and physiological activity of nitrifying bacteria in wastewater treatment reactors are considered the ratelimiting parameters for the bioconversion of nitrogen in sewage. Since the presence of ammonia and nitrite oxidizers can be correlated with their activity. In situ probe counts can be correlated with the nitrification rates in order to compare the efficiency of different media types. (Author)

  14. Removal of nitrogen and organic matter in a submerged-membrane bioreactor operating in a condition of simultaneous nitrification and denitrification

    Directory of Open Access Journals (Sweden)

    Izabela Major Barbosa

    2016-04-01

    Full Text Available This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD5 and Total Organic Carbon (TOC. Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.

  15. Nitrification in trickling filters applied to the post-treatment of effluents from UASB reactor: correlation between ammonia removal and the relative abundance of nitrifying bacteria

    International Nuclear Information System (INIS)

    Missagia, B. S.; Almeida, P. G. S. de; Silva, S. Q.; Chernicharo, C. A. L.

    2009-01-01

    The number and physiological activity of nitrifying bacteria in wastewater treatment reactors are considered the ratelimiting parameters for the bioconversion of nitrogen in sewage. Since the presence of ammonia and nitrite oxidizers can be correlated with their activity. In situ probe counts can be correlated with the nitrification rates in order to compare the efficiency of different media types. (Author)

  16. Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans

    DEFF Research Database (Denmark)

    Sverdrup, Line Emilie; Ekelund, Flemming; Krogh, Paul Henning

    2002-01-01

    mg/kg. For effects on nitrification, toxicity (NOEC values) expressed as soil pore-water concentrations (log10(micromol/L)) showed a significant inverse relationship with lipophilicity (log octanol-water partition coefficient) of the substances (r2 = 0.69, p = 0.011, n = 8). This finding could...

  17. Shell Biofilm Nitrification and Gut Denitrification Contribute to Emission of Nitrous Oxide by the Invasive Freshwater Mussel Dreissena polymorpha (Zebra Mussel)

    Science.gov (United States)

    Svenningsen, Nanna B.; Heisterkamp, Ines M.; Sigby-Clausen, Maria; Larsen, Lone H.; Nielsen, Lars Peter; Stief, Peter

    2012-01-01

    Nitrification in shell biofilms and denitrification in the gut of the animal accounted for N2O emission by Dreissena polymorpha (Bivalvia), as shown by gas chromatography and gene expression analysis. The mussel's ammonium excretion was sufficient to sustain N2O production and thus potentially uncouples invertebrate N2O production from environmental N concentrations. PMID:22492461

  18. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  19. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Min; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Changsheng [Huazhong Agricultural Univ., Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Di, Hong J. [Lincoln Univ., Christchurch (New Zealand). Center for Soil and Environment Research

    2011-07-15

    Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO{sub 3}{sup -}) leaching, and nitrous oxide (N{sub 2}O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO{sub 3}{sup -} leaching and N{sub 2}O emissions in vegetable production systems. Twenty-four undisturbed soil monolith lysimeters (610 mm in diameter; 700 mm in depth; surface area, 0.29 m{sup 2}) with two different soils, Huangzongrang (alfisol) and Chaotu (fluvisols), were collected and installed in a field lysimeter facility in Central China under irrigated vegetable production conditions. Urea fertilizer was applied at 650 kg N ha{sup -1}, and DCD was applied at 10 kg ha{sup -1} to the lysimeters planted with three kinds of vegetables (capsicum, Capsicum annuum L.; amaranth, Amaranthus mangostanus L.; radish, Raphanus sativus L.). The results showed that DCD reduced NO3- leaching by 58.5% and 36.2% and N{sub 2}O emissions factor by 83.8% and 72.7% in the two soils. The average NO{sub 3}{sup -}-N concentration in the drainage water was decreased from 4.9 mg NL{sup -1} to 2.3 mg NL{sup -1} and from 4.4 mg NL{sup -1} to 3.3 mg NL{sup -1}, in the Huangzongrang and Chaotu soils, respectively. In addition to the environmental benefits, the use of DCD also increased the yields of capsicum and radish in alfisol soil significantly (P < 0.01); only the amaranth yield in fluvisol soil was declined (P < 0.01), and the other vegetables yields were not affected. Total N concentrations of the three vegetables were increased significantly (P < 0.01) with the application of DCD with urea compared with urea alone. These results showed that the nitrification inhibitor DCD has the potential to significantly reduce NO{sub 3}{sup -} leaching and N{sub 2}O emissions and to make vegetable farming more environmentally

  20. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  1. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  2. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous......-flow lab-scale assay. NH4 + removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4 + removal...... rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4 + removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times...

  4. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for N2O mitigation after grassland cultivation

    DEFF Research Database (Denmark)

    Kong, Xianwang

    Temporary grasslands cover ca. 11 million ha and constitute more than 10% of the total arable land within EU-28; in Denmark, ca. 60% of the grasslands are included in crop rotations. The high productivity and the positive residual effect on succeeding crops are the main reasons of placing...... archaea (AOA), as revealed by mRNA transcripts of amoA gene. This inhibitory effect could be limited to the soil volume in close contact with residues, where residue decomposition and subsequent nitrification took place. In the field study, there was a trend towards lower biomass yield and N...... grasslands in crop rotations. At the transition phase, the mineralization of grass and clover residues incorporated by grassland cultivation can supply nitrogen to a succeeding crop; however, the plant N-uptake is low for several weeks at the early growth stage. During this period, as a result of increasing...

  5. Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways

    DEFF Research Database (Denmark)

    Quan, Nguyen Van; Wu, Di; Kong, Xianwang

    2017-01-01

    decomposition. Here, we applied O2 planar optode and N2O isotopomer techniques to investigate the linkage between soil O2 dynamics and N2O production pathways in soils treated with cattle slurry (treatment CS) and tested the effect of the nitrification inhibitor 3,4-dimethyl pyrazole phosphate, DMPP (treatment......Application of cattle slurry to grassland soil has environmental impacts such as ammonia volatilization and greenhouse gas emissions. The extent, however, depends on application method and soil conditions through their effects on infiltration and oxygen (O2) availability during subsequent...... CSD). Twodimensional planar optode images of soil O2 over time revealed that O2 depletion ultimately extended to 1.5 cm depth in CS, as opposed to 1.0 cm in CSD. The 15N site preference (SP) and d18O of emitted N2O varied between 11-25‰and 35e47‰, respectively, indicating a mixture of production...

  6. Transformation-Dissolution Reactions Partially Explain Adverse Effects of Metallic Silver Nanoparticles to Soil Nitrification in Different Soils.

    Science.gov (United States)

    Bollyn, Jessica; Willaert, Bernd; Kerré, Bart; Moens, Claudia; Arijs, Katrien; Mertens, Jelle; Leverett, Dean; Oorts, Koen; Smolders, Erik

    2018-04-25

    Risk assessment of metallic nanoparticles (NP) is critically affected by the concern that toxicity goes beyond that of the metallic ion. This study addressed this concern for soils with silver (Ag)-NP using the Ag-sensitive nitrification assay. Three agricultural soils (A,B,C) were spiked with equivalent Ag doses of either Ag-NP (d = 13 nm) or AgNO 3 . Soil solution was isolated and monitored over 97 days with due attention to accurate Ag fractionation at low (∼10 µg L -1 ) Ag concentrations. Truly dissolved (soils decreased with reaction half-lives of 4 to 22 days depending on the soil, denoting important Ag-ageing reactions. In contrast, truly dissolved Ag in Ag-NP-amended soils first increased by dissolution and subsequently decreased by ageing; the concentration never exceeding that in the AgNO 3 -amended soils. The half-lives of Ag-NP transformation-dissolution were about 4 days (soils A&B) and 36 days (soil C). The Ag toxic thresholds (EC10, mg Ag kg -1 soil) of nitrification, either evaluated at 21 or 35 days after spiking, were similar between the two Ag forms (soils A&B) but were factors 3 to 8 lower for AgNO 3 than for Ag-NP (soil C), largely corroborating with dissolution differences. This fate and bio-assay showed that Ag-NPs are not more toxic than AgNO 3 at equivalent total soil Ag concentrations and that differences in Ag-dissolution at least partially explain toxicity differences between the forms and among soils. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations

    Science.gov (United States)

    Battaglia, G.; Joos, F.

    2018-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5) scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5 (±1σ range: 3.0 to 6.1) Tg N yr-1, where 4.5% stems from denitrification. Modeled denitrification is 65.1 (40.9 to 91.6) Tg N yr-1, well within current estimates. For high GHG forcing, N2O production decreases by 7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales, marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight coupling between the marine carbon cycle, O2, N2O, and climate.

  8. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil

    NARCIS (Netherlands)

    Mertens, J.; Broos, K.; Wakelin, S.A.; Kowalchuk, G.A.; Springael, D.; Smolders, E.

    2009-01-01

    Biological ammonia oxidation had long been thought to be mediated solely by discrete clades of - and -proteobacteria (ammonia-oxidizing bacteria; AOB). However, ammonia-oxidizing Crenarchaeota (ammonia-oxidizing archaea; AOA) have recently been identified and proposed to be the dominant agents of

  9. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  10. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes

    DEFF Research Database (Denmark)

    Zhao, Nannan; Li, Xiaohu; Jin, Xiangdan

    2017-01-01

    Ammonia monitoring is important to control anaerobic digestion (AD) process due to inhibition effect. Here, an electrolysis cell (EC) was integrated with a complete nitrification reactor as an alternative approach for online monitoring of ammonia during AD processes. The AD effluent was pumped...... into nitrification reactor to convert ammonia to nitrate, followed by the introduction of nitrate-rich effluent to EC cathode. It was first evaluated with synthetic ammonia-rich digesters and was observed that the current at 5 min were linearly corresponding to the ammonia levels (from 0 to 7.5 mM NH4+-N, R2....... The simple and reliable biosensor showed great promising for online ammonia monitoring of AD processes....

  11. Systematic model development for partial nitrification of landfill leachate in a SBR

    DEFF Research Database (Denmark)

    Ganigue, R.; Volcke, E.I.P.; Puig, S.

    2010-01-01

    ), confirmed by statistical tests. Good model fits were also obtained for pH, despite a slight bias in pH prediction, probably caused by the high salinity of the leachate. Future work will be addressed to the model-based evaluation of the interaction of different factors (aeration, stripping, pH, inhibitions....... Following a systematic procedure, the model was successfully constructed, calibrated and validated using data from short-term (one cycle) operation of the PN-SBR. The evaluation of the model revealed a good fit to the main physical-chemical measurements (ammonium, nitrite, nitrate and inorganic carbon......, among others) and their impact on the process performance....

  12. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    International Nuclear Information System (INIS)

    Su, Lijuan; Aga, Diana; Chandran, Kartik; Khunjar, Wendell O.

    2015-01-01

    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S 0 ) to biomass (X 0 ) ratio (on COD basis) is below 2 × 10 −3 . The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions

  13. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lijuan; Aga, Diana [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Chandran, Kartik [Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States); Khunjar, Wendell O., E-mail: wkhunjar@hazenandsawyer.com [Hazen and Sawyer P.C., Fairfax, VA 22030 (United States)

    2015-01-23

    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S{sub 0}) to biomass (X{sub 0}) ratio (on COD basis) is below 2 × 10{sup −3}. The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions.

  14. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    Science.gov (United States)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations

  15. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    Science.gov (United States)

    Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor

  16. Respirometry applied for biological nitrogen removal process; Aplicacion de la respirometria al tratamiento biologico para la eliminacion del nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2004-07-01

    In waste water treatment plants, the Biological Nitrogen Removal (BNR) has acquired a fundamental importance. The BNR processes are Nitrification ( aerobic) and Denitrification (anoxic). Since both processes are carried on living microorganisms, a lack of their bioactivity information might cause serious confusion about their control criteria and following up purposes. For this reason, the Re spirometry applied to those processes has reached an important role by getting an essential information in a timely manner through respiration rate measurements in static and dynamic modes and applications such as AUR (Ammonium Uptake Rate), Nitrification Capacity. RBCOD (Readily Biodegradable COD) as well as AUR related to SRT (Sludge age), RBCOD related to NUR (Specific Nitrate Uptake Rate) and others. By other side in this article we have introduced a not very well known applications related to denitrification, about the methanol acclimatization and generated bioactivity. (Author) 6 refs.

  17. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Abzazou, Tarik; Araujo, Rosa M.; Auset, María; Salvadó, Humbert

    2016-01-01

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L"−"1), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH_4"+ removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  18. Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactor (SBR).

    Science.gov (United States)

    Soliman, Moomen; Eldyasti, Ahmed

    2017-06-01

    Recently, partial nitrification has been adopted widely either for the nitrite shunt process or intermediate nitrite generation step for the Anammox process. However, partial nitrification has been hindered by the complexity of maintaining stable nitrite accumulation at high nitrogen loading rates (NLR) which affect the feasibility of the process for high nitrogen content wastewater. Thus, the operational data of a lab scale SBR performing complete partial nitrification as a first step of nitrite shunt process at NLRs of 0.3-1.2kg/(m 3 d) have been used to calibrate and validate a process model developed using BioWin® in order to describe the long-term dynamic behavior of the SBR. Moreover, an identifiability analysis step has been introduced to the calibration protocol to eliminate the needs of the respirometric analysis for SBR models. The calibrated model was able to predict accurately the daily effluent ammonia, nitrate, nitrite, alkalinity concentrations and pH during all different operational conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Serpins in arthropod biology

    OpenAIRE

    Meekins, David A.; Kanost, Michael R.; Michel, Kristin

    2016-01-01

    Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are ...

  20. Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier.

    Science.gov (United States)

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3-C(NOH)-COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu(2+) and Ni(2+) and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu(2+) or 0.5 mM Ni(2+) was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu(2+) or 0.5 mM Ni(2+). The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  1. Nitrification activity and community structure of nitrite-oxidizing bacteria in the bioreactors operated with addition of pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Kraigher, Barbara, E-mail: barbara.kraigher@bf.uni-lj.si [University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Chair of Microbiology, Vecna pot 111, 1000 Ljubljana (Slovenia); Mandic-Mulec, Ines [University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Chair of Microbiology, Vecna pot 111, 1000 Ljubljana (Slovenia)

    2011-04-15

    Pharmaceuticals represent a group of the new emerging contaminants, which might influence microbial communities in the activated sludge. Nitrification activity and Nitrospira community structure in the small-scale reactors supplied with different concentrations (0, 50, 200, 500 {mu}g L{sup -1}) of the selected pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid) were evaluated. Ammonia removal was not influenced by selected pharmaceuticals. However, in the two reactors operated with 50 {mu}g L{sup -1} of pharmaceuticals (R50 and R50P), the effluent concentration of N-(NO{sub 2}{sup -} + NO{sub 3}{sup -}) was significantly higher than in the other reactors. Nitrospira community structure was assessed by terminal restriction fragment length polymorphism (T-RFLP) and by cloning and sequencing of the partial genes for 16S rRNA. Nitrospira spp. were detected in all reactors. The two dominant T-RFs represented the sublineages I and II of the genus Nitrospira. Main shifts were observed in the reactors R50 and R50P, where the T-RF representing sublineage II was much higher as compared to the other reactors. Consistent with this, the Nitrospira sublineage II was detected only in the clone libraries from the reactors R50 and R50P. Our results suggest that the relative abundance of Nitrospira sublineage II could be related to the effluent N-(NO{sub 2}{sup -} + NO{sub 3}{sup -}) concentration.

  2. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Nitrification activity and community structure of nitrite-oxidizing bacteria in the bioreactors operated with addition of pharmaceuticals

    International Nuclear Information System (INIS)

    Kraigher, Barbara; Mandic-Mulec, Ines

    2011-01-01

    Pharmaceuticals represent a group of the new emerging contaminants, which might influence microbial communities in the activated sludge. Nitrification activity and Nitrospira community structure in the small-scale reactors supplied with different concentrations (0, 50, 200, 500 μg L -1 ) of the selected pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid) were evaluated. Ammonia removal was not influenced by selected pharmaceuticals. However, in the two reactors operated with 50 μg L -1 of pharmaceuticals (R50 and R50P), the effluent concentration of N-(NO 2 - + NO 3 - ) was significantly higher than in the other reactors. Nitrospira community structure was assessed by terminal restriction fragment length polymorphism (T-RFLP) and by cloning and sequencing of the partial genes for 16S rRNA. Nitrospira spp. were detected in all reactors. The two dominant T-RFs represented the sublineages I and II of the genus Nitrospira. Main shifts were observed in the reactors R50 and R50P, where the T-RF representing sublineage II was much higher as compared to the other reactors. Consistent with this, the Nitrospira sublineage II was detected only in the clone libraries from the reactors R50 and R50P. Our results suggest that the relative abundance of Nitrospira sublineage II could be related to the effluent N-(NO 2 - + NO 3 - ) concentration.

  4. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez

    2014-01-01

    Full Text Available Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2 and nitrous oxide (N2O while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1 was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  5. Solid respirometry to characterize nitrification kinetics: a better insight for modelling nitrogen conversion in vertical flow constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Choubert, Jean-Marc; Vanclooster, Marnik; Molle, Pascal

    2011-10-15

    We developed an original method to measure nitrification rates at different depths of a vertical flow constructed wetland (VFCW) with variable contents of organic matter (sludge, colonized gravel). The method was adapted for organic matter sampled in constructed wetland (sludge, colonized gravel) operated under partially saturated conditions and is based on respirometric principles. Measurements were performed on a reactor, containing a mixture of organic matter (sludge, colonized gravel) mixed with a bulking agent (wood), on which an ammonium-containing liquid was applied. The oxygen demand was determined from analysing oxygen concentration of the gas passing through the reactor with an on-line analyzer equipped with a paramagnetic detector. Within this paper we present the overall methodology, the factors influencing the measurement (sample volume, nature and concentration of the applied liquid, number of successive applications), and the robustness of the method. The combination of this new method with a mass balance approach also allowed determining the concentration and maximum growth rate of the autotrophic biomass in different layers of a VFCW. These latter parameters are essential inputs for the VFCW plant modelling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Contour detection based on nonclassical receptive field inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the

  7. Using the Triple Labelling Technique to apportion N2O Emissions to Nitrification and Denitrification from different Nitrogen Sources at different Water-Filled-Pore-Spaces

    Science.gov (United States)

    Loick, Nadine; Dixon, Elizabeth R.; Repullo Ruibérriz de Torres, Miguel A.; Ciganda, Veronica; Lopez-Aizpun, Maria A.; Matthews, G. Peter; Müller, Christoph; Cardenas, Laura M.

    2017-04-01

    Nitrous oxide (N2O) is considered to be an important greenhouse gas (GHG) accounting for approximately 6% of the current global warming. The atmospheric N2O concentration has been increasing since the Industrial Revolution, with soils representing its major source, making the understanding of its sources and removal processes very important for the development of mitigation strategies. In soils N gases are mainly produced via nitrification and denitrification. It is assumed that under dry/aerobic conditions nitrification is the dominant N consuming process, while denitrification becomes dominant under wetter conditions promoting anaerobicity. Nitrification and denitrification may occur simultaneously in different microsites of the same soil but there is often uncertainty associated with which process dominates in a particular soil under specific conditions. N2O predominantly derives from incomplete denitrification of nitrate (NO3-). The existence of different pools of NO3- in soils, namely the native soil pool, and the fertiliser-added one, has been suggested through a series of laboratory incubation experiments (Meijide et al., 2010; Bergstermann et al., 2011) using the denitrification incubation system, DENIS (Cardenas et al., 2003), in which soil cores are incubated under an N-free atmosphere, allowing direct measurements of all emitted N gases (NO, N2O and N2) as well as CO2. A third pool, NO3- produced from nitrification of applied NH4+, can also be a source of N2O via denitrification and also from nitrification. In this study labelling of substrate-N with 15N is used to quantify the underlying gross N transformation rates and link them to N-emissions to identify the production and consumption pathways and temporal dynamics of N2O. In three experiments twelve soil cores each were incubated in the DENIS to measure gaseous emissions, while parallel incubations under the same conditions were set up for destructive soil sampling at 7 time points. Using the triple

  8. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  9. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  10. Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in life support systems

    Science.gov (United States)

    Christiaens, Marlies E. R.; Lasseur, Christophe; Clauwaert, Peter; Boon, Nico; Ilgrande, Chiara; Vlaeminck, Siegfried

    2016-07-01

    Human habitation in space requires artificial environment recirculating fundamental elements to enable the highest degree of autonomy . The European Space Agency, supported by a large consortoium of European organisationsdevelop the Micro-Ecological Life Support System (MELiSSA) to transform the mission wastes waste (a.o. organic fibers, CO2, and urine) into water, oxygen, and food (Lasseur et al., 2010). Among these wastes, astronauts' urine has a high potential to provide nitrogen as a fertilizer for food production. As higher plant growth in space is typically proposed to be performed in hydroponics, liquid fertilizer containing nitrates is preferred. An Additional Unit for Water Treatment is developed for urine nitrification by means of a synthetic microbial community. The key players in this consortium are ureolytic bacteria to hydrolyse the main nitrogen source in urine, urea, to ammonium and carbon dioxide as well as oxidation of organic compounds present in urine, ammonium oxidizing bacteria (AOB) to convert ammonium to nitrite (nitritation), and the nitrate oxidizing bacteria (NOB) to produce nitrate (nitratation). Pure AOB strains Nitrosomonas ureae Nm10 and Nitrosomonas europaea ATCC 19718, pure NOB strains Nitrobacter winogradskyi Nb-255 and Nitrobacter vulgaris Z, and interactions within synthetic consortia of one AOB and one NOB or all together were tested. As the initial salinity of fresh urine can be as high as 30 mS/cm, the functionality of selected pure strains and synthetic consortia was evaluated by means of the nitritation and nitratation activity at varying NaCl salinities (5, 10, and 30 mS/cm). The nitritation activity of pure AOB strains was compared with the synthetic consortia. Both N. ureae and Ns. europaea benefit from the presence of Nb. winogradskyi as the ammonium oxidation rates of 1.7 ± 0.7 and 6.4 ± 0.6 mg N/L.d at 5 mS/cm, respectively, doubled. These results are in line with the findings of Perez et al (2015) observing a lower

  11. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification c...... a pilot scale sand column which initial analysis confirmed performed similarly to the full scale filters. Long term increased ammonium loads were applied to the pilot filter both with and without phosphate addition. Phosphate was added at a concentration of 0.5 mg PO4-P/L to ensure...

  12. Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process.

    Science.gov (United States)

    Lu, Yong-Ze; Wang, Hou-Feng; Kotsopoulos, Thomas A; Zeng, Raymond J

    2016-05-01

    In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.

  13. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  14. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Abzazou, Tarik, E-mail: tabzazou@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Araujo, Rosa M., E-mail: raraujo@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Auset, María, E-mail: maria.auset.vallejo@acciona.com [ACCIONA AGUA, S.A., Av de les Garrigues 22, El Prat de Llobregat, 08820 Barcelona (Spain); Salvadó, Humbert, E-mail: hsalvado@ub.edu [Department of Animal Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain)

    2016-01-15

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L{sup −1}), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH{sub 4}{sup +} removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  15. Discussion of the applicability of overdammed fixed-bed reactors in nitrification processes; Beitrag zum Einsatz von ueberstauten Festbettreaktoren zur Nitrifikation

    Energy Technology Data Exchange (ETDEWEB)

    Guenter, H.O.

    1996-12-31

    The investigation aimed at developing a dimensioning method for overdammed fixed bed nitrification reactors with plug flow which takes account of the reactor height. Further, information was to be obtained for assessing sudden loads and for comparing energy consumption with the data of conventional activated sludge plants. (orig./SR) [Deutsch] Ziel dieser Arbeit ist es, fuer ueberstaute, pfropfendurchstroemte Festbettreaktoren zur Nitrifikation einen Bemessungsansatz aufzustellen, welcher den Einfluss der Reaktorhoehe mit beruecksichtigt. Ferner sollten Erkenntnisse zur Beurteilung von Stossbelastungen sowie zum Energiebedarf im Vergleich zu herkoemmlichen Belebungsanlagen gewonnen werden. (orig./SR)

  16. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  17. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  18. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  19. Cardiovascular toxicities of biological therapies

    DEFF Research Database (Denmark)

    Ryberg, Marianne

    2013-01-01

    The development of biological therapy is based on growing knowledge regarding the molecular changes required in cells for the development and progression of cancer to occur. Molecular targeted therapy is designed to inhibit the major molecular pathways identified as essential for a specific...

  20. Biological Water Processor and Forward Osmosis Secondary Treatment

    Science.gov (United States)

    Shull, Sarah; Meyer, Caitlin

    2014-01-01

    The goal of the Biological Water Processor (BWP) is to remove 90% organic carbon and 75% ammonium from an exploration-based wastewater stream for four crew members. The innovative design saves on space, power and consumables as compared to the ISS Urine Processor Assembly (UPA) by utilizing microbes in a biofilm. The attached-growth system utilizes simultaneous nitrification and denitrification to mineralize organic carbon and ammonium to carbon dioxide and nitrogen gas, which can be scrubbed in a cabin air revitalization system. The BWP uses a four-crew wastewater comprised of urine and humidity condensate, as on the ISS, but also includes hygiene (shower, shave, hand washing and oral hygiene) and laundry. The BWP team donates 58L per day of this wastewater processed in Building 7.

  1. Combining Urease and Nitrification Inhibitors with Incorporation Reduces Ammonia and Nitrous Oxide Emissions and Increases Corn Yields.

    Science.gov (United States)

    Drury, Craig F; Yang, Xueming; Reynolds, W Dan; Calder, Wayne; Oloya, Tom O; Woodley, Alex L

    2017-09-01

    Less than 50% of applied nitrogen (N) fertilizer is typically recovered by corn ( L.) due to climatic constraints, soil degradation, overapplication, and losses to air and water. Two application methods, two N sources, and two inhibitors were evaluated to reduce N losses and enhance crop uptake. The treatments included broadcast urea (BrUrea), BrUrea with a urease inhibitor (BrUrea+UI), BrUrea with a urease and a nitrification inhibitor (BrUrea+UI+NI), injection of urea ammonium nitrate (InjUAN), and injected with one or both inhibitors (InjUAN+UI, InjUAN+UI+NI), and a control. The BrUrea treatment lost 50% (64.4 kg N ha) of the applied N due to ammonia volatilization, but losses were reduced by 64% with BrUrea+UI+NI (23.0 kg N ha) and by 60% with InjUAN (26.1 kg N ha). Ammonia losses were lower and crop yields were greater in 2014 than 2013 as a result of the more favorable weather when N was applied in 2014. When ammonia volatilization was reduced by adding a urease inhibitor, NO emissions were increased by 30 to 31% with BrUrea+UI and InjUAN+UI compared with BrUrea and InjUAN, respectively. Pollution swapping was avoided when both inhibitors were used (BrUrea+UI+NI, InjUAN+UI+NI) as both ammonia volatilization and NO emissions were reduced, and corn grain yields increased by 5% with BrUrea+UI+NI and by 7% with InjUAN+UI+NI compared with BrUrea and InjUAN, respectively. The combination of two N management strategies (InjUAN+UI+NI) increased yields by 19% (12.9 t ha) compared with BrUrea (10.8 t ha). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  4. Sequential nitrification and denitrification in a novel palm shell granular activated carbon twin-chamber upflow bio-electrochemical reactor for treating ammonium-rich wastewater.

    Science.gov (United States)

    Mousavi, Seyyedalireza; Ibrahim, Shaliza; Aroua, Mohamed Kheireddine

    2012-12-01

    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen.

    Science.gov (United States)

    Li, Liang; Dong, Yihua; Qian, Guangsheng; Hu, Xiaomin; Ye, Linlin

    2018-06-01

    A pair of Fe-C electrodes was installed in a traditional submerged membrane bioreactor (MBR, Rc), and a novel asynchronous periodic reversal bio-electrocoagulation system (Re) was developed. The simultaneous nitrification and denitrification (SND) performance was discussed under limited dissolved oxygen (DO). Results showed that electrocoagulation enhanced total nitrogen (TN) removal from 59.48% to 75.09% at 1.2 mg/L DO. Additionally, Fe electrode could increase sludge concentration, particle size, and enzyme activities related to nitrogen removal. The enzyme activities of Hydroxylamine oxidoreductase (HAO), Nitrate Reductase (NAR), nitric oxide reductase NOR and nitrous oxide reductase (N 2 OR) in Re were 38.35%, 21.59%, 89.96% and 38.64% higher than Rc, respectively. Moreover, electrocoagulation was advantageous for nitrite accumulation, indicating partial nitrification and denitrification were more easily achieved in Re. Besides, results from high throughput sequencing analysis revealed that electrocoagulation increased the relative abundance of most genera related to nitrogen removal, including Nitrosomonas, Comamonadaceae_unclassified, Haliangium and Denitratisoma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community.

    Science.gov (United States)

    Fan, Fenliang; Yang, Qianbao; Li, Zhaojun; Wei, Dan; Cui, Xi'an; Liang, Yongchao

    2011-11-01

    The microbiology underpinning soil nitrogen cycling in northeast China remains poorly understood. These agricultural systems are typified by widely contrasting temperature, ranging from -40 to 38°C. In a long-term site in this region, the impacts of mineral and organic fertilizer amendments on potential nitrification rate (PNR) were determined. PNR was found to be suppressed by long-term mineral fertilizer treatment but enhanced by manure treatment. The abundance and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities were assessed using quantitative polymerase chain reaction and denaturing gradient gel electrophoresis techniques. The abundance of AOA was reduced by all fertilizer treatments, while the opposite response was measured for AOB, leading to a six- to 60-fold reduction in AOA/AOB ratio. The community structure of AOA exhibited little variation across fertilization treatments, whereas the structure of the AOB community was highly responsive. PNR was correlated with community structure of AOB rather than that of AOA. Variation in the community structure of AOB was linked to soil pH, total carbon, and nitrogen contents induced by different long-term fertilization regimes. The results suggest that manure amendment establishes conditions which select for an AOB community type which recovers mineral fertilizer-suppressed soil nitrification.

  7. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  8. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  9. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  10. Nitrification in Kochi backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Miranda, J.; Balachandran, K.K.; Ramesh, R.; Wafar, M.

    unspecifiable quantities of wastes from agricultural and aquaculture farms. Among the inorganic wastes thus generated, ammonium is important since its concentrations in the estuary generally exceed several tens of mmol L C01 , attaining as high as >100 mmol L C... and Nixon, 1993). 2. Materials and methods The Kochi backwaters constitute a microtidal estuarine sys- tem with a tidal amplitude of C201 m. They receive w20 C2 10 9 m 3 of freshwater annually from six rivers, with >90% of it in the monsoon months (Junee...

  11. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosa...

  12. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2017-12-01

    Full Text Available Paeoniflorin-6′-O-benzene sulfonate (code: CP-25 was the chemistry structural modifications of Paeoniflorin (Pae. CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF or Tumor necrosis factor alpha (TNF-alpha. CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19+ B cells, CD19+CD20+ B cells, CD19+CD27+ B cells and CD19+CD20+CD27+ B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  13. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents.

    Science.gov (United States)

    Zhang, Feng; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Zhang, Xian-Zheng; Han, Le; Tang, Xiao-Yu; Wang, Chen; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei

    2017-01-01

    Paeoniflorin-6'- O -benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19 + B cells, CD19 + CD20 + B cells, CD19 + CD27 + B cells and CD19 + CD20 + CD27 + B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  14. [Biological agents].

    Science.gov (United States)

    Amano, Koichi

    2009-03-01

    There are two types of biological agents for the treatment of rheumatoid arthritis (RA); monoclonal antibodies and recombinant proteins. Among the latter, etanercept, a recombinant fusion protein of soluble TNF receptor and IgG was approved in 2005 in Japan. The post-marketing surveillance of 13,894 RA patients revealed the efficacy and safety profiles of etanercept in the Japanese population, as well as overseas studies. Abatacept, a recombinant fusion protein of CTLA4 and IgG, is another biological agent for RA. Two clinical trials disclosed the efficacy of abatacept for difficult-to-treat patients: the AIM for MTX-resistant cases and the ATTAIN for patients who are resistant to anti-TNF. The ATTEST trial suggested abatacept might have more acceptable safety profile than infliximab. These biologics are also promising for the treatment of RA for not only relieving clinical symptoms and signs but retarding structural damage.

  15. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  16. Long-term studies in COD elimination and nitrification in an overcongested packed-bed reactor (biofilter); Langzeituntersuchungen zur CSB-Elimination und Nitrifikation in einem ueberstauten Festbettreaktor (Biofilter)

    Energy Technology Data Exchange (ETDEWEB)

    Engelhart, M.; Dichtl, N. [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1999-07-01

    On a semi-technical scale, two process combinations were tested for their suitability for COD elimination and nitrification in combination with an overcongested packed-bed reactor (biofilter). (orig.) [German] Im halbtechnischen Massstab wurden zwei Verfahrenskombinationen unter Einbeziehung eines ueberstauten Festbettreaktors (Biofilter) auf ihre Tauglichkeit zur CSB-Elimination und Nitrifikation untersucht. (orig.)

  17. INHIBITION IN SPEAKING PERFORMANCE

    OpenAIRE

    Humaera, Isna

    2015-01-01

    The most common problem encountered by the learner in the languageacquisition process is learner inhibition. Inhibition refers to a temperamentaltendency to display wariness, fearfulness, or restrain in response tounfamiliar people, objects, and situations. There are some factors that causeinhibition, such as lack of motivation, shyness, self-confidence, self-esteem,and language ego. There are also levels of inhibition, it refers to kinds ofinhibition and caused of inhibition itself. Teacher ...

  18. The role of non-CRF inhibition in contour detection

    NARCIS (Netherlands)

    Grigorescu, C.; Petkov, N.; Westenberg, M.A.

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve the performance of contour detectors. Non-CRF inhibition is exhibited by 80% of the orientation selective neurons in the primary visual cortex of macaque monkeys and has been

  19. Environmental biology

    International Nuclear Information System (INIS)

    Tschumi, P.A.

    1981-01-01

    Environmental biology illustrates the functioning of ecosystems and the dynamics of populations with many examples from limnology and terrestrial ecology. On this basis, present environmental problems are analyzed. The present environmental crisis is seen as a result of the failure to observe ecological laws. (orig.) [de

  20. Biological timekeeping

    DEFF Research Database (Denmark)

    Lloyd, David

    2016-01-01

    , the networks that connect differenttime domains and the oscillations, rhythms and biological clocks that coordinate andsynchronise the complexity of the living state.“It is the pattern maintained by this homeostasis, which is the touchstone ofour personal identity. Our tissues change as we live: the food we...

  1. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  2. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.

    1988-01-01

    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  3. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  4. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  5. The effect of organic matter and nitrification inhibitor on 15 N H4 and 15 N O3 absorption by the maize

    International Nuclear Information System (INIS)

    Saito, S.M.T.

    1974-01-01

    The effect of the forms 15 N H 4 and 15 N O 3 in presence or absence of organic matter and of the nitrification inhibitor AM (2-amino-4-chloro-6-methyl-pyrimidine) in dry matter weight and nitrogen content of the plant derived from soil and form fertilizer is studied. The experiment was carried out in greenhouse and the test plant was the hybrid Maize Centralmex . The fertilizers ( 15 N H 4 ) 2 S O 4 and Na 15 N O 3 , were added in two levels: 40 and 120 Kg N/ha, with 1,02% of N and 1,4% of 15 N in excess, respectively. Three soils of different physical and chemical characteristics were used; Regosol intergrade, Latosol Roxo and Podzolized de Lins e Marilia var. Marilia. (M.A.C.)

  6. Using paired in situ high frequency nitrate measurements to better understand controls on nitrate concentrations and estimate nitrification rates in a wastewater-impacted river

    Science.gov (United States)

    Kraus, Tamara; O'Donnell, Katy; Downing, Bryan D.; Burau, Jon R.; Bergamaschi, Brian

    2017-01-01

    We used paired continuous nitrate ( ) measurements along a tidally affected river receiving wastewater discharge rich in ammonium ( ) to quantify rates of change in  concentration ( ) and estimate nitrification rates.  sensors were deployed 30 km apart in the Sacramento River, California (USA), with the upstream station located immediately above the regional wastewater treatment plant (WWTP). We used a travel time model to track water transit between the stations and estimated  every 15 min (October 2013 to September 2014). Changes in concentration were strongly related to water temperature. In the presence of wastewater, was generally positive, ranging from about 7 µM d−1 in the summer to near zero in the winter. Numerous periods when the WWTP halted discharge allowed the  to be estimated under no-effluent conditions and revealed that in the absence of effluent, net gains in  were substantially lower but still positive in the summer and negative (net sink) in the winter. Nitrification rates of effluent-derived NH4 ( ) were estimated from the difference between  measured in the presence versus absence of effluent and ranged from 1.5 to 3.4 µM d−1, which is within literature values but tenfold greater than recently reported for this region.  was generally lower in winter (∼2 µM d−1) than summer (∼3 µM d−1). This in situ, high frequency approach provides advantages over traditional discrete sampling, incubation, and tracer methods and allows measurements to be made over broad areas for extended periods of time. Incorporating this approach into environmental monitoring programs can facilitate our ability to protect and manage aquatic systems.

  7. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    Science.gov (United States)

    Miller, Daniel N.; Smith, Richard L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O 2 (> 300 µM) and NH 4+ (51-800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O 2, NH 4+, and NO 3- (0-300, 0-500, and 100-200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g - 1 and 33 to 35,000 g - 1 , respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH 4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  8. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose-response relationships.

    Science.gov (United States)

    Simonin, Marie; Martins, Jean M F; Le Roux, Xavier; Uzu, Gaëlle; Calas, Aude; Richaume, Agnès

    2017-03-01

    Titanium-dioxide nanoparticles (TiO 2 -NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO 2 -NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO 2 -NPs at concentrations ranging from 0.05 to 500 mg kg -1  dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO 2 -NPs were measured in the spiking suspensions, as they can be important drivers of TiO 2 -NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO 2 -NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg -1 ) and the highest (100 and 500 mg kg -1 ) TiO 2 -NPs concentrations. Path analyses indicated that TiO 2 -NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO 2 -NPs impact on soil microorganisms.

  9. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  10. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  11. Effect of solids retention time and wastewater characteristics on biological phosphorus removal

    DEFF Research Database (Denmark)

    Henze, Mogens; Aspegren, H.; Jansen, J.l.C.

    2002-01-01

    with time which has importance in relation to modelling. The overall conclusion of the comparison between the two plants is that the biological phosphorus removal efficiency under practical operating conditions is affected by the SRT in the plant and the wastewater composition. Thus great care should......The paper deals with the effect of wastewater, plant design and operation in relation to biological nitrogen and phosphorus removal and the possibilities to model the processes. Two Bio-P pilot plants were operated for 2.5 years in parallel receiving identical wastewater. The plants had SRT of 4...... and 21 days, the latter had nitrification and denitrification. The plant with 4 days SRT had much more variable biomass characteristics, than the one with the high SRT. The internal storage compounds, PHA, were affected significantly by the concentration of fatty acids or other easily degradable organics...

  12. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    Science.gov (United States)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  13. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  14. Biology Branch

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, W F

    1974-12-31

    Progress is reported on the following studies in biochemistry and molecular biology: study of long pyrimidine polynucleotides in DNA; isolation of thymine dimers from Schizosaccharomyces pombe; thermal stability of high molecular weight RNA; nucleases of Micrococcus radiodurans; effect of ionizing radiation on M. radiodurans cell walls and cell membranes; chemical modification of nucleotides; exonucleases of M. radiodurans; and enzymatic basis of repair of radioinduced damage in M. radiodurans. Genetics, development, and population studies include repair pathways and mutation induction in yeast; induction of pure mutant clones in yeast; radiosensitivity of bacteriophage T4; polyacrylamide gel electrophoresis of bacteriophage T4; radiation genetics of Dahibominus; and radiation studies on bitting flies. (HLW)

  15. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  16. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  17. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  18. Solid separation and sbr biological process for pig slurry treatment; Depuracion de purines por separacion de solidos y tratamiento biologico en SBR

    Energy Technology Data Exchange (ETDEWEB)

    Lekuona, A.; Alberdi, M.; Lekue, I.; Lasuen, M.

    2009-07-01

    Egiluze treatment plant in Renteria (Gipuzkoa, spain), has treated around 45 m{sup 3}/day of pig slurry since 2006. During this two years, the plant has been running in order to get a suitable effluent, which fulfills the corresponding parameters to be discharged to municipal drain. The treatment process consists basically of a first solid separation and subsequent nitrification-de-nitrificacion biological process using a Sequencing Batch Reactor (SBR). The technical and economic results showed in this article, prove that the process used in Egiluze treatment plant is an effective solution which allows the treatment of pig slurry in an economical and automated way. (Author)

  19. Osthole inhibits bone metastasis of breast cancer

    OpenAIRE

    Wu, Chunyu; Sun, Zhenping; Guo, Baofeng; Ye, Yiyi; Han, Xianghui; Qin, Yuenong; Liu, Sheng

    2017-01-01

    Bone is one of the most common sites for breast cancer metastasis, which greatly contributes to patient morbidity and mortality. Osthole, a major extract from Cnidium monnieri (L.), exhibits many biological and pharmacological activities, however, its potential as a therapeutic agent in the treatment of breast cancer bone metastases remain poorly understood. In this study, we set out to investigate whether osthole could inhibit breast cancer metastasis to bone in mice and clarified the potent...

  20. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  1. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  2. Biological activities of Rumex dentatus L: Evaluation of methanol ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... of different the extracts of R. dentatus effectively inhibited tumor ... Plants contain thousands of biologically active mole- .... The vials were kept open over night with .... between prokaryotic and eukaryotic cells (Stachel and.

  3. Immunomodulatory Effects of Macrolide Antibiotics - Part 1 : Biological Mechanisms

    NARCIS (Netherlands)

    Altenburg, J.; de Graaff, C. S.; van der Werf, T. S.; Boersma, W. G.

    2011-01-01

    Macrolide antibiotics are well known for their antibacterial and anti-inflammatory properties. This article provides an overview of the biological mechanisms through which macrolides exert this 'double effect'. Their antibacterial effect consists of the inhibition of bacterial protein synthesis,

  4. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  5. Inhibition of lactation.

    Science.gov (United States)

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  6. Effect of Free Ammonia, Free Nitrous Acid, and Alkalinity on the Partial Nitrification of Pretreated Pig Slurry, Using an Alternating Oxic/Anoxic SBR

    Directory of Open Access Journals (Sweden)

    Marisol Belmonte

    2017-01-01

    Full Text Available The effect of free ammonia (NH3 or FA, free nitrous acid (HNO2 or FNA, and total alkalinity (TA on the performance of a partial nitrification (PN sequencing batch reactor (SBR treating anaerobically pretreated pig slurry was studied. The SBR was operated under alternating oxic/anoxic (O/A conditions and was fed during anoxic phases. This strategy allowed using organic matter to partially remove nitrite (NO2- and nitrate (NO3- generated during oxic phases. The desired NH4+ to NO2- ratio of 1.3 g N/g N was obtained when an Ammonium Loading Rate (ALR of 0.09 g NH4+-N/L·d was applied. The system was operated at a solid retention time (SRT of 15–20 d and dissolved oxygen (DO levels higher than 3 mg O2/L during the whole operational period. PN mainly occurred caused by the inhibitory effect of FNA on nitrite oxidizing bacteria (NOB. Once HNO2 concentration was negligible, NH4+ was fully oxidized to NO3- in spite of the presence of FA. The use of biomass acclimated to ammonium as inoculum avoided a possible effect of FA on NOB activity.

  7. Control of nitrification and denitrification by means of oxygen measurement in activated sludge; Steuerung der Nitrifikation und Denitrifikation mittels Sauerstoffmessung im Belebungsbecken

    Energy Technology Data Exchange (ETDEWEB)

    Svardal, K; Kroiss, H

    1998-12-31

    As the simulation results show, controlling nitrification/denitrification by means of the oxygen content is a very effective method. Its big advantage is that the concentration of O{sub 2} can be very reliably measured. In comparison with online analysis units, O{sub 2} probes demand little maintenance and are inexpensive; so, each measuring point can be supplied with its own probe. O{sub 2} measurement is indispensable also with other control strategies. It would make sense, at least at larger plants, to monitor additionally the concentration of ammonium, a parameter which makes for a higher safety margin. (orig./SR) [Deutsch] Die Simulationsergebnisse zeigen, dass die Steuerung der Nitrifikation/Denitrifikation nach dem Sauerstoffgehalt sehr gute Resultate ergibt. Der grosse Vorteil dieser Art der Steuerung besteht darin, dass die O{sub 2}-Konzentration sich sehr zuverlaessig messen laesst. O{sub 2}-Sonden sind im Vergleich zu online-Analysatoren wartungsarm und preisguenstig, so dass auch eine reduntante Ausfuehrung jeder Messstelle vertretbar ist. Auf die O{sub 2}-Messung kann auch bei anderen Steuerstrategien nicht verzichtet werden. Eine sinnvolle Ergaenzung waere zumindest bei groesseren Anlagen eine Ueberwachung der Ammoniumkonzentration wobei dieser Messwert vor allen Dingen der Sicherheit dient. (orig./SR)

  8. Nitric oxide and nitrous oxide emissions from cattle-slurry and mineral fertiliser treated with nitrification inhibitor to an agricultural soil: A laboratory approach

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.; Coutinho, J.; Fangueiro, D.; Trindade, H.

    2015-07-01

    The application of organic and mineral fertilisers to soil can result in increased gaseous emissions to the atmosphere such as nitric oxide (NO) and nitrous oxide (N2O) gases. The aim of this study was to evaluate under laboratory conditions the effects on mineral N dynamics and NO and N2O emissions of application to soil of cattle slurry derived liquid fraction (LF) obtained by screw press and mineral fertiliser (MF), both treated with or without the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). An aerobic laboratory incubation was performed over 93 days with a Dystric Cambisol amended with mechanically separated LF or mineral fertiliser ammonium sulphate only or combined with DMPP. Two additional treatments were included: soil only and soil amended with DMPP. Nitrogen immobilisation was the dominant process with MF amendment, whereas N mineralisation has been observed with LF. The application of LF reduced significantly NO emissions by 80% relative to mineral but no differences were observed with N2O emissions. The addition of DMPP to MF induced a decrease of 18 and 29% in NO and N2O emissions whereas DMPP combined with LF reduced (numerically but not statistically) these emissions in 20 and 10%, respectively. Results obtained in our study suggest that N (NO + N2O) losses can be mitigated by adding DMPP to mineral fertilisers or replacing mineral fertiliser by LF. (Author)

  9. Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process.

    Science.gov (United States)

    Zhao, Chuanqi; Wang, Gang; Xu, Xiaochen; Yang, Yuesuo; Yang, Fenglin

    2017-07-18

    In this study, an oxygen-limiting membrane bioreactor (MBR) with recirculation of biogas for relieving membrane fouling was successfully operated to realize the simultaneous partial nitrification, anammox and denitrification (SNAD) process. The MBR operation was considered effective in the long-term test with total nitrogen (TN) and chemical oxygen demand (COD) removal efficiencies of 94.86% and 98.91%, respectively. Membrane fouling was significantly alleviated due to the recirculation of biogas and the membrane had been cleaned four times with a normal filtration period of 52 days. The co-existence of ammonia-oxidizing bacteria (AOB), anammox and denitrifying bacteria in MBR was confirmed by scanning electron microscopy (SEM) and fluorescence in situ hybridizations (FISH) analysis. Furthermore, AOB were found close to the granule surface, while denitrifying bacteria and anammox were in the deeper layer of granules. Potential in excellent TN and COD removal, operational stability and sustainability, as well as in alleviating membrane fouling is expected by using this oxygen-limiting MBR.

  10. Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’ hedgerow and ‘Picual’ vase-trained orchards

    International Nuclear Information System (INIS)

    Centeno, A.; García, J.M.; Gómez-del-Campo, M.

    2017-01-01

    Two experiments were carried out in olive orchards in the center of Spain over a three-year period. In this cold and dry area, growers traditionally apply large amounts of N with no experimental knowledge. An ‘Arbequina’ hedgerow and ‘Picual’ vase orchards were fertilized with two N-doses applied to the soil in spring with or without the nitrification inhibitor (DMPP). Vegetative growth, fruit and oil characteristics were evaluated. These variables were affected by the N-treatment during the 3rd year. The lowest N-application increased vegetative growth, while when N-leaf composition was higher than 2%, fruit dry weight, oil content and oil phenol content were reduced. ‘Picual’ did not respond to N-applications. The effect of DMPP on growth or production was not consistent and a lower phenolic content was obtained for ‘Arbequina’. Our results demonstrated that in this dry land, N-fertilization is not always necessary and oil quality can be negatively affected with high doses. [es

  11. Control of nitrification and denitrification by means of oxygen measurement in activated sludge; Steuerung der Nitrifikation und Denitrifikation mittels Sauerstoffmessung im Belebungsbecken

    Energy Technology Data Exchange (ETDEWEB)

    Svardal, K.; Kroiss, H.

    1997-12-31

    As the simulation results show, controlling nitrification/denitrification by means of the oxygen content is a very effective method. Its big advantage is that the concentration of O{sub 2} can be very reliably measured. In comparison with online analysis units, O{sub 2} probes demand little maintenance and are inexpensive; so, each measuring point can be supplied with its own probe. O{sub 2} measurement is indispensable also with other control strategies. It would make sense, at least at larger plants, to monitor additionally the concentration of ammonium, a parameter which makes for a higher safety margin. (orig./SR) [Deutsch] Die Simulationsergebnisse zeigen, dass die Steuerung der Nitrifikation/Denitrifikation nach dem Sauerstoffgehalt sehr gute Resultate ergibt. Der grosse Vorteil dieser Art der Steuerung besteht darin, dass die O{sub 2}-Konzentration sich sehr zuverlaessig messen laesst. O{sub 2}-Sonden sind im Vergleich zu online-Analysatoren wartungsarm und preisguenstig, so dass auch eine reduntante Ausfuehrung jeder Messstelle vertretbar ist. Auf die O{sub 2}-Messung kann auch bei anderen Steuerstrategien nicht verzichtet werden. Eine sinnvolle Ergaenzung waere zumindest bei groesseren Anlagen eine Ueberwachung der Ammoniumkonzentration wobei dieser Messwert vor allen Dingen der Sicherheit dient. (orig./SR)

  12. Transformation of ammonia i biological airfilters

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Sørensen, Karen; Andersen, Mathias

    2007-01-01

    Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide...... emitted to the air. To identify the key regulators of these transformations we have combined data from studies of microbiology and performance in 10 experimental and full scale filters of varying design, loading, and management. Inhibition by nitrite controlled ammonium oxidation and pH, while biological...... removal without too much energy consumption, waste water production, green house gas emission, or suppression of the filters odor removal efficiency....

  13. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-04-25

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30-85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations.

  14. Production of a biological surfactant

    Directory of Open Access Journals (Sweden)

    N. Gladys Rosero

    2002-01-01

    Full Text Available This paper summarizes the scale up work performed at the Colombian Petroleum Institute on a process to produce at pilot plant level a biosurfactant of the rhamnolipid type. By examination of both the activation conditions of the microorganism and design aspects of the broth, a stable condition was achieved which consistently triggers the production mechanisms and thus it was obtained a significant increment in biosurfactant productivity. The biological surfactant exhibited high efficiency in applications such as hydrocarbon biodegradation in saline environments, corrosion inhibition, and crude oil recovery from storage tank bottom sludges.

  15. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  16. Serpins in arthropod biology.

    Science.gov (United States)

    Meekins, David A; Kanost, Michael R; Michel, Kristin

    2017-02-01

    Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are expressed as acute-phase serpins in insects upon infection. Parasitoid wasps can downregulate host serpin expression to modulate the host immune system. In addition, examples of serpin activity in development and reproduction in Drosophila have also been discovered. Serpins also function in host-pathogen interactions beyond immunity as constituents of venom in parasitoid wasps and saliva of blood-feeding ticks and mosquitoes. These serpins have distinct effects on immunosuppression and anticoagulation and are of interest for vaccine development. Lastly, the known structures of arthropod serpins are discussed, which represent the serpin inhibitory mechanism and provide a detailed overview of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from a UK grassland soil.

    Science.gov (United States)

    Cardenas, L M; Misselbrook, T M; Hodgson, C; Donovan, N; Gilhespy, S; Smith, K A; Dhanoa, M S; Chadwick, D

    2016-11-01

    Emissions of nitrous oxide (N 2 O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N 2 O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N 2 O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N 2 O emissions from urine application and also included an artificial urine treatment. There were significant differences in N 2 O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N 2 O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N 2 O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N 2 O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.

  18. Nitrifying bacterial biomass and nitrification activity evaluated by FISH and an automatic on-line instrument at full-scale Fusina (Venice, Italy) WWTP.

    Science.gov (United States)

    Badoer, S; Miana, P; Della Sala, S; Marchiori, G; Tandoi, V; Di Pippo, F

    2015-12-01

    In this study, monthly variations in biomass of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were analysed over a 1-year period by fluorescence in situ hybridization (FISH) at the full-scale Fusina WWTP. The nitrification capacity of the plant was also monitored using periodic respirometric batch tests and by an automated on-line titrimetric instrument (TITrimetric Automated ANalyser). The percentage of nitrifying bacteria in the plant was the highest in summer and was in the range of 10-15 % of the active biomass. The maximum nitrosation rate varied in the range 2.0-4.0 mg NH4 g(-1) VSS h(-1) (0.048-0.096 kg TKN kg(-1) VSS day(-1)): values obtained by laboratory measurements and the on-line instrument were similar and significantly correlated. The activity measurements provided a valuable tool for estimating the maximum total Kjeldahl nitrogen (TKN) loading possible at the plant and provided an early warning of whether the TKN was approaching its limiting value. The FISH analysis permitted determination of the nitrifying biomass present. The main operational parameter affecting both the population dynamics and the maximum nitrosation activity was mixed liquor volatile suspended solids (MLVSS) concentration and was negatively correlated with ammonia-oxidizing bacteria (AOB) (p = 0.029) and (NOB) (p = 0.01) abundances and positively correlated with maximum nitrosation rates (p = 0.035). Increases in concentrations led to decreases in nitrifying bacteria abundance, but their nitrosation activity was higher. These results demonstrate the importance of MLVSS concentration as key factor in the development and activity of nitrifying communities in wastewater treatment plants (WWTPs). Operational data on VSS and sludge volume index (SVI) values are also presented on 11-year basis observations.

  19. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  20. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    /receptor transcriptional regulator in some clinically relevant Gram-negative bacteria. The present review contains all reported compound types that are currently known to inhibit the QS transcriptional regulator in Gram-negative bacteria. These compounds are sub-divided into two main groups, one comprising structural...

  1. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    International Nuclear Information System (INIS)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan; Ngeow, Yun Fong; Chin, Khew-Voon

    2012-01-01

    Highlights: ► Salinomycin inhibits preadipocyte differentiation into adipocytes. ► Salinomycin inhibits transcriptional regulation of adipogenesis. ► Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor γ. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  2. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  3. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  4. A gravity independent biological grey water treatment system for space applications

    Science.gov (United States)

    Nashashibi, Majda'midhat

    2002-09-01

    Biological treatment of grey water in space presents serious challenges, stemming mainly from microgravity conditions. The major concerns are phase separation and mass transfer limitations. To overcome solid-liquid phase separation, novel immobilized cell packed bed (ICPB) bioreactors have been developed to treat synthetic grey water. Packed bed bioreactors provide a unique environment for attached microbial growth resulting in high biomass concentrations, which greatly enhance process efficiency with substantial reductions in treatment time and reactor volume. To overcome the gas-liquid phase separation and mass transfer limitations, an oxygenation module equipped with tubular membranes has been developed to deliver bubble-less oxygen under pressure. The selected silicone membranes are hydrophobic, non-porous and oxygen selective. Oxygen dissolves in the walls of the membranes and then diffuses into the water without forming bubbles. Elevated pressures maintain all gaseous by-products in solution and provide high dissolved oxygen concentrations within the system. The packing media are lightweight, inexpensive polyethylene terephthalate (PET) flakes that have large specific surface area, act as a filter for solids and yield highly tortuous flow paths thereby increasing the contact time between the biomass and contaminants. Tests on both pressurized and ambient pressure ICPB bioreactors revealed organic carbon removal efficiencies over 90%. Despite the high ammonia level in the influent, nitrification occured in both the ambient pressure and pressurized nitrification bioreactors at efficiencies of 80% and 60%, respectively. Biomass yield was approximately 0.20 g volatile suspended solids per gram of grey water-COD processed in the pressurized bioreactor. The biomass yield of such novel aerobic ICPB systems is comparable to that of anaerobic processes. These efficient systems produce minimal amounts of biomass compared to other aerobic processes, making them less

  5. Research on inhibition of corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Zhang-Hui Yang

    2015-12-01

    Full Text Available Corneal transparency is the basis of the normal physiological functions.However, corneal neovascularization(CNVmay occur in the infection, mechanical and chemical injury or under other pathological conditions,which make the cornea lose original transparency and severe visual impairment. In recent years, along with the development of immunology, molecular biology, biochemistry and other disciplines, there is more in-depth understanding on the CNV, and clinical treatment of CNV has made new breakthroughs. This article provides an overview of the inhibition of CNV.

  6. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  7. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  8. MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation

    Indian Academy of Sciences (India)

    MiR-144 was shown to besignificantly down-regulated in HCC tissues and cell lines. Subsequently, overexpression of miR-144 was transfectedinto HCC cell lines so as to investigate its biological function, including MTT, colony formation, and transwell assays.Gain of function assay revealed miR-144 remarkably inhibited ...

  9. Design principles in biological networks

    Science.gov (United States)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  10. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  12. Inhibiting the inevitable

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2006-01-01

    conservation is to ‘buy time’ for the object. Inhibitive conservation of plastics involves the removal or reduction of factors causing or accelerating degradation including light, oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to conservation have been developed......Once plastics objects are registered in museum collections, the institution becomes responsible for their long term preservation, until the end of their useful lifetime. Plastics appear to deteriorate faster than other materials in museum collections and have a useful lifetime between 5 and 25...... years. Preventive or inhibitive conservation involves controlling the environments in which objects are placed during storage and display, with the aim of slowing the major deterioration reactions. Once in progress, degradation of plastics cannot be stopped or reversed, so the aim of preventive...

  13. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  14. Psoriatic arthritis: treatment strategies using biologic agents

    Directory of Open Access Journals (Sweden)

    C. Palazzi

    2012-06-01

    Full Text Available The traditional management of psoriatic arthritis (PsA includes NSAIDs, corticosteroids and DMARDs. Advancement in the knowledge of the immunopathogenesis of PsA has been associated with the development of biologic agents which have revolutionized the management of the disease. Among biologics drugs, there are the 4 currently availablee anti-TNFα blocking agents (etanercept, infliximab, adalimumab and golimumab which are more effective than traditional DMARDs on symptoms/signs of inflammation, quality of life, function, and in inhibiting the progression of the structural joint damage. Despite of the high cost, TNF inhibitors are costeffective on both the musculoskeletal and skin manifestations of psoriatic disease.

  15. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region

    International Nuclear Information System (INIS)

    Tian, Zhou; Wang, Jim J.; Liu, Shuai; Zhang, Zengqiang; Dodla, Syam K.; Myers, Gerald

    2015-01-01

    Nitrogen (N) fertilization affects both ammonia (NH 3 ) and greenhouse gas (GHG) emissions that have implications in air quality and global warming potential. Different cropping systems practice varying N fertilizations. The aim of this study was to investigate the effects of applications of polymer-coated urea and urea treated with N process inhibitors: NBPT [N-(n-butyl)thiophosphoric triamide], urease inhibitor, and DCD [Dicyandiamide], nitrification inhibitor, on NH 3 and GHG emissions from a cotton production system in the Mississippi delta region. A two-year field experiment consisting of five treatments including the Check (unfertilized), urea, polymer-coated urea (ESN), urea + NBPT, and urea + DCD was conducted over 2013 and 2014 in a Cancienne loam (Fine-silty, mixed, superactive, nonacid, hyperthermic Fluvaquentic Epiaquepts). Ammonia and GHG samples were collected using active and passive chamber methods, respectively, and characterized. The results showed that the N loss to the atmosphere following urea-N application was dominated by a significantly higher emission of N 2 O-N than NH 3 -N and the most N 2 O-N and NH 3 -N emissions were during the first 30–50 days. Among different N treatments compared to regular urea, NBPT was the most effective in reducing NH 3 -N volatilization (by 58–63%), whereas DCD the most significant in mitigating N 2 O-N emissions (by 75%). Polymer-coated urea (ESN) and NBPT also significantly reduced N 2 O-N losses (both by 52%) over urea. The emission factors (EFs) for urea, ESN, urea-NBPT, urea + DCD were 1.9%, 1.0%, 0.2%, 0.8% for NH 3 -N, and 8.3%, 3.4%, 3.9%, 1.0% for N 2 O-N, respectively. There were no significant effects of different N treatments on CO 2 -C and CH 4 -C fluxes. Overall both of these N stabilizers and polymer-coated urea could be used as a mitigation strategy for reducing N 2 O emission while urease inhibitor NBPT for reducing NH 3 emission in the subtropical cotton production system of the

  16. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. © 2015 Wiley Periodicals, Inc.

  17. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  18. Nitrificação de efluente de abatedouro de tilápia em função da aeração e tempo de reação Nitrification of tilapia slugtherhouse effluent according to the aeration conditions and reaction time

    Directory of Open Access Journals (Sweden)

    Dilcemara C. Zenatti

    2009-12-01

    Full Text Available A ocorrência de compostos nitrogenados em água residuária de abatedouro de tilápia acima dos limites legais, tem causado sérios problemas de poluição em corpos d'água receptores. O processo biológico para remoção dessas substâncias comumente encontradas sob a forma de nitrogênio amoniacal, é conhecido como nitrificação. Objetivou-se, com o presente trabalho, estudar o efeito do tempo de reação (TR e da aeração na eficiência da remoção de nitrogênio amoniacal e na conversão do nitrogênio amoniacal a nitrato, de água residuária de abate de tilápia em um reator em batelada sequencial com biofilme. O experimento foi executado usando-se dois TR(6 e 12 h e dois níveis de vazão de ar (3 e 6 L min-1; avaliaram-se quatro tratamentos a partir da combinação dessas variáveis configuradas em um planejamento experimental do tipo factorial 2², sendo: T1 (QAr = 3 L min-1 e TR = 6 h; T2 (QAr = 6 L min-1 e TR = 6 h, T3 (QAr = 3 L min-1 e TR = 12 h e T4 (QAr = 6 L min-1 e TR = 12 h, e quatro repetições para cada tratamento. Os resultados mais significativos foram para o tratamento T4, com o qual se obteve média de eficiência para conversão de amônio a nitrato e remoção de nitrogênio amoniacal de 57,27 ± 27,05% e 81,90 ± 3,80%, respectivamente.The occurrence of composts of nitrogen above the legal limits has been causing serious pollution problems in water receptor bodies. The biological process for removal of these substances commonly found in the ammoniacal nitrogen form is known as nitrification. The present study had as its objective the evaluation of the effects of the reaction time (TR and of the aeration on the removal efficiency of the ammoniacal nitrogen and on the conversion of the ammoniacal nitrogen to nitrate in a nitrification process of the tilapia slaughterhouse effluent in sequential batch reactor with biofilm. The experiment was performed using two reaction times (6 and 12 h and two levels of air flow

  19. Inibição de lodo biológico anaeróbio por constituintes de efluente de laboratório de controle de poluição Inhibition of anaerobic biological sludge by effluent constituents of pollution control laboratory

    Directory of Open Access Journals (Sweden)

    Larissa de Carvalho Alves

    2005-09-01

    of H2SO4, containing heavy metals such as chromium, silver and mercury and organic compounds as phenol. The presence of these elements in the laboratory effluent can cause inhibition of the biological activity, especially in the anaerobic treatment processes due to the sensitivity of the methanogens to some chemical compounds. This work had as objective to characterize the effluent from the Federal University of Rio de Janeiro Chemistry School Environmental Technology Laboratory (LTA/UFRJ and to determine which constituents of the effluent one would be inhibitors for anaerobic microorganisms in the treatment of the sewage generated in the campus. The effluent one presents a weekly average production of 43.4 L, with pH = 0.7, COD = 1350 mg/L, sulfate = 33500 mg/L; 28.2 mg Hg/L; 82.1 mg Cr total/L; 30.8 mg Cu/L; 57.4 mg Fe total/L; 16.2 mg Al/L and 2.44 g Na/L. The parameters analyzed presented high variability as the study was conducted in function of the analyses and researches carried out in that period. In experimental design performed, the elements sodium, chromium, phenol and sulfate, as well as the interactions sulfate-mercury and sulfate-sodium, were significantly more effective on the inhibition of the specific methanogenic activity (SMA. The effects of the other elements (cupper, mercury, aluminum and iron, analyzed alone and their interactions were not significant for a confidence level of 95% in the t-Student distribution. The results indicate the necessity of a specific treatment for the laboratory effluent, since universities must be examples of combating pollution and encouraging the environmental control.

  20. Biological denitrification of high-nitrates wastes generated in the nuclear industry

    International Nuclear Information System (INIS)

    Francis, C.W.

    1980-01-01

    Biological denitrification appears to be one of the most effective methods to remove nitrates from wastewater streams (Christenson and Harremoes, 1975). However, most of the research and development work has been centered on removal of nitrates from sewage or agricultural drainage waters, nitrate nitrogen concentration usually less than 50 g/m 3 . Work was initiated at Oak Ridge National Laboratory (ORNL) in 1974 to test the use of biological nitrification in the removal of high concentrations of nitrate (in excess of 1.0 kg NO 3 -N/m 3 ) from uranium purification waste streams. Since then, a full-scale treatment facility, a stirred reactor, has been installed at the Y-12 plant; and a pilot-plant, using a fluidized bed, has been proposed at Portsmouth Gaseous Diffusion Plant. The objective of this manuscript is to present some applied microbiological research relating to possible constraints in biologically denitrifying certain waste streams in the nuclear industry and comparing the effectiveness of denitrification of these waste streams in three bench scale reactors, (1) a continuous flow-stirred reactor, (2) stirred bed rector, and (3) a fluidized bed reactor

  1. Biology of Blood

    Science.gov (United States)

    ... switch to the Professional version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  2. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  3. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological membranes. K Katsov M Müller M Schick. Invited Talks:- Topic 11. Biologically motivated problems (protein-folding models, dynamics at the scale of the cell; biological networks, evolution models, etc.) Volume 64 Issue 6 June 2005 pp ...

  4. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  5. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  6. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  7. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  8. Upgrading Undergraduate Biology Education

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  9. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  10. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  11. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    Science.gov (United States)

    Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.

  12. Anxiety and retrieval inhibition: support for an enhanced inhibition account.

    Science.gov (United States)

    Nuñez, Mia; Gregory, Josh; Zinbarg, Richard E

    2017-02-01

    Retrieval inhibition of negative associations is important for exposure therapy for anxiety, but the relationship between memory inhibition and anxiety is not well understood-anxiety could either be associated with enhanced or deficient inhibition. The present study tested these two competing hypotheses by measuring retrieval inhibition of negative stimuli by related neutral stimuli. Non-clinically anxious undergraduates completed measures of trait and state anxiety and completed a retrieval induced forgetting task. Adaptive forgetting varied with state anxiety. Low levels of state anxiety were associated with no evidence for retrieval inhibition for either threatening or non-threatening categories. Participants in the middle tertile of state anxiety scores exhibited retrieval inhibition for non-threatening categories but not for threatening categories. Participants in the highest tertile of state anxiety, however, exhibited retrieval inhibition for both threatening and non-threatening categories with the magnitude of retrieval inhibition being greater for threatening than non-threatening categories. The data are in line with the avoidance aspect of the vigilance-avoidance theory of anxiety and inhibition. Implications for cognitive behavioural therapy practices are discussed.

  13. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  14. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  15. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  16. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhou [College of Resources and Environment, Northwest A& F University, Yangling, Shaanxi (China); School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Wang, Jim J., E-mail: jjwang@agcenter.lsu.edu [School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Liu, Shuai [College of Resources and Environment, Northwest A& F University, Yangling, Shaanxi (China); School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Zhang, Zengqiang, E-mail: zqzhang@nwsuaf.edu.cn [College of Resources and Environment, Northwest A& F University, Yangling, Shaanxi (China); Dodla, Syam K.; Myers, Gerald [School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States)

    2015-11-15

    Nitrogen (N) fertilization affects both ammonia (NH{sub 3}) and greenhouse gas (GHG) emissions that have implications in air quality and global warming potential. Different cropping systems practice varying N fertilizations. The aim of this study was to investigate the effects of applications of polymer-coated urea and urea treated with N process inhibitors: NBPT [N-(n-butyl)thiophosphoric triamide], urease inhibitor, and DCD [Dicyandiamide], nitrification inhibitor, on NH{sub 3} and GHG emissions from a cotton production system in the Mississippi delta region. A two-year field experiment consisting of five treatments including the Check (unfertilized), urea, polymer-coated urea (ESN), urea + NBPT, and urea + DCD was conducted over 2013 and 2014 in a Cancienne loam (Fine-silty, mixed, superactive, nonacid, hyperthermic Fluvaquentic Epiaquepts). Ammonia and GHG samples were collected using active and passive chamber methods, respectively, and characterized. The results showed that the N loss to the atmosphere following urea-N application was dominated by a significantly higher emission of N{sub 2}O-N than NH{sub 3}-N and the most N{sub 2}O-N and NH{sub 3}-N emissions were during the first 30–50 days. Among different N treatments compared to regular urea, NBPT was the most effective in reducing NH{sub 3}-N volatilization (by 58–63%), whereas DCD the most significant in mitigating N{sub 2}O-N emissions (by 75%). Polymer-coated urea (ESN) and NBPT also significantly reduced N{sub 2}O-N losses (both by 52%) over urea. The emission factors (EFs) for urea, ESN, urea-NBPT, urea + DCD were 1.9%, 1.0%, 0.2%, 0.8% for NH{sub 3}-N, and 8.3%, 3.4%, 3.9%, 1.0% for N{sub 2}O-N, respectively. There were no significant effects of different N treatments on CO{sub 2}-C and CH{sub 4}-C fluxes. Overall both of these N stabilizers and polymer-coated urea could be used as a mitigation strategy for reducing N{sub 2}O emission while urease inhibitor NBPT for reducing NH{sub 3} emission

  17. Inhibition of polyphenoloxidase by sulfite

    International Nuclear Information System (INIS)

    Sayavedra-Soto, L.A.; Montgomery, M.W.

    1986-01-01

    When polyphenoloxidase (PPO) was exposed to sulfite prior to substrate addition, inhibition was irreversible. Trials to regenerate PPO activity, using extensive dialysis, column chromatography, and addition of copper salts were not successful. Increased concentrations of sulfite and pH levels less than 5 enhanced the inhibition of PPO by sulfite. At pH 4, concentrations greater than 0.04 mg/mL completely inhibited 1000 units of PPO activity almost instantaneously. This suggested that the HSO 3 - molecule was the main component in the sulfite system inhibiting PPO. Column chromatography, extensive dialysis, and gel electrophoresis did not demonstrate 35 SO 2 bound to purified pear PPO protein. Formation of extra protein bands of sulfite inhibited purified pear PPO fractions on gel electrophoresis was demonstrated. This and other evidence suggested that the major mode of direct irreversible inhibition of PPO was modification of the protein structure, with retention of its molecular unity

  18. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  19. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  20. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  1. Standard Biological Parts Knowledgebase

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.

    2011-01-01

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  2. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  3. Receptor studies in biological psychiatry

    International Nuclear Information System (INIS)

    Fujiwara, Yutaka

    1992-01-01

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D 2 ) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D 2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D 2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3 H-clonidine binding sites were increased in platelet membranes of depressive patients, 3 H-imipramine binding sites were decreased. The GABA A receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D 2 ) and the ion-channel type (GABA A ). (J.P.N.)

  4. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  6. Modeling intentional inhibition of actions

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2015-01-01

    Inspired by cognitive and neurological literature on action ownership and action awareness, in this paper a computational cognitive model for intentional inhibition (i.e.; the capacity to voluntarily suspend or inhibit an action) is introduced. The interplay between (positive) potential selection of

  7. Can Arousal Modulate Response Inhibition?

    Science.gov (United States)

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  8. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  9. Space Synthetic Biology (SSB)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  10. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  11. Workshop Introduction: Systems Biology and Biological Models

    Science.gov (United States)

    As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...

  12. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.

    Science.gov (United States)

    Kocamemi, B Alpaslan; Ceçen, F

    2010-01-01

    In the present study, cometabolic TCE degradation was evaluated using NH(4)-N as the growth-substrate. At initial TCE concentrations up to 845 microg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (T(y)) of TCE, the amount of TCE degraded per unit mass of NH(4)-N, strongly depended on the initial NH(4)-N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH(4)-N concentrations, a linear relationship was developed between 1/T(y) and the initial NH(4)-N/TCE ratio. The estimated T(y) values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.

  13. Isoform-specific inhibition of cyclophilins.

    Science.gov (United States)

    Daum, Sebastian; Schumann, Michael; Mathea, Sebastian; Aumüller, Tobias; Balsley, Molly A; Constant, Stephanie L; de Lacroix, Boris Féaux; Kruska, Fabian; Braun, Manfred; Schiene-Fischer, Cordelia

    2009-07-07

    Cyclophilins belong to the enzyme class of peptidyl prolyl cis-trans isomerases which catalyze the cis-trans isomerization of prolyl bonds in peptides and proteins in different folding states. Cyclophilins have been shown to be involved in a multitude of cellular functions like cell growth, proliferation, and motility. Among the 20 human cyclophilin isoenzymes, the two most abundant members of the cyclophilin family, CypA and CypB, exhibit specific cellular functions in several inflammatory diseases, cancer development, and HCV replication. A small-molecule inhibitor on the basis of aryl 1-indanylketones has now been shown to discriminate between CypA and CypB in vitro. CypA binding of this inhibitor has been characterized by fluorescence anisotropy- and isothermal titration calorimetry-based cyclosporin competition assays. Inhibition of CypA- but not CypB-mediated chemotaxis of mouse CD4(+) T cells by the inhibitor provided biological proof of discrimination in vivo.

  14. Delivering the lateral inhibition punchline: it's all about the timing.

    Science.gov (United States)

    Axelrod, Jeffrey D

    2010-10-26

    Experimental and theoretical biologists have long been fascinated with the emergence of self-organizing patterns in developing organisms, and much attention has focused on Notch-mediated lateral inhibition. Within sheets of cells that may adopt either of two possible cell fates, lateral inhibition establishes patterns through the activity of a negative intercellular feedback loop involving the receptor, Notch, and its ligands Delta or Serrate. Despite a long history of intensive study in Drosophila, where the mechanism was first described, as well as in other organisms, new work continues to yield important insights. Mathematical modeling, combined with biological analyses, has now shed light on two features of the process: how antagonistic and activating ligand-receptor interactions work together to accelerate inhibition and ensure fidelity, and how filopodial dynamics contribute to the observed pattern refinement and spacing.

  15. Advances in radiation biology

    International Nuclear Information System (INIS)

    Lett, J.T.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    The classical period of radiation biology is coming to a close. Such change always occurs at a time when the ideas and concepts that promoted the burgeoning of an infant science are no longer adequate. This volume covers a number of areas in which new ideas and research are playing a vital role, including cellular radiation sensitivity, radioactive waste disposal, and space radiation biology

  16. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  17. Psoriasis : implications of biologics

    NARCIS (Netherlands)

    Lecluse, L.L.A.

    2010-01-01

    Since the end of 2004 several specific immunomodulating therapies: ‘biologic response modifiers’ or ‘biologics’ have been registered for moderate to severe psoriasis in Europe. This thesis is considering the implications of the introduction of the biologics for psoriasis patients, focusing on safety

  18. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  19. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  20. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  1. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  2. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  3. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several...

  4. A Biological Porin Engineered into a Molecular, Nanofluidic Diode

    NARCIS (Netherlands)

    Miedema, Henk; Vrouenraets, Maarten; Wierenga, Jenny; Meijberg, Wim; Robillard, George; Eisenberg, Bob

    2007-01-01

    We changed the nonrectifying biological porin OmpF into a nanofluidic diode. To that end, we engineered a pore that possesses two spatially separated selectivity filters of opposite charge where either cations or anions accumulate. The observed current inhibition under applied reverse bias voltage

  5. Epistemological Syncretism in a Biology Classroom: A Case Study

    Science.gov (United States)

    Bennett, William D.; Park, Soonhye

    2011-01-01

    In teaching science, the beliefs of teachers may come into conflict and inhibit the implementation of reformed teaching practice. An experienced biology teacher, Mr. Hobbs, was found to have two different sets of epistemological beliefs while his classroom practice was predominantly teacher-centered. A case study was then performed in order to…

  6. Salinomycin, A Polyether Ionophoric Antibiotic, Inhibits Adipogenesis

    Science.gov (United States)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan; Ngeow, Yun Fong; Chin, Khew-Voon

    2012-01-01

    The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor γ. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy. PMID:23123626

  7. Biological Potential of Sixteen Legumes in China

    Directory of Open Access Journals (Sweden)

    Guixing Ren

    2011-10-01

    Full Text Available Phenolic acids have been identified in a variety of legumes including lima bean, broad bean, common bean, pea, jack bean, goa bean, adzuki bean, hyacinth bean, chicking vetch, garbanzo bean, dral, cow bean, rice bean, mung bean and soybean. The present study was carried out with the following aims: (1 to identify and quantify the individual phenolic acid and determine the total phenolic content (TPC; (2 to assess their antioxidant activity, inhibition activities of α-glucosidase, tyrosinase, and formation of advanced glycation endproducts; and (3 to investigate correlations among the phytochemicals and biological activity. Common bean possesses the highest antioxidant activity and advanced glycation endproducts formation inhibition activity. Adzuki bean has the highest α-glucosidase inhibition activity, and mung bean has the highest tyrosinase inhibition activity. There are significant differences in phytochemical content and functional activities among the bean species investigated. Selecting beans can help treat diseases such as dermatological hyperpigmentation illness, type 2 diabetes and associated cardiovascular diseases.

  8. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  9. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  10. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  11. Pembangunan Kebun Biologi Wamena*[establishment of Wamena Biological Gardens

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    The richness of biological resources (biodiversity) in mountainous area of Papua is an asset that has to be preserved.Exploitation of natural resources often cause damage on those biological assets and as genetic resources.Care has to be taken to overcome the situation of biological degradation, and alternate steps had been shaped on ex-situ biological conservation. Wamena Biological Gardens, as an ex-situ biological conservation, has been established to keep the high mountain biological and ...

  12. Anthropic principle in biology and radiation biology

    International Nuclear Information System (INIS)

    Akif'ev, A. P.; Degtyarev, S.V.

    1999-01-01

    It was suggested to add the anthropic principle of the Universe according to which the physical constants of fundamental particles of matter and the laws of their counteraction are those that an appearance of man and mind becomes possible and necessary, with some biological constants to the set of fundamental constants. With reparation of DNA as an example it was shown how a cell ran some parameters of Watson-Crick double helix. It was pointed that the concept of the anthropic principle of the Universe in its full body including biological constants was a key to developing of a unified theory of evolution of the Universe within the limits of scientific creationism [ru

  13. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Physical biological coupling in the Pearl River Estuary

    Science.gov (United States)

    Harrison, Paul J.; Yin, Kedong; Lee, J. H. W.; Gan, Jianping; Liu, Hongbin

    2008-07-01

    The Pearl River Estuary is a subtropical estuary and the second largest in China based on discharge volume from the Pearl River. Processes in the estuary vary spatially and temporally (wet vs dry season). In the dry season at the head of the estuary, hypoxic and nearly anoxic conditions occur and NH 4 reaches >600 μM, NO 3 is ˜300 μM and nitrite is ˜60 μM indicating that nitrification and denitrification may be important dry season processes in the region extending 40 km upstream of the Humen outlet. There are very few biological studies conducted in this upper section of the estuary in either the dry or wet seasons and hence there is a need for further research in this region of the river. In the wet season, the salinity wedge extends to the Hongqimen outlet and oxygen is low (35-80% saturation). Nitrate is ˜100 μM, silicate ˜140 μM; and phosphate is relatively low at ˜0.5 μM, yielding an N:P ratio up to ˜200:1 in summer. Nutrients decrease in the lower estuary and primary productivity may become potentially P-limited. Eutrophication is not as severe as one would expect from the nutrient inputs from the Pearl River and from Hong Kong's sewage discharge. This estuary shows a remarkable capacity to cope with excessive nutrients. Physical processes such as river discharge, tidal flushing, turbulent dispersion, wind-induced mixing, and estuarine circulation play an important role in controlling the production and accumulation of algal blooms and the potential occurrence of hypoxia. Superimposed on the physical processes of the estuary are the chemical and biological processes involved in the production of the bloom. For example, the 100N:1P ratio indicates that P potentially limits the amount of algal biomass (and potential biological oxygen demand) in summer. While extended periods of hypoxia are rare in Hong Kong waters, episodic events have been reported to occur during late summer due to factors such as low wind, high rainfall and river discharge which

  15. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  16. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  17. A timeless biology.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Chafin, Clifford; De Falco, Domenico; Torday, John S

    2018-05-01

    Contrary to claims that physics is timeless while biology is time-dependent, we take the opposite standpoint: physical systems' dynamics are constrained by the arrow of time, while living assemblies are time-independent. Indeed, the concepts of "constraints" and "displacements" shed new light on the role of continuous time flow in life evolution, allowing us to sketch a physical gauge theory for biological systems in long timescales. In the very short timescales of biological systems' individual lives, time looks like "frozen" and "fixed", so that the second law of thermodynamics is momentarily wrecked. The global symmetries (standing for biological constrained trajectories, i.e. the energetic gradient flows dictated by the second law of thermodynamics in long timescales) are broken by local "displacements" where time is held constant, i.e., modifications occurring in living systems. Such displacements stand for brief local forces, able to temporarily "break" the cosmic increase in entropy. The force able to restore the symmetries (called "gauge field") stands for the very long timescales of biological evolution. Therefore, at the very low speeds of life evolution, time is no longer one of the four phase space coordinates of a spacetime Universe: it becomes just a gauge field superimposed to three-dimensional biological systems. We discuss the implications in biology: when assessing living beings, the underrated role of isolated "spatial" modifications needs to be emphasized, living apart the evolutionary role of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Selective inhibition of distracting input.

    Science.gov (United States)

    Noonan, MaryAnn P; Crittenden, Ben M; Jensen, Ole; Stokes, Mark G

    2017-10-16

    We review a series of studies exploring distractor suppression. It is often assumed that preparatory distractor suppression is controlled via top-down mechanisms of attention akin to those that prepare brain areas for target enhancement. Here, we consider two alternative mechanisms: secondary inhibition and expectation suppression within a predictive coding framework. We draw on behavioural studies, evidence from neuroimaging and some animal studies. We conclude that there is very limited evidence for selective top-down control of preparatory inhibition. By contrast, we argue that distractor suppression often relies secondary inhibition of non-target items (relatively non-selective inhibition) and on statistical regularities of the environment, learned through direct experience. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. [Concepts of inhibition in psychiatry].

    Science.gov (United States)

    Auroux, Y; Bourrat, M M; Brun, J P

    1978-01-01

    Following a historical approach, the authors first describe the original development of the concept of inhibition in neurophysiology and then analyze the subsequent adaptations made in psychiatry around such concept including those of: -- Pavlov, Hull, Watson and the behaviorists, -- Freud and the Freudian School, -- clinicians and psychopharmacologists. The concept of inhibition has thus various meanings in psychiatry. Although some unity is achieved on the semiological level, this aspect cannot explain the extent of the process.

  20. Inhibition of MMPs by alcohols

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453