WorldWideScience

Sample records for biological mixed colloids

  1. Probing self assembly in biological mixed colloids by SANS, deuteration and molecular manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P. [Los Alamos National Laboratory, NM (United States); Thiyagarajan, P. [Argonne National Laboratory, IL (United States); Hoffman, A. [Univ. of California, San Diego, CA (United States); Alkan-Onyuksel, H. [Univ. of Illinois, Chicago, IL (United States)

    1994-12-31

    Small-angle neutron scattering was used to obtain information on the form and molecular arrangement of particles in mixed colloids of bile salts with phosphatidylcholine, and bile salts with monoolein. Both types of systems showed the same general characteristics. The particle form was highly dependent on total lipid concentration. At the highest concentrations the particles were globular mixed micelles with an overall size of 50{Angstrom}. As the concentration was reduced the mixed micelles elongated, becoming rodlike with diameter about 50{Angstrom}. The rods had a radial core-shell structure in which the phosphatidylcholine or monoolein fatty tails were arranged radially to form the core with the headgroups pointing outward to form the shell. The bile salts were at the interface between the shell and core with the hydrophilic parts facing outward as part of the shell. The lengths of the rods increased and became more polydispersed with dilution. At sufficiently low concentrations the mixed micelles transformed into single bilayer vesicles. These results give insight on the physiological function of bile and on the rules governing the self assembly of bile particles in the hepatic duct and the small intestine.

  2. TOPICAL REVIEW: Biological applications of colloidal nanocrystals

    Science.gov (United States)

    Parak, Wolfgang J.; Gerion, Daniele; Pellegrino, Teresa; Zanchet, Daniela; Micheel, Christine; Williams, Shara C.; Boudreau, Rosanne; LeGros, Mark A.; Larabell, Carolyn A.; Alivisatos, A. Paul

    2003-07-01

    Due to their interesting properties, research on colloidal nanocrystals has moved in the last few years from fundamental research to first applications in materials science and life sciences. In this review some recent biological applications of colloidal nanocrystals are discussed, without going into biological or chemical details. First, the properties of colloidal nanocrystals and how they can be synthesized are described. Second, the conjugation of nanocrystals with biological molecules is discussed. And third, three different biological applications are introduced: (i) the arrangement of nanocrystal-oligonucleotide conjugates using molecular scaffolds such as single-stranded DNA, (ii) the use of nanocrystal-protein conjugates as fluorescent probes for cellular imaging, and (iii) a motility assay based on the uptake of nanocrystals by living cells.

  3. Stabilising emulsion-based colloidal structures with mixed food ingredients.

    Science.gov (United States)

    Dickinson, Eric

    2013-03-15

    The physical scientist views food as a complex form of soft matter. The complexity has its origin in the numerous ingredients that are typically mixed together and the subtle variations in microstructure and texture induced by thermal and mechanical processing. The colloid science approach to food product formulation is based on the assumption that the major product attributes such as appearance, rheology and physical stability are determined by the spatial distribution and interactions of a small number of generic structural entities (biopolymers, particles, droplets, bubbles, crystals) organised in various kinds of structural arrangements (layers, complexes, aggregates, networks). This review describes some recent advances in this field with reference to three discrete classes of dispersed systems: particle-stabilised emulsions, emulsion gels and aerated emulsions. Particular attention is directed towards explaining the crucial role of the macromolecular ingredients (proteins and polysaccharides) in controlling the formation and stabilisation of the colloidal structures. The ultimate objective of this research is to provide the basic physicochemical insight required for the reliable manufacture of novel structured foods with an appealing taste and texture, whilst incorporating a more healthy set of ingredients than those found in many existing traditional products.

  4. Colloidal stability of polymeric nanoparticles in biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Stefano [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Moscatelli, Davide, E-mail: davide.moscatelli@polimi.it [Materiali e Ingegneria Chimica ' Giulio Natta' , Politecnico di Milano, Dipartimento di Chimica (Italy); Codari, Fabio [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Salmona, Mario [Istituto di Ricerche Farmacologiche ' Mario Negri' , Department of Molecular Biochemistry and Pharmacology (Italy); Morbidelli, Massimo [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Diomede, Luisa [Istituto di Ricerche Farmacologiche ' Mario Negri' , Department of Molecular Biochemistry and Pharmacology (Italy)

    2012-06-15

    Estimating the colloidal stability of polymeric nanoparticles (NPs) in biological environments is critical for designing optimal preparations and to clarify the fate of these devices after administration. To characterize and quantify the physical stability of nanodevices suitable for biomedical applications, spherical NPs composed of poly-lactic acid (PLA) and poly-methyl-methacrylate (PMMA), in the range 100-200 nm, were prepared. Their stability in salt solutions, biological fluids, serum and tissue homogenates was analyzed by dynamic light scattering (DLS). The PMMA NPs remained stable in all fluids, while PLA NPs aggregated in gastric juice and spleen homogenate. The proposed stability test is therefore useful to see in advance whether NPs might aggregate when administered in vivo. To assess colloidal stability ex vivo as well, spectrophotofluorimetric analysis was employed, giving comparable results to DLS.

  5. How a "pinch of salt" can tune chaotic mixing of colloidal suspensions

    CERN Document Server

    Deseigne, Julien; Stroock, Abraham D; Bocquet, Lydéric; Ybert, Christophe

    2014-01-01

    Efficient mixing of colloids, particles or molecules is a central issue in many processes. It results from the complex interplay between flow deformations and molecular diffusion, which is generally assumed to control the homogenization processes. In this work we demonstrate on the contrary that despite fixed flow and self-diffusion conditions, the chaotic mixing of colloidal suspensions can be either boosted or inhibited by the sole addition of trace amount of salt as a co-mixing species. Indeed, this shows that local saline gradients can trigger a chemically-driven transport phenomenon, diffusiophoresis, which controls the rate and direction of molecular transport far more efficiently than usual Brownian diffusion. A simple model combining the elementary ingredients of chaotic mixing with diffusiophoretic transport of the colloids allows to rationalize our observations and highlights how small-scale out-of-equilibrium transport bridges to mixing at much larger scales in a very effective way. Considering cha...

  6. 2D "soap"-assembly of nanoparticles via colloid-induced condensation of mixed Langmuir monolayers of fatty surfactants.

    Science.gov (United States)

    Babenko, Denis I; Ezhov, Alexander A; Turygin, Dmitry S; Ivanov, Vladimir A; Ivanov, Vladimir K; Arslanov, Vladimir V; Kalinina, Maria A

    2012-01-10

    We describe a new type of colloidal 2D gels formed in mixed Langmuir monolayers of stearic acid and octadecylamine on a surface of gold hydrosol. The adsorption of gold nanoparticles on the mixed monolayer led to an increase of interactions between oppositely charged surfactants giving a "soap" of mixed fatty salt. The observed effect is equivalent to a virtual "cooling" of floating monolayer, which undergoes rapid condensation on a surface of aqueous colloid. The consequent shrinking and rearrangement of the monolayer resulted in aggregation of nanoparticles into colloidal 2D "soap"-gels, which represented arrested colloidal phases within nonadsorbing organic medium. When sequentially deposited onto solids by Langmuir-Blodgett technique, the 2D "soap"-gels separated into organic and colloidal phases and gave dendrite-like bilateral organic crystallites coated with gold nanoparticles. The reported colloidal "soap"-assembly can offer a new opportunity to design 2D colloidal systems of widely variable chemistry and structures.

  7. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  8. Experimental Aspects of Colloidal Interactions in Mixed Systems of Liposome and Inorganic Nanoparticle and Their Applications

    Directory of Open Access Journals (Sweden)

    Michael Gradzielski

    2012-09-01

    Full Text Available In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles and hard nanoparticles (NPs. In this context liposomes (vesicles may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.

  9. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles

    NARCIS (Netherlands)

    Feng, Lili; Cohen Stuart, Martien; Adachi, Yasuhisa

    2015-01-01

    The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and

  10. Formation of drug-bearing vesicles in mixed colloids of bile salts and phosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P.; Mang, J. [Los Alamos National Lab., NM (United States); Hofmann, A.F.; Schteingart, C. [Univ. of California, San Diego, CA (United States); Alkan-Onyuksel, H.; Ayd, S. [Univ. of Illinois, Urbana, IL (United States)

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used small-angle neutron scattering to study drug interactions with mixed colloids of bile salt and phosphatidylcholine. Because the mixed colloids form liposomes spontaneously, this system is a model for drug-bile interactions that are important in understanding the efficacy of oral drug formulations and in advanced applications for liposome drug delivery systems. The authors studied particle formation in incorporation of enzymatic products formed in the gut and the effects of cholesteric drugs and taxol on vesicle formation. The studies show that particle morphology is not affected by inclusion of most cholesteric drugs and taxol, and is not affected by incorporation of the products of enzymatic action. The findings suggest that particle form is important for the physiological function of bile and they are beginning to show which drugs affect liposome formation.

  11. Formation of mixed Al-Fe colloidal sorbent and dissolved-colloidal partitioning of Cu and Zn in the Cement Creek - Animas River Confluence, Silverton, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Schemel, Laurence E. [US Geological Survey, Water Resources Division, 345 Middlefield Road, MS 439, Menlo Park, CA 94025 (United States)]. E-mail: lschemel@usgs.gov; Kimball, Briant A. [US Geological Survey, Water Resources Division, 2329 Orton Circle, Salt Lake City, UT 84119-2047 (United States); Runkel, Robert L. [US Geological Survey, Water Resources Division, Denver Federal Center, MS 415, Lakewood, CO 80225 (United States); Cox, Marisa H. [US Geological Survey, Water Resources Division, 345 Middlefield Road, MS 439, Menlo Park, CA 94025 (United States)

    2007-07-15

    Transport and chemical transformations of dissolved and colloidal Al, Fe, Cu and Zn were studied by detailed sampling in the mixing zone downstream from the confluence of Cement Creek (pH 4.1) with the Animas River (pH 7.6). Complete mixing resulted in circumneutral pH in the downstream reach of the 1300 m study area. All four metals were transported through this mixing zone without significant losses to the streambed, and they exhibited transformations from dissolved to colloidal forms to varying degrees during the mixing process. Nearly all of the Al formed colloidal hydrous Al oxides (HAO) as pH increased (4.8-6.5), whereas colloidal hydrous Fe oxides (HFO) were supplied by Cement Creek as well as formed in the mixing zone primarily at higher pH (>6.5). The short travel time through the mixing zone (approx. 40 min) and pH limited the formation of HFO from dissolved Fe{sup 2+} supplied by Cement Creek. Although the proportions of HAO and HFO varied as the streams mixed, the colloidal sorbent typically was enriched in HAO relative to HFO by a factor of 1.5-2.1 (by mole) in the pH range where dissolved-to-colloidal partitioning of Cu and Zn was observed. Model simulations of sorption by HFO (alone) greatly underestimated the dissolved-to-colloidal partitioning of Zn. Previous studies have shown that HAO-HFO mixtures can sorb greater amounts of Zn than HFO alone, but the high Zn-to-sorbent ratio in this mixing zone could also account for greater partitioning. In contrast to Zn, comparisons with model simulations did not show that Cu sorption was greater than that for HFO alone, and also indicated that sorption was possibly less than what would be expected for a non-interactive mixture of these two sorbents. These field results for Cu, however, might be influenced by (organic) complexation or other factors in this natural system. Laboratory mixing experiments using natural source waters (upstream of the confluence) showed that the presence of HFO in the mixed sorbent

  12. Formation of mixed Al-Fe colloidal sorbent and dissolved-colloidal partitioning of Cu and Zn in the Cement Creek - Animas River Confluence, Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Runkel, R.L.; Cox, M.H.

    2007-01-01

    Transport and chemical transformations of dissolved and colloidal Al, Fe, Cu and Zn were studied by detailed sampling in the mixing zone downstream from the confluence of Cement Creek (pH 4.1) with the Animas River (pH 7.6). Complete mixing resulted in circumneutral pH in the downstream reach of the 1300 m study area. All four metals were transported through this mixing zone without significant losses to the streambed, and they exhibited transformations from dissolved to colloidal forms to varying degrees during the mixing process. Nearly all of the Al formed colloidal hydrous Al oxides (HAO) as pH increased (4.8-6.5), whereas colloidal hydrous Fe oxides (HFO) were supplied by Cement Creek as well as formed in the mixing zone primarily at higher pH (>6.5). The short travel time through the mixing zone (approx. 40 min) and pH limited the formation of HFO from dissolved Fe2+ supplied by Cement Creek. Although the proportions of HAO and HFO varied as the streams mixed, the colloidal sorbent typically was enriched in HAO relative to HFO by a factor of 1.5-2.1 (by mole) in the pH range where dissolved-to-colloidal partitioning of Cu and Zn was observed. Model simulations of sorption by HFO (alone) greatly underestimated the dissolved-to-colloidal partitioning of Zn. Previous studies have shown that HAO-HFO mixtures can sorb greater amounts of Zn than HFO alone, but the high Zn-to-sorbent ratio in this mixing zone could also account for greater partitioning. In contrast to Zn, comparisons with model simulations did not show that Cu sorption was greater than that for HFO alone, and also indicated that sorption was possibly less than what would be expected for a non-interactive mixture of these two sorbents. These field results for Cu, however, might be influenced by (organic) complexation or other factors in this natural system. Laboratory mixing experiments using natural source waters (upstream of the confluence) showed that the presence of HFO in the mixed sorbent

  13. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    Science.gov (United States)

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  14. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6 Section 114.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... BIOLOGICAL PRODUCTS § 114.6 Mixing biological products. Each biological product, when in liquid form,...

  15. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.

    Science.gov (United States)

    Spinicelli, Piernicola; Mahler, Benoit; Buil, Stéphanie; Quélin, Xavier; Dubertret, Benoit; Hermier, Jean-Pierre

    2009-04-14

    Twinkle, twinkle: The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. There are various approaches for obtaining non-blinking nanocrystals, one of which is to grow a thick coat of CdS on the CdSe core (see picture). Applications of this method in the fields of optoelectronic devices, biologic labelling and quantum information processing are discussed.The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. For some years, research on this phenomenon has demonstrated the possibility to progress beyond this problem by suppressing this fluorescence intermittency in various ways. After a brief overview on the microscopic mechanism of blinking, we review the various approaches used to obtain non-blinking nanocrystals and discuss the commitment of this crucial improvement to applications in the fields of optoelectronic devices, biologic labelling and quantum information processing.

  16. Transformation of organic carbon, trace element, and organo-mineral colloids in the mixing zone of the largest European Arctic river

    Directory of Open Access Journals (Sweden)

    O. S. Pokrovsky

    2013-10-01

    Full Text Available The estuarine behavior of organic carbon (OC and trace elements (TE was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river is a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012 and winter (March 2009 baseflow, and the November–December 2011 ice-free period. Colloidal forms of OC and TE were assessed using three pore size cutoff (1, 10, and 50 kDa using an in-situ dialysis procedure. Conventionally dissolved ( The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved ( Overall, the observed decrease of the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa–0.22 μm portion by the LMW fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate vs. dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either a conservative (OC and

  17. Application of mixed colloidal magnetic fluid of single domain Fe3O4 and NiFe2O4 ferrite nanoparticles in audio speaker

    Directory of Open Access Journals (Sweden)

    S. D. Kemkar

    2017-01-01

    Full Text Available Ferrofluids are stable suspensions of colloidal ferrimagnetic particles in suitable non – magnetic carrier liquids. They have attracted a lot of attention from scientists and engineers due to their many interesting properties and applications in various branches of engineering. The present work reports the performance of colloidal fluid of single domain nanoparticles of NiFe2O4 and Fe3O4. The thermal properties and its dynamics on magnetization as well as its effect on thermal conductivity on the colloidal fluid are studied here. Advantages of the increased thermal conductivity and optimization of magnetization of mixed colloidal fluid is used to extract the heat from voice coil. Nanoparticles of 21 nm of Fe3O4 and 12 nm of NiFe2O4 are used for mixed colloidal fluid. The suspension of particles is achieved by coating the nanoparticles with mono-corboxylic group on both the types of particles. The higher size (21 nm of Fe3O4 and 12 nm of NiFe2O4 particles are taken for synthesizing colloidal fluid, to have magnetic property of mixed colloidal liquid at elevated temperature of voice coil of speaker (Higher sized particles gives better magnetization. Oil is used as a carrier. Mixed magnetic colloidal fluid is used as a medium for damping so that noise is reduced at higher temperature of voice coil.

  18. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

    Science.gov (United States)

    Argentiere, Simona; Cella, Claudia; Cesaria, Maura; Milani, Paolo; Lenardi, Cristina

    2016-08-01

    Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV-Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV-Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

  19. Use of colloidal gold cytochemistry in the study of the basic cell biology of cancer.

    Science.gov (United States)

    Willingham, M C

    1989-01-01

    We are currently investigating the morphologic aspects of two areas of the basic cell biology of cancer: tumor-specific surface antigens as targets for immunotoxins, and the phenomenon of multidrug resistance in chemotherapy of human tumors. Colloidal gold cytochemistry has provided a useful method for the electron-microscopic cytochemical detection of materials endocytosed by cells in culture. This technique has been used to study the internalization pathway of ligands bound to the surface of cancer cells, particularly antibodies for use as immunologic targeting reagents for the construction of immunotoxins. These colloidal gold conjugates with monoclonal antibodies have demonstrated the internalization of these immunologic reagents through coated pits and receptosomes, which is a necessary step in the delivery of immunotoxins into the cell where they can mediate their cell-killing functions. Morphologic methods have been employed for the screening and selection of monoclonal antibodies reactive with the surface of human ovarian cancer cells for use as immunotoxins and have demonstrated the in vivo activity of immunotoxins made with these antibodies and Pseudomonas exotoxin in a nude mouse model system. In other studies, we have employed such reagents for the immunocytochemical detection of the surface expression of P170, the cell-surface efflux pump protein responsible for the phenotype of multidrug resistance in tumor cells, and to investigate the distribution of this protein by using immunocytochemistry in normal human tissues. These results have suggested a role for P170 in normal cell membrane transport of metabolites in various organ systems.

  20. Colloidal size spectra, composition and estuarine mixing behavior of DOM in river and estuarine waters of the northern Gulf of Mexico

    Science.gov (United States)

    Zhou, Zhengzhen; Stolpe, Björn; Guo, Laodong; Shiller, Alan M.

    2016-05-01

    Flow field-flow fractionation (FlFFF) coupled on-line with UV absorbance and fluorescence detectors was used to examine the colloidal composition and size distribution of optically active dissolved organic matter (DOM) in the lower Mississippi River (MR), the East Pearl River (EPR), the St. Louis Bay (SLB) estuary, and coastal waters of the northern Gulf of Mexico. In addition to field studies, laboratory mixing experiments using river and seawater end-members were carried out to study the processes controlling the estuarine mixing behavior and size partitioning of colloids with different sizes and composition. The colloidal size spectra of chromophoric DOM and humic-like DOM showed one dominant peak in the 0.5-4 nm size range, representing >75% of the total FlFFF-recoverable colloids. In contrast, protein-like DOM showed a bi-modal distribution with peaks at 0.5-4 nm and 4-8 nm, as well as a major portion (from ∼41% in the EPR to ∼72% in the Mississippi Bight) partitioned to the >20 nm size fraction. Bulk DOM was lower in abundance and molecular-weight in the MR compared with the EPR, while the proportion of colloidal protein-like DOM in the >20 nm size range was slightly larger in the MR compared with the EPR. These features are consistent with differences in land use, hydrological conditions, and water residence time between the two river basins, with more autochthonous DOM in MR waters. In the SLB estuary, different DOM components demonstrated different mixing behaviors. The abundance of colloidal chromophoric DOM decreased with increasing salinity and showed evident removal during estuarine mixing even though the bulk DOM appeared to be conservative. In contrast, colloidal humic-like DOM behaved conservatively inside SLB and during laboratory mixing experiments. The ratio of colloidal protein-like to humic-like DOM generally increased with increasing salinity, consistent with increasing autochthonous protein-like DOM and removal of terrestrially

  1. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng

    2007-01-01

    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  2. Comparative Study of the Effects of Long and Short Term Biological Processes on the Cycling of Colloidal Trace Metals

    Science.gov (United States)

    Pinedo, P.; Sanudo-Wilhelmy, S. A.; West, A.

    2013-05-01

    Nanoparticle (or colloids), with sizes operationally defined as ranging from 1nm to 1000nm diameter, are thought to play an important role in metal cycling in the ocean due to their high surface area to volume ratio and abundance in marine systems. In coastal waters, the bulk of marine nanoparticles are organic, so short and long term biological processes are expected to influence the dynamics of these types of particles in marine environments. This is, in turn, expected to influence metal concentrations. Here we selected two different environments to study the influence of long-term biological events (phytoplankton blooms) and short-term biological events (diel cycles of photosynthesis and respiration) on the cycling of colloidal trace metals. We focus on Cu and Fe, both biogeochemically important metals but with differing colloidal behavior. Long term processes (West Neck Bay): A bay (West Neck Bay, Long Island) with predictable natural phytoplankton blooms, but with limited inputs of freshwater, nutrients and metals, was selected to study the partitioning of Cu and Fe between colloidal and soluble pools over the course of a bloom. During the bloom, there was a significant build-up of Cu associated with DOM accumulation and a removal of Fe via particle stripping. Fraction-specific metal concentrations, and metal accumulation and removal rates, were found to be significantly correlated with chlorophyll-a concentration and with dissolved organic matter (DOM). Short term processes (Catalina Island): To identify the cyclical variation in metal speciation during diel (24-hour) cycles of photosynthesis and respiration, we conducted a study off Catalina Island, a pristine environment where trace metal cycling is solely controlled by biological processes and changes in the phytoplankton community are well characterized. The speciation of Fe between soluble and colloidal pools showed that Fe has a high affinity for colloidal material and that the distribution between

  3. The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes.

    Science.gov (United States)

    Zhang, Yanpu; Yildirim, Erol; Antila, Hanne S; Valenzuela, Luis D; Sammalkorpi, Maria; Lutkenhaus, Jodie L

    2015-10-01

    Polyelectrolyte complexes (PECs) form by mixing polycation and polyanion solutions together, and have been explored for a variety of applications. One challenge for PEC processing and application is that under certain conditions the as-formed PECs aggregate and precipitate out of suspension over the course of minutes to days. This aggregation is governed by several factors such as electrostatic repulsion, van der Waals attractions, and hydrophobic interactions. In this work, we explore the boundary between colloidally stable and unstable complexes as it is influenced by polycation/polyanion mixing ratio and ionic strength. The polymers examined are poly(diallyldimethylammonium chloride) (PDAC) and poly(sodium 4-styrenesulfonate) (PSS). Physical properties such as turbidity, hydrodynamic size, and zeta potential are investigated upon complex formation. We also perform detailed molecular dynamics simulations to examine the structure and effective charge distribution of the PECs at varying mixing ratios and salt concentrations to support the experimental findings. The results suggest that the colloidally stable/unstable boundary possibly marks the screening effects from added salt, resulting in weakly charged complexes that aggregate. At higher salt concentrations, the complexes initially form and then gradually dissolve into solution.

  4. Compact and controlled microfluidic mixing and biological particle capture

    Science.gov (United States)

    Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander

    2016-11-01

    We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.

  5. Liver Transplantation Utilizing Mixed Biologic and Synthetic Arterial Conduits

    Directory of Open Access Journals (Sweden)

    Marcio F. Chedid

    2016-01-01

    Full Text Available Arterial conduits are necessary in nearly 5% of all liver transplants and are usually constructed utilizing segments of donor iliac artery. However, available segments of donor iliac artery may not be lengthy enough or may not possess enough quality to enable its inclusion in the conduit. Although there are few reports of arterial conduits constructed solely utilizing prosthetic material, no previous reports of conduits composed of a segment of donor iliac artery and prosthetic material (mixed biologic and synthetic arterial conduits were found in the medial literature to date. Two cases reporting successful outcomes after creation of mixed biologic and prosthetic arterial conduits are outlined in this report. Reason for creation of conduits was complete intimal dissection of the recipient’s hepatic artery in both cases. In both cases, available segments of donor iliac artery were not lengthy enough to bridge infrarenal aorta to porta hepatis. Both patients have patent conduits and normally functioning liver allografts, respectively, at 4 and 31 months after transplant. Mixed biologic and synthetic arterial conduits constitute a viable technical option and may offer potential advantages over fully prosthetic arterial conduits.

  6. Biological vs. physical mixing effects on benthic food web dynamics.

    Directory of Open Access Journals (Sweden)

    Ulrike Braeckman

    Full Text Available Biological particle mixing (bioturbation and solute transfer (bio-irrigation contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator and Abra alba (bioturbator compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13C labelled diatom Skeletonema costatum was added to 4 treatments: (1 microcosms containing the bioturbator, (2 microcosms containing the bio-irrigator, (3 control microcosms and (4 microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13C of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2, which included TO(13C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food

  7. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  8. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  9. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni

    2015-03-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  10. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    Science.gov (United States)

    Marinaro, G.; Accardo, A.; Benseny-Cases, N.; Burghammer, M.; Castillo-Michel, H.; Cotte, M.; Dante, S.; De Angelis, F.; Di Cola, E.; Di Fabrizio, E.; Hauser, C.; Riekel, C.

    2016-01-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments.

  11. Colloid dynamics and transport of major elements through a boreal river - brackish bay mixing zone

    DEFF Research Database (Denmark)

    Gustafsson, Ö.; Widerlund, A.; Andersson, P.

    2000-01-01

    km in the spring.. During the dynamic springflood conditions studied, small 238U–234Th disequilibria, low sediment trap fluxes, laboratory mixing experiments, as well as results from an independent two-box, two-dimensional mixing model combine to suggest that no significant removal of Fe, Si......, or organic C was occurring in the highly-resolved LSZ. While no conclusions may be drawn based solely on property–salinity plots over narrow salinity ranges, apparently linear graphs for Fe and Si over 3 separate years also suggest minimal removal in this regime. At the same time, size distributions both...

  12. Observation and modeling of biological colloids with neutron scattering techniques and Monte Carlo simulations

    NARCIS (Netherlands)

    Van Heijkamp, L.F.

    2011-01-01

    In this study non-invasive neutron scattering techniques are used on soft condensed matter, probing colloidal length scales. Neutrons penetrate deeply into matter and have a different interaction with hydrogen and deuterium, allowing for tunable contrast using light and heavy water as solvents. The

  13. PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media

    Energy Technology Data Exchange (ETDEWEB)

    Viali, Wesley Renato; Silva Nunes, Eloiza da; Santos, Caio Carvalho dos [Universidade Estadual Paulista, Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisico-quimica, Instituto de Quimica (Brazil); Silva, Sebastiao William da; Aragon, Fermin Herrera; Coaquira, Jose Antonio Huamani; Morais, Paulo Cesar [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada (Brazil); Jafelicci, Miguel, E-mail: jafeli@iq.unesp.br [Universidade Estadual Paulista, Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisico-quimica, Instituto de Quimica (Brazil)

    2013-08-15

    In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M{sub S}) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs.

  14. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    different colloidal materials and their applications in chemistry, physics, biological, medical sciences and environment. Graduate students, academic and industrial researchers and medical professionals will discover recently developed colloidal materials and their applications in many areas of human......Book Description: Colloidal science and technology is one of the fastest growing research and technology areas. This book explores the cutting edge research in colloidal science and technology that will be usefull in almost every aspect of modern society. This book has a depth of information...

  15. Increasing entropy for colloidal stabilization

    Science.gov (United States)

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-11-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications.

  16. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    Science.gov (United States)

    Ali, M. E.; Hashim, U.; Mustafa, S.; Che Man, Y. B.; Yusop, M. H. M.; Bari, M. F.; Islam, Kh N.; Hasan, M. F.

    2011-05-01

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml - 1 swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  17. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples.

    Science.gov (United States)

    Ali, M E; Hashim, U; Mustafa, S; Man, Y B Che; Yusop, M H M; Bari, M F; Islam, Kh N; Hasan, M F

    2011-05-13

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  18. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M E; Hashim, U [Institute of Nano Electronic Engineering (INNE), Universiti Malaysia Perlis, Lot 104-108, Tingkat 1, Block A, Taman Pertiwi Indah, Jalan Kangar-Alor Star, Seriab, 01000 Kangar, Perlis (Malaysia); Mustafa, S; Che Man, Y B; Yusop, M H M [Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Bari, M F [School of Materials Engineering, University Malaysia Perlis, Seriab 01000, Kangar, Perlis (Malaysia); Islam, Kh N [Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hasan, M F, E-mail: uda@unimap.edu.my [Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-05-13

    We used 40 {+-} 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 {sup 0}C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 {mu}g ml{sup -1} swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  19. Formation and colloidal behaviour of elemental sulphur produced from the biological oxidation of hydrogensulphide.

    NARCIS (Netherlands)

    Janssen, A.J.H.

    1996-01-01

    The formation and aggregation of elemental sulphur from the microbiological oxidation of hydrogensulphide (H 2 S) by a mixed population of aerobic Thiobacillus -like bacteria has been investigated. Sulphide is formed during the anaerobic treatment of wastewaters whi

  20. Formation and colloidal behaviour of elemental sulphur produced from the biological oxidation of hydrogensulphide.

    OpenAIRE

    Janssen, A.J.H.

    1996-01-01

    The formation and aggregation of elemental sulphur from the microbiological oxidation of hydrogensulphide (H 2 S) by a mixed population of aerobic Thiobacillus -like bacteria has been investigated. Sulphide is formed during the anaerobic treatment of wastewaters which contain oxidized sulphur compounds such as thiosulphate, sulphite and sulphate. This sulphide has to be removed from the effluent solution of anaerobic reactors because of its detrimental characteristics e.g. toxicity, corrosive...

  1. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  2. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  3. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Colloid-polymer mixtures and depletion interactions Phase stability of a reversible supramolecular polymer solution mixed with nanospheres Remco Tuinier When depletion goes critical Roberto Piazza, Stefano Buzzaccaro, Alberto Parola and Jader Colombo Tuning the demixing of colloid-polymer systems through the dispersing solvent E A G Jamie, R P A Dullens and D G A L Aarts Polydispersity effects in colloid-polymer mixtures S M Liddle, T Narayanan and W C K Poon Colloidal dynamics and crystallization Crystallization and aging in hard-sphere glasses C Valeriani, E Sanz, E Zaccarelli, W C K Poon, M E Cates and P N Pusey Real-time monitoring of complex moduli from micro-rheology Taiki Yanagishima, Daan Frenkel, Jurij Kotar and Erika Eiser Brownian motion of a self-propelled particle B ten Hagen, S van Teeffelen and H Löwen Crystallization in suspensions of hard spheres: a Monte Carlo and molecular dynamics simulation study T Schilling, S Dorosz, H J Schöpe and G Opletal Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order Takeshi Kawasaki and Hajime Tanaka

  4. Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study

    Science.gov (United States)

    Topcu, Mustafa Sami

    2013-01-01

    The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…

  5. The immersion freezing behavior of mineral dust particles mixed with biological substances

    Science.gov (United States)

    Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.

    2015-10-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.

  6. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    Science.gov (United States)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  7. Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Directory of Open Access Journals (Sweden)

    V. Rossi

    2009-08-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.

  8. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  9. Light-structured colloidal assemblies

    Science.gov (United States)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie; Palacci lab Team; Sacanna lab Team

    2016-11-01

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of active colloidal motion on a collective scale through the synchronization of the individual motions of SPP. This work is supported by NSF CAREER DMR 1554724.

  10. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and super

  11. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  12. Mixing regime as a key factor to determine DON formation in drinking water biological treatment.

    Science.gov (United States)

    Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass.

  13. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  14. InteractoMIX: a suite of computational tools to exploit interactomes in biological and clinical research.

    Science.gov (United States)

    Poglayen, Daniel; Marín-López, Manuel Alejandro; Bonet, Jaume; Fornes, Oriol; Garcia-Garcia, Javier; Planas-Iglesias, Joan; Segura, Joan; Oliva, Baldo; Fernandez-Fuentes, Narcis

    2016-06-15

    Virtually all the biological processes that occur inside or outside cells are mediated by protein-protein interactions (PPIs). Hence, the charting and description of the PPI network, initially in organisms, the interactome, but more recently in specific tissues, is essential to fully understand cellular processes both in health and disease. The study of PPIs is also at the heart of renewed efforts in the medical and biotechnological arena in the quest of new therapeutic targets and drugs. Here, we present a mini review of 11 computational tools and resources tools developed by us to address different aspects of PPIs: from interactome level to their atomic 3D structural details. We provided details on each specific resource, aims and purpose and compare with equivalent tools in the literature. All the tools are presented in a centralized, one-stop, web site: InteractoMIX (http://interactomix.com).

  15. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  16. Biological nitrogen fixation and nutrient release from litter of the guachapele leguminous tree under pure and mixed plantation with eucalyptus.

    OpenAIRE

    Fabiano de Carvalho Balieiro; Bruno José Rodrigues Alves; Marcos Gervásio Pereira; Sérgio Miana de Faria; Avílio Antônio Franco; Campello,Eduardo F.C.

    2008-01-01

    Pseudosamanea guachapele (guachapele), a nitrogen fixing leguminous tree, is an alternative for mixed forest plantations in the tropics. As little information is available for guachapele (Mimosoideae) in mixed plantation with eucalyptus considering the Brazilian edaphoclimatic conditions, an experiment was carried out to evaluate the contribution of biological nitrogen fixation to guachapele and leaf litter decomposition rates and nutrient release of eucalyptus and guachapele residues (pure a...

  17. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Science.gov (United States)

    2010-07-01

    ... constant, L/g mixed liquor volatile suspended solids (MLVSS)-hr KL=Liquid-phase mass transfer coefficient, m/s Ks=Monod biorate constant at half the maximum rate, g/m3 III. Test Procedure for Determination... of the open biological treatment unit. An appropriate value of the biorate constant, Ks,...

  18. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.

    Science.gov (United States)

    Wu, Tim; Hung, Alice P-L; Hunter, Peter; Mithraratne, Kumar

    2015-01-01

    This study addresses the issue of modelling material heterogeneity of incompressible bodies. It is seen that when using a mixed (displacement-pressure) finite element formulation, the basis functions used for pressure field may not be able to capture the nonlinearity of material parameters, resulting in pseudo-residual stresses. This problem can be resolved by modifying the constitutive relation using Flory's decomposition of the deformation gradient. A two-parameter Mooney-Rivlin constitutive relation is used to demonstrate the methodology. It is shown that for incompressible materials, the modification does not alter the mechanical behaviour described by the original constitutive model. In fact, the modified constitutive equation shows a better predictability when compared against analytical solutions. Two strategies of describing the material variation (i.e. linear and step change) are explained, and their solutions are evaluated for an ideal two-material interfacing problem. When compared with the standard tied coupling approach, the step change method exhibited a much better agreement because of its ability to capture abrupt changes of the material properties. The modified equation in conjunction with integration point-based material heterogeneity is then used to simulate the deformations of heterogeneous biological structures to illustrate its applications.

  19. Biological Cycles of Mineral Elements in a Young Mixed Stand in Abandoned Mining Soils

    Institute of Scientific and Technical Information of China (English)

    Da-Lun Tian; Wen-Hua Xiang; Wen-De Yan; Wen-Xing Kang; Xiang-Wen Deng; Zhu Fan

    2007-01-01

    Phytoremediation as a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants is becoming an increasingly important objective in plant research. In this study, biological cycles of five nutrient elements (N, P, K, Ca, and Mg) and eight heavy metal elements (Fe, Cu, Zn, Mn, Cd, Ni, Pb and Co) were examined in young paniculed goldraintree (Koelreuteria paniculata Laxm) and common elaeocarpus (Elaeocarpus decipens) mixed stands in an abandoned mining area. We found that after vegetation restoration in abandoned mining areas, the organic matter and concentrations of nutrient elements were significantly increased and the heavy metal elements were significantly decreased, the annual retention, uptake and return were 75.0, 115.4, and 40.3 kg/hm2 for nutrient elements, and 1 878.0,3 231.0 and 1 353.0 g/hm2 for heavy metal elements, respectively, with the utilization coefficient, cycling coefficient and turnover rate of 0.92, 0.35 and 0.32 for nutrient elements, and 1.24, 0.42 and 1.92 for heavy metal elements, respectively.Our results suggested that the vegetation restoration in abandoned mining areas had significant effects in improving environmental conditions, enhancing soil available nutrients, and ensuring human health.

  20. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping

    Science.gov (United States)

    Wen, Liang-Saw; Santschi, Peter H.; Tang, Degui

    1997-07-01

    It has been hypothesized that colloidal forms of trace metals can be reactive intermediaries in the scavenging processes leading to the removal of their particulate forms. A series of radiotracer experiments using natural colloidal organic matter from Galveston Bay, USA were carried out in order to test this hypothesis. Suspended particle uptake of originally colloidally bound trace metals occurred in a matter of hours to days in estuarine waters. After ten days, the majority (>50%) of the colloidal trace metals had been transferred into the particulate phase (≥0.45 μm), except for 65Zn. Two distinctively different temporal regions of removal of colloidal trace metals were identified: a faster reaction during the first four hours, followed by a slower reaction after approximately one day. In a separate river water-seawater mixing experiment, the solid/solution partitioning of the radiotracers was investigated in the absence of suspended matter. About 30% of most of the elements, except Ag and Fe (˜60%), were associated with a newly formed particulate phase after eight days. There were two major trends: (1) the particulate fraction of 59Fe and 110Ag increased while the colloidal fraction decreased, suggesting a colloidal pumping mechanism. (2) The particulate fraction of 54Mn, 133Ba, 65Zn, 109Cd, 113Sn, and 60CO increased while the LMW (≤ 1 kDa) fraction decreased, suggesting a direct uptake into the particulate fraction with less involvement of a transitory colloidal phase. The values of the particle-water ( Kd) and colloid-water partitioning ( Kc) coefficients for most trace metals were similar to those observed in Galveston Bay waters, suggesting complementary results to field studies. The results from these experiments suggested two different pathways for colloidal tracer uptake by particles: (1) colloidal pumping of a major component (e.g., biopolymer) of the colloidal pool and (2) coagulation of trace components (e.g., phytochelatins) with varying

  1. Time-Motion and Biological Responses in Simulated Mixed Martial Arts Sparring Matches.

    Science.gov (United States)

    Coswig, Victor S; Ramos, Solange de P; Del Vecchio, Fabrício B

    2016-08-01

    Coswig, VS, Ramos, SdP, and Del Vecchio, FB. Time-motion and biological responses in simulated mixed martial arts sparring matches. J Strength Cond Res 30(8): 2156-2163, 2016-Simulated matches are a relevant component of training for mixed martial arts (MMA) athletes. This study aimed to characterize time-motion responses and investigate physiological stress and neuromuscular changes related to MMA sparring matches. Thirteen athletes with an average age of 25 ± 5 years, body mass of 81.3 ± 9.5 kg, height of 176.2 ± 5.5 cm, and time of practice in MMA of 39 ± 25 months participated in the study. The fighters executed three 5-minute rounds with 1-minute intervals. Blood and salivary samples were collected and physical tests and psychometric questionnaires administered at 3 time points: before (PRE), immediately after (POST), and 48 hours after the combat (48 h). Statistical analysis applied analysis of variance for repeated measurements. In biochemical analysis, significant changes (p ≤ 0.05) were identified between PRE and POST (glucose: 80.3 ± 12.7 to 156.5 ± 19.1 mg·ml; lactate: 4 ± 1.7 to 15.6 ± 4.8 mmol·dl), POST and 48 hours (glucose: 156.5 ± 19.1 to 87.6 ± 15.5 mg·ml; lactate: 15.6 ± 4.8 to 2.9 ± 3.5 mmol·dl; urea: 44.1 ± 8.9 to 36.3 ± 7.8 mg·ml), and PRE and 48 hours (creatine kinase [CK]: 255.8 ± 137.4 to 395.9 ± 188.7 U/L). In addition, time-motion analyses showed a total high:low intensity of 1:2 and an effort:pause ratio of 1:3. In conclusion, simulated MMA sparring matches feature moderate to high intensity and a low degree of musculoskeletal damage, which can be seen by absence of physical performance and decrease in CK. Results of the study indicate that sparring training could be introduced into competitive microcycles to improve technical and tactical aspects of MMA matches, due to the high motor specificity and low muscle damage.

  2. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  3. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping

    Energy Technology Data Exchange (ETDEWEB)

    Wen, L.S.; Santschi, P.H.; Tang, D. [Texas A & M Univ., Galveston, TX (United States)

    1997-07-01

    It has been hypothesized that colloidal forms of trace metals can be reactive intermediaries in the scavenging processes leading to the removal of their particulate forms. A series of radiotracer experiments using natural colloidal organic matter from Galveston Bay, USA were carried out in order to test this hypothesis. Suspended particle uptake of originally colloidally bound trace metals occurred in a matter of hours to days in estuarine waters. After ten days, the majority ( >50%) of the colloidal trace metals had been transferred into the particulate phase ({ge} 0.45{mu}m), except for {sup 65}Zn. Two distinctively different temporal regions of removal of colloidal trace metals were identified: a faster reaction during the first four hours, followed by a slower reaction after approximately one day. In a separate river water-seawater mixing experiment, the solid/solution partitioning of the radiotracers was investigated in the absence of suspended matter. About 30% of most of the elements, except Ag and Fe ({approximately}60%), were associated with a newly formed particulate phase after eight days. There were two major trends: (1) the particulate fraction of {sup 59}Fe and {sup 110}Ag increased while the colloidal fraction decreased, suggesting a colloidal pumping mechanism. (2) The particulate fraction of {sup 54}Mn, {sup 133}Ba, {sup 65}Zn, {sup 109}Cd, {sup 113}Sn, and {sup 60}Co increased while the LMW({le}1 kDa) fraction decreased, suggesting a direct uptake into the particulate fraction with less involvement of a transitory colloidal phase. The results from these experiments suggested two different pathways for colloidal tracer uptake by particles: (1) colloidal pumping of a major component (e.g., biopolymer) of the colloidal pool and (2) coagulation of trace components (e.g., phytochelatins) with varying affinities for different trace metals. 39 refs., 8 figs., 3 tabs.

  4. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite parti

  5. Vortexlike topological defects in nematic colloids: chiral colloidal dimers and 2D crystals.

    Science.gov (United States)

    Tkalec, U; Ravnik, M; Zumer, S; Musevic, I

    2009-09-18

    We show that chiral ordering of the underlying complex fluid strongly influences defect formation and colloidal interactions. Nonsingular defect loops with a topological charge -2 are observed, with a cross section identical to hyperbolic vortices in magnetic systems. These loops are binding spontaneously formed pairs of colloidal particles and dimers, which are chiral objects. Chiral dimer-dimer interaction weakly depends on the chirality of dimers and leads to the assembly of 2D nematic colloidal crystals of pure or "mixed" chirality, intercalated with a lattice of nonsingular vortexlike defects.

  6. Microfluidic colloid filtration

    Science.gov (United States)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  7. NATO Advanced Study Institute on Mixed-Valence Compounds : Theory and Applications in Chemistry, Physics, Geology, and Biology

    CERN Document Server

    1980-01-01

    It has been a decade since two seminal reviews demonstrated that mixed-valence compounds share many unique and fascinating features. The insight pro­ vided by those early works has promoted a great deal of both experimental and theoretical study. As a result of extensive efforts, our understanding of the bonding and properties of mixed-valence compounds has advanced substantially. There has been no compre­ hensive treatment of mixed-valence compounds since 1967, and the meeting convened at Oxford in September, 1979, provided a unique opportunity to examine the subject and its many ramifications. Mixed-valence compounds play an important role in many fields. Although the major impact of the subject has been in chemistry, its importance has become increasingly clear in solid state physics, geology, and biology. Extensive interest and effort in the field of molecular metals has demonstrated that mixed-valency is a prerequisite for high elec­ trical conductivity. The intense colors of many minerals have been s...

  8. BIOLOGICAL NITROGEN FIXATION AND NUTRIENT RELEASE FROM LITTER OF THE GUACHAPELE LEGUMINOUS TREE UNDER PURE AND MIXED PLANTATION WITH EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    Fabiano de Carvalho Balieiro

    2008-09-01

    Full Text Available Pseudosamanea guachapele (guachapele, a nitrogen fixing leguminous tree, is an alternative for mixed forest plantations in the tropics. As little information is available for guachapele (Mimosoideae in mixed plantation with eucalyptus considering the Brazilian edaphoclimatic conditions, an experiment was carried out to evaluate the contribution of biological nitrogen fixation to guachapele and leaf litter decomposition rates and nutrient release of eucalyptus and guachapele residues (pure and mixed. The percentage of nitrogen derived from atmospheric N2 (% Ndfa was estimated by comparing the natural 15N abundance (15N, ‰ in guachapele tissues with that of Eucalyptus grandis, a non-nitrogen fixing species, both with seven years after planting. Decomposition constants (k and litter half-lives (t1/2 were estimated by fitting a single exponential model to litter bag data. The estimation of %Ndfa for guachapele in pure stand fell within a narrower range (17-36 % in relation to mixed conditions (35-60 %. Nitrogen concentration in leaf litter was positively related to the decomposition rate, decreasing from pure guachapele to pure eucalyptus. Half-lives (t1/2 were significantly different (p < 0.05 among residues with 148, 185 and 218 days, for guachapele leaves, mixture of both species and for pure eucalyptus, respectively. Nutrient release rates followed the same sequence of t1/2 due to the initial residues quality (mainly N. It was observed that a fast release of N, K and Mg occurred from the residues tested, mainly for guachapele and mixed stand. These results indicate that guachapele could benefit the mixed system from the N addition and a faster decomposition rate of a richer litter.

  9. Evaluation of biological, physical and chemical properties of mineral trioxide aggregate mixed with 4-META/MMA-TBB

    Directory of Open Access Journals (Sweden)

    Rudra Kaul

    2013-01-01

    Full Text Available Aim: To evaluate the change in physical, chemical and biological properties when mineral trioxide aggregate (MTA is mixed with a resin 4-methacryloxyethyl trimellitate anhydride (4-META/methyl methacrylate-tri-n-butyl-borane (MMA-TBB. Materials and Methods: For biological evaluation MTA was inoculated in Wistar rat′s subcutaneous tissue and peripheral tissue response was checked after 72 h, 7 days, 15 days and 30 days. Setting time was evaluated using Gillmore needle. The Ca++ release at the end of 24 h was checked using ethylenediaminetetraacetic acid titration method. For all the trials MTA mixed with water was kept as a control and the ratio of MTA with resin was 1:1 by weight. Results: The biological reaction was verified by two observers and their readings were matched using kappa test and there was an excellent relevance. There was no significant difference in the tissue reaction at the end of 30 days where both the groups seemed to show healing. Setting time of MTA with 4-META/MMA-TBB was coming to a mean of 26 min (approx., which is almost 6 times lesser than that of MTA with water. After applying t test, the difference in Ca++ release was found significant (P = 0.00, with mean of 0.044 and 0.031 mol/L of MTA with water and MTA with 4-META/MMA-TBB respectively. Conclusion: Under the parameters of this study, this new experimental cement has better handling, physical and chemical properties. Even its subcutaneous tissue reaction is comparable to MTA mixed with water.

  10. UZ Colloid Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  11. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  12. Stability and structure of protein-lipoamino acid colloidal particles: toward nasal delivery of pharmaceutically active proteins.

    Science.gov (United States)

    Bijani, Christian; Arnarez, Clément; Brasselet, Sabrina; Degert, Corinne; Broussaud, Olivier; Elezgaray, Juan; Dufourc, Erick J

    2012-04-03

    To circumvent the painful intravenous injection of proteins in the treatment of children with growth deficiency, anemia, and calcium insufficiency, we investigated the stability and structure of protein-lipoamino acid complexes that could be nasally sprayed. Preparations that ensure a colloidal and structural stability of recombinant human growth hormone (rhGH), recombinant human erythropoietin (rhEPO), and salmon calcitonin (sCT) mixed with lauroyl proline (LP) were established. Protein structure was controlled by circular dichroism, and very small sizes of ca. 5 nm were determined by dynamic light scattering. The colloidal preparations could be sprayed with a droplet size of 20-30 μm. The molecular structure of aggregates was investigated by all-atom molecular dynamics. Whereas a lauroyl proline capping of globular proteins rhGH and rhEPO with preservation of their active structure was observed, a mixed micelle of sCT and lipoamino acids was formed. In the latter, aggregated LP constitutes the inner core and the surface is covered with calcitonins that acquire a marked α-helix character. Hydrophobic/philic interaction balance between proteins and LP drives the particles' stability. Passage through nasal cells grown at confluence was markedly increased by the colloidal preparations and could reach a 20 times increase in the case of EPO. Biological implications of such colloidal preparations are discussed in terms of furtiveness.

  13. EFFECT OF MIXING CONDITIONS ON FLOCCULATION KINETICS OF WASTEWATERS CONTAINING PROTEINS AND OTHER BIOLOGICAL COMPOUNDS USING FIBROUS MATERIALS AND POLYELECTROLYTES

    Directory of Open Access Journals (Sweden)

    L.A. CHEN

    1998-12-01

    Full Text Available The application of a combined system of a polyelectrolyte, carboxymethyl cellulose (CMC, and highly fibrillated fibrous materials, cellulose triacetate fibrets (CTF, for the recovery of proteins and other biological compounds from model and actual biological systems has been demonstrated . In the present work, reaction batches were scaled-up to a one-liter agitated vessel, with a standard configuration. The effect of mixing conditions on the adsorption and flocculation process was studied. It was observed that flocculation time was very fast, occurring within the period of polymer addition. Long term shearing did not result in floc breakage and the values of percentage light transmission and protein concentration of the final filtrate remained the same during the incubation period. Increasing the shear rate resulted in improved process efficiency, up to an optimum value, above which performance was poorer. Perikinetic and orthokinetic rate parameters were calculated and results analyzed in view of these parameters.

  14. Shape-shifting colloids via stimulated dewetting

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  15. A phenomenological relative biological effectiveness approach for proton therapy based on an improved description of the mixed radiation field

    Science.gov (United States)

    Mairani, A.; Dokic, I.; Magro, G.; Tessonnier, T.; Bauer, J.; Böhlen, T. T.; Ciocca, M.; Ferrari, A.; Sala, P. R.; Jäkel, O.; Debus, J.; Haberer, T.; Abdollahi, A.; Parodi, K.

    2017-02-01

    Proton therapy treatment planning systems (TPSs) are based on the assumption of a constant relative biological effectiveness (RBE) of 1.1 without taking into account the found in vitro experimental variations of the RBE as a function of tissue type, linear energy transfer (LET) and dose. The phenomenological RBE models available in literature are based on the dose-averaged LET (LET D ) as an indicator of the physical properties of the proton radiation field. The LET D values are typically calculated taking into account primary and secondary protons, neglecting the biological effect of heavier secondaries. In this work, we have introduced a phenomenological RBE approach which considers the biological effect of primary protons, and of secondary protons, deuterons, tritons (Z  =  1) and He fragments (3He and 4He, Z  =  2). The calculation framework, coupled with a Monte Carlo (MC) code, has been successfully benchmarked against clonogenic in vitro data measured in this work for two cell lines and then applied to determine biological quantities for spread-out Bragg peaks and a prostate and a head case. The introduced RBE formalism, which depends on the mixed radiation field, the dose and the ratio of the linear–quadratic model parameters for the reference radiation {{≤ft(α /β \\right)}\\text{ph}} , predicts, when integrated in an MC code, higher RBE values in comparison to LET D -based parameterizations. This effect is particular enhanced in the entrance channel of the proton field and for low {{≤ft(α /β \\right)}\\text{ph}} tissues. For the prostate and the head case, we found higher RBE-weighted dose values up to about 5% in the entrance channel when including or neglecting the Z  =  2 secondaries in the RBE calculation. TPSs able to proper account for the mixed radiation field in proton therapy are thus recommended for an accurate determination of the RBE in the whole treatment field.

  16. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  17. Colloidal quantum dots for fluorescent labels of proteins

    Science.gov (United States)

    Gladyshev, P.; Kouznetsov, V.; Martinez Bonilla, C.; Dezhurov, S.; Krilsky, D.; Vasiliev, A.; Morenkov, O.; Vrublevskaya, V.; Tsygankov, P.; Ibragimova, S.; Rybakova, A.

    2016-10-01

    The work is devoted to the synthesis of colloidal quantum dots (QDs) and their bioconjugates with proteins. Various QDs were obtained as well with synthesis method in an organic solvent followed by hydrophilization and functionalization or synthesis in aqueous phase provides obtaining hydrophilic QDs directly. Particular attention is paid to the synthesis of QDs as fluorescent tags in the near infrared where minimum absorption occurs and the fluorescence of biological tissue and synthetic materials used in analytical systems. A method for the QDs synthesis of type fluorescent core/shell CdTeSe/CdS/CdZnS-PolyT with mixed telluride, selenide cadmium core with a high quantum yield and high resistance to photoaging. It is shown that these quantum dots may be effectively used in the immunoassay.

  18. Manipulation of colloidal crystallization

    NARCIS (Netherlands)

    Vermolen, E.C.M.

    2008-01-01

    Colloidal particles (approximately a micrometer in diameter) that are dispersed in a fluid, behave thermodynamically similar to atoms and molecules: at low concentrations they form a fluid, while at high concentrations they can crystallize into a colloidal crystal to gain entropy. The analogy with m

  19. Controlling the Transient Interface Shape and Deposition Profile Left by Desiccation of Colloidal Droplets on Multiple Polymer Surfaces

    Science.gov (United States)

    Dunning, Peter David

    A colloidal suspension is a small constituent of insoluble solid particles suspended in a liquid medium. Control over the wetting, evaporation, and deposition patterns left by colloidal suspensions is valuable in many biological, medical, industrial, and agricultural applications. Understanding the governing principles of wetting and evaporative phenomena of these colloidal suspensions may lead to greater control over resultant deposition patterns. Perhaps the most familiar pattern forms when an initially heterogeneous colloidal suspension leaves a dark ring pattern at the edge of a drop. This pattern is referred to as a coffee-stain and it can be seen from dried droplets of spilled coffee. This coffee-stain effect was first investigated by Deegan et. al. who discovered that these patterns occur when outward radial flows driven by evaporation at the triple contact line dominate over other effects. While the presence of coffee-stain patterns is undesirable in many printing and medical diagnostic processes, it can also be advantageous in the production of low cost transparent conductive films, the deposition of metal vapor, and the manipulation of biological structures. Controlling the interactions between the substrate, liquid, vapor, and particles can lead to control over the size and morphology of evaporative deposition patterns left by aqueous colloidal suspensions. Several methods have been developed to control the evaporation of colloidal suspensions to either suppress or enhance the coffee stain effect. Electrowetting on Dielectric (EWOD) is one promising method that has been used to control colloidal depositions by applying either an AC or DC electric field. EWOD actuation has the potential to dynamically control colloidal deposition left by desiccated droplets to either suppress or enhance the coffee stain effect. It may also allow for independent control of the fluidic interface and deposition of particles via electrowetting and electrokinetic forces

  20. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Science.gov (United States)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-07-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10-100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical

  1. A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in-vitro toxicity testing: nZVI-microalgae colloidal system as a case study.

    Directory of Open Access Journals (Sweden)

    Soledad Gonzalo

    Full Text Available Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.

  2. Mixed ligand Cu(II)N2O2 complexes: biomimetic synthesis, activities in vitro and biological models, theoretical calculations.

    Science.gov (United States)

    Li, Chen; Yin, Bing; Kang, Yifan; Liu, Ping; Chen, Liang; Wang, Yaoyu; Li, Jianli

    2014-12-15

    Three new mixed ligand Cu(II)N2O2 complexes, namely, [Cu(II)(2-A-6-MBT)2(m-NB)2] (1), [Cu(II)(2-ABT)2(m-NB)2] (2), and [Cu(II)(2-ABT)2(o-NB)2] (3), (2-A-6-MBT = 2-amino-6-methoxybenzothiazole, m-NB = m-nitrobenzoate, 2-ABT = 2-aminobenzothiazole, and o-NB = o-nitrobenzoate), have been prepared by the biomimetic synthesis strategy, and their structures were determined by X-ray crystallography studies and spectral methods. These complexes exhibited the effective superoxide dismutase (SOD) activity and catecholase activity. On the basis of the experimental data and computational studies, the structure-activity relationship for these complexes was investigated. The results reveal that electron-accepting abilities of these complexes and coordination geometries have significant effects on the SOD activity and catecholase activity. Then, we found that 1 and 2 exerted potent intracellular antioxidant capacity in the model of H2O2-induced oxidative stress based on HeLa cervical cancer cells, which were screened out by the cytotoxicity assays of different kinds of cells. Furthermore, 1-3 showed the favorable biocompatibility in two different biological models: Saccharomyces cerevisiae and human vascular endothelial cells. These biological experimental data are indicative of the promising application potential of these complexes in biology and pharmacology.

  3. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution.

    Science.gov (United States)

    Xiao, Qunyan; Shang, Fei; Xu, Xuechen; Li, Qianqian; Lu, Chao; Lin, Jin-Ming

    2011-12-15

    This study describes the use of 14 nm nonionic fluorosurfactant-capped gold nanoparticles (FSN-capped AuNPs) for the simultaneous detection of cysteine (Cys) and homocysteine (Hcy) using colorimetric method, requiring no use of separation techniques. It was found that the kinetics of Cys/Hcy-induced aggregation of the 14 nm FSN-capped AuNPs strongly depends on the pH value of gold colloidal solution. At a pH of 6.5, the Cys-induced aggregation kinetics of the FSN-capped AuNPs was almost identical to that induced by Hcy, facilitating simultaneous detection of total Cys and Hcy up to a concentration as low as 0.15 μM; while at pH 12.0, the kinetics of Cys-induced aggregation was much faster than that inducted by Hcy, leading to selective detection of Cys at concentration as low as 1.0 μM in the presence of Hcy. The applicability of the method was validated by spiking known amount of Cys and Hcy in human urine and plasma samples, obtaining a recovery of 95.4-105.5%. The present approach is simple, high selective and provides high reproducibility, and has a great potentiality in disease diagnosis.

  4. BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER BY DENITRIFICATION OF MIX-CULTURING FUNGI AND BACTERIA

    Institute of Scientific and Technical Information of China (English)

    TAKAYA; Naoki; SHOUN; Hirofumi

    2006-01-01

    Denitrificationis a biological processin which nitrateand/or nitrite is reduced to gaseous nitrogen,dinitrogen(N2)or nitrous oxide(N2O)while carbon dioxide is thesecond gaseous product of the process.This is one of themain mechanisms of the global nitrogen cycle,and playsanimportant role as the reverse reaction of nitrogen fixa-tion in maintaining global environmental homeostasis[1].Denitrification has beenlongthought to be a unique char-acteristic of prokaryotes[2,3].Anumber of bacteria(suchasPseudomonas s...

  5. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  6. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  7. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...... removed at 5 mg/l ClO2 dose. Removal of the same APIs from the high COD effluent was observed when the ClO2 dose was increased to 1.25 mg/l and an increase in API removal only after treatment with 8 mg/l ClO2. This illustrates that treatment of wastewater effluents with chlorine dioxide has potential...... to remove pharmaceuticals traces from wastewater treatment plant effluents....

  8. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  9. Synthesis, spectral and thermal studies of some transition metal mixed ligand complexes: modeling of equilibrium composition and biological activity.

    Science.gov (United States)

    Neelakantan, M A; Sundaram, M; Nair, M Sivasankaran

    2011-09-01

    Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I=0.15 mol dm(-3) NaClO4. MABH, MAB and MAB2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.

  10. Synthesis, spectral and thermal studies of some transition metal mixed ligand complexes: Modeling of equilibrium composition and biological activity

    Science.gov (United States)

    Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran

    2011-09-01

    Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.

  11. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  12. Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia.

    Science.gov (United States)

    Nakhli, Seyyed Ali Akbar; Ahmadizadeh, Kimia; Fereshtehnejad, Mahmood; Rostami, Mohammad Hossein; Safari, Mojtaba; Borghei, Seyyed Mehdi

    2014-01-01

    In this study, the performance of an aerobic moving bed biofilm reactor (MBBR) was assessed for the removal of phenol as the sole substrate from saline wastewater. The effect of several parameters namely inlet phenol concentration (200-1200 mg/L), hydraulic retention time (8-24 h), inlet salt content (10-70 g/L), phenol shock loading, hydraulic shock loading and salt shock loading on the performance of the 10 L MBBR inoculated with a mixed culture of active biomass gradually acclimated to phenol and salt were evaluated in terms of phenol and chemical oxygen demand (COD) removal efficiencies. The results indicated that phenol and COD removal efficiencies are affected by HRT, phenol and salt concentration in the bioreactor saline feed. The MBBR could remove up to 99% of phenol and COD from the feed saline wastewater at inlet phenol concentrations up to 800 mg/L, HRT of 18 h and inlet salt contents up to 40 g/L. The reactor could also resist strong shock loads. Furthermore, measuring biological quantitative parameters indicated that the biofilm plays a main role in phenol removal. Overall, the results of this investigation revealed that the developed MBBR system with high concentration of the active mixed biomass can play a prominent role in order to treat saline wastewaters containing phenol in industrial applications as a very efficient and flexible technology.

  13. Copper(ii) mixed-ligand polypyridyl complexes with doxycycline - structures and biological evaluation.

    Science.gov (United States)

    Abosede, Olufunso O; Vyas, Nilima A; Singh, Sushma B; Kumbhar, Avinash S; Kate, Anup; Kumbhar, Anupa A; Khan, Ayesha; Erxleben, Andrea; Smith, Peter; de Kock, Carmen; Hoffmann, Frank; Obaleye, Joshua A

    2016-02-21

    Mixed-ligand Cu(ii) complexes of the type [Cu(doxycycline)(L)(H2O)2](NO3)2, where doxycycline = [4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide] and L = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4) have been synthesised and characterised by structural, analytical, and spectral methods. The single-crystal X-ray structures of 1 and 2 exhibited two different geometries, distorted square-pyramidal and octahedral respectively as well as different coordination modes of doxycycline. Complexes 2-4 exhibit prominent plasmid DNA cleavage at significantly low concentrations probably by an oxidative mechanism. Matrix Metalloproteinase (MMP-2) inhibition studies revealed that all complexes inhibit MMP-2 similar to doxycycline which is a well-known MMP inhibitor with 3 being the most potent. IC50 values of doxycycline and 1-4 against MCF-7 (human breast cancer) and HeLa cell lines were almost equal in which 3 showed the highest efficiency (IC50 = 0.46 ± 0.05 μM), being consistent with its increased MMP inhibition potency. The antimalarial activities of these complexes against the chloroquine-sensitive Plasmodium falciparum NF54 and chloroquine-resistant Plasmodium falciparum Dd2 strains reveal that complex 3 exhibited a higher activity than artesunate drug against the chloroquine-resistant Dd2 strain.

  14. Confocal microscopy of colloids

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, V; Semwogerere, D; Weeks, Eric R [Department of Physics, Emory University, Atlanta, GA 30322 (United States)

    2007-03-21

    Colloids have increasingly been used to characterize or mimic many aspects of atomic and molecular systems. With confocal microscopy these colloidal particles can be tracked spatially in three dimensions with great precision over large time scales. This review discusses equilibrium phases such as crystals and liquids, and non-equilibrium phases such as glasses and gels. The phases that form depend strongly on the type of particle interaction that dominates. Hard-sphere-like colloids are the simplest, and interactions such as the attractive depletion force and electrostatic repulsion result in more non-trivial phases which can better model molecular materials. Furthermore, shearing or otherwise externally forcing these colloids while under microscopic observation helps connect the microscopic particle dynamics to the macroscopic flow behaviour. Finally, directions of future research in this field are discussed. (topical review)

  15. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-01-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface

  16. Colloid-borne uranium and other heavy metals in the water of a mine drainage gallery

    Energy Technology Data Exchange (ETDEWEB)

    Zaenker, H.; Richter, W.; Brendler, V.; Nitsche, H. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Radiochemie

    2000-07-01

    The water of a mine drainage gallery was investigated for its contents of colloid-borne heavy metals with emphasis on uranium. About 1 mg/L of colloid particles of 100 to 300 nm were found. They consist of a matrix of Fe and Al oxyhydroxides and are formed when anoxic slightly acidic shaft waters mix with oxic near-neutral gallery water. The colloid particles bear toxic trace elements such as As, Pb, and Cu. Almost 100% of the As and Pb and about 70% of the Cu contained in the water are colloid-borne. Carbonato complexes prevent the uranyl from being adsorbed on the colloids in the unaltered gallery water. Acidification destroys these complexes: up to 50% of the uranium is attached to the colloids in the slightly acidic pH region. Further acidification converts the uranyl again to a 'non-colloidal' form. (orig.)

  17. Spherical colloidal photonic crystals.

    Science.gov (United States)

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  18. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  19. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Science.gov (United States)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most

  20. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes.

    Science.gov (United States)

    Govindarajan, Marimuthu; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2016-09-09

    Mosquito control is facing key challenges, including outbreaks of new arbovirus threats. We proposed an eco-friendly synthesis of silver nanoparticles (AgNPs) employing a low-cost extract of Hugonia mystax. AgNPs were specified by UV, XRD, FTIR and EDX spectroscopy, SEM and TEM. AgNPs were more toxic to Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus larvae (LC50: 14.45, 15.86, and 17.46 μg/mL) if compared to aquatic biocontrol organisms Gambusia affinis, Diplonychus indicus, and Anisops bouvieri (LC50: 2567.15, 1075.16, and 829.63 μg/ml). Overall, we shed light on the mosquito larvicidal efficacy of H. mystax, a possible biological resource for low-cost fabrication of AgNPs.

  1. Assembly of Colloidal Materials Using Bioadhesive Interactions

    Science.gov (United States)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using

  2. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.

    Science.gov (United States)

    Weickenmeier, J; Jabareen, M

    2014-11-01

    The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery.

  3. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  4. DNA hybridization and ligation for directed colloidal assembly

    Science.gov (United States)

    Shyr, Margaret

    Colloidal assembly using DNA hybridization has been pursued as a means assemble non-conventional ordered colloidal structures. However, to date it is undetermined whether DNA hybridization can be used to achieve non-FCC colloidal crystals. Using microcontact printing techniques, we have fabricated covalently bound single stranded DNA (ssDNA) two-dimensional arrays on glass surfaces, which were used to direct the assembly of complementary DNA functionalized polystyrene colloids. Two of the hallmarks of DNA hybridization, sequence specificity and thermal reversibility, were demonstrated. Due to the periodicity of these arrays, laser diffraction was used to directly monitor these structures during assembly. To demonstrate the versatility of the 2D colloidal array assembled via DNA hybridization, a catalytic DNA sequence or DNAzyme was incorporated into the colloidal array system. By tethering the enzymatic strand to the patterned glass surface and the substrate strand to polystyrene colloids, we showed that the DNAzyme could prevent the assembly of the arrays when the required Pb2+ cofactor was provided. Attempts to assemble the colloid arrays and disassemble via the Pb2+-DNAzyme induced cleavage were unsuccessful, likely due to the incomplete cleavage of the multitude of hybridized linkages between each colloid and the surface. Since DNA is not only capable of catalyzing reactions, but also capable of being reacted upon by a variety of biological enzymes, we examined the use of DNA ligase as a means to control the assembly of DNA-functionalized colloids. A three-sequence linker system was used for the hybridization mediated assembly of colloids: one sequence was tethered to the surface of the glass slide or colloids, one was tethered to another colloid surface, and the linker sequence hybridizes simultaneously to both tethered sequences. Once hybridized, the two tethered fragments can be ligated using DNA ligase, resulting in a continuous sequence tethered on one end

  5. Electrodynamics of colloids.

    NARCIS (Netherlands)

    Minor, M.

    1998-01-01

    The goal of the present study is to deepen the insight into the non-equilibrium properties of the electric double layer of colloidal systems. Of basic interest are the ionic mobilities in the different regions of the electric double layer as well as the potential at the plane of shear, i.e., the ele

  6. Nucleation in food colloids

    Science.gov (United States)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  7. Liquid crystal colloids

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available This special issue of "Condensed Matter Physics" focuses on the most recent developments in the study of a fascinating soft matter system, representing colloidal particles in a liquid crystalline environment. Furthermore, some articles address pioneering steps in the discovery of liquid crystals going back to 1861 paper by Julius Planer.

  8. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  9. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen-Hsi

    2009-01-01

    A biological aerated filter (BAF) was evaluated as a fixed-biofilm processes to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan.The components of VOC were identified to be toluene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,bromodichloromethane and isopropanol (IPA).The full-scale BAF was constructed of two separate reactors in series,respectively using 10-cm and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility.Performance results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD.A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m~3 packing·d) was determined for the packed bed,in which the flow pattern approached that of a mixed flow.A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system.Moreover,the emission rate of VOC was calculated using the proposed formula,based on an air-water mass equilibrium relationship,and compared to the simulated results obtained using the Water 9 model.Both estimation approaches of calculation and model simulation using Water 9 evaluating VOC emissions reveal that 0.1% IPA (0.0031-0.0037 kg/d) was aerated into a gaseous phase,and 30% to 40% (0.006-0.008 kg/d) of the toluene was aerated.

  10. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  11. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Colin; Jarvie, Helen [Centre for Ecology and Hydrology, Wallingford, Crowmarsh Gifford, Wallingford, OXON, OX10 8BB (United Kingdom); Rowland, Philip, E-mail: apr@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Lawler, Alan; Sleep, Darren; Scholefield, Paul [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2011-04-15

    Operationally defined dissolved Titanium [Ti] (the < 0.45 {mu}m filtered fraction) in rivers draining rural, agricultural, urban and industrial land-use types in the UK averaged 2.1 {mu}g/l with a range in average of 0.55 to 6.48 {mu}g/l. The lowest averages occurred for the upland areas of mid-Wales the highest just downstream of major sewage treatment works (STWs). [Ti] in rainfall and cloud water in mid-Wales averaged 0.2 and 0.7 {mu}g/l, respectively. Average, baseflow and stormflow [Ti] were compared with two markers of sewage effluent and thus human population: soluble reactive phosphorus (SRP) and boron (B). While B reflects chemically conservative mixing, SRP declined downstream of STW inputs due to in-stream physico-chemical and biological uptake. The results are related to colloidal and sub-colloidal Ti inputs from urban/industrial conurbations coupled with diffuse background (geological) sources and within-river removal/retention under low flows as a result of processes of aggregation and sedimentation. The urban/industrial inputs increased background [Ti] by up to eleven fold, but the total anthropogenic Ti input might well have been underestimated owing to within-river retention. A baseline survey using cross-flow ultrafiltration revealed that up to 79% of the [Ti] was colloidal/nanoparticulate (> 1 kDa i.e. > c. 1-2 nm) for the rural areas, but as low as 28% for the urban/industrial rivers. This raises fundamental issues of the pollutant inputs of Ti, with the possibility of significant complexation of Ti in the sewage effluents and subsequent breakdown within the rivers, as well as the physical dispersion of fine colloids down to the macro-molecular scale. Although not directly measured, the particulate Ti can make an important contribution to the net Ti flux. - Research Highlights: {yields} Filtered Ti in agricultural, urban and industrial UK rivers described. {yields} Highest concentrations occur just downstream of STWs. {yields} The urban

  12. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  13. Collective motion in populations of colloidal robots

    Science.gov (United States)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Dauchot, Olivier; Desreumaux, Nicolas

    2014-03-01

    Could the behavior of bacteria swarms, fish schools, and bird flocks be understood within a unified framework? Can one ignore the very details of the interaction mechanisms at the individual level to elucidate how strikingly similar collective motion emerges at the group level in this broad range of motile systems? These seemingly provocative questions have triggered significant advance in the physics and the biology, communities over the last decade. In the physics language these systems, made of motile individuals, can all be though as different realizations of ``active matter.'' In this talk, I will show how to gain more insight into this vivid field using self-propelled colloids as a proxy for motile organism. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors. Then, I will demonstrate that these archetypal populations display spontaneous transitions to swarming motion, and to global directed motion with very few density and orientation fluctuations.

  14. Fractal nematic colloids

    Science.gov (United States)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  15. Fractal nematic colloids

    Science.gov (United States)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  16. Colloidal Covalent Organic Frameworks.

    Science.gov (United States)

    Smith, Brian J; Parent, Lucas R; Overholts, Anna C; Beaucage, Peter A; Bisbey, Ryan P; Chavez, Anton D; Hwang, Nicky; Park, Chiwoo; Evans, Austin M; Gianneschi, Nathan C; Dichtel, William R

    2017-01-25

    Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material's morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications.

  17. Colloidal Covalent Organic Frameworks

    Science.gov (United States)

    2017-01-01

    Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material’s morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications. PMID:28149954

  18. Flocking ferromagnetic colloids

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-01-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633

  19. Theory of dynamic arrest in colloidal mixtures.

    Science.gov (United States)

    Juárez-Maldonado, R; Medina-Noyola, M

    2008-05-01

    We present a first-principles theory of dynamic arrest in colloidal mixtures based on the multicomponent self-consistent generalized Langevin equation theory of colloid dynamics [M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E 72, 031107 (2005); M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E76, 039902 (2007)]. We illustrate its application with a description of dynamic arrest in two simple model colloidal mixtures: namely, hard-sphere and repulsive Yukawa binary mixtures. Our results include observation of the two patterns of dynamic arrest, one in which both species become simultaneously arrested and the other involving the sequential arrest of the two species. The latter case gives rise to mixed states in which one species is arrested while the other species remains mobile. We also derive the ("bifurcation" or fixed-point") equations for the nonergodic parameters of the system, which takes the surprisingly simple form of a system of coupled equations for the localization length of the particles of each species. The solution of this system of equations indicates unambiguously which species is arrested (finite localization length) and which species remains ergodic (infinite localization length). As a result, we are able to draw the entire ergodic-nonergodic phase diagram of the binary hard-sphere mixture.

  20. On the nature of fibres grown from nanodiamond colloids

    Energy Technology Data Exchange (ETDEWEB)

    Batsanov, Stepan S., E-mail: batsanov@mail.ru [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Guriev, Dmitry L.; Gavrilkin, Sergey M. [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Hamilton, Katherine A.; Lindsey, Keith [School of Biological and Biomedical Sciences, Durham University, Durham (United Kingdom); Mendis, Budhika G. [Physics Department, Durham University, Durham (United Kingdom); Riggs, Helen J.; Batsanov, Andrei S. [Chemistry Department, Durham University, Durham (United Kingdom)

    2016-04-15

    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  1. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport.

  2. Colloidal stability and chemical reactivity of complex colloids containing Fe³⁺.

    Science.gov (United States)

    van Leeuwen, Y M; Velikov, K P; Kegel, W K

    2014-07-15

    The reactivity of iron contained within insoluble colloidal metal-pyrophosphate salts was determined and compared to the reactivity of a soluble iron salt (FeCl3). As a model system for the reactivity of iron in food products, the formation of an iron-polyphenol complex was followed with spectrophotometry. Three types of systems were prepared and their colloidal stability and reactivity studied: Fe(3+) pyrophosphate, protein-coated Fe(3+) pyrophosphate and mixed-metal pyrophosphates containing Fe(3+) and a second cation M. The additional cation used was either monovalent (sodium) or divalent (M(2+)). It was found that: (i) incorporating iron in a colloidal salt reduced its reactivity compared to free Fe(3+) ions; (ii) coating the particles with a layer of hydrophobic protein (zein) increased stability and further decreased the reactivity. Finally, the most surprising result was that (iii) a mixed system containing more Fe(3+) than M actually increased the reactivity of the contained iron, while the reverse, a system containing excess M, inhibited the reactivity completely.

  3. U1-RNP and Toll-like receptors in the pathogenesis of mixed connective tissue diseasePart II. Endosomal TLRs and their biological significance in the pathogenesis of mixed connective tissue disease.

    Science.gov (United States)

    Paradowska-Gorycka, Agnieszka

    2015-01-01

    Mixed connective tissue disease (MCTD) is a chronic autoimmune immunopathological disease of unknown etiology, which is characterized by the presence of various clinical symptoms and the presence of autoantibodies against U1-RNP particles. The U1-RNP component engages immune cells and their receptors in a complex network of interactions that ultimately lead to autoimmunity, inflammation, and tissue injury. The anti-U1-RNP autoantibodies form an immune complex with self-RNA, present in MCTD serum, which can act as endosomal Toll-like receptor (TLR) ligands. Inhibition of TLRs by nucleic acids is a promising area of research for the development of novel therapeutic strategies against pathogenic infection, tumorigenesis and autoimmunity. In this review we summarize current knowledge of endogenous TLRs and discuss their biological significance in the pathogenesis of MCTD. In part I we described the structure, biological function and significance of the U1-RNP complex in MCTD.

  4. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  5. TECHNIQUES FOR MAKING BIOLOGICS AND MINERAL NITROGEN AND THEIR INFLUENCE ON THE YIELD OF THE MIXED CROPS IN THE CONDITIONS OF GREY FOREST SOILS

    Directory of Open Access Journals (Sweden)

    Shkotova O. N.

    2016-04-01

    Full Text Available In the conditions of grey forest soils in the Bryansk region among the fodder crops widespread mixed legume-cereal crops. The results showed that the photosynthetic activity of cereals and leguminous crops and their yields in mixed crops depended on made of biological and mineral nitrogen fertilizers. It is established that the nitrogen in the form of ammonium nitrate has a positive impact on the formation of assimilating leaf surface, photosynthetic potential and net productivity and yield of grain mixture in lupine-barley and soybean -barley cropping and pea-barley crops the use of nitrogen in the form of potassium nitrate was more favorable. It was found that in lupine-barley crops the active symbiotic potential has increased by 25,5% and the yield increased by 21,3% , in soybean-barley crops 28,5% and 19,2% respectively, due to the joint use of a mixture of symbiotic and associative rhizobacteria and mineral nitrogen in the form of ammonium nitrate in the dose of N60. In pea-barley agrocenosis it has improved the efficiency of cultivation of joint application of mixed inoculant symbiotic and associative rhizobacteria on the background of the application of mineral nitrogen in the form of potassium nitrate in the dose of N60, where there was an increase of the active symbiotic potential by 34,7% and grain yield by 24,7% compared to the option when adding the mixture of biological products

  6. Comparison of complex permittivities of isotonic colloids containing single-wall carbon nanotubes of varying chirality.

    Science.gov (United States)

    Nair, Tejas; Symanowski, James T; Gach, H Michael

    2012-02-01

    The application of bio-compatible, conductive nanoparticles in combination with radiofrequency (RF) irradiation to raise tissue temperatures between 40 and 60 °C for hyperthermia and ablation spurred interest in the complex permittivities of isotonic nanoparticle-based colloids. Nanoparticles with large aspect ratios and high permittivities increase the bulk permittivity of the colloid and RF losses at the macroscopic scale. The complex permittivities of isotonic colloids with and without single-wall carbon nanotubes (SWCNTs) containing either metallic, semiconducting, or mixed chiralities were measured from 20 MHz to 1 GHz at room temperature. The colloids were made with one of three different isotonic solvents: phosphate buffered saline (PBS), and Dulbecco's modified eagle medium (DMEM) with and without 0.5% weight/volume bovine serum albumin to simulate cytosol and blood, respectively. The concentration of elemental carbon from the SWCNTs in the colloids ranged from 16 to 17 mM. The permittivities were corrected for electrode polarization effects by fitting the data to the Cole-Cole relaxation model with a constant phase angle element. The presence of SWCNTs increased both the real and imaginary components of the permittivities of the colloids. For all three solvents, the direct current (DC) components of the real and imaginary permittivities were greatest for the colloids containing the mixed chirality SWCNTs, followed by the colloids with semiconducting SWCNTs, and then metallic SWCNTs.

  7. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    Science.gov (United States)

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  8. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  9. A brief perspective on the diverging theories of lymphatic targeting with colloids

    Directory of Open Access Journals (Sweden)

    Siram K

    2016-06-01

    Full Text Available Karthik Siram,1 Gregory Marslin,2 Chellan Vijaya Raghavan,1 Krishnamoorthy Balakumar,1 Habibur Rahman,1 Gregory Franklin3 1Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore, India; 2Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Minho, Braga, Portugal; 3Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland Abstract: For targeted delivery of colloids to the lymphatic system, the colloids should efficiently reach and remain in the lymphatics for a considerable period of time. As per the current knowledge, diffusion and phagocytosis are the two mechanisms through which colloids reach the lymphatic system. Several parameters including particle size and charge have been shown to affect the direct uptake of colloids by the lymphatic system. Although many researchers attached ligands on the surface of colloids to promote phagocytosis-mediated lymphatic delivery, another school of thought suggests avoidance of phagocytosis by use of carriers like polyethylene glycol (PEGylated colloids to impart stealth attributes and evade phagocytosis. In this perspective, we weigh up the paradoxical theories and approaches available in the literature to draw conclusions on the conditions favorable for achieving efficient lymphatic targeting of colloids. Keywords: lymphatic targeting, colloids, PEGylation, phagocytosis

  10. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  11. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    Science.gov (United States)

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  12. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure

    DEFF Research Database (Denmark)

    Mason, Anna J.; Giusti, Valerio; Green, Stuart;

    2011-01-01

    The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any in...

  13. Evidence for anecdotes: Examining use of stories in introductory biology courses with a mixed-methods approach

    Science.gov (United States)

    Kreps, Jennifer Susan

    2005-11-01

    Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p < .01) with teaching experience, until 26 years of teaching, when it declined. The student survey uncovered no significant differences in story use by gender or ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p < .01) than did science majors. Simultaneous-entry multiple regression analyses indicated that there was a significant positive relationship between story use and cognitive and

  14. Colloidal microcapsules: Surface engineering of nanoparticles for interfacial assembly

    Science.gov (United States)

    Patra, Debabrata

    2011-12-01

    Colloidal Microcapsules (MCs), i.e. capsules stabilized by nano-/microparticle shells are highly modular inherently multi-scale constructs with applications in many areas of material and biological sciences e.g. drug delivery, encapsulation and microreactors. These MCs are fabricated by stabilizing emulsions via self-assembly of colloidal micro/nanoparticles at liquid-liquid interface. In these systems, colloidal particles serve as modular building blocks, allowing incorporation of the particle properties into the functional capabilities of the MCs. As an example, nanoparticles (NPs) can serve as appropriate antennae to induce response by external triggers (e.g. magnetic fields or laser) for controlled release of encapsulated materials. Additionally, the dynamic nature of the colloidal assembly at liquid-liquid interfaces result defects free organized nanostructures with unique electronic, magnetic and optical properties which can be tuned by their dimension and cooperative interactions. The physical properties of colloidal microcapsules such as permeability, mechanical strength, and biocompatibility can be precisely controlled through the proper choice of colloids and preparation conditions for their. This thesis illustrates the fabrication of stable and robust MCs through via chemical crosslinking of the surface engineered NPs at oil-water interface. The chemical crosslinking assists NPs to form a stable 2-D network structure at the emulsion interface, imparting robustness to the emulsions. In brief, we developed the strategies for altering the nature of chemical interaction between NPs at the emulsion interface and investigated their role during the self-assembly process. Recently, we have fabricated stable colloidal microcapsule (MCs) using covalent, dative as well as non-covalent interactions and demonstrated their potential applications including encapsulation, size selective release, functional devices and biocatalysts.

  15. Microfluidic Control Using Colloidal Devices

    Science.gov (United States)

    Terray, Alex; Oakey, John; Marr, David W. M.

    2002-06-01

    By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.

  16. Colloids in Paints Colloids and Interface Science, Volume 6

    CERN Document Server

    Tadros, Tharwat F

    2011-01-01

    The first modern approach to relate fundamental research to the applied science of colloids, this series bridges academic research and practical applications, thus providing the information vital to both. Written by the very best scientists in their respective disciplines, this volume describes the role of colloids in paints, highlighting the importance of fundamental research in industrial applications.For surface, polymer and physicochemists, materials scientists, and chemical engineers.

  17. Are All Colloids Same? How to Select the Right Colloid?

    Directory of Open Access Journals (Sweden)

    Sukanya Mitra

    2009-01-01

    Full Text Available The administration of intravenous fluids is one of the most common and universal interventions in medicine. Colloids are an alternative to the frequently used crystalloids, with highly variable use depending on a myriad of clinical variables. A colloid is defined as a high molecular weight (MW substance that largely remains in the intravas-eular compartment, thereby generating an oncotic pressure. Colloids are considered to have a greater intravaseular persistence when compared to crystalloids. All colloids, however, are clearly not the same. Differences in the physi-cochemical properties, pharmacokinetics and safety profile exist amongst various colloids. This review explores the different types of colloids, with their properties and usefulness as well as adverse effects. While all the available colloids are reviewed briefly (e.g., albumin, gelatin, dextran with respect to their pharmacology, indications, advan-tages and disadvantages, particular emphasis is laid on the hydroxyethyl starches (HES because of their rising prominence. It is shown that HES differ widely in their physicochemical and pharmacokinetic properties, composition, usefulness, and especially in their adverse effect profiles. The third generation HES (tetrastarches, in particular, seem to offer a unique combination of safety and efficacy. Several issues related to this are discussed in detail. This review of the available clinical data demonstrates that HES should not be regarded as one homogenous group, and data for one product should not be automatically extrapolated to another. Thus, among the synthetic colloids, the tetrastarches appear to offer the best currently available compromise between efficacy, safety profile, and cost. They also appear to be the best suited for use in the intensive care setting. Finally, balanced (rather than saline-based HES solutions appear promising as a plasma-adapted volume replacement strategy and may further refine the ongoing quest of

  18. Active colloids in complex fluids

    CERN Document Server

    Patteson, Alison E; Arratia, Paulo E

    2016-01-01

    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension proper...

  19. Colloidal gels: Clay goes patchy

    Science.gov (United States)

    Kegel, Willem K.; Lekkerkerker, Henk N. W.

    2011-01-01

    Empty liquids and equilibrium gels have so far been only theoretical possibilities, predicted for colloids with patchy interactions. But evidence of both has now been found in Laponite, a widely studied clay.

  20. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  1. Mechanical Failure in Colloidal Gels

    Science.gov (United States)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  2. Semiconductor nanostructures in biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexson, Dimitri [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Chen Hongfeng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Cho, Michael [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Dutta, Mitra [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Li Yang [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Shi, Peng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Raichura, Amit [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Ramadurai, Dinakar [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Parikh, Shaunak [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Stroscio, Michael A [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Vasudev, Milana [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2005-07-06

    Semiconductor nanostructures in biological applications are discussed. Results are presented on the use of colloidal semiconductor quantum dots both as biological tags and as structures that interact with and influence biomolecules. Results are presented on the use of semiconducting carbon nanotubes in biological applications. (topical review)

  3. Structure of binary mixed polymer Langmuir layers

    NARCIS (Netherlands)

    Bernardini, C.

    2012-01-01

    The possibility of preparing 2D stable emulsions through mixing of homopolymers in a Langmuir monolayer is the core topic of this thesis. While colloid science has achieved well established results in the study of bulk dispersed systems, accounts on properties of mixed monomolecular films are fewer,

  4. Variability and connectivity of plaice populations from the Eastern North Sea to the Baltic Sea, part II. Biological evidence of population mixing

    DEFF Research Database (Denmark)

    Ulrich, Clara; Hansen, Jakob Hemmer; Boje, Jesper

    2016-01-01

    A multi-disciplinary study was conducted to clarify stock identity and connectivity patterns in the populations of European plaice (Pleuronectes platessa) in the Skagerrak-Kattegat transition area between the Eastern North Sea and the Baltic Sea. Five independent biological studies were carried out...... in parallel. Genetic markers suggested the existence of different genetic populations in the transition area. Growth backcalculation with otoliths resulted in significant although limited differences in growth rates between North Sea and Skagerrak, indicating weak differentiation or important mixing....... Hydrogeographical drift modelling suggested that some North Sea juveniles could settle along the coast line of the Skagerrak and the Kattegat. Tagging data suggested that both juveniles and adult fish from the North Sea perform feeding migrations into Skagerrak in summer/autumn. Finally, survey data suggested...

  5. Colloidal Iron, Aluminum, and DOC/DON in Surface Waters of the Northwest Pacific: Results from the 2002 NSF/IOC Cruise

    Science.gov (United States)

    Sonke, J.; Landing, W. M.

    2002-12-01

    Over 70 surface seawater samples were collected on the 2002 NSF/IOC cruise between Japan and Hawaii using a towed "fish" peristaltic pump trace-metals clean sampling system. Samples for total dissolved Fe and AL were filtered using 0.2 um cartridge filters. Colloidal Fe and Al were isolated using a Millipore PrepScale 1 kDa regenerated cellulose tangential flow ultrafiltration device. Concentration factors were 8-10. Aluminum concentrations were measured using the lumogallion fluorometric technique; Fe concentrations were measured by Fe-57 isotope dilution with a Finnegan Element high-resolution magnetic sector ICPMS. Total dissolved Fe concentrations ranged from 0.2 to 0.6 nM and were weakly correlated with atmospheric Fe deposition (calculated from aerosol Fe concentrations). Colloidal Fe ranged from 10-60 percent of the total dissolved Fe and appeared to be related to atmospheric input and biological activity. We will discuss the relationships between the concentrations of particulate, dissolved and colloidal Fe, Al, and DOC/DON and the intertwined effects of atmospheric input, complexation by natural ligands, and physical dilution into the mixed layer.

  6. Variability and connectivity of plaice populations from the Eastern North Sea to the Baltic Sea, part II. Biological evidence of population mixing

    Science.gov (United States)

    Ulrich, Clara; Hemmer-Hansen, Jakob; Boje, Jesper; Christensen, Asbjørn; Hüssy, Karin; Sun, Hailu; Clausen, Lotte Worsøe

    2017-02-01

    A multi-disciplinary study was conducted to clarify stock identity and connectivity patterns in the populations of European plaice (Pleuronectes platessa) in the Skagerrak-Kattegat transition area between the Eastern North Sea and the Baltic Sea. Five independent biological studies were carried out in parallel. Genetic markers suggested the existence of different genetic populations in the transition area. Growth backcalculation with otoliths resulted in significant although limited differences in growth rates between North Sea and Skagerrak, indicating weak differentiation or important mixing. Hydrogeographical drift modelling suggested that some North Sea juveniles could settle along the coast line of the Skagerrak and the Kattegat. Tagging data suggested that both juveniles and adult fish from the North Sea perform feeding migrations into Skagerrak in summer/autumn. Finally, survey data suggested that Skagerrak also belongs to the area distribution of North Sea plaice. The outcomes of the individual studies were then combined into an overall synthesis. The existence of some resident components was evidenced, but it was also demonstrated that North Sea plaice migrate for feeding into Skagerrak and might constitute a large share of the catches in this area. The mixing of different populations within a management area has implications for stock assessment and management. Choice must be made to either lump or split the populations, and the feasibility and constraints of both options are discussed. The outcomes of this work have directly influenced the management decisions in 2015.

  7. Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems

    CERN Document Server

    Löwen, H; Likos, C N; Blaak, R; Dzubiella, J; Jusufi, A; Hoffmann, N; Harreis, H M

    2003-01-01

    A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration.

  8. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per;

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...... ranged from 0.1 to 0.44 kg kg−1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r > 0.91, P soils. Only for two sites was the WDC content correlated to the content of clay...

  9. COLLOID RELEASE FROM DIFFERENT SOIL DEPTH

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2013-01-01

    Full Text Available Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental concerns such as colloid-facilitated contaminant transport in groundwater and the subsurface soil. Clay colloid release is resulted from physical alteration of subsurface sediments. Despite the potential importance of clay colloid activiti es, the detailed mechanisms of release and transport of clay colloidal particles with in natural sediments are poorly understood. Pore medium structure, properties and flow dynamics, etc. are factors that affect clay colloid generation, mobilization, and subse quent transport. Possible mechanisms of clay colloid generation in the sediments in clude precipitation, erosion and mobilization by changes in pore water chemistry and clay colloid release depends on a balance of applied hydrodynamic and resisting adhesive torques and forces. The coupled role of pore water chemistry and fluid hydrodynamics thus play key roles in controlling clay colloid release and transport in the sediment s. This paper investigated clay colloidal particle release and transport, especially th e colloidal particle release mechanisms as well as the process modeling in the sediments. In this research, colloidal particle release from intact sediment columns with variable length was examined and colloidal particle release curves were simulated using an im plicit, finite-difference scheme. Colloidal particle release rate coefficient was found to be an exponential function of the sediment depth. The simulated results demonstrated that transport parameters were

  10. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    CERN Document Server

    Guler, Urcan; Kildishev, Alexander V; Boltasseva, Alexandra; Shalaev, Vladimir M

    2014-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm exhibit plasmon resonance in the biological transparency window. With dimensions optimized for efficient cellular uptake, the nanoparticles demonstrate a high photothermal conversion efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization.

  11. Colloidal gelation of oppositely charged particles

    NARCIS (Netherlands)

    Russel, E.; Sprakel, J.H.B.; Kodger, T.E.; Weitz, D.A.

    2012-01-01

    Colloidal gelation has been extensively studied for the case of purely attractive systems, but little is understood about how colloidal gelation is affected by the presence of repulsive interactions. Here we demonstrate the gelation of a binary system of oppositely charged colloids, in which repulsi

  12. Bonding assembled colloids without loss of colloidal stability

    NARCIS (Netherlands)

    Vutukuri, H.R.; Stiefelhagen, J.C.P.; Vissers, T; Imhof, A.; van Blaaderen, A.

    2012-01-01

    In recent years the diversity of self-assembled colloidal structures has strongly increased, as it is fueled by a wide range of applications in materials science and also in soft condensed-matter physics.[1–4] Some potential applications include photonic bandgap (PBG) crystals, materials for plasmon

  13. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  14. Proteolytic stability in colloidal systems.

    NARCIS (Netherlands)

    Maste, M.C.L.

    1996-01-01

    Proteolytic enzymes in liquid detergents suffer from lack of stability in the sense that activity diminishes with time. Although the phenomenon could be attributed to several factors, the influence of colloidal surfaces on the enzymatic stability was investigated. Besides the types of surfaces that

  15. Supramolecular perspectives in colloid science

    NARCIS (Netherlands)

    Cohen Stuart, M.A.

    2008-01-01

    Supramolecular chemistry puts emphasis on molecular assemblies held together by non-covalent bonds. As such, it is very close in spirit to colloid science which also focuses on objects which are small, but beyond the molecular scale, and for which other forces than covalent bonds are crucial. We dis

  16. Microbial effects on colloidal agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  17. Colloidal aspects of texture perception

    NARCIS (Netherlands)

    Vliet, van T.

    2010-01-01

    The perception of complex textures in food is strongly related to the way food is processed during eating, and is modulated by other basic characteristics, such as taste and aroma. An understanding at the colloidal level of the basic processes in the mouth is essential in order to link the compositi

  18. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    Science.gov (United States)

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  19. Life at ultralow interfacial tension: Wetting, waves and droplets in demixed colloid-polymer mixtures

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; de Villeneuve, V.W.A.; de Folter, J.W.J.; Schmidt, M.; Hennequin, Y.; Bonn, D.; Indekeu, J.O.; Aarts, D.G.A.L.

    2008-01-01

    Mixtures of colloids and polymers display a rich phase behavior, involving colloidal gas (rich in polymer, poor in colloid), colloidal liquid (poor in polymer, rich in colloid) and colloidal crystal phases (poor in polymer, highly ordered colloids). Recently, the colloidal gas-colloidal liquid inter

  20. Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; de Villeneuve, V.W.A.; de Folter, J.W.J.; Schmidt, M.; Hennequin, Y.; Bonn, D.; Indekeu, J.O.; Aarts, D.G.A.L.

    2008-01-01

    Mixtures of colloids and polymers display a rich phase behavior, involving colloidal gas (rich in polymer, poor in colloid), colloidal liquid (poor in polymer, rich in colloid) and colloidal crystal phases (poor in polymer, highly ordered colloids). Recently, the colloidal gas-colloidal liquid inter

  1. Synthesis and Applications of Non-spherical Dimer Colloids

    Science.gov (United States)

    Yoon, Kisun

    Colloids are promising building blocks in material synthesis because of their controllability of size and surface properties. The synthesis of chemically and/or geometrically anisotropic colloidal particles has received attentions with the expectation of building blocks for complex structures. However, the synthesis of anisotropic colloidal particles is by far more difficult than the synthesis of spherical colloidal particles. Lack of monodispersity and productivity of many anisotropic particles often limits their applications as a building block for complex structures. Thus, it is highly desirable to develop methods which can produce a large amount of monodisperse non-spherical particles with controllable asymmetric surface properties. This dissertation details the work for developing such a method. The major result of this dissertation is a synthetic method to produce monodisperse non-spherical colloids with anisotropic surface property in a large quantity. The anisotropic colloid, which we call it as Dimer particle, has two fused lobes like a dumbbell and each lobe's size can be independently controlled. We present a novel method to synthesize sub-micron size Dimer particles. This method can produce a large amount of submicron-sized Dimer particles with good monodispersity and well-controlled shape. Submicron-sized Dimer particles have been highly desired since they can be used as a building block for self assembly using Brownian motion, colloidal surfactant for Pickering emulsion, and photonic materials. To fully take advantage of the anisotropy of the particles, we develop a facile method to tailor the surface property of each lobe independently by asymmetrically coating the particles with gold nanoparticles. This method doesn't need the arrangement of particles onto any type of interfaces. Asymmetric coating of gold nanoparticles can be carried out simply by mixing Dimer particles with gold nanoparticles. The formation mechanism of the submicron-sized Dimer

  2. Implementation of Polyvynil-Alcohol Mixed With Nano-Particles as a Near Representation of Biological Tissue: Ultrasonic and PhotoThermal Study

    Directory of Open Access Journals (Sweden)

    R. M. Quispe-Siccha

    2012-03-01

    Full Text Available We present experimental results related to the manufacturing of phantoms based on polyvinyl-alcohol (PVA mixed with SiO2, graphite and Ag nanoparticles. These phantoms are dummy representations of the human tissue of the breast gland. We focus our attention on the representation of the optical and the mechanical properties of the actual biological healthy tissue and of that representing a hidden cancer tumor (lesion. The quality of the samples is tested by ultrasonic imaging and laser induced photothermal (PT detection technique. From the former test, the mechanical contrast that one can achieve is apparent. Instead, the laser detection technique makes it possible to determine that the optical contrast is achievable. For the laser induced PT method we register the so-called photothermal amplitudes, rather known as photoacoustic (PA signals. These are the ultimate expression of laser-induced bursts of photothermal processes, whose engine is the fraction of the optically absorbed energy that decays through nonradiative channels. In our case we look for the conditions at which the PT phenomena are produced by a hidden dummy-tumor alone; meaning that the output signals are nearly free from substantial contributions from the bulk of the phantom. This is so as to mimic the actual mechanical and optical absorption erformance of breast tissue with an inner cancer tumor. From the ultrasound images one can see how apparent the resemblance with the actual human tissue is.

  3. The Role of Colloids in the Transport of Plutonium and Americium: Implications for

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, A B

    2003-09-17

    Colloids are small particulates (ranging in size from 1 to 0.001 micron) composed of inorganic and organic material and found in all natural water. Due to their small size, they have the ability to remain suspended in water and transported. Small amounts of plutonium (Pu) and americium (Am) can adsorb (attach) to colloids, and/or form colloidal-sized polymers and migrate in water. At Rocky Flats Environmental Technology Site (RFETS) sedimentation and resuspension of particulates and colloids in surface waters represent the dominant process for Pu and Am migration. The amount of Pu and Am that can be transported at RFETS has been quantified in the Pathway Analysis Report. The Pathway Analysis Report shows that the two dominant pathways for Pu and Am transport at RFETS are air and surface water. Shallow groundwater and biological pathways are minor.

  4. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  5. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  6. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    Science.gov (United States)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  7. What happens when pharmaceuticals meet colloids.

    Science.gov (United States)

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  8. Chancellor Water Colloids: Characterization and Radionuclide Association

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Amr I. [Los Alamos National Laboratory

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  9. Electrocoagulation of colloidal biogenic selenium.

    Science.gov (United States)

    Staicu, Lucian C; van Hullebusch, Eric D; Lens, Piet N L; Pilon-Smits, Elizabeth A H; Oturan, Mehmet A

    2015-02-01

    Colloidal elemental selenium (Se(0)) adversely affects membrane separation processes and aquatic ecosystems. As a solution to this problem, we investigated for the first time the removal potential of Se(0) by electrocoagulation process. Colloidal Se(0) was produced by a strain of Pseudomonas fluorescens and showed limited gravitational settling. Therefore, iron (Fe) and aluminum (Al) sacrificial electrodes were used in a batch reactor under galvanostatic conditions. The best Se(0) turbidity removal (97 %) was achieved using iron electrodes at 200 mA. Aluminum electrodes removed 96 % of colloidal Se(0) only at a higher current intensity (300 mA). At the best Se(0) removal efficiency, electrocoagulation using Fe electrode removed 93 % of the Se concentration, whereas with Al electrodes the Se removal efficiency reached only 54 %. Due to the less compact nature of the Al flocs, the Se-Al sediment was three times more voluminous than the Se-Fe sediment. The toxicity characteristic leaching procedure (TCLP) test showed that the Fe-Se sediment released Se below the regulatory level (1 mg L(-1)), whereas the Se concentration leached from the Al-Se sediment exceeded the limit by about 20 times. This might be related to the mineralogical nature of the sediments. Electron scanning micrographs showed Fe-Se sediments with a reticular structure, whereas the Al-Se sediments lacked an organized structure. Overall, the results obtained showed that the use of Fe electrodes as soluble anode in electrocoagulation constitutes a better option than Al electrodes for the electrochemical sedimentation of colloidal Se(0).

  10. Thermophoresis of charged colloidal particles.

    Science.gov (United States)

    Fayolle, Sébastien; Bickel, Thomas; Würger, Alois

    2008-04-01

    Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.

  11. Thermophoresis of charged colloidal particles

    OpenAIRE

    Fayolle, Sébastien; Bickel, Thomas; Würger, Alois

    2008-01-01

    International audience; Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.

  12. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  13. Three-dimensional colloidal lithography

    Science.gov (United States)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  14. Three-dimensional colloidal lithography.

    Science.gov (United States)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  15. Crystallization of DNA-coated colloids.

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  16. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  17. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources.

    Science.gov (United States)

    Kaufman, E N; Little, M H; Selvaraj, P

    1997-01-01

    A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (10(9) cells)(-1). A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m(3)d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO(4) (-2)/Lh or 6.6 kg FGD gypsum/m(3)d. Both reactors demonstrated 100% conversion of sulfate, with 75-100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H(2), and CO(2) in the reduction of gypsum, further decreasing process costs. The formation of two marketable products-elemental sulfur and calcium carbonate-from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum.

  18. COLLOID RELEASE FROM DIFFERENT SOIL DEPTH

    OpenAIRE

    Gang Chen; Yue Niu; Boya Wang; Kamal Tawfiq

    2013-01-01

    Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental conce...

  19. Thermophoresis of colloids by mesoscale simulations.

    Science.gov (United States)

    Lüsebrink, Daniel; Yang, Mingcheng; Ripoll, Marisol

    2012-07-18

    The motion of a colloid induced by a temperature gradient is simulated by means of multiparticle collision dynamics, a mesoscale simulation technique. Two algorithms to quantify the thermophoretic behavior are employed and contrasted. The validity of the methods is verified as a function of the temperature gradient, system size, and algorithm parameters. The variation of the solvent-colloid interaction from attractive to purely repulsive interestingly results in the change of the colloid behavior from thermophobic to thermophilic.

  20. Colloidal quantum dots: synthesis, properties and applications

    Science.gov (United States)

    Brichkin, S. B.; Razumov, V. F.

    2016-12-01

    Key recent results obtained in studies of a new class of luminophores, colloidal quantum dots, are analyzed. Modern methods for the synthesis and post-synthetic treatment of colloidal quantum dots that make it possible to achieve record high quantum yield of luminescence and to modify their characteristics for specific applications are considered. Currently important avenues of research on colloidal quantum dots and the problems in and prospects for their practical applications in various fields are discussed. The bibliography includes 272 references.

  1. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  2. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  3. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    OpenAIRE

    Luigjes, B.

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a specially adapted centrifuge for measuring heavy and strongly light absorbing colloids. Magnetic composite colloids can be prepared from thermodynamically stable Pickering emulsions of 3-methacrylox...

  4. On the Equivalence of Trapped Colloids, Pinned Vortices, and Spin Ice

    Energy Technology Data Exchange (ETDEWEB)

    Nisoli, Cristiano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-23

    We investigate the recently reported analogies between pinned vortices in nano-structured superconductors or colloids in optical traps, and spin ice materials. The frustration of the two models, one describing colloids and vortices, the other describing spin ice, differs essentially. However, their effective energetics is made identical by the contribution of an emergent field associated to a topological charge. This equivalence extends to the local low-energy dynamics of the ice manifold, yet breaks down in lattices of mixed coordination, because of topological charge transfer between sub-latices.

  5. Fabricating colloidal crystals and construction of ordered nanostructures

    Directory of Open Access Journals (Sweden)

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  6. Capillary-Inertial Colloidal Catapult upon Drop Coalescence

    Science.gov (United States)

    Chavez, Roger; Liu, Fangjie; Feng, James; Chen, Chuan-Hua

    2014-11-01

    To discharge micron-sized particles such as colloidal contaminants and biological spores, an enormous power density is needed to compete against the strong adhesive forces between the small particles and the supporting surface as well as the significant air friction exerted on the particles. Here, we demonstrate a colloidal catapult that achieves such a high power density by extracting surface energy released upon drop coalescence within an extremely short time period, which is governed by the capillary-inertial process converting the released surface energy into the bulk inertia of the merged drop. When two drops coalesce on top of a spherical particle, the resulting capillary-inertial oscillation is perturbed by the solid particle, giving rise to a net momentum eventually propelling the particle to launch from the supporting surface. The measured launching velocity follows a scaling law that accounts for the redistribution of the momentum of the merged drop onto the particle-drop complex, and is therefore proportional to the capillary-inertial velocity characterizing the coalescing drops. The interfacial flow process associated with the colloidal catapult is elucidated with both high-speed imaging and phase-field simulations.

  7. The hydrodynamics of colloidal gelation.

    Science.gov (United States)

    Varga, Zsigmond; Wang, Gang; Swan, James

    2015-12-14

    Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.

  8. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  9. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  10. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  11. Colloidal iron(III) pyrophosphate particles

    NARCIS (Netherlands)

    Rossi, L.; Velikov, K. P.; Philipse, A.P.

    2014-01-01

    Ferric pyrophosphate is a widely used material in the area of mineral fortification but its synthesis and properties in colloidal form are largely unknown. In this article, we report on the synthesis and characterisation of colloidal iron(III) pyrophosphate particles with potential for application a

  12. Selective cleavage of periodic mesoscale structures: two-dimensional replication of binary colloidal crystals into dimpled gold nanoplates.

    Science.gov (United States)

    Kuroda, Yoshiyuki; Sakamoto, Yasuhiro; Kuroda, Kazuyuki

    2012-05-23

    Specific crystallographic planes of binary colloidal crystals consisting of silica nanoparticles are two-dimensionally replicated on the surface of gold nanoplates. The selectivity of the surface patterns is explained by the geometrical characteristics of the binary colloidal crystals as templates. The binary colloidal crystals with the AlB(2)- and NaZn(13)-type structures are fabricated from aqueous dispersions of stoichiometrically mixed silica nanoparticles with different sizes. The stoichiometry is precisely controlled on the basis of a seed growth of silica nanoparticles. Dimpled gold nanoplates are formed by the two-dimensional growth of gold between partially cleaved surfaces of templates. The selectivity of the surface patterns is explained using the AlB(2)-type binary colloidal crystal as a template. The surface pattern is determined by the preferential cleavage of the plane with the lowest density of particle-particle connections. The tendency to form well-defined cleavage in binary colloidal crystals is crucial to formation of dimpled gold nanoplates, which is explained using the NaZn(13)-type binary colloidal crystal as a template. Its complex structure does not show well-defined cleavage, and only distorted nanoplates are obtained. Therefore, the mechanism of the two-dimensional replication of binary colloidal crystals is reasonably explained on the basis of their periodic mesoscale structures and crystal-like properties.

  13. Thermodynamic perturbation theory for self assembling mixtures of multi - patch colloids and colloids with spherically symmetric attractions

    OpenAIRE

    Marshall, B. D.; Chapman, W G

    2013-01-01

    In this paper we extend our previous theory [B. D. Marshall and W.G. Chapman, J. Chem. Phys. 139, 104904 (2013)] for mixtures of single patch colloids (p colloids) and colloids with spherically symmetric attractions (s colloids) to the case that the p colloids can have multiple patches. The theory is then applied to the case of a binary mixture of bi-functional p colloids which have an A and B type patch and s colloids which are not attracted to other s colloids and are attracted to only patc...

  14. Chemical, colloidal and mechanical contributions to the state of water in wood cell walls

    Science.gov (United States)

    Bertinetti, L.; Fratzl, P.; Zemb, T.

    2016-08-01

    The properties of wood depend strongly on its water content, but the physicochemical basis for the interaction of water with cell wall components is poorly understood. Due to the importance of the problem both in the context of wood technology and the biological function of swelling and dehydration for growth stresses and seed dispersal, a wealth of descriptive data has been accumulated but a microscopic theory of water-biomolecular interactions is missing. We develop here, at a primitive level, a minimal parameter-free, coarse-grained, model of wood secondary cell walls to predict water absorption, in the form of an equation of state. It includes for the first time all three—mechanical, colloidal and chemical—contributions, taking into account the cell walls microstructure. The hydration force around the elongated cellulose crystals and entropy of mixing of the matrix polymers (hemicelluloses and lignin) are the dominant contributions driving the swelling. The elastic energy needed to swell the composite is the main term opposing water uptake. Hysteresis is not predicted but water uptake versus humidity, is reproduced in a large temperature range. Within this framework, the origin of wood dissolution and different effects of wood treatments on water sorption can be understood at the molecular level.

  15. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  16. Tunable optical properties of colloidal quantum dots in electrolytic environments.

    Science.gov (United States)

    Ramadurai, D; Kohanpour, B; Alexson, D; Shi, P; Sethuraman, A; Li, Y; Saini, V; Dutta, M; Stroscio, M A

    2004-12-01

    The absorption spectra of colloidal cadmium sulfide quantum dots in electrolytic solutions are found to manifest a shift in the absorption threshold as the concentration of the electrolyte is varied. These results are consistent with a shift in the absorption threshold that would be caused by electrolytic screening of the field caused by the intrinsic spontaneous polarisation of these würtzite structured quantum dots. These electrolyte-dependent absorption properties provide a potential means of gaining insights on the variable extracellular and intracellular electrolytic concentrations that are present in biological systems.

  17. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  18. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Institute of Scientific and Technical Information of China (English)

    M. Vinod; K.G.Gopchandran

    2014-01-01

    Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  19. Diffusion in active magnetic colloids

    Energy Technology Data Exchange (ETDEWEB)

    Taukulis, R.; Cebers, A., E-mail: aceb@tesla.sal.lv

    2014-11-15

    Properties of active colloids of circle swimmers are reviewed. As a particular example of active magnetic colloids the magnetotactic bacteria under the action of a rotating magnetic field is considered. The relation for a diffusion coefficient due to the random switching of the direction of rotation of their rotary motors is derived on the basis of the master equation. The obtained relation is confirmed by the direct numerical simulation of random trajectory of a magnetotactic bacterium under the action of the Poisson type internal noise due to the random switching of rotary motors. The results obtained are in qualitative and quantitative agreement with the available experimental results and allow one to determine the characteristic time between the switching events of a rotary motor of the bacterium. - Highlights: • Magnetotactic bacteria in a rotating field behaves as circle swimmers. • Diffusion coefficient of these swimmers due to the random switching of rotary motors is calculated. • Results are in good qualitative and quantitative agreement with available experimental results.

  20. Dynamics of the colloidal suspensions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-yan; MA Hong-ru

    2006-01-01

    This article offers a survey on our current knowledge of the dynamics of the colloidal suspension,where each particle experiences the friction force with solvent,hydrodynamic interaction,and potential force from surrounding particles and thermodynamic force.It further contains a summary of the basic concepts about microstructures and equilibrium properties,and of analytical and numerical methods,which are relevant for the theoretical description of the suspensions.The description of the dynamics of colloidal particles,based on the generalized Smoluchowski equation,is justified for the time scale accessible in DLS experiments.The combined influence of hard sphere or electrostatic potential and solvent-mediated hydrodynamic interaction on the short-time dynamics of monodisperse suspensions is investigated in detail.A thorough study of tracer-diffusion in hard sphere and charge-stabilized suspensions is presented.Mean-square displacements and long-time tracer-diffusion coefficients are calculated with two alternative approximations,i.e.,a mode-coupling scheme and a single relaxation time ansatz.

  1. Gel trapping of dense colloids.

    Science.gov (United States)

    Laxton, Peter B; Berg, John C

    2005-05-01

    Phase density differences in sols, foams, or emulsions often lead to sedimentation or creaming, causing problems for materials where spatial uniformity over extended periods of time is essential. The problem may be addressed through the use of rheology modifiers in the continuous phase. Weak polymer gels have found use for this purpose in the food industry where they appear to be capable of trapping dispersoid particles in a three-dimensional matrix while displaying water-like viscosities at low shear. Attempts to predict sedimentation stability in terms of particle properties (size, shape, density difference) and gel yield stress have led to qualitative success for suspensions of large particles. The effect of particle size, however, in particular the case in which colloidal dimensions are approached, has not been investigated. The present work seeks to determine useful stability criteria for colloidal dispersions in terms of readily accessible viscoelastic descriptors. Results are reported for systems consisting of 12 microm poly(methyl methacrylate) (PMMA) spheres dispersed in aqueous gellan gum. Monovalent salt concentration is varied to control rheological properties, and sedimentation/centrifugation experiments are performed to determine dispersion stability. Necessary conditions for stability consist of a minimum yield stress together with a value of tan delta less than unity.

  2. PREFACE: Colloidal and molecular electro-optics Colloidal and molecular electro-optics

    Science.gov (United States)

    Palberg, Thomas; Löwen, Hartmut

    2010-12-01

    The Kerr effect, also known as the quadratic electro-optic effect, was discovered more than a hundred years ago by John Kerr, a Scottish physicist [1]. It describes the change in the refractive index of a material in response to an applied electric field. Around 1950 its application swayed from simple to complex fluids. A strong contribution was made through a number of seminal papers by the French polymer scientist H Benoit [2-4]. These and others initiated wide interest from researchers working on macromolecular solutions or colloidal dispersions. Experimental activities were further boosted by the advent of the laser and theoretical approaches strongly drew from growing computer power. Use of AC or pulsed field techniques, as well as of inhomogeneous fields, including laser tweezers, studies of electrophoretic, dielectrophoretic, electro-osmotic and other types of motion by advanced optical methods and combinations with other external fields have had the greatest impact on our understanding of the electric field induced optical properties of soft matter systems. Today the field has matured and its techniques are broadly employed as versatile tools with applications ranging from biological systems to electronic ink. Fundamental interest still continues but more and more side branches have evolved fruitfully. This collection of papers was, therefore, brought together to take a fresh look at this traditional field. Further, we are to celebrate 35 years of a successful conference series, ELOPTO, with the last one held at Waldthausen Castle hosted by the Johannes Gutenberg University, MainzNote1 and the DFG Collaborative Research Centre TR6 'Physics of colloidal dispersions in external fields'Note2. In this issue we have collected the articles of some of the leading experts in the area, well garnished with novel approaches and clever ideas by younger colleagues. With our selection we hope to cover a representative spectrum of the ongoing research, catch the most

  3. Interfacial & colloidal aspects of lipid digestion.

    Science.gov (United States)

    Wilde, P J; Chu, B S

    2011-06-09

    Amongst the main issues challenging the food manufacturing sector, health and nutrition are becoming increasingly important. Global concerns such as obesity, the ageing population and food security will have to be addressed. Food security is not just about assuring food supply, but is also about optimising nutritional delivery from the food that is available [1]. Therefore one challenge is to optimise the health benefits from the lipids and lipid soluble nutrients. Colloid scientists have an affinity for lipids because they are water insoluble, however this presents a challenge to the digestive system, which has to convert them to structures that are less insoluble so they are available for uptake. Despite this, the human digestive system is remarkably effective at digesting and absorbing most lipids. This is primarily driven through maximising energy intake, as lipids possess the highest calorific value, which was a survival trait to survive times of famine, but is now an underlying cause of obesity in developed countries with high food availability. The critical region here is the lipid-water interface, where the key reactions take place to solubilise lipids and lipid soluble nutrients. Digestive lipases have to adsorb to the oil water interface in order to hydrolyse triacylglycerols into fatty acids and mono glycerides, which accumulate at the interface [2], and inhibit lipase activity. Pancreatic lipase, which is responsible for the majority of lipid hydrolysis, also requires the action of bile salts and colipase to function effectively. Bile salts both aid the adsorption of co-lipase and lipase, and help solubilise the lipolysis products which have accumulated at the interface, into mixed micelles composing bile salts and a range of other lipids, to facilitate transport to the gut mucosal surface prior to uptake and absorption. The process can be affected by the lipid type, as shorter chain, fatty acids are more easily absorbed, whereas the uptake of longer

  4. Highly stable layered double hydroxide colloids: a direct aqueous synthesis route from hybrid polyion complex micelles.

    Science.gov (United States)

    Layrac, Géraldine; Destarac, Mathias; Gérardin, Corine; Tichit, Didier

    2014-08-19

    Aqueous suspensions of highly stable Mg/Al layered double hydroxide (LDH) nanoparticles were obtained via a direct and fully colloidal route using asymmetric poly(acrylic acid)-b-poly(acrylamide) (PAA-b-PAM) double hydrophilic block copolymers (DHBCs) as growth and stabilizing agents. We showed that hybrid polyion complex (HPIC) micelles constituted of almost only Al(3+) were first formed when mixing solutions of Mg(2+) and Al(3+) cations and PAA3000-b-PAM10000 due to the preferential complexation of the trivalent cations. Then mineralization performed by progressive hydroxylation with NaOH transformed the simple DHBC/Al(3+) HPIC micelles into DHBC/aluminum hydroxide colloids, in which Mg(2+) ions were progressively introduced upon further hydroxylation leading to the Mg-Al LDH phase. The whole process of LDH formation occurred then within the confined environment of the aqueous complex colloids. The hydrodynamic diameter of the DHBC/LDH colloids could be controlled: it decreased from 530 nm down to 60 nm when the metal complexing ratio R (R = AA/(Mg + Al)) increased from 0.27 to 1. This was accompanied by a decrease of the average size of individual LDH particles as R increased (for example from 35 nm at R = 0.27 down to 17 nm at R = 0.33), together with a progressive favored intercalation of polyacrylate rather than chloride ions in the interlayer space of the LDH phase. The DHBC/LDH colloids have interesting properties for biomedical applications, that is, high colloidal stability as a function of time, stability in phosphate buffered saline solution, as well as the required size distribution for sterilization by filtration. Therefore, they could be used as colloidal drug delivery systems, especially for hydrosoluble negatively charged drugs.

  5. Fluid-fluid demixing curves for colloid-polymer mixtures in a random colloidal matrix

    Science.gov (United States)

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2011-12-01

    We study fluid-fluid phase separation in a colloid-polymer mixture adsorbed in a colloidal porous matrix close to the θ point. For this purpose we consider the Asakura-Oosawa model in the presence of a quenched matrix of colloidal hard spheres. We study the dependence of the demixing curve on the parameters that characterize the quenched matrix, fixing the polymer-to-colloid size ratio to 0.8. We find that, to a large extent, demixing curves depend only on a single parameter f, which represents the volume fraction which is unavailable to the colloids. We perform Monte Carlo simulations for volume fractions f equal to 40% and 70%, finding that the binodal curves in the polymer and colloid packing-fraction plane have a small dependence on disorder. The critical point instead changes significantly: for instance, the colloid packing fraction at criticality increases with increasing f. Finally, we observe for some values of the parameters capillary condensation of the colloids: a bulk colloid-poor phase is in chemical equilibrium with a colloid-rich phase in the matrix.

  6. Photochemical manipulation of colloidal structures in liquid-crystal colloids

    Science.gov (United States)

    Yamamoto, T.; Tabe, Y.; Yokoyama, H.

    2007-05-01

    We investigated photochemical manipulation of physical properties and colloidal structures in liquid-crystal (LC) colloids containing azobenzene compounds. In a LC suspension where polymeric particles were dispersed in a host LC, we achieved photochemical control of light-scattering properties of the suspension. In a nematic phase, when the suspension was sandwiched with two glass plates, the film became opaque. This would be attributable to an appearance of both multidomain structures of LC alignment and mismatches of refractive indices between the materials. The opaque state turned into a transparent one when a nematic-to-isotropic phase transition was induced by the trans-to-cis photoisomerization of the azo-dye. This will result from a disappearance of both the multidomain structures and the refractive-index mismatches in the isotropic phase. The transparent film went back into the initial opaque film when the nematic phase was obtained by the cis-to-trans photoisomerization. In a LC emulsion in which glycerol or water droplets were dispersed in liquid crystals, we examined photochemical change of defect structures and inter-droplet distances by the photochemical manner. At the initial state, Saturn ring and hedgehog defects were formed around the droplets. For the glycerol droplets, we observed structural transformations between Saturn ring and boojums on irradiation with ultra-violet and visible light. For the water droplets, the inter-droplet distances varied by changing defect size on the irradiation. These phenomena would result from modulation of anchoring conditions of the droplets by the photoisomerization of the azo-dyes.

  7. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the che

  8. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    NARCIS (Netherlands)

    Luigjes, B.

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a s

  9. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  10. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  11. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  12. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules

    DEFF Research Database (Denmark)

    Li, Fan; Yoo, Won Cheol; Beernink, Molly B;

    2009-01-01

    -specific tethers. Amorphous sol-gel materials were molded by the template into shaped NPs that mimic tetravalent atoms but on the length scale of colloids. Synthetic methods were developed to modify only the tips of the tetrapods with a range of possible functional groups to generate anisotropic NPs capable......Multipodal nanoparticles (NPs) with controlled tethers are promising principal building blocks, useful for constructing more complex materials, much like atoms are connected into more complex molecules. Here we report colloidal sphere templating as a viable means to create tetrapodal NPs with site...... of directional bonding to other NPs. We also illustrate that sets of tethered "colloidal atoms" can assemble themselves into "colloidal molecules" with precise placement of the modifying colloids. The templating and tethering approaches to these anisotropic colloidal building blocks and the assembly methods...

  13. Colloid and interface chemistry for nanotechnology

    CERN Document Server

    Kralchevsky, Peter

    2013-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science an

  14. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems.

    Science.gov (United States)

    McClements, David Julian

    2015-05-01

    There have been major advances in the development of edible colloidal delivery systems for hydrophobic bioactives in recent years. However, there are still many challenges associated with the development of effective delivery systems for hydrophilic bioactives. This review highlights the major challenges associated with developing colloidal delivery systems for hydrophilic bioactive components that can be utilized in foods, pharmaceuticals, and other products intended for oral ingestion. Special emphasis is given to the fundamental physicochemical phenomena associated with encapsulation, stabilization, and release of these bioactive components, such as solubility, partitioning, barriers, and mass transport processes. Delivery systems suitable for encapsulating hydrophilic bioactive components are then reviewed, including liposomes, multiple emulsions, solid fat particles, multiple emulsions, biopolymer particles, cubosomes, and biologically-derived systems. The advantages and limitations of each of these delivery systems are highlighted. This information should facilitate the rational selection of the most appropriate colloidal delivery systems for particular applications in the food and other industries.

  15. PRELIMINARY STUDY ON THE DISSOLVED AND COLLOIDAL ORGANIC CARBON IN THE ZHUJIANG RIVER ESTUARY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper reports data on the dissolved and colloidal organic carbon in the Zhujiang (Pearl) River estuary. DOC concentration was 142 to 239 μmol/L in the freshwater taken in March 1997 from the four Zhujiang River tributaries flowing into the Lingdingyang estuary. High concentration was observed in the Humen tributary located near Guangzhou. The rapidly increased DOC concentration at low salinities (~5) may be attributed to the exchange between macroparticulate and dissolved organic matter during the early stage of estuarine mixing. DOC concentration overall followed the mixing line until salinity ~25, where the Deep Bay is located and where DOC was elevated. This elevated DOC may suggest a local organic matter source from Shenzhen. Using a cross-flow ultrafiltration (CFF) system equipped with a Millipore Prep-scale CFF 1 kD regenerated cellulose membrane, we also separated the colloidal organic matter from the truly dissolved fraction (<1 kD). CFF membranes were carefully evaluated for their applicability (retention characteristics, blank level and mass balance) to separate colloidal organic matter. COC in the study area ranged from 5 to 85 μmol/L, representing ~ 3%-32% of DOC. The highest COC percentage was found at low salinities (< 5) in both winter and summer. Evidence suggests in-situ production of colloidal material at this salinity range. Beyond this point, a very modest removal was observable until high salinities. Again, an increase in COC concentration was shown in the samples taken from the Deep Bay.

  16. Surface-enhanced Raman Scattering Activity Study of Molecule in Mixed Negatively and Positively Charged Silver Colloidal Solution%混合正、负电性银胶体系的表面增强拉曼散射活性研究

    Institute of Scientific and Technical Information of China (English)

    方靖淮; 黄云霞; 李霞; 窦晓明

    2004-01-01

    Both negatively and positively charged silver colloids were prepared in aqueous solution for surface-enhanced Raman scattering (SERS) by the reduction of silver nitrate with sodium citrate and hydrogen peroxide under basic condition, respectively. By means of transmission electron microscopy (TEM), the observation of morphologies of negatively charged silver colloid (NSC) and positively charged silver colloid (PSC) has been presented, and the aggregation behaviors of NSC and PSC as well as the mixture of NSC and PSC induced by the addition of fuchsine basic molecules examined. SERS from fuchsine basic molecules in above mentioned colloidal systems were recorded respectively and compared with each other. The results show that the mixture of NSC and PSC could form the aggregation morphology different from that of single NSC and PSC and bring about the favorable effect on SERS behavior for the adsorbed fuchsine basic.%通过化学还原的方法分别制备了具有正、负电性的纳米银胶.利用透射电子显微镜表征了正、负电性银胶以及混合银胶体系中加入碱性品红分子后的聚集行为.通过测定碱性品红分子在正、负电性银胶以及混合银胶体系中的表面增强拉曼光谱的变化,探讨了不同电性银胶基底对碱性品红表面增强拉曼活性的影响.实验结果表明,混合溶胶体系所具有的不同于单一溶胶的聚集特性能有效的改善单银胶体系的表面增强拉曼散射活性.

  17. Self-assembly of microcapsules via colloidal bond hybridization and anisotropy.

    Science.gov (United States)

    Evers, Chris H J; Luiken, Jurriaan A; Bolhuis, Peter G; Kegel, Willem K

    2016-06-16

    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable owing to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and the colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy and deformability have not yet been realized. Here we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogously to the simplest chemical bond--in which two isotropic orbitals hybridize into the molecular orbital of H2--these flexible groups redistribute on binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, whereas anisotropic snowman-shaped particles self-assemble into hollow monolayer microcapsules. A modest change in the building blocks thus results in much greater complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into markedly more complex structures than do similar particles that are isotropic or non-deformable.

  18. Self-assembly of microcapsules via colloidal bond hybridization and anisotropy

    Science.gov (United States)

    Evers, Chris H. J.; Luiken, Jurriaan A.; Bolhuis, Peter G.; Kegel, Willem K.

    2016-06-01

    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable owing to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and the colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy and deformability have not yet been realized. Here we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogously to the simplest chemical bond—in which two isotropic orbitals hybridize into the molecular orbital of H2—these flexible groups redistribute on binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, whereas anisotropic snowman-shaped particles self-assemble into hollow monolayer microcapsules. A modest change in the building blocks thus results in much greater complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into markedly more complex structures than do similar particles that are isotropic or non-deformable.

  19. A Course in Colloid and Surface Science.

    Science.gov (United States)

    Scamehorn, John F.

    1984-01-01

    Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)

  20. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  1. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  2. Size determinations of colloidal fat emulsions

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...

  3. Entropically Driven Colloidal Assembly in Emulsions

    Science.gov (United States)

    Lin, Keng-Hui; Lai, Liang-Jie; Chen, Hui

    2007-03-01

    Using the techniques developed by Manoharan [1], we encapsulate small numbers of colloidal microspheres and polymers in oil-in-water emulsion droplets, remove the oil and generate colloidal clusters covered with polymers. We observe two types of arrangement in the clusters. The first kind is the same as the type reported in [1] of which the clusters are formed without polymer. The second kind is the same as the structure reported in [2] of which the clusters are formed by binary colloidal microspheres. The polymers we put in the emulsions induce depletion interactions between colloidal particles. We will show that two types of structures are from the interplay between the depletion interactions and surface tension. [1] Manoharan, Elsesser, Pine, Science 301, 483(2003). [2] Cho et al. JACS 127, 15968 (2005).

  4. Colloid Thrusters, Physics, Fabrication and Performance

    Science.gov (United States)

    2005-11-17

    response, including the time for reviewing in. tata needed, and completing and reviewing this collection of information. Send comments regarding this...a discussion with colleagues during the 2nd Colloid Thruster/ Nano Electrojet Workshop (MIT, April 14- 15, 2005, Ref. [11]) an agreement was reached...23 Jul 2003. 11. Second Colloid Thruster/ Nano Electrojet Workshop, CD with a collection of presentations by attendees to this Workshop. MIT, April 14

  5. Colloidal Silver Not Approved for Treating Animals

    OpenAIRE

    Bagley, Clell

    1997-01-01

    FDA has received reports that products containing colloidal silver are being promoted for use in the treatment of mastitis and other serious disease conditions of dairy cattle, as well as for various conditions of companion animals. For example, FDA’s Center for Veterinary Medicine has received reports from the Agency's regional milk specialists and State inspectors that colloidal silver products have been found on some dairy farms. Also, recent articles in some farm newspapers and journals p...

  6. Colloids generation from metallic uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  7. Colloids with high-definition surface structures.

    Science.gov (United States)

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-07-03

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of approximately 10(7) to 10(8) particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors.

  8. Complex coacervation between colloidal silica and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Kawase, Kaoru; Sakami, Hiroshi; Hayakawa, Kiyoshi

    1989-03-01

    Complex coacervation introduced by gamma-ray induced polymerization of acrylamide in colloidal silica was studied. The complex coaservate was formed by polymerization of acrylamide dissolved in a colloidal silica and methanol mixture. Complex coacervation (two-phase separation of the mixture) was observed only when the concentration of methanol was between 33 and 41 percent by volume, and the concentration of colloidal silica did not affect it. Although two phase separation was not influenced by pH change, the content of polyacrylamide was bigger in the equilibrated solution in acidic regions. It was, however, bigger in the complex coacervate at neutral and in alkaline regions. The content of polyacrylamide was also calculated from the particle diameter of complex coacervate measured by small angle X-ray scattering, and the result was well coincided with the analytical result. The stability of the complex coacervate against the addition of salts was better than that of the untreated colloidal silica. The rate of electrophoretic transport of the complex coacervate was also lower than that of the colloidal silica. From these observation it was concluded that the hydrophobic colloidal silica particles were protected by the surrounding hydrophilic polyacrylamide. (author).

  9. Colloidal oatmeal: history, chemistry and clinical properties.

    Science.gov (United States)

    Kurtz, Ellen S; Wallo, Warren

    2007-02-01

    Oatmeal has been used for centuries as a soothing agent to relieve itch and irritation associated with various xerotic dermatoses. In 1945, a ready to use colloidal oatmeal, produced by finely grinding the oat and boiling it to extract the colloidal material, became available. Today, colloidal oatmeal is available in various dosage forms from powders for the bath to shampoos, shaving gels, and moisturizing creams. Currently, the use of colloidal oatmeal as a skin protectant is regulated by the U.S. Food and Drug Administration (FDA) according to the Over-The-Counter Final Monograph for Skin Protectant Drug Products issued in June 2003. Its preparation is also standardized by the United States Pharmacopeia. The many clinical properties of colloidal oatmeal derive from its chemical polymorphism. The high concentration in starches and beta-glucan is responsible for the protective and water-holding functions of oat. The presence of different types of phenols confers antioxidant and anti-inflammatory activity. Some of the oat phenols are also strong ultraviolet absorbers. The cleansing activity of oat is mostly due to saponins. Its many functional properties make colloidal oatmeal a cleanser, moisturizer, buffer, as well as a soothing and protective anti-inflammatory agent.

  10. Colloid's influences on microalgae growth as a potential environmental factor

    Institute of Scientific and Technical Information of China (English)

    赵新淮; 张正斌; 刘莲生

    2003-01-01

    The role of colloid as "colloid pump" in the ocean is well known. The important influence of colloid in seawater on the growth of microalga was found in our 1999-2000 study. Colloid concentrates were obtained by employing a cross-flow filtration systen to ultrafilter seawater (which had been pre-filtrated by 0.45 μm acetate cellulose membrane) successively with different membranes. Ultrafiltration retentions (we called them colloid concentrates ) together with control sample ( seawater without colloid) were then inoculated with two species of microalgae and cultivated in selected conditions. Monitoring of microalgae growth during cultivation showed that all colloid concentrates had obvious influence on the growth of the microalgae studied. Addition of Fe(OH)3 colloid or organic colloid (protein or carbohydrate) to the control sample enhanced the microalgae's growth.

  11. Effect of Solvation Film on the Viscosity of Colloidal Dispersions

    Institute of Scientific and Technical Information of China (English)

    PENG Chang-Sheng; GU Qing-Bao; SONG Shao-Xian

    2005-01-01

    Viscosity is one of the most important properties of colloids in mixing, transportation, stabilization, energy consumption, and so on. According to Einstein's viscosity equation, the viscosity of a colloidal dispersion increases with the increase of particle concentration. And the equation can be applicable to all micro-particle dispersions, because the effect of solvation films coated on particles can be neglectable in that case. But with the decrease of particle size to nano-scale, the formation of solvation films on nano-particles can greatly affect the viscosity of a dispersion, and Einstein's equation may not be applicable to this case. In this work, one kind of micro-size silica particle and two kinds of nano-size silica particles were used to investigate the effect of solvation films on dispersion viscosity, dispersed in water and ethyl alcohol solvents, respectively. The results of theoretical calculation and experimental investigation show that the increase of viscosity is contributed from solvation films by more than 95 percent for nano-particle dispersions, while less than 10 percent for micro-particle dispersions.

  12. Results From the Physics of Colloids Experiment on ISS

    Science.gov (United States)

    Weitz, David; Bailey, Arthur; Manley, Suliana; Prasad, Vikram; Christianson, Rebecca; Sankaran, Subramanian; Doherty, Michael; Jankovsky, Amy; Lorik, Tibor; Shiley, William

    2002-12-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center (TSC) in Cleveland, Ohio, and from the remote site at Harvard University in Cambridge, Massachusetts. PCS was launched on 4/19/2001 on Space Shuttle STS-100. The experiment was activated on 5/31/2001. The entire experimental setup performed remarkably well, and accomplished 2400 hours of science operations on-orbit. The sophisticated instrumentation in PCS is capable of dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, dynamic and static light scattering at low angles from 0.3 to 6.0 degrees, and color imaging. The long duration microgravity environment on the ISS facilitated extended studies on the growth and coarsening characteristics of binary crystals. The de-mixing of the colloid-polymer critical-point sample was also studied as it phase-separated into two phases. Further, aging studies on a col-pol gel, gelation rate studies in extremely low concentration fractal gels over several days, and studies on a glass sample, all provided valuable information. Several exciting and unique aspects of these results are discussed here.

  13. Colloids and polymers in random colloidal matrices: Demixing under good-solvent conditions

    Science.gov (United States)

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2012-10-01

    We consider a simplified coarse-grained model for colloid-polymer mixtures, in which polymers are represented as monoatomic molecules interacting by means of pair potentials. We use it to study polymer-colloid segregation in the presence of a quenched matrix of colloidal hard spheres. We fix the polymer-to-colloid size ratio to 0.8 and consider matrices such that the fraction f of the volume that is not accessible to the colloids due to the matrix is equal to 40%. As in the Asakura-Oosawa-Vrij (AOV) case, we find that binodal curves in the polymer and colloid volume-fraction plane have a small dependence on disorder. As for the position of the critical point, the behavior differs from that observed in the AOV case: While the critical colloid volume fraction is essentially the same in the bulk and in the presence of the matrix, the polymer volume fraction at criticality increases as f increases. At variance with the AOV case, no capillary colloid condensation or evaporation is generically observed.

  14. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95

    Science.gov (United States)

    Hoffmann, Monica T.

    2000-01-01

    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  15. U1-RNP and TLR receptors in the pathogenesis of mixed connective tissue diseasePart I. The U1-RNP complex and its biological significance in the pathogenesis of mixed connective tissue disease.

    Science.gov (United States)

    Paradowska-Gorycka, Agnieszka

    2015-01-01

    Mixed connective tissue disease (MCTD) is a rare autoimmune syndrome, signified by complex interactions between disease-related phenomena, including inflammation, proliferative vascular arteriopathy, thrombotic events and humoral autoimmune processes. It is still controversial whether MCTD is a distinct clinical entity among systemic connective tissue diseases, although several authors consider that it is distinct and underline characteristic, distinct clinical, serological and immunogenetic features. The putative target of autoimmunity in MCTD is U1-RNP, which is a complex of U1-RNA and small nuclear RNP. Both the U1-RNA component and the specific proteins, particularly U1-70K, engage immune cells and their receptors in a complex network of interactions that ultimately lead to autoimmunity, inflammation, and tissue injury. U1-RNA is capable of inducing manifestations consistent with TLR activation. Stimulation of innate immunity by native RNA molecules with a double-stranded secondary structure may help explain the high prevalence of autoimmunity to RNA binding proteins.

  16. Drying of thin colloidal films

    Science.gov (United States)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  17. Formation of aquatic Th(IV) colloids and stabilization by interaction with Cm(III)/Eu(III).

    Science.gov (United States)

    Yun, Jong-Il; Kim, Maria-Anna; Panak, Petra J; Kim, Jae-Il; Fanghänel, Thomas

    2006-03-23

    The present investigation is to ascertain under what conditions actinide ions undergo aggregation via oxo-bridging to form stable colloidal species. Eu and Th are taken for this purpose as trivalent and tetravalent actinide homologue ions, respectively. For verification of the effects of impurities in chemicals on the actinide colloid generation, pH is adjusted either by a conventional acid-base titration or by coulometry without addition of NaOH. The colloid generation is monitored by highly sensitive laser-induced breakdown detection in varying pH from 3 to 7, first in dilute Eu and Th solutions separately and then in a mixture of both, all in 0.5 M HCl/NaCl. The formation of stable colloids is observed particularly in a mixed solution of Eu and Th, suggesting that aggregation via mutual oxo-bridging of trivalent and tetravalent metal ions results in surface polarization, leading to stable hydrophilic particles of 20-30 nm in diameter. When Eu is replaced by Cm in the mixed solution in favor of the high fluorescence intensity of the latter, the chemical speciation is determined on colloid-borne Cm by time-resolved laser fluorescence spectroscopy. Two different colloid-borne Cm species, oxo-bridged with Th, are identified: a minor amount at 598.0 nm (denoted as Cm-Th(1)) and a major amount at 604.8 nm (Cm-Th(2)). The former is found as a transitional state, which converts to the latter with increasing pH and prevails at pH > 5.5. Both colloid-borne species (Cm-Th) are distinctively different from hydrolyzed Cm or its carbonate complexes with respect to their fluorescence peak positions and lifetimes. In conclusion, a mixed oxo-bridging of trivalent and tetravalent actinides elicits the generation of stable colloids, whereas individual ions in their pure state form colloids under oversaturation at near neutral pH only as a transitional state for precipitation.

  18. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  19. From Gelation and Glass Transition of Colloidal Systems to Polymers

    Science.gov (United States)

    Han, Charles; Yuan, Guangcui; Cheng, He

    Charles C. Han, Guangcui Yuan and He Cheng Joint Laboratory of Polymer Science and Materials, ICCAS, Beijing, China and Institute for Advanced Study, Shenzhen University, Shenzhen, China Aggregation and gelation behavior of mixed suspensions of polystyrene microspheres and poly(N-isopropylacrylamide) microgels have been studied. In dilute microsphere suspensions, with increasing concentration of microgel (MG), microspheres (MS) first aggregated with each other through the bridging of the microgels, then dispersed individually when saturated adsorption was achieved, and finally depletion clusters formed at even higher concentrations of microgel. In concentrated microsphere suspensions, with saturated MG adsorption, a state transition from attractive glass to repulsive glass can be observed. This type of system can be viewed as a molecular model system which has a long range repulsive interaction potential and a short range attractive potential. A comparison between the glass transition of the colloidal systems and the glass transition of polymeric systems can be made.

  20. Convective flows of colloidal suspension in an inclined closed cell

    Science.gov (United States)

    Smorodin, Boris; Cherepanov, Ivan; Ishutov, Sergey

    2016-12-01

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number).

  1. Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Taglietti, Angelo, E-mail: angelo.taglietti@unipv.it [Università di Pavia, Dipartimento di Chimica (Italy); Diaz Fernandez, Yuri A. [Chalmers University of Technology, Department of Chemical and Biological Engineering (Sweden); Galinetto, Pietro [Università di Pavia, Dipartimento di Fisica (Italy); Grisoli, Pietro [Università di Pavia, Dipartimento di Scienze del Farmaco (Italy); Milanese, Chiara; Pallavicini, Piersandro [Università di Pavia, Dipartimento di Chimica (Italy)

    2013-11-15

    Controlling the surface composition of self-assembled monolayers is one of the major experimental challenges in nanotechnology. Despite the significant interest of the scientific community and the considerable number of publications related to this topic, the potential in this field is still far from being fully exploited.We present in this study a versatile method to coat silver nanoparticles (AgNPs) having average diameter of 7 nm with mixed monolayers of two thiols, achieving a precise control of surface composition. Different combinations of thiols have been investigated, and the nanomaterials obtained have been characterized by complementary experimental techniques, addressing the composition of the mixed monolayer. The surface-enhanced Raman spectroscopy (SERS) effect on a Raman reporter (7-mercapto-4-methylcoumarine) introduced into the mixed monolayers has also been investigated. The antibacterial activity of the coated AgNPs was investigated, showing that the colloids were active against Escherichia coli and Staphilococcus aureus irrespective of the nature of the mixed monolayer. These materials are good candidates as SERS-tags for biological applications.

  2. Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability.

    Science.gov (United States)

    Leon-Morales, C Felipe; Leis, Andrew P; Strathmann, Martin; Flemming, Hans-Curt

    2004-09-01

    Quartz sand columns and sand-filled microscope flow cells were used to investigate the transport characteristics of the clay colloid laponite, and a biofilm-forming bacterium, Pseudomonas aeruginosa SG81. Separate experiments were performed with each particle to determine their individual transport characteristics in clean sand columns. In a second set of experiments, bacterial biofilms were formed prior to introduction of the clay colloids. In the independent transport experiments, bacteria and laponite each conformed to known physicochemical principles. A sodium chloride concentration of 7 x 10(-2) M caused complete retention of the laponite within the sand columns. P. aeruginosa SG81 was generally less influenced by ionic strength effects; it showed relatively low mobility at all ionic strengths tested and some (albeit reduced) mobility when introduced to the columns in 1M NaCl, the highest concentration tested, but nevertheless showed reproducible trends. Under conditions favourable to laponite retention and biofilm stability (7 x 10(-2) MNaCl), laponite suspensions were able to remobilise a portion of the attached bacterial biomass. At low ionic strength, the profile of laponite elution was also altered in the presence of a P. aeruginosa biofilm. These observations suggest that while a reduction in ionic strength has a dominant influence on the mobilisation of biological and inorganic colloids, the presence of laponite and biomass can have a distinct influence on the mobility of both types of colloids. Since these events are likely to occur in subsurface environments, our results suggest that colloid-biofilm interactions will have implications for colloid-bound contaminant transport and the remobilisation of pathogens.

  3. Organic and organo-mineral colloids in discontinuous permafrost zone

    Science.gov (United States)

    Pokrovsky, Oleg S.; Manasypov, Rinat M.; Loiko, Sergey V.; Shirokova, Liudmila S.

    2016-09-01

    On-going permafrost thaw in discontinuous permafrost regions produces significant amounts of small permafrost subsidence and depressions, while large lakes are likely to drain into streams and rivers. The intensification of permafrost thaw may alter the size distribution and chemical composition of organo-Fe-Al colloids in lakes and rivers. We used a continuum of surface water bodies, from permafrost subsidence, small depressions and thaw ponds to large lakes and rivers that drain the Western Siberia Lowland (WSL), to assess OC, major and the trace element size distribution between the 20-μm, 5-μm, 1.2-μm, 0.45-μm, 0.22-μm, 0.025-μm and 1-kDa (∼1.4 nm) size fractions. This approach allowed us to distinguish the organic and organo-ferric colloids that were responsible for the transport of trace elements in surface waters and address their evolution during possible physico-chemical and biological processes. Both conventionally dissolved (alkaline earth elements and several micronutrients (Zn, Ba, Mn, and Ni), decreased the degree of their binding to DOM along the landscape continuum, whereas the majority of insoluble TEs (Al, Fe, Co, Cd, Cu, Pb, REEs, Th, and U) remained complexed with DOM in the LMWsoil to rivers will increase.

  4. Colloids with continuously tunable surface charge.

    Science.gov (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K

    2014-09-09

    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  5. Rheological properties of Cubic colloidal suspensions

    Science.gov (United States)

    Boromand, Arman; Maia, Joao

    2016-11-01

    Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.

  6. Colloidal spirals in nematic liquid crystals.

    Science.gov (United States)

    Senyuk, Bohdan; Pandey, Manoj B; Liu, Qingkun; Tasinkevych, Mykola; Smalyukh, Ivan I

    2015-12-07

    One of the central experimental efforts in nematic colloids research aims to explore how the interplay between the geometry of particles along with the accompanying nematic director deformations and defects around them can provide a means of guiding particle self-assembly and controlling the structure of particle-induced defects. In this work, we design, fabricate, and disperse low-symmetry colloidal particles with shapes of spirals, double spirals, and triple spirals in a nematic fluid. These spiral-shaped particles, which are controlled by varying their surface functionalization to provide tangential or perpendicular boundary conditions of the nematic molecular alignment, are found inducing director distortions and defect configurations with non-chiral or chiral symmetry. Colloidal particles also exhibit both stable and metastable multiple orientational states in the nematic host, with a large number of director configurations featuring both singular and solitonic nonsingular topological defects accompanying them, which can result in unusual forms of colloidal self-assembly. Our findings directly demonstrate how the symmetry of particle-generated director configurations can be further lowered, or not, as compared to the low point group symmetry of solid micro-inclusions, depending on the nature of induced defects while satisfying topological constraints. We show that achiral colloidal particles can cause chiral symmetry breaking of elastic distortions, which is driven by complex three-dimensional winding of induced topological line defects and solitons.

  7. Synthesis, Biological, and Quantum Chemical Studies of Zn(II and Ni(II Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid

    Directory of Open Access Journals (Sweden)

    Anthony C. Ekennia

    2016-01-01

    Full Text Available Some mixed-ligand complexes of Zn(II and Ni(II derived from the sodium salt of N-alkyl-N-phenyl dithiocarbamate and benzoic acid have been prepared. The complexes are represented as ZnMDBz, ZnEDBz, NiMDBz, and NiEDBz (MD: N-methyl-N-phenyl dithiocarbamate, ED: N-ethyl-N-phenyl dithiocarbamate, and Bz: benzoate; and their coordination behavior was characterized on the basis of elemental analyses, IR, electronic spectra, magnetic and conductivity measurements, and quantum chemical calculations. The magnetic moment measurement and electronic spectra were in agreement with the four proposed coordinate geometries for nickel and zinc complexes and were corroborated by the theoretical quantum chemical calculations. The quantum chemically derived thermodynamics parameters revealed that the formation of N-methyl-N-phenyl dithiocarbamate complexes is more thermodynamically favourable than that of the N-ethyl-N-phenyl dithiocarbamate complexes. The bioefficacy of the mixed-ligand complexes examined against different microbes showed moderate to high activity against the test microbes. The anti-inflammatory and antioxidant studies of the metal complexes showed that the ethyl substituted dithiocarbamate complexes exhibited better anti-inflammatory and antioxidant properties than the methyl substituted dithiocarbamate complexes.

  8. Spectroscopic Characterization and Biological Activity of Mixed Ligand Complexes of Ni(II with 1,10-Phenanthroline and Heterocyclic Schiff Bases

    Directory of Open Access Journals (Sweden)

    Y. Prashanthi

    2012-01-01

    Full Text Available Mixed ligand complexes of Ni(II with 1,10-phenanthroline (1,10-Phen and Schiff bases L1(MIIMP; L2(CMIIMP; L3(EMIIMP; L4(MIIMNP; L5(MEMIIMP; L6(BMIIMP; L7(MMIIMP; L8(MIIBD have been synthesized. These metal chelates have been characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, Mass, UV-Vis, magnetic moments, and thermogravimetric (TG&DTA analysis. Spectral data showed that the 1,10-phenanthroline act as neutral bidentate ligand coordinating to the metal ion through two nitrogen donor atoms and Schiff bases acts as monobasic bidentate coordinating through NO donor atoms. All Ni(II complexes appear to have an octahedral geometry. The antimicrobial activity of mixed ligand complexes has been studied by screening against various microorganisms, it is observed that the activity enhances upon coordination. The DNA binding studies have been investigated by UV-Vis spectroscopy, and the experimental results indicate that these complexes bind to CT DNA with the intrinsic binding constant Kb=2.5±0.2×105 M−1. MTT is used to test the anticancer effect of the complexes with HL60 tumor cell. The inhibition ratio was accelerated by increasing the dosage, and it had significant positive correlation with the medication dosage.

  9. Hard, soft, and sticky spheres for dynamical studies of disordered colloidal packings

    Science.gov (United States)

    Gratale, Matthew Daniel

    This thesis describes experiments which explore the role of interparticle interactions as a means to alter, and control, the properties of dense colloidal packings. The first set of experiments studied phonon modes in two-dimensional colloidal crystals composed of soft microgel particles with hard polystyrene particle dopants distributed randomly on the triangular lattice. By mixing hard and soft spheres we obtain close-packed lattices of spheres with random bond strength disorder, textit{i.e.,} the effective springs coupling nearest-neighbors are either very stiff, very soft, or of intermediate stiffness. Video microscopy, particle tracking, and covariance matrix techniques are employed to derive the phonon modes of the corresponding ``shadow'' crystals, thereby enabling us to study how bond strength disorder affects vibrational properties. Hard and soft particles participate equally in low frequency phonon modes, and the samples exhibit Debye-like density of states behavior characteristic of crystals at low frequency. For mid- and high-frequency phonons, the relative participation of hard versus soft particles in each mode is found to vary systematically with dopant concentration. The second set of experiments investigated depletion interaction potentials between micron-size colloidal particles induced by nanometer-scale micelles composed of the surfactant hexaethylene glycol monododecyl ether (C12E6). The strength and range of the depletion interaction is revealed to arise from variations in shape anisotropy of the rod-like surfactant micelles. This shape anisotropy increases with increasing sample temperature. By fitting the colloidal interaction potentials to theoretical models, we extract the rod-like micelle length and shape anisotropy as a function of temperature. This work introduces micelle shape anisotropy as a means to control interparticle interactions in colloidal suspensions, and shows how interparticle depletion potentials of micron-scale objects

  10. Pickering emulsions stabilized by oppositely charged colloids: Stability and pattern formation

    Science.gov (United States)

    Christdoss Pushpam, Sam David; Basavaraj, Madivala G.; Mani, Ethayaraja

    2015-11-01

    A binary mixture of oppositely charged colloids can be used to stabilize water-in-oil or oil-in-water emulsions. A Monte Carlo simulation study to address the effect of charge ratio of colloids on the stability of Pickering emulsions is presented. The colloidal particles at the interface are modeled as aligned dipolar hard spheres, with attractive interaction between unlike-charged and repulsive interaction between like-charged particles. The optimum composition (fraction of positively charged particles) required for the stabilization corresponds to a minimum in the interaction energy per particle. In addition, for each charge ratio, there is a range of compositions where emulsions can be stabilized. The structural arrangement of particles or the pattern formation at the emulsion interface is strongly influenced by the charge ratio. We find well-mixed isotropic, square, and hexagonal arrangements of particles on the emulsion surface for different compositions at a given charge ratio. The distribution of coordination numbers is calculated to characterize structural features. The simulation study is useful for the rational design of Pickering emulsifications wherein oppositely charged colloids are used, and for the control of pattern formation that can be useful for the synthesis of colloidosomes and porous shells derived thereof.

  11. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dongwook; Kim, Min Jung; Park, Chansik; Park, Jaehong [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Kyungho [Department of Environmental Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Tae Hyun, E-mail: thyoon@gmail.com [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-06-15

    Impacts of planktonic invertebrate, Daphnia magna, on the speciation of colloidal quantum dots (QD) were investigated using fluorescence spectromicroscopic technique. Well-dispersed {sup GA/TOPO}QD were prepared by forming a supramolecular assembly of hydrophobic {sup TOPO}QD with biomacromolecules (i.e., Gum Arabic, GA). Biological degradation of this nanomaterial was monitored by fluorescence spectromicroscopic methods. Our study confirmed the major uptake pathway of manufactured nanomaterials and in vivo biodegradation processes in a well-known toxicity test organism, D. magna. In addition, we also found that D. magna can induce significant deterioration of aquatic media by releasing fragments of partially degraded QD colloids. These biological processes may significantly change the predicted toxicities of nanomaterials in aquatic environments. Thus, we propose that the impacts of aquatic living organisms on the environmental fate of manufactured nanomaterials (MNs) should be carefully taken into account when assessing the risk of MNs to the environment and human health.

  12. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  13. Neptunium Colloidal Behaviors in Present of Humic Acids

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The colloidal-borne facilitated transport of actinides is an important part of radionuclide migration investigation in HLW geological disposal. In the present studies, Np colloidal behaviors in present of

  14. Charge-transfer processes in semiconductor colloids

    Science.gov (United States)

    Kamat, Prashant V.; Gopidas, K. R.

    1990-04-01

    A picosecond transient absorption spectroscopy technique has been employed to probe the charge transfer processes in Ti02 semiconductor colloids. The trapping of electrons at the TiO surface (Ti4+ sitesY was characterized from the appearance of a broad absorption in the region of 550-750 nm following the 355-nm laser pulse excitation of Ti02 colloids. The lifetime of these trapped charge carriers increased upon incorporation of a hole scavenger in the colloidal semiconductor system. The mechanistic and kinetic details of the charge injection from excited CdS into a large bandgap semiconductor such as AgI and Ti02 have also been inves-' t i ga ted.

  15. Doped Colloidal ZnO Nanocrystals

    Directory of Open Access Journals (Sweden)

    Yizheng Jin

    2012-01-01

    Full Text Available Colloidal ZnO nanocrystals are promising for a wide range of applications due to the combination of unique multifunctional nature and remarkable solution processability. Doping is an effective approach of enhancing the properties of colloidal ZnO nanocrystals in well-controlled manners. In this paper, we analyzed two synthetic strategies for the doped colloidal ZnO nanocrystals, emphasizing our understanding on the critical factors associated with the high temperature and nonaqueous approach. Latest advances of three topics, bandgap engineering, n-type doping, and dilute magnetic semiconductors related to doped ZnO nanocrystals were discussed to reveal the effects of dopants on the properties of the nanocrystalline materials.

  16. Dynamic Assembly of Magnetic Colloidal Vortices

    Energy Technology Data Exchange (ETDEWEB)

    Mohorič, Tomaž; Kokot, Gašper; Osterman, Natan; Snezhko, Alexey; Vilfan, Andrej; Babič, Dušan; Dobnikar, Jure

    2016-04-29

    Magnetic colloids in external time-dependent fields are subject to complex induced many-body interactions governing their self-assembly into a variety of equilibrium and out-of-equilibrium structures such as chains, networks, suspended membranes, and colloidal foams. Here, we report experiments, simulations, and theory probing the dynamic assembly of superparamagnetic colloids in precessing external magnetic fields. Within a range of field frequencies, we observe dynamic large-scale structures such as ordered phases composed of precessing chains, ribbons, and rotating fluidic vortices. We show that the structure formation is inherently coupled to the buildup of torque, which originates from internal relaxation of induced dipoles and from transient correlations among the particles as a result of short-lived chain formation. We discuss in detail the physical properties of the vortex phase and demonstrate its potential in particle-coating applications.

  17. Enhanced photoredox chemistry in quantized semiconductor colloids

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, J.M.; Nenadovic, M.T.; Micic, O.I.; Nozik, A.J.

    1986-01-02

    Optical effects due to size quantization have been observed for HgSe, PbSe, and CdSe colloids in water and acetonitrile with particle diameters of 20-100 A. For diameters less than 50 A, the optical absorption edge of HgSe and PbSe is blue shifted by several volts. The results are consistent with perturbation of the semiconductor band structure due to carrier confinement in very small particles resulting in an increase in the effective band gap. The redox potential of photogenerated carriers is greatly enhanced in such quantized semiconductor particles; reduction reactions that cannot occur in bulk materials can occur in sufficiently small particles. This has been demonstrated with H/sub 2/ evolution in 50-A PbSe and HgSe colloids and CO/sub 2/ reduction in 50-A CdSe colloids. 13 references, 3 figures.

  18. Plasmonic films based on colloidal lithography.

    Science.gov (United States)

    Ai, Bin; Yu, Ye; Möhwald, Helmuth; Zhang, Gang; Yang, Bai

    2014-04-01

    This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.

  19. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  20. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Narges [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Daneshpajouh, Shahram; Seyedbagheri, Seyedali; Atashdehghan, Reza [Hydrometallurgy Research Unit, Research and Development Center, National Iranian Copper Industries Company, Sarcheshmeh, Rafsanjan (Iran, Islamic Republic of); Abdi, Khosro [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Minaian, Sara [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahverdi, Hamid Reza [Department of Material Science, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza, E-mail: shahverd@sina.tums.ac.ir [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2009-06-03

    This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia, and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.

  1. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.

    Science.gov (United States)

    Hou, Lei; Zhu, Dongqiang; Wang, Ximeng; Wang, Lilin; Zhang, Chengdong; Chen, Wei

    2013-03-01

    Carbon nanotubes (CNTs) can exist in the form of colloidal suspension in aquatic environments, particularly in the presence of natural organic matter or surfactants, and may significantly affect the fate and transport of organic contaminants. In the present study, the authors examined the adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to three colloidal CNTs, including a stable suspension of oxidized multiwalled carbon nanotubes (O-MWNT), a humic acid (HA)-modified colloidal O-MWNT, and a sodium dodecyl sulfate (SDS)-modified colloidal O-MWNT. All three colloidal O-MWNTs exhibit strong adsorption affinities to the three test compounds (with K(OC) values orders of magnitude greater than those of natural organic matter), likely resulting from strong nonhydrophobic interactions such as π-π electron donor-acceptor interactions and Lewis acid-base interactions. When thoroughly mixed, HA (at ∼310 mg HA/g CNT) and SDS (at ∼750 mg SDS/g CNT) significantly affected the aggregation properties of O-MWNT, causing individually dispersed tubes to form a loosely entangled network. The effects of HA or SDS modification on adsorption are twofold. Adsorption of HA/SDS significantly reduces surface areas of O-MWNT; however, the entangled network allows adsorbate molecules to interact simultaneously with multiple tubes. An important implication is that humic substances and surfactant-like materials not only facilitate the formation of colloidal carbon nanoparticles but also affect how these colloidal carbon nanoparticles adsorb organic contaminants.

  2. Highly Elastic and Self-Healing Composite Colloidal Gels.

    Science.gov (United States)

    Diba, Mani; Wang, Huanan; Kodger, Thomas E; Parsa, Shima; Leeuwenburgh, Sander C G

    2017-03-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new, critical insight into the structural and mechanical properties of composite colloidal gels and opens up new avenues for practical application of colloidal gels.

  3. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  4. Purification of biomimetic apatite-based hybrid colloids intended for biomedical applications: a dialysis study

    OpenAIRE

    Al-Kattan, Ahmed; Dufour, Pascal; Drouet, Christophe

    2011-01-01

    The field of nanobiotechnology has lately attracted much attention both from therapeutic and diagnosis viewpoints. Of particular relevance is the development of colloidal formulations of biocompatible nanoparticles capable of interacting with selected cells or tissues. In this context, the purification of such nanoparticle suspensions appears as a critical step as residues of unreacted species may jeopardize biological and medical outcomes, and sample purity is thus increasingly taken into...

  5. Single-Molecule Characterization of Photophysical and Colloidal Properties of Biocompatible Quantum Dots

    OpenAIRE

    Doose, Sören

    2003-01-01

    Colloidal semiconductor nanocrystals (NCs) have recently been introduced as novel fluorescent labels for various biological applications. Their unique optical properties — tunable narrow emission spectrum, broad excitation spectrum, high photostability and long fluorescent lifetimes (on the order of tens of nanoseconds) — make them attractive probes in experiments involving long observation times, multicolor and time-gated detection. Photophysical properties were investigated at the ensemble ...

  6. Oxyhydroxy Silicate Colloids: A New Type of Waterborne Actinide(IV) Colloids

    OpenAIRE

    Zänker, Harald; Weiss, Stephan; Hennig, Christoph; Brendler, Vinzenz; Ikeda‐Ohno, Atsushi

    2016-01-01

    Abstract At the near‐neutral and reducing aquatic conditions expected in undisturbed ore deposits or in closed nuclear waste repositories, the actinides Th, U, Np, and Pu are primarily tetravalent. These tetravalent actinides (AnIV) are sparingly soluble in aquatic systems and, hence, are often assumed to be immobile. However, AnIV could become mobile if they occur as colloids. This review focuses on a new type of AnIV colloids, oxyhydroxy silicate colloids. We herein discuss the chemical cha...

  7. Collective sliding states for colloidal molecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  8. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  9. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  10. Binary Colloidal Alloy Test-5: Phase Separation

    Science.gov (United States)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  11. Liquid crystals and their interactions with colloidal particles and phospholipid membranes: Molecular simulation studies

    Science.gov (United States)

    Kim, Evelina B.

    Experimentally, liquid crystals (LC) can be used as the basis for optical biomolecular sensors that rely on LC ordering. Recently, the use of LC as a reporting medium has been extended to investigations of molecular scale processes at lipid laden aqueous-LC interfaces and at biological cell membranes. In this thesis, we present two related studies where liquid crystals are modelled at different length scales. We examine (a) the behavior of nanoscopic colloidal particles in LC systems, using Monte Carlo (MC) molecular simulations and a mesoscopic dynamic field theory (DyFT); and (b) specific interactions of two types of mesogens with a model phospholipid bilayer, using atomistic molecular dynamics (MD) at the A-nm scale. In (a), we consider colloidal particles suspended in a LC, confined between two walls. We calculate the colloid-substrate and colloid-colloid potentials of mean force (PMF). For the MC simulations, we developed a new technique (ExEDOS or Expanded Ensemble Density Of States) that ensures good sampling of phase space without prior knowledge of the energy landscape of the system. Both results, simulation and DyFT, indicate a repulsive force acting between a colloid and a wall. In contrast, both techniques indicate an overall colloid-colloid attraction and predict a new topology of the disclination lines that arises when the particles approach each other. In (b), we find that mesogens (pentylcyanobiphenyl [5CB] or difluorophenyl-pentylbicyclohexyl [5CF]) preferentially partition from the aqueous phase into a dipalmitoylphosphatidylcholine (DPPC) bilayer. We find highly favorable free energy differences for partitioning (-18kBT for 5CB, -26k BT for 5CF). We also simulated fully hydrated bilayers with embedded 5CB or 5CF at concentrations used in recent experiments (6 mol% and 20 mol%). The presence of mesogens in the bilayer enhances the order of lipid acyl tails and changes the spatial and orientational arrangement of lipid headgroup atoms. A stronger

  12. Shape recognition of microbial cells by colloidal cell imprints

    NARCIS (Netherlands)

    Borovicka, J.; Stoyanov, S.D.; Paunov, V.N.

    2013-01-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called "colloid antibodies", were fabricated by partial fragmentation of silica shells obtained by templating

  13. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  14. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of coat

  15. Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission

    Science.gov (United States)

    2017-01-01

    We report on a template-stripping method for the direct surface patterning of colloidal quantum-dot thin films to produce highly luminescent structures with feature sizes less than 100 nm. Through the careful design of high quality bull’s-eye gratings we can produce strong directional beaming (10° divergence) with up to 6-fold out-coupling enhancement of spontaneous emission in the surface-normal direction. A transition to narrow single-mode lasing is observed in these same structures at thresholds as low as 120 μJ/cm2. In addition, we demonstrate that these structures can be fabricated on flexible substrates. Finally, making use of the size-tunable character of colloidal quantum dots, we demonstrate spectrally selective out-coupling of light from mixed quantum-dot films. Our results provide a straightforward route toward significantly improved optical properties of colloidal quantum-dot assemblies.

  16. Adjuvant therapy of Dukes' C colon cancer by intra-arterial P-32 colloid for internal radiation therapy of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Grady, E.D.

    1984-09-01

    To prevent probable occult metastatic liver cancer from progressing to clinical disease, the author used internal radiation therapy as an effective adjuvant to surgical excision of primary Dukes' C colonic cancer. A calculated radiation dose of 5000 rads was delivered to the liver by injecting radioactive 32-P chromic phosphate colloid through the superior mesenteric and celiac arteries. When this was done, the colloid passed through the intestines and was mixed thoroughly with the blood and delivered to the liver by the portal vein. The Kupffer cells in the liver trapped the colloid, and a minimum amount passed through the liver and got into the general circulation. This kept the amount of colloid deposited in the bone marrow to a minimum. In a phase-I pilot study in which nine patients were treated, no serious side effects were noted. In eight patients, the liver has remained free of cancer for more than 1 year.

  17. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals.

    Science.gov (United States)

    Kobayashi, Hisataka; Longmire, Michelle R; Ogawa, Mikako; Choyke, Peter L

    2011-09-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).

  18. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    Science.gov (United States)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  19. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    Directory of Open Access Journals (Sweden)

    S.M M Akram

    2015-10-01

    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  20. A new mixed-ligand copper(II) complex of (E)-N";-(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities

    Science.gov (United States)

    Yousef Ebrahimipour, S.; Sheikhshoaie, Iran; Crochet, Aurelien; Khaleghi, Moj; Fromm, Katharina M.

    2014-08-01

    A tridentate hydrazone Schiff base ligand, (E)-N";-(2-hydroxybenzylidene)acetohydrazide [HL], and its mixed-ligand Cu(II) complex [CuL(phen)], have been synthesized and characterized by elemental analyses, FT-IR, molar conductivity, UV-Vis spectroscopy. The structure of the complex has been determined by X-ray diffraction. This complex has square pyramidal geometry and the positions around central atom are occupied with donor atoms of Schiff base ligand and two nitrogens of 1,10-phenanthroline. Computational studies of compounds were performed by using DFT calculations. The linear polarizabilities and first hyperpolarizabilities of the studied molecules indicate that these compounds can be good candidates of nonlinear optical materials. It is in accordance with experimental data. In addition, invitro antimicrobial results show that these compounds specially [CuL(phen)] have great potential of antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes bacteria and antifungal activity against Candida Albicans in comparison to some standard drugs.

  1. Influence of biofilms on colloid transport: investigations with laponite as a model colloid

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Morales, C.F.; Flemming, H.C.; Leis, A. [Duisburg Univ. (Germany). Inst. for Interface Biotechnology

    2003-07-01

    The synthetic clay mineral laponite RD was used as a model compound to investigate colloid transport in the presence of bacterial biofilms. A complex but pronounced delay in the transport of laponite was observed in colonised porous media, clearly demonstrating the influence of attached bacterial biomass on colloid transport. The transport of laponite under conditions which promoted laponite aggregation was associated with release of attached bacteria; this effect was shown to be independent of ionic strength, indicating that the colloids caused detachment of bacteria. Two major mechanisms are proposed to account for the different colloid transport patterns obtained in the presence or absence of biomass: (1) hydrodynamic effects due to aggregation of laponite and subsequent blockage of a proportion of the flow channels, and (2) sorption of laponite by bacterial biomass. (orig.)

  2. Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides.

    Science.gov (United States)

    Avramenko, Valentin; Bratskaya, Svetlana; Zheleznov, Veniamin; Sheveleva, Irina; Voitenko, Oleg; Sergienko, Valentin

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  3. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Avramenko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Bratskaya, Svetlana, E-mail: sbratska@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Zheleznov, Veniamin; Sheveleva, Irina [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Voitenko, Oleg [Far Eastern Federal University, Laboratory of Electron Microscopy and Image Processing, 27, Oktyabr' skaya Street, Vladivostok 690950 (Russian Federation); Sergienko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  4. Colloidal models. A bit of history

    NARCIS (Netherlands)

    Lyklema, J.

    2015-01-01

    This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro’s number, development in the insight into driving forces for double layer format

  5. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials sh

  6. Transformative Colloidal Nanomaterials for Mid- Infrared Devices

    Science.gov (United States)

    2015-06-11

    446 (2005) [2] Hillhouse, H.W., Beard, M.C., “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics ,” Curr. Op...I., Fischer , A., Hoogland, S., Clifford, J., Klem, E., Levina, L., Sargent, EH., “Ultrasensitive solution-cast quantum dot photodetectors

  7. Cell shape recognition by colloidal cell imprints

    NARCIS (Netherlands)

    Borovička, Josef; Stoyanov, S.D.; Paunov, V.N.

    2015-01-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into accou

  8. Colloidal crystals by electrospraying polystyrene nanofluids

    Science.gov (United States)

    2013-01-01

    This work introduces the electrospray technique as a suitable option to fabricate large-scale colloidal nanostructures, including colloidal crystals, in just a few minutes. It is shown that by changing the deposition conditions, different metamaterials can be fabricated: from scattered monolayers of polystyrene nanospheres to self-assembled three-dimensional ordered nanolayers having colloidal crystal properties. The electrospray technique overcomes the main problems encountered by top-down fabrication approaches, largely simplifying the experimental setup. Polystyrene nanospheres, with 360-nm diameter, were typically electrosprayed using off-the-shelf nanofluids. Several parameters of the setup and deposition conditions were explored, namely the distance between electrodes, nanofluid conductivity, applied voltage, and deposition rate. Layers thicker than 20 μm and area of 1 cm2 were typically produced, showing several domains of tens of microns wide with dislocations in between, but no cracks. The applied voltage was in the range of 10 kV, and the conductivity of the colloidal solution was in the range of 3 to 4 mS. Besides the morphology of the layers, the quality was also assessed by means of optical reflectance measurements showing an 80% reflectivity peak in the vicinity of 950-nm wavelength. PMID:23311494

  9. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira

    2009-01-01

    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  10. Rheology and dynamics of colloidal superballs.

    Science.gov (United States)

    Royer, John R; Burton, George L; Blair, Daniel L; Hudson, Steven D

    2015-07-28

    Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled, non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions are important. We examine the role of particle shape by characterizing both the bulk rheology and micro-scale diffusion in a suspension of pseudo-cubic silica superballs. Working with these well-characterized shaped colloids, we can disentangle shape effects in the hydrodynamics of isolated particles from shape-mediated particle interactions. We find that the hydrodynamic properties of isolated superballs are marginally different from comparably sized hard spheres. However, shape-mediated interactions modify the suspension microstructure, leading to significant differences in the self-diffusion of the superballs. While this excluded volume interaction can be captured with a rescaling of the superball volume fraction, we observe qualitative differences in the shear thickening behavior of moderately concentrated superball suspensions that defy simple rescaling onto hard sphere results. This study helps to define the unknowns associated with the effects of shape on the rheology and dynamics of colloidal solutions.

  11. Repeptization and the theory of electrocratic colloids

    NARCIS (Netherlands)

    Frens, G.; Overbeek, J.Th.G.

    1972-01-01

    The coagulation and the repeptization of electrocratic colloids can be treated in one theory provided that the appropriate boundary conditions are chosen. From this version of the DLVO theory it follows that for each sol there exists a critical value Z∞c of the double layer parameter Z∞, Z∞ = zeδ/kT

  12. Phase behavior of colloidal silica rods

    NARCIS (Netherlands)

    Kuijk, A.; Byelov, D.; Petukhov, A.V.; van Blaaderen, A.; Imhof, A.

    2012-01-01

    Recently, a novel colloidal hard-rod-like model system was developed which consists of silica rods [Kuijk et al., JACS, 2011, 133, 2346]. Here, we present a study of the phase behavior of these rods, for aspect ratios ranging from 3.7 to 8.0. By combining real-space confocal laser scanning microscop

  13. Geochemistry of colloid systems. For earth scientists

    NARCIS (Netherlands)

    Nickel, E.

    1979-01-01

    The second part of the title of this book gives an indication for whom it has been written. It is a real 'synthesizer'. Throughout ten chapters the reader is introduced into the highly complex matter of colloid chemistry and its role in geochemistry, pedology, oceanography, and geology.

  14. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  15. Aggregation kinetics of coalescing polymer colloids.

    Science.gov (United States)

    Gauer, Cornelius; Jia, Zichen; Wu, Hua; Morbidelli, Massimo

    2009-09-01

    The aggregation behavior of a soft, rubbery colloidal system with a relatively low glass transition temperature, T(g) approximately -20 degrees C, has been investigated. It is found that the average gyration and hydrodynamic radii, R(g) and R(h), measured by light scattering techniques, evolve in time in parallel, without exhibiting the crossover typical of rigid particle aggregation. Cryogenic scanning electron microscopy (cryo-SEM) images reveal sphere-like clusters, indicating that complete coalescence between particles occurs during aggregation. Since coalescence leads to a reduction in the total colloidal surface area, the surfactant adsorption equilibrium, and thus the colloidal stability, change in the course of aggregation. It is found that to simulate the observed kinetic behavior based on the population balance equations, it is necessary to assume that all the clusters are spherical and to account for variations in the colloidal stability of each aggregating particle pair with time. This indicates that, for the given system, the coalescence is very fast, i.e., its time scale is much smaller than that of the aggregation.

  16. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark

    2007-01-01

    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these dispersio

  17. Colloidal dynamics in flow and confinement

    NARCIS (Netherlands)

    Ghosh, Somnath

    2015-01-01

    The aim of this thesis is to understand how the diffusive dynamics and flow behaviors of colloidal hard spheres are influenced by the confinement of nearby walls. The Brownian motion of hard spheres in quiescent bulk fluids is well known, but the presence of confining walls generate new physical phe

  18. Advanced Colloids Experiment (ACE-H-2)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  19. Advanced Colloids Experiment (ACE-T1)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  20. Radio-active colloids in the functional exploration of the reticulo-endothelium system; Les colloides radioactifs dans l'exploration fonctionnelle du systeme reticulo-endothelial

    Energy Technology Data Exchange (ETDEWEB)

    Chivot, J.J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    A historical review describes the reticulo-endothelial system (R.E.S.) and aims at defining it and at explaining its operation. The methods used for its examination and the colloids utilized are considered. The author has been led to prepare a special type of colloid: an albuminous complex containing radio-iodine, 'C.A. {sup 131}I', whose method of preparation and physical and biological examination are described. A human albumin, having a known optical density in solution, is heated until a change in the optical density indicates that an aggregation of the proteinic molecules has occurred. The denatured protein is iodated with {sup 131}I. Electrophoretic, ultracentrifuge and autoradiographic controls are then carried out. This atoxic and metabolisable preparation of biological origin is compared with the better defined colloidal gold which serves as reference. C.A.{sup 131}I is injected into mice. It is shown by radioactivity measurements, auto-radiographies on sections of the whole animal, and anthropo-gamma-metric detections that a high concentration occurs in the S.R.E. of the liver. These static results are only of limited importance however compared to those obtained from an in vivo study of the phenomenon. The author records the changes in the radioactivity of the blood derived from the carotid artery using a well-scintillator. He obtains directly a curve of the radioactivity of blood having a decreasing exponential form; the mathematical expression describing this curve is given. The biological half-life T 1/2 of the colloid in the blood is a measure of its phagocytosis by the S.R.E. cells. A supplementary check is provided by the direct recording of the hepatic activity using a suitably collimated exterior detector. A curve of increasing-exponential form is obtained and its parameters are corollary to the preceding curve. These tests carried out on guinea-pigs and rats make it possible to give to the S.R.E. a phagocytic index which is

  1. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  2. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  3. Colloid Mobilization and Transport during Capillary Fringe Fluctuations

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus

    2016-04-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead filled column. Confocal images showed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively-charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively-charged colloids did not attach to static air-bubbles, but hydrophobic negatively-charged and hydrophilic positively-charged colloids did.

  4. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor;

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of ...

  5. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  6. Investigation on the Stability of Aluminosilicate Colloids by Various Analytical Tools

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Y.; Lee, D. H.; Yun, J. I. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-05-15

    Colloids are ubiquitous in natural aquatic systems. Aquatic colloids may play a significant carrier role for radionuclide migration in aquifer systems. Being omnipresent in natural aquatic systems, aluminosilicate colloids are considered as a kernel for various aquatic colloids. Characterization of aluminosilicate colloids formed under various geochemical conditions is of importance to understand their chemical behavior in natural aquatic systems. In this work, a preliminary study on the formation of aluminosilicate colloids with a help of colorimetry and other colloid detection techniques is presented

  7. 生物添加剂对水葫芦与甜玉米秸秆混合青贮品质的影响%Effects of biological additives on the quality of water hyacinth and maize straw mixed silage

    Institute of Scientific and Technical Information of China (English)

    陈鑫珠; 庄益芬; 张建国; 廖惠珍; 张文昌; 张兆阳; 陈庆达

    2011-01-01

    本研究设计了4种混合比例的水葫芦玉米秸秆混合青贮,即水葫芦:玉米秸秆按鲜重比为8:2,7:3,6:4和5:5(略为W8M2、W7M3、W6M4和W5 M5),探讨生物添加剂绿汁发酵液(FGJ)、纤维素酶(CEL)和绿汁发酵液+纤维素酶(MIX)的效果.每个处理3次重复,常温下贮存60 d,开封后评定其青贮品质.结果表明,3种添加剂对不同混合比例的材料均能显著(P<0.05)提高其青贮品质,特别是绿汁发酵液和纤维素酶的混合添加,具有相乘作用,效果更好.随着玉米秸秆混合比例的升高,青贮品质提高,W5M5的效果最好.%In order to investigate the effects of biological additives on the quality of mixing water hyacinth and maize stalk, four mixture ratios of water hyacinth and maize stalk at 8:2, 7:3, 6:4 and 5: 5 (W8M2, W7M3, W6M4 and W5M5) were designed. In addition, no-additive, fermented green juice (FGJ), cellulase (CEL) and FGJ + CEL (MIX) were added for all materials. After ensiled for 60 days at ambient temperature, the nutritional composition were measured for each treatment. Three kinds of additives significant improved the fermentation quality of water hyacinth and maize straw mixed silages (P<0.05). FGJ and CEL also had obvious interaction. In addition, with the increase of corn straw mixture ratio, the quality of silage was improved. W5M5 was the best silage.

  8. Suspension membrane reactor for biological elimination of non-degradable materials from mixed effluents. Final report; Suspensionsmembranreaktor zur biologischen Eliminierung schwer abbaubarer Stoffe aus Abwassergemischen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.; Schierenbeck, A.

    2002-07-01

    An earlier research project had shown that a combined process involving membrane filtration and a bioreactor ensure substrate-specific times of residue inside the reactor, i.e. high selective conversation at low discharge rates. The second project aimed at higher flexibility. For this purpose, a two-stage suspension membrane reactor was developed in which the filtration stage and the bioreactor were decoupled. The liquid effluents are concentrated first in a nanofiltration stage, and the permeate, which should be free of non-degradable materials, is discharged. The concentrate is treated in the biological reaction stage and recirculated into the nanofiltration stage in order to ensure complete degradation during a substrate-specific time of residue. An intermediate microfiltration stage serves to retain biomass and prevent the growth of a biofilm in the nanofiltration stage. The method was tested with the practically relevant model pollutant 4-chlorophenol and a real industrial effluent from the antifelting stage of a Bremen woollen mill (Bremer Wollkaemmerei), with a high AOX concentration. [German] Im vorhergehenden Teil des Forschungsvorhabens konnte gezeigt werden, dass durch eine kombinierte Anwendung der Membranfiltration mit einem Bioreaktor eine substratspezifische Verweilzeitverteilung im Reaktor und damit eine hohe selektive Umsatzleistung bei gleichzeitig niedrigen Ablaufwerten realisierbar ist. Um eine groessere Flexibilitaet bei dem Einsatz verschiedener Membranmodule zu realisieren, wurde in dem zweiten Abschnitt des Forschungsvorhabens eine zweistufige Anlage vom Typ des Suspensions-Membranreaktors entwickelt, bei der Filtration und Bioreaktor entkoppelt werden. Das zu reinigende Abwasser wird zunaechst in einer Nanofiltrationsstufe aufkonzentriert, das moeglichst an schwer abbaubaren Stoffen freie Permeat bildet den Ablauf der Anlage. Der Konzentratstrom wird in der nachfolgenden Reaktionsstufe biologisch behandelt und in die Nanofiltrationsstufe

  9. Comparision of {sup 188}Rhenuim-tin colloid and {sup 188}Rhenium-sulfur colloid as a radiation synovectomy agent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. J.; Jung, J. M.; Kim, Y. J.; Jang, Y. S.; Lee, D. S.; Jung, J. K.; Song, Y. W.; Lee, M. C. [KAERI, Taejon (Korea, Republic of)

    1999-10-01

    Beta-emitting radiocolloids have been used for the treatment of rheumatoid arthritis. As a generator produced beta-emitting radionuclide, the importance of Re-188 for radionuclide therapy is increasing rapidly. We compared the radiochemistry of two {sup 188}Re labeled radiocolloids: {sup 188}Re-tin colloid and {sup 188}Re-sulfur colloid. {sup 188}Re-tin colloid was obtained by reacting 10 mg SnCl{sub 2}{center_dot}H{sub 2}O and {sup 188}Re perrhenate. {sup 188}Re-sulfur colloid was labeled by boiling 40 mg sodium thiosulfate, 0.8 mg Na{sub 2}{center_dot}EDTA, and 0.8 mg potassium perrhenate with {sup 188}Re perrhenate. Radiochemical purity was checked by ITLC-SG/ saline. Labeling efficiencies reached >98% for tin colloid at 2 hr and 89{approx}94% for sulfur colloid at 3 hr. All the preparations were stable for 72 hr in water, serum, and synovial fluid. If labeled at higher temperature, particle size of tin colloid increased. Remained radioactivity of {sup 188}Re-sulfur colloid in disposable polypropylene syringe after injecting to mice was high (62.0{+-}7.0%) due to its hydrophobic nature, although, tin colloid did not show high remained radioactivity (2.9{+-}1.6%). Biodistribution in Antigen induced arthratitis model rabbit after synovial space injection showed that {sup 188}Re-tin colloid was well retained in synovial space for 48 hr. Although, both {sup 188}Re-tin colloid and {sup 188}Re-sulfur colloid might be useful for radionuclide therapy, we concluded that {sup 188}Re-tin colloid is more adventageous over {sup 188}Re-sulfur colloid, due to higher labeling efficency, size-controllable property, and lower residual activity in syringe.

  10. Monovalent plasmonic nanoparticles for biological applications

    Science.gov (United States)

    Seo, Daeha; Lee, Hyunjung; Lee, Jung-uk; Haas, Thomas J.; Jun, Young-wook

    2016-03-01

    The multivalent nature of commercial nanoparticle imaging agents and the difficulties associated with producing monovalent nanoparticles challenge their use in biology, where clustering of target biomolecules can perturb dynamics of biomolecular targets. Here, we report production and purification of monovalent gold and silver nanoparticles for their single molecule imaging application. We first synthesized DNA-conjugated 20 nm and 40 nm gold and silver nanoparticles via conventional metal-thiol chemistry, yielding nanoparticles with mixed valency. By employing an anion-exchange high performance liquid chromatography (AE-HPLC) method, we purified monovalent nanoparticles from the mixtures. To allow efficient peak-separation resolution while keeping the excellent colloidal stability of nanoparticles against harsh purification condition (e.g. high NaCl), we optimized surface properties of nanoparticles by modulating surface functional groups. We characterized the monovalent character of the purified nanoparticles by hybridizing two complementary conjugates, forming dimers. Finally, we demonstrate the use of the monovalent plasmonic nanoprobes as single molecule imaging probes by tracking single TrkA receptors diffusing on the cell membrane and compare to monovalent quantum dot probes.

  11. Mixed parentage

    DEFF Research Database (Denmark)

    Bang Appel, Helene; Singla, Rashmi

    2016-01-01

    -depth-interview study of children and young people of mixed parentage residing in Copenhagen area is conducted. The theoretical framework is eclectic, combining post-structural approach with mixed identity negotiation theory and transnationalism. The main conclusion is that, the children reveal differential strategies...... complex paradigms regarding these children. This chapter explores how children of mixed parentage negotiate their identities in the Danish context, where statistically and socially there are no widely acceptable terms for categorizing them. To this purpose, an empirical qualitative in...

  12. Shape recognition of microbial cells by colloidal cell imprints

    Science.gov (United States)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  13. Improvement Effects of Rice Straw Mixed with Biological Agent on Plastic Shed Continuous Cultivation Soil%稻草配施生物菌剂对大棚连作土壤的改良效果

    Institute of Scientific and Technical Information of China (English)

    韩玉珠; 宋述尧

    2012-01-01

    The decomposition characteristics in soil and the improvement effects of rice straw mixed with biological agent used in plastic shed continuous cultivation soil were studied. The results showed that, the decomposition of rice straw mixed with biological agent was rapidly in the beginning and then weaken. The decomposition efficiency of rice straw mixed with EM bacterium was higher. Soil capacity and solid fraction was decreased; soil moisture content and porosity was increased; and soil water infiltration was strengthened. The content of organic materials, total N, total P and available N, P and K was in-crensed. The pH and EC value of the soil decreased. The soil salinity was restrained to migrate to surface. The soil cation exchange ratio was increased; and the soil nutrient preserving capability was improved. The quantity of bacteria and action-mycetes and their ratio (B/F) increased. The plastic shed soil's continuous cultivation obstacle was relieved. From the comprehensive analysis of soil's improvement,0.8% rice straw mixed with 1.0% EM bacterium had great effect.%研究了稻草配合两种生物菌剂施入塑料大棚连作土壤后,在土壤中的分解特性及对连作土壤的改良效果.结果表明,稻草配施生物菌剂(EM菌、乐土菌)在大棚土壤中腐解,开始迅速,以后逐渐减缓,以稻草+EM菌处理腐解效率较高.稻草配施生物菌剂可降低土壤的容重和固相率,提高土壤的含水量和孔隙度,增加土壤通透性,改善了土壤结构;提高了土壤有机质、全氮、全磷含量及碱解氮、速效磷、速效钾含量,降低了土壤pH和EC,抑制了大棚土壤盐分的表聚,提高了土壤阳离子交换量,增强了土壤的保肥供肥能力;增加了土壤中细菌、放线菌的数量,B/F提高,可从根本上缓解大棚土壤连作的障碍.从大棚土壤改良效果的综合分析看,0.8%稻草与1.0%EM菌配施效果较好.

  14. Marketing mix

    OpenAIRE

    Fatrdlová, Adéla

    2016-01-01

    Bachelor thesis is focused on the evaluation of the marketing mix for company HET, analyzing every individual instruments and the subsequently for the improvements. This thesis is composed of two parts,literature reviewed and with personal advice for solution, which falls under subchapter suggestions and recommendations. The first part of thesis are basic concepts associated, included with marketing and marketing mix with a focus on four basic marketing tools. The second part describes the co...

  15. Marketing mix

    OpenAIRE

    Dvořák, Michael

    2016-01-01

    The subject of this thesis, with the official name Marketing mix, is to analyse the actual and future marketing mix in selected company, propose for its improvements and strategy for re-launching traditional footwear company and their products on the Czech market. The theoretical section focuses on the basic concepts of marketing, its history, actual trends and its principles. The theoretical findings are used in the following practical part. The practical section describes the curre...

  16. Mixed Fibronectin-Derived Peptides Conjugated to a Chitosan Matrix Effectively Promotes Biological Activities through Integrins, α4β1, α5β1, αvβ3, and Syndecan

    Directory of Open Access Journals (Sweden)

    Hozumi Kentaro

    2016-11-01

    Full Text Available Mimicking the biological function of the extracellular matrix is an approach to developing cell adhesive biomaterials. The RGD peptide, derived from fibronectin (Fn, mainly binds to integrin αvβ3 and has been widely used as a cell adhesive peptide on various biomaterials. However, cell adhesion to Fn is thought to be mediated by several integrin subtypes and syndecans. In this study, we synthesized an RGD-containing peptide (FIB1 and four integrin α4β1-binding-related motif-containing peptides (LDV, IDAPS, KLDAPT, and PRARI and constructed peptide-chitosan matrices. The FIB1-chitosan matrix promoted human dermal fibroblast (HDF attachment, and the C-terminal elongated PRARI (ePRARI-C-conjugated chitosan matrix significantly promoted HDF attachment through integrin α4β1 and syndecan binding. Next, we constructed a mixed ePRARI-C- and FIB1-chitosan matrix to develop a Fn mimetic biomaterial. The mixed ePRARI-C/FIB1-chitosan matrix promoted significantly better cell attachment and neurite outgrowth compared to those of either ePRARI-C- or FIB1-chitosan matrices. HDF adhesion to the ePRARI-C/FIB1-chitosan matrix was mediated by integrin, α4β1, α5β1, and αvβ3, similar to HDF adhesion to Fn. These data suggest that an ePRARI-C/FIB1-chitosan matrix can be used as a tool to analyze the multiple functions of Fn and can serve as a Fn-mimetic biomaterial.

  17. Colloidal cholesteric liquid crystal in spherical confinement

    Science.gov (United States)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  18. Theory of Electrorotation of Clustered Colloidal Particles

    Institute of Scientific and Technical Information of China (English)

    LIU Ren-Ming; HUANG Ji-Ping

    2005-01-01

    When a colloidal suspension is exposed to a strong rotating electric field, an aggregation of the suspended particles is induced to appear. In such clusters, the separation between the suspended particles is so close that one could not neglect the multiple image effect on the electrorotation (ER) spectrum. Since so far the exact multiple image method exists in two dimensions only, rather than in three dimensions, we investigate the ER spectrum of the clustered colloidal particles in two dimensions, in which many cylindrical particles are randomly distributed in a sheet cluster. We report the dependence of the ER spectrum on the materialparameters. It is shown that the multiple image method predicts two characteristic frequencies, at which the rotation speed reaches maximum. To this end, the multiple image method is numerically demonstrated to be in good agreement with the known Maxwell-Garnett approximation.

  19. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  20. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do...... we use eggs so often for making sauces ? Can we deliver drugs in better and controlled ways? Coating industries wish to manufacture improved coatings e.g. for providing corrosion resistance, which are also environmentally friendly i.e. less based on organic solvents and if possible exclusively......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  1. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  2. Ultrasonic wave interactions with magnetic colloids

    CERN Document Server

    Chapman, J R

    2001-01-01

    fluids have been performed in an effort to determine the relative stability of the fluids. The experimental results have been compared with a combined scattering and hydrodynamic model (Allegra and Hawley 1972) and the ultrasonic anisotropy theory of Skumiel (1997). An on-line quality assurance process is proposed. Originally invented as a method for moving spacecraft fuel in weightless conditions, magnetic colloids or ferrofluids are now used in applications as diverse as the dissipation of heat in the voice coils of a loudspeaker, and for the separation of scrap metal. It has been found that aqueous ferrofluids become unstable after a period of time and with dilution. Therefore, there is a need to characterize the colloidal fluid to study the effects of degradation. Additionally, due to the high cost of ferrofluids and the large volumes required for some applications, the fluid is recycled. It is therefore necessary to develop a system for quality assurance for the fluid reclamation process. Ultrasonic meth...

  3. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    of the total clay not associated with organic matter. No significant difference in release rate was found for air-dry aggregates. The low-carbon soils initially had a higher content of WSA but were more susceptible to disaggregation than the high-carbon soils. Furthermore, the application of NPK fertilizer had......The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchsta¨dt longterm static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA...

  4. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  5. Optimization of Optical Absorption of Colloids of SiO2@Au and Fe3O4@Au Nanoparticles with Constraints

    Science.gov (United States)

    Xue, Xiaozheng; Sukhotskiy, Viktor; Furlani, Edward P.

    2016-01-01

    We study the optical response of monodisperse colloids of core-shell plasmonic nanoparticles and introduce a computational approach to optimize absorption for photothermal applications that require dilute colloids of non-interacting particles with a prescribed volume fraction. Since the volume fraction is held constant, the particle concentration is size-dependent. Optimization is achieved by comparing the absorption spectra of colloids as a function of particle size and structure. We demonstrate the approach via application to colloids of core-shell SiO2@Au and Fe3O4@Au nanoparticles with particle sizes that range from 5–100 nm and with the incident wavelength varying from 600–1200 nm. The absorption spectra are predicted using Mie theory and the analysis shows that there is a unique mix of parameters (core radius, shell thickness, wavelength) that maximize absorption, independent of the value of volume fraction. We show that lossy Fe3O4 cores produce a much broader absorption peak with much less sensitivity to variations in particle structure and wavelength than lossless SiO2 cores. This approach can be readily adapted to colloids of nanoparticles with arbitrary materials, shapes and structure using appropriate numerical methods to compute the absorption spectra. As such, it is useful for the rational design of colloids and process variables for a broad range of photothermal applications. PMID:27786279

  6. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  9. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  11. C-cells in colloid goiter

    Directory of Open Access Journals (Sweden)

    Lima Marcus A.

    2003-01-01

    Full Text Available PURPOSE: The aim of this investigation was to quantitatively evaluate C-cells in colloid goiters, analyzing 36 thyroids that were obtained through thyroidectomy from 24 patients with goiter and 12 normal glands from adult patients without thyroid disease, which were used as the control group. MATERIAL AND METHODS: On average, 6 different thyroid areas were sampled and labeled by immunohistochemistry with a monoclonal anticalcitonin antibody, utilizing the avidin-biotin-peroxidase complex. C-cells were counted in fields measuring 1 square centimeter, and the mean number of cells per field was then calculated. Data were statistically analyzed using the Mann-Whitney test. RESULTS: In the colloid goiter group, the number of C-cells ranged from 0 to 23 per field, while in normal controls they ranged from 20 to 148 per field. CONCLUSIONS: These results demonstrate a significant decrease of C-cell number in the colloid goiter group compared with control group, indicating that the hyperplastic process is restricted to follicular cells, to the detriment of C-cells, which probably cease to receive trophic stimuli.

  12. Equilibrium crystal phases of triblock Janus colloids

    Science.gov (United States)

    Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals.

  13. Patchy polymer colloids with tunable anisotropy dimensions.

    Science.gov (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  14. Dissipative Particle Dynamics simulation of colloidal suspensions

    Science.gov (United States)

    Jamali, Safa; Boromand, Arman; Maia, Joao

    2014-03-01

    DPD as a mesoscale method was firstly proposed to study dynamics of suspensions under flow condition. However the proposed method failed to capture shear properties of suspensions because it lacked: first a potential to reproduce lubrication forces and second a clear definition for the colloid surface. Recently we reported a modified DPD method which defines colloidal particles as particles with hard core and a dissipative coat. An additional lubrication force was introduced to include the short-range hydrodynamics that are not captured in original DPD. The model was found to be able to reproduce shear properties of suspensions for a wide range of different systems, from monodisperse to bimodal with different volume fractions, compositions and size ratios. In present work our modified DPD method is employed to study both equilibrium and flow properties of colloidal suspension. Zero shear viscosity of suspension is measured using Green-Kubo expressions and the results are compared to theoretical predictions. Furthermore, structure formation in suspensions is studied in respect to energy landscape of the fluid both at rest and under flow.

  15. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  16. Realizing the Physics of Motile Cilia Synchronization with Driven Colloids

    Science.gov (United States)

    Bruot, Nicolas; Cicuta, Pietro

    2016-03-01

    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves." These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically, and that a strong and long-ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.

  17. Collective synchronization states in arrays of driven colloidal oscillators

    Science.gov (United States)

    Lhermerout, Romain; Bruot, Nicolas; Cicuta, Giovanni M.; Kotar, Jurij; Cicuta, Pietro

    2012-10-01

    The phenomenon of metachronal waves in cilia carpets has been well known for decades; these waves are widespread in biology, and have fundamental physiological importance. While it is accepted that in many cases cilia are mainly coupled together by the hydrodynamic velocity field, a clear understanding of which aspects determine the collective wave properties is lacking. It is a difficult problem, because both the behavior of the individual cilia and their coupling together are nonlinear. In this work, we coarse-grain the degrees of freedom of each cilium into a minimal description in terms of a configuration-based phase oscillator. Driving colloidal particles with optical tweezers, we then experimentally investigate the coupling through hydrodynamics in systems of many oscillators, showing that a collective dynamics emerges. This work generalizes to a wider class of systems our recent finding that the non-equilibrium steady state can be understood based on the equilibrium properties of the system, i.e. the positions and orientations of the active oscillators. In this model system, it is possible to design configurations of oscillators with the desired collective dynamics. The other face of this problem is to relate the collective patterns found in biology to the architecture and behavior of individual active elements.

  18. Behavior of colloidal gold nanoparticles in different ionic strength media

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Ângela; Luis, Luis G. [University of Aveiro, Department of Biology & CESAM (Portugal); Girão, Ana V.; Trindade, Tito [University of Aveiro, Department of Chemistry & CICECO (Portugal); Soares, Amadeu M. V. M.; Oliveira, Miguel, E-mail: migueloliveira@ua.pt [University of Aveiro, Department of Biology & CESAM (Portugal)

    2015-12-15

    The increased applications of engineered nanoparticles (NPs) may lead to environmental release and transport to estuarine environments where NPs are expected to aggregate/agglomerate with increasing ionic strength. However, more stable NPs that may be resistant to high ionic strength media and more dispersed in the aquatic environment are being synthesized. Thus, understanding colloidal NPs’ behavior in different ionic strength media is crucial for the assessment of the consequences of their environmental release. This work assessed the behavior of gold nanoparticles (AuNPs), with diverse sizes and coatings, in media with different ionic strengths (from biological buffers to artificial seawater). Overall, in biological buffers and artificial seawater, citrate-coated AuNPs were unstable, displaying significantly increased sizes (between 100 and 400 nm), whereas no significant alterations (less than 5 % oscillation) were found for AuNPs with other coatings (bovine serum albumin, polyvinylpyrrolidone, and polyethylene glycol). Data suggest that coated AuNPs, and probably other NPs, may be dispersed in the environment from freshwater to estuarine systems.

  19. Self-pinning by colloids confined at a contact line

    Science.gov (United States)

    Weon, Byung; Je, Jung

    2013-03-01

    Colloidal particles suspended in a fluid usually inhibit complete wetting of the fluid on a solid surface and cause pinning of the contact line, known as self-pinning. We show differences in spreading and drying behaviors of pure and colloidal droplets using optical and confocal imaging methods. These differences come from spreading inhibition by colloids confined at a contact line. We propose a self-pinning mechanism based on spreading inhibition by colloids. We find a good agreement between the mechanism and the experimental result taken by directly tracking individual colloids near the contact lines of evaporating colloidal droplets. This research was supported by the Creative Research Initiatives (Functional X-ray Imaging) of MEST/NRF.

  20. Two-substrate vertical deposition for stable colloidal crystal chips

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; SUN Zhiqiang; CHEN Zhimin; ZHANG Kai; YANG Bai

    2005-01-01

    By combining vertical deposition with micromolding in capillaries method, we have demonstrated the two-substrate vertical deposition, an alternative and versatile procedure for fabricating high-quality stable colloidal crystal chips. Apparent bright colors, special UV-vis spectra, scanning electron microscopy (SEM) and atomic force microscopy (AFM) images all prove that high-quality colloidal crystal structures are formed in between the two substrates. During the two-substrate vertical deposition for colloidal crystal chips, capillary force and evaporation of the medium are critical to the formation of the colloidal crystals; while the confinement in between two close substrates makes the resulting colloidal crystal chips more stable. Due to the excellent stability, these colloidal crystal chips can be used to construct some composite optical devices via a simpler and more flexible process. Meanwhile, they can also be further used as the templates for ordered multiporous materials.

  1. Radio-active colloids in the functional exploration of the reticulo-endothelium system; Les colloides radioactifs dans l'exploration fonctionnelle du systeme reticulo-endothelial

    Energy Technology Data Exchange (ETDEWEB)

    Chivot, J.J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    A historical review describes the reticulo-endothelial system (R.E.S.) and aims at defining it and at explaining its operation. The methods used for its examination and the colloids utilized are considered. The author has been led to prepare a special type of colloid: an albuminous complex containing radio-iodine, 'C.A. {sup 131}I', whose method of preparation and physical and biological examination are described. A human albumin, having a known optical density in solution, is heated until a change in the optical density indicates that an aggregation of the proteinic molecules has occurred. The denatured protein is iodated with {sup 131}I. Electrophoretic, ultracentrifuge and autoradiographic controls are then carried out. This atoxic and metabolisable preparation of biological origin is compared with the better defined colloidal gold which serves as reference. C.A.{sup 131}I is injected into mice. It is shown by radioactivity measurements, auto-radiographies on sections of the whole animal, and anthropo-gamma-metric detections that a high concentration occurs in the S.R.E. of the liver. These static results are only of limited importance however compared to those obtained from an in vivo study of the phenomenon. The author records the changes in the radioactivity of the blood derived from the carotid artery using a well-scintillator. He obtains directly a curve of the radioactivity of blood having a decreasing exponential form; the mathematical expression describing this curve is given. The biological half-life T 1/2 of the colloid in the blood is a measure of its phagocytosis by the S.R.E. cells. A supplementary check is provided by the direct recording of the hepatic activity using a suitably collimated exterior detector. A curve of increasing-exponential form is obtained and its parameters are corollary to the preceding curve. These tests carried out on guinea-pigs and rats make it possible to give to the S.R.E. a phagocytic index which is

  2. Colloidal crystals of core-shell type spheres with poly(styrene) core and poly(ethylene oxide) shell.

    Science.gov (United States)

    Okamoto, Junichi; Kimura, Hiroshi; Tsuchida, Akira; Okubo, Tsuneo; Ito, Koichi

    2007-04-15

    Elastic modulus and crystal growth kinetics have been studied for colloidal crystals of core-shell type colloidal spheres (diameter=160-200 nm) in aqueous suspension. Crystallization properties of three kinds of spheres, which have poly(styrene) core and poly(ethylene oxide) shell with different oxyethylene chain length (n=50, 80 and 150), were examined by reflection spectroscopy. The suspensions were deionized exhaustively for more than 1 year using mixed bed of ion-exchange resins. The rigidities of the crystals range from 0.11 to 120 Pa and from 0.56 to 76 Pa for the spheres of n=50 and 80, respectively, and increase sharply as the sphere volume fraction increase. The g factor, parameter for crystal stability, range from 0.029 to 0.13 and from 0.040 to 0.11 for the spheres of n=50 and 80, respectively. These g values indicate the formation of stable crystals, and the values were decreased as the sphere volume fraction increased. Two components of crystal growth rate coefficients, fast and slow, were observed in the order from 10(-3) to 10(1)s(-1). This is due to the secondary process in the colloidal crystallization mechanism, corresponding to reorientation from metastable crystals formed in the primary process and/or Ostwald-ripening process. There are no distinct differences in the structural, kinetic and elastic properties among the colloidal crystals of the different core-shell size spheres, nor difference between those of core-shell spheres and silica or poly(styrene) spheres. The results are very reasonably interpreted by the fact that colloidal crystals are formed in a closed container owing to long-range repulsive forces and the Brownian movement of colloidal spheres surrounded by extended electrical double layers, and their formation is not influenced by the rigidity and internal structure of the spheres.

  3. Colloidal Surfaces with Boundaries, Apex Boojums, and Nested Elastic Self-Assembly of Nematic Colloids

    Science.gov (United States)

    Park, Sungoh; Liu, Qingkun; Smalyukh, Ivan I.

    2016-12-01

    Self-assembly of colloidal particles is poised to become a powerful composite material fabrication technique, but remains challenged by a limited control over the ensuing structures. We develop a new breed of nematic colloids that are physical analogs of a mathematical surface with boundary, interacting with the molecular alignment field without inducing defects when flat. However, made from a thin nanofoil, they can be shaped to prompt formation of self-compensating defects that drive preprogramed elastic interactions mediated by the nematic host. To show this, we wrap the nanofoil on all triangular side faces of a pyramid, except its square base. The ensuing pyramidal cones induce point defects with fractional hedgehog charges of opposite signs, spontaneously align with respect to the far-field director to form elastic dipoles and nested assemblies with tunable spacing. Nanofoils shaped into octahedrons interact as elastic quadrupoles. Our findings may drive realization of low-symmetry colloidal phases.

  4. Formation mechanisms of metal colloids

    Science.gov (United States)

    Halaciuga, Ionel

    Highly dispersed uniform metallic particles are widely used in various areas of technology and medicine and are likely to be incorporated into many other applications in the future. It is commonly accepted that size, shape and composition of the particles represent critical factors in most applications. Thus, understanding the mechanisms of formation of metal particles and the ways to control the physical (e.g. shape, size) and chemical (e.g. composition) properties is of great importance. In the current research, the formation of uniform silver spheres is investigated experimentally. The parameters that influence the formation of silver particles when concentrated iso-ascorbic acid and silver-polyamine complex solutions are rapidly mixed were studied in the absence of dispersants. We found that by varying the nature of the amine, temperature, concentration of reactants, silver/amine molar ratio, and the nature of the silver salt, the size of the resulting silver particles can be varied in a wide range (0.08--1.5 microm). The silver particles were formed by aggregation of nanosize subunits as substantiated by both electron microscopy and X-ray diffraction techniques and by the vivid rapid color changes during the chemical precipitation process. From the practical standpoint, the goal of this research was to prepare well dispersed spherical silver particles having a relatively smooth surface and a diameter of about 1 microm to satisfy the demands of the current electronic materials market. A two stage particle growth model previously developed to explain the narrow size distribution occurring in synthesis of gold spheres was applied to the present experimental system, and the parameters that control the size distribution characteristics were identified. The kinetic parameter required to match the final particle size was found to be in agreement with the one used previously in modeling formation of gold spheres, suggesting that similar kinetics governs the

  5. Recent research progress in wettability of colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The wettability of solid surfaces has attracted extensive interest in both theoretical research and industrial applications. This paper reviews recent research progress in the fabrication and applications of the colloidal crystals with special wettability. Based on the modified equation of Wenzel and Cassie, the colloidal crystals with special wettability have been obtained by either application of the intrinsic rough structure or modification of the surface chemical composition. Some typical applications of colloidal crystals with special wettability have also been demonstrated.

  6. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    Science.gov (United States)

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  7. The bioavailability of colloidal phosphorus to freshwater algae

    OpenAIRE

    2014-01-01

    The eutrophication of freshwaters is a major environmental concern in developed countries and is often attributed to excessive P fertilizer application. However, the eutrophication risk depends strongly on P bioavailability, which in turn depends on P speciation. Colloidal P species, e.g. P associated with colloidal Fe and Al oxyhydroxides, are included in routine colorimetric measurements of the available P fraction as “molybdate reactive P”, but the availability of this colloidal P fraction...

  8. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    Science.gov (United States)

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  9. New polyelectrolyte complex particles as colloidal dispersions based on weak synthetic and/or natural polyelectrolytes

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available This study aims to evidence the formation of stable polyelectrolyte complex particles as colloidal dispersions using some weak polyelectrolytes: chitosan and poly(allylamine hydrochloride as polycations and poly(acrylic acid (PAA and poly(2-acrylamido-2-methylpropanesulfonic acid – co – acrylic acid (PAMPSAA as polyanions. Polyelectrolyte complex particles as colloidal dispersion were prepared by controlled mixing of the oppositely charged polymers, with a constant addition rate. The influences of the polyelectrolytes structure and the molar ratio between ionic charges on the morphology, size, and colloidal stability of the complex particles have been deeply investigated by turbidimetry, dynamic light scattering and atomic force microscopy. A strong influence of polyanion structure on the values of molar ratio n–/n+ when neutral complex particles were obtained has been noticed, which shifts from the theoretical value of 1.0, observed when PAA was used, to 0.7 for PAMPSAA based complexes. The polyions chain characteristics influenced the size and shape of the complexes, larger particles being obtained when chitosan was used, for the same polyanion, and when PAMPSAA was used, for the same polycation.

  10. Soft X-Ray Spectromicroscopy Investigation of the Interaction of Aquatic Humic Acid and Clay Colloids.

    Science.gov (United States)

    Rothe; Denecke; Dardenne

    2000-11-01

    Soft X-ray spectromicroscopy investigations of the interaction of aquatic humic acid (HA) and montmorillonite colloids have been performed in situ at the NSLS X1-A STXM endstation. Images have been recorded of montmorillonite particles, HA aggregates, and mixed suspensions of both montmorillonite + HA and montmorillonite + carboxyl polystyrene microspheres, as reference organic colloids. Special emphasis has been placed on the sample preparation technique in order to keep the colloid particles hydrated during all measurements. C 1s near edge absorption fine structure extracted from STXM image stacks reveals electronic transitions corresponding to functional -COOH and -C(6)H(5) groups present in HA and polystyrene. XANES peak intensities reflect the relative amounts of these two carbon functional groups in the organic particles. For example, the greater amount of carboxyl groups in HA compared to the latex reference particles affects a larger 1s-->pi* transition intensity. A specific form of montmorillonite-HA particle agglomeration at near-neutral pH has been observed. Under these conditions, we found no separate clustering of HA. Instead, STXM images show the HA to coat the clay mineral surface, leading to nearly a fractal manner of aggregation. Copyright 2000 Academic Press.

  11. Aqueous Colloidal Stability of Graphene Oxide and Chemically Converted Graphene

    Directory of Open Access Journals (Sweden)

    Swarnima Kashyap

    2014-01-01

    Full Text Available Graphene oxide (GO was prepared by modified Hummer’s method, and chemically converted graphene (CCG was prepared by further reduction of the aqueous GO colloid. The effect of pH on particle size, particle charge, and light absorption of the aqueous colloids of GO and CCG was studied with titration against HCl or NaOH, to find the ideal characteristics for a stable dispersion. The GO colloid was stable in the pH range of 4–11, whereas the CCG colloid gained stability at a relatively narrower pH range of 7–10. Poor stability of the colloids was observed for both GO and CCG colloids at both extremes of the pH scale. Both of the colloids exhibited average size of ~1 micron in the low pH range, whereas for higher pH the size ranged between 300 and 500 nm. The UV-Vis spectra showed absorption peak at 230 nm for GO colloids that shifted to 260 nm for the CCG colloid. Such shift can be ascribed to restoring of electronic conjugation of the C=C bonds in CCG.

  12. Tuning Colloid-Interface Interactions by Salt Partitioning

    Science.gov (United States)

    Everts, J. C.; Samin, S.; van Roij, R.

    2016-08-01

    We show that the interaction of an oil-dispersed colloidal particle with an oil-water interface is highly tunable from attractive to repulsive, either by varying the sign of the colloidal charge via charge regulation or by varying the difference in hydrophilicity between the dissolved cations and anions. In addition, we investigate the yet unexplored interplay between the self-regulated colloidal surface charge distribution with the planar double layer across the oil-water interface and the spherical one around the colloid. Our findings explain recent experiments and have direct relevance for tunable Pickering emulsions.

  13. Partial structure factors in star polymer/colloid mixtures

    CERN Document Server

    Stellbrink, J; Richter, D; Moussaid, A; Schofield, A B; Poon, W C K; Pusey, P N; Lindner, P; Dzubiella, J; Likos, C N; Löwen, H

    2002-01-01

    Addition of polymer to colloidal suspensions induces an attractive part to the colloid pair potential, which is of purely entropic origin (''depletion interaction''). We investigated the influence of polymer branching on depletion forces by studying mixtures of hard sphere colloids and star polymers with increasing arm number f=2-32, but constant R sub g approx 500 A. We found a pronounced effect of branching on the position of the gas/liquid demixing transition. Using small angle neutron scattering (SANS) we were able to measure partial structure factors in star polymer/colloid mixtures. The relative distance to the demixing transition is reflected in our scattering data. (orig.)

  14. Statics and dynamics of colloidal particles on optical tray arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory

    2009-01-01

    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  15. Sodium meta-autunite colloids: Synthesis, characterization,stability

    Energy Technology Data Exchange (ETDEWEB)

    zzuoping@lbl.gov

    2004-04-10

    Waste forms of U such as those in the United States Department of Energy's Hanford Site often contain high concentrations of Na and P. Low solubility sodium uranyl phosphates such as sodium meta-autunite have the potential to form mobile colloids that can facilitate transport of this radionuclide. In order to understand the geochemical behavior of uranyl phosphate colloids, we synthesized sodiummeta-autunite colloids, and characterized their morphology, chemical composition, structure, dehydration, and surface charge. The stability of these synthetic plate-shaped colloids was tested with respect to time and pH. The highest aggregation rate was observed at pH 3, and the rate decreases as pH increases, indicating that higher stability of colloid dispersion under neutral and alkaline pH conditions. The synthetic colloids are all negatively charged and no isoelectric points were found over a pH range of 3 to 9. The zeta-potentials of the colloids in the phosphate solution show a strong pH-dependence in the more acidic range over time, but are relatively constant in the neutral and alkaline pH range. The geochemical behavior of the synthetic colloids can be interpreted using DLVO theory. The results suggest that formation of mobile sodium meta-autunite colloids can enhance the transport of U in some contaminated sediments.

  16. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  17. Mixed Movements

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2010-01-01

    Mixed Movements is a research project engaged in performance-based architectural drawing. Architectonic implementation questions relations between the human body and a body of architecture by the different ways we handle drawing materials. A drawing may explore architectonic problems at other...... levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....

  18. A comparative study of crystalloid solution mixed with colloidal solutions and pure crystal solution as extracorporeal circulation priming solution in adult simple heart valve replacement with cardiopulmonary bypass%纯晶体溶液与晶胶混合溶液作为体外循环预充液在成人单纯心脏瓣膜置换术体外循环中应用的比较研究

    Institute of Scientific and Technical Information of China (English)

    沈雅丹; 刘继佳; 卢婷; 熊瑶瑶; 易定武; 杨一峰

    2015-01-01

    Objective To investigate physiological changes in peri extracorporeal circulation period of patients who underwent cardiac valve replacement surgeries with crystalloid solution mixed with colloidal solutions and pure crystal solution as extracorporeal circulation priming solution, and explore the clinical value and practicability of crystalloid solution as the sole extracorporeal circulation priming solution.Methods A retrospective analysis was performed in 130 patients who underwent cardiac valve replacement surgeries.Pure lactated Ringer's solution liquid and Lactated Ringer's solution mixed with Voluven as the extracorporeal circulation priming solution were used.We respectively compared hematocrit at different time points, postoperative blood routine, liver and kidney function, blood coagulation index, duration of intensive care and trachea cannula in two groups.Results There were no significant differences in ages, preoperative blood routine, kidney function, blood coagulation function, duration of operation, clamping time, bypass time, intensive care, postoperative blood routine, kidney function, blood coagulation function and hematocrit at different time points in two groups (P >0.05).However, the hospital day of group which used crystalloid solution as extracorporeal circulation priming solution was significant shorter compared to group which used lactated Ringer's solution mixed with Voluven (P < 0.05).Alanine aminotransferase of group which used crystalloid solution as extracorporeal circulation priming solution was significant higher compared to group which used lactated Ringer's solution mixed with Voluven (P <0.01).Conclusions Crystalloid solution as extracorporeal circulation priming solution is safe and economy in cardiopulmonary bypass.Pure crystalloid solution as the sole extracorporeal circulation priming solution can be safely used on patients (New York Heart Association class Ⅱ-Ⅲ) who have normal liver and kidney function before the

  19. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    Science.gov (United States)

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  20. Methods for preparing colloidal nanocrystal-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  1. Stoichiometric control of DNA-grafted colloid self-assembly.

    Science.gov (United States)

    Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; Srinivasan, Babji; Pal, Suchetan; Zhang, Yugang; Gang, Oleg

    2015-04-21

    There has been considerable interest in understanding the self-assembly of DNA-grafted nanoparticles into different crystal structures, e.g., CsCl, AlB2, and Cr3Si. Although there are important exceptions, a generally accepted view is that the right stoichiometry of the two building block colloids needs to be mixed to form the desired crystal structure. To incisively probe this issue, we combine experiments and theory on a series of DNA-grafted nanoparticles at varying stoichiometries, including noninteger values. We show that stoichiometry can couple with the geometries of the building blocks to tune the resulting equilibrium crystal morphology. As a concrete example, a stoichiometric ratio of 3:1 typically results in the Cr3Si structure. However, AlB2 can form when appropriate building blocks are used so that the AlB2 standard-state free energy is low enough to overcome the entropic preference for Cr3Si. These situations can also lead to an undesirable phase coexistence between crystal polymorphs. Thus, whereas stoichiometry can be a powerful handle for direct control of lattice formation, care must be taken in its design and selection to avoid polymorph coexistence.

  2. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    Science.gov (United States)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  3. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea

    Science.gov (United States)

    Porcelli, D.; Andersson, P. S.; Wasserburg, G. J.; Ingri, J.; Baskaran, M.

    1997-10-01

    The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from "solute" uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 μm-filtered Kalix River water samples increased by a factor of 3 from near the headwaters in the Caledonides to the river mouth while major cation concentrations were relatively constant. 234U/238U ratios were high ( δ234U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of 234U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil 234U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small 234U/238U shifts are generated relative to inflowing groundwater. A simple box model of uranium accumulation in peat and transport through the mire that is compatible with the mire data

  4. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  5. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space.

    Science.gov (United States)

    Chan, Emory M; Xu, Chenxu; Mao, Alvin W; Han, Gang; Owen, Jonathan S; Cohen, Bruce E; Milliron, Delia J

    2010-05-12

    While colloidal nanocrystals hold tremendous potential for both enhancing fundamental understanding of materials scaling and enabling advanced technologies, progress in both realms can be inhibited by the limited reproducibility of traditional synthetic methods and by the difficulty of optimizing syntheses over a large number of synthetic parameters. Here, we describe an automated platform for the reproducible synthesis of colloidal nanocrystals and for the high-throughput optimization of physical properties relevant to emerging applications of nanomaterials. This robotic platform enables precise control over reaction conditions while performing workflows analogous to those of traditional flask syntheses. We demonstrate control over the size, size distribution, kinetics, and concentration of reactions by synthesizing CdSe nanocrystals with 0.2% coefficient of variation in the mean diameters across an array of batch reactors and over multiple runs. Leveraging this precise control along with high-throughput optical and diffraction characterization, we effectively map multidimensional parameter space to tune the size and polydispersity of CdSe nanocrystals, to maximize the photoluminescence efficiency of CdTe nanocrystals, and to control the crystal phase and maximize the upconverted luminescence of lanthanide-doped NaYF(4) nanocrystals. On the basis of these demonstrative examples, we conclude that this automated synthesis approach will be of great utility for the development of diverse colloidal nanomaterials for electronic assemblies, luminescent biological labels, electroluminescent devices, and other emerging applications.

  6. Luminescence properties of II/VI semiconductor colloidal nanocrystals at collective and single scales

    Energy Technology Data Exchange (ETDEWEB)

    Vion, Celine; Barthou, Carlos; Coolen, Laurent; Bennaloul, Paul; MaItre, Agnes [Institut des NanoSciences de Paris, Unite Mixte de Recherche-CNRS 7588, Universite Pierre et Marie Curie, Paris (France); Vu Duc Chinh; Pham Thuy Linh; Vu Thi Bich; Pham Thu Nga [Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi (Viet Nam)], E-mail: celine.vion@insp.jussieu.fr

    2009-09-01

    Colloidal nanocrystals are crystalline spheres of semiconductors of a few nanometers, obtained by chemical synthesis. At this size scale, lower than Bohr radius of the exciton, emission properties are dominated by quantum confinement effects and depend crucially on the nanocrystal radius, which can be controlled by adjusting the synthesis parameters. Nanocrystals present high photostability and good quantum efficiency, even at room temperature. Their emission wavelength can be tuned over the whole visible range, making them very attractive solid state light sources which are already used in optoelectronic devices or for biological labeling. The luminescence properties of CdSe colloidal nanocrystals synthesized at the Institute of Materials Science in Hanoi are presented. At collective scale, the emission properties reveal the synthesis quality. Temperature effects from ambient to 4 K on spectra and decay rates will be presented and analyzed in terms of emitting level fine structure. The study of CdSe colloidal quantum dots at the single emitter scale is of great interest as it reveals properties which are hidden by collective studies, such as luminescence 'blinking', a random switching from a fluorescent to a non fluorescent state, which is closely related to the crystalline defects of a nanocrystal and its interaction with its environment. We will present the blinking properties of the prepared nanocrystals, and relate them to the nanocrystals synthesis quality and shell quality.

  7. Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)

    Science.gov (United States)

    Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.

    2016-09-01

    Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.

  8. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  9. Optical Spectra and Color of Silver Colloids

    Directory of Open Access Journals (Sweden)

    N.L. Dmitruk

    2013-10-01

    Full Text Available In present work, the color features of the aqueous silver suspensions were investigated. Color systems CIE XYZ and CIELAB are considered. In the case of low concentrations of nanoparticles chromaticity coordinates were determined from the transmission spectra of the colloids. For high concentrations of nanoparticles, when the multiple scattering effects play a key role and the medium turns to be turbid, the color of nanoparticles was found using the Kubelka-Munk relation. Experimental data is compared with that calculated from the Mie theory. Color features of a planar array of non-interacting silver nanoparticles are discussed for the first time.

  10. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    G Sarala Devi; V J Rao

    2000-12-01

    Efficient preparation of stable dispersions of platinum nanoparticles from platinous chloride (K2PtCl4) was achieved by simultaneous addition of capping polymer material. The size of platinum nanoparticles was controlled by changing the ratio of concentration of capping polymer material to the concentration of platinum cation used. The morphology of colloidal particles were studied by means of UV-visible spectrophotometry and transmission electron microscopy (TEM). Particle size increased with low reagent concentration. The change in absorption spectra with the particle size was observed, i.e. blue shift attributed to decrease in particle size.

  11. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate; Contribution a l'etude pharmacologique du transport des colloides d'or radioactif par le sang et les exsudats sereux

    Energy Technology Data Exchange (ETDEWEB)

    Rousselet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [French] Apres avoir enonce les proprietes physicochimiques essentielles des colloides nous etudions le devenir biologique de ces substances et, en relation avec leur transport par le sang, leur captation par les elements du Systeme Reticulo-Endothelial. Nous resumons les connaissances acquises jusqu'alors sur le role des proteines seriques dans le transport des

  12. Preface to special topic: papers from the 82nd american chemical society colloid and surface science symposium, raleigh, north Carolina, 2008.

    Science.gov (United States)

    Petsev, Dimiter N; Doyle, Patrick S

    2009-03-30

    This Special Topic section of Biomicrofluidics contains original contributions that were presented at the 82nd Colloid and Surface Science Symposium, which took place on 15-18 June 2008 at North Carolina State University. The Symposium covered a wide range of topics that are relevant to the fundamentals of fluidics and their application to biological systems.

  13. Scattering of light by charged colloidal particles in salt solutions

    NARCIS (Netherlands)

    Vrij, A.; Overbeek, J.Th.G.

    1962-01-01

    In the interpretation of light scattering by colloidal electrolytes in salt solutions the interaction between the colloidal particles and the low molecular weight ions has to be taken into account. When fluctuation theory is applied for the derivation of a light-scattering equation, nonelectroneutra

  14. Composition and cycling of colloids in marine environments

    Science.gov (United States)

    Guo, Laodong; Santschi, Peter H.

    1997-02-01

    Colloidal (COM) or macromolecular organic matter makes up a significant portion of the bulk dissolved organic matter (DOM) pool in aquatic environments. Because of their high specific surface areas and complexation capacities, marine colloids are of great importance not only in the global carbon cycle but also in the biogeochemical cycling of many particle-reactive nuclides and trace elements in the ocean. However, the colloidal pool as a whole is still poorly understood and largely uncharacterized. Recently, cross-flow ultrafiltration and other separation techniques, which have been successfully used to isolate marine colloids, combined with a multitracer approach, have greatly advanced our understanding of the cycling of COM and its associated trace elements in marine environments. In this paper we focus on recent developments on isotopic and elemental composition of colloids which allow organic matter cycling in marine environments to be constrained. Major sections review sampling techniques for aquatic colloids, concentrations and distribution of COM, biochemical and elemental (organic and inorganic) characterization, and stable isotopic (13C and 15N) and radioisotopic (14C and 234Th) characterization of marine colloids. We discuss sources and turnover rates of organic matter in the ocean, importance of benthic boundary layer processes in the cycling of DOM, changes in the paradigms of marine organic matter cycling, and research needs for a better understanding of the biogeochemistry of marine colloids.

  15. Enhanced adhesion of bioinspired nanopatterned elastomets via colloidal surface assembly

    NARCIS (Netherlands)

    Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.H.B.; Kamperman, M.M.G.

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the imme

  16. Tuning colloid-interface interactions by salt partitioning

    NARCIS (Netherlands)

    Everts, Jeffrey; Samin, Sela; Roij, René van

    2016-01-01

    We show that the interaction of an oil-dispersed colloidal particle with an oil-water interface is highly tunable from attractive to repulsive, either by varying the sign of the colloidal charge via charge regulation, or by varying the difference in hydrophilicity between the dissolved cations and a

  17. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    Science.gov (United States)

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  18. Extinction and Scattering of Light by Magnetic Colloidal Nanoparticles

    Directory of Open Access Journals (Sweden)

    C.V. Yerin

    2015-12-01

    Full Text Available The peculiarities of scattering and extinction of light by colloids with different concentrations of magnetite nanoparticles are investigated. The light absorption effect on spectral dependencies of optical density of magnetic colloid are observed. According to dynamic light scattering experiments, particle size distributions for samples with different concentration of nanoparticles are defined.

  19. Preparation of colloidal Sb2O5 and its stability

    Institute of Scientific and Technical Information of China (English)

    陈文汩; 张利; 龚竹青

    2004-01-01

    Colloidal antimony pentoxide was prepared by oxidation of antimony trioxide with hydrogen peroxide as oxidant and phosphoric acid as stabilizer. Effects of stabilizer, oxidant amount and reaction temperature on the diameter of colloidal particles and their size distribution were discussed. And static electricity effects on colloidal stability were studied by measurement of Zeta potential. Results show that Zeta potential of colloidal Sb2 O5 moves from -30mV to -56.8 mV with the addition of H3 PO4 as the stabilizer, zero point of charge of colloidal H3 PO4-Sb2 O5 moves from pH= 1.85 to more acidic regions, and colloidal H3 PO4-Sb2 O5 is stable in wider pH range. The stable time of colloidal H3 PO4-Sb2 O5 particles without coagulation is more than six months. The size of colloidal particles is smaller and their distribution is narrower by adding H3 PO4 as the stabilizer and decreasing reaction temperature, and the average diameter of H3 PO4-Sb2 O5 particles prepared is 30 nm.

  20. Feasibility of colloidal silver SERS for rapid bacterial screening

    Science.gov (United States)

    Citrate-reduced silver colloids have been used extensively for surface-enhanced Raman scattering (SERS) study and are commonly characterized by UV-visible spectroscopy. In this work, relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of SERS peaks from sma...

  1. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  2. Colloid adhesive parameters for chemical heterogeneous porous media

    Science.gov (United States)

    A simple modeling approach was developed to calculate colloid adhesive parameters for chemically heterogeneous porous media. The area of the zone of electrostatic influence between a colloid and solid-water interface (Az) was discretized into a number of equally sized grid cells to capture chemical...

  3. Direct measurement of thermodynamic properties of colloidal hard spheres

    NARCIS (Netherlands)

    Dullens, R.P.A.; Kegel, W.K.; Aarts, D.G.A.L.

    2008-01-01

    Recently, we have shown how to measure thermodynamic properties of colloidal hard sphere suspensions by microscopy [Dullens et al. (2006) PNAS 103, 529]. Here, we give full experimental details on how to acquire three dimensional snapshots of a colloidal hard sphere suspension over a wide range of d

  4. Fabrication and Characterization of Colloidal Crystal Thin Films

    Science.gov (United States)

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  5. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  6. Asymmetrical phase separation and gelation in binary mixtures of oppositely charged colloids

    Science.gov (United States)

    Zong, Yiwu; Yuan, Guangcui; Han, Charles C.

    2016-07-01

    Two types of colloidal particles, which are nearly the same in chemical composition but carry opposite surface charges, are mixed in water. Depending on the relative proportion of the oppositely charged particles, the process of aggregation leads to the formation of discrete clusters of various sizes in dilute dispersions, and to the development of particle gel networks in more concentrated systems. Due to the significant difference in the absolute values of surface charges (negative particle: -48 mV, positive particle: +24 mV), the phase separation and the gelation behaviors are asymmetric with respect to the mixing ratio. Mixtures with excess negative particles are more stable, while mixtures with excess positive particles are easily affected by phase separation. The hetero-aggregation triggered by the addition of microscopically large macro-ions is similar to what is often observed in a mono-component charged colloidal system, i.e., phase separation occurs through addition of small electrolyte ions. Within the concentration region investigated here, it is clear that the gel line is buried inside the phase separation region. Gelation occurs only when the number and size of the clusters are large and big enough to connect up into a space-spanning network. Our results indicate that, in this binary mixture of oppositely charged colloids, although the interaction between unlike species is attractive and that between like species is repulsive, the onset of gelation is in fact governed by the equilibrium phase separation, as in the case of purely attractive systems with short-range isotropic interaction.

  7. Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles

    Science.gov (United States)

    Beunis, Filip; Strubbe, Filip; Neyts, Kristiaan; Petrov, Dmitri

    2012-01-01

    By measuring the stable charge on oil drops in air, Millikan demonstrated the discrete nature of electric charge. We extend his approach to the charge on solid-liquid interfaces, and focus on the dynamics of the discrete fluctuations. Our measurements are accurate and fast enough to observe changes of one elementary charge. Experiments over thousands of seconds yield information about the fast dynamics of electrochemical reactions, relevant for physicochemical and biological systems. As an example, we study (dis)charging processes on colloidal particles in a nonpolar liquid.

  8. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawmoto, Ken; Møldrup, Per;

    2012-01-01

    A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters colloids) and a red-yellow soil from...... Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed....... Breakthrough curves and deposition profiles for soil colloids were strong functions of the hydrodynamics, solution pH, and surface charge of the colloids and sand grains. Greater deposition was typical for lower flow rates and lower pH. The deposition of VAS colloids in both sands under low-pH conditions...

  9. Optical dispersive shock waves in defocusing colloidal media

    Science.gov (United States)

    An, X.; Marchant, T. R.; Smyth, N. F.

    2017-03-01

    The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light intensity, in a defocusing colloidal medium is analysed. The equations governing nonlinear light propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and an algebraic equation for the medium response. In the limit of low light intensity, these equations reduce to a perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and trailing edges of the colloidal dispersive shock wave are found using modulation theory. This is done for both the perturbed nonlinear Schrödinger equation and the full colloid equations for arbitrary light intensity. These results are compared with numerical solutions of the colloid equations.

  10. Studies of colloids and their importance for repository performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, M.; Skaarman, C. [GeoPoint AB, Sollentuna (Sweden); Degueldre, C. [Geneva Univ. (Switzerland)

    1995-12-01

    The processes, parameters and data used to evaluate the potential of nuclide transport by a colloid facilitated mechanism are reviewed and discussed in this report. Both steady-state (present situation) and possible future non-steady-state hydrogeochemistry in the geosphere are covered. In the steady-state scenario, the colloid (clay, silica, iron(III)hydroxide) concentration is around 20-45 micrograms/l which is considered to be a low value. The low colloid concentration is justified by the large attachment factor to the rock which reduces the stability of the colloids in the aquifer. Both reversible and irreversible sorption processes are reviewed. In the non-steady-state scenario, changes of hydrogeochemical properties may induce larger colloid concentrations. The increase of concentration is however limited and relaxation is always observed after any change. Emphasis is placed on the glaciation-deglaciation scenario. 53 refs, 12 figs, 3 tabs.

  11. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-08-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  12. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  13. Colloidal-based additive manufacturing of bio-inspired composites

    Science.gov (United States)

    Studart, Andre R.

    Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.

  14. Single-File Escape of Colloidal Particles from Microfluidic Channels

    Science.gov (United States)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  15. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  16. Colloidal drug delivery systems in vaccine delivery.

    Science.gov (United States)

    Beg, Sarwar; Samad, Abdus; Nazish, Iram; Sultana, Ruksar; Rahman, Mahfoozur; Ahmad, Md Zaki; Akbar, Md

    2013-01-01

    Vaccines play a vital role in the field of community medicine to combat against several diseases of human existence. Vaccines primarily trigger the acquired immune system to develop long-lasting immunity against pathogens. Conventional approaches for vaccine delivery lacks potential to target a particular antigen to develop acquired immunity by specific antibodies. Recent advancements in vaccine delivery showed that inclusion of adjuvants in vaccine formulations or delivery of them in a carrier helps in achieving desired targeting ability, reducing the immunogenicity and significant augmentation in the immune response. Colloidal carriers (liposomes, niosomes, microspheres, proteosomes, virosomes and virus like particles (VLPs), antigen cochleates, dendrimers and carbon nanotubes) have been widely explored for vaccine delivery. Further, surface engineering of these carriers with ligands, functional moieties and monoclonal antibodies tend to enhance the immune recognition potential of vaccines by differentiation of antigen specific memory T-cells. The current review, therefore, provides an updated account on the recent advancements in various colloidal delivery systems in vaccine delivery, outlining the mechanism of immune response initiated by them along with potential applications and marketed instances in an explicit manner.

  17. Colloidal gelation with variable attraction energy.

    Science.gov (United States)

    Zaccone, Alessio; Crassous, Jérôme J; Ballauff, Matthias

    2013-03-14

    We present an approximation scheme to the master kinetic equations for aggregation and gelation with thermal breakup in colloidal systems with variable attraction energy. With the cluster fractal dimension df as the only phenomenological parameter, rich physical behavior is predicted. The viscosity, the gelation time, and the cluster size are predicted in closed form analytically as a function of time, initial volume fraction, and attraction energy by combining the reversible clustering kinetics with an approximate hydrodynamic model. The fractal dimension df modulates the time evolution of cluster size, lag time and gelation time, and of the viscosity. The gelation transition is strongly nonequilibrium and time-dependent in the unstable region of the state diagram of colloids where the association rate is larger than the dissociation rate. Only upon approaching conditions where the initial association and the dissociation rates are comparable for all species (which is a condition for the detailed balance to be satisfied) aggregation can occur with df = 3. In this limit, homogeneous nucleation followed by Lifshitz-Slyozov coarsening is recovered. In this limited region of the state diagram the macroscopic gelation process is likely to be driven by large spontaneous fluctuations associated with spinodal decomposition.

  18. Phase diagram of colloid-rod system

    Science.gov (United States)

    Lai, S. K.; Xiao, Xuhui

    2010-01-01

    The semigrand ensemble theory [H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992)] in conjunction with the fundamental measure density functional theory [V. B. Warshavsky and X. Song, Phys. Rev. E 69, 061113 (2004)] are used to construct the Helmholtz free energy densities of a mixture of uncharged colloidal hard spheres and colloidal rods in its solid and liquid phases. Given these free energy density functions, we apply the free energy density minimization method [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the system's regions of phases in coexistence. The calculated results show that the triangular area bounded by gas-liquid, gas-solid, and liquid-solid coexisting two phases which has been called the coexistence region of gas-liquid-solid corresponds in fact to sets of two phases in coexistence. The phase boundaries which define our calculated coexistence domains compare very well with previous theoretical calculations. The relevance of the phase-diagram domains to three phases in coexistence will be discussed.

  19. Flow of colloidal suspensions and gels

    Science.gov (United States)

    Zia, Roseanna

    Our recent studies of yield of colloidal gels under shear show that yield in such gels occurs in distinct stages. Under fixed stress, yield follows a finite delay period of slow solid-like creep. Post yield, the gel fluidizes and may undergo long-time viscous flow or, in some cases, may re-solidify. Under imposed strain rate, the transition from equilibrium to long-time flow is characterized by one or more stress overshoots, signifying a yield process here as well. These rheological changes are accompanied by evolution in morphology and dynamics of the gel network. Similar regimes have been observed in gels subjected to gravitational forcing; the gel initially supports its own weight, or perhaps undergoes slow, weak compaction. This may be followed by a sudden transition to rapid compaction or sedimentation. Various models have been put forth to explain these behaviors based on structural evolution, but this detail is difficult to observe in experiment. Here we examine the detailed microstructural evolution and rheology of reversible colloidal gels as they deform under gravity, identifying the critical buoyant force at which yield occurs, the role played by ongoing gel coarsening, and similarities and differences compared to yield under shear. We gratefully acknowledge the support of the NSF XSEDE Computational Resource, the NSF Early CAREER Program, and the Office of Naval Research Young Investigator Program.

  20. Colloidal suspensions of functionalized mesoporous silica nanoparticles.

    Science.gov (United States)

    Kobler, Johannes; Möller, Karin; Bein, Thomas

    2008-04-01

    The synthesis and characterization of colloidal mesoporous silica (CMS) functionalized with vinyl-, benzyl-, phenyl-, cyano-, mercapto-, aminopropyl- or dihydroimidazole moieties is reported. Uniform mesoporous particles ranging in size from 40 to 150 nm are generated in a co-condensation process of tetraethylorthosilicate (TEOS) and organotriethoxysilanes (RTES) in alkaline aqueous media containing triethanolamine (TEA) in combination with cetyltrimethylammonium chloride (CTACl) serving as a structure-directing agent. The materials are obtained as colloidal suspensions featuring long-term stability after template removal by ion exchange with an ethanolic solution of ammonium nitrate or HCl. The spherical particles exhibit a wormlike pore system with defined pore sizes and high surface areas. Samples are analyzed by a number of techniques including TEM, SEM, DLS, TGA, Raman, and cross-polarized (29)Si-MAS NMR spectroscopy, as well as nitrogen sorption measurements. We demonstrate that co-condensation and grafting methods result in similar changes in the nitrogen adsorption behavior, indicating a successful internal lining of the pores with functional groups through both procedures.

  1. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  2. Direct measurement of colloidal interactions between polyaniline surfaces in a uv-curable coating formulation

    DEFF Research Database (Denmark)

    Jafarzadeh, Shadi; Claesson, Per M.; Pan, Jinshan

    2014-01-01

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteri......The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different...... characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope...... cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast...

  3. POLYMER COLLOIDS FORMED BY POLYELECTROLYTE COMPLEXATION OF VINYL POLYMERS AND POLYSACCHARIDES IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Hui-dan Liu; Takahiro Sato

    2013-01-01

    The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry,static and electrophoretic light scattering,and elementary analysis.Sodium salts of polyacrylate (PA) and heparin (Hep) were chosen as the polyanion,and hydrochloric salts of poly(vinyl amine) (PVA) and chitosan (Chts) as the polycation.Although these vinyl polymers and polysaccharides have remarkably different backbone chemical structures and linear charge densities,all the four combinations PA-PVA,PA-Chts,Hep-PVA,and Hep-Chts provide almost stoichiometric polyelectrolyte complexes which are slightly charged owing to the adsorption of the excess polyelectrolyte component onto the neutral complex.The charges stabilize the complex colloids in aqueous solution of a non-stoichiometric mixture,and the aggregation number of the complex colloids increases with approaching to the stoichiometric mixing ratio.The mixing ratio dependence of the aggregation number for the four complexes is explained by the model proposed in the previous study.

  4. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  5. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  6. Microfluidic mixing using contactless dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Shafiee, Hadi; Davalos, Rafael V; Stremler, Mark A

    2011-09-01

    The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead capacitively coupled to the mixing chamber through thin dielectric barriers, which eliminates many of the problems encountered with standard DEP. Four system designs with rectangular and circular mixing chambers were fabricated in PDMS. Mixing tests were conducted for flow rates from 0.005 to 1 mL/h subject to an alternating current signal range of 0-300 V at 100-600 kHz. When the time scales of the bulk fluid motion and the DEP motion were commensurate, rapid mixing was observed. The rectangular mixing chambers were found to be more efficient than the circular chambers. This approach shows potential for mixing low diffusivity biological samples, which is a very challenging problem in laminar flows at small scales.

  7. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Science.gov (United States)

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  8. Self-Assembling of Colloidal Particles Dispersed in Mixture of Ethanol and Water at the Air-Liquid Interface of Colloidal Suspension at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-Jun; CHEN Sheng-Li; DONG Peng; ZHOU Qian; YUAN Gui-Mei; SU Gu-Cong

    2009-01-01

    Self-assembling of colloidal particles dispersed in a mixture of ethanol and water at the air-liquid interface of the colloidal suspension at room temperature is investigated,and a method of rapidly assembling colloidal particles is proposed.By this method,a uniform colloidal crystal thin 61m over ten square centimeters in area can be fabricated in 10 min without special facilities and heating the suspension.SEM images and a normal incidence transmission spectrum of the sample show that the colloidal crystal film fabricated by this method is of high quality.In addition,this method is very suitable for fabricating colloidal crystal heterostructures.

  9. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  10. Synthesis of Au-Cu Nano-Alloy from Monometallic Colloids by Simultaneous Pulsed Laser Targeting and Stirring

    Institute of Scientific and Technical Information of China (English)

    Mansoureh Ganjali∗; Monireh Ganjali; Soraia Khoby; Mohammad Ali Meshkot

    2011-01-01

    Experimental work has been focused on the formation of alloyed Au-Cu nanoparticles under simultaneous laser exposure and mechanical stirring of mixed monometallic colloids, here referred to as dual procedure. As a feed for the dual procedure, Au and Cu monometallic nanoparticle colloids have been using a laser ablation technique. To accomplish this, bulk targets were ablated with 1064 nm wavelength Nd: YAG laser in a pure acetone (99.99%) environment. Ultraviolet-visible optical absorption spectrometry, transmission electron microscopy, X-ray diffraction and X-ray fluorescence technique have been used to characterize the nanoparticles. It has been found that experimental conditions such as stirring and laser parameters strongly affect the synthesized particle properties, including the size, shape, composition and stability of the nanopar-ticles. Alloy nanoparticles containing 39% Au – 61% Cu have also been prepared in the same process, but in two forms of a homogeneous alloy and a core-shell structure.

  11. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.

    Science.gov (United States)

    Wilson, Rab; Bowden, Stephen A; Parnell, John; Cooper, Jonathan M

    2010-03-01

    We demonstrate the enhanced analytical sensitivity of both surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) responses, resulting from the in situ synthesis of silver colloid in a microfluidic flow structure, where both mixing and optical interrogation were integrated on-chip. The chip-based sensor was characterized with a model Raman active label, rhodamine-6G (R6G), and had a limit of detection (LOD) of ca. 50 fM (equivalent to single molecule detection). The device was also used for the determination of the natural pigment, scytonemin, from cyanobacteria (as an analogue for extraterrestrial life existing in extreme environments). The observed LOD of approximately 10 pM (ca. microfluidic system than those measured using the same experimental parameters, with colloid synthesized off-chip, under quiescent conditions.

  12. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  13. Colloid Facilitated Transport of Plutonium in Fractured Volcanic Tuff

    Science.gov (United States)

    Kersting, A. B.; Zhao, P.; Walensky, J. R.; Roberts, S. K.; Johnson, M. R.; Zavarin, M.; Ramon, E. C.

    2004-12-01

    The transport of low-solubility radionuclides in a colloidal- or colloidal bound state is frequently suspected or observed. Groundwater contaminated with radionuclides associated with underground nuclear tests was collected from several different well locations at the Nevada Test Site (NTS). In each case, the low-levels of plutonium detected in the groundwater were overwhelmingly (>95percent) associated with the colloidal and not the dissolved fraction of the groundwater. The colloidal fractions consisted of secondary minerals such as clays and zeolites. To better understand the mechanisms controlling the potential colloidal transport of plutonium, colloid-facilitated fracture flow laboratory experiments are being conducted. Pseudocolloids consisting of Pu(IV) sorbed to clinoptilolite were combined with a radionuclide solution cocktail consisting of Np, U, Cs, Sr, Sm and 3H and Re (analog to Tc) tracers in NTS-type synthetic groundwater (4.5mM NaHCO3-). The cocktail was injected into a smooth fracture in a volcanic tuff rock core from the NTS and the effluent analyzed. Autoradiography and secondary ion mass spectrometry will be used to understand the mineral -colloid-radionuclide interactions in the fracture volcanic tuff.

  14. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.

    Science.gov (United States)

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning

    2016-09-13

    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.

  15. Electrochemistry in Colloids and Dispersions. Volume 2. Solute Distribution, Diffusion, and Transport Colloidal Metals

    Science.gov (United States)

    1992-02-04

    diffusion, and transport, clectrosynthesis and electrocatalysis, polymers and latexes, and colloidal metals and semiconductors . This report is presented in...Chemistry Frontiers, 1990, 1, 115. 8. Gokel, G.W.; Korzeniowski, S.H.; Macrocyclic Polyether Syntheses, I Springer Verlag, Berlin, 1982. 9. Lehn, J. M...negative potentials is attainable, and H atom adsorption is smaller. CO 2 has been photocatalytically reduced on Ru and Os sols although significant

  16. Energy landscapes of planar colloidal clusters.

    Science.gov (United States)

    Morgan, John W R; Wales, David J

    2014-09-21

    A short-ranged pairwise Morse potential is used to model colloidal clusters with planar morphologies. Potential and free energy global minima as well as rearrangement paths, obtained by basin-hopping global optimisation and discrete path sampling, are characterised. The potential and free energy landscapes are visualised using disconnectivity graphs. The short-ranged potential is found to favour close-packed structures, with the potential energy primarily controlled by the number of nearest neighbour contacts. In the case of quasi-degeneracy the free energy global minimum may differ from the potential energy global minimum. This difference is due to symmetry effects, which result in a higher entropy for structures with lower symmetry.

  17. Multimodal Plasmonics in Fused Colloidal Networks

    CERN Document Server

    Teulle, Alexandre; Girard, C; Gurunatha, Kargal L; Li, Mei; Mann, Stephen; Dujardin, Erik

    2014-01-01

    Harnessing the optical properties of noble metals down to the nanometer-scale is a key step towards fast and low-dissipative information processing. At the 10-nm length scale, metal crystallinity and patterning as well as probing of surface plasmon (SP) properties must be controlled with a challenging high level of precision. Here, we demonstrate that ultimate lateral confinement and delocalization of SP modes are simultaneously achieved in extended self-assembled networks comprising linear chains of partially fused gold nanoparticles. The spectral and spatial distributions of the SP modes associated with the colloidal superstructures are evidenced by performing monochromated electron energy loss spectroscopy with a nanometer-sized electron probe. We prepare the metallic bead strings by electron beam-induced interparticle fusion of nanoparticle networks. The fused superstructures retain the native morphology and crystallinity but develop very low energy SP modes that are capable of supporting long range and s...

  18. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits.

  19. Engineering optical soliton bistability in colloidal media

    CERN Document Server

    Matuszewski, Michal

    2010-01-01

    We consider a mixture consisting of two species of spherical nanoparticles dispersed in a liquid medium. We show that with an appropriate choice of refractive indices and particle diameters, it is possible to observe the phenomenon of optical soliton bistability in two spatial dimensions in a broad beam power range. Previously, this possibility was ruled out in the case of a single-species colloid. As a particular example, we consider the system of hydrophilic silica particles and gas bubbles generated in the process of electrolysis in water. The interaction of two soliton beams can lead to switching of the lower branch solitons to the upper branch, and the interaction of solitons from different branches is phase independent and always repulsive.

  20. Optics of Nanostructured Fractal Silver Colloids

    CERN Document Server

    Karpov, S V; Popov, A K; Slabko, V V; George, T F; George, Thomas F.

    2003-01-01

    Based on the theory of the optical properties of fractal clusters, which is an operator-based modification of the coupled-dipole method, an alternate solution is proposed for the problem of adequately describing the evolution of optical spectra of any polydisperse silver colloid with particles falling within the range of most characteristic sizes (5 - 30 nm). This is the range over which the results of the application of the well-known methods of classical electrodynamics, including the Mie theory, disagree with experimental data. The effect of variation of the parameters of such media on optical spectra is studied by a numerical simulation, which accounts for particle electrodynamic dipole-dipole interactions. Indeed, such interactions are shown to be a key factor in determining the broadening of the sol absorption spectra during the course of fractal aggregation. A quantitative explanation is given for the reasons for the appearance of individual specific features in the contours of the spectral absorption ...

  1. Multiple Exciton Generation in Colloidal Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles Smith

    2013-12-01

    Full Text Available In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG, can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development.

  2. Self-assembly of colloidal rafts

    Science.gov (United States)

    Sharma, Prerna; Gibaud, Thoams; Ward, Andrew; Dogic, Zvonimir

    2013-03-01

    Interactions between nanometer-sized particles or molecules suspended in a bulk fluid are well understood. However, when such particles are embedded in a membrane, the inter-particle potential is significantly modified by membrane mediated forces and gives rise to novel phase behavior. Visualizing and manipulating such inclusions in a lipid bilayer is difficult due to the nanometer length scales involved. Here, we use a model system of micron sized colloidal membranes doped with molecules shorter or longer than that of the bulk. Surprisingly, the dopant molecules form self-limited finite size clusters. These clusters further self-organize into a wide variety of higher order structures such as hexagonal and square lattice arrays, lamellar patterns and saddle shaped surfaces. Understanding the phase behavior and measuring repulsive forces between such clusters may have implications for the similar mechanisms that operate in conventional lipid bilayers.

  3. Hydrodynamically driven colloidal assembly in dip coating.

    Science.gov (United States)

    Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  4. Active microrheology in a colloidal glass

    Science.gov (United States)

    Gruber, M.; Abade, G. C.; Puertas, A. M.; Fuchs, M.

    2016-10-01

    We study the dynamics of a probe particle driven by a constant force through a colloidal glass of hard spheres. This nonequilibrium and anisotropic problem is investigated using a new implementation of the mode-coupling approximation with multiple relaxation channels and Langevin dynamics simulations. A force threshold is found, below which the probe remains localized, while above it the probe acquires a finite velocity. We focus on the localized regime, comparing theory and simulations concerning the dynamics in the length scale of the cage and the properties of the transition to the delocalized regime, such as the critical power-law decay of the probe correlation function. Probe van Hove functions predicted by the theory show exponential tails reminiscent of an intermittent dynamics of the probe. This scenario is microscopically supported by simulations.

  5. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Keith P. Johnston

    2009-04-06

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  6. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.

    Science.gov (United States)

    Giansante, Carlo; Infante, Ivan; Fabiano, Eduardo; Grisorio, Roberto; Suranna, Gian Paolo; Gigli, Giuseppe

    2015-02-11

    Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inferred by density functional theory calculations; in addition, our findings suggest that the optical band gap reduction commonly observed for PbS QD solids treated with thiol-terminating ligands can be prevalently ascribed to 3p orbitals localized on anchoring sulfur atoms, which mix with the highest occupied states of the QDs. More broadly, we provide evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components.

  7. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  8. Zeta potential in colloid science principles and applications

    CERN Document Server

    Hunter, Robert J; Rowell, R L

    2013-01-01

    Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu

  9. Electric double layer of anisotropic dielectric colloids under electric fields

    Science.gov (United States)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  10. Elastic Properties of Liquid Surfaces Coated with Colloidal Particles

    Directory of Open Access Journals (Sweden)

    Edward Bormashenko

    2015-01-01

    Full Text Available The physical mechanism of elasticity of liquid surfaces coated with colloidal particles is proposed. It is suggested that particles are separated by water clearings and the capillary interaction between them is negligible. The case is treated when the colloidal layer is deformed normally to its surface. The elasticity arises as an interfacial effect. The effective Young modulus of a surface depends on the interfacial tension, equilibrium contact angle, radius of colloidal particles, and their surface density. For the nanometrically scaled particles the line tension becomes essential and has an influence on the effective Young modulus.

  11. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  12. Discrete solvent effects on the effective interaction between charged colloids

    CERN Document Server

    Allahyarov, E

    2000-01-01

    Using computer simulations of two charged colloidal spheres with their counterions in a hard sphere solvent, we show that the granular nature of the solvent significantly influences the effective colloidal interaction. For divalent counterions, the total effective force can become attractive generated by counterion hydration, while for monovalent counterions the forces are repulsive and well-described by a solvent-induced colloidal charge renormalization. Both effects are not contained in the traditional "primitive" approaches but can be accounted for in a solvent-averaged primitive model.

  13. Stable colloidal Co-Pd nanocatalysts for carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer, A.; Golovko, V.B.; Johnson, B.F.G.; Robertson, John [Department of Chemistry, University of Cambridge (United Kingdom); Cantoro, M.; Hofmann, S.; Wirth, C.T. [Department of Engineering, University of Cambridge (United Kingdom)

    2009-12-15

    The standard preparation method for catalysts for surface-bound growth of carbon nanotubes (CNT) is to sputter or evaporate the metal catalyst (Fe, Co, and Ni) onto the surface. A lower cost method for large areas is to use liquid delivery. Colloids have the advantage of containing the catalyst in nanocluster form. Our previously developed colloidal catalysts were successful for growth but had limited shelf-life due to oxidation and coagulation. Here, we develop an air-stable colloidal catalyst with long shelf-life of many months to years. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    Science.gov (United States)

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles.

  15. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  16. Restructuring of colloidal cakes during dewatering.

    Science.gov (United States)

    Madeline, J B; Meireles, M; Bourgerette, C; Botet, R; Schweins, R; Cabane, B

    2007-02-13

    Aqueous suspensions of aggregated silica particles have been dewatered to the point where the colloidal aggregates connect to each other and build a macroscopic network. These wet cakes have been compressed through the application of osmotic pressure. Some cakes offer a strong resistance to osmotic pressure and remain at a low volume fraction of solids; other cakes yield at low applied pressures, achieving nearly complete solid/liquid separation. We used small angle neutron scattering and transmission electron microscopy to determine the processes by which the particles move and reorganize during cake collapse. We found that these restructuring processes follow a general course composed of three stages: (1) at all scales, voids are compressed, with large voids compressed more extensively than smaller ones; the local order remains unchanged; (2) all voids with diameters in the range of 2-20 particle diameters collapse, and a few dense regions (lumps) are formed; and (3) the dense lumps build a rigid skeleton that resists further compression. Depending on the nature of interparticle bonds, some cakes jump spontaneously into stage 3 while others remain stuck in stage 1. To elucidate the relation between bond strength and compression resistance, we have constructed a numerical model of the colloidal network. In this model, particles interact through noncentral forces that are produced by springs attached to their surfaces. Networks made of bonds that break upon stretching evolve through a plastic deformation that reproduces the three stages of restructuring evidenced by the experiments. Networks made of bonds that are fragile jump into stage 3. Networks made of bonds that can be stretched without breaking evolve through elastic compression and restructure only according to stage 1.

  17. The dynamical crossover in attractive colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Mallamace, Domenico [Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  18. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    Science.gov (United States)

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  19. Observed Dependence of Colloid Detachment on the Concentration of Initially Attached Colloids and Collector Surface Heterogeneity in Porous Media.

    Science.gov (United States)

    Li, Tiantian; Jin, Yan; Huang, Yuanfang; Li, Baoguo; Shen, Chongyang

    2017-02-23

    Sand column experiments were conducted to examine the effects of the concentration of attached colloids (CAC) on their subsequent detachment upon decreasing solution ionic strength (IS). Different pore volumes of latex microparticle suspensions were injected into the columns to allow different amounts of colloids to attach at ISs of 0.001, 0.01, and 0.2 M. Then, deionized water was introduced to release the attached colloids. Results show that the fraction of attachments that were reversible to reduction of IS (FRA) increased with increasing CAC at a given IS if the sand was extensively treated using acids to reduce surface charge heterogeneity. This indicates that colloids were preferentially immobilized in sites favoring irreversible attachment and then gradually occupied reversible sites. In contrast, the FRA decreased with increasing CAC at 0.001 M in sand without the acid treatment, illustrating the opposite attachment sequence. Scanning electron microscope examinations reveal that the concave regions favored irreversible colloid attachment. Reversible attachment is likely due to immobilization on flat surfaces with charge heterogeneities, retention in stagnation point regions via secondary minimum association, ripening in the acid-treated sand, and capture of colloids by protruding asperities with charge heterogeneity in the untreated sand. At ISs of 0.01 and 0.2 M, the FRA was essentially independent of CAC in the untreated sand because the colloids were randomly attached on the sand surfaces over time.

  20. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    Science.gov (United States)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  1. Colloids and Radionuclide Transport: A Field, Experimental and Modeling Effort

    Science.gov (United States)

    Zhao, P.; Zavarin, M.; Sylwester, E. E.; Allen, P. G.; Williams, R. W.; Kersting, A. B.

    2002-05-01

    Natural inorganic colloids (clinoptilolite, colloids particle size 171 ñ 25 nm) were conducted in synthetic groundwater (similar to J-13, Yucca Mountain standard) with a pH range from 4 to 10 and initial plutonium concentration of 10-9 M. The results show that Pu(IV) sorption takes place within an hour, while the rates of Pu(V) sorption onto the colloids is much slower and mineral dependent. The kinetic results from the batch sorption/desorption experiments, coupled with redox kinetics of plutonium in solution will be used in geochemical modeling of Pu surface complexation to colloids and reactive transport. (This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.)

  2. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  3. CrⅥ adsorption on four typical soil colloids: equilibrium and kinetics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adsorption process of CrⅥ on these media can be further described by Langmuir or Freundlich equation quite well. The adsorption reaction of CrⅥ is fast, and the adsorption equilibrium can be reached within the first two hours in moderate temperature. The adsorption quantity of CrⅥ to kaolinite mineral increased with the increasing pH in the range of 2.0 to 7.0, then decreased at higher pH. But it showed some consistence among the four soil colloids. The lower the pH, the stronger the adsorption. The possible mechanisms are further discussed here. Meanwhile the influence of temperature on CrⅥ adsorption on different soil colloid and clay minerals are also investigated.

  4. Giant Leaking Colloid Cyst Presenting with Aseptic Meningitis

    DEFF Research Database (Denmark)

    Bakhtevari, Mehrdad Hosseinzadeh; Sharifi, Guive; Jabbari, Reza

    2015-01-01

    status, and meningismus. Microbiological examination of the cerebrospinal fluid revealed aseptic meningitis. Brain imaging revealed a third ventricular colloid cyst with hydrocephalus. RESULTS: The tumor was resected via endoscopic intervention. There were no persistent operative complications related...

  5. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  6. Key role of hydrodynamic interactions in colloidal gelation.

    Science.gov (United States)

    Furukawa, Akira; Tanaka, Hajime

    2010-06-18

    Colloidal gelation is caused by the formation of a percolated network of colloidal particles suspended in a liquid. Thus far the major transport process leading to gelation has been believed to be the brownian diffusion of particles. Contrary to this common belief, we reveal by numerical simulations that many-body hydrodynamic interactions between colloidal particles also play an essential role in gelation: They significantly promote gelation, or lower the colloid volume fraction threshold for percolation, as compared to their absence. We find that the incompressible nature of a liquid component and the resulting self-organization of hydrodynamic flow with a transverse (rotational) character are responsible for this enhancement of network-forming ability.

  7. Observation of a microcrystalline gel in colloids with competing interactions.

    Science.gov (United States)

    Zhang, Tian Hui; Groenewold, Jan; Kegel, Willem K

    2009-12-14

    A stable short-range crystalline structure is observed in colloidal systems with competing short-range attractions and long-range repulsions. We term these structures "microcrystalline gels" as the microcrystals are embedded in a dense disordered network.

  8. Elasto-hydrodynamic network analysis of colloidal gels

    Science.gov (United States)

    Swan, James; Varga, Zsigmond

    Colloidal gels formed at low particle volume fractions result from a competition between two rate processes: aggregation of colloids and compaction of pre-gel aggregates. Recent work has shown that the former process is highly sensitive to the nature of the hydrodynamic interactions between suspended colloids. This same sensitivity to hydrodynamic flows within the gel leads to pronounced differences in the spectrum of relaxation times and response to deformation of the gel. This talk explores those differences and their consequences through computational simulations and the framework of elasto-hydrodynamic network analysis. We demonstrate a significant impact of hydrodynamic interactions between gelled colloids on macroscopic gel dynamics and rheology as well as the effect of hydrodynamic screening in gelled materials.

  9. Hydrogen emission under laser exposure of colloidal solutions of nanoparticles

    CERN Document Server

    Barmina, E V; Shafeev, G A

    2016-01-01

    We report the generation of molecular hydrogen from water by laser irradiation, without any electrodes and photocatalysts. A near infrared pulsed nanosecond laser is used for exposure of colloidal solution of Au nanoparticles suspended in water. Laser exposure of the colloidal solution results in formation of plasma of laser breakdown of liquid and emission of H2. The rate of H2 emission depends critically on the energy of laser pulses. There is a certain threshold in laser fluence in liquid (around 50 J/cm2) below which plasma disappears and H2 emission stops. H2 emission from colloidal solution of Au nanoparticles in ethanol is higher than that from similar water colloid. It is found that formation of plasma and emission of H2 or D2 can be induced by laser exposure of pure liquids, either H2O or D2O, respectively. The results are interpreted as water molecules splitting by direct electron impact from breakdown plasma.

  10. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colloid thrusters have long been known for their exceptional thrust efficiency and ability to operate over a range of specific impulse due to easily variable...

  11. Charge-Controlled Colloids on Liquid-Liquid Interfaces

    Science.gov (United States)

    Kunz, Daniel A.; Reck, Bernd; Manoharan, Vinothan N.

    2014-03-01

    The tendency of colloidal particles to stabilize interfaces has been exploited for many years to generate Pickering emulsions with a variety of industrial applications. However, the exact stabilization mechanism and its dependence on the surface properties of the colloidal particles are not yet fully understood. We provide new interfacial studies on the nonequilibrium dynamics of a colloidal system with tunable surface charge density. We push individual sub-micron colloidal particles towards an oil-water interface and track their motion in three-dimensions using holographic microscopy to examine the influence of zeta potential on the dynamics of the system. This project was funded by the BASF Advanced Research Initiative, BASF SE, Germany.

  12. Synthetic Strategies Toward DNA-Coated Colloids that Crystallize.

    Science.gov (United States)

    Wang, Yufeng; Wang, Yu; Zheng, Xiaolong; Ducrot, Étienne; Lee, Myung-Goo; Yi, Gi-Ra; Weck, Marcus; Pine, David J

    2015-08-26

    We report on synthetic strategies to fabricate DNA-coated micrometer-sized colloids that, upon thermal annealing, self-assemble into various crystal structures. Colloids of a wide range of chemical compositions, including poly(styrene), poly(methyl methacrylate), titania, silica, and a silica-methacrylate hybrid material, are fabricated with smooth particle surfaces and a dense layer of surface functional anchors. Single-stranded oligonucleotides with a short sticky end are covalently grafted onto particle surfaces employing a strain-promoted alkyne-azide cycloaddition reaction resulting in DNA coatings with areal densities an order of magnitude higher than previously reported. Our approach allows the DNA-coated colloids not only to aggregate upon cooling but also to anneal and rearrange while still bound together, leading to the formation of colloidal crystal compounds when particles of different sizes or different materials are combined.

  13. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  14. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.;

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average...

  15. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  16. Preparation of (non-)aqueous dispersins of colloidal boehmite needles

    NARCIS (Netherlands)

    Buining, P.A.; Pathmamanoharan, C.; Philipse, A.P.; Lekkerkerker, H.N.W.

    1993-01-01

    A novel hydrothermal alkoxide method is presented for the preparation of stable, aqueousdispersions of fairly monodisperse, charged colloidal boehmite needles. A polymer coating procedure for the needles is described which leads to sterically stabilized dispersions in organic solvents.

  17. Corrosion processes in quantized semiconductor colloids studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nenadovic, M.T.; Nedeljkovic, J.M.; Micic, O.I.

    1987-04-01

    Electron-transfer reactions from different electron donors to PbSe colloids with diameter size less than 5 nm were studied by pulse-radiolysis techniques. Colloidal particles accept electrons from redox couples whose redox potentials are more negative than -0.8 V (vs. NHE). The optical properties of injected electrons show formation of Pb/sup +/ in bulk semiconductor after 1 ms and then reduction to Pb/sup 0/ in a second slower step ca. 10 s after electron injection. This cathodic corrosion process is also the dominant process during illumination of the colloids in the presence of hole scavengers. The photoreductive corrosion can be partially suppressed in the presence of an electron acceptor. Reduction reactions that cannot occur in bulk materials can occur in sufficiently small particles. Other quantized metal selenides show similar behaviour. The largest yield of hydrogen was produced with extremely small ZnSe colloids.

  18. Colloidal-crystal-assisted patterning of crystalline materials.

    Science.gov (United States)

    Li, Cheng; Qi, Limin

    2010-04-06

    Colloidal crystals have shown great potential as versatile templates for the fabrication of patterned micro- and nanostructures with complex architectures and novel properties. The patterning of functional crystalline materials in two and three dimensions is essential to the realization of their applications in many technologically important fields. This article highlights some recent progress in the fabrication of 2D and 3D patterned crystalline materials with the assistance of colloidal crystals. By combining a bioinspired synthetic strategy based on a transient amorphous phase with a colloidal-crystal templating method, unique 3D ordered macroporous (3DOM) calcite single crystals can be created. Moreover, patterned arrays of regular ZnO nanopillars with controlled size, shape, and orientation can be fabricated via a facile wet chemical approach by using masks derived from monolayer colloidal crystals (MCC).

  19. Mixed cryoglobulinemia

    Directory of Open Access Journals (Sweden)

    Ferri Clodoveo

    2008-09-01

    Full Text Available Abstract Mixed cryoglobulinemia (MC, type II and type III, refers to the presence of circulating cryoprecipitable immune complexes in the serum and manifests clinically by a classical triad of purpura, weakness and arthralgias. It is considered to be a rare disorder, but its true prevalence remains unknown. The disease is more common in Southern Europe than in Northern Europe or Northern America. The prevalence of 'essential' MC is reported as approximately 1:100,000 (with a female-to-male ratio 3:1, but this term is now used to refer to a minority of MC patients only. MC is characterized by variable organ involvement including skin lesions (orthostatic purpura, ulcers, chronic hepatitis, membranoproliferative glomerulonephritis, peripheral neuropathy, diffuse vasculitis, and, less frequently, interstitial lung involvement and endocrine disorders. Some patients may develop lymphatic and hepatic malignancies, usually as a late complication. MC may be associated with numerous infectious or immunological diseases. When isolated, MC may represent a distinct disease, the so-called 'essential' MC. The etiopathogenesis of MC is not completely understood. Hepatitis C virus (HCV infection is suggested to play a causative role, with the contribution of genetic and/or environmental factors. Moreover, MC may be associated with other infectious agents or immunological disorders, such as human immunodeficiency virus (HIV infection or primary Sjögren's syndrome. Diagnosis is based on clinical and laboratory findings. Circulating mixed cryoglobulins, low C4 levels and orthostatic skin purpura are the hallmarks of the disease. Leukocytoclastic vasculitis involving medium- and, more often, small-sized blood vessels is the typical pathological finding, easily detectable by means of skin biopsy of recent vasculitic lesions. Differential diagnoses include a wide range of systemic, infectious and neoplastic disorders, mainly autoimmune hepatitis, Sjögren's syndrome

  20. CURRENT COLLOIDAL DISPERSION GELS ARE NOT SUPERIOR TO POLYMER FLOODING

    Institute of Scientific and Technical Information of China (English)

    Seright Randy; Han Peihui; Wang Dongmei

    2006-01-01

    The suggestion that the colloidal-dispersion-gel (CDG) process is superior to normal polymer flooding is misleading and generally incorrect. Colloidal dispersion gels, in their present state of technological development, should not be advocated as an improvement to, or substitute for, polymer flooding. Gels made from aluminum-citrate crosslinked polyacrylamides can act as conventional gels and provide effective conformance improvement in treating some types of excess water production problems if sound scientific and engineering principles are respected.

  1. Causes and implications of colloid and microorganism retention hysteresis

    Science.gov (United States)

    Bradford, Scott A.; Kim, Hyunjung

    2012-09-01

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1 μm) and microorganisms (coliphage φX174 and E. coli D21g) under various transient solution chemistry conditions, and 360 μm Ottawa sand that was subject to different levels of cleaning, namely, a salt cleaning procedure that removed clay particles, and a salt + acid cleaning procedure that removed clay and reduced microscopic heterogeneities due to metal oxides and surface roughness. Comparison of results from the salt and salt + acid treated sand indicated that microscopic heterogeneity was a major contributor to colloid retention hysteresis. The influence of this heterogeneity increased with IS and decreasing colloid/microbe size on salt treated sand. These trends were not consistent with calculated mean interaction energies (the secondary minima), but could be explained by the size of the electrostatic zone of influence (ZOI) near microscopic heterogeneities. In particular, the depth of local minima in the interaction energy has been predicted to increase with a decrease in the ZOI when the colloid size and/or the Debye length decreased (IS increased). The adhesive interaction was therefore largely irreversible for smaller sized 0.1 μm CML colloids, whereas it was reversible for larger 1.1 μm CML colloids. Similarly, the larger E. coli D21g exhibited greater reversibility in retention than φX174. However, direct comparison of CML colloids and microbes was not possible due to differences in size, shape, and surface properties. Retention and release behavior of CML colloids on salt + acid treated sand was much more consistent with mean interaction energies due to reduction in microscopic heterogeneities.

  2. The Colloidal Stability of Magnetic Nanoparticles in Ionic Liquids

    Science.gov (United States)

    2015-08-03

    Final 3. DATES COVERED (From - To) 14 May 2014 – 13 May 2015 4. TITLE AND SUBTITLE The Colloidal Stability of Magnetic Nanoparticles in...Rev. 8-98) Prescribed by ANSI Std Z39-18 Final Report for AOARD Grant 144062 “The Colloidal Stability of Magnetic Nanoparticles in Ionic Liquids...sterically stabilized magnetic nanoparticles : Magnetic nanoparticles with an average core diameter of 25 nm used in this work were obtained from

  3. Binary Colloidal Alloy Test-3 and 4: Critical Point

    Science.gov (United States)

    Weitz, David A.; Lu, Peter J.

    2007-01-01

    Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  4. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim;

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  5. Microgel/SiO2 Hybrid Colloids with Different Architectures

    OpenAIRE

    Agrawal, Garima

    2015-01-01

    This dissertation deals with the development and characterization of microgel/silica hybrid colloids of different complexity based on different derivatives of hyperbranched polyalkoxysiloxanes (PAOS) as functional silica precursor polymers.Microgels are porous polymeric crosslinked particles which are swollen in a solvent like water. Additionally, these soft colloids provide an opportunity to combine different functionalities in a confined space. Taking advantage of this, a water based method...

  6. Colloidal self-assembly concepts for light management in photovoltaics

    Directory of Open Access Journals (Sweden)

    Matthias Karg

    2015-05-01

    Full Text Available Colloidal particles show interaction with electromagnetic radiation at optical frequencies. At the same time clever colloid design and functionalization concepts allow for versatile particle assembly providing monolayers of macroscopic dimensions. This has led to a significant interest in assembled colloidal structures for light harvesting in photovoltaic devices. In particular thin-film solar cells suffer from weak absorption of incoming photons. Consequently light management using assembled colloidal structures becomes vital for enhancing the efficiency of a given device. This review aims at giving an overview of recent developments in colloid synthesis, functionalization and assembly with a focus on light management structures in photovoltaics. We distinguish between optical effects related to the single particle properties as well as collective optical effects, which originate from the assembled structures. Colloidal templating approaches open yet another dimension for controlling the interaction with light. We focus in this respect on structured electrodes that have received much attention due to their dual functionality as light harvesting systems and conductive electrodes and highlight the impact of inter-particle spacing for templating.

  7. Assembly of colloidal strings in a simple fluid flow

    Science.gov (United States)

    Abe, Yu; Francis, Lorraine; Cheng, Xiang

    Colloidal particles self-assemble into ordered structures ranging from face- and body-centered cubic crystals to binary ionic crystals and to kagome lattices. Such diverse micron-scale structures are of practical importance for creating photonic materials and also of fundamental interest for probing equilibrium and non-equilibrium statistical mechanics. As a particularly interesting example, 1D colloidal strings provide a unique system for investigating non-equilibrium dynamics of crystal lattices. Here, we report a simple experimental method for constructing 1D colloidal crystals, where colloidal particles self-assemble into flow-aligned string structures near solid boundary under unidirectional flows. Using fast confocal microscopy, we explore the degree of particle alignment as functions of flow rate, particle concentrations, wetting properties of solid boundary and ionic strength of solvent. Through our systematic experiments, we show that these colloidal strings arise from hydrodynamic coupling, facilitated by electrostatic attractions between particles and the boundary. Compared with previous methods, our work provides a much simpler experimental procedure for assembling a large number of colloidal strings.

  8. Subharmonic Shapiro steps of sliding colloidal monolayers in optical lattices.

    Science.gov (United States)

    Paronuzzi Ticco, Stella V; Fornasier, Gabriele; Manini, Nicola; Santoro, Giuseppe E; Tosatti, Erio; Vanossi, Andrea

    2016-04-06

    We investigate theoretically the possibility to observe dynamical mode locking, in the form of Shapiro steps, when a time-periodic potential or force modulation is applied to a two-dimensional (2D) lattice of colloidal particles that are dragged by an external force over an optically generated periodic potential. Here we present realistic molecular dynamics simulations of a 2D experimental setup, where the colloid sliding is realized through the motion of soliton lines between locally commensurate patches or domains, and where the Shapiro steps are predicted and analyzed. Interestingly, the jump between one step and the next is seen to correspond to a fixed number of colloids jumping from one patch to the next, across the soliton line boundary, during each ac cycle. In addition to ordinary 'integer' steps, coinciding here with the synchronous rigid advancement of the whole colloid monolayer, our main prediction is the existence of additional smaller 'subharmonic' steps due to localized solitonic regions of incommensurate layers executing synchronized slips, while the majority of the colloids remains pinned to a potential minimum. The current availability and wide parameter tunability of colloid monolayers makes these predictions potentially easy to access in an experimentally rich 2D geometrical configuration.

  9. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.

    Science.gov (United States)

    Knowles, Kathryn E; Hartstein, Kimberly H; Kilburn, Troy B; Marchioro, Arianna; Nelson, Heidi D; Whitham, Patrick J; Gamelin, Daniel R

    2016-09-28

    Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.

  10. Synthesis, structure characterization and biological activity of selected metal complexes of sulfonamide Schiff base as a primary ligand and some mixed ligand complexes with glycine as a secondary ligand

    Science.gov (United States)

    Sharaby, Carmen M.; Amine, Mona F.; Hamed, Asmaa A.

    2017-04-01

    The current work reports synthesis of metal complexes and mixed ligand complexes of a novel sulfonamide Schiff base ligand (HL) resulted from the condensation of sulfametrole [N‧-(4-methoxy-1,2,5-thiadiazol-3-yl]sulfanilamide and acetyl-acetone as a primary ligand and glycine as a secondary ligand. The metal complexes and mixed ligand complexes of HL Schiff base ligand were synthesized and characterized using different physicochemical studies as elemental analyses, mass spectra, conductivity measurement, IR spectra, 1H NMR spectra, UV-vis Spectra, solid reflectance, magnetic susceptibility, thermal analyses (TGA and DTA) and their microbial and anticancer activities. The spectroscopic data of the complexes suggest their 1:2(L1:M) complex structures and 1:2:2(L1:L2:M) mixed ligand complex structures, where L1 = HL and L2 = glycine. Also, the spectroscopic studies suggested the octahedral structure for all complexes. The synthesized Schiff base, its metal and mixed ligand complexes were screened for their bacterial, antifungal and anticancer activity. The activity data show that the metal complexes and mixed ligand complexes exhibited promising microbial and anticancer activities than their parent HL Schiff base ligand, also the data show that the mixed ligand complexes more effective than the metal complexes.

  11. Influence of colloidal particle transfer on the quality of self-assembling colloidal photonic crystal under confined condition

    Institute of Scientific and Technical Information of China (English)

    赵永强; 李娟; 刘秋艳; 董文钧; 陈本永; 李超荣

    2015-01-01

    The relationship between colloidal particle transfer and quality of colloidal photonic crystal (CPC) is investigated by comparing colloidal particle self-assembling under the vertical channel (VC) and horizontal channel (HC) conditions. Both the theoretical analyses and the experimental measurements indicate that crystal quality depends on the stability of mass transfer. For the VC, colloidal particle transfer takes place in a stable laminar flow, which is conducive to forming high-quality crystal. In contrast, it happens in an unstable turbulent flow for the HC. Crystals with cracks and uneven surface formed under the HC condition can be seen from the images of field emission scanning electron microscope (SEM) and three-dimensional (3D) laser scanning microscope (LSM), respectively.

  12. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  13. Colloid Aspects of Chemical-Mechanical Planarization

    Directory of Open Access Journals (Sweden)

    Matijević, E.

    2010-09-01

    Full Text Available The essential parts of interconnects for silicon based logic and memory devices consist of metal wiring (e.g. copper, a barrier metal (Ta, TaN, and of insulation (SiO2 , low-k polymer. The deposition of the conducting metal cannot be confined to trenches, resulting in additional coverage of Cu and Ta/TaN on the surface of the dielectrics, yielding an electrically conducting continuous but an uneven surface. The surplus metal must be removed until a perfectly flat surface consisting of electrically isolated metal lines is achieved with no imperfections. This task is accomplished by the chemical-mechanical planarization (CMP process, in which the wafer is polished with a slurry containing abrasives of finely dispersed particles in submicrometer to nanometer size. The slurries also contain dissolved chemicals to modify the surfaces to be planarized. Eventually the final product must be cleared of any adhered particles and debris left after polishing is completed. Obviously the entire process deals with materials and interactions which are the focal subjects of colloid and surface science, such as the natures of abrasive particles and their stability in the slurry, the properties of various surfaces and their modifications, adhesion and detachment of the particles and different methods for the characterization of constituents, as well as elucidation of the relevant interfacial phenomena. This review endeavors to describe the colloid approach to optimize the materials and processes in order to achieve desirable polish rates and final surfaces with no imperfections. Specifically, the effects of the composition, size, shape, and charge of abrasive particles on the polish process and the quality of planarized wafers is described in detail. Furthermore, the interactions of metal surfaces with oxidizing, chelating, and other species which affect the dissolution and surface modification of metal (copper surfaces are illustrated and related to the

  14. Chemical Routes to Colloidal Chalcogenide Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond

    2015-02-19

    This project sought to develop new low-temperature synthetic pathways to intermetallic and chalcogenide nanostructures and powders, with an emphasis on systems that are relevant to advancing the synthesis, processing, and discovery of superconducting materials. The primary synthetic routes involved solution chemistry methods, and several fundamental synthetic challenges that underpinned the formation of these materials were identified and investigated. Methods for incorporating early transition metals and post transition metals into nanoscale and bulk crystals using low-temperature solution chemistry methods were developed and studied, leading to colloidal nanocrystals of elemental indium, manganese, and germanium, as well as nanocrystalline and bulk intermetallic compounds containing germanium, gallium, tin, indium, zinc, bismuth, and lithium. New chemical tools were developed to help target desired phases in complex binary intermetallic and metal chalcogenide systems that contain multiple stable phases, including direct synthesis methods and chemical routes that permit post-synthetic modification. Several phases that are metastable in bulk systems were targeted, synthesized, and characterized as nanocrystalline solids and bulk powders, including the L12-type intermetallic compounds Au3Fe, Au3Ni, and Au3Co, as well as wurtzite-type MnSe. Methods for accessing crystalline metal borides and carbides using direct solution chemistry methods were also developed, with an emphasis on Ni3B and Ni3C, which revealed useful correlations of composition and magnetic properties. Methods for scale-up and nanoparticle purification were explored, providing access to centimeter-scale pressed pellets of polyol-synthesized nanopowders and a bacteriophage-mediated method for separating impure nanoparticle mixtures into their components. Several advances were made in the synthesis of iron selenide and related superconducting materials, including the production of colloidal Fe

  15. Analysis report for WIPP colloid model constraints and performance assessment parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E.; Sassani, David Carl

    2014-03-01

    An analysis of the Waste Isolation Pilot Plant (WIPP) colloid model constraints and parameter values was performed. The focus of this work was primarily on intrinsic colloids, mineral fragment colloids, and humic substance colloids, with a lesser focus on microbial colloids. Comments by the US Environmental Protection Agency (EPA) concerning intrinsic Th(IV) colloids and Mg-Cl-OH mineral fragment colloids were addressed in detail, assumptions and data used to constrain colloid model calculations were evaluated, and inconsistencies between data and model parameter values were identified. This work resulted in a list of specific conclusions regarding model integrity, model conservatism, and opportunities for improvement related to each of the four colloid types included in the WIPP performance assessment.

  16. Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media

    Science.gov (United States)

    Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie

    2016-10-01

    Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.

  17. The contribution of combined crystalloid and colloid osmosis to fluid and sodium management in peritoneal dialysis.

    Science.gov (United States)

    Freida, P; Wilkie, M; Jenkins, S; Dallas, F; Issad, B

    2008-04-01

    The achievement of euvolemia is essential to the successful management of peritoneal dialysis patients. However, the concern that hypertonic glucose exchanges may have a role in long-term changes to the peritoneal membrane has lead to an alternative strategy to enhance ultrafiltration (UF) over the long dwell by combining crystalloid and colloid osmosis. This review summarizes the experience of mixing glucose or amino acids with polyglucose (icodextrin), with particular focus given to data from studies using glucose/icodextrin in combinations of 1.36%/7.5% and 2.61%/6.8%. Both combinations demonstrate a significant increment of UF volume and sodium removal compared with the component osmotic agents used individually over long dwells, with the 2.61%/6.8% mixture having an effect over dwells extending to 15 h. Hypothetically, the mechanism of the enhanced UF is the attenuation by the colloid osmotic force of the backflow of water through small pores from dialysate to the peritoneal capillary circulation once the crystalloid osmotic force has dissipated. This experience provides promising data that deserves further examination in longer term clinical studies.

  18. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  19. 3-D Distribution of Retained Colloids in Unsaturated Porous Media

    Science.gov (United States)

    Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.

    2013-12-01

    It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false

  20. Magnetic particle mixing with magnetic micro-convection for microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Kitenbergs, Guntars, E-mail: guntars.kitenbergs@lu.lv [MMML Lab, Department of Theoretical Physics, University of Latvia, Zeļļu 8, LV-1002 Riga (Latvia); Sorbonne Universites, UPMC Univ Paris 06, UMR 8234, PHENIX, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 8234, PHENIX, 4 place Jussieu, F-75005 Paris (France); Erglis, Kaspars, E-mail: kaspars.erglis@lu.lv [MMML Lab, Department of Theoretical Physics, University of Latvia, Zeļļu 8, LV-1002 Riga (Latvia); Perzynski, Régine, E-mail: regine.perzynski@upmc.fr [Sorbonne Universites, UPMC Univ Paris 06, UMR 8234, PHENIX, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 8234, PHENIX, 4 place Jussieu, F-75005 Paris (France); Cēbers, Andrejs, E-mail: aceb@tok.sal.lv [MMML Lab, Department of Theoretical Physics, University of Latvia, Zeļļu 8, LV-1002 Riga (Latvia)

    2015-04-15

    In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele–Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted. - Highlights: • We study the magnetic micro-convection as a mixing method in microfluidics. • We show that the method enhances mixing with magnetic field squared dependency. • We propose a flow cell setup for mixing and justify it with a sample experiment. • The mixing method can be easily implemented in an existing microfluidics setup.

  1. Advancing colloidal quantum dot photovoltaic technology

    Science.gov (United States)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  2. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  3. The nature of the colloidal 'glass' transition.

    Science.gov (United States)

    Dawson, Kenneth A; Lawlor, A; DeGregorio, Paolo; McCullagh, Gavin D; Zaccarelli, Emanuela; Foffi, Giuseppe; Tartaglia, Piero

    2003-01-01

    The dynamically arrested state of matter is discussed in the context of athermal systems, such as the hard sphere colloidal arrest. We believe that the singular dynamical behaviour near arrest expressed, for example, in how the diffusion constant vanishes may be 'universal', in a sense to be discussed in the paper. Based on this we argue the merits of studying the problem with simple lattice models. This, by analogy with the the critical point of the Ising model, should lead us to clarify the questions, and begin the program of establishing the degree of universality to be expected. We deal only with 'ideal' athermal dynamical arrest transitions, such as those found for hard sphere systems. However, it is argued that dynamically available volume (DAV) is the relevant order parameter of the transition, and that universal mechanisms may be well expressed in terms of DAV. For simple lattice models we give examples of simple laws that emerge near the dynamical arrest, emphasising the idea of a near-ideal gas of 'holes', interacting to give the power law diffusion constant scaling near the arrest. We also seek to open the discussion of the possibility of an underlying weak coupling theory of the dynamical arrest transition, based on DAV.

  4. Freezing of charged colloids in slit pores.

    Science.gov (United States)

    Grandner, Stefan; Klapp, Sabine H L

    2008-12-28

    Using Monte Carlo simulations in the grand canonical and isobaric ensembles we investigate freezing phenomena in a charged colloidal suspension confined to narrow slit pores. Our model involves only the macroions which interact via a Derjaguin-Landau-Verwey-Overbeek (DLVO) potential supplemented by a soft-sphere potential. We focus on DLVO parameters typical for moderately charged silica particles (with charges Z approximately 35) in solvents of low ionic strengths. The corresponding DLVO interactions are too weak to drive a (bulk) freezing transition. Nevertheless, for sufficiently small surface separations L(z) the confined systems display not only layering but also significant in-plane crystalline order at chemical potentials where the bulk system is a globally stable fluid (capillary freezing). At confinement conditions related to two-layer systems the observed in-plane structures are consistent with those detected in ground state calculations for perfect Yukawa bilayers [R. Messina and H. Lowen, Phys. Rev. Lett. 91, 146101 (2003)]. Here we additionally observe (at fixed L(z)) a compression-induced first-order phase transition from a two-layer to a three-layer system with different in-plane structure, in agreement with previous findings for pure hard spheres.

  5. Maximizing exosome colloidal stability following electroporation.

    Science.gov (United States)

    Hood, Joshua L; Scott, Michael J; Wickline, Samuel A

    2014-03-01

    Development of exosome-based semisynthetic nanovesicles for diagnostic and therapeutic purposes requires novel approaches to load exosomes with cargo. Electroporation has previously been used to load exosomes with RNA. However, investigations into exosome colloidal stability following electroporation have not been considered. Herein, we report the development of a unique trehalose pulse media (TPM) that minimizes exosome aggregation following electroporation. Dynamic light scattering (DLS) and RNA absorbance were employed to determine the extent of exosome aggregation and electroextraction post electroporation in TPM compared to common PBS pulse media or sucrose pulse media (SPM). Use of TPM to disaggregate melanoma exosomes post electroporation was dependent on both exosome concentration and electric field strength. TPM maximized exosome dispersal post electroporation for both homogenous B16 melanoma and heterogeneous human serum-derived populations of exosomes. Moreover, TPM enabled heavy cargo loading of melanoma exosomes with 5nm superparamagnetic iron oxide nanoparticles (SPION5) while maintaining original exosome size and minimizing exosome aggregation as evidenced by transmission electron microscopy. Loading exosomes with SPION5 increased exosome density on sucrose gradients. This provides a simple, label-free means of enriching exogenously modified exosomes and introduces the potential for MRI-driven theranostic exosome investigations in vivo.

  6. Advancing colloidal quantum dot photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Cheng Yan

    2016-06-01

    Full Text Available Colloidal quantum dots (CQDs are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  7. Colloidal quantum dot materials for infrared optoelectronics

    Science.gov (United States)

    Arinze, Ebuka S.; Nyirjesy, Gabrielle; Cheng, Yan; Palmquist, Nathan; Thon, Susanna M.

    2015-09-01

    Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

  8. Particle cage dynamics in flowing colloidal dispersions

    Science.gov (United States)

    Marenne, Stephanie; Morris, Jeffrey F.

    2016-11-01

    The idea of the particle in a suspension at rest being trapped in a cage formed by its neighbors, widely used to understand glassy suspensions, has been applied to freely flowing suspensions. Stokesian Dynamics, a discrete particle simulation, is used to simulate the flow of monodisperse colloidal hard sphere suspensions. The cage analogy is useful to study the nonlinear stress in the material during start-up of shear flow, where the neighbor cage deforms and breaks, and during oscillatory shear flow where, depending on the amplitude of oscillation, the particle is trapped inside the cage or escapes during the oscillation cycle. A precise statistical definition of the cage in terms of the nearest neighbor ring in the pair distribution function is developed. We examine the dependence of the cage dynamics on the volume fraction of particles and the Peclet number Pe , the ratio between shear and Brownian forces. Under flow, the cage is found to break at quite definite positions, and the structural distortion is found to be clearly related to the shear and normal stress response. The shear strain needed to break the neighbor cage depends on Pe as Brownian motion enhances the total deformation. A simple model captures the strain at the stress overshoot for start-up of steady shear.

  9. Logic control of microfluidics with smart colloid

    KAUST Repository

    Wang, Limu

    2010-01-01

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate. © The Royal Society of Chemistry 2010.

  10. All biology is computational biology

    Science.gov (United States)

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  11. Review: Biofunctionalized Quantum Dots in Biology and Medicine

    OpenAIRE

    Sonal Mazumder; Rajib Dey; Mitra, M. K.; Mukherjee, S.; G. C. Das

    2009-01-01

    Quantum dot (QD) nanocrystals which have important optical properties, in particular, the wavelength of their fluorescence, depend strongly on their size. Colloidal QDs once dispersed in a solvent are quite interesting fluorescence probes for all types of labelling studies because of their reduced tendency to photo bleach. In this review, we will give an overview on how QDs have been used so far in cell biology. In particular, we will discuss the biologically relevant properties of QDs and fo...

  12. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    Science.gov (United States)

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  13. Particle and substrate charge effects on colloidal self-assembly in a sessile drop.

    Science.gov (United States)

    Yan, Qingfeng; Gao, Li; Sharma, Vyom; Chiang, Yet-Ming; Wong, C C

    2008-10-21

    By direct video monitoring of dynamic colloidal self-assembly during solvent evaporation in a sessile drop, we investigated the effect of surface charge on the ordering of colloidal spheres. The in situ observations revealed that the interaction between charged colloidal spheres and substrates affects the mobility of colloidal spheres during convective self-assembly, playing an important role in the colloidal crystal growth process. Both ordered and disordered growth was observed depending on different chemical conditions mediated by surface charge and surfactant additions to the sessile drop system. These different self-assembly behaviors were explained by the Coulombic and hydrophobic interactions between surface-charged colloidal spheres and substrates.

  14. Transport and deposition of suspended soil colloids in saturated sand columns

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per;

    2011-01-01

    Understanding colloid mobilization, transport and deposition in the subsurface is a prerequisite for predicting colloid‐facilitated transport of strongly adsorbing contaminants and further developing remedial activities. This study investigated the transport behavior of soil‐colloids extracted from...... a red‐yellow soil from Okinawa, Japan. Different concentrations of suspended‐soil colloids (with diameter ....21 mm) sands. The transport and retention of colloids were studied by analyzing colloid effluent breakthrough curves (BTCs), particle size distribution in the effluent, and colloid deposition profiles within the column. The results showed a significant influence of flow velocity: Low flow velocity...

  15. Diffusion of colloidal fluids in random porous media.

    Science.gov (United States)

    Chávez-Rojo, M A; Juárez-Maldonado, R; Medina-Noyola, M

    2008-04-01

    The diffusive relaxation of a colloidal fluid adsorbed in a porous medium depends on many factors, including the concentration and composition of the adsorbed colloidal fluid, the average structure of the porous matrix, and the nature of the colloid-colloid and colloid-substrate interactions. A simple manner to describe these effects is to model the porous medium as a set of spherical particles fixed in space at random positions with prescribed statistical structural properties. Within this model one may describe the relaxation of concentration fluctuations of the adsorbed fluid by simply setting to zero the short-time mobility of one species (the porous matrix) in a theory of the dynamics of equilibrium colloidal mixtures, or by extending such dynamic theory to explicitly consider the porous matrix as a random external field, as recently done in the framework of mode coupling theory [V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005)]. Here we consider the first approach and employ the self-consistent generalized Langevin equation (SCGLE) theory of the dynamics of equilibrium colloidal mixtures, to describe the dynamics of the mobile component. We focus on the short- and intermediate-time regimes, which we compare with Brownian dynamics simulations involving a binary mixture with screened Coulomb interactions for two models of the average static structure of the matrix: a porous matrix constructed by quenching configurations of an equilibrium mixture in which both species were first equilibrated together, and a preexisting matrix with prescribed average structure, in which we later add the mobile species. We conclude that in both cases, if the correct static structure factors are provided as input, the SCGLE theory correctly predicts the main features of the dynamics of the permeating fluid.

  16. Synthesis of porous carbon balls from spherical colloidal crystal templates.

    Science.gov (United States)

    Kim, Youngchan; Cho, Chang-Yeol; Kang, Ji-Hwan; Cho, Young-Sang; Moon, Jun Hyuk

    2012-07-17

    Spherical inverse opal (IO) porous carbon was produced utilizing silica colloidal crystal spheres as templates. The spherical colloidal crystals were obtained through the self-assembly of monodisperse particles inside an emulsion droplet with confined geometry. The templates were inverted using a carbon precursor, phenol-formaldehyde (PF) resol. We demonstrated a two-step synthesis involving the subsequent infiltration of the PF resol precursor into the spherical colloidal crystal template and a one-step synthesis using a silica colloidal solution containing dissolved PF resol. In the former case, the sizes of the IO carbon balls were controlled by the size of the colloidal crystal templates, and diameters of a few micrometers up to 50 μm were obtained. The average diameter of the macropores created by the silica particles was 230 nm. Moreover, meso-/macroporous IO carbon balls were created using block-copolymer templates in the PF resol. In the one-step synthesis, the concentration of PF resol in the colloidal solution controlled the diameter of the IO carbon balls. IO balls smaller than 3 μm were obtained from the direct addition of 5% PF resol. The one-step synthesis produced rather irregular porous structures reflecting the less ordered crystallization processes inside the spherical colloidal crystals. Nitrogen adsorption and cyclic voltammetry measurements were conducted to measure the specific area and electroactive surface area of the IO carbon balls. The specific area of the mesopores-incorporated IO carbon balls was 1.3 times higher than that of bare IO carbon balls. Accordingly, the meso-/macroporous porous carbon balls exhibited higher electrocatalytic properties than the macroporous carbon balls.

  17. BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER BY DENITRIFICATION OF MIX-CULTURING FUNGI AND BACTERIA%混合培养真菌和细菌对废水的生物去氮作用

    Institute of Scientific and Technical Information of China (English)

    LIU De-Li; ZHENG Yong-Liang; LI Ping; TAKAYA Naoki; SHOUN Hirofumi

    2006-01-01

    Denitrification has been long thought to be a unique characteristic of prokaryotes, but in recent years, several filamentous fungi and yeasts were found to exhibit denitrifying activities. This paper deals with the examination of denitrification capabilities by mix-cultures of the fungus ( Fusarium oxysporum ) and the bacterium ( Pseudomonas stutzeri TR2) in combination with a specific medium and using a synthetic wastewater of defined quality. The results revealed that P. stutzeri TR2 has strong and fast denitrifying capabilities under anaerobic conditions, and that co-denitrification of mix-cultures with F. oxysporum and P. stutzeri TR2 was more effective to remove nitrate under limited oxygen conditions. P. stutzeri TR2 was able to remove nitrate completely during cultivation for 12 hr in the specific medium and in mixed culture with F. oxysporum. A rapid N2 evolution by mixed culture with F. oxysporum and P. stutzeri TR2 was observed in both mixed culture medium and synthetic wastewater. Using synthetic wastewater with a defined composition, about 87% of the nitrate was eliminated to form about 420μmol of N2 from 1.0mmol of NO3- by co-denitrification of F. oxysporum and P. stutzeri TR2 after incubation for 6days. In co-cultures of F. oxysporum and P. stutzeri TR2, N2O produced by F. oxysporum was rapidly consumed by P. stutzeri TR2. This indicated that mixed culture of F. oxysporum and P. stutzeri TR2 can be used to remove nitrate and nitrite from wastewater effectively.

  18. Mixed Stroke

    Institute of Scientific and Technical Information of China (English)

    黄如训; 曾进胜

    2000-01-01

    Purpose To summarize the chnical, autoptic and animal experimental dala of stroke, propose the concept of mixed stroke (MS) and demonstrate the enoiogy, pathogenesis, clinical mainfestations, prophylaxis and treatment of MS Background At present. stroke still is classified in the national and international academic fields as two main groups: hemorrhage and ischema In fact, thc cerebral vascular disease with hemorrhage forus and ischema focus at the same time is not rare moreover, this type of stroke has special etiology, pathogenesis and clinical manifestations. But it is always made a main dagnosis and neglected the other nature of coexistent focus on either clinical or pathological diagnosis according to traditional classification of stroke Data sources and methods Mort of pablished originsl articles about MS in our department and laboralory wcre reviewed. Resulta The clinical autoptic and animal experimental dats all prcved that hemorrhage and infarction could occur in the course of a stroke simultaneously or in suecession during a short time, which demonstrated the existence of MS It was found clinically that MS patients all had the hustory of hypcrtension and in the autoptic data the MS patients dying of stroke all had typical hypertensive changes in the heart and kidney. and had hypertensive arteriosclerosis in the cerebral arteriole and small artery. MS was cas lily thdueed in stroke-prone renovascular hypertensivc rats This kind of rats are free from genetic deficiency and arc not affected by senile factor, so their cerebral vascular foci are mainly induced by the single factor -hypertension. TThese indicate definitely that hypertensive cerebral vascular lesion is the basis inducing MS. The main lesions of hypertensive cerebral arteriole and small artery were hyalinosis and fibrinoid of the walls, and the formation of microaneurysms or hyperplasla of iniernal and external layers The math lcsions of hypertensive cerebral capillaries were increasing vascular

  19. The structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields

    CERN Document Server

    Koser, Alison E; Arratia, Paulo E

    2013-01-01

    Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an important role on the emergence of collective behavior. Here, we experimentally investigate their role in the dynamics of self-assembling magnetically-driven colloidal particles which can rapidly form organized hexagonal structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly decrease the rate of cluster formation, all while holding the system at constant number density. Furthermore, we show that time and length scales of cluster formation depend on the Mason number (Mn), or ratio of viscous to magnetic forces, scaling as t / Mn and L / Mn^(1/2). Our results suggest that viscous stresses hinder collective behavior in a se...

  20. Physical factors affecting the transport and fate of colloids in saturated porous media

    Science.gov (United States)

    Bradford, Scott A.; Yates, Scott R.; Bettahar, Mehdi; Simunek, Jirka

    2002-12-01

    Saturated soil column experiments were conducted to explore the influence of colloid size and soil grain size distribution characteristics on the transport and fate of colloid particles in saturated porous media. Stable monodispersed colloids and porous media that are negatively charged were employed in these studies. Effluent colloid concentration curves and the final spatial distribution of retained colloids by the porous media were found to be highly dependent on the colloid size and soil grain size distribution. Relative peak effluent concentrations decreased and surface mass removal by the soil increased when the colloid size increased and the soil median grain size decreased. These observations were attributed to increased straining of the colloids; i.e., blocked pores act as dead ends for the colloids. When the colloid size is small relative to the soil pore sizes, straining becomes a less significant mechanism of colloid removal and attachment becomes more important. Mathematical modeling of the colloid transport experiments using traditional colloid attachment theory was conducted to highlight differences in colloid attachment and straining behavior and to identify parameter ranges that are applicable for attachment models. Simulated colloid effluent curves using fitted first-order attachment and detachment parameters were able to describe much of the effluent concentration data. The model was, however, less adequate at describing systems which exhibited a gradual approach to the peak effluent concentration and the spatial distribution of colloids when significant mass was retained in the soil. Current colloid filtration theory did not adequately predict the fitted first-order attachment coefficients, presumably due to straining in these systems.