WorldWideScience

Sample records for biological invasions electronic

  1. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  2. Biological invasions in forest ecosystems

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  3. Microbial ecology of biological invasions

    NARCIS (Netherlands)

    Van der Putten, W.H.; Klironomos, J.N.; Wardle, D.A.

    2007-01-01

    Invasive microbes, plants and animals are a major threat to the composition and functioning of ecosystems; however, the mechanistic basis of why exotic species can be so abundant and disruptive is not well understood. Most studies have focused on invasive plants and animals, although few have

  4. Economic Analysis of Biological Invasions in Forests

    Science.gov (United States)

    Tomas P. Holmes; Julian Aukema; Jeffrey Englin; Robert G. Haight; Kent Kovacs; Brian Leung

    2014-01-01

    Biological invasions of native forests by nonnative pests result from complex stochastic processes that are difficult to predict. Although economic optimization models describe efficient controls across the stages of an invasion, the ability to calibrate such models is constrained by lack of information on pest population dynamics and consequent economic damages. Here...

  5. A proposed unified framework for biological invasions

    Czech Academy of Sciences Publication Activity Database

    Blackburn, T. M.; Pyšek, Petr; Bacher, S.; Carlton, J. T.; Duncan, R. P.; Jarošík, Vojtěch; Wilson, J. R. U.; Richardson, D. M.

    2011-01-01

    Roč. 26, č. 7 (2011), s. 333-339 ISSN 0169-5347 R&D Projects: GA ČR GA206/09/0563; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * invasion process * general framework Subject RIV: EF - Botanics Impact factor: 15.748, year: 2011

  6. Biological invasions, ecological resilience and adaptive governance.

    Science.gov (United States)

    Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R

    2016-12-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services. Copyright © 2016. Published by Elsevier Ltd.

  7. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  8. A systematic review of context bias in invasion biology.

    Directory of Open Access Journals (Sweden)

    Robert J Warren

    Full Text Available The language that scientists use to frame biological invasions may reveal inherent bias-including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.

  9. A systematic review of context bias in invasion biology.

    Science.gov (United States)

    Warren, Robert J; King, Joshua R; Tarsa, Charlene; Haas, Brian; Henderson, Jeremy

    2017-01-01

    The language that scientists use to frame biological invasions may reveal inherent bias-including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.

  10. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  11. Book review: Encyclopedia of biological invasions

    Science.gov (United States)

    Qinfeng Guo

    2011-01-01

    Species introductions and consequent biotic invasions and homogenization are major components of global change that are drawing increasing concern and various levels of actions and reactions around the world. Invasion ecology has advanced rapidly during the last few decades, and the discipline is now increasingly integrated with the social and economic sciences. A...

  12. Electron holography of biological samples.

    Science.gov (United States)

    Simon, P; Lichte, H; Formanek, P; Lehmann, M; Huhle, R; Carrillo-Cabrera, W; Harscher, A; Ehrlich, H

    2008-01-01

    In this paper, we summarise the development of off-axis electron holography on biological samples starting in 1986 with the first results on ferritin from the group of Tonomura. In the middle of the 1990s strong interest was evoked, but then stagnation took place because the results obtained at that stage did not reach the contrast and the resolution achieved by conventional electron microscopy. To date, there exist only a few ( approximately 12) publications on electron holography of biological objects, thus this topic is quite small and concise. The reason for this could be that holography is mostly established in materials science by physicists. Therefore, applications for off-axis holography were powerfully pushed forward in the area of imaging, e.g. electric or magnetic micro- and nanofields. Unstained biological systems investigated by means of off-axis electron holography up to now are ferritin, tobacco mosaic virus, a bacterial flagellum, T5 bacteriophage virus, hexagonal packed intermediate layer of bacteria and the Semliki Forest virus. New results of the authors on collagen fibres and surface layer of bacteria, the so-called S-layer 2D crystal lattice are presented in this review. For the sake of completeness, we will shortly discuss in-line holography of biological samples and off-axis holography of materials related to biological systems, such as biomaterial composites or magnetotactic bacteria.

  13. Dynamic models in research and management of biological invasions.

    Science.gov (United States)

    Buchadas, Ana; Vaz, Ana Sofia; Honrado, João P; Alagador, Diogo; Bastos, Rita; Cabral, João A; Santos, Mário; Vicente, Joana R

    2017-07-01

    Invasive species are increasing in number, extent and impact worldwide. Effective invasion management has thus become a core socio-ecological challenge. To tackle this challenge, integrating spatial-temporal dynamics of invasion processes with modelling approaches is a promising approach. The inclusion of dynamic processes in such modelling frameworks (i.e. dynamic or hybrid models, here defined as models that integrate both dynamic and static approaches) adds an explicit temporal dimension to the study and management of invasions, enabling the prediction of invasions and optimisation of multi-scale management and governance. However, the extent to which dynamic approaches have been used for that purpose is under-investigated. Based on a literature review, we examined the extent to which dynamic modelling has been used to address invasions worldwide. We then evaluated how the use of dynamic modelling has evolved through time in the scope of invasive species management. The results suggest that modelling, in particular dynamic modelling, has been increasingly applied to biological invasions, especially to support management decisions at local scales. Also, the combination of dynamic and static modelling approaches (hybrid models with a spatially explicit output) can be especially effective, not only to support management at early invasion stages (from prevention to early detection), but also to improve the monitoring of invasion processes and impact assessment. Further development and testing of such hybrid models may well be regarded as a priority for future research aiming to improve the management of invasions across scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biological invasions, ecological resilience and adaptive governance

    Science.gov (United States)

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much...

  15. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  16. Biological invasions: recommendations for U.S. policy and management.

    Science.gov (United States)

    Lodge, David M; Williams, Susan; MacIsaac, Hugh J; Hayes, Keith R; Leung, Brian; Reichard, Sarah; Mack, Richard N; Moyle, Peter B; Smith, Maggie; Andow, David A; Carlton, James T; McMichael, Anthony

    2006-12-01

    The Ecological Society of America has evaluated current U.S. national policies and practices on biological invasions in light of current scientific knowledge. Invasions by harmful nonnative species are increasing in number and area affected; the damages to ecosystems, economic activity, and human welfare are accumulating. Without improved strategies based on recent scientific advances and increased investments to counter invasions, harm from invasive species is likely to accelerate. Federal leadership, with the cooperation of state and local governments, is required to increase the effectiveness of prevention of invasions, detect and respond quickly to new potentially harmful invasions, control and slow the spread of existing invasions, and provide a national center to ensure that these efforts are coordinated and cost effective. Specifically, the Ecological Society of America recommends that the federal government take the following six actions: (1) Use new information and practices to better manage commercial and other pathways to reduce the transport and release of potentially harmful species; (2) Adopt more quantitative procedures for risk analysis and apply them to every species proposed for importation into the country; (3) Use new cost-effective diagnostic technologies to increase active surveillance and sharing of information about invasive species so that responses to new invasions can be more rapid and effective; (4) Create new legal authority and provide emergency funding to support rapid responses to emerging invasions; (5) Provide funding and incentives for cost-effective programs to slow the spread of existing invasive species in order to protect still uninvaded ecosystems, social and industrial infrastructure, and human welfare; and (6) Establish a National Center for Invasive Species Management (under the existing National Invasive Species Council) to coordinate and lead improvements in federal, state, and international policies on invasive species

  17. Global patterns in threats to vertebrates by biological invasions

    Science.gov (United States)

    Bellard, C.; Genovesi, P.; Jeschke, J. M.

    2016-01-01

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity. PMID:26817767

  18. Overlooking the smallest matter: viruses impact biological invasions.

    Science.gov (United States)

    Faillace, Cara A; Lorusso, Nicholas S; Duffy, Siobain

    2017-04-01

    Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single-stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self-sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species. © 2017 John Wiley & Sons Ltd/CNRS.

  19. REPRODUCTIVE BIOLOGY OF INVASIVE LIONFISH (PTEROIS SPP.

    Directory of Open Access Journals (Sweden)

    Patrick G Gardner

    2015-02-01

    Full Text Available Indo-Pacific lionfishes, Pterois volitans (Linnaeus, 1758 and Pterois miles (Bennett, 1828, native to the Pacific and Indian Oceans, respectively, were first observed in the western Atlantic off Florida in 1985. They have since spread and are established throughout the broader Caribbean region. Despite potentially devastating ecological and economic effects, information on key life history characteristics for lionfish in the invaded range is sparse. Objectives of this study were to quantify 1 periodicity in gonad development and spawning, 2 spawning frequency, 3 batch fecundity and 4 female size at maturity for fish from Little Cayman. Calculation of gonadosomatic indices, histological and macroscopic staging of gonads, and counts of hydrated oocytes were applied to determine reproductive characteristics. Higher gonadosomatic indices were recorded for females during periods of stable warm or cool water temperatures indicating that extreme temperatures did not constrain reproduction. Histological and macroscopic staging suggested that male and female lionfish were capable of reproducing year-round. However, higher gonadosomatic indices in females, as expected before spawning, were most pronounced in March/April and August. Based on the proportion of females containing hydrated oocytes, mature lionfish had the potential to spawn every 2–3 d. Ovaries of mature females contained 1800–41945 oocytes that were hydrated in preparation for spawning, with greater numbers of oocytes in larger females. Female lionfish matured at 189–190 mm total length. Parameters estimated in this study can improve outputs from population dynamic models, which will help resource managers design removals and other efforts to control invasive lionfish.

  20. Biological Invasion and Loss of Endemic Biodiversity in the Thar ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Nature Watch - Biological Invasion and Loss of Endemic Biodiversity in the Thar Desert. Ishwar Prakash. Feature Article Volume 6 Issue 3 March 2001 pp 76-85. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Confronting challenges to economic analysis of biological invasions in forests

    Science.gov (United States)

    Thomas P Holmes

    2010-01-01

    Biological invasions of forests by non-indigenous organisms present a complex, persistent, and largely irreversible threat to forest ecosystems around the globe. Rigorous assessments of the economic impacts of introduced species, at a national scale, are needed to provide credible information to policy makers. It is proposed here that microeconomic models of damage due...

  2. Natural biology and management of nonmuscle invasive bladder cancer

    DEFF Research Database (Denmark)

    Scarpato, Kristen R; Tyson, Mark D; Clark, Peter E

    2016-01-01

    PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... in low-risk patients. SUMMARY: NMIBC represents a variety of disease states and continues to pose management challenges. As our understanding of tumor biology improves and technology advances, achieving better outcomes through individualized care may be possible.......PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... helped triage patients but improved tools, including biomarkers, are still needed. Enhanced endoscopy with photodynamic imaging, narrow band imaging, optical coherence tomography and confocal laser endomicroscopy show promise for diagnosis, risk stratification and disease monitoring. Attempts at better...

  3. Red swamp crayfish: biology, ecology and invasion - an overview

    Directory of Open Access Journals (Sweden)

    Tainã Gonçalves Loureiro

    Full Text Available ABSTRACTAlien species have been transported and traded by humans for many centuries. However, with the era of globalization, biological invasions have reached notable magnitudes. Currently, introduction of alien species is one of the major threats to biodiversity and ecosystem functioning. The North American crayfish Procambarus clarkii is one of the most widely introduced freshwater species in the world, especially due to its high economic importance. It is responsible for great modifications in invaded environments causing irreparable ecological and economic damages. Its impressive ability to successfully colonize a wide range of environments is a consequence of its behavioural and biological characteristics that can adapt to features of the invaded location, conferring to this species a notable ecological plasticity. This review summarizes the available information regarding P. clarkii's biology and invasive dynamics around the world in order to contribute to the understanding of the threats posed by its establishment, as well as to support management and impact mitigation efforts.

  4. Successful biological invasion despite a severe genetic load.

    Directory of Open Access Journals (Sweden)

    Amro Zayed

    2007-09-01

    Full Text Available Understanding the factors that influence the success of ecologically and economically damaging biological invasions is of prime importance. Recent studies have shown that invasive populations typically exhibit minimal, if any, reductions in genetic diversity, suggesting that large founding populations and/or multiple introductions are required for the success of biological invasions, consistent with predictions of the propagule pressure hypothesis. Through population genetic analysis of neutral microsatellite markers and a gene experiencing balancing selection, we demonstrate that the solitary bee Lasioglossum leucozonium experienced a single and severe bottleneck during its introduction from Europe. Paradoxically, the success of L. leucozonium in its introduced range occurred despite the severe genetic load caused by single-locus complementary sex-determination that still turns 30% of female-destined eggs into sterile diploid males, thereby substantially limiting the growth potential of the introduced population. Using stochastic modeling, we show that L. leucozonium invaded North America through the introduction of a very small number of propagules, most likely a singly-mated female. Our results suggest that chance events and ecological traits of invaders are more important than propagule pressure in determining invasion success, and that the vigilance required to prevent invasions may be considerably greater than has been previously considered.

  5. Biological invasions and natural colonisations are different: the need for invasion science

    Czech Academy of Sciences Publication Activity Database

    Wilson, J. R. U.; García-Díaz, P.; Cassey, P.; Richardson, D. M.; Pyšek, Petr; Blackburn, T. M.

    2016-01-01

    Roč. 31, č. 1 (2016), s. 87-98 ISSN 1619-0033 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * species spread * colonization Subject RIV: EH - Ecology, Behaviour

  6. A vision for global monitoring of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Latombe, G.; Pyšek, Petr; Jeschke, J.M.; Blackburn, T. M.; Bacher, S.; Capinha, C.; Costello, M. J.; Fernández, M.; Gregory, R. D.; Hobern, D.; Hui, C.; Jetz, W.; Kumschick, S.; McGrannachan, C.; Pergl, Jan; Roy, H. E.; Scalera, R.; Squires, Z. E.; Wilson, J. R. U.; Winter, M.; Genovesi, P.; McGeoch, M. A.

    2017-01-01

    Roč. 213, part B (2017), s. 295-308 ISSN 0006-3207 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * monitoring * management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Biodiversity conservation Impact factor: 4.022, year: 2016

  7. Crossing frontiers in tackling pathways of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Bacher, S.; Blackburn, T. M.; Booy, O.; Brundu, G.; Brunel, S.; Cardoso, A.-C.; Eschen, R.; Gallardo, B.; Galil, B.; García-Berthou, E.; Genovesi, P.; Groom, Q.; Harrower, C.; Hulme, P. E.; Katsanevakis, S.; Kenis, M.; Kühn, I.; Kumschick, S.; Martinou, A. F.; Nentwig, W.; O´Flynn, C.; Pagad, S.; Pergl, Jan; Pyšek, Petr; Rabitsch, W.; Richardson, D. M.; Roques, A.; Roy, H. E.; Sclarea, R.; Schindler, S.; Seebens, H.; Vanderhoeven, S.; Vila, M.; Wilson, J. R. U.; Zenetos, A.; Jeschke, J.M.

    2015-01-01

    Roč. 65, č. 8 (2015), s. 769-782 ISSN 0006-3568 R&D Projects: GA ČR GB14-36079G; GA ČR(CZ) GAP504/11/1028 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * pathways * management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.294, year: 2015

  8. Evaluating efficacy of an environmental policy to prevent biological invasions.

    Science.gov (United States)

    Bailey, Sarah A; Deneau, Matthew G; Jean, Laurent; Wiley, Chris J; Leung, Brian; MacIsaac, Hugh J

    2011-04-01

    Enactment of any environmental policy should be followed by an evaluation of its efficacy to ensure optimal utilization of limited resources, yet measuring the success of these policies can be a challenging task owing to a dearth of data and confounding factors. We examine the efficacy of ballast water policies enacted to prevent biological invasions in the Laurentian Great Lakes. We utilize four criteria to assess the efficacy of this environmental regulation: (1) Is the prescribed management action demonstrably effective? (2) Is the management action effective under operational conditions? (3) Can compliance be achieved on a broad scale? (4) Are desired changes observed in the environment? The four lines of evidence resulting from this analysis indicate that the Great Lakes ballast water management program provides robust, but not complete, protection against ship-mediated biological invasions. Our analysis also indicates that corresponding inspection and enforcement efforts should be undertaken to ensure that environmental policies translate into increased environmental protection. Similar programs could be implemented immediately around the world to protect the biodiversity of the many freshwater ecosystems which receive ballast water discharges by international vessels. This general framework can be extended to evaluate efficacy of other environmental policies.

  9. Costs and benefits of biological control of invasive alien plants: case studies from South Africa

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2004-01-01

    Full Text Available Invasive alien species can have significant negative environmental and economic impacts. Such species are often controlled biologically by means of introducing host-specific insects or pathogens that can reduce the species' invasive potential...

  10. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  11. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.

    2013-10-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  12. Biological control of alien and invasive species in agriculture

    International Nuclear Information System (INIS)

    Calvitti, Maurizio; Moretti Riccardo; Lampazzi, Elena

    2015-01-01

    Agricultural production in Europe faces many challenges including limited availability of water, nitrogen input and fossil fuels. It is necessary, therefore, to identify methods of production and new technologies to increase the efficiency of the primary systems, guaranteeing amount of food, quality, safety and eco-sustainability . One of the most important aspects, though often undervalued in relation to the food chain, is the adversity of biological management of agricultural crops due to pests, pathogens or fitomizi with potential invasive already present in the territory or of recent origin alien. In this context, two main objectives should be implemented at the same time reduce production losses and protect the agro-ecosystem. To meet these expectations, as of January 1, 2015 all farms in the European Union countries are bound to the application of the Integrated Defense principles, as indicated by the Directive on the sustainable use of plant protection products (128/09 / EC) .In response to this and other new entomological emergencies plant health and medical-veterinary entomologist researchers of the Laboratory sustainable management of Agro-Ecosystems in ENEA, have directed their research towards the development of innovative systems for the sustainable control of invasive species of insects is in the agricultural sector that health. [it

  13. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.; Woolley, T.E.; Scott, J.G.; Maini, P.K.; Gaffney, E.A.

    2013-01-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  14. Non-invasive biological dosimetry of the skin

    International Nuclear Information System (INIS)

    Barton, S.; Marks, R.; Charles, M.W.; Wells, J.

    1986-01-01

    Investigations designed to identify a potential biological dosimetry technique to examine the effects of X-ray doses down to 0.1 Gy on human skin, are described. In a variety of parameters assessed, the most important changes observed were a significant depression in epidermal cell production in the basal layer after X-ray doses between 0.5 Gy and 1 Gy and a concomitant reduction in the desquamation rate of corneocytes after doses above 1 Gy. Changes in non-specific esterase (NSE) activity were also observed. Further work is described which applies these results to several non-invasive techniques which may have potential for routine application. Preliminary data from irradiated human skin are presented on the measurement of forced desquamation, the evaluation of NSE activity from hair samples and the evaluation of stratum corneum turnover time using the fluorescent dye, dansyl chloride. (author)

  15. Insights into invasion and restoration ecology: Time to collaborate towards a holistic approach to tackle biological invasions

    Directory of Open Access Journals (Sweden)

    Mirijam Gaertner

    2012-02-01

    Full Text Available The aim of our study is to provide an integrated framework for the management of alien plant invasions, combining insights and experiences from the fields of invasion and restoration ecology to enable more effective management of invasive species. To determine linkages between the scientific outputs of the two disciplines we used an existing data base on restoration studies between 2000 and 2008 and did a bibliometric analysis. We identified the type of restoration applied, determined by the aim of the study, and conducted a content analysis on 208 selected studies with a link to biological invasions (invasion-restoration studies. We found a total of 1075 articles on ecosystem restoration, with only eight percent of the studiesthe main objective to control alien invasions. The content analysis of 208 invasion-restoration studies showed that the majority of the studies focused on causes of degradation other than alien invasions. If invaders were referred to as the main driver of degradation, the prevalent cause for degradation was invaders outcompeting and replacing native species. Mechanical control of alien plant invasions was by far the most common control method used. Measures that went beyond the removal of alien plants were implemented in sixty-five percent of the studies.Although invasion control was not as common as other types of restoration, a closer look at the sub-group of invasion-restoration studies shows a clear link between restoration and invasion ecology. Concerns, as identified in the literature review, are firstly that restoration activities mostly focus on controlling the invader while other underlying causes for degradation are neglected, and secondly that the current approach of dealing with alien invasions lacks a combination of theoretical and practical aspects. We suggest that closer collaboration between invasion and restoration ecologists can help to improve the management of alien plant invasions. We conclude with a

  16. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  17. Biological invasions on oceanic islands: Implications for island ecosystems and avifauna

    Science.gov (United States)

    Dean E. Pearson

    2009-01-01

    Biological invasions present a global threat to biodiversity, but oceanic islands are the systems hardest hit by invasions. Islands are generally depauperate in species richness, trophic complexity, and functional diversity relative to comparable mainland ecosystems. This situation results in low biotic resistance to invasion and many empty niches for invaders to...

  18. Climate change and biological invasions: evidence, expectations, and response options.

    Science.gov (United States)

    Hulme, Philip E

    2017-08-01

    A changing climate may directly or indirectly influence biological invasions by altering the likelihood of introduction or establishment, as well as modifying the geographic range, environmental impacts, economic costs or management of alien species. A comprehensive assessment of empirical and theoretical evidence identified how each of these processes is likely to be shaped by climate change for alien plants, animals and pathogens in terrestrial, freshwater and marine environments of Great Britain. The strongest contemporary evidence for the potential role of climate change in the establishment of new alien species is for terrestrial arthropods, as a result of their ectothermic physiology, often high dispersal rate and their strong association with trade as well as commensal relationships with human environments. By contrast, there is little empirical support for higher temperatures increasing the rate of alien plant establishment due to the stronger effects of residence time and propagule pressure. The magnitude of any direct climate effect on the number of new alien species will be small relative to human-assisted introductions driven by socioeconomic factors. Casual alien species (sleepers) whose population persistence is limited by climate are expected to exhibit greater rates of establishment under climate change assuming that propagule pressure remains at least at current levels. Surveillance and management targeting sleeper pests and diseases may be the most cost-effective option to reduce future impacts under climate change. Most established alien species will increase their distribution range in Great Britain over the next century. However, such range increases are very likely be the result of natural expansion of populations that have yet to reach equilibrium with their environment, rather than a direct consequence of climate change. To assess the potential realised range of alien species will require a spatially explicit approach that not only

  19. Redefining Perineural Invasion: Integration of Biology With Clinical Outcome.

    Science.gov (United States)

    Schmitd, Ligia B; Beesley, Lauren J; Russo, Nickole; Bellile, Emily L; Inglehart, Ronald C; Liu, Min; Romanowicz, Genevieve; Wolf, Gregory T; Taylor, Jeremy M G; D'Silva, Nisha J

    2018-05-22

    A diagnosis of perineural invasion (PNI), defined as cancer within or surrounding at least 33% of the nerve, leads to selection of aggressive treatment in squamous cell carcinoma (SCC). Recent mechanistic studies show that cancer and nerves interact prior to physical contact. The purpose of this study was to explore cancer-nerve interactions relative to clinical outcome. Biopsy specimens from 71 patients with oral cavity SCC were stained with hematoxylin and eosin and immunohistochemical (IHC; cytokeratin, S100, GAP43, Tuj1) stains. Using current criteria, PNI detection was increased with IHC. Overall survival (OS) tended to be poor for patients with PNI (P = .098). OS was significantly lower for patients with minimum tumor-nerve distance smaller than 5 μm (P = .011). The estimated relative death rate decreased as the nerve-tumor distance increased; there was a gradual drop off in death rate from distance equal to zero that stabilized around 500 μm. In PNI-negative patients, nerve diameter was significantly related to OS (HR 2.88, 95%CI[1.11,7.49]). Among PNI-negative nerves, larger nerve-tumor distance and smaller nerve diameter were significantly related to better OS, even when adjusting for T-stage and age (HR 0.82, 95% CI[0.72,0.92]; HR 1.27, 95% CI[1.00,1.62], respectively). GAP43, a marker for neuronal outgrowth, stained less than Tuj1 in nerves at greater distances from tumor (OR 0.76, 95% CI[0.73,0.79]); more GAP43 staining was associated with PNI. Findings from a small group of patients suggest that nerve parameters other than presence of PNI can influence outcome and that current criteria of PNI need to be re-evaluated to integrate recent biological discoveries. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.

    Science.gov (United States)

    Jiang, W G; Sanders, A J; Katoh, M; Ungefroren, H; Gieseler, F; Prince, M; Thompson, S K; Zollo, M; Spano, D; Dhawan, P; Sliva, D; Subbarayan, P R; Sarkar, M; Honoki, K; Fujii, H; Georgakilas, A G; Amedei, A; Niccolai, E; Amin, A; Ashraf, S S; Ye, L; Helferich, W G; Yang, X; Boosani, C S; Guha, G; Ciriolo, M R; Aquilano, K; Chen, S; Azmi, A S; Keith, W N; Bilsland, A; Bhakta, D; Halicka, D; Nowsheen, S; Pantano, F; Santini, D

    2015-12-01

    Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. South African programme for the SCOPE project on the ecology of biological invasions

    CSIR Research Space (South Africa)

    Ferrar, AA

    1983-07-01

    Full Text Available A description of the aims of the international SCOPE programme on biological invasions is provided, together with a proposed four year time table of international activities. This is followed by a brief account of the history, organization...

  2. Quantitative biological measurement in Transmission Electron Tomography

    International Nuclear Information System (INIS)

    Mantell, Judith M; Verkade, Paul; Arkill, Kenton P

    2012-01-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  3. Quantitative biological measurement in Transmission Electron Tomography

    Science.gov (United States)

    Mantell, Judith M.; Verkade, Paul; Arkill, Kenton P.

    2012-07-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  4. Contributions to the National Status Report on Biological Invasions in South Africa

    Directory of Open Access Journals (Sweden)

    John R.U. Wilson

    2017-03-01

    Full Text Available South Africa has committed to producing a National Status Report on Biological Invasions by October 2017 and thereafter every three years. This will be the first status report at a national level specifically on biological invasions. As part of soliciting input, a workshop was held in May 2016 that led to this special issue of 19 papers in the journal Bothalia: African Biodiversity and Conservation. This editorial introduces the symposium, discusses the special issue and summarises how each contribution provides an estimate of ‘status’. Papers focus on key pathways, taxa, areas, and evaluations of interventions, specifically the movement of taxa between South Africa and neighbouring countries; the dispersal pathways of amphibians; a review of alien animals; a report on changes in the number and abundance of alien plants; in-depth reviews of the status of invasions for cacti, fishes, fungi and grasses; an assessment of the impact of widespread invasive plants on animals; reviews on invasions in municipalities, protected areas and subAntarctic Islands; assessments of the efficacy of biological control and other control programmes; and recommendations for how to deal with conflict species, to conduct scientific assessments and to improve risk assessments. The papers in this special issue confirm that South Africa is an excellent place to study invasions that can provide insights for understanding and managing invasions in other countries. Negative impacts seem to be largely precipitated by certain taxa (especially plants, whereas invasions by a number of other groups do not, yet, seem to have caused the widespread negative impacts felt in other countries. Although South Africa has effectively managed a few biological invasions (e.g. highly successful biological control of some invasive plants, the key challenge seems to be to establish and maintain a strong link between implementation, monitoring, reporting and planning.

  5. Reproductive biology and early establishment of Pinus elliottii var. elliottii in Brazilian sandy coastal plain vegetation: implications for biological invasion

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Bechara

    2013-04-01

    Full Text Available Pinus is the most invasive woody taxon, exceeded only by herbaceous plants. This study reports the reproductive biology and early establishment of Pinus elliottii Engelm. var. elliottii, describing its invasive properties in a protected natural area of the Brazilian coastal sandy plains. We evaluated the seed germination and rain, longevity of seed viability and the initial dynamics of the seedlings of Pinus elliottii var elliottii through field and laboratory experiments. We recorded a continuous seed rain of about 204.0 viable seeds m- 2 per year, with a 90 % germination rate. The seeds exhibited a low longevity of viability in the soil and a dense, permanent seedling bank that may explain the high levels of pine invasion. The environmental impact caused by the pine's biological invasion suggests the recommendation for its immediate eradication, together with a restoration plan to restitute the native biodiversity gradually.

  6. Stress in biological invasions: Introduced invasive grey squirrels increase physiological stress in native Eurasian red squirrels.

    Science.gov (United States)

    Santicchia, Francesca; Dantzer, Ben; van Kesteren, Freya; Palme, Rupert; Martinoli, Adriano; Ferrari, Nicola; Wauters, Lucas Armand

    2018-05-23

    Invasive alien species can cause extinction of native species through processes including predation, interspecific competition for resources or disease-mediated competition. Increases in stress hormones in vertebrates may be associated with these processes and contribute to the decline in survival or reproduction of the native species. Eurasian red squirrels (Sciurus vulgaris) have gone extinct across much of the British Isles and parts of Northern Italy following the introduction of North American invasive grey squirrels (Sciurus carolinensis). We extracted glucocorticoid metabolites from faecal samples to measure whether the presence of the invasive species causes an increase in physiological stress in individuals of the native species. We show that native red squirrels in seven sites where they co-occurred with invasive grey squirrels had glucocorticoid concentrations that were three times higher than those in five sites without the invasive species. Moreover, in a longitudinal study, stress hormones in native red squirrels increased after colonisation by grey squirrels. When we experimentally reduced the abundance of the invasive grey squirrels, the concentration of faecal glucocorticoid metabolites in co-occurring red squirrels decreased significantly between pre- and postremoval periods. Hence, we found that the invasive species acts as a stressor which significantly increases the concentrations of glucocorticoids in the native species. Given that sustained elevations in glucocorticoids could reduce body growth and reproductive rate, our results are consistent with previous studies where the co-occurrence of the invasive grey squirrel was associated with smaller size and lower reproductive output in red squirrels. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  7. Invasion Biology of Aedes japonicus japonicus (Diptera: Culicidae)

    Science.gov (United States)

    Fonseca, Dina M.

    2014-01-01

    Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii. PMID:24397520

  8. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems

    Czech Academy of Sciences Publication Activity Database

    Catford, J.A.; Vesk, P.A.; Richardson, D. M.; Pyšek, Petr

    2012-01-01

    Roč. 18, č. 1 (2012), s. 44-62 ISSN 1354-1013 R&D Projects: GA ČR(CZ) GAP505/11/1112 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : level of invasion * standard metrics * abundance Subject RIV: EF - Botanics Impact factor: 6.910, year: 2012

  9. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block

    Science.gov (United States)

    Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio

    2016-01-01

    Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269

  10. The role of adaptive trans-generational plasticity in biological invasions of plants

    OpenAIRE

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-01-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple hab...

  11. Common market, shared problems: time for a coordinated response to biological invasions in Europe?

    Czech Academy of Sciences Publication Activity Database

    Hulme, P. E.; Nentwig, W.; Pyšek, Petr; Vila, M.

    2009-01-01

    Roč. 8, - (2009), s. 3-19 ISSN 1619-0033. [European Conference on Biological Invasions /5./. Prague, 23.09.2008-26.09.2008] R&D Projects: GA MŠk LC06073 Grant - others:Evropská komise(XE) GOCE-CT-506675; Evropská komise(XE) SSPI-CT-2003-511202; Evropská komise(XE) KBBE-212459 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * policy Subject RIV: EF - Botanics

  12. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  13. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    transfers, occurs in a cascade in many biological processes, including photosynthesis. ... the model reactions of photosynthetic ... biological relevance. GENERAL I ARTICLE of electrons, respectively. This has entirely changed the earlier framework of interpreting reactions in chemistry and biology. This shift in emphasis ...

  14. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  15. Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns

    Science.gov (United States)

    Basil V. Iannone III; Kevin M. Potter; Qinfeng Guo; Andrew M. Liebhold; Bryan C. Pijanowski; Christopher M. Oswalt; Songlin Fei

    2015-01-01

    Invader traits (including plant growth form) may play an important, and perhaps overlooked, role in determining macroscale patterns of biological invasions and therefore warrant greater consideration in future investigations aimed at understanding these patterns. To assess this need, we used empirical data from a national-level survey of forest in the contiguous 48...

  16. A spatial-dynamic value transfer model of economic losses from a biological invasion

    Science.gov (United States)

    Thomas P. Holmes; Andrew M. Liebhold; Kent F. Kovacs; Betsy. Von Holle

    2010-01-01

    Rigorous assessments of the economic impacts of introduced species at broad spatial scales are required to provide credible information to policy makers. We propose that economic models of aggregate damages induced by biological invasions need to link microeconomic analyses of site-specific economic damages with spatial-dynamic models of value change associated with...

  17. Support for major hypotheses in invasion biology is uneven and declining

    Czech Academy of Sciences Publication Activity Database

    Jeschke, J.M.; Aparicio, L.G.; Haider, S.; Heger, T.; Lortie, C. J.; Pyšek, Petr; Strayer, D.L.

    2012-01-01

    Roč. 2012, č. 14 (2012), s. 1-20 ISSN 1619-0033 R&D Projects: GA ČR(CZ) GAP504/11/1028 Institutional support: RVO:67985939 Keywords : biological invasions * hypotheses * testing Subject RIV: EF - Botanics

  18. Status of biological control projects on terrestrial invasive alien weeds in California

    Science.gov (United States)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  19. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  20. Impacts of biological invasions: what´s what and the way forward

    Czech Academy of Sciences Publication Activity Database

    Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D. A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; Pyšek, Petr; Sousa, R.; Tabacchi, E.; Vila, M.

    2013-01-01

    Roč. 28, č. 1 (2013), s. 58-66 ISSN 0169-5347 R&D Projects: GA ČR(CZ) GAP504/11/1028 Institutional support: RVO:67985939 Keywords : biological invasions * impact * human perception Subject RIV: EF - Botanics Impact factor: 15.353, year: 2013

  1. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    OpenAIRE

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  2. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between...

  3. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics

    DEFF Research Database (Denmark)

    Mercer, Louise K; Askling, Johan; Raaschou, Pauline

    2017-01-01

    -specific general population of each register as reference, age, sex and calendar year standardised incidence ratios (SIRs) of invasive histology-confirmed cutaneous melanoma were calculated within each register. Pooled SIR and incidence rate ratios (IRRs) comparing biologic cohorts to biologic-naïve were...... calculated across countries by taking the size of the register into account. RESULTS: Overall 130 315 RA patients with a mean age of 58 years contributing 579 983 person-years were available for the analysis and 287 developed a first melanoma. Pooled SIRs for biologic-naïve, TNFi and rituximab...... with TNF inhibitors (TNFi), other biologic disease modifying drugs and non-biologic therapy. METHODS: Eleven biologic registers from nine European countries participated in this collaborative project. According to predefined exposure definitions, cohorts of patients with RA were selected. Using the country...

  4. Using counterfactuals to evaluate the cost-effectiveness of controlling biological invasions.

    Science.gov (United States)

    McConnachie, Matthew M; van Wilgen, Brian W; Ferraro, Paul J; Forsyth, Aurelia T; Richardson, David M; Gaertner, Mirijam; Cowling, Richard M

    2016-03-01

    Prioritizing limited conservation funds for controlling biological invasions requires accurate estimates of the effectiveness of interventions to remove invasive species and their cost-effectiveness (cost per unit area or individual). Despite billions of dollars spent controlling biological invasions worldwide, it is unclear whether those efforts are effective, and cost-effective. The paucity of evidence results from the difficulty in measuring the effect of invasive species removal: a researcher must estimate the difference in outcomes (e.g. invasive species cover) between where the removal program intervened and what might have been observed if the program had not intervened. In the program evaluation literature, this is called a counterfactual analysis, which formally compares what actually happened and what would have happened in the absence of an intervention. When program implementation is not randomized, estimating counterfactual outcomes is especially difficult. We show how a thorough understanding of program implementation, combined with a matching empirical design can improve the way counterfactual outcomes are estimated in nonexperimental contexts. As a practical demonstration, we estimated the cost-effectiveness of South Africa's Working for Water program, arguably the world's most ambitious invasive species control program, in removing invasive alien trees from different land use types, across a large area in the Cape Floristic Region. We estimated that the proportion of the treatment area covered by invasive trees would have been 49% higher (5.5% instead of 2.7% of the grid cells occupied) had the program not intervened. Our estimates of cost per hectare to remove invasive species, however, are three to five times higher than the predictions made when the program was initiated. Had there been no control (counter-factual), invasive trees would have spread on untransformed land, but not on land parcels containing plantations or land transformed by

  5. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.).

    Science.gov (United States)

    Adkins, Steve; Shabbir, Asad

    2014-07-01

    Parthenium weed (Parthenium hysterophorus L.) is one of the most aggressive invasive weeds, threatening natural ecosystems and agroecosystems in over 30 countries worldwide. Parthenium weed causes losses of crops and pastures, degrading the biodiversity of natural plant communities, causing human and animal health hazards and resulting in serious economic losses to people and their interests in many countries around the globe. Several of its biological and ecological attributes contribute towards its invasiveness. Various management approaches (namely cultural, mechanical, chemical and biological control) have been used to minimise losses caused by this weed, but most of these approaches are ineffective and uneconomical and/or have limitations. Although chemical control using herbicides and biological control utilising exotic insects and pathogens have been found to contribute to the management of the weed, the weed nevertheless remains a significant problem. An integrated management approach is proposed here for the effective management of parthenium weed on a sustainable basis. © 2014 Society of Chemical Industry.

  6. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  7. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    Science.gov (United States)

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  8. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    Science.gov (United States)

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  9. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  10. The role of adaptive trans-generational plasticity in biological invasions of plants.

    Science.gov (United States)

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-03-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple habitat types can occur. We show that trans-generational plasticity (TGP) can result in pre-adapted progeny that exhibit traits associated with increased fitness both in high-resource patches and in stressful conditions. In the invasive sedge, Cyperus esculentus, maternal plants growing in nutrient-poor patches can place disproportional number of propagules into nutrient-rich patches. Using the invasive annual grass, Aegilops triuncialis, we show that maternal response to soil conditions can confer greater stress tolerance in seedlings in the form of greater photosynthetic efficiency. We also show TGP for a phenological shift in a low resource environment that results in greater stress tolerance in progeny. These lines of evidence suggest that the maternal environment can have profound effects on offspring success and that TGP may play a significant role in some plant invasions.

  11. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    Science.gov (United States)

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.

  12. Quantum effects in biological electron transfer

    Czech Academy of Sciences Publication Activity Database

    de la Lande, A.; Babcock, N. S.; Řezáč, Jan; Levy, B.; Sanders, B. C.; Salahub, D.

    2012-01-01

    Roč. 14, č. 17 (2012), s. 5902-5918 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : electron transfer * tunnelling * decoherence * semi-classical molecular dynamics * density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  13. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bright field electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Johansen, B.V.

    1976-01-01

    A preirradiation procedure is described which preserves negatively stained morphological features in bright field electron micrographs to a resolution of about 1.2 nm. Prior to microscopy the pre-irradiation dose (1.6 x 10 -3 C cm -2 ) is given at low electron optical magnification at five different areas on the grid (the centre plus four 'corners'). This pre-irradiation can be measured either with a Faraday cage or through controlled exposure-developing conditions. Uranyl formate stained T2 bacteriophages and stacked disk aggregates of Tobacco Mosaic Virus (TMV) protein served as test objects. A comparative study was performed on specimens using either the pre-irradiation procedure or direct irradiation by the 'minimum beam exposure' technique. Changes in the electron diffraction pattern of the stain-protein complex and the disappearance of certain morphological features in the specimens were both used in order to compare the pre-irradiation method with the direct exposure technique. After identical electron exposures the pre-irradiation approach gave a far better preservation of specimen morphology. Consequently this procedure gives the microscopist more time to select and focus appropriate areas for imaging before deteriorations take place. The investigation also suggested that microscopy should be carried out between 60,000 and 100,000 times magnification. Within this magnification range, it is possible to take advantage of the phase contrast transfer characteristics of the objective lens while the electron load on the object is kept at a moderate level. Using the pre-irradiation procedure special features of the T2 bacteriophage morphology could be established. (author)

  15. From data to decision - learning by probabilistic risk analysis of biological invasions

    OpenAIRE

    Sahlin, Ullrika

    2010-01-01

    Predicting an uncertain future with uncertain knowledge is a challenge. The success of efforts to preserve biodiversity, to maintain biosecurity and to reduce a negative impact from climate change, depend on scientifically based predictions of future events. The ongoing introduction of non-indigenous species threatens ecological systems for which empirical data is sparse and scientific knowledge is uncertain. Since biological invasions constitute a type of risk characterized by small probabil...

  16. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    OpenAIRE

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgressi...

  17. Disentangling the role of environmental and human pressures on biological invasions across Europe

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch; Wild, Jan; Hejda, Martin; Pergl, Jan

    2010-01-01

    Roč. 107, č. 27 (2010), s. 12157-12162 ISSN 0027-8424 R&D Projects: GA MŠk 7E09053 Grant - others:ALARM(XE) GOCE-CT-2003-506675; European Comission(XE) SSPI-CT-2003-511202 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * economy Subject RIV: EF - Botanics Impact factor: 9.771, year: 2010

  18. Assessing biological invasions in European Seas: Biological traits of the most widespread non-indigenous species

    Science.gov (United States)

    Cardeccia, Alice; Marchini, Agnese; Occhipinti-Ambrogi, Anna; Galil, Bella; Gollasch, Stephan; Minchin, Dan; Narščius, Aleksas; Olenin, Sergej; Ojaveer, Henn

    2018-02-01

    The biological traits of the sixty-eight most widespread multicellular non-indigenous species (MWNIS) in European Seas: Baltic Sea, Western European Margin of the Atlantic Ocean and the Mediterranean Sea were examined. Data for nine biological traits was analyzed, and a total of 41 separate categories were used to describe the biological and ecological functions of these NIS. Our findings show that high dispersal ability, high reproductive rate and ecological generalization are the biological traits commonly associated with MWNIS. The functional groups that describe most of the 68 MWNIS are: photoautotrophic, zoobenthic (both sessile and motile) and nektonic predatory species. However, these 'most widespread' species comprise a wide range of taxa and biological trait profiles; thereby a clear "identikit of a perfect invader" for marine and brackish environments is difficult to define. Some traits, for example: "life form", "feeding method" and "mobility", feature multiple behaviours and strategies. Even species introduced by a single pathway, e.g. vessels, feature diverse biological trait profiles. MWNIS likely to impact community organization, structure and diversity are often associated with brackish environments. For many traits ("life form", "sociability", "reproductive type", "reproductive frequency", "haploid and diploid dispersal" and "mobility"), the categories mostly expressed by the impact-causing MWNIS do not differ substantially from the whole set of MWNIS.

  19. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  20. CMOS biomicrosystems where electronics meets biology

    CERN Document Server

    2011-01-01

    "The book will address the-state-of-the-art in integrated Bio-Microsystems that integrate microelectronics with fluidics, photonics, and mechanics. New exciting opportunities in emerging applications that will take system performance beyond offered by traditional CMOS based circuits are discussed in detail. The book is a must for anyone serious about microelectronics integration possibilities for future technologies. The book is written by top notch international experts in industry and academia. The intended audience is practicing engineers with electronics background that want to learn about integrated microsystems. The book will be also used as a recommended reading and supplementary material in graduate course curriculum"--

  1. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  2. Disentangling the role of environmental and human pressures on biological invasions across Europe.

    Science.gov (United States)

    Pysek, Petr; Jarosík, Vojtech; Hulme, Philip E; Kühn, Ingolf; Wild, Jan; Arianoutsou, Margarita; Bacher, Sven; Chiron, Francois; Didziulis, Viktoras; Essl, Franz; Genovesi, Piero; Gherardi, Francesca; Hejda, Martin; Kark, Salit; Lambdon, Philip W; Desprez-Loustau, Marie-Laure; Nentwig, Wolfgang; Pergl, Jan; Poboljsaj, Katja; Rabitsch, Wolfgang; Roques, Alain; Roy, David B; Shirley, Susan; Solarz, Wojciech; Vilà, Montserrat; Winter, Marten

    2010-07-06

    The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth.

  3. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Science.gov (United States)

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  4. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  5. Biological Invasions of Geminiviruses: Case Study of TYLCV and Bemisia tabaci in Reunion Island

    Science.gov (United States)

    Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel

    2012-01-01

    In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition. PMID:23235470

  6. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Some examples of utilization of electron paramagnetic resonance in biology

    International Nuclear Information System (INIS)

    Bemski, G.

    1982-10-01

    A short outline of the fundamentals of electron paramagnetic resonance (EPR) is presented and is followed by examples of the application of EPR to biology. These include use of spin labels, as well as of ENDOR principally to problems of heme proteins, photosynthesis and lipids. (Author) [pt

  8. Electron Transfer in Chemistry and Biology – The Primary Events

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electron Transfer in Chemistry and Biology – The Primary Events in Photosynthesis. V Krishnan. General Article Volume 2 Issue 12 December 1997 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Design of Functional Polyesters for Electronic and Biological Applications

    OpenAIRE

    Nelson, Ashley Marie

    2015-01-01

    Melt polymerization and novel monomers enabled the synthesis of polyesters for electronic and biological applications. Inspiration from nature and a passion for environmental preservation instigated an emphasis on the incorporation of renewable resources into polymeric materials. Critical analysis of current research surrounding bisphenol-A replacements and ioncontaining segmented polyurethanes aided in identifying benchmark polymers, including limitations, challenges, and future needs. Struc...

  10. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  11. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  12. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    Science.gov (United States)

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  13. Advances in cryo-electron tomography for biology and medicine.

    Science.gov (United States)

    Koning, Roman I; Koster, Abraham J; Sharp, Thomas H

    2018-05-01

    Cryo-electron tomography (CET) utilizes a combination of specimen cryo-fixation and multi-angle electron microscopy imaging to produce three-dimensional (3D) volume reconstructions of native-state macromolecular and subcellular biological structures with nanometer-scale resolution. In recent years, cryo-electron microscopy (cryoEM) has experienced a dramatic increase in the attainable resolution of 3D reconstructions, resulting from technical improvements of electron microscopes, improved detector sensitivity, the implementation of phase plates, automated data acquisition schemes, and improved image reconstruction software and hardware. These developments also greatly increased the usability and applicability of CET as a diagnostic and research tool, which is now enabling structural biologists to determine the structure of proteins in their native cellular environment to sub-nanometer resolution. These recent technical developments have stimulated us to update on our previous review (Koning, R.I., Koster, A.J., 2009. Cryo-electron tomography in biology and medicine. Ann Anat 191, 427-445) in which we described the fundamentals of CET. In this follow-up, we extend this basic description in order to explain the aforementioned recent advances, and describe related 3D techniques that can be applied to the anatomy of biological systems that are relevant for medicine. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Myofibroblasts in interstitial lung diseases show diverse electron microscopic and invasive features.

    Science.gov (United States)

    Karvonen, Henna M; Lehtonen, Siri T; Sormunen, Raija T; Harju, Terttu H; Lappi-Blanco, Elisa; Bloigu, Risto S; Kaarteenaho, Riitta L

    2012-09-01

    The characteristic features of myofibroblasts in various lung disorders are poorly understood. We have evaluated the ultrastructure and invasive capacities of myofibroblasts cultured from small volumes of diagnostic bronchoalveolar lavage (BAL) fluid samples from patients with different types of lung diseases. Cells were cultured from samples of BAL fluid collected from 51 patients that had undergone bronchoscopy and BAL for diagnostic purposes. The cells were visualized by transmission electron microscopy and immunoelectron microscopy to achieve ultrastructural localization of alpha-smooth muscle actin (α-SMA) and fibronectin. The levels of α-SMA protein and mRNA and fibronectin mRNA were measured by western blot and quantitative real-time reverse transcriptase polymerase chain reaction. The invasive capacities of the cells were evaluated. The cultured cells were either fibroblasts or myofibroblasts. The structure of the fibronexus, and the amounts of intracellular actin, extracellular fibronectin and cell junctions of myofibroblasts varied in different diseases. In electron and immunoelectron microscopy, cells cultured from interstitial lung diseases (ILDs) expressed more actin filaments and α-SMA than normal lung. The invasive capacity of the cells obtained from patients with idiopathic pulmonary fibrosis was higher than that from patients with other type of ILDs. Cells expressing more actin filaments had a higher invasion capacity. It is concluded that electron and immunoelectron microscopic studies of myofibroblasts can reveal differential features in various diseases. An analysis of myofibroblasts cultured from diagnostic BAL fluid samples may represent a new kind of tool for diagnostics and research into lung diseases.

  15. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata

    Directory of Open Access Journals (Sweden)

    Sbordoni Valerio

    2009-05-01

    Full Text Available Abstract Background Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. Results We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Conclusion Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a

  16. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata).

    Science.gov (United States)

    Trucchi, Emiliano; Sbordoni, Valerio

    2009-05-18

    Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a simple demographic exponential growth from a single propagule

  17. Remote Sensing Dynamic Monitoring of Biological Invasive Species Based on Adaptive PCNN and Improved C-V Model

    Directory of Open Access Journals (Sweden)

    PENG Gang

    2014-12-01

    Full Text Available Biological species invasion problem bring serious damage to the ecosystem, and have become one of the six major enviromental problems that affect the future economic development, also have become one of the hot topic in domestic and foreign scholars. Remote sensing technology has been successfully used in the investigation of coastal zone resources, dynamic monitoring of the resources and environment, and other fields. It will cite a new remote sensing image change detection algorithm based on adaptive pulse coupled neural network (PCNN and improved C-V model, for remote sensing dynamic monitoring of biological species invasion. The experimental results show that the algorithm is effective in the test results of biological species invasions.

  18. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  19. Invasive rats on tropical islands: Their population biology and impacts on native species

    Directory of Open Access Journals (Sweden)

    Grant A. Harper

    2015-01-01

    Full Text Available The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.

  20. Biological traits explain the distribution and colonisation ability of the invasive shore crab Hemigrapsus takanoi

    Science.gov (United States)

    Gothland, M.; Dauvin, J. C.; Denis, L.; Dufossé, F.; Jobert, S.; Ovaert, J.; Pezy, J. P.; Tous Rius, A.; Spilmont, N.

    2014-04-01

    Comprehending marine invasions requires a better knowledge of the biological traits of invasive species, and the future spread of invasive species may be predicted through comprehensive overviews of their distribution. This study thus presents the current distribution of a non-indigenous species, the Asian shore crab Hemigrapsus takanoi, as well as the species population characteristics (size distribution and cohorts), based on a five-year survey (2008-2012) along the French coast of the English Channel. Two large populations were found near harbours: one on the Opal Coast (where density reached 61 ± 22 ind.m-2, mean ± s.d., in Dunkirk harbour) and one on the Calvados coast (density up to 26 ± 6 ind.m-2, mean ± s.d, in Honfleur harbour). H. takanoi exhibited a short life cycle, a rapid growth, an early sexual maturity and a high adult mortality. These features, combined with previously described high fecundity and high dispersal ability, endow this species with an 'r-selected strategy'. This strategy, which usually characterises species with a high colonisation ability, would explain the success of H. takanoi for colonising the French coast of the Channel. However, the species was found only in harbours and their vicinity; H. takanoi thus exhibited a discontinuous distribution along the 700 km of coastline. These results are discussed regarding sediment preference and potential introduction vectors. Hemigrapsus takanoi is now considered as established on the French coast and further studies are needed to evaluate the consequences of its introduction on the structure and functioning of the impacted shores.

  1. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    Science.gov (United States)

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Book review: Biology and management of invasive quagga and zebra mussels in the western United States

    Science.gov (United States)

    Benson, Amy J.

    2017-01-01

    Water is a precious and limited commodity in the western United States and its conveyance is extremely important. Therefore, it is critical to do as much as possible to prevent the spread of two species of dreissenid mussels, both non-native and highly invasive aquatic species already well-established in the eastern half of the United States. This book addresses the occurrences of the two dreissenid mussels in the West, the quagga mussel and the zebra mussel, that are both known to negatively impact water delivery systems and natural ecosystems. It is edited by two researchers whom have extensive experience working with the mussels in the West and is composed of 34 chapters, or articles, written by a variety of experts.Book information: Biology and Management of Invasive Quagga and Zebra Mussels in the Western United States. Edited by Wai Hing Wong and Shawn L. Gerstenberger. Boca Raton (Florida): CRC Press (Taylor & Francis Group). $149.95. xx + 545 p.; ill.; index. ISBN: 978-1-4665-9561-3. [Compact Disc included.] 2015.

  3. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Mulder, David W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; King, Paul W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Peters, John W. [Institute; Beratan, David N. [Department

    2017-08-23

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.

  4. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.

    Science.gov (United States)

    Mech, Franziska; Wilson, Duncan; Lehnert, Teresa; Hube, Bernhard; Thilo Figge, Marc

    2014-02-01

    Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium. © 2013 International Society for

  6. Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, ecosystem effects

    International Nuclear Information System (INIS)

    Vitousek, P.M.; Walker, L.R.

    1989-01-01

    Myrica faya, an introduced actinorhizal nitrogen fixer, in invading young volcanic sites in Hawaii Volcanoes National Park. We examined the population biology of the invader and ecosystem-level consequences of its invasion in open-canopied forests resulting from volcanic cinder-fall. Although Myrica faya is nominally dioecious, both males and females produce large amounts of fruit that are utilized by a number of exotic and native birds, particularly the exotic Zosterops japonica. In areas of active colonization, Myrica seed rain under perch trees of the dominant native Metrosideros polymorpha ranged from 6 to 60 seeds m -2 yr -1 ; no seeds were captured in the open. Planted seeds of Myrica also germinated an established better under isolated individuals of Metrosideros than in the open. Diameter growth of Myrica is > 15-fold greater than that of Metrosideros, and the Myrica population is increasing rapidly. Rates of nitrogen fixation were measured using the acetylene reduction assay calibrated with 15 N. Myrica nodules reduced acetylene at between 5 and 20 μmol g -1 h -1 , a rate that extrapolated to nitrogen fixation of 18 kg ha -1 in a densely colonized site. By comparison, all native sources of nitrogen fixation summed to 0.2 kg ha -1 yr -1 , and precipitation added -1 yr -1 . Measurements of litter decomposition and nitrogen release, soil nitrogen mineralization, and plant growth in bioassays all demonstrated that nitrogen fixed by Myrica becomes available to other organisms as well. We conclude that biological invasion by Myrica faya alters ecosystem-level properties in this young volcanic area; at least in this case, the demography and physiology of one species controls characteristics of a whole ecosystem

  7. A national facility for biological cryo-electron microscopy

    International Nuclear Information System (INIS)

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback

  8. Biological applications of phase-contrast electron microscopy.

    Science.gov (United States)

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  9. Historical freshwater fish ecology: a long-term view of distribution changes and biological invasions

    Directory of Open Access Journals (Sweden)

    Miguel Clavero

    2015-12-01

    Full Text Available Past processes and events may have an important influence on contemporaneous ecological patterns, including current human impacts on landscapes and organisms. In spite of that, most of the ecological knowledge has been built upon short-term studies, which very rarely exceed one decade. Ecology and Conservation Biology have an important lack of historical approaches, a deficiency that may become a hindrance for the management of natural systems. In this talk I will present examples of how historical information on the distribution of freshwater fish and other aquatic organisms can be used to address ecological questions. Most analyses are based on two important Spanish historical written sources: the Relaciones de Felipe II (16th century and the Madoz Dictionary (19th century. The examples considered include the European eel (Anguilla anguilla, the brown trout (Salmo trutta, the common carp (Cyprinus carpio and the white clawed crayfish (Austropotamobius italicus, among other species, as well as questions related to biological invasions, habitat loss and the impacts of global warming. The outputs of ecological research based on historical data often become useful tools for present-day biodiversity conservation planning and actions.

  10. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    Science.gov (United States)

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox

  11. Livestock as a potential biological control agent for an invasive wetland plant

    NARCIS (Netherlands)

    Silliman, Brian R.; Mozdzer, Thomas; Angelini, Christine; Brundage, Jennifer E.; Esselink, Peter; Bakker, Jan P.; Gedan, Keryn B.; van de Koppel, Johan; Baldwin, Andrew H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughoutmuch of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in

  12. Invasive Species Biology, Control, and Research. Part 1: Kudzu (Pueraria montana)

    National Research Council Canada - National Science Library

    Guertin, Patrick J; Denight, Michael L; Gebhart, Dick L; Nelson, Linda

    2008-01-01

    ..., and damage to equipment and structures. Of the 11 plant species (or groups) identified by installations as uncontrolled vegetation, six were invasive plants, of which the two invasive plants most commonly identified were Kudzu (Pueraria montana...

  13. Invasive Species Biology, Control, and Research. Part 2. Multiflora Rose (Rosa multiflora)

    National Research Council Canada - National Science Library

    Denight, Michael L; Guertin, Patrick J; Gebhart, Dick L; Nelson, Linda

    2008-01-01

    ..., and damage to equipment and structures. Of the 11 plant species (or groups) identified by installations as "uncontrolled vegetation," six were invasive plants, of which the two invasive plants most commonly identified were Kudzu (Pueraria montana...

  14. Livestock as a potential biological control agent for an invasive wetland plant

    NARCIS (Netherlands)

    Silliman, B.R.; Mozdzer, T.; Angelini, C.; Brundage, J.E.; Esselink, P.; Bakker, J.P.; Gedan, K.B.; van de Koppel, J.; Baldwin, A.H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in

  15. Above-belowground interactions govern the course and impact of biological invasions

    DEFF Research Database (Denmark)

    Vestergård, Mette; Rønn, Regin; Ekelund, Flemming

    2015-01-01

    understand the invasion of focus. Thus, we claim that invasions fall into two broad categories. Some invasions irreversibly change pools and pathways of matter and energy in the invaded system; even if the abundance of the invader is reduced or it is completely removed, the system will not return to its...... former state. We use earthworm invasion in North America as a particular conspicuous example of invasive species that irreversibly change ecosystems. However, invasions may also be reversible, where the exotic organism dominates the system for a period, but in the longer term it either disappears......Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon...

  16. Electron probe analysis of biological fluids: Possibilities and limitations

    International Nuclear Information System (INIS)

    Roinel, N.

    1984-01-01

    Physical methods of investigation have become essential to investigations at the cellular or subcellular level. Nuclear magnetic resonance is the most recent and striking example, since it is not only a tool for fundamental physicists and organic chemists, but also an extraordinary powerful imaging tool for physicians. The absorption properties of X rays were used immediately after their discovery to image the bones of skeletons. Later, X rays were also found to be extremely efficient in the measurement of the elemental content of microvolumes irradiated by electron probes. The electron probe analyzer (EPA) was immediately adopted by numerous laboratories of metallurgy, geology, and mineral sciences. In the last fifteen years, since the use of this instrument was suggested for liquid analysis, and a preparative technique was developed, the EPA has been used by an increasing number of biological laboratories for measuring the concentrations of the elements contained in subnanoliter volumes of biological fluids. The so-called microdroplet technique has become a routine laboratory method, the only one able to measure the concentrations of an unlimited number of elements in a single 0.1-nl sample. This explains its use in fields as various as renal, reproductive, digestive, and plant physiology, zoology, etc. Several review papers discuss these applications. The possibilities and limitations of the technique are discussed below

  17. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    Directory of Open Access Journals (Sweden)

    Thibaut Malausa

    Full Text Available Pseudococcus comstocki (Hemiptera: Pseudococcidae is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae and Acerophagus malinus (Hymenoptera: Encyrtidae. The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  18. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  19. Photosynthetic electron-transfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa.

    Science.gov (United States)

    Zhang, Kai-Mei; Shen, Yu; Zhou, Xiao-Qi; Fang, Yan-Ming; Liu, Ying; Ma, Lena Q

    2016-05-01

    To date, the response of the fern gametophyte to its environment has received considerable attention. However, studies on the influence of plant invasion on the fern gametophyte are fewer. Allelopathy has been hypothesized to play an important role in biological invasion. Hence, it is necessary to study the allelopathy of invasive plant species to the fern gametophyte and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on the gametophytic growth of Pteris multifida. The root exudate plays an important role among various allelochemical delivery mechanisms in B. pilosa. The effect invasive plant species has on photosynthesis in native species is poorly understood. To elucidate this effect, the changes in photosynthesis in the gametophytes of P. multifida are analyzed to examine the mechanisms of the root exudates of B. pilosa. Meanwhile, a non-invasive plant, Coreopsis basalis, was also applied to investigate the effects on fluorescence and pigments in P. multifida gametophytes. We found that gametophytes exposed to both B. pilosa and C. basalis had decreased fluorescence parameters in comparison with the control, except for non-photochemical quenching. Furthermore, it was found that these parameters were markedly affected from day 2 to day 10 in the presence of both exudates at a concentration of 25% or above. B. pilosa exudate had a negative dose-dependent effect on chlorophyll a, chlorophyll b, carotenoid, and the total chlorophyll in the gametophyte. The inhibitory effects increased with increasing exudate concentrations of both species, exhibiting the greatest inhibition at day 10. In conclusion, B. pilosa irreversibly affected the photosynthesis of P. multifida on both PS I and PS II. Root exudates caused the primary damage with respect to the decrease of the acceptors and donors of photon and electron in photosynthetic units and the production and

  20. The Global Garlic Mustard Field Survey (GGMFS: challenges and opportunities of a unique, large-scale collaboration for invasion biology

    Directory of Open Access Journals (Sweden)

    Robert Colautti

    2014-04-01

    Full Text Available To understand what makes some species successful invaders, it is critical to quantify performance differences between native and introduced regions, and among populations occupying a broad range of environmental conditions within each region. However, these data are not available even for the world’s most notorious invasive species. Here we introduce the Global Garlic Mustard Field Survey, a coordinated distributed field survey to collect performance data and germplasm from a single invasive species: garlic mustard (Alliaria petiolata across its entire distribution using minimal resources. We chose this species for its ecological impacts, prominence in ecological studies of invasion success, simple life history, and several genetic and life history attributes that make it amenable to experimental study. We developed a standardised field survey protocol to estimate population size (area and density, age structure, plant size and fecundity, as well as damage by herbivores and pathogens in each population, and to collect representative seed samples. Across four years and with contributions from 164 academic and non-academic participants from 16 countries in North America and Europe thus far, we have collected 45,788 measurements and counts of 137,811 plants from 383 populations and seeds from over 5,000 plants. All field data and seed resources will be curated for release to the scientific community. Our goal is to establish A. petiolata as a model species for plant invasion biology and to encourage large collaborative studies of other invasive species.

  1. Ecology, genetics, and biological control of invasive annual grasses in the Great Basin

    Science.gov (United States)

    Several annual grass species native to Eurasia, including cheatgrass (Bromus tectorum), red brome (B. rubens), and medusahead (Taeniatherum caput-medusae) have become invasive in the western USA. These invasive species degrade rangelands by compromising forage, outcompeting native flora, and exacerb...

  2. Evaluating methods to quantify spatial variation in the velocity of biological invasions

    Science.gov (United States)

    Clement Tisseuil; Aiko Gryspeirt; Renaud Lancelot; Maryline Pioz; Andrew Liebhold; Marius. Gilbert

    2016-01-01

    Invading species rarely spread homogeneously through a landscape and invasion patterns typically display irregular frontal boundaries as the invasion progresses through space. Those irregular patterns are generally produced by local environmental factors that may slow or accelerate movement of the frontal boundary. While there is an abundant literature on species...

  3. A national facility for biological cryo-electron microscopy.

    Science.gov (United States)

    Saibil, Helen R; Grünewald, Kay; Stuart, David I

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  4. Pathogen–host reorganization during Chlamydia invasion revealed by cryo-electron tomography

    Science.gov (United States)

    Nans, Andrea; Saibil, Helen R; Hayward, Richard D

    2014-01-01

    Invasion of host cells is a key early event during bacterial infection, but the underlying pathogen–host interactions are yet to be fully visualized in three-dimensional detail. We have captured snapshots of the early stages of bacterial-mediated endocytosis in situ by exploiting the small size of chlamydial elementary bodies (EBs) for whole-cell cryo-electron tomography. Chlamydiae are obligate intracellular bacteria that infect eukaryotic cells and cause sexually transmitted infections and trachoma, the leading cause of preventable blindness. We demonstrate that Chlamydia trachomatis LGV2 EBs are intrinsically polarized. One pole is characterized by a tubular inner membrane invagination, while the other exhibits asymmetric periplasmic expansion to accommodate an array of type III secretion systems (T3SSs). Strikingly, EBs orient with their T3SS-containing pole facing target cells, enabling the T3SSs to directly contact the cellular plasma membrane. This contact induces enveloping macropinosomes, actin-rich filopodia and phagocytic cups to zipper tightly around the internalizing bacteria. Once encapsulated into tight early vacuoles, EB polarity and the T3SSs are lost. Our findings reveal previously undescribed structural transitions in both pathogen and host during the initial steps of chlamydial invasion. PMID:24809274

  5. Electron reactions in model liquids and biological systems

    International Nuclear Information System (INIS)

    Bakale, G.; Gregg, E.C.

    1982-01-01

    Progress is reported in the following studies: (1) Field-dependent electron attachment; (2) Dependence of electron attachment rate on electron-acceptor dipole moment; (3) Electron attachment in i-octane/TMS mixtures; (4) Electron attachment/detachment equilibria; (5) Electron attachment to reversed micelles; (6) Electron attachment to chemical carcinogens; (7) Radiation-induced bacterial mutagenesis; and (8) Bacterial mutagenicity of nitrobenzene derivatives. 14 references

  6. Post-biological control invasion trajectory for Melaleuca quinquenervia in a seasonally inundated wetland

    Science.gov (United States)

    Although the exotic invasive tree Melaleuca quinquenervia has invaded and dominated South Florida wetlands since its introduction in 1886, its formerly unfettered seed production is now constrained by intentionally introduced herbivores, especially Oxyops vitiosa Pascoe (Coleoptera: Curculionidae). ...

  7. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  8. Tortricid moths (Lepidopotera: Tortricidae) reared from the invasive weed Parkinsonia aculeta (Fabaceae), with comments on their host specificity, biology, and geographic distribution

    Science.gov (United States)

    During efforts to identify native herbivores of Parkinsonia aculeata L. (Fabaceae: Caesalpiniodeae) as potential biological control agents against this invasive weed in Australia, seven species of Tortricidae were reared in Mexico, Guatemala, Nicaragua, and Venezuela: Amorbia concavana (Zeller), Pla...

  9. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species [v1; ref status: indexed, http://f1000r.es/33c

    Directory of Open Access Journals (Sweden)

    Heike Zimmermann

    2014-05-01

    Full Text Available Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density remain poorly understood. Invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the abundance of invasive species may be partly explained by the level of human activity or landscape maintenance, with intermediate levels of human activity providing optimal conditions for high abundance. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important additional or complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  10. Livestock as a potential biological control agent for an invasive wetland plant

    Directory of Open Access Journals (Sweden)

    Brian R. Silliman

    2014-09-01

    Full Text Available Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species.

  11. Protein electron transfer: is biology (thermo)dynamic?

    International Nuclear Information System (INIS)

    Matyushov, Dmitry V

    2015-01-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  12. Mass determination based on electron scattering in electron probe X-ray microanalysis of thin biological specimens

    International Nuclear Information System (INIS)

    Linders, P.W.J.

    1984-01-01

    This thesis describes the development of a method for mass determination of thin biological objects by quantitative electron microscopy. The practical realization of the mass determination consists of photographical recording with subsequent densitometry. (Auth.)

  13. Towards the planning and design of disturbance patterns across scales to counter biological invasions

    Science.gov (United States)

    Giovanni Zurlini; Irene Petrosillo; Kenneth Bruce Jones; Bai-Lian Li; Kurt Hans Riitters; Pietro Medagli; Silvano Marchiori; Nicola Zaccarelli

    2013-01-01

    The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions...

  14. The role of adaptive trans-generational plasticity in biological invasions of plants

    Science.gov (United States)

    Trans-generational plasticity (TGP) that confers greater offspring fitness is likely to be an important mechanism contributing to the spread of some invasive plant species. TGP is predicted for populations found in habitats with predictable spatial or temporal resource heterogeneity, and that have ...

  15. Zoochorous dispersal of freshwater bivalves: an overlooked vector in biological invasions?

    Directory of Open Access Journals (Sweden)

    Coughlan Neil E.

    2017-01-01

    Full Text Available Vectors that underpin the natural dispersal of invasive alien species are frequently unknown. In particular, the passive dispersal (zoochory of one organism (or propagule by another, usually more mobile animal, remains poorly understood. Field observations of the adherence of invasive freshwater bivalves to other organisms have prompted us to assess the importance of zoochory in the spread of three prolific invaders: zebra mussel Dreissena polymorpha; quagga mussel Dreissena bugensis; and Asian clam Corbicula fluminea. An extensive, systematic search of the literature was conducted across multiple on-line scientific databases using various search terms and associated synonyms. In total, only five publications fully satisfied the search criteria. It appears that some fish species can internally transport viable adult D. polymorpha and C. fluminea specimens. Additionally, literature indicates that veligers and juvenile D. polymorpha can adhere to the external surfaces of waterbirds. Overall, literature suggests that zoochorous dispersal of invasive bivalves is possible, but likely a rare occurrence. However, even the establishment of a few individuals (or a single self-fertilising C. fluminea specimen can, over-time, result in a substantial population. Here, we highlight knowledge gaps, identify realistic opportunities for data collection, and suggest management protocols to mitigate the spread of invasive alien species.

  16. Population genetics and biological control of goldspotted oak borer, an invasive pest of California oaks

    Science.gov (United States)

    Vanessa Lopez; Paul F. Rugman-Jones; Tom W. Coleman; Richard Stouthamer; Mark Hoddle

    2015-01-01

    California’s oak woodlands are threatened by the recent introduction of goldspotted oak borer (Agrilus auroguttatus). This invasive wood-borer is indigenous to mountain ranges in southern Arizona where its low population densities may be due to the presence of co-evolved, host-specific natural enemies. Reuniting A. auroguttatus...

  17. Comment on "Invasive Harlequin Ladybird Carries Biological Weapons Against Native Competitors"

    NARCIS (Netherlands)

    Jong, de P.W.; Lenteren, van J.C.; Raak-van den Berg, C.L.

    2013-01-01

    We comment on the implications that Vilcinskas et al. (Reports, 17 May 2013, p. 862) attach to the finding that the exotic, invasive ladybird Harmonia axyridis carries microsporidia to which this species is insensitive but that is lethal to species that are native to the invaded areas. The authors

  18. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  19. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    OpenAIRE

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this thesis was to make this biological process more broadly applicable for desulfurization of flue-gases and ground- and wastewaters by using the cheap chemical methanol as electron donor for the reduct...

  20. Use of exotic species in afforestation and facilitation for the establishment of biological invasion

    Directory of Open Access Journals (Sweden)

    Juliano Ricardo Fabricante

    2017-02-01

    Full Text Available This study aimed to inventory the species used in landscaping the Campus of Agricultural Sciences of the Federal University of Paraíba, Areia, PB, Brazil and to rank them according to their origin and their invasive potential. Through walks throughout the study area (active search, we cataloged all the species used in local afforestation and classified them as native or exotic. Exotic plants were also classified as to their invasive potential. Altogether, we identified 76 species belonging to 67 genera and 25 families. Of these, only 26 species were native. The results of this study are worrisome because of the large number of exotic species used for planting at the study site (50 species, including known aggressive species: Artocarpus heterophyllus Lam., Azadirachta indica A. Juss. and Leucaena leucocephala (Lam. de Wit.

  1. Biology and impacts of Pacific island invasive species 9. Capra hircus, the feral goat, (Mammalia: Bovidae)

    Science.gov (United States)

    Chynoweth, Mark W.; Litton, Creighton M.; Lepczyk, Christopher A.; Hess, Steve A.; Cordell, Susan

    2013-01-01

    Domestic goats, Capra hircus, were intentionally introduced to numerous oceanic islands beginning in the sixteenth century. The remarkable ability of C. hircus to survive in a variety of conditions has enabled this animal to become feral and impact native ecosystems on islands throughout the world. Direct ecological impacts include consumption and trampling of native plants, leading to plant community modification and transformation of ecosystem structure. While the negative impacts of feral goats are well-known and effective management strategies have been developed to control this invasive species, large populations persist on many islands. This review summarizes the impacts of feral goats on Pacific island ecosystems, and the management strategies available to control this invasive species.

  2. Invasive rats on tropical islands: Their population biology and impacts on native species

    OpenAIRE

    Harper, Grant A.; Bunbury, Nancy

    2015-01-01

    The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub la...

  3. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions.

    Directory of Open Access Journals (Sweden)

    Paul De Barro

    Full Text Available BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010. Only two species proposed in Dinsdale et al. (2010 departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED and Middle East - Asia Minor 1 (MEAM1, showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of

  4. Boom-bust dynamics in biological invasions: towards an improved application of the concept

    Czech Academy of Sciences Publication Activity Database

    Strayer, D.L.; D'Antonio, C. M.; Essl, F.; Fowler, M. S.; Geist, J.; Hilt, S.; Jaric, I.; Jöhnk, K.; Jones, C. G.; Lambin, X.; Latzka, A. W.; Pergl, Jan; Pyšek, Petr; Robertson, P.; von Schmalensee, M.; Stefansson, R. A.; Wright, J.; Jeschke, J.M.

    2017-01-01

    Roč. 20, č. 10 (2017), s. 1337-1350 ISSN 1461-023X R&D Projects: GA ČR GA17-19025S; GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : invasions * population dynamics * alien species Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 9.449, year: 2016

  5. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Science.gov (United States)

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  6. Biological Control of the Invasive Dryocosmus kuriphilus (Hymenoptera: Cynipidae - an Overview and the First Trials in Croatia

    Directory of Open Access Journals (Sweden)

    Dinka Matošević

    2014-06-01

    Full Text Available Background and Purpose: Dryocosmus kuriphilus is a globally invasive insect pest, spreading very quickly in new habitats and making serious damage to sweet chestnut forests in Croatia and in several other European countries. Indigenous parasitoid species trophically associated with oak gallwasps have adapted to this new host but cannot effectively regulate its population density. Classical biological control using parasitoid Torymus sinensis has been proven to be the only effective method of controlling the populations of D. kuriphilus and has been successfully applied in Japan, South Korea, the USA and Italy. The aim of this review paper is to provide overview and up-to date knowledge about biological control of D. kurphilus and to describe first steps of introduction of T. sinensis to sweet chestnut forests in Croatia. Conclusions and Future Prospects: Results presented in this paper show adapted biology and behavioural traits of T. sinensis to its host D. kuriphilus. The history and results of introductions of T. sinensis to Japan, the USA, Italy, France and Hungary are shown. The first report of release of T. sinensis to sweet chestnut forests in Croatia is given with discussion on native parasitoids attacking D. kuriphilus. Possible negative effects of T. sinensis on native parasitoid fauna and risks that could influence the successful establishment of T. sinensis in Croatia are discussed. Previous experiences have shown that T. sinensis can successfully control the population density of D. kuriphilus, slowing down the spread and mitigating negative impact of this invasive chestnut pest and keeping the damage of D. kuriphilus at acceptable level. High specificity of T. sinensis suggests that it has limited potential of exploiting native hosts but further detailed monitoring of native parasitoid and possible interactions with introduced T. sinensis is strongly suggested.

  7. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  8. Biology and impacts of Pacific Islands invasive species. 14. Sus scrofa the feral pig (Artiodactyla: Suidae)

    Science.gov (United States)

    Wehr, Nathaniel H.; Hess, Steven C.; Litton, Creighton M.

    2018-01-01

    Feral pigs (Sus scrofa L.) are perhaps the most abundant, widespread, and economically significant large introduced vertebrate across the Pacific island region. Unlike many other nonnative invasive species, feral pigs have both cultural and recreational importance in the region, complicating their management. Today, Pacific island feral pigs are a mixture of several strains of domestic swine, Asiatic wild boar, and European wild boar. Due to their generalist diet and rooting behavior, feral pigs alter soils and watersheds and negatively impact native and nonnative flora and fauna. As a result, feral pigs have played a role in the extinction of several species of plants and animals on Pacific islands and have negative effects on both ecotourism and agricultural industries in the region. Despite numerous published studies on feral pigs in the Pacific island region, of which the majority include systematic analyses of original empirical data, some fundamental aspects of feral pig ecology remain poorly characterized, at least partly due to the remote and inaccessible environments that they often inhabit. To address these knowledge gaps, effort should be made to integrate research conducted outside the Pacific island region into local management strategies. This review summarizes the origins, history, ecology, environmental effects, and current management of feral pigs in the Pacific island region; integrates regional scientific findings with those of other insular and continental systems; and identifies current knowledge gaps requiring further research to inform the ecology and management of this impactful invasive species.

  9. Climate change and body size shift in Mediterranean bivalve assemblages: unexpected role of biological invasions.

    Science.gov (United States)

    Nawrot, Rafał; Albano, Paolo G; Chattopadhyay, Devapriya; Zuschin, Martin

    2017-08-16

    Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems. © 2017 The Author(s).

  10. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  11. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    International Nuclear Information System (INIS)

    Sorensen, Mary A.; Parker, David R.; Trumble, John T.

    2009-01-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO 4 - ), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata

  12. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)], E-mail: mary.sorensen@ucr.edu; Parker, David R. [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2009-02-15

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO{sub 4}{sup -}), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata.

  13. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  14. Biological observations for invasive and exotic insect species Anoplophora chinensis (Forster, 1771

    Directory of Open Access Journals (Sweden)

    Erdem Hizal

    2017-11-01

    Full Text Available In recent years, invasive and exotic insect species have been frequently found in Turkey. Anoplophora chinensis (Forster, 1771 was first recorded in Şile (Istanbul province county, Turkey, in June 2014 and later in Zeytinburnu (the garden of the Abdi Ipekçi Sports Complex and the surrounding in July in the same year. This study was conducted in these two counties in particular between June 2014 and July 2016 with the aims of making remarks on an earlier misidentification of Anoplophora species and determining the life cycle and the host plants in Istanbul, Turkey. It was noted that the record of A. glabripennis in Istanbul was a misidentification of A. chinensis. It took 1 year to complete its generation. The primary host plant of this insect was found to be Acer negundo.

  15. The African honey bee: factors contributing to a successful biological invasion.

    Science.gov (United States)

    Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan

    2004-01-01

    The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.

  16. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  17. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    Science.gov (United States)

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  18. Runge-Kutta and Hermite Collocation for a biological invasion problem modeled by a generalized Fisher equation

    International Nuclear Information System (INIS)

    Athanasakis, I E; Papadopoulou, E P; Saridakis, Y G

    2014-01-01

    Fisher's equation has been widely used to model the biological invasion of single-species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods

  19. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  20. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  1. Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management.

    Science.gov (United States)

    Herms, Daniel A; McCullough, Deborah G

    2014-01-01

    Since its accidental introduction from Asia, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash trees in North America. As it continues to spread, it could functionally extirpate ash with devastating economic and ecological impacts. Little was known about EAB when it was first discovered in North America in 2002, but substantial advances in understanding of EAB biology, ecology, and management have occurred since. Ash species indigenous to China are generally resistant to EAB and may eventually provide resistance genes for introgression into North American species. EAB is characterized by stratified dispersal resulting from natural and human-assisted spread, and substantial effort has been devoted to the development of survey methods. Early eradication efforts were abandoned largely because of the difficulty of detecting and delineating infestations. Current management is focused on biological control, insecticide protection of high-value trees, and integrated efforts to slow ash mortality.

  2. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  3. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    Science.gov (United States)

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations.

  4. Impact of the Invasive Brown Marmorated Stink Bug in North America and Europe: History, Biology, Ecology, and Management.

    Science.gov (United States)

    Leskey, Tracy C; Nielsen, Anne L

    2018-01-07

    The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål), is an invasive pentatomid introduced from Asia into the United States, Canada, multiple European countries, and Chile. In 2010, BMSB populations in the mid-Atlantic United States reached outbreak levels and subsequent feeding severely damaged tree fruit as well as other crops. Significant nuisance issues from adults overwintering inside homes were common. BMSB is a highly polyphagous species with a strong dispersal capacity and high reproductive output, potentially enabling its spread and success in invaded regions. A greater understanding of BMSB biology and ecology and its natural enemies, the identification of the male-produced aggregation pheromone, and the recognition that BMSB disperses into crops from adjacent wooded habitats have led to the development of behavior-based integrated pest management (IPM) tactics. Much is still unknown about BMSB, and continued long-term collaborative studies are necessary to refine crop-specific IPM programs and enhance biological control across invaded landscapes.

  5. Non-invasive optoacoustic probing of the density and stiffness of single biological cells

    Science.gov (United States)

    Dehoux, T.; Audoin, B.

    2012-12-01

    Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.

  6. Scanning electron microscope autoradiography of critical point dried biological samples

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1980-01-01

    A technique has been developed for the localization of isotopes in the scanning electron microscope. Autoradiographic studies have been performed using a model system and a unicellular biflagellate alga. One requirement of this technique is that all manipulations be carried out on samples that are maintained in a liquid state. Observations of a source of radiation ( 125 I-ferritin) show that the nuclear emulsion used to detect radiation is active under these conditions. Efficiency measurement performed using 125 I-ferritin indicate that 125 I-SEM autoradiography is an efficient process that exhibits a 'dose dependent' response. Two types of labeling methods were used with cells, surface labeling with 125 I and internal labeling with 3 H. Silver grains appeared on labeled cells after autoradiography, removal of residual gelatin and critical point drying. The location of grains was examined on a flagellated green alga (Chlamydomonas reinhardi) capable of undergoing cell fusion. Fusion experiments using labeled and unlabeled cells indicate that 1. Labeling is specific for incorporated radioactivity; 2. Cell surface structure is preserved in SEM autoradiographs and 3. The technique appears to produce reliable autoradiographs. Thus scanning electron microscope autoradiography should provide a new and useful experimental approach

  7. The status of electronic laboratory notebooks for chemistry and biology.

    Science.gov (United States)

    Taylor, Keith T

    2006-05-01

    Documenting an experiment in a way that ensures that the record can act as evidence to support a patent claim or to demonstrate compliance with the US Food and Drug Administration's (FDA's) predicate rules, puts demands on an electronic laboratory notebook (ELN) that are not trivial. The 1996 General Agreement on Tariffs and Trade (GATT) allowed notebook records that were generated outside of the US to be used to claim precedence in US patent claims. This agreement spurred interest in the development of ELNs in Europe. The pharmaceutical research process became dependent on computer systems during the latter part of the 1990s, and this also led to a wider interest in ELNs. More recently, the FDA began to encourage submissions in an all-electronic form, leading to great interest in the use of ELNs in development and manufacturing. As a result of these influences, the pharmaceutical industry is now actively pursuing ELN evaluations and implementations. This article describes some of the early efforts and the recent drivers for ELN adoption. The state of the ELN market in 2005 is also described.

  8. Reproductive biology and adaptability of the invasive alien freshwater Amphipod Crangonyx floridanus (Crustacea: Amphipoda, Crangonyctidae).

    Science.gov (United States)

    Tojo, Koji; Tanaka, Yoshiki; Kuranishi, Ryoichi B; Kanada, Shoji

    2010-06-01

    We studied the reproductive biology and adaptability of the alien freshwater crangonyctid amphipod Crangonyx floridanus, currently inhabiting a large portion of Japan, both in the field and under controlled laboratory conditions. In the Chikuma River population of this alien amphipod, egg-bearing individuals were found throughout the year. In terms of egg maturation cycle, egg development (during embryogenesis), and egg count per ovipositional cycle, these amphipods display a very efficient reproductive system. This study also established their adaptability to a wide range of water temperatures (primarily 4-20 degrees C, however in some cases, these individuals are able to survive at up to 30 degrees C). C. floridanus's strong capacity to adapt to broad and variable environmental conditions is certainly contributing to its high rate of population increase, and rapid dispersion throughout Japan.

  9. Real Time Monitoring of Children, and Adults with Mental Disabilities Using a Low-Cost Non-Invasive Electronic Device

    Directory of Open Access Journals (Sweden)

    Carlos Polanco

    2017-09-01

    Full Text Available There are a growing number of small children—as well as adults—with mental disabilities (including elderly citizens with Alzheimer’s disease or other forms of age-related dementia that are getting lost in rural and urban areas for various reasons. Establishing their location within the first 72 h is crucial because lost people are exposed to all kinds of adverse conditions and in the case of the elderly, this is further aggravated if prescribed medication is needed. Herein we describe a non-invasive, low-cost electronic device that operates constantly, keeping track of time, the geographical location and the identification of the subject using it. The prototype was made using commercial low-cost electronic components. This electronic device shows high connectivity in open and closed areas and identifies the geographical location of a lost subject. We freely provide the software and technical diagrams of the prototypes.

  10. Economic assessment of the contribution of biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2010-07-01

    Full Text Available This study is a first attempt at a holistic economic evaluation of South African endeavours to manage invasive alien plants using biological control. The author’s focus was on the delivery of ecosystem services from habitats that are invaded...

  11. Electronic spectra and structures of some biologically important xanthines

    Science.gov (United States)

    Shukla, M. K.; Mishra, P. C.

    1994-08-01

    Electronic absorption and fluorescence spectra of aqueous solutions of xanthine, caffeine, theophylline and theobromine have been studied at different pH. The observed spectra have been interpreted in terms of neutral and ionic forms of the molecules with the help of molecular orbital calculations. At neutral and acidic pH, the spectra can be assigned to the corresponding most stable neutral forms, with the exception that the fluorescence of xanthine at acidic pH appears to originate from the lowest singlet excited state of a cation of the molecule. At alkaline pH, xanthine and theophylline exist mainly as their monoanions. In xanthine and theophylline at alkaline pH, fluorescence originates from the lowest singlet excited state of the corresponding anion. However, in caffeine and theobromine, even at alkaline pH, fluorescence belongs to the neutral species. On the whole, the properties of xanthine are quite different from those of the methyl xanthines.

  12. Targeting paraprotein biosynthesis for non-invasive characterization of myeloma biology.

    Directory of Open Access Journals (Sweden)

    Katharina Lückerath

    Full Text Available PURPOSE: Multiple myeloma is a hematologic malignancy originating from clonal plasma cells. Despite effective therapies, outcomes are highly variable suggesting marked disease heterogeneity. The role of functional imaging for therapeutic management of myeloma, such as positron emission tomography with 2-deoxy-2-[¹⁸F]fluoro-D-glucose (¹⁸F-FDG-PET, remains to be determined. Although some studies already suggested a prognostic value of ¹⁸F-FDG-PET, more specific tracers addressing hallmarks of myeloma biology, e.g. paraprotein biosynthesis, are needed. This study evaluated the amino acid tracers L-methyl-[¹¹C]-methionine (¹¹C-MET and [¹⁸F]-fluoroethyl-L-tyrosine ((¹⁸F-Fet for their potential to image myeloma and to characterize tumor heterogeneity. EXPERIMENTAL DESIGN: To study the utility of ¹¹C-MET, ¹⁸F-Fet and ¹⁸F-FDG for myeloma imaging, time activity curves were compared in various human myeloma cell lines (INA-6, MM1.S, OPM-2 and correlated to cell-biological characteristics, such as marker gene expression and immunoglobulin levels. Likewise, patient-derived CD138⁺ plasma cells were characterized regarding uptake and biomedical features. RESULTS: Using myeloma cell lines and patient-derived CD138⁺ plasma cells, we found that the relative uptake of ¹¹C-MET exceeds that of ¹⁸F-FDG 1.5- to 5-fold and that of ¹⁸F-Fet 7- to 20-fold. Importantly, ¹¹C-MET uptake significantly differed between cell types associated with worse prognosis (e.g. t(4;14 in OPM-2 cells and indolent ones and correlated with intracellular immunoglobulin light chain and cell surface CD138 and CXCR4 levels. Direct comparison of radiotracer uptake in primary samples further validated the superiority of ¹¹C-MET. CONCLUSION: These data suggest that ¹¹C-MET might be a versatile biomarker for myeloma superior to routine functional imaging with ¹⁸F-FDG regarding diagnosis, risk stratification, prognosis and discrimination of tumor

  13. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  14. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    Directory of Open Access Journals (Sweden)

    Mark S. Hoddle

    2014-12-01

    Full Text Available Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect.

  15. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible?

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.; Hartwig, E.; Sarkar, M.R.; Schultheiss, M. [Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Ulm (Germany); Brecht-Krauss, D.; Guhlmann, A.; Diederichs, C.G.; Kotzerke, J.; Reske, S.N. [Department of Nuclear Medicine, University Hospital Ulm (Germany); Heymer, B. [Department of Pathology, University Hospital Ulm (Germany)

    1999-06-01

    Since musculoskeletal tumours comprise a large heterogeneous group of entities with different biological behaviour, clinical diagnosis of such lesions can be very difficult. The aim of this prospective study was to assess the usefulness of 2-[F-18]-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in the non-invasive evaluation of soft tissue tumours. One hundred and two patients with suspected soft tissue neoplasms were investigated by FDG-PET. The uptake of FDG was evaluated semiquantitatively by determining the tumour to background ratio (TBR). All patients underwent biopsy, resulting in the histological detection of 39 high-grade sarcomas, 16 intermediate-grade sarcomas, 11 low-grade sarcomas, 25 benign tumours, 10 tumour-like lesions such as spontaneous myositis ossificans (n = 6) and one non-Hodgkin lymphoma. All lesions except for two lipomas disclosed an increased FDG uptake. Sarcomas showed significantly higher TBR values than latent or active benign lesions (P<0.001) and aggressive benign lesions (P<0.05). Using a TBR cut-off level of 3.0 for malignancy, sensitivity of FDG-PET was 97.0%, specificity 65.7% and accuracy 86.3%. From our data there are three main conclusions: (1) Except for patients with pseudotumoral myositis ossificans, lesions with a TBR >3 were sarcomas (91.7%) or aggressive benign tumours (8.3%). (2) Tumours with a TBR <1.5 were latent or active benign lesions, exclusively. (3) The group with intermediate TBR values (<3 and >1.5) comprised primarily latent or active benign lesions, but also four aggressive benign tumours and two low-grade sarcomas. Our data suggest that FDG-PET represents a useful tool for the evaluation of the biological activity of soft tissue neoplasms. (orig.) With 5 figs., 2 tabs., 26 refs.

  16. Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents.

    Directory of Open Access Journals (Sweden)

    Matthys Strydom

    Full Text Available Australian Acacia are invasive in many parts of the world. Despite significant mechanical and biological efforts to control their invasion and spread, soil-stored seed banks prevent their effective and sustained removal. In response South Africa has had a strong focus on employing seed reducing biological control agents to deal with Australian Acacia invasion, a programme that is considered as being successful. To provide a predictive understanding for their management, seed banks of four invasive Australian acacia species (Acacia longifolia, A. mearnsii, A. pycnantha and A. saligna were studied in the Western Cape of South Africa. Across six to seven sites for each species, seed bank sizes were estimated from dense, monospecific stands by collecting 30 litter and soil samples. Average estimated seed bank size was large (1017 to 17261 seed m-2 as was annual input into the seed bank, suggesting that these seed banks are not residual but are replenished in size annually. A clear relationship between seed bank size and stem diameter was established indicating that mechanical clearing should be conducted shortly after fire-stimulated recruitment events or within old populations when seed banks are small. In dense, monospecific stands seed-feeding biological control agents are not effective in reducing seed bank size.

  17. Review on Invasive Tree of Heaven (Ailanthus altissima (Mill.) Swingle) Conflicting Values: Assessment of Its Ecosystem Services and Potential Biological Threat.

    Science.gov (United States)

    Sladonja, Barbara; Sušek, Marta; Guillermic, Julia

    2015-10-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. One of the most widespread invasive alien plant species in Europe and North America, Tree of Heaven (Ailanthus altissima (Mill.) Swingle) was introduced intentionally for use as an ornamental plant in the 18th century. Since then, it has spread and is now frequently found in a number of countries. Today, Tree of Heaven is considered one of the worst invasive plant species in Europe and is also listed as invasive in North America and many other countries. Millennium Ecosystem Assessment is one of many systems trying to list and categorize biological services to humans and to provide a tool for identifying services delivered by natural ecosystems. Invasive species have generally caused degradation of the services, have a major impact on the environment, and are threatening biodiversity and reducing overall species abundance and diversity. On the other hand, some invasive species can provide services useful to human well-being. In the present review A. altissima impacts on ecosystems are identified and positive influences on some ecosystem services are weighed against the negative effects on the environment and human health. The aim of the present review is to resume the general knowledge of A. altissima, group available references on distribution and ecology according to countries, compare ecosystem services provided or enhanced by A. altissima presence and the negative effects it causes, identify gaps in current knowledge, and give recommendations for future lines of research.

  18. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction

    KAUST Repository

    Parshad, Rana

    2013-01-01

    The purpose of this manuscript is to propose a model for the biological control of invasive species, via introduction of phenotypically modified organisms into a target population. We are inspired by the earlier Trojan Y Chromosome model [J.B. Gutierrez, J.L. Teem, J. Theo. Bio., 241(22), 333-341, 2006]. However, in the current work, we remove the assumption of logisticgrowth rate, and do not consider the addition of sex-reversed supermales. Also the constant birth and death coefficients, considered earlier, are replaced by functionally dependent ones. In this case the nonlinearities present serious difficulties since they change sign, and the components of the solution are not a priori bounded, in some Lp-space for p large, to permit theapplication of the well known regularizing effect principle. Thus functional methods to deducethe global existence in time, for the system in question, are not applicable. Our techniques are based on the Lyapunov functional method. We prove global existence of solutions, as well asexistence of a finite dimensional global attractor, that supports states of extinction. Our analytical finding are in accordance with numerical simulations, which we also present. © 2013 International Press.

  19. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  20. 2. Brazilian Congress on Cell Biology and 7. Brazilian Colloquium on Electron Microscopy - Abstracts

    International Nuclear Information System (INIS)

    1980-01-01

    Immunology, virology, bacteriology, genetics and protozoology are some of the subjects treated in the 2. Brazilian Congress on Cell Biology. Studies using radioisotopic techniques and ultrastructural cytological studies are presented. Use of optical - and electron microscopy in some of these studies is discussed. In the 7. Brazilian Colloquium on Electron Microscopy, the application of this technique to materials science is discussed (failure analysis in metallurgy, energy dispersion X-ray analysis, etc). (I.C.R.) [pt

  1. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  2. Dynamical "in situ" observation of biological samples using variable pressure scanning electron microscope

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém

    2008-01-01

    Roč. 126, - (2008), 012046:1-4 ISSN 1742-6588. [Electron Microscopy and Analysis Group Conference 2007 (EMAG 2007). Glasgow, 03.09.2007-07.09.2007] R&D Projects: GA ČR(CZ) GA102/05/0886; GA AV ČR KJB200650602 Institutional research plan: CEZ:AV0Z20650511 Keywords : biological sample * VP-SEM * dynamical experiments Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Towards native-state imaging in biological context in the electron microscope

    Science.gov (United States)

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  4. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    Science.gov (United States)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  5. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  7. Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles.

    Science.gov (United States)

    García-Díaz, Pablo; Ross, Joshua V; Ayres, César; Cassey, Phillip

    2015-03-01

    Biological invasions are a key component of human-induced global change. The continuing increase in global wildlife trade has raised concerns about the parallel increase in the number of new invasive species. However, the factors that link the wildlife trade to the biological invasion process are still poorly understood. Moreover, there are analytical challenges in researching the role of global wildlife trade in biological invasions, particularly issues related to the under-reporting of introduced and established populations in areas with reduced sampling effort. In this work, we use high-quality data on the international trade in Nearctic turtles (1999-2009) coupled with a statistical modelling framework, which explicitly accounts for detection, to investigate the factors that influence the introduction (release, or escape into the wild) of globally traded Nearctic turtles and the establishment success (self-sustaining exotic populations) of slider turtles (Trachemys scripta), the most frequently traded turtle species. We found that the introduction of a species was influenced by the total number of turtles exported to a jurisdiction and the age at maturity of the species, while the establishment success of slider turtles was best associated with the propagule number (number of release events), and the number of native turtles in the jurisdiction of introduction. These results indicate both a direct and indirect association between the wildlife trade and the introduction of turtles and establishment success of slider turtles, respectively. Our results highlight the existence of gaps in the number of globally recorded introduction events and established populations of slider turtles, although the expected bias is low. We emphasize the importance of researching independently the factors that affect the different stages of the invasion pathway. Critically, we observe that the number of traded individuals might not always be an adequate proxy for propagule pressure

  8. Correlation between biological activity and electron transferring of bovine liver catalase: Osmolytes effects

    International Nuclear Information System (INIS)

    Tehrani, H. Sepasi; Moosavi-Movahedi, A.A.; Ghourchian, H.

    2013-01-01

    Highlights: • Proline increases ET in Bovine Liver Catalase (BLC) whereas histidine decreases it. • Proline also increased the biological activity, whereas histidine decreased it. • Electron transferring and biological activity for BLC are directly correlated. • Proline causes favorable ET for BLC shown by positive E 1/2 (E°′) and negative ΔG. • Histidine makes ET unfavorable for BLC, manifested by E 1/2 (E°′) 0. -- Abstract: Catalase is a crucial antioxidant enzyme that protects life against detrimental effects of H 2 O 2 by disproportionating it into water and molecular oxygen. Effect of proline as a compatible and histidine as a non compatible osmolyte on the electron transferring and midpoint potential of catalase has been investigated. Proline increases the midpoint potential (ΔE m > 0), therefore causing the ΔG ET to be less positive and making the electron transfer reaction more facile whereas histidine decreases the E m (ΔE m ET , thereby rendering the electron transfer reaction less efficient. These results indicate the inhibitory effect of histidine evident by a −37% decrease in the cathodic peak current compared to 16% increase in the case of proline indicative of activation. The insight paves the tedious way towards our ultimate goal of elucidating a correlation between biological activity and electron transferring

  9. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.

    2014-01-01

    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  10. Novel non-invasive biological predictive index for liver fibrosis in hepatitis C virus genotype 4 patients

    Science.gov (United States)

    Khattab, Mahmoud; Sakr, Mohamed Amin; Fattah, Mohamed Abdel; Mousa, Youssef; Soliman, Elwy; Breedy, Ashraf; Fathi, Mona; Gaber, Salwa; Altaweil, Ahmed; Osman, Ashraf; Hassouna, Ahmed; Motawea, Ibrahim

    2016-01-01

    AIM To investigate the diagnostic ability of a non-invasive biological marker to predict liver fibrosis in hepatitis C genotype 4 patients with high accuracy. METHODS A cohort of 332 patients infected with hepatitis C genotype 4 was included in this cross-sectional study. Fasting plasma glucose, insulin, C-peptide, and angiotensin-converting enzyme serum levels were measured. Insulin resistance was mathematically calculated using the homeostasis model of insulin resistance (HOMA-IR). RESULTS Fibrosis stages were distributed based on Metavir score as follows: F0 = 43, F1 = 136, F2 = 64, F3 = 45 and F4 = 44. Statistical analysis relied upon reclassification of fibrosis stages into mild fibrosis (F0-F) = 179, moderate fibrosis (F2) = 64, and advanced fibrosis (F3-F4) = 89. Univariate analysis indicated that age, log aspartate amino transaminase, log HOMA-IR and log platelet count were independent predictors of liver fibrosis stage (P < 0.0001). A stepwise multivariate discriminant functional analysis was used to drive a discriminative model for liver fibrosis. Our index used cut-off values of ≥ 0.86 and ≤ -0.31 to diagnose advanced and mild fibrosis, respectively, with receiving operating characteristics of 0.91 and 0.88, respectively. The sensitivity, specificity, positive predictive value, negative predictive value and positive likelihood ratio were: 73%, 91%, 75%, 90% and 8.0 respectively for advanced fibrosis, and 67%, 88%, 84%, 70% and 4.9, respectively, for mild fibrosis. CONCLUSION Our predictive model is easily available and reproducible, and predicted liver fibrosis with acceptable accuracy. PMID:27917265

  11. Novel non-invasive biological predictive index for liver fibrosis in hepatitis C virus genotype 4 patients.

    Science.gov (United States)

    Khattab, Mahmoud; Sakr, Mohamed Amin; Fattah, Mohamed Abdel; Mousa, Youssef; Soliman, Elwy; Breedy, Ashraf; Fathi, Mona; Gaber, Salwa; Altaweil, Ahmed; Osman, Ashraf; Hassouna, Ahmed; Motawea, Ibrahim

    2016-11-18

    To investigate the diagnostic ability of a non-invasive biological marker to predict liver fibrosis in hepatitis C genotype 4 patients with high accuracy. A cohort of 332 patients infected with hepatitis C genotype 4 was included in this cross-sectional study. Fasting plasma glucose, insulin, C-peptide, and angiotensin-converting enzyme serum levels were measured. Insulin resistance was mathematically calculated using the homeostasis model of insulin resistance (HOMA-IR). Fibrosis stages were distributed based on Metavir score as follows: F0 = 43, F1 = 136, F2 = 64, F3 = 45 and F4 = 44. Statistical analysis relied upon reclassification of fibrosis stages into mild fibrosis (F0-F) = 179, moderate fibrosis (F2) = 64, and advanced fibrosis (F3-F4) = 89. Univariate analysis indicated that age, log aspartate amino transaminase, log HOMA-IR and log platelet count were independent predictors of liver fibrosis stage ( P < 0.0001). A stepwise multivariate discriminant functional analysis was used to drive a discriminative model for liver fibrosis. Our index used cut-off values of ≥ 0.86 and ≤ -0.31 to diagnose advanced and mild fibrosis, respectively, with receiving operating characteristics of 0.91 and 0.88, respectively. The sensitivity, specificity, positive predictive value, negative predictive value and positive likelihood ratio were: 73%, 91%, 75%, 90% and 8.0 respectively for advanced fibrosis, and 67%, 88%, 84%, 70% and 4.9, respectively, for mild fibrosis. Our predictive model is easily available and reproducible, and predicted liver fibrosis with acceptable accuracy.

  12. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae).

    Science.gov (United States)

    Fischbein, D; Corley, J C

    2015-02-01

    Classical biological control is a key method for managing populations of pests in long-lived crops such as plantation forestry. The execution of biological control programmes in general, as the evaluation of potential natural enemies remains, to a large extent, an empirical endeavour. Thus, characterizing specific cases to determine patterns that may lead to more accurate predictions of success is an important goal of the much applied ecological research. We review the history of introduction, ecology and behaviour of the parasitoid Ibalia leucospoides. The species is a natural enemy of Sirex noctilio, one of the most important pests of pine afforestation worldwide. We use an invasion ecology perspective given the analogy between the main stages involved in classical biological control and the biological invasion processes. We conclude that success in the establishment, a common reason of failure in biocontrol, is not a limiting factor of success by I. leucospoides. A mismatch between the spread capacity of the parasitoid and that of its host could nevertheless affect control at a regional scale. In addition, we suggest that given its known life history traits, this natural enemy may be a better regulator than suppressor of the host population. Moreover, spatial and temporal refuges of the host population that may favour the local persistence of the interaction probably reduce the degree to which S. noctilio population is suppressed by the parasitoid. We emphasize the fact that some of the biological attributes that promote establishment may negatively affect suppression levels achieved. Studies on established non-native pest-parasitoid interactions may contribute to defining selection criteria for classical biological control which may prove especially useful in integrated pest management IPM programmes of invasive forest insects.

  13. Testing Carea varipes and Neostauropus alternus as biological control agents for the Florida invasive plant species Rhodomyrtus tomentosa.

    Science.gov (United States)

    Rhodomyrtus tomentosa (RT) a native plant to Southeastern Asia, commonly known as downy rose myrtle, is invasive to the regions of Central and South Florida. Introduced in the early 1920’s, this weed is currently considered a Category I invasive species by the Florida Exotic Pest Plant Council. RT...

  14. Is the alpine divide becoming more permeable to biological invasions? - Insights on the invasion and establishment of the Walnut Husk Fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland.

    Science.gov (United States)

    Aluja, M; Guillén, L; Rull, J; Höhn, H; Frey, J; Graf, B; Samietz, J

    2011-08-01

    The Walnut Husk Fly, Rhagoletis completa Cresson (Diptera: Tephritidae), is native to North America (Midwestern US and north-eastern Mexico) and has invaded several European countries in the past decades by likely crossing the alpine divide separating most parts of Switzerland from Italy. Here, we determined its current distribution in Switzerland by sampling walnuts (Juglans regia L.) in ecologically and climatically distinct regions along potential invasion corridors. R. completa was found to be firmly established in most low altitude areas of Switzerland where walnuts thrive, but notably not a single parasitoid was recovered from any of the samples. Infested fruit was recovered in 42 of the 71 localities that were surveyed, with mean fruit infestation rate varying greatly among sites. The incidence of R. completa in Switzerland is closely related to meteorological mean spring temperature patterns influencing growing season length, but not to winter temperatures, reflecting survival potential during hibernation. Importantly, areas in which the fly is absent correspond with localities where the mean spring temperatures fall below 7°C. Historical data records show that the natural cold barrier around the Alpine divide in the central Swiss Alps corresponding to such minimal temperatures has shrunk significantly from a width of more than 40 km before 1990 to around 20 km after 2000. We hypothesize on possible invasion/expansion routes along alpine valleys, dwell on distribution patterns in relation to climate, and outline future research needs as the incursion of R. completa into Switzerland; and, more recently, other European countries, such as Germany, Austria, France and Slovenia, represent an example of alien species that settle first in the Mediterranean Basin and from there become invasive by crossing the Alps.

  15. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review

    International Nuclear Information System (INIS)

    Glaeser, R.M.; Taylor, K.A.

    1978-01-01

    When biological specimens are irradiated by the electron beam in the electron microscope, the specimen structure is damaged as a result of molecular excitation, ionization, and subsequent chemical reactions. The radiation damage that occurs in the normal process of electron microscopy is known to present severe limitations for imaging high resolution detail in biological specimens. The question of radiation damage at low temperatures has therefore been investigated with the view in mind of reducing somewhat the rate at which damage occurs. The radiation damage protection found for small molecule (anhydrous) organic compounds is generally rather limited or even non-existent. However, large molecule, hydrated materials show as much as a 10-fold reduction at low temperature in the rate at which radiation damage occurs, relative to the damage rate at room temperature. In the case of hydrated specimens, therefore, low temperature electron microscopy offers an important advantage as part of the overall effort required in obtaining high resolution images of complex biological structures. (author)

  16. Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans

    Science.gov (United States)

    2014-09-30

    electronics technology , and resulted in highly integrated mechatronics systems for the study of free ranging animals. In the next decade, these tags will...animal performance of engineered attachments and tags Objective: Develop the tag technology and algorithms required to produce quantitative metrics for

  17. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  18. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    Science.gov (United States)

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  19. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Science.gov (United States)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  20. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  1. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  2. Integrating phenotypic data from electronic patient records with molecular level systems biology

    DEFF Research Database (Denmark)

    Brunak, Søren

    2011-01-01

    Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracti...... Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently are mapped to systems biology frameworks....

  3. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy

    International Nuclear Information System (INIS)

    Nair, R. R.; Anissimova, S.; Novoselov, K. S.; Blake, P.; Blake, J. R.; Geim, A. K.; Zan, R.; Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Latychevskaia, T.

    2010-01-01

    We demonstrate the application of graphene as a support for imaging individual biological molecules in transmission electron microscope (TEM). A simple procedure to produce free-standing graphene membranes has been designed. Such membranes are extremely robust and can support practically any submicrometer object. Tobacco mosaic virus has been deposited on graphene samples and observed in a TEM. High contrast has been achieved even though no staining has been applied.

  5. RGB color coded images in scanning electron microscopy of biological surfaces

    Czech Academy of Sciences Publication Activity Database

    Kofroňová, Olga; Benada, Oldřich

    2017-01-01

    Roč. 61, č. 3 (2017), s. 349-352 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : Biological surfaces * Color image s * Scanning electron microscopy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  6. Biological invasion of Pinus ponderosa and Pinus contorta: case study of a forest plantation in Northwestern Patagonia; Invasion biologica de Pinus ponderosa y Pinus contorta: estudio de caso de una plantacion en la Patagonia noroccidental

    Energy Technology Data Exchange (ETDEWEB)

    Dezzotti, A.; Sbrancia, R.; Mortoro, A.; Monte, C.

    2009-07-01

    In the Southern Hemisphere, Pinus species from plantations can bring about processes of biological invasion that cause significant and permanent changes on the structure and functioning of surrounding natural ecosystems. The invasive character of Pinus ponderosa (P) and Pinus contorta (C) was examined for a 20-year old plantation located in the Alicura Forest Station (40 degree centigrade 40' S and 71 degree centigrade 00' W), through the analysis of abundance, age and spatial structures, and dispersal of natural regeneration. Seedlings and saplings were located largely within the plantation boundaries, and exhibited a density of 6.9 ind / ha (41 % for P and 59 % for C), a clustered spatial pattern with clumps dispersed not randomly, and a mean dispersal rate of 9.5 m / yr for P. ponderosa and 5.4 m / yr for P. contorta. Both species were invading the adjacent area, according to technical criteria based on ecological responses. However, regeneration niche is strongly hindering tree establishment and dispersal, probably due to high plant cover, presence of vertic soils, and absence of ectomycorrhizal fungi. These results can contribute to predict the capability of P. contorta and P. ponderosa to become invasive, in order to maximize the positive balance of forestry based on these species in northwestern Patagonia. (Author) 50 refs.

  7. Metal-like transport in proteins: A new paradigm for biological electron transfer

    Science.gov (United States)

    Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2012-02-01

    Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)

  8. Factors influencing plant invasiveness

    Science.gov (United States)

    Yvette Ortega; Dean Pearson

    2009-01-01

    Invasiveness of spotted knapweed and biological control agents. Dean and Yvette are examining the influence of drought on the invasiveness of spotted knapweed (Centaurea maculosa) and its susceptibility to herbivory by biological control agents. In collaboration with the University of Montana and Forest Health Protection, researchers have constructed 150...

  9. Invasion biology meets parasitology: a case study of parasite spill-back with Egyptian Fasciola gigantica in the invasive snail Pseudosuccinea columella.

    Directory of Open Access Journals (Sweden)

    Daniel S Grabner

    Full Text Available The liver fluke Fasciola gigantica is a trematode parasite of ruminants and humans that occurs naturally in Africa and Asia. Cases of human fascioliasis, attributable at least in part to F. gigantica, are significantly increasing in the last decades. The introduced snail species Galba truncatula was already identified to be an important intermediate host for this parasite and the efficient invader Pseudosuccinea columella is another suspect in this case. Therefore, we investigated snails collected in irrigation canals in Fayoum governorate in Egypt for prevalence of trematodes with focus on P. columella and its role for the transmission of F. gigantica. Species were identified morphologically and by partial sequencing of the cytochrome oxidase subunit I gene (COI. Among all 689 snails found at the 21 sampling sites, P. columella was the most abundant snail with 296 individuals (42.96% and it was also the most dominant species at 10 sites. It was not found at 8 sites. Molecular detection by PCR and sequencing of the ITS1-5.8S-ITS2 region of the ribosomal DNA (rDNA revealed infections with F. gigantica (3.38%, Echinostoma caproni (2.36% and another echinostome (7.09% that could not be identified further according to its sequence. No dependency of snail size and trematode infection was found. Both high abundance of P. columella in the Fayoum irrigation system and common infection with F. gigantica might be a case of parasite spill-back (increased prevalence in local final hosts due to highly susceptible introduced intermediate host species from the introduced P. columella to the human population, explaining at least partly the observed increase of reported fascioliasis-cases in Egypt. Eichhornia crassipes, the invasive water hyacinth, which covers huge areas of the irrigation canals, offers safe refuges for the amphibious P. columella during molluscicide application. As a consequence, this snail dominates snail communities and efficiently transmits

  10. Urban Biomining Meets Printable Electronics: End-To-End at Destination Biological Recycling and Reprinting

    Science.gov (United States)

    Rothschild, Lynn J. (Principal Investigator); Koehne, Jessica; Gandhiraman, Ram; Navarrete, Jesica; Spangle, Dylan

    2017-01-01

    Space missions rely utterly on metallic components, from the spacecraft to electronics. Yet, metals add mass, and electronics have the additional problem of a limited lifespan. Thus, current mission architectures must compensate for replacement. In space, spent electronics are discarded; on earth, there is some recycling but current processes are toxic and environmentally hazardous. Imagine instead an end-to-end recycling of spent electronics at low mass, low cost, room temperature, and in a non-toxic manner. Here, we propose a solution that will not only enhance mission success by decreasing upmass and providing a fresh supply of electronics, but in addition has immediate applications to a serious environmental issue on the Earth. Spent electronics will be used as feedstock to make fresh electronic components, a process we will accomplish with so-called 'urban biomining' using synthetically enhanced microbes to bind metals with elemental specificity. To create new electronics, the microbes will be used as 'bioink' to print a new IC chip, using plasma jet electronics printing. The plasma jet electronics printing technology will have the potential to use martian atmospheric gas to print and to tailor the electronic and chemical properties of the materials. Our preliminary results have suggested that this process also serves as a purification step to enhance the proportion of metals in the 'bioink'. The presence of electric field and plasma can ensure printing in microgravity environment while also providing material morphology and electronic structure tunabiity and thus optimization. Here we propose to increase the TRL level of the concept by engineering microbes to dissolve the siliceous matrix in the IC, extract copper from a mixture of metals, and use the microbes as feedstock to print interconnects using mars gas simulant. To assess the ability of this concept to influence mission architecture, we will do an analysis of the infrastructure required to execute

  11. Protecting America's economy, environment, health, and security against invasive species requires a strong federal program in systematic biology

    Science.gov (United States)

    Hilda Diaz-Soltero; Amy Y. Rossman

    2011-01-01

    Systematics is the science that identifies and groups organisms by understanding their origins, relationships, and distributions. It is fundamental to understanding life on earth, our crops, wildlife, and diseases, and it provides the scientific foundation to recognize and manage invasive species. Protecting America's economy, environment, health, and security...

  12. Temperate trees and shrubs as global invaders: the relationship between invasiveness and native distribution depends on biological traits

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch; Pergl, Jan; Moravcová, Lenka; Chytrý, M.; Kühn, I.

    2014-01-01

    Roč. 16, č. 3 (2014), s. 577-589 ISSN 1387-3547 R&D Projects: GA ČR(CZ) GAP504/11/1028; GA ČR GA206/09/0563 Institutional support: RVO:67985939 Keywords : woody species * invasiveness * species traits Subject RIV: EF - Botanics Impact factor: 2.586, year: 2014

  13. Searching for microbial biological control candidates for invasive grasses: coupling expanded field research with strides in biotechnology and grassland restoration

    Science.gov (United States)

    Highly invasive grasses (e.g. Bromus spp., Pennisetum ciliare, Taeniatherum caput-medusae) are largely unabated in much of the arid Western U.S., despite more than 70 years of control attempts with a wide array of tools and management practices. The development and sustained integration of new appro...

  14. The impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management

    Science.gov (United States)

    Brown marmorated stink bug (BMSB), Halyomorpha halys (Stål), is an invasive Pentatomidae introduced to the USA, Canada, and multiple European countries. In 2010, BMSB populations in the mid-Atlantic region USA reached outbreak levels, and subsequent feeding resulted in severe damage to tree fruit a...

  15. A New Method for Post-introduction Risk Assessment of Biological Invasions Among Introduced Shrubs in Developing Countries.

    Science.gov (United States)

    Seburanga, J L; Bizuru, E; Mwavu, E N; Kampungu, K G; Gatesire, T; Kaplin, B A

    2016-03-01

    Risk-assessment methods are useful in collecting data that can help decision making to prevent the introduction of new species that have the potential of invading as well as in management of established taxa. Not only the complexity and unaffordability of available pre-introduction risk-assessment models make them rarely or inconsistently applied in the least-developed countries, but also there is lack of tools to assess the status of already introduced plant species. In this study, an affordable and rapid method of assessment of invasiveness among introduced plant species was developed and tested in Rwanda. This method defines three invasion stages (potential, effective, and suppressive invaders) and four levels of risk assessment: post-introduction assessment of species inherent invasive potential (Level 1), post-establishment assessment of species capacity of regeneration (Level 2), post-naturalization assessment of species range of occurrence and ability for long-distance dispersal (Level 3), and post-naturalization assessment of species ability to outcompete other plants in the community and transform the landscape (Level 4). A review of invasive species in Rwanda was developed through desk review, examination of herbarium records, and vegetation surveys. This method should be applicable in other countries that lack the means for a more conventional scientific investigation or under any circumstance where a quick and inexpensive assessment is needed. The method could be useful to environmental managers for timely intervention with strategies specific to different stages of invasion (post-introduction, post-establishment, or post-naturalization) and allocate resources accordingly.

  16. Treatment of textiles industrial wastewater by electron beam and biological treatment (sbr)

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Khairul Zaman Mohd Dahlan; Zulkafli Ghazali; Ting Teo Ming

    2008-08-01

    Study of treating textiles industrial wastewater with combined of electron beam and Tower Style Biological Treatment (TSB) was investigated in Korea. In this project, textiles wastewater was also treated with electron beam, but hybrid with Sequencing Batch Reactor (SBR). The purpose of this research is to develop combined electron beam treatment with existing biological treatment facility (SBR), of textile industries in Malaysia. The objectives of this project are to determine the effective irradiation parameter for treatment and to identify effective total retention time in SBR system. To achieve the objective, samples fill in polypropyle tray were irradiated at 1 MeV, 20 mA and 1 MeV ,5 mA at doses 11, 20, 30, 40 and 50 kGy respectively. Raw effluent and two series of irradiated effluent at 1 MeV 20 mA (11, 20, 30, 40 and 50 kGy) and 1 MeV 5 mA (11, 20, 30, 40 and 50 kGy) were then treated in SBR system. Samples were analysed at 6, 14 and 20 hrs after aeration in the SBR. The results show that, average reduction in BOD was about 2-11% after irradiated at 5 mA, and the percentage increased to 21-73% after treatment in SBR system. At 20 mA, BOD reduced to 7-29% during irradiation and the value increased to 57-87% after treatment in SBR system. (Author)

  17. A geometric initial guess for localized electronic orbitals in modular biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Chicago, IL (United States); Fattebert, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osei-Kuffuor, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N) complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter- mining the centers of these localized orbitals during simulation setup may require O(N3) operations, which is computationally infeasible for many biological systems. We present an O(N) approach for approximating orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subproblems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial guess in the O(N) first-principles molecular dynamics code MGmol, facilitates first-principles simulations in biological systems of sizes which were previously impossible.

  18. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  19. Electron Bio-Imaging Centre (eBIC): the UK national research facility for biological electron microscopy.

    Science.gov (United States)

    Clare, Daniel K; Siebert, C Alistair; Hecksel, Corey; Hagen, Christoph; Mordhorst, Valerie; Grange, Michael; Ashton, Alun W; Walsh, Martin A; Grünewald, Kay; Saibil, Helen R; Stuart, David I; Zhang, Peijun

    2017-06-01

    The recent resolution revolution in cryo-EM has led to a massive increase in demand for both time on high-end cryo-electron microscopes and access to cryo-electron microscopy expertise. In anticipation of this demand, eBIC was set up at Diamond Light Source in collaboration with Birkbeck College London and the University of Oxford, and funded by the Wellcome Trust, the UK Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) to provide access to high-end equipment through peer review. eBIC is currently in its start-up phase and began by offering time on a single FEI Titan Krios microscope equipped with the latest generation of direct electron detectors from two manufacturers. Here, the current status and modes of access for potential users of eBIC are outlined. In the first year of operation, 222 d of microscope time were delivered to external research groups, with 95 visits in total, of which 53 were from unique groups. The data collected have generated multiple high- to intermediate-resolution structures (2.8-8 Å), ten of which have been published. A second Krios microscope is now in operation, with two more due to come online in 2017. In the next phase of growth of eBIC, in addition to more microscope time, new data-collection strategies and sample-preparation techniques will be made available to external user groups. Finally, all raw data are archived, and a metadata catalogue and automated pipelines for data analysis are being developed.

  20. THREE-DIMENSIONAL OBSERVATIONS ON THICK BIOLOGICAL SPECIMENS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Tetsuji Nagata

    2011-05-01

    Full Text Available Thick biological specimens prepared as whole mount cultured cells or thick sections from embedded tissues were stained with histochemical reactions, such as thiamine pyrophosphatase, glucose-6-phosphatase, cytochrome oxidase, acid phosphatase, DAB reactions and radioautography, to observe 3-D ultrastructures of cell organelles producing stereo-pairs by high voltage electron microscopy at accerelating voltages of 400-1000 kV. The organelles demonstrated were Golgi apparatus, endoplasmic reticulum, mitochondria, lysosomes, peroxisomes, pinocytotic vesicles and incorporations of radioactive compounds. As the results, those cell organelles were observed 3- dimensionally and the relative relationships between these organelles were demonstrated.

  1. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  2. Quantitative analysis of biological fluids by electron probe and X ray spectrometry

    International Nuclear Information System (INIS)

    Girod, Chantal

    1986-01-01

    In order to know the kidney normal operation and to have an insight on cellular transport mechanisms and hormonal regulations at the nephron level, a technique based on the use of an electron probe has been developed for the elemental analysis of micro-volumes of biological fluids. This academic document reports applications of this technique on animals on which such fluids have been sampled at different levels of the nephron. As these samples are available in too small volumes to be dosed by conventional methods, they have been quantitatively analysed by using an electronic probe based analyser in order to determine concentrations of all elements with an atomic number greater than that of carbon. After a presentation of the implemented method and hardware, the author thus describes how an analysis is performed, and reports and discusses an example (analysis conditions, data acquisition, data processing, minimum detectable concentration, reasons for measurement scattering)

  3. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  4. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions.

    Science.gov (United States)

    Le Roux, Johannes J; Hui, Cang; Keet, Jan-Hendrik; Ellis, Allan G

    2017-09-01

    Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation. Copyright © 2011. Published by Elsevier B.V.

  6. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  7. Determination of azide in biological fluids by use of electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Minakata, Kayoko; Suzuki, Osamu

    2005-01-01

    A simple and sensitive method has been developed for the determination of azide ion (N 3 - ) in biological fluids and beverages. The procedure was based on the formation of a ternary complex Cu(N 3 ) 2 (4-methylpyridine) x in benzene, followed by its detection by electron paramagnetic resonance. The complex in benzene showed a characteristic four-peak hyperfine structure with a g-value of 2.115 at room temperature. Cu 2+ reacted with N 3 - most strongly among common metals found in biological fluids. Several anions and metal ions in biological fluids did not interfere with the determination of N 3 - in the presence of large amounts of Cu 2+ and oxidants. In the present method, N 3 - at the concentration from 5 μM to 2 mM in 100 μl solution could be determined with the detection limit of 20 ng. The recoveries were more than 95% for N 3 - added to 100 μl of blood, urine, milk and beverages at 200 μM. Our method is recommendable because it takes less than 10 min to determine N 3 - and the produced complex is quite stable

  8. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  9. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate

    Energy Technology Data Exchange (ETDEWEB)

    Barton, B.; Rhinow, D.; Walter, A.; Schroeder, R. [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany); Benner, G.; Majorovits, E.; Matijevic, M.; Niebel, H. [Carl Zeiss NTS GmbH, D-73447 Oberkochen (Germany); Mueller, H.; Haider, M. [CEOS GmbH, Englerstr. 26, 69126 Heidleberg (Germany); Lacher, M.; Schmitz, S.; Holik, P. [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, W., E-mail: werner.kuehlbrandt@mpibp-frankfurt.mpg.de [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany)

    2011-12-15

    We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C{sub s} corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature. -- Highlights: Black-Right-Pointing-Pointer We implement an electrostatic Boersch phase plate into a dedicated prototypical TEM. Black-Right-Pointing-Pointer Phase contrast aberration-corrected electron microscope (PACEM) includes a diffraction magnification unit (DMU). Black-Right-Pointing-Pointer DMU minimizes obstruction of low spatial frequencies by the phase plate. Black-Right-Pointing-Pointer In-focus phase contrast generation is demonstrated for frozen-hydrated biological specimens.

  10. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.

    Science.gov (United States)

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K; Schouten, Philip C; Rueda, Oscar M; Bosma, Astrid J; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J C; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O'Hurley, Gillian; Lehn, Sophie; Muris, Jettie J F; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A; Barbet, Aurélie S; Bard, Floriane; Lecerf, Caroline; O'Connor, Darran P; Vis, Daniël J; Benes, Cyril H; McDermott, Ultan; Garnett, Mathew J; Simon, Iris M; Jirström, Karin; Dubois, Thierry; Linn, Sabine C; Gallagher, William M; Wessels, Lodewyk F A; Caldas, Carlos; Bernards, Rene

    2016-01-05

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.

  11. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  12. The Use of Liquid Isopropyl Alcohol and Hydrogen Peroxide Gas Plasma to Biologically Decontaminate Spacecraft Electronics

    Science.gov (United States)

    Bonner, J. K.; Tudryn, Carissa D.; Choi, Sun J.; Eulogio, Sebastian E.; Roberts, Timothy J.; Tudryn, Carissa D.

    2006-01-01

    Legitimate concern exists regarding sending spacecraft and their associated hardware to solar system bodies where they could possibly contaminate the body's surface with terrestrial microorganisms. The NASA approved guidelines for sterilization as set forth in NPG 8020.12C, which is consistent with the biological contamination control objectives of the Committee on Space Research (COSPAR), recommends subjecting the spacecraft and its associated hardware to dry heat-a dry heat regimen that could potentially employ a temperature of 110(deg)C for up to 200 hours. Such a temperature exposure could prove detrimental to the spacecraft electronics. The stimulated growth of intermetallic compounds (IMCs) in metallic interconnects and/or thermal degradation of organic materials composing much of the hardware could take place over a prolonged temperature regimen. Such detrimental phenomena would almost certainly compromise the integrity and reliability of the electronics. Investigation of sterilization procedures in the medical field suggests that hydrogen peroxide (H202) gas plasma (HPGP) technology can effectively function as an alternative to heat sterilization, especially for heat-sensitive items. Treatment with isopropyl alcohol (IPA) in liquid form prior to exposure of the hardware to HPGP should also prove beneficial. Although IPA is not a sterilant, it is frequently used as a disinfectant because of its bactericidal properties. The use of IPA in electronics cleaning is widely recognized and has been utilized for many years with no adverse affects reported. In addition, IPA is the principal ingredient of the test fluid used in ionic contamination testers to assess the amount of ionic contamination found on the surfaces of printed wiring assemblies. This paper will set forth experimental data confirming the feasibility of the IPA/H202 approach to reach acceptable microbial reduction (MR) levels of spacecraft electronic hardware. In addition, a proposed process flow in

  13. Population-level compensation impedes biological control of an invasive forb and indirect release of a native grass

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Lauren P. Waller; Nancy J. Sturdevant; John L. Maron

    2012-01-01

    The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a...

  14. Do-it-yourself biology and electronic waste hacking: A politics of demonstration in precarious times.

    Science.gov (United States)

    Delgado, Ana; Callén, Blanca

    2017-02-01

    In recent years, there has been an explosion of do it yourself, maker and hacker spaces in Europe. Through makers and do-it-yourself initiatives, 'hacking' is moving into the everyday life of citizens. This article explores the collective and political nature of those hacks by reporting on empirical work on electronic waste and do-it-yourself biology hacking. Using Dewey's experimental approach to politics, we analyse hacks as 'inquiry' to see how they serve to articulate public and political action. We argue that do-it-yourself and makers' hacks are technical and political demonstrations. What do-it-yourself and makers' hacks ultimately demonstrate is that things can be done otherwise and that 'you' can also do it. In this sense, they have a potential viral effect. The final part of the article explores some potential shortcomings of such politics of demonstration.

  15. Do-it-yourself biology and electronic waste hacking: A politics of demonstration in precarious times

    Science.gov (United States)

    Delgado, Ana; Callén, Blanca

    2016-01-01

    In recent years, there has been an explosion of do it yourself, maker and hacker spaces in Europe. Through makers and do-it-yourself initiatives, ‘hacking’ is moving into the everyday life of citizens. This article explores the collective and political nature of those hacks by reporting on empirical work on electronic waste and do-it-yourself biology hacking. Using Dewey’s experimental approach to politics, we analyse hacks as ‘inquiry’ to see how they serve to articulate public and political action. We argue that do-it-yourself and makers’ hacks are technical and political demonstrations. What do-it-yourself and makers’ hacks ultimately demonstrate is that things can be done otherwise and that ‘you’ can also do it. In this sense, they have a potential viral effect. The final part of the article explores some potential shortcomings of such politics of demonstration. PMID:27233296

  16. Relationship between morphological features and kinetic patterns of enhancement of the dynamic breast magnetic resonance imaging and clinico-pathological and biological factors in invasive breast cancer

    International Nuclear Information System (INIS)

    Fernández-Guinea, Oscar; Andicoechea, Alejandro; González, Luis O; González-Reyes, Salomé; Merino, Antonio M; Hernández, Luis C; López-Muñiz, Alfonso; García-Pravia, Paz; Vizoso, Francisco J

    2010-01-01

    To investigate the relationship between the magnetic resonance imaging (MRI) features of breast cancer and its clinicopathological and biological factors. Dynamic MRI parameters of 68 invasive breast carcinomas were investigated. We also analyzed microvessel density (MVD), estrogen and progesterone receptor status, and expression of p53, HER2, ki67, VEGFR-1 and 2. Homogeneous enhancement was significantly associated with smaller tumor size (T1: < 2 cm) (p = 0.015). Tumors with irregular or spiculated margins had a significantly higher MVD than tumors with smooth margins (p = 0.038). Tumors showing a maximum enhancement peak at two minutes, or longer, after injecting the contrast, had a significantly higher MVD count than those which reached this point sooner (p = 0.012). The percentage of tumors with vascular invasion or high mitotic index was significantly higher among those showing a low percentage (≤ 150%) of maximum enhancement before two minutes than among those ones showing a high percentage (>150%) of enhancement rate (p = 0.016 and p = 0.03, respectively). However, there was a significant and positive association between the mitotic index and the peak of maximum intensity (p = 0.036). Peritumor inflammation was significantly associated with washout curve type III (p = 0.042). Variations in the early phase of dynamic MRI seem to be associated with parameters indicatives of tumor aggressiveness in breast cancer

  17. Theoretical description of protein field effects on electronic excitations of biological chromophores

    International Nuclear Information System (INIS)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  18. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  19. Population biology of Streptococcus pneumoniae in West Africa: multilocus sequence typing of serotypes that exhibit different predisposition to invasive disease and carriage.

    Directory of Open Access Journals (Sweden)

    Eric S Donkor

    Full Text Available Little is known about the population biology of Streptococcus pneumoniae in developing countries, although the majority of pneumococcal infections occur in this setting. The aim of the study was to apply MLST to investigate the population biology of S. pneumoniae in West Africa.Seventy three invasive and carriage S. pneumoniae isolates from three West African countries including The Gambia, Nigeria and Ghana were investigated. The isolates covered seven serotypes (1, 3, 5, 6A, 11, 14, 23F and were subjected to multilocus sequence typing and antibiotic susceptibility testing.Overall, 50 different sequence types (STs were identified, of which 38% (29 were novel. The most common ST was a novel clone-ST 4012 (6.5%, and some clones including STs 913, 925, 1737, 2160 and 3310 appeared to be specific to the study region. Two STs including ST 63 and ST 4012 were associated with multiple serotypes indicating a history of serotype switching. ST 63 was associated with serotypes 3 and 23F, while ST 4012 was associated with serotypes 6A and 23. eBURST analyses using the stringent 6/7 identical loci definition grouped the 50 STs into 5 clonal complexes and 65 singletons, expressing a high level of genetic diversity among the isolates. Compared to the other serotypes, serotypes 1 and 5 isolates appeared to be more clonal. Internationally recognized antibiotic resistant clones of S. pneumoniae were generally absent in the population investigated and the only multidrug resistant isolate identified (1/66 belong to the Pneumocococcal Epidemiology Network clone ST 63.The pneumococcal population in West Africa is quite divergent, and serotypes that are common in invasive disease (such as serotypes 1 and 5 are more likely to be clonal than serotypes that are common in carriage.

  20. Cryptic invasions: a review

    Czech Academy of Sciences Publication Activity Database

    Morais, Pedro Miguel; Reichard, Martin

    613-614, February (2018), s. 1438-1448 ISSN 0048-9697 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : Conspecific invader * Biological invasions * Bibliometric * Invasiveness Subject RIV: EG - Zoology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.900, year: 2016

  1. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ [Yale University School of Medicine, New Haven, Connecticut (United States); Williams, BB; Flood, AB; Swartz, HM [Geisel Medical School at Dartmouth University, Hanover, New Hampshire (United States)

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  2. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Sorensen, Mary A; Parker, David R; Trumble, John T

    2009-02-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.

  3. Thulium fiber laser for the use in low-invasive endoscopic and robotic surgery of soft biological tissues

    Science.gov (United States)

    Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Gogler, S.; Swiderski, J.

    2016-12-01

    An all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser operated at a wavelength of 1.94 μm was developed. 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm was demonstrated. The laser output beam quality factor M2 was measured to be 1.2. The output beam was very stable with power fluctuations surgery of soft biological tissues.

  4. New developments in high field electron paramagnetic resonance with applications in structural biology

    International Nuclear Information System (INIS)

    Bennati, Marina; Prisner, Thomas F

    2005-01-01

    Recent developments in microwave technologies have led to a renaissance of electron paramagnetic resonance (EPR) due to the implementation of new spectrometers operating at frequencies ≥90 GHz. EPR at high fields and high frequencies (HF-EPR) has been established up to THz (very high frequency (VHF) EPR) in continuous wave (cw) operation and up to about 300 GHz in pulsed operation. To date, its most prominent application field is structural biology. This review article first gives an overview of the theoretical basics and the technical aspects of HF-EPR methodologies, such as cw and pulsed HF-EPR, as well as electron nuclear double resonance at high fields (HF-ENDOR). In the second part, the article illustrates different application areas of HF-EPR in studies of protein structure and function. In particular, HF-EPR has delivered essential contributions to disentangling complex spectra of radical cofactors or reaction intermediates in photosynthetic reaction centres, radical enzymes (such as ribonucleotide reductase) and in metalloproteins. Furthermore, HF-EPR combined with site-directed spin labelling in membranes and soluble proteins provides new methods of investigating complex molecular dynamics and intermolecular distances

  5. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  6. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  7. Metazoan parasite communities: support for the biological invasion of Barbus barbus and its hybridization with the endemic Barbus meridionalis

    Directory of Open Access Journals (Sweden)

    L. Gettová

    2016-11-01

    Full Text Available Abstract Background Recently, human intervention enabled the introduction of Barbus barbus from the Rhône River basin into the Barbus meridionalis habitats of the Argens River. After an introduction event, parasite loss and lower infection can be expected in non-native hosts in contrast to native species. Still, native species might be endangered by hybridization with the incomer and the introduction of novel parasite species. In our study, we aimed to examine metazoan parasite communities in Barbus spp. populations in France, with a special emphasis on the potential threat posed by the introduction of novel parasite species by invasive B. barbus to local B. meridionalis. Methods Metazoan parasite communities were examined in B. barbus, B. meridionalis and their hybrids in three river basins in France. Microsatellites were used for the species identification of individual fish. Parasite abundance, prevalence, and species richness were compared. Effects of different factors on parasite infection levels and species richness were tested using GLM. Results Metazoan parasites followed the expansion range of B. barbus and confirmed its introduction into the Argens River. Here, the significantly lower parasite number and lower levels of infection found in B. barbus in contrast to B. barbus from the Rhône River supports the enemy release hypothesis. Barbus barbus × B. meridionalis hybridization in the Argens River basin was confirmed using both microsatellites and metazoan parasites, as hybrids were infected by parasites of both parental taxa. Trend towards higher parasite diversity in hybrids when compared to parental taxa, and similarity between parasite communities from the Barbus hybrid zone suggest that hybrids might represent “bridges” for parasite infection between B. barbus and B. meridionalis. Risk of parasite transmission from less parasitized B. barbus to more parasitized B. meridionalis indicated from our study in the Argens River

  8. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  9. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Walter, Andreas; Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, André; Gölzhäuser, Armin; Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter; Kühlbrandt, Werner; Rhinow, Daniel

    2012-01-01

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90° achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen–hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: ► Various obstacles need to be overcome before Boersch phase plates can be used routinely. ► Technical problems include electrostatic charging, mechanical drift, and image artefacts.

  10. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  11. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  12. Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Leapman, R.D.; Kocsis, E.; Zhang, G.; Talbot, T.L.; Laquerriere, P

    2004-07-15

    By combining electron tomography with energy-filtered electron microscopy, we have shown the feasibility of determining the three-dimensional distributions of phosphorus in biological specimens. Thin sections of the nematode, Caenorhabditis elegans were prepared by high-pressure freezing, freeze-substitution and plastic embedding. Images were recorded at energy losses above and below the phosphorus L{sub 2,3} edge using a post-column imaging filter operating at a beam energy of 120 keV. The unstained specimens exhibited minimal contrast in bright-field images. After it was determined that the specimen was sufficiently thin to allow two-window ratio imaging of phosphorus, pairs of pre-edge and post-edge images were acquired in series over a tilt range of {+-}55 deg. at 5 deg. increments for two orthogonal tilt axes. The projected phosphorus distributions were aligned using the pre-edge images that contained inelastic contrast from colloidal gold particles deposited on the specimen surface. A reconstruction and surface rendering of the phosphorus distribution clearly revealed features 15-20 nm in diameter, which were identified as ribosomes distributed along the stacked membranes of endoplasmic reticulum and in the cytoplasm. The sensitivity of the technique was estimated at <35 phosphorus atoms per voxel based on the known total ribosomal phosphorus content of approximately 7000 atoms. Although a high electron dose of approximately 10{sup 7} e/nm{sup 2} was required to record two-axis tilt series, specimens were sufficiently stable to allow image alignment and tomographic reconstruction.

  13. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    Science.gov (United States)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  14. Host–parasite interactions during a biological invasion: The fate of lungworms (Rhabdias spp. inside native and novel anuran hosts

    Directory of Open Access Journals (Sweden)

    Felicity B.L. Nelson

    2015-08-01

    Full Text Available The cane toad invasion in Australia provides a robust opportunity to clarify the infection process in co-evolved versus de novo host–parasite interactions. We investigated these infection dynamics through histological examination following experimental infections of metamorphs of native frogs (Cyclorana australis and cane toads (Rhinella marina with Rhabdias hylae (the lungworm found in native frogs and Rhabdias pseudosphaerocephala (the lungworm found in cane toads. Cane toads reared under continuous exposure to infective larvae of the frog lungworm were examined after periods of 2, 6, 10 and 15 days. Additionally, both toads and frogs were exposed for 24 h to larvae of either the toad or the frog lungworm, and examined 2, 5, 10 and 20 days post-treatment. R. hylae (frog lungworms entered cane toads and migrated through the body but were not found in the target tissue, the lungs. Larvae of both lungworm species induced inflammation in both types of hosts, although the immune response (relative numbers of different cell types differed between hosts and between parasite species. Co-evolution has modified the immune response elicited by infection and (perhaps for that reason has enhanced the parasite's ability to survive and to reach the host's lungs.

  15. Germination and growth of native and invasive plants on soil associated with biological control of tamarisk (Tamarix spp.)

    Science.gov (United States)

    Sherry, Rebecca A.; Shafroth, Patrick B.; Belnap, Jayne; Ostoja, Steven M.; Reed, Sasha C.

    2016-01-01

    Introductions of biocontrol beetles (tamarisk beetles) are causing dieback of exotic tamarisk in riparian zones across the western United States, yet factors that determine plant communities that follow tamarisk dieback are poorly understood. Tamarisk-dominated soils are generally higher in nutrients, organic matter, and salts than nearby soils, and these soil attributes might influence the trajectory of community change. To assess physical and chemical drivers of plant colonization after beetle-induced tamarisk dieback, we conducted separate germination and growth experiments using soil and litter collected beneath defoliated tamarisk trees. Focal species were two common native (red threeawn, sand dropseed) and two common invasive exotic plants (Russian knapweed, downy brome), planted alone and in combination. Nutrient, salinity, wood chip, and litter manipulations examined how tamarisk litter affects the growth of other species in a context of riparian zone management. Tamarisk litter, tamarisk litter leachate, and fertilization with inorganic nutrients increased growth in all species, but the effect was larger on the exotic plants. Salinity of 4 dS m−1 benefitted Russian knapweed, which also showed the largest positive responses to added nutrients. Litter and wood chips generally delayed and decreased germination; however, a thinner layer of wood chips increased growth slightly. Time to germination was lengthened by most treatments for natives, was not affected in exotic Russian knapweed, and was sometimes decreased in downy brome. Because natives showed only small positive responses to litter and fertilization and large negative responses to competition, Russian knapweed and downy brome are likely to perform better than these two native species following tamarisk dieback.

  16. Initial impacts and field validation of host range for Boreioglycaspis melaleucae Moore (Hemiptera: Psyllidae),a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) Blake (Myrtales: Myrtaceae: Leptosp

    Science.gov (United States)

    Invasion of south Florida wetlands by the Australian paperbark tree (“melaleuca”), Melaleuca quinquenervia (Cav.) S.T. Blake (melaleuca) has caused adverse economic and environmental impacts. The tree’s biological attributes along with favorable ambient biophysical conditions combine to complicate ...

  17. Prognostic factors in non-muscle-invasive bladder tumors - I. Clinical prognostic factors: A review of the experience of the EORTC genito-urinary group - II. Biologic prognostic markers

    NARCIS (Netherlands)

    Kurth, Karl-Heinz; Sylvester, Richard J.

    2007-01-01

    Objectives: To summarize the most important clinical prognostic factors of non-muscle-invasive bladder cancer, as assessed by the European organization for Research and Treatment of Cancer (EORTC) Genito-Urinary Group, to present biologic markers involved in urothelial cell carcinoma, and to address

  18. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  19. MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image Data

    National Research Council Canada - National Science Library

    Robbins, Ronny C

    2004-01-01

    .... This is similar to words such as STOP which when flipped left right gives the new word POTS. Emordnilap is palindrome spelled backwards. This paper explores the use of MATLAB algorithms in the rapid detection and embedding of palindrome and emordnilap electronic watermarks in simulated chemical and biological Image Data.

  20. Are Prompts Provided by Electronic Books as Effective for Teaching Preschoolers a Biological Concept as Those Provided by Adults?

    Science.gov (United States)

    Strouse, Gabrielle A.; Ganea, Patricia A.

    2016-01-01

    Research Findings: Prior research indicates that shared book reading is an effective method for teaching biological concepts to young children. Adult questioning during reading enhances children's comprehension. We investigated whether adult prompting during the reading of an electronic book enhanced children's understanding of a biological…

  1. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  2. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.S., E-mail: jinsong-wu@northwestern.edu [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Kim, A.M. [Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Bleher, R. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Myers, B.D. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Marvin, R.G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Inada, H.; Nakamura, K. [Hitachi High-Technologies Corporation, Ibaraki 312-8504 (Japan); Zhang, X.F. [Hitachi High Technologies America, Inc., 5960 Inglewood Drive, Pleasanton, California 94588 (United States); Roth, E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Li, S.Y. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); and others

    2013-05-15

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed.

  3. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Wu, J.S.; Kim, A.M.; Bleher, R.; Myers, B.D.; Marvin, R.G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed

  4. Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2014-12-01

    Full Text Available Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i assembly of the biological components at an electrode address, and (ii communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan’s pH-responsive film-forming properties allow it to “recognize” electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan’s structure, properties, and functions.

  5. Highly invasive alien plant Reynoutria japonica Houtt. represents a novel source for pharmaceutical industry - evidence from phenolic profile and biological activity

    Directory of Open Access Journals (Sweden)

    Božin Biljana

    2017-01-01

    Full Text Available Reynoutria japonica is on the IUCN list of the Worlds’100 worst invasive species, but it is also, especially its rhizome, an integral part of traditional chinese medicine. The objective of this study was to determine the amount of selected phenolic compounds in rhizome, stems, leaves and inflorescence methanol extracts of this plant, their antioxidant and anticholinesterase activity. The chemical profile of the examined extracts was obtained by a high-performance liquid chromatography. In vitro assays on DPPH, OH and NO radicals were used to estimate antioxidant potential and Ellman’s method was applied for the determination of anticholinesterase activity. Leaves and rhizome extracts were found to be rich in rosmarinic and chlorogenic acid, and selected flavonoids. Resveratrol was exclusively present in rhizome and stems extracts. All the investigated extracts expressed certain antioxidant activity, where leaves extract was the most active. However, rhizome extract was the strongest inhibitor of acetylcholinesterase. These findings indicate that there is a possibility of R. japonica exploitation for the isolation of biologically active phenolic compounds used in pharmaceutical and food industry.

  6. The Correlation Between Candida Colonization of Distinct Body Sites and Invasive Candidiasis in Emergency Intensive Care Units: Statistical and Molecular Biological Analysis.

    Science.gov (United States)

    Li, Zhen; Jiang, Cen; Dong, Danfeng; Zhang, Lihua; Tian, Yuan; Ni, Qi; Mao, Enqiang; Peng, Yibing

    2016-08-01

    Both statistical and molecular biological methods were used to evaluate the association between Candida colonization of different body sites and invasive candidiasis (IC) and analyse the potential infection sources of IC. Candida surveillance cultures from the urine, sputum, rectum and skin were performed on patients admitted to an emergency intensive care units (EICU) of a tertiary care hospital in Shanghai, China, from February 2014 to January 2015. Specimens were collected once a week at admission and thereafter. The patients' clinical data were collected, and Candida isolates were genotyped using polymorphic microsatellite markers. A total of 111 patients were enrolled. Patients with positive urine (23.3 vs. 2.5 %, p = 0.001) and rectal swab (13.6 vs. 0 %, p = 0.010) cultures were more likely to develop IC. However, the risk for IC was not significantly different among patients with and without respiratory (10.0 vs. 5.8 %, p = 0.503) and skin (33.3 vs. 6.5 %, p = 0.056) colonization. Gene microevolution frequently occurred at rectal swab and urine sites, and IC with possible source of infection was caused by rectal isolates (2/7), urine isolates (4/7) and sputum isolate (1/7).The colonization of gut and urinary tract maybe more relevant indicators of IC, which should be taken into consideration when selecting practical body sites for Candida surveillance cultures.

  7. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  8. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  9. Invasion ecology meets parasitology: Advances and challenges

    OpenAIRE

    Robert Poulin

    2017-01-01

    Biological invasions threaten the diversity and functioning of native ecosystems, and the rate at which species are being introduced to new areas shows no sign of slowing down. Parasites play roles in biological invasions, for instance when native parasites interact with exotic hosts, or when parasites themselves are introduced to new areas. However, publication trends show clearly that research on parasitism in the context of biological invasions is lagging far behind research on biological ...

  10. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    Science.gov (United States)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  11. Enhanced biological phosphorus removal. Carbon sources, nitrate as electron acceptor, and characterization of the sludge community

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, M

    1997-10-01

    Enhanced biological phosphorus removal (EBPR) was studied in laboratory scale experiments as well as in a full scale EBPR process. The studies were focused on carbon source transformations, the use of nitrate as an electron acceptor and characterisation of the microflora. A continuous anaerobic/aerobic laboratory system was operated on synthetic wastewater with acetate as sole carbon source. An efficient EBPR was obtained and mass balances over the anaerobic reactor showed a production of 1.45 g poly-{beta}-hydroxyalcanoic acids (PHA), measured as chemical oxygen demand (COD), per g of acetic acid (as COD) taken up. Furthermore, phosphate was released in the anaerobic reactor in a ratio of 0.33 g phosphorus (P) per g PHA (COD) formed and 0.64 g of glycogen (COD) was consumed per g of acetic acid (COD) taken up. Microscopic investigations revealed a high amount of polyphosphate accumulating organisms (PAO) in the sludge. Isolation and characterisation of bacteria indicated Acinetobacter spp. to be abundant in the sludge, while sequencing of clones obtained in a 16S rDNA clone library showed a large part of the bacteria to be related to the high mole % G+C Gram-positive bacteria and only a minor fraction to be related to the gamma-subclass of proteobacteria to which Acinetobacter belongs. Operation of a similar anaerobic/aerobic laboratory system with ethanol as sole carbon source showed that a high EBPR can be achieved with this compound as carbon source. However, a prolonged detention time in the anaerobic reactor was required. PHA were produced in the anaerobic reactor in an amount of 1.24 g COD per g of soluble DOC taken up, phosphate was released in an amount of 0.4-0.6 g P per g PHA (COD) produced and 0.46 g glycogen (COD) was consumed per g of soluble COD taken up. Studies of the EBPR in the UCT process at the sewage treatment plant in Helsingborg, Sweden, showed the amount of volatile fatty acids (VFA) available to the PAO in the anaerobic stage to be

  12. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    Science.gov (United States)

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  13. Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia.

    Science.gov (United States)

    Hoffmann, B D

    2015-04-01

    The lack of biological knowledge of many invasive species remains as one of the greatest impediments to their management. Here I detail targeted research into the biology of the yellow crazy ant Anoplolepis gracilipes within northern Australia and detail how such knowledge can be used to improve the management outcomes for this species. I quantified nest location and density in three habitats, worker activity over 24 h, infestation expansion rate, seasonal variation of worker abundance and the timing of production of sexuals. Nests were predominantly (up to 68%) located at the bases of large trees, indicating that search efforts should focus around tree bases. Nest density was one nest per 22, 7.1 and 6.3 m2 in the three habitats, respectively. These data form the baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. Most (60%) nests were underground, predominantly (89%) occurring in an open area rather than underneath a rock or log. Some seasonality was evident for nests within leaf litter, with most (83%) occurring during the 'wet season' (October-March). Of the underground nests, most were shallow, with 44% being less than 10 cm deep, and 67% being less than 20 cm deep. Such nest location and density information serves many management purposes, for improving detection, mapping and post-treatment assessments, and also provided strong evidence that carbohydrate supply was a major driver of A. gracilipes populations. Just over half of the nests (56%) contained queens. Of the 62 underground nests containing queens, most queens (80%) were located at the deepest chamber. When queens were present, most often (38%) only one queen was present, the most being 16. Queen number per nest was the lowest in July and August just prior to the emergence of virgin queens in September, with queen numbers then remaining steadily high until April. Nothing is known for any ant species about how the queen number per nest/colony affects

  14. Study of the growth, reproductive biology and abundance for invasive shrimps Palaemon elegans Rathke from Garmat Ali river Basrah, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Khaled Khasaf Al-Khafaji

    2016-07-01

    Full Text Available Objective: To describe the growth, reproductive biology and abundance of the population of invasive shrimps Palaemon elegans (P. elegans in one of the branches of Garmat Ali river at Basrah, Southern Iraq. Methods: Monthly samples of the prawn P. elegans were collected with a bottom hand net (40 cm, 0.5 mm mesh hauled over a distance of 10 m. A simple random sampling was conducted monthly between December 2012 and November 2013. Results: Seasonal changes were observed in the composition of the population of the species during the study year with the highest abundance in 2013 and the lowest abundance for the males was reported in January and for the females occurred in June. Salinity showed a significant correlation with the abundance of shrimps at the sampling site. The largest female measured 67.90 mm while the corresponding value for males was 61.31 mm. The proportion of ovigerous adults rose during spring season to peak on about July and ovigerous prawns were taken in all months of the year. The sex ratio indicated a preponderance of females over males in all months in the study period. Each females produced around 36–1324 eggs and the incubation period lasted for 11–14 days at 17–29 °C. Conclusions: The results of the present study indicate that this species has a wide distribution range, high density, and great reproduction potential. This study reveals the lack of researches on this species in environments of Shatt Al-Arab river and its branches. Thus, P. elegans has most likely formed a permanent population in all the brackish waters in Basrah area.

  15. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik; Stevenson, Mitchel R. [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Rieberger, Kevin J. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Aggelen, Graham van [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Meays, Cynthia L. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2013-10-15

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  16. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    International Nuclear Information System (INIS)

    Veldhoen, Nik; Stevenson, Mitchel R.; Skirrow, Rachel C.; Rieberger, Kevin J.; Aggelen, Graham van; Meays, Cynthia L.; Helbing, Caren C.

    2013-01-01

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  17. Fast broad-band photon detector based on quantum well devices and charge-integrating electronics for non-invasive FEL monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M., E-mail: matias.antonelli@elettra.eu; Cautero, G.; Sergo, R.; Castellaro, C.; Menk, R. H. [Elettra – Sincrotrone Trieste S.C.p.A., Trieste (Italy); Ganbold, T. [School in Nanotechnology, University of Trieste, Trieste (Italy); IOM CNR, Laboratorio TASC, Trieste (Italy); Biasiol, G. [IOM CNR, Laboratorio TASC, Trieste (Italy)

    2016-07-27

    The recent evolution of free-electron lasers has not been matched by the development of adequate beam-monitoring instrumentation. However, for both experimental and diagnostics purposes, it is crucial to keep such photon beams under control, avoiding at the same time the absorption of the beam and the possible destruction of the detector. These requirements can be fulfilled by utilizing fast and non-invasive photon detectors operated in situ, upstream from the experimental station. From this perspective, sensors based on Quantum Well (QW) devices can be the key to detecting ultra-short light pulses. In fact, owing to their high electron mobility, InGaAs/InAlAs QW devices operated at room temperature exhibit sub-nanosecond response times. Their direct, low-energy band gap renders them capable of detecting photons ranging from visible to X-ray. Furthermore, the 2D electron gas forming inside the QW is responsible for a charge amplification mechanism, which increases the charge collection efficiency of these devices. In order to acquire the signals produced by these QW sensors, a novel readout electronics has been developed. It is based on a high-speed charge integrator, which allows short, low-intensity current pulses to be read within a 50-ns window. The integrated signal is acquired through an ADC and the entire process can be performed at a 10-MHz repetition rate. This work provides a detailed description of the development of the QW detectors and the acquisition electronics, as well as reporting the main experimental results, which show how these tools are well suited for the realization of fast, broad-band beam monitors.

  18. Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose

    Energy Technology Data Exchange (ETDEWEB)

    Saghi, Zineb, E-mail: saghizineb@gmail.com [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Divitini, Giorgio [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Winter, Benjamin [Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen (Germany); Leary, Rowan [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Spiecker, Erdmann [Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen (Germany); Ducati, Caterina [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Midgley, Paul A., E-mail: pam33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-01-15

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. - Highlights: • On-axis electron tomography of a needle-shaped biological sample is presented. • A reconstruction with isotropic resolution is achieved. • Compressed sensing methods are compared to conventional reconstruction algorithms. • High fidelity reconstructions are achieved with greatly undersampled datasets.

  19. Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose

    International Nuclear Information System (INIS)

    Saghi, Zineb; Divitini, Giorgio; Winter, Benjamin; Leary, Rowan; Spiecker, Erdmann; Ducati, Caterina; Midgley, Paul A.

    2016-01-01

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. - Highlights: • On-axis electron tomography of a needle-shaped biological sample is presented. • A reconstruction with isotropic resolution is achieved. • Compressed sensing methods are compared to conventional reconstruction algorithms. • High fidelity reconstructions are achieved with greatly undersampled datasets.

  20. Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons

    International Nuclear Information System (INIS)

    Sayre, D.; Feder, R.; Spiller, E.; Kirz, J.; Kim, D.M.

    1977-01-01

    The minimum radiation dosage in a specimen consistent with transmission microscopy at resolution d and specimen thickness t is calculated for model specimens resembling biological materials in their natural state. The calculations cover 10 4 -10 7 eV electrons and 1.3-90 A photons in a number of microscopy modes. The results indicate that over a considerable part of the (t,d)-plane transmission microscopy on such specimens can be carried out at lower dosage with photons than with electrons. Estimates of the maximum resolutions obtainable with electrons and photons, consistent with structural survival of the specimen, are obtained, as are data on optimal operating conditions for microscopy with the two particles

  1. Surface Immobilized His-tagged Azurin as a Model Interface for the Investigation of Vectorial Electron Transfer in Biological Systems

    International Nuclear Information System (INIS)

    Casalini, Stefano; Berto, Marcello; Kovtun, Alessandro; Operamolla, Alessandra; Di Rocco, Giulia; Facci, Paolo; Liscio, Andrea; Farinola, Gianluca M.; Borsari, Marco; Bortolotti, Carlo A.

    2015-01-01

    A model system for the electrochemical investigation of vectorial electron transfer in biological systems was designed, assembled and characterized. Gold electrodes, functionalized with a -OCH_3 terminated, aromatic self-assembled monolayer, were used as a substrate for the adsorption of variants of copper-containing, redox metalloprotein azurin. The engineered azurin bears a polyhistidine tag at its C-terminus. Thanks to the presence of the solvent exposed tag, which chelates Cu"2"+ ions in solution, we introduced an exogenous redox centre. The different reduction potentials of the two redox centres and their positioning with respect to the surface are such that electron transfer from the exogenous copper centre and the electrode is mediated by the native azurin active site, closely paralleling electron transfer processes in naturally occurring multicentre metalloproteins.

  2. The analysis for energy distribution and biological effects of the clusters from electrons in the tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng; Wang Yong

    2004-01-01

    Objective: To study energy distribution of the clusters from electrons in the tissue equivalent material, and discuss the important aspects of these clusters on inducing biological effects. Methods: Based on the physical mechanism for electrons interacting with tissue equivalent material, the Monte Carlo (MC) method was used. The electron tracks were lively simulated on an event-by-event (ionization, excitation, elastic scattering, Auger electron emission) basis in the material. The relevant conclusions were drawn from the statistic analysis of these events. Results: The electrons will deposit their energy in the form (30%) of cluster in passing through tissue equivalent material, and most clusters (80%) have the energy amount of more than 50 eV. The cluster density depends on its diameter and energy of electrons, and the deposited energy in the cluster depends on the type and energy of radiation. Conclusion: The deposited energy in cluster is the most important factor in inducing all sort of lesions on DNA molecules in tissue cells

  3. Electron Transfer in Chemistry and Biology – The Primary Events in ...

    Indian Academy of Sciences (India)

    molecular unit to another. This reaction, accompanied by proton and hydrogen atom trans- fers, occurs in a cascade in many biological processes, includ- ing photosynthesis. The key chemical steps involved in photo- synthesis and the many ...

  4. Dynamical 'in situ' observation of biological samples using variable pressure scanning electron microscope

    International Nuclear Information System (INIS)

    Nedela, V

    2008-01-01

    Possibilities of 'in-situ' observation of non-conductive biological samples free of charging artefacts in dynamically changed surrounding conditions are the topic of this work. The observed biological sample, the tongue of a rat, was placed on a cooled Peltier stage. We studied the visibility of topographical structure depending on transition between liquid and gas state of water in the specimen chamber of VP SEM.

  5. Invasive Candidiasis

    Science.gov (United States)

    ... Waterborne, and Environmental Diseases Mycotic Diseases Branch Invasive Candidiasis Recommend on Facebook Tweet Share Compartir Global Emergence ... antifungal drugs. Learn more about C. auris Invasive candidiasis is an infection caused by a yeast (a ...

  6. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ravelo Arias, S. I.; Ramírez Muñoz, D. [Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, 46100-Burjassot (Spain); Cardoso, S. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); Ferreira, R. [INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal); Freitas, P. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal)

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  7. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    International Nuclear Information System (INIS)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-01-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others

  8. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  9. Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state

    National Research Council Canada - National Science Library

    Frank, J

    2006-01-01

    ... Clusters 2.8 Support Grids 33 33 3 Principle of Image Formation in the Transmission Electron Microscope 34 3.1 Introduction 34 3.2 The Weak-Phase Object Approximation 35 3.3 The Contrast Transfer...

  10. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    OpenAIRE

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2014-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal s...

  11. Biological versus Electronic Adaptive Coloration: How Can One Inform the Other?

    Science.gov (United States)

    2012-01-01

    electrokinetic displays (figure 5a) now provide colour quality comparable to that found in printed newspapers (specifications for newsprint advertising ...paper (e-paper) and biological organisms. Multiple colours , contrast, polarization, reflectance, diffusivity and texture must all be controlled...framework of scientific metrics. Currently the highest performance approach for both nature and technology uses colourant transposition. Three outcomes

  12. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Siti Aishah Hashim; Zulkafli Ghazali; Khairul Zaman Dahlan; Ismail Yaziz

    2005-01-01

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  13. Challenges regarding the start-up of an anaerobic biological sulphate reactor using H2 and CO2 as electron donor and carbon sources

    CSIR Research Space (South Africa)

    Roux, SP

    2009-05-01

    Full Text Available Include neutralization and chemical precipitation as well as membrane dependent processes. Biological sulphate reduction is another, environmentally benign option but relies heavily on the availability of an economically viable electron donor...

  14. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.; Dittrich, Birger; Schirmeister, Tanja; Luger, Peter; Hesse, Malte; Chen, Yu-Sheng; Spackman, Peter R.; Spackman, Mark A.; Grabowsky, Simon (Heinrich-Heine); (Freie); (UC); (Bremen); (JG-UM); (UWA)

    2017-01-24

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us to predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.

  15. Thermoluminescence and electron spin resonance studies of irradiated biological single crystals

    International Nuclear Information System (INIS)

    Cooke, D.W.

    1977-01-01

    Single crystals of x-irradiated L-alanine:Cr 3+ have been studied between 90 and 300K by electron spin resonance (ESR) and thermoluminescence (TL) techniques. Ultraviolet (uv) photobleaching of the Cr 3+ electron traps and L-alanine radical centers was also investigated. The results demonstrate that the x-ray generated radical centers can be destroyed by uv-induced electron transport activity, and this destruction follows first order kinetics. Also, the transformation of the primary neutral radical species to a secondary radical in L-alanine was found not to be induced by intermolecular electron transport. The TL glow was determined to proceed by first-order kinetics at a temperature of 160K with an activation energy of 0.3 eV and a frequency factor of 1.0 x 10 8 s -1 . The emission spectrum consisted of a broad band (FWHM approx. = 100 nm) which peaked at approximately 420 nm. Scintillation activity was observed in the ferroelectric crystals triglycine sulfate (TGS), deuterated TGS, and TGS: L-alanine. The emission spectrum of TGS:L-alanine was obtained. New observations of scintillations and current pulses from glycine, a nonferroelectric crystal, which result from heating or cooling the sample between 77 and 300K with no previous irradiation were made. The scintillations and current pulses occur approximately in coincidence. Scintillations were also observed from the potent oncogen 3-hydroxyxanthine by cooling the sample from 300 to 90K with no previous irradiation

  16. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    the reduced electron- larons cause localized distortions in an ionic lattice lattice coupling strength leads to molecule emission, which are... syndrome . Health Science Center at San Antonio and the University Buerger’s disease, palmar hyperhidrosis, frostbite and of Mi.imi School of Medicine, Miami

  17. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...... electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...

  18. Miniature silicon electronic biological assay chip and applications for rapid battlefield diagnostics

    Science.gov (United States)

    Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John

    1999-07-01

    Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.

  19. Phytoplankton Communities in Green Bay, Lake Michigan after Invasion by Dreissenid Mussels: Increased Dominance by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bart T. De Stasio

    2014-11-01

    Full Text Available Biological invasions of aquatic systems disrupt ecological communities, and cause major changes in diversity and ecosystem function. The Laurentian Great Lakes of North America have been dramatically altered by such invasions, especially zebra (Dreissena polymorpha and quagga (D. rostriformis bugensis mussels. Responses to mussel invasions have included increased water clarity, and decreased chlorophyll and phytoplankton abundance. Although not all systems have responded similarly, in general, mussels have changed nutrient dynamics and physical habitat conditions. Therefore examination of different impacts can help us further understand mechanisms that underlie ecosystem responses to biological invasions. To aid our understanding of ecosystem impacts, we sampled established locations along a well-studied trophic gradient in Green Bay, Lake Michigan, after the 1993 zebra mussel invasion. A strong trophic gradient remained during the period sampled after the mussel invasion (2000–2012. However, mean summer chlorophyll increased and other measures of phytoplankton biomass (microscope and electronic cell counting did not change significantly. Multivariate analyses of phytoplankton community structure demonstrate a significant community shift after the invasion. Cyanobacteria increased in dominance, with Microcystis becoming the major summer taxon in lower Green Bay. Diatom diversity and abundance also increased and Chlorophyta became rare. Phytoplankton responses along the trophic gradient of Green Bay to zebra mussel invasion highlight the importance of mussel effects on nutrient dynamics and phytoplankton diversity and function.

  20. A New Approach to Studying Biological and Soft Materials Using Focused Ion Beam Scanning Electron Microscopy (FIB SEM)

    International Nuclear Information System (INIS)

    Stokes, D J; Morrissey, F; Lich, B H

    2006-01-01

    Over the last decade techniques such as confocal light microscopy, in combination with fluorescent labelling, have helped biologists and life scientists to study biological architectures at tissue and cell level in great detail. Meanwhile, obtaining information at very small length scales is possible with the combination of sample preparation techniques and transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). Scanning electron microscopy (SEM) is well known for the determination of surface characteristics and morphology. However, the desire to understand the three dimensional relationships of meso-scale hierarchies has led to the development of advanced microscopy techniques, to give a further complementary approach. A focused ion beam (FIB) can be used as a nano-scalpel and hence allows us to reveal internal microstructure in a site-specific manner. Whilst FIB instruments have been used to study and verify the three-dimensional architecture of man made materials, SEM and FIB technologies have now been brought together in a single instrument representing a powerful combination for the study of biological specimens and soft materials. We demonstrate the use of FIB SEM to study three-dimensional relationships for a range of length scales and materials, from small-scale cellular structures to the larger scale interactions between biomedical materials and tissues. FIB cutting of heterogeneous mixtures of hard and soft materials, resulting in a uniform cross-section, has proved to be of particular value since classical preparation methods tend to introduce artefacts. Furthermore, by appropriate selection, we can sequentially cross-section to create a series of 'slices' at specific intervals. 3D reconstruction software can then be used to volume-render information from the 2D slices, enabling us to immediately see the spatial relationships between microstructural components

  1. Biology and life history of Atanycolus cappaerti (Hymenoptera: Braconidae), a north american larval parasitoid attacking the invasive Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    Atanycolus cappaerti Marsh and Strazanac is a native North American parasitoid that has been found to parasitize the emerald ash borer, Agrilus planipennis Fairmaire, a serious invasive pests of North American ash trees (Fraxinus spp.). To facilitate the development of potential augmentative biocon...

  2. Biology, life history, and laboratory rearing of Atanycolus cappaerti (Hymenoptera:Braconidae), a larval parasitoid of the invasive Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    Atanycolus cappaerti Marsh and Strazanac is a native North American parasitoid that has been found to parasitize the invasive emerald ash borer (EAB), Agrilus planipennis Fairmaire, which has killed millions of ash trees since it was first detected in Michigan. A native parasitoid like A. cappaerti...

  3. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  4. The relative biological effectiveness (RBE) of high-energy electrons, x-rays and Co-60 gamma-rays

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro

    1974-01-01

    Linac (Mitsubishi-Shimizu 15 MeV medical linear accelerator) electron beams with actual generated energies of 8, 10, 12 and 15 MeV were compared with X-ray beams having energies of 8 and 10 MV. The RBE values were calculated from 50 percent hatch-ability (LD 50 ) in silk-worm embryos, 30-days lethality (LDsub(50/30)) in ddY mice, and mean lethal dose (Do) in cultured mouse YL cells or human FL cells. To estimate the RBE in clinical experiments, LRD (leukocyte reduction dose) value was calculated for each patient irradiated on the chest or lumbar vertebrae. It was concluded that there is little difference in practical significance between 8 to 10 MV X-rays and 8 to 15 MeV electrons, and that the biological effects of Linac radiations are about 90 to 100 percent of the effect of 60 Co gamma rays. The RBE values gradually decreased, contrary to the elevation of energy between 8 and 15 MeV for electrons and between 8 and 10 MV for X-rays. These values were compared with those of earlier reviews of work in this field, and were briefly discussed. (Evans, J.)

  5. Análisis cuantitativo de la investigación en invasiones biológicas en Chile: tendencias y desafíos Quantitative analysis of the research in biological invasions in Chile: Trends and challenges

    Directory of Open Access Journals (Sweden)

    CONSTANZA L QUIROZ

    2009-12-01

    Full Text Available En las últimas dos décadas, el estudio de las invasiones biológicas ha alcanzado un auge sin precedentes a nivel mundial tanto en sus dimensiones teóricas como aplicadas. En Chile, las invasiones biológicas parecieran ser un tema relativamente nuevo. En este artículo se evalúa la tendencia en la investigación de invasiones biológicas en Chile entre los años 1991 y 2008. El análisis se realizó en plantas y animales, de acuerdo a las temáticas abarcadas en los estudios, y las aproximaciones metodológicas utilizadas. La serie temporal de trabajos publicados en invasiones biológicas en Chile está relacionada significativamente con la tendencia de publicaciones sobre invasiones biológicas a nivel mundial. La mayoría de los estudios en Chile se enfocaron en la etapa de invasión de especies introducidas, seguida por las etapas de naturalización de especies y finalmente de introducción. El estudio de patrones de invasión ha sido evaluado con mayor frecuencia en plantas introducidas que en animales, mientras que el estudio del impacto de especies introducidas muestra la tendencia contraria. La mayor parte de los estudios realizados tanto en plantas como animales introducidos se ejecutaron a partir de muéstreos, seguidos por estudios experimentales. Concluimos que existen aún importantes desafíos para los investigadores enfocados en el tema de invasiones biológicas, incluyendo: 1 no solo buscar describir patrones sino también entender procesos detrás de estos patrones, 2 incorporar más estudios experimentales, especialmente enfocados a la evaluación de impactos, 3 mejorar la integración de los estudios a la conservación y restauración de ecosistemas, y 4 intentar conectar los estudios locales a los actuales marcos conceptuales.During the last decades, the study of biological invasions has reached an unforeseeable peak both in the theoretical and applied dimensions. In this article, we assess the trends in research on

  6. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  7. Theoretical study of electron transfer mechanism in biological systems with a QM (MRSCI+DFT)/MM method

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Toshikazu [Research Program for Computational Science, RIKEN 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2007-07-15

    The goal of this project is to understand the charge separation mechanisms in biological systems using the molecular orbital theories. Specially, the charge separation in the photosynthetic reaction center is focused on, since the efficiency in use of the solar energy is extraordinary and the reason for it is still kept unknown. Here, a QM/MM theoretical scheme is employed to take the effects of the surrounding proteins onto the pigments into account. To describe such excited electronic structures, a unified theory by MRSCI and DFT is newly invented. For atoms in the MM space, a new sampling method has also been created, based on the statistical physics. By using these theoretical framework, the excited and positively charged states of the special pair, that is, chlorophyll dimmer are planning to be calculated this year.

  8. Theoretical study of electron transfer mechanism in biological systems with a QM (MRSCI+DFT)/MM method

    International Nuclear Information System (INIS)

    Takada, Toshikazu

    2007-01-01

    The goal of this project is to understand the charge separation mechanisms in biological systems using the molecular orbital theories. Specially, the charge separation in the photosynthetic reaction center is focused on, since the efficiency in use of the solar energy is extraordinary and the reason for it is still kept unknown. Here, a QM/MM theoretical scheme is employed to take the effects of the surrounding proteins onto the pigments into account. To describe such excited electronic structures, a unified theory by MRSCI and DFT is newly invented. For atoms in the MM space, a new sampling method has also been created, based on the statistical physics. By using these theoretical framework, the excited and positively charged states of the special pair, that is, chlorophyll dimmer are planning to be calculated this year

  9. Toward Rechargeable Persistent Luminescence for the First and Third Biological Windows via Persistent Energy Transfer and Electron Trap Redistribution.

    Science.gov (United States)

    Xu, Jian; Murata, Daisuke; Ueda, Jumpei; Viana, Bruno; Tanabe, Setsuhisa

    2018-05-07

    Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr 3+ to Er 3+ , we report a novel garnet persistent phosphor of Y 3 Al 2 Ga 3 O 12 codoped with Er 3+ and Cr 3+ (YAG G:Er-Cr), which shows intense Cr 3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650-950 nm) and Er 3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500-1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er 3+ can achieve higher spatial resolution and more accurate signal location than that of Cr 3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAG G:Er-Cr, the Cr 3+ /Er 3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.

  10. Critical assessment of the performance of electronic moisture analyzers for small amounts of environmental samples and biological reference materials.

    Science.gov (United States)

    Krachler, M

    2001-12-01

    Two electronic moisture analyzers were critically evaluated with regard to their suitability for determining moisture in small amounts (environmental matrices such as leaves, needles, soil, peat, sediments, and sewage sludge, as well as various biological reference materials. To this end, several homogeneous bulk materials were prepared which were subsequently employed for the development and optimization of all analytical procedures. The key features of the moisture analyzers included a halogen or ceramic heater and an integrated balance with a resolution of 0.1 mg, which is an essential prerequisite for obtaining precise results. Oven drying of the bulk materials in a conventional oven at 105 degrees C until constant mass served as reference method. A heating temperature of 65degrees C was found to provide accurate and precise results for almost all matrices investigated. To further improve the accuracy and precision, other critical parameters such as handling of sample pans, standby temperature, and measurement delay were optimized. Because of its ponderous heating behavior, the performance of the ceramic radiator was inferior to that of the halogen heater, which produced moisture results comparable to those obtained by oven drying. The developed drying procedures were successfully applied to the fast moisture analysis (1.4-6.3 min) of certified biological reference materials of similar provenance to the investigated the bulk materials. Moisture results for 200 mg aliquots ranged from 1.4 to 7.8% and good agreement was obtained between the recommended drying procedure for the reference materials and the electronic moisture analyzers with absolute uncertainties amounting to 0.1% and 0.2-0.3%, respectively.

  11. Syringe injectable electronics

    Science.gov (United States)

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  12. Syringe-injectable electronics.

    Science.gov (United States)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  13. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties.

    Science.gov (United States)

    Han, Cheol-Min; Lee, Eun-Jung; Kim, Hyoun-Ee; Koh, Young-Hag; Kim, Keung N; Ha, Yoon; Kuh, Sung-Uk

    2010-05-01

    The surface of polyetheretherketone (PEEK) was coated with a pure titanium (Ti) layer using an electron beam (e-beam) deposition method in order to enhance its biocompatibility and adhesion to bone tissue. The e-beam deposition method was a low-temperature coating process that formed a dense, uniform and well crystallized Ti layer without deteriorating the characteristics of the PEEK implant. The Ti coating layer strongly adhered to the substrate and remarkably enhanced its wettability. The Ti-coated samples were evaluated in terms of their in vitro cellular behaviors and in vivo osteointegration, and the results were compared to a pure PEEK substrate. The level of proliferation of the cells (MC3T3-E1) was measured using a methoxyphenyl tetrazolium salt (MTS) assay and more than doubled after the Ti coating. The differentiation level of cells was measured using the alkaline phosphatase (ALP) assay and also doubled. Furthermore, the in vivo animal tests showed that the Ti-coated PEEK implants had a much higher bone-in-contact (BIC) ratio than the pure PEEK implants. These in vitro and in vivo results suggested that the e-beam deposited Ti coating significantly improved the potential of PEEK for hard tissue applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  15. Electron emission and biological consequences of hormones in polar media, studied on testosterone, progesterone, 17 beta-Estradiol and Genistein

    International Nuclear Information System (INIS)

    Schittl, H.

    2011-01-01

    In recent years, a rapid increase of breast and prostate cancer incidence was observed in the Western countries. Besides lifestyle factors like nutrition etc., sexual hormones and their role in the initiation and progression of cancer development became a centre of interest, especially the action of their individual metabolites. Recently, it was proven that the sex hormones 17β-estradiol (E2) and progesterone (P4) are able to eject electrons (e-aq) in polar media, when excited in their singlet state. The originating hormone transients are subsequently forming metabolites, some of which can initiate neoplastic processes. Therefore, it is of interest to investigate other sex hormones in this respect and to examine the fate of the resulting transients. Now, testosterone (T) is found for the first time to eject electrons in a solvent mixture of 60% ethanol and 40% triply-distilled water, when excited to its singlet state by UV-irradiation with monochromatic light of 254 nm wavelength. The phytoestrogen genistein (GEN), which contributes to the compartively low breast cancer incidence in Asian countries, emits electrons from its excited singlet state, as well. The resulting hormone products can likewise eject e-aq, but with lower quantum yields of solvated electrons, Q(e-aq), as can be seen by the observed 2nd and 3rd maxima of electron emission. Due to the formation of hormone associates, Q(e-aq) is decreasing with increasing concentration of hormones. As T and GEN are able to emit and to consume electrons, they are classified as 'electron mediators'. Comparing the electron emission of T and P4, Q(e-aq) from T turns out to be 3.6 times higher. This fact is due to the different molecular structures of the hormones at position 17 of ring D: T carries a hydroxyl group favouring the electron emission, and P4 a carbonyl group, which consumes a part of the emitted e-aq from T, leading to a partial regeneration of T. Using vitamin C (vitC) as representative for potent

  16. Invasion ecology meets parasitology: Advances and challenges

    Directory of Open Access Journals (Sweden)

    Robert Poulin

    2017-12-01

    Full Text Available Biological invasions threaten the diversity and functioning of native ecosystems, and the rate at which species are being introduced to new areas shows no sign of slowing down. Parasites play roles in biological invasions, for instance when native parasites interact with exotic hosts, or when parasites themselves are introduced to new areas. However, publication trends show clearly that research on parasitism in the context of biological invasions is lagging far behind research on biological invasions in general. The different articles in this special issue of International Journal for Parasitology–Parasites and Wildlife on ‘Invasions’ address various aspects of the interface between parasitology and invasion biology, including how invasive free-living species lose or gain parasites on the invasion front as they move away from their site of introduction, how these invasive species affect the dynamics of native parasites, and how exotic parasites become established and impact native hosts. Together, they highlight the challenges facing researchers in this area, and set the agenda for the next few years of research. Keywords: alien species, Biological invasions, Enemy release, Non-natives, Parasites

  17. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  18. HNS{sup +} and HSN{sup +} cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications

    Energy Technology Data Exchange (ETDEWEB)

    Trabelsi, Tarek; Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée (France); Ben Yaghlane, Saida [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications—LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Al Mogren, Muneerah Mogren [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Francisco, Joseph S. [Department of Chemistry, University of Nebraska-Lincoln, 433 Hamilton Hall, Lincoln, Nebraska 68588-0304 (United States)

    2016-08-28

    Ab initio methods in conjunction with a large basis set are used to compute the potential energy surfaces of the 12 lowest electronic states of the HNS{sup +} and HSN{sup +} isomeric forms. These potentials are used in discussions of the metastability of these cations and plausible mechanisms for the H{sup +}/H + SN{sup +}/SN, S/S{sup +} + NH{sup +}/NH, N/N{sup +} + SH{sup +}/SH ion-molecule reactions. Interestingly, the low rovibrational levels of HSN{sup +}(1{sup 2}A″) and HNS{sup +}(1{sup 2}A″) electronically excited ions are predicted to be long-lived. Both ions are suggested to be a suitable candidate for light-sensitive NO{sup ⋅} donor in vivo and as a possible marker for the detection of intermediates in nitrites + H{sub 2}S reactions at the cellular level. The full spin rovibronic levels of HNS{sup +} are presented, which may assist in the experimental identification of HNS{sup +} and HSN{sup +} ions and in elucidating their roles in astrophysical and biological media.

  19. Modulation of biodiversity-invasion relationships by resource availability : commensal species defend invaders in a changing world

    NARCIS (Netherlands)

    Yang, T.

    2017-01-01

    Biological invasion brings disturbance to localenvironment, such as reducing available niches or altering species interactions. In order to reduce the undesired consequences brought by invasion, the determining factors suppressing invasion become important. The success of invasion depends on

  20. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study.

    Science.gov (United States)

    White, Shane A; Reniers, Brigitte; de Jong, Evelyn E C; Rusch, Thomas; Verhaegen, Frank

    2016-01-07

    Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB  ≈  1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with

  1. Biological roles of Cytochrome c: mitochondrial electron transport, programmed cell death and gain of peroxidatic activity

    Directory of Open Access Journals (Sweden)

    Victoria Colman

    2015-11-01

    Full Text Available El citocromo c (cyt c es una pequeña proteína monomérica de 13,0 kDa, que posee carga neta positiva a pH fisiológico. En su estructura se destaca un grupo hemo hexa-coordinado siendo la His18 y la Met80 la quinta y sexta posición de coordinación, respectivamente. Es una molécula soluble que se asocia mediante interacciones electrostáticas a la parte externa de la membrana mitocondrial interna, donde cumple una importante función como transportador de electrones entre los complejos III y IV de la cadena respiratoria mitocondrial, formando parte de una de las rutas catabólicas principales que llevan a la generación de ATP. Además, el cyt c participa en otras dos funciones esenciales para la célula: la apoptosis y la peroxidación de la cardiolipina de membrana. La actividad peroxidasa del cyt c es esencial para el inicio de la apoptosis, debido a que provoca la oxigenación específica de la cardiolipina para producir hidroperóxidos de cardiolipina, necesarios para la liberación de otros factores pro-apoptóticos. Durante la apoptosis, el cyt c se libera desde el espacio intermembrana de la mitocondria hacia el citosol, formando un complejo con APAF-1 y ATP, modulando las vías dependientes de caspasas. Esta función del cyt c también es muy importante ya que la muerte celular programada es un proceso celular fundamental para la correcta eliminación de células dañadas, evitando la diseminación de los restos celulares. La presente monografía pretende reunir información sobre estas tres principales funciones del cyt c, que dejan en manifiesto su importancia para la vida celular.

  2. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantifying the invasiveness of species

    Directory of Open Access Journals (Sweden)

    Robert Colautti

    2014-04-01

    Full Text Available The success of invasive species has been explained by two contrasting but non-exclusive views: (i intrinsic factors make some species inherently good invaders; (ii species become invasive as a result of extrinsic ecological and genetic influences such as release from natural enemies, hybridization or other novel ecological and evolutionary interactions. These viewpoints are rarely distinguished but hinge on distinct mechanisms leading to different management scenarios. To improve tests of these hypotheses of invasion success we introduce a simple mathematical framework to quantify the invasiveness of species along two axes: (i interspecific differences in performance among native and introduced species within a region, and (ii intraspecific differences between populations of a species in its native and introduced ranges. Applying these equations to a sample dataset of occurrences of 1,416 plant species across Europe, Argentina, and South Africa, we found that many species are common in their native range but become rare following introduction; only a few introduced species become more common. Biogeographical factors limiting spread (e.g. biotic resistance, time of invasion therefore appear more common than those promoting invasion (e.g. enemy release. Invasiveness, as measured by occurrence data, is better explained by inter-specific variation in invasion potential than biogeographical changes in performance. We discuss how applying these comparisons to more detailed performance data would improve hypothesis testing in invasion biology and potentially lead to more efficient management strategies.

  4. Usefulness of molecular biology performed with formaldehyde-fixed paraffin embedded tissue for the diagnosis of combined pulmonary invasive mucormycosis and aspergillosis in an immunocompromised patient

    Directory of Open Access Journals (Sweden)

    Vénissac Nicolas

    2010-01-01

    Full Text Available Abstract Immunocompromised patients who develop invasive filamentous mycotic infections can be efficiently treated if rapid identification of the causative fungus is obtained. We report a case of fatal necrotic pneumonia caused by combined pulmonary invasive mucormycosis and aspergillosis in a 66 year-old renal transplant recipient. Aspergillus was first identified during the course of the disease by cytological examination and culture (A. fumigatus of bronchoalveolar fluid. Hyphae of Mucorales (Rhizopus microsporus were subsequently identified by culture of a tissue specimen taken from the left inferior pulmonary lobe, which was surgically resected two days before the patient died. Histological analysis of the lung parenchyma showed the association of two different filamentous mycoses for which the morphological features were evocative of aspergillosis and mucormycosis. However, the definitive identification of the associative infection was made by polymerase chain reaction (PCR performed on deparaffinized tissue sections using specific primers for aspergillosis and mucormycosis. This case demonstrates that discrepancies between histological, cytological and mycological analyses can occur in cases of combined mycotic infection. In this regard, it shows that PCR on selected paraffin blocks is a very powerful method for making or confirming the association of different filamentous mycoses and that this method should be made available to pathology laboratories.

  5. Quantifying the invasiveness of species

    Czech Academy of Sciences Publication Activity Database

    Colautti, R. I.; Parker, J. D.; Cadotte, M. W.; Pyšek, Petr; Brown, C. S.; Sax, D. F.; Richardson, D. M.

    2014-01-01

    Roč. 21, č. 1 (2014), s. 7-27 ISSN 1619-0033 R&D Projects: GA ČR(CZ) GAP505/11/1112; GA ČR(CZ) GAP504/11/1028 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * biogeographical comparison * invasiveness Subject RIV: EH - Ecology, Behaviour

  6. [SKF index as a new non-invasive parameter for the evaluation of the biological age for healthy and sick people].

    Science.gov (United States)

    Faĭn, I A; Kuznik, B I; Kaminskiĭ, A V; Shenkman, L; Kustovskaia, E M; Maksimova, O G

    2012-01-01

    We have conducted a study on a large group of healthy and sick subjects and have demonstrated that a new index of coagulativety (SKF), based on measurement of the laser speckle signal from the finger root, correlates with chronological age ranging from 1 to 85 years old. The kinds of non-invasive measurements were obtained during two measurement sessions: one with the application of over-systolic occlusion and another without application of the occlusion. The very significant correlation with age was noted both during the stasis stage and during the non-occluding stage. We observed a higher SKF index in sick subjects, correlating directly with severity of illness. We speculated that the observed phenomena are caused by temporarily fluctuations in local blood viscosity associated with interactions of the Red Blood Cells and endothelial cells.

  7. Trade-offs in parasitism efficiency and brood size mediate parasitoid coexistence, with implications for biological control of the invasive emerald ash borer

    Science.gov (United States)

    Parasitoids often are selected for use as biological control agents because of their high host specificity, yet such host specificity can result in strong interspecific competition. However, few studies have examined if and how various extrinsic factors (such as parasitism efficiency) influence the ...

  8. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Science.gov (United States)

    Baldy, Virginie; Thiebaut, Gabrielle; Fernandez, Catherine; Sagova-Mareckova, Marketa; Korboulewsky, Nathalie; Monnier, Yogan; Perez, Thierry; Tremolieres, Michele

    2015-01-01

    Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1) P-PO4(3-) and hypertrophic state, 300 μg x l(-1) P-PO4(3-)) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  9. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: biological responses throughout its phenological stage.

    Directory of Open Access Journals (Sweden)

    Virginie Baldy

    Full Text Available Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch. St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine or soft (Vosges water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 μg x l(-1 P-PO4(3- and hypertrophic state, 300 μg x l(-1 P-PO4(3- on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer. Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic. The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.

  10. QUANTIFYING AND MODELING THE RISK OF DISTURBANCE TO ECOSYSTEMS CAUSED BY INVASIVE SPECIES

    Science.gov (United States)

    Invasive species are biological pollutants that threaten ecosystem health. Identifying the mechanisms of invasive and developing predictive models of invasion will be critical to developing risk management strategies for limiting the economic and environmental damage caused by i...

  11. Biological aspects and ecological effects of a bed of the invasive non-indigenous mussel Brachidontes pharaonis (Fischer P., 1870 in Malta

    Directory of Open Access Journals (Sweden)

    L. BONNICI

    2012-06-01

    Full Text Available No mussel beds were known to occur in the Maltese Islands previous to 2009, when a single bed of the Lessepsian immigrant Brachidontes pharaonis, first recorded from the islands in 1970, was discovered in Birzebbugia Bay. The population structure of B. pharaonis was investigated to assess its potential to spread and colonise new shores, while the biotic community at the mussel bed was compared to that present on uncolonised substratum to determine the effects of mussel bed establishment on the associated biota. Results indicate a lower species richness and slightly different community structure with greater small-scale heterogeneity at the mussel bed site compared to the adjacent rocky shore where mussels are present but where there is no bed formation. The B. pharaonis population had a peak density of 16550 ± 2051 ind.m-2 within the mussel bed and included recent recruits. These data suggest that the B. pharaonis population has the potential to expand. Establishment of extensive beds by this invasive mussel could change the structure of native rocky shore assemblages around the Maltese Islands and elsewhere in the Mediterranean.

  12. Survey and documentation of the potential and actual invasive alien plant species and other biological threats to biodiversity in Awash National Park, Ethiopia

    Directory of Open Access Journals (Sweden)

    Sebsebe DEMISSEW

    2011-01-01

    Full Text Available The study was conducted at the Awash National Park (ANP Ethiopia, todocument Invasive Alien Species (IAS and to assess the spread of Prosopis juliflora (Sw. DC. A total of 64 sample plots were laid systematically along the altitudinal gradient of 750 to 1916 m.Potential IAS were recorded. IAS which may threaten biodiversity of the park includes species such as Prosopis juliflora, Parthenium hysterophorus L., Cryptostegia grandiflora Roxb. ex R. Br., Parkinsonia aculeata L., Senna occidentalis (L. Link, Datura ferox L. and Xanthium strumarium L. Except P. juliflora and P. hysterophorus, all others were not recorded in Ethiopia as IAS. P.juliflora was recorded in three plots with cover of 1% to 10%. P. juliflora was also found spread in different parts of the park particularly following the route of cattle movement. P. hysterophoruswas recorded in and around nine sample plots. Plot 46, 47 and 48 werehighly infested by P. hysterophorus which covered more than 60, 70 and 80% of the ground layer respectively. C. grandiflora was recorded in 11 plots with cover ranging from 1% to 35%. In view of all the natural as well as anthropogenic threats to the biodiversity of the Park, the ANP is at high risk. The rich biodiversity needsimmediate management intervention.

  13. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    Science.gov (United States)

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds

  14. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  15. The reproductive biology of Saccharum spontaneum L.: implications for management of this invasive weed in Panama

    Directory of Open Access Journals (Sweden)

    Graham Bonnett

    2014-01-01

    Full Text Available Saccharum spontaneum L. is an invasive grass that has spread extensively in disturbed areas throughout the Panama Canal watershed (PCW, where it has created a fire hazard and inhibited reforestation efforts. Currently physical removal of aboveground biomass is the primary means of controlling this weed, which is largely ineffective and does little to inhibit spread of the species. Little is known about reproduction of this species, although it is both rhizomatous and produces abundant seed. Here we report a series of studies looking at some of the basic reproductive mechanisms and strategies utilised by S. spontaneum to provide information to support development of better targeted management strategies.We found that seed produced between September and November was germinable both in the lab and in situ. Genetic diversity of mature stands was assessed using microsatellite markers and found to be high, even at small scales. Studies of vegetative reproduction showed that buds on stems that had been dried for up to six weeks were still capable of sprouting. Separate experiments showed that stem fragments could sprout when left on the surface or buried shallowly and that larger pieces sprouted more readily than smaller pieces.Collectively these results demonstrate that S. spontaneum in the PCW has the capability to produce many propagules that can successfully recruit and it is likely that seed dispersal drives the spread of the species. Timing of management actions to reduce flowering would significantly reduce the seed load into the environment and help to prevent spread to new sites. Similarly, where biomass is cut, cutting stems into smaller pieces will allow the stems to dry out and reduce the ability of buds to sprout. Additionally, attention should be paid to prevent accidental transport to new sites on machinery.

  16. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  17. ASSESSMENT OF THE RESPONSE OF PATIENTS WITH CROHN'S DISEASE TO BIOLOGICAL THERAPY USING NEW NON-INVASIVE MARKERS: lactoferrin and calprotectin

    Directory of Open Access Journals (Sweden)

    Islaine Martins NOGUEIRA

    2013-04-01

    Full Text Available Context The use of fecal markers to monitor Crohn's disease is crucial for assessing the response to treatment. Objective To assess the inflammatory activity of Crohn's disease by comparing fecal markers (calprotectin and lactoferrin, colonoscopy combined with biopsy, and the Crohn's disease activity index (CDAI, as well as serum markers, before treatment with infliximab, after the end of induction, and after the end of maintenance. Methods Seventeen patients were included who had been previously diagnosed with Crohn's disease and were using conventional treatment but required the introduction of biological therapy with infliximab. Each patient underwent a colonoscopy with biopsy, serum, and fecal (calprotectin and lactoferrin tests to assess inflammatory activity, and CDAI assessments before treatment with infliximab, after induction (week 8, and after maintenance (week 32. Results The calprotectin levels exhibited significant reductions (P = 0.04 between the assessment before treatment with infliximab and the end of induction, which did not occur after the end of the maintenance phase. Lactoferrin remained positive throughout the three phases of the study. Regarding the histological assessment, a significant difference was found only between the assessment before treatment and after the end of maintenance (P = 0.036, and 60% of the patients exhibited histological improvements after the completion of the follow-up period. The CDAI exhibited a significant difference between the assessment before treatment with infliximab and after induction, as well as before treatment and after maintenance (P<0.01. Conclusion Calprotectin and lactoferrin are not useful for monitoring inflammatory activity in Crohn's disease patients who are subjected to biological therapy.

  18. Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogel-Based Chemo-Electro Signal Transduction for Molecular Communication.

    Science.gov (United States)

    Liu, Yi; Tsao, Chen-Yu; Kim, Eunkyoung; Tschirhart, Tanya; Terrell, Jessica L; Bentley, William E; Payne, Gregory F

    2017-01-01

    A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Minimally invasive transcriptome profiling in salmon: detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants.

    Science.gov (United States)

    Veldhoen, Nik; Stevenson, Mitchel R; Skirrow, Rachel C; Rieberger, Kevin J; van Aggelen, Graham; Meays, Cynthia L; Helbing, Caren C

    2013-10-15

    An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in principle, to field-captured Chinook salmon (Oncorhynchus tshawytscha). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by {sup 35}Cl NQR spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bronisz, K. [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Ostafin, M. [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)], E-mail: ostifnqr@amu.edu.pl; Poleshchuk, O. Kh. [Department of Chemistry, Tomsk Pedagogical University, Komsomolskii 75, 634041 Tomsk (Russian Federation); Mielcarek, J. [Faculty of Pharmacy, University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan (Poland); Nogaj, B. [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2006-11-08

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by {sup 35}Cl NQR method in order to find the correlation between electronic structure and biological activity. The {sup 35}Cl NQR resonance frequencies ({nu} {sub Q}) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period (t {sub 0.5}), affinity to benzodiazepine receptor (IC{sub 50}) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of {sup 35}Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  1. Biology, Pest Status, Microbiome and Control of Kudzu Bug (Hemiptera: Heteroptera: Plataspidae): A New Invasive Pest in the U.S.

    Science.gov (United States)

    Dhammi, Anirudh; van Krestchmar, Jaap B.; Ponnusamy, Loganathan; Bacheler, Jack S.; Reisig, Dominic D.; Herbert, Ames; Del Pozo-Valdivia, Alejandro I.; Roe, R. Michael

    2016-01-01

    Soybean is an important food crop, and insect integrated pest management (IPM) is critical to the sustainability of this production system. In recent years, the introduction into the United States of the kudzu bug currently identified as Megacopta cribraria (F.), poses a threat to soybean production. The kudzu bug was first discovered in the state of Georgia, U.S. in 2009 and since then has spread to most of the southeastern states. Because it was not found in the North American subcontinent before this time, much of our knowledge of this insect comes from research done in its native habitat. However, since the U.S. introduction, studies have been undertaken to improve our understanding of the kudzu bug basic biology, microbiome, migration patterns, host selection and management in its expanding new range. Researchers are not only looking at developing IPM strategies for the kudzu bug in soybean, but also at its unique relationship with symbiotic bacteria. Adult females deposit bacterial packets with their eggs, and the neonates feed on these packets to acquire the bacteria, Candidatus Ishikawaella capsulata. The kudzu bug should be an informative model to study the co-evolution of insect function and behavior with that of a single bacteria species. We review kudzu bug trapping and survey methods, the development of bioassays for insecticide susceptibility, insecticide efficacy, host preferences, impact of the pest on urban environments, population expansion, and the occurrence of natural enemies. The identity of the kudzu bug in the U.S. is not clear. We propose that the kudzu bug currently accepted as M. cribraria in the U.S. is actually Megacopta punctatissima, with more work needed to confirm this hypothesis. PMID:27649166

  2. Biology, life history, and laboratory rearing of Spathius galinae (Hymenoptera: Braconidae), a larval parasitoid of the invasive emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Duan, Jian J; Watt, Timothy J; Larson, Kristi

    2014-06-01

    Spathius galinae Belokobylskij & Strazanac is a recently described parasitoid of the emerald ash borer, Agrilus planipennis Fairmaire, in the Russian Far East, and is currently being considered for biocontrol introduction in the United States. Using A. planipennis larvae reared with freshly cut ash (Fraxinus spp.) sticks, we investigated the biology, life cycle, and rearing of S. galinae in the laboratory under normal rearing conditions (25 +/- 1 degrees C, 65 +/- 10% relative humidity, and a photoperiod of 16:8 [L:D] h). Our study showed that S. galinae took approximately 1 mo (29 d) to complete a single generation (from egg to adult) under the laboratory rearing conditions. After eclosion from eggs, larvae of S. galinae molted four times to reach the fifth instar, which then spun cocoons for pupation and development to adults. Adult female wasps had a median survival time of 7 wk with fecundity peaking 3 wk after emergence when reared in groups (of five females and five males) and 2 wk in single pairs. Throughout the life span, a single female S. galinae produced a mean (+/- SE) of 31 (+/- 3.0) progeny when reared in groups, and a mean (+/- SE) of 47 (+/- 5.3) progeny when reared in single pairs. Results from our study also showed that S. galinae could be effectively reared with A. planipennis larvae reared in both green (Fraxinus pennsylvanica Marshall) and tropical [Fraxinus uhdei (Wenzig) Lingelsh] ash sticks. However, the abortion (unemergence) rate of S. galinae progeny was much higher (20%) when reared with host larvae in green ash sticks than that (2.1%) in tropical ash sticks.

  3. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    Science.gov (United States)

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  4. Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Science.gov (United States)

    P. F. Hendrix; G. H. Baker; M. A. Callaham Jr; G. A. Damoff; Fragoso C.; G. Gonzalez; S. W. James; S. L. Lachnicht; T. Winsome; X. Zou

    2006-01-01

    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...

  5. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  6. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  7. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  8. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  9. Disturbance promotes non-indigenous bacterial invasion in soil microcosms

    DEFF Research Database (Denmark)

    Liu, Manqiang; Strandmark, Lisa Bjørnlund; Rønn, Regin

    2012-01-01

    Invasion-biology is largely based on non-experimental observation of larger organisms. Here, we apply an experimental approach to the subject. By using microbial-based microcosm-experiments, invasion-biology can be placed on firmer experimental, and hence, less anecdotal ground. A better...... understanding of the mechanisms that govern invasion-success of bacteria in soil communities will provide knowledge on the factors that hinder successful establishment of bacteria artificially inoculated into soil, e.g. for remediation purposes. Further, it will yield valuable information on general principles...... of invasion biology in other domains of life....

  10. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  11. Larva of Glyptotendipes (Glyptotendipes) glaucus (Meigen 1818) (Chironomidae, Diptera)-morphology by Scanning Electron Microscope (SEM), karyotype, and biology in laboratory conditions.

    Science.gov (United States)

    Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva

    2016-09-21

    Larvae belonging to the family Chironomidae are difficult to identify. The aim of the present study was to describe the larval morphology of G. (G.) glaucus with the aid of a Scanning Electron Microscope (SEM), the karyotype and biology based on materials obtained from laboratory culture. Describing the morphology of larvae, special attention was paid to rarely or never described structures like the maxilla (lacinia and maxillary palp), the long plate situated below the ventromental plate, and plate X situated between lacinia and mentum. The use of SEM allowed also to obtain better images of labrum and ventromental plate. Morphological features of this species have been supplemented by karyotype and biology of larvae in laboratory conditions. Under controlled experimental conditions we found non-synchronous development of G. (G.) glaucus larvae hatched from one egg mass reflected in different lengths of larvae and emerged imagoes.

  12. Neurosurgery clinical registry data collection utilizing Informatics for Integrating Biology and the Bedside and electronic health records at the University of Rochester.

    Science.gov (United States)

    Pittman, Christine A; Miranpuri, Amrendra S

    2015-12-01

    In a population health-driven health care system, data collection through the use of clinical registries is becoming imperative to continue to drive effective and efficient patient care. Clinical registries rely on a department's ability to collect high-quality and accurate data. Currently, however, data are collected manually with a high risk for error. The University of Rochester's Department of Neurosurgery in conjunction with the university's Clinical and Translational Science Institute has implemented the integrated use of the Informatics for Integrating Biology and the Bedside (i2b2) informatics framework with the Research Electronic Data Capture (REDCap) databases.

  13. A scanning electron microscopy study of the invasion of leaflets of a bloat-safe and a bloat-causing legume by rumen microorganisms.

    Science.gov (United States)

    Fay, J P; Cheng, K J; Hanna, M R; Howarth, R E; Costerton, J W

    1981-04-01

    A newly developed technique using ruthenium red to detect foci of bacterial digestion in mounts of whole leaflets that had been incubated with rumen bacteria was used to compare the digestion of alfalfa, a bloat-causing legume, and sainfoin, a bloat-safe legume. When whole leaflets were suspended in an artificial rumen medium and inoculated with rumen bacteria, massive bacterial adhesion and proliferation were noted at the stomata of alfalfa leaflets after 6 h of incubation, whereas only a few isolated bacteria adhered near the stomata of sainfoin leaflets After 22 h of incubation, the epidermal layers of alfalfa leaflets had peeled away in many areas, revealing an extensive bacterial invasion of the underlying mesophyll tissue in which large bacterial microcolonies had formed in intercellular spaces, and in intracellular spaces in several areas where plant cell walls had broken down. After 22 h of incubation, the surface of sainfoin leaflets resembled that of alfalfa leaflets at 6 h, with bacterial microcolonies adhering to the area surrounding the stomata, but without sloughing of the epidermis. Uninoculated control leaflets of both species showed no surface alteration but part of their normal bacterial flora had proliferated to form microcolonies on the surface after 22 h incubation. Dry matter loss due to leaching or bacterial digestion when whole leaflets of legumes were suspended in an artificial rumen medium, alone or with rumen bacteria, was significantly higher in the bloat-causing group. Values of leaching and of bacterial digestion were positively correlated. We conclude that reported differences in plant anatomy, and in cell wall chemistry, produce distinct rates or organic nutrient release from legume leaflets, and that these same differences produce an equally distinct susceptibility of leaflets to bacterial invasion, plant cell rupture, and the consequent release of intracellular plant components. The rate of release of organic nutrients from legume

  14. Waste water treatment by ionizing radiations. Removal of biological and chemical risks by water and sludge treatment with electron beams. Orientation 10 July 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This report aims at analysing the reliability of the application of electron ionizing radiation in the treatment of waste waters and effluents, and at identifying possible fields of application and associated technological and economic implications. After some recalls on physics, electrochemistry, radiolysis, and water pollution, the report proposes an overview of the technique of irradiation of waters, with its scientific background (water radiolysis, chemical and biological effects), its process (recovery cycle and possible interventions, processed pollutants), the case of irradiation by electrons (power, rate, flexibility), an overview of benefits and drawbacks, and a brief history of this practice and an overview of current researches. After a recall of regulatory and political requirements, the report discusses possible fields of application: waste water treatment plants, domestic, agricultural and urban sewage wasters, hospital and medical wastes, liquid food industry products, industrial waters. The choice of accelerator parameters and components is then discussed

  15. Emerald ash borer biology and invasion history

    Science.gov (United States)

    Robert A. Haack; Yuri Baranchikov; Leah S. Bauer; Therese M. Poland

    2015-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to eastern Asia and is primarily a pest of ash (Fraxinus) trees (Fig. 1). Established populations of EAB were first detected in the United States and Canada in 2002 (Haack et al., 2002), and based on a dendrochronology study by Siegert...

  16. Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.

    Science.gov (United States)

    Hu, Xiang; Sobotka, Dominika; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO 2 -N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).

  17. Using an ePortfolio System as an Electronic Laboratory Notebook in Undergraduate Biochemistry and Molecular Biology Practical Classes

    Science.gov (United States)

    Johnston, Jill; Kant, Sashi; Gysbers, Vanessa; Hancock, Dale; Denyer, Gareth

    2014-01-01

    Despite many apparent advantages, including security, back-up, remote access, workflow, and data management, the use of electronic laboratory notebooks (ELNs) in the modern research laboratory is still developing. This presents a challenge to instructors who want to give undergraduate students an introduction to the kinds of data curation and…

  18. The tip of the iceberg : challenges of accessing hospital electronic health record data for biological data mining

    NARCIS (Netherlands)

    Denaxas, Spiros C; Asselbergs, Folkert W; Moore, Jason H

    2016-01-01

    Modern cohort studies include self-reported measures on disease, behavior and lifestyle, sensor-based observations from mobile phones and wearables, and rich -omics data. Follow-up is often achieved through electronic health record (EHR) linkages across primary and secondary healthcare providers.

  19. Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Zhang, X.; Liu, H.; Richardson, A.; Nouet, P.; Azais, F.

    2005-01-01

    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used

  20. E-commerce trade in invasive plants.

    Science.gov (United States)

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade. © 2015 Society for

  1. Radiologic aspects in invasive aspergillosis

    International Nuclear Information System (INIS)

    Feger, C.; Kerviler, E. de; Zagdanski, A.M.; Attal, P.; Cyna-Gorse, F.; Frija, J.; Laval-Jeantet, M.

    1994-01-01

    Invasive aspergillosis is a life-threatening illness, whose diagnosis is difficult: clinical signs are indeed not specific, and biological and mycological exams are not always conclusive. Radiological exams are essential for the diagnosis of this disease allowing to start an early intensive appropriate therapy. According to the literature and to their own experience the authors report the main radiological patterns with emphasis on the pulmonary and cerebral affections. (authors). 26 refs., 5 figs

  2. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  3. Laccase on Black Pearl 2000 modified glassy carbon electrode: Characterization of direct electron transfer and biological sensing properties for pyrocatechol

    International Nuclear Information System (INIS)

    Wang Kunqi; Tang Juan; Zhang Zuoming; Gao Ying; Chen Gang

    2012-01-01

    Highlights: ► Laccase can complete direct electron transfer process on BP2000 matrices. ► Laccase immobilized on BP2000 matrices has catalytic oxidation effect to pyrocatechol. ► A pyrocatechol biosensor has constructed been using Nafion/Lac-BP2000/GC electrode. ► Detection limit and linear range of the biosensor are 0.003 mM and 0.003–5.555 mM. - Abstract: In this paper, it was found that Laccase (Lac) could be stably immobilized on the glassy carbon electrode modified with Black Pearl 2000 (BP2000) and Nafion by a simple technique. The adsorption behavior of Lac immobilized on BP2000 matrix was characterized by environment scanning electron microscope (ESEM), ultraviolet–visible (UV–vis) and Fourier transform infrared (FTIR), which demonstrated that BP2000 could facilitate the electron exchange between the active center of Lac and modified electrode. The direct electrochemistry and electrocatalysis behavior of Lac on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that Lac immobilized on the modified electrode displayed a direct, nearly reversible and surface-controlled redox reaction with an enhanced electron-transfer rate constant of 1.940 s −1 at the scan rate of 100 mV s −1 in 0.1 M phosphate buffer solution (PBS) (pH 7.0). Furthermore, it was also discovered that, in the presence of O 2 , Lac immobilized on the modified electrode exhibited the electrocatalytic response to pyrocatechol, and the kinetic apparent Michaelis-constant (K M app ) obtained from the Lineweaver–Burk equation was 1.79 mM. The detection limit, linear range and sensitivity of the Lac biosensor were 0.003 mM, 0.003–5.555 mM and 99.84 μA mM −1 cm −2 , respectively.

  4. Invasive Species Science Branch: research and management tools for controlling invasive species

    Science.gov (United States)

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  5. The indirect effects of cheatgrass invasion: Grasshopper herbivory on native grasses determined by neighboring cheatgrass abundance

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Carol K. Augsperger

    2008-01-01

    Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...

  6. Risk analysis and bioeconomics of invasive species to inform policy and management

    Science.gov (United States)

    David M. Lodge; Paul W. Simonin; Stanley W. Burgiel; Reuben P. Keller; Jonathan M. Bossenbroek; Christopher L. Jerde; Andrew M. Kramer; Edward S. Rutherford; Matthew A. Barnes; Marion E. Wittmann; W. Lindsay Chadderton; Jenny L. Apriesnig; Dmitry Beletsky; Roger M. Cooke; John M. Drake; Scott P. Egan; David C. Finnoff; Crysta A. Gantz; Erin K. Grey; Michael H. Hoff; Jennifer G. Howeth; Richard A. Jensen; Eric R. Larson; Nicholas E. Mandrak; Doran M. Mason; Felix A. Martinez; Tammy J. Newcomb; John D. Rothlisberger; Andrew J. Tucker; Travis W. Warziniack; Hongyan. Zhang

    2016-01-01

    Risk analysis of species invasions links biology and economics, is increasingly mandated by international and national policies, and enables improved management of invasive species. Biological invasions proceed through a series of transition probabilities (i.e., introduction, establishment, spread, and impact), and each of these presents opportunities for...

  7. Application of electronic paramagnetic, nuclear magnetic, γ-nuclear magnetic resonance, and defibrillation in experimental biology and medecine

    Science.gov (United States)

    Piruzyan, L. A.

    2005-08-01

    Nowadays an attention is paid to pathbreaking approaches to the therapy of different pathologies with EPR, NMR and NGR dialysis and mechanisms of physical factors influence in prophylactics and therapy of a number of diseases. Any pathology is evidently begins its development in atomic-molecular levels earlier then any morphologic alterations in tissues can be detected. We have studied the alterations of FR content in liver, spleen and brain in hypoxia and hyperoxia conditions. Under hypoxia and hyperoxia the FR concentrations are equal in all organs and tissues. However this ratio is different for some forms of leucosis. For different leucosis types gas mixtures the most adequate for the current pathology should be developed. Then we represent the method of biologic objects treatment with the energy of super-high frequency field (SIT) and the instrument for its performance. The study of magnetic heterogeneity of biologic systems proposes the new approach and a set of methods for medical and scientific purpose. Application of combined with chemotherapy extraction of anionic and cationic radicals from bloodstream using EPRD, NMRD and NGRD influence and also the single ions separate extraction using NGRD are able to detect and perhaps to cure their appearance in a period before neoformation. These studies should be carried out experimentally and clinically.

  8. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.A.; Hohmann-Marriott, M.F.; Zhang, G. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States); Leapman, R.D. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States)], E-mail: leapmanr@mail.nih.gov

    2009-02-15

    A Monte Carlo electron-trajectory calculation has been implemented to assess the optimal detector configuration for scanning transmission electron microscopy (STEM) tomography of thick biological sections. By modeling specimens containing 2 and 3 at% osmium in a carbon matrix, it was found that for 1-{mu}m-thick samples the bright-field (BF) and annular dark-field (ADF) signals give similar contrast and signal-to-noise ratio provided the ADF inner angle and BF outer angle are chosen optimally. Spatial resolution in STEM imaging of thick sections is compromised by multiple elastic scattering which results in a spread of scattering angles and thus a spread in lateral distances of the electrons leaving the bottom surface. However, the simulations reveal that a large fraction of these multiply scattered electrons are excluded from the BF detector, which results in higher spatial resolution in BF than in high-angle ADF images for objects situated towards the bottom of the sample. The calculations imply that STEM electron tomography of thick sections should be performed using a BF rather than an ADF detector. This advantage was verified by recording simultaneous BF and high-angle ADF STEM tomographic tilt series from a stained 600-nm-thick section of C. elegans. It was found that loss of spatial resolution occurred markedly at the bottom surface of the specimen in the ADF STEM but significantly less in the BF STEM tomographic reconstruction. Our results indicate that it might be feasible to use BF STEM tomography to determine the 3D structure of whole eukaryotic microorganisms prepared by freeze-substitution, embedding, and sectioning.

  9. Change in the measuring biological response-resulted from irradiation by the hypermetria method 25 MeVeV electron

    International Nuclear Information System (INIS)

    Shtirbets, M.; Skarlat, F.; Pehushesku, E.; Martin, D.; Bachu, G.

    1979-01-01

    Irradiation of Wister rats preliminarily heated up to the temperature of 42 deg during 30 minutes is conducted for investigating the effect of radiation hyperthermia on animal tissues. Temperature was maintained during radiation by electrons of 25 MeV energy. Doses up to 7.5 Grey were introduced. It is shown that hyperthermia exercises slight and reversible changes of prostaglandine concentration in the brain and liver of rats. It is concluded, that observation over the level of prostaglandine in different organs is an effective means of evaluating biochemical changes [ru

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Modification of biological objects in water media by CO2-laser radiation

    Science.gov (United States)

    Baranov, G. A.; Belyaev, A. A.; Onikienko, S. B.; Smirnov, S. A.; Khukharev, V. V.

    2005-09-01

    The modification of biological objects (polysaccharides and cells) by CO2-laser radiation in water added drop by drop into the interaction region is studied theoretically and experimentally. Calculations are performed by using the models describing gas-dynamic and heterogeneous processes caused by absorption of laser radiation by water drops. It is found experimentally that the laser modification of polysaccharides leads to the formation of low-molecular derivatives with immunostimulating properties. A dose of the product of laser activation of the yeast culture Saccharamyces cerevisiae prevented the development of a toxic emphysema in mice and protected them against lethal grippe and also prevented a decrease of survival rate, increased the average life, and prevented the development of metabolic and immune disorders in mice exposed to sublethal gamma-radiation doses.

  11. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  12. Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

    KAUST Repository

    Rao, Hari Ananda

    2016-11-01

    Increasing demand for freshwater and energy is pushing towards the development of alternative technologies that are sustainable. One of the realistic solutions to address this is utilization of the renewable resources like wastewater. Conventional wastewater treatment processes can be highly energy demanding and can fails to recover the full potential of useful resources such as energy in the wastewater. As a consequence, there is an urgent necessity for sustainable wastewater treatment technologies that could harness such resources present in wastewaters. Advanced treatment process based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have a great potential for the resources recovery through a sustainable wastewater treatment process. METs rely on the abilities of microorganisms that are capable of transferring electrons extracellularly by oxidizing the organic matter in the wastewater and producing electrical current for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system. To address this issue, MECs were explored as a novel, alternative wastewater treatment technology, with a focus on a better understanding of propionate oxidation in the anode of MECs. Having such knowledge could help in the development of more robust and efficient wastewater treatment systems to recover energy and produce high quality effluents. Several studies were conducted to: 1) determine the paths of electron flow in the anode of propionate fed MECs low (4.5 mM) and high (36 mM) propionate concentrations; 2) examine the effect of different set anode potentials on the electrochemical performance, propionate degradation, electron fluxes, and microbial community structure in MECs fed propionate; and 3) examine the temporal

  13. Spatially optimal habitat management for enhancing natural control of an invasive agricultural pest: soybean aphid

    NARCIS (Netherlands)

    Zhang, W.; Werf, van der W.; Swinton, S.M.

    2010-01-01

    By their direct effects on private profitability, invasive agricultural pests create special incentives for management that set them apart from other categories of invasive species. One attractive nonchemical management approach for agricultural pests relies upon biological control by natural

  14. Economics of controlling invasive species: the case of Californian thistle in New Zealand

    NARCIS (Netherlands)

    Chalak, S.M.

    2009-01-01

    Keywords
    Invasive species, Economics, Californian thistle, New Zealand, Stochastic, Dynamic programming, Biological control, Extinction risk, Herbivory, Dispersal, Competition
    Invasive species are one of the most significant threats to biodiversity and agricultural production systems

  15. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  16. Invasion Success by Plant Breeding Evolutionary Changes as a Critical Factor for the Invasion of the Ornamental Plant Mahonia aquifolium

    CERN Document Server

    Ross, Christel Anne

    2009-01-01

    Invasive species are a major threat to global biodiversity and cause significant economic costs. Studying biological invasions is both essential for preventing future invasions and is also useful in order to understand basic ecological processes. Christel Ross investigates whether evolutionary changes by plant breeding are a relevant factor for the invasion success of Mahonia aquifolium in Germany. Her findings show that invasive populations differ from native populations in quantitative-genetic traits and molecular markers, whereas their genetic diversity is similar. She postulates that these evolutionary changes are rather a result of plant breeding, which includes interspecific hybridisation, than the result of a genetic bottleneck or the releases from specialist herbivores.

  17. Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations

    International Nuclear Information System (INIS)

    Bahiraei, Mehdi; Heshmatian, Saeed

    2017-01-01

    Highlights: • Cooling of an electronic processor is performed by means of a biological nanofluid. • Heat transfer coefficient rises by raising either Reynolds number or concentration. • By increasing Reynolds number and concentration, temperature becomes more uniform. • Surface temperature reduces by augmenting either Reynolds number or concentration. • Irreversibility in heat sink reduces by raising concentration and Reynolds number. - Abstract: Hydrothermal characteristics and entropy generation of a biological nanofluid containing silver nanoparticles are evaluated in a liquid block heat sink for cooling of an electronic processor. The liquid block under study has 20 channels, and its bottom surface is placed on the processor. Nanoparticles synthesized through plant extract technique from green tea leaves are employed. The degree of improvement in cooling, pumping power, thermal performance and irreversibilities are examined for case of using the nanofluid instead of water. By increasing Reynolds number and particle concentration, temperature distribution becomes more uniform in processor surface and heat transfer coefficient also increases. Furthermore, the surface temperature decreases with increasing concentration and Reynolds number, such that it reduces by 2.21 °C in case of using the nanofluid with concentration of 1% instead of water at Reynolds number of 500. Moreover, maximum temperature of the processor surface decreases by increasing Reynolds number and concentration and therefore, the possibility of hot spot formation diminishes. Results show that at a constant work consumption, the nanofluid also presents better cooling compared to water. Entropy generation analysis reveals that irreversibility in the whole liquid block decreases with increasing either concentration or Reynolds number, which is a positive result based on second law of thermodynamics.

  18. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  19. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  20. The challenge of non-invasive cognitive physiology of the human brain: how to negotiate the irrelevant background noise without spoiling the recorded data through electronic averaging.

    Science.gov (United States)

    Tomberg, C; Desmedt, J E

    1999-07-29

    Brain mechanisms involved in selective attention in humans can be studied by measures of regional blood flow and metabolism (by positron emission tomography) which help identify the various locations with enhanced activities over a period of time of seconds. The physiological measures provided by scalp-recorded brain electrical potentials have a better resolution (milliseconds) and can reveal the actual sequences of distinct neural events and their precise timing. We studied selective attention to sensory inputs from fingers because the brain somatic representations are deployed over the brain convexity under the scalp thereby making it possible to assess distinct stages of cortical processing and representation through their characteristic scalp topographies. In the electrical response to a finger input attended by the subject, the well-known P300 manifests a widespread inhibitory mechanism which is released after a target stimulus has been identified. P300 is preceded by distinct cognitive electrogeneses such as P40, P100 and N140 which can be differentiated from the control (obligatory) profile by superimposition or electronic subtraction. The first cortical response N20 is stable across conditions, suggesting that the first afferent thalamocortical volley is not affected by selective attention. At the next stage of modality-specific cortex in which the sensory features are processed and represented, responses were enhanced (cognitive P40) only a very few milliseconds after arrival of the afferent volley at the cortex, thus documenting a remarkable precocity of attention gain control in the somatic modality. The physiology of selective attention also provides useful cues in relation to non-target inputs which the subject must differentiate in order to perform the task. When having to tell fingers apart, the brain strategy for non-target fingers is not to inhibit or filter them out, but rather to submit their input to several processing operations that are

  1. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America

    Science.gov (United States)

    Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger

    2002-01-01

    Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical “rules” for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (

  2. Reply to Keller and Springborn: No doubt about invasion debt

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Dullinger, S.; Rabitsch, W.; Hulme, P. E.; Hülber, K.; Jarošík, Vojtěch; Kleinbauer, I.; Krausmann, F.; Kühn, I.; Nentwig, W.; Vila, M.; Genovesi, P.; Gherardi, F.; Desprez-Loustau, M.-L.; Roques, A.; Pyšek, Petr

    2011-01-01

    Roč. 108, č. 25 (2011), s. 221-221 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * invasion debt * economics Subject RIV: EF - Botanics Impact factor: 9.681, year: 2011

  3. Global networks for invasion science: benefits, challenges and guidelines

    DEFF Research Database (Denmark)

    Packer, Jasmin G.; Meyerson, Laura A.; Richardson, David M.

    2017-01-01

    Much has been done to address the challenges of biological invasions, but fundamental questions (e.g., which species invade? Which habitats are invaded? How can invasions be effectively managed?) still need to be answered before the spread and impact of alien taxa can be effectively managed. Ques...

  4. Allee effects and pulsed invasion by the gypsy moth

    Science.gov (United States)

    Derk M. Johnson; Andrew M. Liebhold; Patrick C. Tobin; Ottar N. Bjornstad

    2006-01-01

    Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most...

  5. [Invasive pulmonary aspergillosis].

    Science.gov (United States)

    Blanchard, E; Gabriel, F; Jeanne-Leroyer, C; Servant, V; Dumas, P-Y

    2018-02-01

    Invasive pulmonary aspergillosis (IPA) is an important cause of morbidity and mortality in a wide range of patients. Early recognition and diagnosis have become a major focus in improving the management and outcomes of this life-threatening disease. IPA typically occurs during a period of severe and prolonged neutropenia. However, solid organ transplant recipients, patients under immunosuppressive therapy or hospitalized in intensive care units are also at risk. The diagnosis is suspected in the presence of a combination of clinical, biological and CT scan evidence. The microbiological diagnostic strategy should be adapted to the patient's profile. Conventional methods with culture and species identification remain the standard but early diagnosis has been improved by the use of biomarkers such as galactomannan antigen in serum or in bronchoalveolar lavage. The epidemiology of IPA should change with the increased use of antifungal prophylactic regimens and the arrival of targeted therapies. Other microbiological tools, such as PCR and other biomarkers, are currently being assessed. IPA must be considered in a wide range of patients. Its prognosis remains poor despite progress in the microbiological diagnosis and therapeutic management. Copyright © 2018 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  6. Invasive species in southern Nevada [Chapter 4

    Science.gov (United States)

    Mathew L. Brooks; Steven M. Ostoja; Jeanne C. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity (Chapter 1), but they also provide opportunities for a wide range of invasive species...

  7. Socioeconomic legacy yields an invasion debt

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Dullinger, S.; Rabitsch, W.; Hulme, P. E.; Hülber, K.; Jarošík, Vojtěch; Kleinbauer, I.; Krausmann, F.; Kuhn, H.; Nentwig, W.; Vila, M.; Genovesi, P.; Gherardi, F.; Desprez-Loustau, M.-L.; Roques, A.; Pyšek, Petr

    2011-01-01

    Roč. 108, č. 1 (2011), s. 203-207 ISSN 0027-8424 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * economy Subject RIV: EF - Botanics Impact factor: 9.681, year: 2011

  8. Shifts in dynamic regime of an invasive lady beetle are linked to the invasion and insecticidal management of its prey

    NARCIS (Netherlands)

    Bahlai, C.A.; Werf, van der W.; O'Neal, M.; Hemerik, L.; Landis, D.A.

    2015-01-01

    The spread and impact of invasive species may vary over time in relation to changes in the species itself, the biological community of which it is part, or external controls on the system. Here we investigate whether there have been changes in dynamic regimes over the last 20 years of two invasive

  9. Plant invasions in China: an emerging hot topic in invasion science

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2012-12-01

    Full Text Available China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes. Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1 compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2 strengthening pathways studies (primary introduction to the country, secondary releases within the country to enhance prevention and management; and (3 assessing impacts of invasive species at different spatial scales (habitats, regions and in relation to conservation resources.

  10. Biologically Assembled Quantum Electronic Arrays

    Science.gov (United States)

    2013-06-07

    Koh , Faxian Xiu, Xingchen Ye, Dong-Kyun Ko, Kang L. Wang, Cherie R. Kagan, Christopher B. Murray. Multiscale Periodic Assembly of Striped Nanocrystal...study is the LlM method (See M. T. Raman et al, Applied . Physics L etters 94, 042507, 2009). This method is a type of first-order reversal...Demonstrated graphene field- effect transistor: (top) optical Image of transferred graphene, (middle) Raman spectrum, (bottom) current voltage

  11. Five potential consequences of climate change for invasive species.

    Science.gov (United States)

    Hellmann, Jessica J; Byers, James E; Bierwagen, Britta G; Dukes, Jeffrey S

    2008-06-01

    Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.

  12. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa

    Directory of Open Access Journals (Sweden)

    He Ji

    2007-05-01

    Full Text Available Abstract Background The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. Results As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. Conclusion The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  13. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M

    2007-05-24

    The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  14. The casual, naturalised and invasive alien flora of Zimbabwe based on herbarium and literature records

    Directory of Open Access Journals (Sweden)

    Alfred Maroyi

    2012-10-01

    Conservation implications: This research provides baseline information and historical invasion patterns of casual, naturalised and invasive alien flora in Zimbabwe. This inventory is a crucial starting point in trying to understand and initiate the management of biological invasions. This is also important for monitoring new introductions and management of existing alien plants in Zimbabwe.

  15. Differential invasion success of salmonids in southern Chile: patterns and hypotheses

    Science.gov (United States)

    Ivan Arismendi; Brooke E. Penaluna; Jason B. Dunham; Carlos Garcia de Leaniz; Doris Soto; Ian A. Fleming; Daniel Gomez-Uchida; Gonzalo Gajardo; Pamela V. Varga; Jorge León-Muñoz

    2014-01-01

    Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including...

  16. Establishing Research and Management Priorities for Invasive Water Primroses (Ludwigia spp.)

    Science.gov (United States)

    2016-02-01

    among the most aggressive aquatic invasive plant invaders in the world. These aquatic Ludwigia species can impart severe ecological, economic, and...global trade and projected climate change. This technical report presents an overview of the biology and ecology of these invasive plant species , along...24 Figure 7. Pretreatment conditions, hand removal and spot herbicide applications to invasive Ludwigia hexapetala at

  17. Invasion and predation in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Judith S. WEIS

    2011-10-01

    Full Text Available This article reviews biological invasions in which predation (or its absence plays a major role in the success of the invader. Examples are described in which the invader out-competes native species for the same food, and cases in which the invader consumes valued native species. In many instances, better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check. A relatively new management approach in the US is the idea of adding another trophic level – to have humans act as the predators and consume the invasive species. This approach is being utilized in Florida and throughout the Caribbean against the lionfish, but could be extended to other fishes, as well as to various invasive crustaceans and mollusks. This idea is controversial, and current regulations prohibiting the possession of individuals of the invasive species (e.g., mitten crabs or snakefish would preclude the development of a fishery for them [Current Zoology 57 (5: 613–624, 2011].

  18. An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2012-04-01

    Full Text Available extent of invasive species control operations, assessments of the effectiveness of biological control, and smaller-scale studies. The 19 most important invasive taxa, mainly trees, in terrestrial biomes were identified. The effectiveness of control...

  19. Deeply invasive candidiasis.

    NARCIS (Netherlands)

    Ostrosky-Zeichner, L.; Rex, J.H.; Bennett, J.; Kullberg, B.J.

    2002-01-01

    The incidence of invasive candidiasis is on the rise because of increasing numbers of immunocompromised hosts and more invasive medical technology. Recovery of Candida spp from several body sites in a critically ill or immunocompromised patient should raise the question of disseminated disease.

  20. Alien invasive birds.

    Science.gov (United States)

    Brochier, B; Vangeluwe, D; van den Berg, T

    2010-08-01

    A bird species is regarded as alien invasive if it has been introduced, intentionally or accidentally, to a location where it did not previously occur naturally, becomes capable of establishing a breeding population without further intervention by humans, spreads and becomes a pest affecting the environment, the local biodiversity, the economy and/or society, including human health. European Starling (Sturnus vulgaris), Common Myna (Acridotheres tristis) and Red-vented Bulbul (Pycnonotus cafer) have been included on the list of '100 of the World's Worst Invasive Alien Species', a subset of the Global Invasive Species Database. The 'Delivering Alien Invasive Species Inventories for Europe' project has selected Canada Goose (Branta canadensis), Ruddy Duck (Oxyura jamaicensis), Rose-ringed Parakeet (Psittacula krameri) and Sacred Ibis (Threskiornis aethiopicus) as among 100 of the worst invasive species in Europe. For each of these alien bird species, the geographic range (native and introduced range), the introduction pathway, the general impacts and the management methods are presented.

  1. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  2. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  3. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available BACKGROUND: High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. METHODS: In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. RESULTS: The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young's modulus being 14.5-38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. CONCLUSIONS: This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.

  4. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both?

    Science.gov (United States)

    Miller, Joseph T; Hui, Cang; Thornhill, Andrew; Gallien, Laure; Le Roux, Johannes J; Richardson, David M

    2016-12-30

    For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups. Published by Oxford University Press on behalf of the Annals of Botany Company.

  5. Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma.

    Science.gov (United States)

    Salaroli, Roberta; Ronchi, Alice; Buttarelli, Francesca Romana; Cortesi, Filippo; Marchese, Valeria; Della Bella, Elena; Renna, Cristiano; Baldi, Caterina; Giangaspero, Felice; Cenacchi, Giovanna

    2015-01-01

    Medulloblastomas (MBs) associated with the Wnt activation represent a subgroup with a favorable prognosis, but it remains unclear whether Wnt activation confers a less aggressive phenotype and/or enhances radiosensitivity. To investigate this issue, we evaluated the biological behavior of an MB cell line, UW228-1, stably transfected with human β-catenin cDNA encoding a nondegradable form of β-catenin (UW-B) in standard culture conditions and after radiation treatment. We evaluated the expression, transcriptional activity, and localization of β-catenin in the stably transfected cells using immunofluorescence and WB. We performed morphological analysis using light and electron microscopy. We then analyzed changes in the invasiveness, growth, and mortality in standard culture conditions and after radiation. We demonstrated that (A) Wnt activation inhibited 97 % of the invasion capability of the cells, (B) the growth of the UW-B cells was statistically significantly lower than that of all the other control cells (p < 0.01), (C) the mortality of irradiated UW-B cells was statistically significantly higher than that of the controls and their nonirradiated counterparts (p < 0.05), and (D) morphological features of neuronal differentiation were observed in the Wnt-activated cells. In tissue samples, the Ki-67 labeling index (LI) was lower in β-catenin-positive samples compared to non-β-catenin positive ones. The Ki-67 LI median (LI = 40) of the nuclear β-catenin-positive tumor samples was lower than that of non-nuclear β-catenin-positive samples (LI = 50), but the difference was not statistically significant. Overall, our data suggest that activation of the Wnt pathway reduces the proliferation and invasion of MBs and increases the tumor's radiosensitivity.

  6. Separating habitat invasibility by alien plants from the actual level of invasion

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Jarošík, Vojtěch; Pyšek, Petr; Hájek, O.; Knollová, I.; Tichý, L.; Danihelka, Jiří

    2008-01-01

    Roč. 89, č. 6 (2008), s. 1541-1553 ISSN 0012-9658 R&D Projects: GA MŠk(CZ) LC06073 Grant - others:ALARM(XE) GOCE-CT-2003-506675 Institutional research plan: CEZ:AV0Z60050516 Keywords : archaeophyte * biological invasions * Central Europe Subject RIV: EF - Botanics Impact factor: 4.874, year: 2008

  7. Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives

    Science.gov (United States)

    Giles C. Thelen; Jorge M. Vivanco; Beth Newingham; William Good; Harsh P. Bais; Peter Landres; Anthony Caesar; Ragan M. Callaway

    2005-01-01

    Exotic invasive plants are often subjected to attack from imported insects as a method of biological control. A fundamental, but rarely explicitly tested, assumption of biological control is that damaged plants are less fit and compete poorly. In contrast, we find that one of the most destructive invasive plants in North America, Centaurea maculosa,...

  8. Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire?

    Science.gov (United States)

    Hiroshi Ikeda; Mac A. Callaham Jr.; Joseph J. O' Brien; Benjamin S. Hornsby; Evelyn S. Wenk

    2015-01-01

    Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have...

  9. Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range

    OpenAIRE

    Gaskin, John F.; Schaal, Barbara A.

    2002-01-01

    Biological invasions are drastically altering natural habitats and threatening biodiversity on both local and global levels. In one of the United States' worst invasions, Eurasian Tamarix plant species have spread rapidly to dominate over 600,000 riparian and wetland hectares. The largest Tamarix invasion consists of Tamarix chinensis and Tamarix ramosissima, two morphologically similar species. To clarify the identity, origins, and population structuring of this invasion, we analyzed DNA seq...

  10. [Lobular neoplasms and invasive lobular breast cancer].

    Science.gov (United States)

    Sinn, H-P; Helmchen, B; Heil, J; Aulmann, S

    2014-02-01

    The term lobular neoplasia (LN) comprises both atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS) and thus a spectrum of morphologically heterogeneous but clinically and biologically related lesions. LN is regarded as a nonobligatory precursor lesion of invasive breast cancer and at the same time as an indicator lesion for ipsilateral and contralateral breast cancer risk of the patient. Rare pleomorphic or florid variants of LCIS must be differentiated from classical LCIS. The classical type of invasive lobular carcinoma (ILC) can be distinguished from the non-special type of invasive breast cancer (NST) by E-cadherin inactivation, loss of E-cadherin related cell adhesion and the subsequent discohesive growth pattern. Variant forms of ILC may show different molecular features, and solid and pleomorphic differentiation patterns in cases of high grade variants. Important parameters for the prognostic assessment of ILC are tumor grading and the recognition of morphological variants.

  11. Invasion of vascular cells in vitro by Porphyromonas endodontalis.

    Science.gov (United States)

    Dorn, B R; Harris, L J; Wujick, C T; Vertucci, F J; Progulske-Fox, A

    2002-04-01

    The objective of this study was to determine whether laboratory strains and clinical isolates of microorganisms associated with root canal infections can invade primary cultures of cardiovascular cells. Quantitative levels of bacterial invasion of human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC) were measured using a standard antibiotic protection assay. Transmission electron microscopy was used to confirm and visualize internalization within the vascular cells. Of the laboratory and clinical strains tested, only P. endodontalis ATCC 35406 was invasive in an antibiotic protection assay using HCAEC and CASMC. Invasion of P. endodontalis ATCC 35406 was confirmed by transmission electron microscopy. Certain microorganisms associated with endodontic infections are invasive. If bacterial invasion of the vasculature contributes to the pathogenesis of cardiovascular disease, then microorganisms in the pulp chamber represent potential pathogens.

  12. Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145-1330 keV

    International Nuclear Information System (INIS)

    Manjunathaguru, V; Umesh, T K

    2006-01-01

    A semi-empirical relation which can be used to determine the total attenuation cross sections of samples containing H, C, N and O in the energy range 145-1332 keV has been derived based on the total attenuation cross sections of several sugars, amino acids and fatty acids. The cross sections have been measured by performing transmission experiments in a narrow beam good geometry set-up by employing a high-resolution hyperpure germanium detector at seven energies of biological importance such as 145.4 keV, 279.2 keV, 514 keV, 661.6 keV, 1115.5 keV, 1173.2 keV and 1332.1 keV. The semi-empirical relation can reproduce the experimental values within 1-2%. The total attenuation cross sections of five elements carbon, aluminium, titanium, copper and zirconium measured in the same experimental set-up at the energies mentioned above have been used in a new matrix method to evaluate the effective atomic numbers and the effective electron densities of samples such as cholesterol, fatty acids, sugars and amino acids containing H, C, N and O atoms from their effective atomic cross sections. The effective atomic cross sections are the total attenuation cross sections divided by the total number of atoms of all types in a particular sample. Further, a quantity called the effective atomic weight was defined as the ratio of the molecular weight of a sample to the total number of atoms of all types in it. The variation of the effective atomic number was systematically studied with respect to the effective atomic weight and a new semi-empirical relation for Z eff has been evolved. It is felt that this relation can be very useful to determine the effective atomic number of any sample having H, C, N and O atoms in the energy range 145-1332 keV irrespective of its chemical structure

  13. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  14. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  15. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  16. Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade.

    Science.gov (United States)

    Jackson, Hazel; Strubbe, Diederik; Tollington, Simon; Prys-Jones, Robert; Matthysen, Erik; Groombridge, Jim J

    2015-08-01

    Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences. © 2015 John Wiley & Sons Ltd.

  17. Effects of nonindigenous invasive species on water quality and quantity

    Science.gov (United States)

    Frank H. McCormick; Glen C. Contreras; Sherri L. Johnson

    2010-01-01

    Physical and biological disruptions of aquatic systems caused by invasive species alter water quantity and water quality. Recent evidence suggests that water is a vector for the spread of Sudden Oak Death disease and Port-Orfordcedar root disease. Since the 1990s, the public has become increasingly aware of the presence of invasive species in the Nation’s waters. Media...

  18. The clinical pathologic research of invasive pituitary adenomas

    International Nuclear Information System (INIS)

    Guo Lingchuan; Zheng Yushuang; Wang Shouli; Hui Guozhen; Li Xiangdong

    2012-01-01

    Objective: To study the pathological morphologic characteristics of invasive pituitary tumor and the affect of vascularization to the tumor's invasion. Methods: One hundred and thirty cases of pituitary adenoma patients were divided into two groups, including invasive pituitary adenomas and non-invasive pituitary adenomas, and the clinical data of two groups were analysed and compared. Results : The difference was statistically significant between the invasive group and the non-invasive group in the incidence rate of pathological morphologic characteristics such as high nuclear cytoplasmic ratio, cell pleomorphism, nuclear atypia and nucleoli appearance (P<0.05); there were nuclear atypia and nucleolus margination in the invasive group through electron microscopy. And there was statistical significant difference in rate of MVD expression which was higher in the invasive group than that of noninvasive group (P<0.05). Conclusion: The pathological morphologic characteristics of pituitary tumor and the high expression of MVD are significantly reference valuable in tumor aggression diagnosis, which provides valuable indicators for early clinical diagnosis of tumor invasion. (authors)

  19. Low-energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids.

    Science.gov (United States)

    Pshenichnyuk, Stanislav A; Elkin, Yury N; Kulesh, Nadezda I; Lazneva, Eleonora F; Komolov, Alexei S

    2015-07-14

    The antioxidant isoflavone retusin efficiently attaches low-energy electrons in vacuo, generating fragment species via dissociative electron attachment (DEA), as has been shown by DEA spectroscopy. According to in silico results obtained by means of density functional theory, retusin is able to attach solvated electrons and could be decomposed under reductive conditions in vivo, for instance, near the mitochondrial electron transport chain, analogous to gas-phase DEA. The most intense decay channels of retusin temporary negative ions were found to be associated with the elimination of H atoms and H2 molecules. Doubly dehydrogenated fragment anions were predicted to possess a quinone structure. It is thought that molecular hydrogen, known for its selective antioxidant properties, can be efficiently generated via electron attachment to retusin in mitochondria and may be responsible for its antioxidant activity. The second abundant species, i.e., quinone bearing an excess negative charge, can serve as an electron carrier and can return the captured electron back to the respiration cycle. The number of OH substituents and their relative positions are crucial for the present molecular mechanism, which can explain the radical scavenging activity of polyphenolic compounds.

  20. Public Perception of Invasive Plant Species: Assessing the Impact of Workshop Activities to Promote Young Students' Awareness

    Science.gov (United States)

    Schreck Reis, Catarina; Marchante, Helia; Freitas, Helena; Marchante, Elizabete

    2013-01-01

    Invasive species are one of the main threats to biodiversity worldwide. Even though they are identified and recognized as such by the Portuguese law, the majority of the population is not yet aware of this problem. Aiming to increase awareness about biological invasions among young students, a workshop on Invasive Plant Species was organized at…

  1. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  2. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier

    International Nuclear Information System (INIS)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; Mello Júnior, Wilson de; Duran, Nelson; Macedo, Alda Maria; Oliveira, Alexandre Gabarra de; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-01-01

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  3. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier.

    Science.gov (United States)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; de Mello Júnior, Wilson; Duran, Nelson; Macedo, Alda Maria; de Oliveira, Alexandre Gabarra; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-07-07

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  4. Native-range habitats of invasive plants: are they similar to invaded-range habitats and do they differ according to the geographical direction of invasion?

    Czech Academy of Sciences Publication Activity Database

    Hejda, Martin; Chytrý, M.; Pergl, Jan; Pyšek, Petr

    2015-01-01

    Roč. 21, č. 3 (2015), s. 312-321 ISSN 1366-9516 R&D Projects: GA ČR(CZ) GAP505/11/1112 Institutional support: RVO:67985939 Keywords : biological invasions * direction of invasions * native-range habitats Subject RIV: EF - Botanics Impact factor: 4.566, year: 2015

  5. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  6. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  7. Pathogenesis of invasive candidiasis.

    NARCIS (Netherlands)

    Veerdonk, F.L. van de; Kullberg, B.J.; Netea, M.G.

    2010-01-01

    PURPOSE OF REVIEW: Disseminated candidiasis remains a life-threatening disease in the ICU. The development of invasive disease with Candida albicans is dependent on multiple factors, such as colonization and efficient host defense at the mucosa. In the present review, we describe the host defense

  8. Control of invasive weeds with prescribed burning

    Science.gov (United States)

    DiTomaso, Joseph M.; Brooks, Matthew L.; Allen, Edith B.; Minnich, Ralph; Rice, Peter M.; Kyser, Guy B.

    2006-01-01

    Prescribed burning has primarily been used as a tool for the control of invasive late-season annual broadleaf and grass species, particularly yellow starthistle, medusahead, barb goatgrass, and several bromes. However, timely burning of a few invasive biennial broadleaves (e.g., sweetclover and garlic mustard), perennial grasses (e.g., bluegrasses and smooth brome), and woody species (e.g., brooms and Chinese tallow tree) also has been successful. In many cases, the effectiveness of prescribed burning can be enhanced when incorporated into an integrated vegetation management program. Although there are some excellent examples of successful use of prescribed burning for the control of invasive species, a limited number of species have been evaluated. In addition, few studies have measured the impact of prescribed burning on the long-term changes in plant communities, impacts to endangered plant species, effects on wildlife and insect populations, and alterations in soil biology, including nutrition, mycorrhizae, and hydrology. In this review, we evaluate the current state of knowledge on prescribed burning as a tool for invasive weed management.

  9. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  10. Niche conservatism and the invasive potential of the wild boar.

    Science.gov (United States)

    Sales, Lilian Patrícia; Ribeiro, Bruno R; Hayward, Matt Warrington; Paglia, Adriano; Passamani, Marcelo; Loyola, Rafael

    2017-09-01

    Niche conservatism, i.e. the retention of a species' fundamental niche through evolutionary time, is cornerstone for biological invasion assessments. The fact that species tend to maintain their original climate niche allows predictive maps of invasion risk to anticipate potential invadable areas. Unravelling the mechanisms driving niche shifts can shed light on the management of invasive species. Here, we assessed niche shifts in one of the world's worst invasive species: the wild boar Sus scrofa. We also predicted potential invadable areas based on an ensemble of three ecological niche modelling methods, and evaluated the performance of models calibrated with native vs. pooled (native plus invaded) species records. By disentangling the drivers of change on the exotic wild boar population's niches, we found strong evidence for niche conservatism during biological invasion. Ecological niche models calibrated with both native and pooled range records predicted convergent areas. Also, observed niche shifts are mostly explained by niche unfilling, i.e. there are unoccupied areas in the exotic range where climate is analogous to the native range. Niche unfilling is expected as result of recent colonization and ongoing dispersal, and was potentially stronger for the Neotropics, where a recent wave of introductions for pig-farming and game-hunting has led to high wild boar population growth rates. The invasive potential of wild boar in the Neotropics is probably higher than in other regions, which has profound management implications if we are to prevent their invasion into species-rich areas, such as Amazonia, coupled with expansion of African swine fever and possibly great economic losses. Although the originally Eurasian-wide distribution suggests a pre-adaptation to a wide array of climates, the wild boar world-wide invasion does not exhibit evidence of niche evolution. The invasive potential of the wild boar therefore probably lies on the reproductive, dietary and

  11. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    Czech Academy of Sciences Publication Activity Database

    Labate, L.; Andreassi, M.G.; Baffigi, F.; Bizzarri, B.M.; Borghini, A.; Bussolino, G.C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, Tadzio; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L.A.

    2016-01-01

    Roč. 49, č. 27 (2016), s. 1-9, č. článku 275401. ISSN 0022-3727 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser-driven electron accelerators * sub-MeV electron sources * ultrahigh dose rate * radiobiology * cell radiation damage Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics ) Impact factor: 2.588, year: 2016

  12. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  13. Management of invasive species

    DEFF Research Database (Denmark)

    Schou, Jesper Sølver; Jensen, Frank

    impact of the establishment of this invasive species is a substantial increase in the number of allergy cases, which we use as a measure of the physical damage. As valuation methods, we use both the cost-of-illness method and the benefit transfer method to quantify the total gross benefits of the two...... policy actions. Based on the idea of an invasion function, we identify the total and average net benefit under both prevention and mitigation. For both policy actions, the total and average net benefits are significantly positive irrespective of the valuation method used; therefore, both prevention...... and mitigation are beneficial policy actions. However, the total and average net benefits under mitigation are larger than the benefits under prevention, implying that the former policy action is more beneficial. Despite this result, we conclude that prevention, not mitigation, shall be used because...

  14. Essential elements of online information networks on invasive alien species

    Science.gov (United States)

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  15. [Invasive nosocomial pulmonary aspergillosis].

    Science.gov (United States)

    Germaud, P; Haloun, A

    2001-04-01

    Immunodepressed patients, particularly those with neutropenia or bone marrow or organ grafts, are at risk of developing nosocomial invasive pulmonary aspergilosis. The favoring factors, early diagnostic criteria and curative treatment protocols are well known. Prognosis remains however quite severe with a death rate above 50%. Preventive measures are required for the treatment of these high-risk patients and epidemiology surveillance is needed in case of aspergillosis acquired in the hospital.

  16. Plant invasions: Merging the concepts of species invasiveness and community invasibility

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2006-01-01

    Roč. 30, č. 3 (2006), s. 409-431 ISSN 0309-1333 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species invasiveness * community invasibility Subject RIV: EF - Botanics Impact factor: 1.278, year: 2006

  17. Public attitude in the city of Belgrade towards invasive alien plant species

    OpenAIRE

    Tomićević Jelena; Grbić Mihailo; Skočajić Dragana; Radovanović Dragana

    2012-01-01

    Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public a...

  18. Reconstruction of the early invasion history of the quagga mussel (Dreissena rostriformis bugensis) in Western Europe

    OpenAIRE

    Heiler, Katharina; Vaate, Abraham bij de; Ekschmitt, Klemens; Oheimb, Parm von; Albrecht, Christian; Wilke, Thomas

    2013-01-01

    The recent introduction of the quagga mussel into Western European freshwaters marked the beginning of one of the most successful biological invasions during the past years in this region. However, the spatial and temporal origin of the first invasive population(s) in Western Europe as well as subsequent spreading routes still remain under discussion. In this study, we therefore aim at reconstructing the early invasion history of the quagga mussel in Western Europe based on an age-corrected t...

  19. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  20. Calculation of X-ray scattering curves and electron distance distribution functions of biological macromolecules in solution using the PROTEIN DATA BANK

    International Nuclear Information System (INIS)

    Mueller, J.J.; Friedrichowicz, E.; Nothnagel, A.; Wunderlich, T.; Ziehlsdorf, E.; Damaschun, G.

    1983-01-01

    The wide angle X-ray scattering curve, the electron distance distribution function and the solvent excluded volume of a macromolecule in solution are calculated from the atomic coordinates contained in the PROTEIN DATA BANK. The structures and the projections of the excluded volumes are depicted using molecule graphic routines. The described computer programs are used to determine the three-dimensional structure of macromolecules in solution from wide angle X-ray scattering data. (author)

  1. The effects of turbidity and an invasive species on foraging success of rosyside dace (Clinostomus funduloides)

    Science.gov (United States)

    Peter D. Hazelton; Gary D. Grossman

    2009-01-01

    Habitat degradation and biological invasions are important threats to fish diversity worldwide. We experimentally examined the effects of turbidity, velocity and intra- and interspecific competition on prey capture location, reactive distance and prey capture success of native rosyside dace (Clinostomus funduloides) and invasive yellowfin shiners (Notropis lutipinnis)...

  2. The effect of invasive hybrid taxa on the ecological succession of coastal marshes

    Science.gov (United States)

    Hybridization following colonization of invasive species in novel environments frequently results in offspring with improved biological and competitive functions referred to as heterosis or hybrid vigor. However, little is known about the effect of these invasive hybrids on the structuring and funct...

  3. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Science.gov (United States)

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  4. The challenge of modelling and mapping the future distribution and impact of invasive alien species

    Science.gov (United States)

    Robert C. Venette

    2015-01-01

    Invasions from alien species can jeopardize the economic, environmental or social benefits derived from biological systems. Biosecurity measures seek to protect those systems from accidental or intentional introductions of species that might become injurious. Pest risk maps convey how the probability of invasion by an alien species or the potential consequences of that...

  5. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  6. Fifty years of invasion ecology: The legacy of Charles Elton

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2008-01-01

    Roč. 14, č. 2 (2008), s. 161-168 ISSN 1366-9516 R&D Projects: GA MŠk(CZ) LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : bibliometric analysis * biological invasions * citation analysis Subject RIV: EF - Botanics Impact factor: 3.446, year: 2008

  7. Reproduction in crabs: strategies, invasiveness and environmental influences thereon

    NARCIS (Netherlands)

    Brink, van den A.M.

    2013-01-01

    This thesis provides insights into the interconnectedness of crab reproductive biology, the selective forces leading to their development, the possible links to invasiveness and the influences of environmental factors thereon. The empirical data collected and presented in this thesis can be used

  8. Scientific challenges in the field of invasive alien plant management

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2004-01-01

    Full Text Available This article examines scientific challenges in the field of invasion alien plant management in South Africa. Overview of the Working for Water program, Issues of research funding, and Biological control research. It also includes some of the papers...

  9. Invasive species in southern Nevada [Chapter 4] (Executive Summary)

    Science.gov (United States)

    Matthew L. Brooks; Steven M. Ostoja; Jeanne C.. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones that are emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity, but they also provide opportunities for a wide range of invasive species. In...

  10. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  11. Invasive ductal carcinoma with lobular features: a comparison study to invasive ductal and invasive lobular carcinomas of the breast.

    Science.gov (United States)

    Arps, David P; Healy, Patrick; Zhao, Lili; Kleer, Celina G; Pang, Judy C

    2013-04-01

    Invasive ductal carcinoma with lobular features (IDC-L) is not recognized as a distinct subtype of breast cancer, and its clinicopathologic features and outcomes are unknown. In this retrospective study, we focused on characterization of clinicopathologic features and outcomes of IDC-L and compared them to invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). 183 cases of IDC-L from 1996 to 2011 were compared with 1,499 cases of IDC and 375 cases of ILC. Available slides of IDC-L (n = 150) were reviewed to quantify the lobular component (≤ 20, 21-50, 51-80, >80 %), defined as small cells individually dispersed, arranged in linear cords, or in loose aggregates without the formation of tubules or cohesive nests. E-cadherin immunostain was performed to confirm ductal origin. Compared to IDC, IDC-L was more likely to have lower histologic grade (p lobular component in IDC-L had no impact on the size, nodal status, stage, or outcome. Our data suggest that although IDC-L may be a variant of IDC, with >90 % of cases being E-cadherin positive, the clinical and biological characteristics are more similar to that of ILC.

  12. A new approach for the detection of charged particles by photographic recording systems - first applications in corpuscular physics, biology and electron microscopy

    International Nuclear Information System (INIS)

    Rechenmann, R.V.; Wittendorp, E.; Senger, B.

    1977-01-01

    The activation procedure consists not only of the introduction of more or less sophisticated treatments in the development phase, but also of the setting up of a specific ionographic methodology which will be described. The working hypotheses which led to the formulation of the so-called activation treatments will be outlined, notably the concept of the stable sub-latent image. The consequences of the activation procedure in ionography will be recalled, e.g. the drastic increase of the signal/noise ratio ranging from 1.5 to 20 and more, as well as the remarkable stability of the fog. The interest of the activation procedure for corpuscular physics as well as for the life sciences will be illustrated by first applications in autoradiography, electron microscopy and microdosimetry. As far as the autoradiographic methods are concerned, the considerable increase in efficiency and in resolution results in a drastic decrease of the exposure time or/and of the quantity of tracer elements applied, as well as in the possibility to carry out studies implying the detection of very small amounts of activity. The activation of the latent image can also be applied to exposed electron microscope photographic plates in order to allow a non-destructive observation of very sensitive specimens (macromolecules, etc.). In the field of corpuscular physics, the activation treatments led to the detection of secondary events distributed along α tracks of medium and low energy recorded in nuclear emulsions. An analytical study confirmed the hypotheses that the largest part of these protuberances are tracks of electrons and H-nuclei ejected by the incoming particle. These investigations are intended to lead to a description of the ionizing track pattern as well as to the interpretation of experimentally determined fluctuations of the track width. (author)

  13. Simultaneous determination of bromide and iodide as acetone derivatives by gas chromatography and electron capture detection in natural waters and biological fluids

    International Nuclear Information System (INIS)

    Maros, L.; Kaldy, M.; Igaz, S.

    1989-01-01

    Oxidation of bromide and iodide ions in acidic solutions in the presence of acetone forms the corresponding acetone derivatives. Iodate was reduced with thiosulfate prior to the determination. After extraction with benzene the bromo- and iodoacetone were measured by gas chromatography using electron capture detection. The bromide and iodide contents of rainwater, drinking water, river water, seawater, oil brine, common salt, cow milk, and human blood serum were determined. The relative standard deviations for bromide at 10/sup /minus/7/ M and for iodide at 10/sup /minus/8/ M concentration were 1.9% and 3.0%, respectively, using 10-mL sample for the determination without preconcentration

  14. Who cites who in the invasion zoo: insights from an analysis of the most highly cited papers in invasion ecology

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Richardson, D. M.; Jarošík, Vojtěch

    2006-01-01

    Roč. 78, - (2006), s. 437-468 ISSN 0032-7786 Institutional research plan: CEZ:AV0Z60050516 Keywords : citation analysis * biological invasions * Web of Science Subject RIV: EF - Botanics Impact factor: 2.119, year: 2006

  15. Minimally Invasive Parathyroidectomy

    Directory of Open Access Journals (Sweden)

    Lee F. Starker

    2011-01-01

    Full Text Available Minimally invasive parathyroidectomy (MIP is an operative approach for the treatment of primary hyperparathyroidism (pHPT. Currently, routine use of improved preoperative localization studies, cervical block anesthesia in the conscious patient, and intraoperative parathyroid hormone analyses aid in guiding surgical therapy. MIP requires less surgical dissection causing decreased trauma to tissues, can be performed safely in the ambulatory setting, and is at least as effective as standard cervical exploration. This paper reviews advances in preoperative localization, anesthetic techniques, and intraoperative management of patients undergoing MIP for the treatment of pHPT.

  16. Invasive Ponto-Caspian gobies in the diet of piscivorous fish in a European lowland river

    Czech Academy of Sciences Publication Activity Database

    Mikl, Libor; Adámek, Zdeněk; Roche, Kevin Francis; Všetičková, Lucie; Šlapanský, Luděk; Jurajda, Pavel

    2017-01-01

    Roč. 190, č. 2 (2017), s. 157-171 ISSN 1863-9135 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:68081766 Keywords : invasive gobiids * fish prey * predatory fish diet * food web structure * invasive species impacts Subject RIV: EG - Zoology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.170, year: 2016

  17. A novel aerobic-anoxic biological filter for nitrogen removal from UASB effluent using biogas compounds as electron donors for denitrification

    Directory of Open Access Journals (Sweden)

    Jenny Rodríguez Victoria

    2011-01-01

    Full Text Available El presente estudio tuvo como objetivo evaluar una nueva configuración de filtro biológico, aerobio, para obtener la nitrificación y desnitrificación del efluente de un reactor UASB que trata agua residual doméstica. El filtro biológico estuvo compuesto por dos compartimientos, uno superior aerobio nitrificante simulando un filtro percolador y uno inferior anóxico desnitrificante con medio de soporte sumergido. Adicionalmente, fue evaluada la factibilidad de usar el biogás producido en el reactor UASB como donador de electrones para la desnitrificación. Para una carga hidráulica aplicada de 5.6 m3 m-2 d-1, una carga orgánica aplicada de 0.26 kg DQO m-3 d-1 y una carga aplicada de nitrógeno amoniacal de 0.08 kg m-3 d-1 se obtuvo una transformación del nitrógeno amoniacal entre el 60 y 74%, con concentraciones efluentes menores de 13 mg L-1. A pesar de la presencia de oxígeno disuelto en el compartimiento de desnitrificación, se alcanzaron concentraciones de nitrato efluente menores de 10 mg L-1. Los resultados obtenidos indican que el metano presente en el biogás, fue el principal donador de electrones para la desnitrificación.

  18. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  19. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  20. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Science.gov (United States)

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  1. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    Directory of Open Access Journals (Sweden)

    Schneider Andreas S

    2012-09-01

    Full Text Available Abstract Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM [Gilbert et al., Journal of the

  2. Rapid assessment of agents of biological terrorism: defining the differential diagnosis of inhalational anthrax using electronic communication in a practice-based research network.

    Science.gov (United States)

    Temte, Jonathan L; Anderson, Anna Lisa

    2004-01-01

    Early detection of bioterrorism requires assessment of diagnoses assigned to cases of rare diseases with which clinicians have little experience. In this study, we evaluated the process of defining the differential diagnosis for inhalational anthrax using electronic communication within a practice-based research network (PBRN) and compared the results with those obtained from a nationwide random sample of family physicians with a mailed instrument. We distributed survey instruments by e-mail to 55 physician members of the Wisconsin Research Network (WReN), a regional PBRN. The instruments consisted of 3 case vignettes randomly drawn from a set describing 11 patients with inhalational anthrax, 2 with influenza A, and 1 with Legionella pneumonia. Physicians provided their most likely nonanthrax diagnosis, along with their responses to 4 yes-or-no management questions for each case. Physicians who had not responded at 1 week received a second e-mail with the survey instrument. The comparison group consisted of the nationwide sample of physicians who completed mailed survey instruments. Primary outcome measures were response rate, median response time, and frequencies of diagnostic categories assigned to cases of inhalational anthrax. The PBRN response rate compared favorably with that of the national sample (47.3% vs 37.0%; P = not significant). The median response time for the PBRN was significantly shorter than that for the national sample (2 vs 28 days; P < .001). No significant differences were found between the PBRN and the Midwest subset of the national sample in the frequencies of major diagnostic categories or in case management. Electronic means of creating differential diagnoses for rare infectious diseases of national significance is feasible within PBRNs. Information is much more rapidly acquired and is consistent with that obtained by conventional methods.

  3. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  4. A Landscape Approach to Invasive Species Management.

    Directory of Open Access Journals (Sweden)

    Miguel Lurgi

    Full Text Available Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i general population reduction, and (ii reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously

  5. A Landscape Approach to Invasive Species Management.

    Science.gov (United States)

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  6. A comparison of non-invasive versus invasive methods of ...

    African Journals Online (AJOL)

    Puneet Khanna

    for Hb estimation from the laboratory [total haemoglobin mass (tHb)] and arterial blood gas (ABG) machine (aHb), using ... A comparison of non-invasive versus invasive methods of haemoglobin estimation in patients undergoing intracranial surgery. 161 .... making decisions for blood transfusions based on these results.

  7. Plant hybridization: the role of human disturbance and biological invasion

    Science.gov (United States)

    Qinfeng Guo

    2014-01-01

    Aim Anderson & Stebbins (1954, Evolution, 8, 378–388) posited that human activities promote species hybridizations by creating opportunities for hybridization and new habitats for hybrids to persist through disturbances (i.e. the ‘disturbance hypothesis’). While the first part of this hypothesis appears to be well supported, the second part has...

  8. Biological invasions in the Antarctic: extent, impacts and implications.

    Science.gov (United States)

    Frenot, Yves; Chown, Steven L; Whinam, Jennie; Selkirk, Patricia M; Convey, Peter; Skotnicki, Mary; Bergstrom, Dana M

    2005-02-01

    Alien microbes, fungi, plants and animals occur on most of the sub-Antarctic islands and some parts of the Antarctic continent. These have arrived over approximately the last two centuries, coincident with human activity in the region. Introduction routes have varied, but are largely associated with movement of people and cargo in connection with industrial, national scientific program and tourist operations. The large majority of aliens are European in origin. They have both direct and indirect impacts on the functioning of species-poor Antarctic ecosystems, in particular including substantial loss of local biodiversity and changes to ecosystem processes. With rapid climate change occurring in some parts of Antarctica, elevated numbers of introductions and enhanced success of colonization by aliens are likely, with consequent increases in impacts on ecosystems. Mitigation measures that will substantially reduce the risk of introductions to Antarctica and the sub-Antarctic must focus on reducing propagule loads on humans, and their food, cargo, and transport vessels.

  9. The invasion biology and sociogenetics of pharaoh ants

    DEFF Research Database (Denmark)

    Schmidt, Anna Mosegaard

    Social insect colonies perform a number of tasks affecting the environments they live in. Some unintentionally introduced species have attracted the attention of scientists and general public alike when causing a number of changes to the composition and functioning of ecosystems. Such ?invaders...... laboratory lineages, thus building the foundation for future research on the species. In addition, I have started a selection experiment (still ongoing in collaboration with Dr. T. Linksvayer) using pharaoh ants, which is the first time artificial selection is attempted in an ant species. Pharaoh ants have...

  10. Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering.

    Science.gov (United States)

    Kumar Khanna, Vinod

    2007-01-01

    The current status and research trends of detection techniques for DNA-based analysis such as DNA finger printing, sequencing, biochips and allied fields are examined. An overview of main detectors is presented vis-à-vis these DNA operations. The biochip method is explained, the role of micro- and nanoelectronic technologies in biochip realization is highlighted, various optical and electrical detection principles employed in biochips are indicated, and the operational mechanisms of these detection devices are described. Although a diversity of biochips for diagnostic and therapeutic applications has been demonstrated in research laboratories worldwide, only some of these chips have entered the clinical market, and more chips are awaiting commercialization. The necessity of tagging is eliminated in refractive-index change based devices, but the basic flaw of indirect nature of most detection methodologies can only be overcome by generic and/or reagentless DNA sensors such as the conductance-based approach and the DNA-single electron transistor (DNA-SET) structure. Devices of the electrical detection-based category are expected to pave the pathway for the next-generation DNA chips. The review provides a comprehensive coverage of the detection technologies for DNA finger printing, sequencing and related techniques, encompassing a variety of methods from the primitive art to the state-of-the-art scenario as well as promising methods for the future.

  11. Study the chemical composition and biological outcomes resulting from the interaction of the hormone adrenaline with heavy elements: Infrared, Raman, electronic, 1H NMR, XRD and SEM studies

    Science.gov (United States)

    Ibrahim, Omar B.; Mohamed, Mahmoud A.; Refat, Moamen S.

    2014-01-01

    Heavy metal adrenaline complexes formed from the reaction of adrenaline with Al3+, Zn2+, Sn2+, Sb3+, Pb2+and Bi3+ ions in methanolic solvent at 60 °C. The final reaction products have been isolated and characterization using elemental analyses (% of carbon, hydrogen and nitrogen), conductivity measurements, mid infrared, Raman laser, UV-Vis, 1H NMR spectra, X-ray powder diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). Upon the spectroscopic, conductivity and elemental analyses, the stoichiometric reactions indicated that the data obtained refer to 1:2 (M:L) for Zn2+, Sn2+, Pb2+and Bi3+ complexes [Zn(Adr)2(Cl)2], [Sn(Adr)2]Cl2, [Pb(Adr)2](NO3)2 and [Bi(Adr)2(Cl)2]Cl, while the molar ratio 1:3 (M:L) for Al3+ and Sb3+ with formulas [Al(Adr)3](NO3)3 and [Sb(Adr)3]Cl3. The infrared and Raman laser spectra interpreted the mode of interactions which associated through the two phenolic groups of catechol moiety. The adrenaline chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial and antifungal activities than the free adrenaline chelate.

  12. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and support vector machines in Cordoba, Argentina

    Science.gov (United States)

    Gregorio I. Gavier-Pizarro; Tobias Kuemmerle; Laura E. Hoyos; Susan I. Stewart; Cynthia D. Huebner; Nicholas S. Keuler; Volker C. Radeloff

    2012-01-01

    In central Argentina, the Chinese tree glossy privet (Ligustrum lucidum) is an aggressive invasive species replacing native forests, forming dense stands, and is thus a major conservation concern. Mapping the spread of biological invasions is a necessary first step toward understanding the factors determining invasion patterns. Urban areas may...

  13. Reconciling an invasive plant’s role in aquatic food webs: a case study of an adaptive management process for water hyacinth

    Science.gov (United States)

    1. Globally, invasive species have a multitude of ecological and socio-economic impacts. However, invasive species can provide novel structure and habitat for native species. The growing rate of biological invasions world-wide presents an urgent dilemma: how can natural resource managers minimize ne...

  14. Funding needed for assessments of weed biological control

    Science.gov (United States)

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  15. Klebsiella pneumoniae Invasive Syndrome

    Directory of Open Access Journals (Sweden)

    Vasco Evangelista

    2018-01-01

    Full Text Available Klebsiella pneumoniae invasive syndrome (KPIS is a rare clinical condition characterized by primary liver abscess associated with metastatic infection. Most case reports are from Southeast Asia, with only one case described in Portugal. The Authors present the case of a 44-year-old man with a history of fever, dry cough and cervicalgia. A thoracic computed tomography (CT scan showed multiple pulmonary and hepatic nodules, suggestive of metastatic malignancy. Both blood cultures and bronchoalveolar lavage were positive for Klebsiella pneumoniae. Imaging studies were repeated during his hospital stay, showing a reduction in both number and volume of identified lesions, thus revealing their infectious nature. This case illustrates how much this entity can mimic other illnesses.

  16. Effects of nutrients on interaction between the invasive bidens pilosa the parasitic cusuta australis

    International Nuclear Information System (INIS)

    Yang, B.; Li, J.; Yan, M.

    2015-01-01

    Parasitic plants have been identified as potential biological agents to control invasive plants. Understanding the interaction between invasive plants and their novel natural enemies is important for understanding mechanisms underlying plant invasion success and thus taking measures to control invasion. We conducted a factorial experiment to test the interactive effects of nutrient addition (low vs. high) and parasitism (with vs. without Cuscuta australis) on the growth of the invasive Bidens pilosa. Parasitism significantly decreased leaf, stem and root biomass of the host invasive plant, and nutrient addition increased leaf and stem biomass of the host. A synergistic effect of parasitism and nutrient addition was found on stem and leaf biomass of the hosts. Nutrient addition significantly increased vegetative biomass of the parasitic plant and caused a more deleterious effect on the invasive host. Reproductive biomass of the parasitic plant was significantly positively related with net photosynthetic rate, light-utilisation efficiency and apparent carboxylation efficiency. Vegetative biomass and total biomass of the parasitic plants were significantly positively related with specific leaf area and the relative chlorophyll content of the host plant. The deleterious effect of the parasite on the growth of the host plant was significantly positively correlated with vegetative biomass of the parasitic plant. Nutrient addition increased the negative effect of the parasitic plant on the invasive host, indicating that the parasitic plant is potentially a biological control agent for the invasive plant even in the context of changing global resources. (author)

  17. Dietary Flexibility Aids Asian Earthworm Invasion in North American Forests

    Science.gov (United States)

    On a local scale, invasiveness of introduced species and invasibility of habitats together determine invasion success. A key issue in invasion ecology has been how to quantify the contribution of species invasiveness and habitat invasibility separately. Conventional approaches, s...

  18. Deformational mass transport and invasive processes in soil evolution

    Science.gov (United States)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  19. Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage, in Southern China.

    Science.gov (United States)

    Wang, Yu; Zhang, Wenbing; Fan, Ruifang; Sheng, Guoying; Fu, Jiamo

    2014-01-01

    The study was undertaken to evaluate the environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage in Southern China and research the influence of environment smoke tobacco (EST) to people through active and passive smoking. Urinary concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene were determined in 141 randomly selected voluntary residents aged 13 to 81 years in two polycyclic aromatic hydrocarbon (PAH)-exposed groups, two control groups, and an EST research group. The concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in PAH-exposed groups are significantly higher (pelectronic garbage (1.1 μmol/mol creatinine) is a little higher than those of iron foundry workers, automobile repair workers, and firefighters. Mean value of 2-hydroxynaphthalene (11.3 μmol/mol creatinine) is much higher than that of shipyard and aircraft maintenance and much lower than some occupational exposure, such as coking batteries, sorting department, and distillation department in coking plant. Some metabolites of PAHs (PAHm) are significantly elevated through active and passive smoking, while the influence of EST to other PAHm is not statistically significant. 2-Hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in the urine of smokers are, respectively, 3.9, 1.9, 1.4, and 1.9 times to those of nonsmokers. In nonsmokers, passive smokers excreted 1.1, 1.5, 1.9, and 1.5 times of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene compared to nonpassive smokers.

  20. A roadmap for island biology

    DEFF Research Database (Denmark)

    Patino, Jairo; Whittaker, Robert J.; Borges, Paulo A.V.

    2017-01-01

    Aims: The 50th anniversary of the publication of the seminal book, The Theory of Island Biogeography, by Robert H. MacArthur and Edward O. Wilson, is a timely moment to review and identify key research foci that could advance island biology. Here, we take a collaborative horizon-scanning approach...... to identify 50 fundamental questions for the continued development of the field. Location: Worldwide. Methods: We adapted a well-established methodology of horizon scanning to identify priority research questions in island biology, and initiated it during the Island Biology 2016 conference held in the Azores......); global change (5); conservation and management policies (5); and invasive alien species (4). Main conclusions: Collectively, this cross-disciplinary set of topics covering the 50 fundamental questions has the potential to stimulate and guide future research in island biology. By covering fields ranging...

  1. Invasive tightly coupled processor arrays

    CERN Document Server

    LARI, VAHID

    2016-01-01

    This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desire...

  2. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  3. Transplantation of colon carcinoma into granulation tissue induces an invasive morphotype

    NARCIS (Netherlands)

    Dingemans, K. P.; Zeeman-Boeschoten, I. M.; Keep, R. F.; Das, P. K.

    1993-01-01

    The stroma surrounding many malignant tumors resembles granulation tissue. To test the hypothesis that such stroma stimulates tumor invasiveness, we compared, by electron microscopy and immunohistochemistry, the growth patterns of CC531 rat colon adenocarcinoma in 2 experimental situations: (i)

  4. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

    Science.gov (United States)

    Boyd, Marie; Ross, Susan C; Dorrens, Jennifer; Fullerton, Natasha E; Tan, Ker Wei; Zalutsky, Michael R; Mairs, Robert J

    2006-06-01

    Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus

  5. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  6. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer.

    Science.gov (United States)

    Singh, Ramesh; Pochampally, Radhika; Watabe, Kounosuke; Lu, Zhaohui; Mo, Yin-Yuan

    2014-11-26

    Exosomes are 30-100 nm membrane vesicles of endocytic origin, mediating diverse biological functions including tumor cell invasion, cell-cell communication and antigen presentation through transfer of proteins, mRNAs and microRNAs. Recent evidence suggests that microRNAs can be released through ceramide-dependent secretory machinery regulated by neutral sphingomyelinase 2 (nSMase2) enzyme encoded by the smpd3 gene that triggers exosome secretion. However, whether exosome-mediated microRNA transfer plays any role in cell invasion remains poorly understood. Thus, the aim of this study was to identify the exosomal microRNAs involved in breast cancer invasion. The expression level of endogenous and exosomal miRNAs were examined by real time PCR and the expression level of target proteins were detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study its uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-10b was estimated by invasion assay. In this study, we demonstrate that microRNA carrying exosomes can be transferred among different cell lines through direct uptake. miR-10b is highly expressed in metastatic breast cancer MDA-MB-231 cells as compared to non-metastatic breast cancer cells or non-malignant breast cells; it is actively secreted into medium via exosomes. In particular, nSMase2 or ceramide promotes the exosome-mediated miR-10b secretion whereas ceramide inhibitor suppresses this secretion. Moreover, upon uptake, miR-10b can suppress the protein level of its target genes such as HOXD10 and KLF4, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could induce the invasion ability of non-malignant HMLE cells. Together, our results suggest that a set of specific microRNAs may play an important role in modulating tumor microenvironment through

  7. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  8. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  9. Googling trends in conservation biology.

    Science.gov (United States)

    Proulx, Raphaël; Massicotte, Philippe; Pépino, Marc

    2014-02-01

    Web-crawling approaches, that is, automated programs data mining the internet to obtain information about a particular process, have recently been proposed for monitoring early signs of ecosystem degradation or for establishing crop calendars. However, lack of a clear conceptual and methodological framework has prevented the development of such approaches within the field of conservation biology. Our objective was to illustrate how Google Trends, a freely accessible web-crawling engine, can be used to track changes in timing of biological processes, spatial distribution of invasive species, and level of public awareness about key conservation issues. Google Trends returns the number of internet searches that were made for a keyword in a given region of the world over a defined period. Using data retrieved online for 13 countries, we exemplify how Google Trends can be used to study the timing of biological processes, such as the seasonal recurrence of pollen release or mosquito outbreaks across a latitudinal gradient. We mapped the spatial extent of results from Google Trends for 5 invasive species in the United States and found geographic patterns in invasions that are consistent with their coarse-grained distribution at state levels. From 2004 through 2012, Google Trends showed that the level of public interest and awareness about conservation issues related to ecosystem services, biodiversity, and climate change increased, decreased, and followed both trends, respectively. Finally, to further the development of research approaches at the interface of conservation biology, collective knowledge, and environmental management, we developed an algorithm that allows the rapid retrieval of Google Trends data. © 2013 Society for Conservation Biology.

  10. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  11. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  12. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  13. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  14. Use of Recombinant Antigens for the Diagnosis of Invasive Candidiasis

    Directory of Open Access Journals (Sweden)

    Ana Laín

    2008-01-01

    Full Text Available Invasive candidiasis is a frequent and often fatal complication in immunocompromised and critically ill patients. Unfortunately, the diagnosis of invasive candidiasis remains difficult due to the lack of specific clinical symptoms and a definitive diagnostic method. The detection of antibodies against different Candida antigens may help in the diagnosis. However, the methods traditionally used for the detection of antibodies have been based on crude antigenic fungal extracts, which usually show low-reproducibility and cross-reactivity problems. The development of molecular biology techniques has allowed the production of recombinant antigens which may help to solve these problems. In this review we will discuss the usefulness of recombinant antigens in the diagnosis of invasive candidiasis.

  15. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  16. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  17. A new blind snake of the genus Letheobia (Serpentes: Typhlopidae) from Rwanda with redescriptions of L. gracilis (Sternfeld, 1910) and L. graueri (Sternfeld, 1912) and the introduction of a non-invasive preparation procedure for scanning electron microscopy in zoology.

    Science.gov (United States)

    Dehling, J Maximilian; Hinkel, Harald H; Ensikat, Hans-jÜrgen; Babilon, Kenny; Fischer, Eberhard

    2018-02-11

    A new species of blind snake in the genus Letheobia is described from Akagera National Park in eastern Rwanda. The new species is most similar to species of the L. gracilis complex, particularly L. gracilis and L. graueri. It differs from all other species of the genus by a unique combination of morphological characters, including the highest number of middorsal scale rows (834) and the most extreme elongation (total-length/midbody-width ratio 131) of all species in the genus and of any species of snake in the world; 22-22-22 longitudinal scale rows; snout in dorsal profile rounded, in lateral profile bluntly rounded with an angular horizontal edge ventrally; rostral broad, posteriorly rounded; eyes invisible; supralabial imbrication pattern T-0; tail short (1.3 percent of total length) with an apical spine; and a pink life colouration. The holotype of the new species was collected in gallery forest at a lake shore surrounded by savanna at 1300 m elevation. We produced scanning electron microscope images of the heads of the investigated specimens applying a liquid-substitution preparation procedure which does not require coating or drying and thus does not irreversibly damage the investigated samples. The obtained images allow an easy and more accurate examination of the scalation.

  18. Controle de invasão biológica por capim-anonni em margem viária mediante a introdução de gramíneas Control of biological invasion by South African lovegrass on a roadside by introducing grasses

    Directory of Open Access Journals (Sweden)

    Renato Borges de Medeiros

    2011-02-01

    Full Text Available Objetivou-se avaliar o controle da invasão biológica por Eragrostis plana Nees (capim-anonni em margens de rodovia com a introdução de gramíneas concorrentes associada a práticas de preparo do solo e adubação. O delineamento experimental foi em blocos casualizados com parcelas subdivididas e três repetições. Nas parcelas, foram avaliadas duas práticas de preparo do solo: solo subsolado e gradeado com aplicação de calcário e fósforo; e solo apenas subsolado, e nas subparcelas, as espécies de gramíneas: capim-mombaça (Megathyrsus maximus (Jacq. B. K. Simon & S. W. L. Jacobs; capim-kazangula (Setaria sphacelata (Schumach. Stapf & C. E. Hubb. ex M. B. Moss; mistura de sementes de três gramíneas nativas, grama-de-forquilha (Paspalum notatum Alain ex Flüggé, macega-do-banhado (Paspalum regnelli Mez e capim-das-roças (Paspalum urvillei Steud.; avaliadas em comparação a uma subparcela de exclusão (testemunha. Nos levantamentos florísticos, realizados em 8 de janeiro de 2005, e após o plantio, em 26 de janeiro e 25 de junho de 2006, observou-se alta riqueza florística, com 86 espécies botânicas distribuídas em 29 famílias e 21% de espécies exóticas. O solo subsolado, gradeado, corrigido e adubado, associado às introduções de M. maximus e S. kazungula, foram as alternativas que mais contribuíram para reduzir a cobertura de E. plana. As gramíneas nativas presentes na vegetação do acostamento, Paspalum plicatulum Mitchx, Piptochaetium montevidense (Spreng. Parodi e a espécie nativa introduzida (Paspalum urvillei têm potencial para controlar a invasão de E. plana.The objective of this study was to control biological invasion by Eragrostis plana Nees (South African lovegrass on a roadside by introducing competitor grasses associated with soil management and fertilization practices. The experimental design was a complete randomized block with split-plots parcels and three replications. In the parcels, it was

  19. Micafungin in the treatment of invasive candidiasis and invasive aspergillosis

    Directory of Open Access Journals (Sweden)

    Nathan P Wiederhold

    2009-01-01

    Full Text Available Nathan P Wiederhold1, Jason M Cota2, Christopher R Frei11University of Texas at Austin College of Pharmacy, Austin, Texas, USA; 2University of the Incarnate Word Feik School of Pharmacy, San Antonio, Texas, USAAbstract: Micafungin is an echinocandin antifungal agent available for clinical use in Japan, Europe, and the United States. Through inhibition of β-1,3-glucan production, an essential component of the fungal cell wall, micafungin exhibits potent antifungal activity against key pathogenic fungi, including Candida and Aspergillus species, while contributing minimal toxicity to mammalian cells. This activity is maintained against polyene and azole-resistant isolates. Pharmacokinetic and pharmacodynamic studies have demonstrated linear kinetics both in adults and children with concentration-dependent activity observed both in vitro and in vivo. Dosage escalation studies have also demonstrated that doses much higher than those currently recommended may be administered without serious adverse effects. Clinically, micafungin has been shown to be efficacious for the treatment of invasive candidiasis and invasive aspergillosis. Furthermore, the clinical effectiveness of micafungin against these infections occurs without the drug interactions that occur with the azoles and the nephrotoxicity observed with amphotericin B formulations. This review will focus on the pharmacology, clinical microbiology, mechanisms of resistance, safety, and clinical efficacy of micafungin in the treatment of invasive candidiasis and invasive aspergillosis.Keywords: micafungin, echinocandin, Candida, Aspergillus, invasive candidiasis, invasive aspergillosis

  20. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt