WorldWideScience

Sample records for biological interactions potential

  1. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  2. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  3. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Directory of Open Access Journals (Sweden)

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  4. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions.

    Science.gov (United States)

    Alkilany, Alaaldin M; Thompson, Lucas B; Boulos, Stefano P; Sisco, Patrick N; Murphy, Catherine J

    2012-02-01

    Gold nanorods have promising applications in the fields of drug delivery and photothermal therapy. These promises arise from the nanorods' unique optical and photothermal properties, the availability of synthetic protocols that can tune the size and shape of the particles, the ability to modify the surface and conjugate drugs/molecules to the nanorods, and the relative biocompatibility of gold nanorods. In this review, current progress in using gold nanorods as phototherapeutic agents and as drug delivery vehicles is summarized. Issues of dosage, toxicity and biological interactions at three levels (biological media alone; cells; whole organisms) are discussed, concluding with recommendations for future work in this area.

  5. Carbon Nanotubes – Interactions with Biological Systems

    OpenAIRE

    Reis, Joana; Capela-Silva, Fernando; Potes, José; Fonseca, Alexandra; Oliveira, Mónica; Kanagaraj, Subramani; Marques, António Torres

    2011-01-01

    his book chapter discusses the prospective biomedical applications of carbon nanotubes based materials, the impact of carbon nanotubes properties in the interaction with biological systems. Protein adsorption, impact on cell viability and cytokine production are explored. Potential respiratory and dermal toxicity are reviewed, as the difficulties on studying the biological response. In face of recent studies, special attention is drawn upon promising orthopaedic use.

  6. Barriers on the Brink? Interactions Between Biological and Physical Processes Lead to Bistability and the Potential for Rapid Response to Gradually Changing Conditions (Invited)

    Science.gov (United States)

    Moore, L. J.; Duran Vinent, O.

    2013-12-01

    Barrier islands and their habitats are especially sensitive to changing environmental conditions. As sea level rises, storm intensity increases and plant species composition changes, interactions among biological and physical processes will play a critical role in determining how barrier islands will evolve. Within a new conceptual framework, islands tend to exist in one of two primary states. 'Low-elevation' islands have little relief above sea level and are dominated by external processes, responding quickly on short time scales to changes in forcing (e.g., storms, sea level rise, etc.), migrating rapidly and generally being low in ecological diversity and productivity. In contrast, 'high-elevation' islands are less vulnerable to storms, tend to be dominated by internal processes (e.g., sand trapping by vegetation), require long time periods to respond to changes in forcing, migrate slowly (if at all) and host a range of plant species and morphological environments including shrubs, small trees and vegetated secondary and tertiary dunes with intervening swales. The continued existence of barrier island landforms will depend on the degree to which islands can maintain elevation above sea level while also responding to changes in forcing by migrating landward. Using a new model that simulates the co-evolution of island topography and vegetation, we demonstrate that barrier islands can undergo rapid deterioration in response to gradual changes in forcing. Model simulations indicate that once the ratio between the time required for island vegetation to re-establish after a storm and the time between storms becomes greater than 1, barrier islands become bistable. Simulations and observations indicate that once islands enter this regime, strong storms can trigger a shift from a high-elevation state (resistant to storms) to a low-elevation state (prone to storm overwash). At this point, the probability of returning to the high-elevation state decreases exponentially as

  7. A competing risks approach to "biologic" interaction

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Skrondal, Anders

    2015-01-01

    In epidemiology, the concepts of "biologic" and "statistical" interactions have been the subject of extensive debate. We present a new approach to biologic interaction based on Rothman's original (Am J Epidemiol, 104:587-592, 1976) discussion of sufficient causes. We do this in a probabilistic...

  8. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  9. Realizing the potential of synthetic biology.

    Science.gov (United States)

    Church, George M; Elowitz, Michael B; Smolke, Christina D; Voigt, Christopher A; Weiss, Ron

    2014-04-01

    Synthetic biology, despite still being in its infancy, is increasingly providing valuable information for applications in the clinic, the biotechnology industry and in basic molecular research. Both its unique potential and the challenges it presents have brought together the expertise of an eclectic group of scientists, from cell biologists to engineers. In this Viewpoint article, five experts discuss their views on the future of synthetic biology, on its main achievements in basic and applied science, and on the bioethical issues that are associated with the design of new biological systems.

  10. Higgs Potential from Derivative Interactions

    CERN Document Server

    Quadri, A

    2016-01-01

    A formulation of the linear $\\sigma$ model with derivative interactions is studied. The theory is on-shell equivalent to the model with a quartic Higgs potential. The mass of the scalar mode only appears in the quadratic part and not in the interaction vertices, unlike in the ordinary formulation of the theory. Renormalization of the model is discussed. A natural non power-counting renormalizable extension of the theory is presented. The model is physically equivalent to the inclusion of a dimension six effective operator $\\partial_\\mu (\\Phi^\\dagger \\Phi) \\partial^\\mu (\\Phi^\\dagger \\Phi)$. The resulting UV divergences are arranged in a perturbation series around the power-counting renormalizable theory. UV completion of the non-power-counting renormalizable model through a symmetric deformation of the propagator of the massive physical scalar is addressed.

  11. Gold Nanoparticle-Biological Molecule Interactions and Catalysis

    Directory of Open Access Journals (Sweden)

    Jonathan G. Heddle

    2013-09-01

    Full Text Available This review gives a brief summary of the field of gold nanoparticle interactions with biological molecules, particularly those with possible catalytic relevance. Gold nanoparticles are well known as catalysts in organic chemistry but much is unknown regarding their potential as catalysts of reactions involving biological molecules such as protein and nucleic acids. Biological molecules may be the substrate for catalysis or, if they are the ligand coating the gold particle, may be the catalyst itself. In other cases biological molecules may form a template upon which gold nanoparticles can be precisely arrayed. As relatively little is currently known about the catalytic capabilities of gold nanoparticles in this area, this review will consider templating in general (including, but not restricted to, those which result in structures having potential as catalysts before going on to consider firstly catalysis by the gold nanoparticle itself followed by catalysis by ligands attached to gold nanoparticles, all considered with a focus on biological molecules.

  12. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  13. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  14. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  15. Predicting genetic interactions with random walks on biological networks

    Directory of Open Access Journals (Sweden)

    Singh Ambuj K

    2009-01-01

    Full Text Available Abstract Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree

  16. Institute for Multiscale Modeling of Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  17. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin.

    Science.gov (United States)

    Yin, Ben-Tao; Yan, Cong-Yan; Peng, Xin-Mei; Zhang, Shao-Lin; Rasheed, Syed; Geng, Rong-Xia; Zhou, Cheng-He

    2014-01-01

    A series of α-triazolyl chalcones were efficiently synthesized. Most of the prepared compounds showed effective antibacterial and antifungal activities. Noticeably, α-triazolyl derivative 9a exhibited low MIC value of 4 μg/mL against MRSA and Micrococcus luteus, which was comparable or even superior to reference drugs. The further research revealed that compound 9a could effectively intercalate into Calf Thymus DNA to form 9a-DNA complex which might block DNA replication to exert their powerful antimicrobial activities. Competitive interactions between 9a and metal ions to Human Serum Albumin (HSA) suggested the participation of Fe(3+), K(+) and Mg(2+) ions in 9a-HSA system could increase the concentration of free 9a, shorten its storage time and half-life in the blood, thus improving its antimicrobial efficacy.

  18. Developing a general interaction potential for hydrophobic and hydrophilic interactions.

    Science.gov (United States)

    Donaldson, Stephen H; Røyne, Anja; Kristiansen, Kai; Rapp, Michael V; Das, Saurabh; Gebbie, Matthew A; Lee, Dong Woog; Stock, Philipp; Valtiner, Markus; Israelachvili, Jacob

    2015-02-24

    We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.

  19. Discrete Time Markovian Agents Interacting Through a Potential

    CERN Document Server

    Budhiraja, Amarjit; Rubenthaler, Sylvain

    2011-01-01

    A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the 'gradient' of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative input. Interacting Markov processes of the above form have been suggested as models for active biological transport in response to external stimulus such as a chemical gradient. One of the basic mathematical challenges is to develop a general theory of stability for such interacting Markovian systems and for the corresponding nonlinear Markov processes that arise in the large agent limit. Such a theory would be key to a mathematical understanding of the interactive structure formation that results from the complex feedback between the agents and the potential field. It will also be a crucial ingredient in developing simulat...

  20. Potential interactions between alternative therapies and warfarin.

    Science.gov (United States)

    Heck, A M; DeWitt, B A; Lukes, A L

    2000-07-01

    Potential and documented interactions between alternative therapy agents and warfarin are discussed. An estimated one third of adults in the United States use alternative therapies, including herbs. A major safety concern is potential interactions of alternative medicine products with prescription medications. This issue is especially important with respect to drugs with narrow therapeutic indexes, such as warfarin. Herbal products that may potentially increase the risk of bleeding or potentiate the effects of warfarin therapy include angelica root, arnica flower, anise, asafoetida, bogbean, borage seed oil, bromelain, capsicum, celery, chamomile, clove, fenugreek, feverfew, garlic, ginger ginkgo, horse chestnut, licorice root, lovage root, meadowsweet, onion, parsley, passionflower herb, poplar, quassia, red clover, rue, sweet clover, turmeric, and willow bark. Products that have been associated with documented reports of potential interactions with warfarin include coenzyme Q10, danshen, devil's claw, dong quai, ginseng, green tea, papain, and vitamin E. Interpretation of the available information on herb-warfarin interactions is difficult because nearly all of it is based on in vitro data, animal studies, or individual case reports. More study is needed to confirm and assess the clinical significance of these potential interactions. There is evidence that a wide range of alternative therapy products have the potential to interact with warfarin. Pharmacists and other health care professionals should question all patients about use of alternative therapies and report documented interactions to FDA's MedWatch program.

  1. Biological Potential of Chitinolytic Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone;

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using ...... analyses, we cloned and expressed two ChiA-like chitinases from the two most potent candidates to exemplify the industrial potential....

  2. A new interaction potential for swarming models

    CERN Document Server

    Carrillo, J A; Panferov, V

    2012-01-01

    We consider a self-propelled particle system which has been used to describe certain types of collective motion of animals, such as fish schools and bird flocks. Interactions between particles are specified by means of a pairwise potential, repulsive at short ranges and attractive at longer ranges. The exponentially decaying Morse potential is a typical choice, and is known to reproduce certain types of collective motion observed in nature, particularly aligned flocks and rotating mills. We introduce a class of interaction potentials, that we call Quasi-Morse, for which flock and rotating mills states are also observed numerically, however in that case the corresponding macroscopic equations allow for explicit solutions in terms of special functions, with coefficients that can be obtained numerically without solving the particle evolution. We compare thus obtained solutions with long-time dynamics of the particle systems and find a close agreement for several types of flock and mill solutions.

  3. Potential interaction between pomegranate juice and warfarin.

    Science.gov (United States)

    Komperda, Kathy E

    2009-08-01

    To my knowledge, no published reports have described an interaction between pomegranate juice and warfarin. Investigators from previous animal and in vitro studies have reported a potential for pomegranate juice to inhibit metabolism involving the cytochrome P450 system, an effect that could translate into a clinical drug-diet interaction with warfarin. This case report describes a 64-year-old Caucasian woman who was treated with warfarin for recurrent deep vein thrombosis. She had been receiving a relatively stable dosage of warfarin 4 mg/day for several months, with stable international normalized ratios (INRs). During that time, the patient was consuming pomegranate juice 2-3 times/week. She stopped drinking the juice, and her INRs became subtherapeutic. Her dosage of warfarin was increased to maintain therapeutic anticoagulation. No rechallenge with pomegranate juice was performed. Use of the Drug Interaction Probability Scale indicated a possible relationship between the patient's subtherapeutic INR and the pomegranate juice. Although this potential interaction needs to be explored further, clinicians should be aware of the interaction and thoroughly interview and closely monitor their patients who are receiving warfarin.

  4. Student Perceptions of Interactive Whiteboards in a Biology Classroom

    OpenAIRE

    Stavreva Veselinovska, Snezana; Kirova, Snezana

    2013-01-01

    The aim of this paper is to design interactive teaching strategies with Interactive White Boards (IWB) and examine their effectiveness in teaching biology. Following the trend of integrating the IWB in teaching, in this study we tried to stress the advantages of IWB to provide better and effective teaching of biology in schools. The research was conducted with students from third year in two secondary schools in Stip. Students were divided into two groups. IWB-group (n = 35) – which used ...

  5. Measures of interaction contrast (biological interaction) - ic, ici and icp

    DEFF Research Database (Denmark)

    2015-01-01

    It has become more common to investigate not only single factors effect on a outcome but also to look at the interaction between factors, as is facilitated by the last decade’s massive increase in computer resources to gather and analyses large databases. Several approaches haves been promoted.Fo...

  6. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  7. Exploring the potential of metallic nanoparticles within synthetic biology.

    Science.gov (United States)

    Edmundson, Matthew C; Capeness, Michael; Horsfall, Louise

    2014-12-25

    The fields of metallic nanoparticle study and synthetic biology have a great deal to offer one another. Metallic nanoparticles as a class of material have many useful properties. Their small size allows for more points of contact than would be the case with a similar bulk compound, making nanoparticles excellent candidates for catalysts or for when increased levels of binding are required. Some nanoparticles have unique optical qualities, making them well suited as sensors, while others display para-magnetism, useful in medical imaging, especially by magnetic resonance imaging (MRI). Many of these metallic nanoparticles could be used in creating tools for synthetic biology, and conversely the use of synthetic biology could itself be utilised to create nanoparticle tools. Examples given here include the potential use of quantum dots (QDs) and gold nanoparticles as sensing mechanisms in synthetic biology, and the use of synthetic biology to create nanoparticle-sensing devices based on current methods of detecting metals and metalloids such as arsenate. There are a number of organisms which are able to produce a range of metallic nanoparticles naturally, such as species of the fungus Phoma which produces anti-microbial silver nanoparticles. The biological synthesis of nanoparticles may have many advantages over their more traditional industrial synthesis. If the proteins involved in biological nanoparticle synthesis can be put into a suitable bacterial chassis then they might be manipulated and the pathways engineered in order to produce more valuable nanoparticles.

  8. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry

    Science.gov (United States)

    Lo Giudice, Maria Cristina; Herda, Luciana M.; Polo, Ester; Dawson, Kenneth A.

    2016-11-01

    Nanoparticles interacting with, or derived from, living organisms are almost invariably coated in a variety of biomolecules presented in complex biological milieu, which produce a bio-interface or `biomolecular corona' conferring a biological identity to the particle. Biomolecules at the surface of the nanoparticle-biomolecule complex present molecular fragments that may be recognized by receptors of cells or biological barriers, potentially engaging with different biological pathways. Here we demonstrate that using intense fluorescent reporter binders, in this case antibodies bound to quantum dots, we can map out the availability of such recognition fragments, allowing for a rapid and meaningful biological characterization. The application in microfluidic flow, in small detection volumes, with appropriate thresholding of the detection allows the study of even complex nanoparticles in realistic biological milieu, with the emerging prospect of making direct connection to conditions of cell level and in vivo experiments.

  9. PRESENTATION POTENTIAL USING IN PEDAGOGICAL INTERACTION PROCESS

    Directory of Open Access Journals (Sweden)

    Olga V. Ershova

    2016-01-01

    Full Text Available The given article is aimed at considering multimedia presentation potential and its influence on strengthening classroom teacher-student interaction. In the article the importance of using this kind of activity in the study process is pointed in connection with educational state policy on the one hand. On the other hand, gained students’ skills as a final result of work with presentations met employers’ demand for both parent and world labour-markets and bring competitive benefit to the candidates. Scientific novelty and results. Multimedia presentation is considered as a specific complex of classroom activities. The students are oriented on the self analysis and presentation assessment. It is shown that well-organized process of peer students’ assessment allows to simultaneously helping in solving the didactic and methodical problems. To this purpose the system of assessment criteria should be developed. It has to be clear for students for making assessment feasible and time-saving. The example of a possible variant of criteria system is described; quality of the presentations prepared by students can be defined based on such system criteria. The author also analyzed software products of the three main platforms (Windows, Linux, MacOs which have different tools and allow to follow users’ needs for creating presentations. In the article there is a comparative table of the two most popular software development: the program Microsoft PowerPoint and the web-service Prezi for realizing the relevance of their use in the study process. Practical significance of the present article concludes in author’s suggestions of some recommendations for presentation potential use as a tool of improving pedagogical interaction process with contemporary students. 

  10. The potential for biological structure determination with pulsed neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.C. [CLRC Rutherford Appleton Laboratory, Chilton Didcot Oxon (United Kingdom)

    1994-12-31

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed.

  11. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essenti

  12. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    Directory of Open Access Journals (Sweden)

    Laurent Nottale

    2013-12-01

    Full Text Available We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.

  13. Chemical Force Microscopy of Chemical and Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  14. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  15. Synthetic Biology and Human Health: Potential Applications for Spaceflight

    Science.gov (United States)

    Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.

  16. Plasma effects in electromagnetic field interaction with biological tissue

    Science.gov (United States)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  17. Elucidating the Potential Biological Impact of Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Sandra Camarero-Espinosa

    2016-07-01

    Full Text Available Cellulose nanocrystals exhibit an interesting combination of mechanical properties and physical characteristics, which make them potentially useful for a wide range of consumer applications. However, as the usage of these bio-based nanofibers increases, a greater understanding of human exposure addressing their potential health issues should be gained. The aim of this perspective is to highlight how knowledge obtained from studying the biological impact of other nanomaterials can provide a basis for future research strategies to deduce the possible human health risks posed by cellulose nanocrystals.

  18. [St. John's wort: a pharmaceutical with potentially dangerous interactions].

    Science.gov (United States)

    Rätz, A E; von Moos, M; Drewe, J

    2001-05-10

    Over-the-counter preparations of St. John's wort are widely used as 'natural' herbal medicine alternative to traditional antidepressants. The antidepressant effect has been shown in numerous placebo controlled studies. The mechanism of action is assumed to be at least in part, similar to conventional antidepressants, due to presynaptic serotonin reuptake inhibition as well as GABA-modulation and inhibition of monoaminoxidases. Because of its favorable safety profile compared to conventional antidepressants, the use of St. John's wort preparations has gained high acceptance with doctors and patients. However, any biologically active compound contains a certain risk of untoward effects and/or interactions which often are neither known nor recognised with the use of herbal remedies. Thus, doctors, pharmacists, and patients might feel themselves in false safety. Recently, a variety of case reports of potentially hazardous interactions due to drug combinations with St. John's wort have been published (e.g. cellular rejection of pancreas-, kidney- as well as heart transplants with ciclosporin therapy, rise of INR with oral anticoagulants, bleeding with oral contraceptives, reduction of plasma concentration of digoxin, indinavir, amitriptyline, and theophylline). We report a case of irregular bleeding with oral contraception and discuss these drug interactions and the mechanisms.

  19. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  20. Computing paths and cycles in biological interaction graphs

    Directory of Open Access Journals (Sweden)

    von Kamp Axel

    2009-06-01

    Full Text Available Abstract Background Interaction graphs (signed directed graphs provide an important qualitative modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular networks and can even be useful for predicting qualitative aspects of systems dynamics. Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles (feedback loops and the calculation of shortest positive/negative paths. These computational problems have been discussed only to a minor extent in the context of Systems Biology and in particular the shortest signed paths problem requires algorithmic developments. Results We first review algorithms for the enumeration of paths and cycles and show that these algorithms are superior to a recently proposed enumeration approach based on elementary-modes computation. The main part of this work deals with the computation of shortest positive/negative paths, an NP-complete problem for which only very few algorithms are described in the literature. We propose extensions and several new algorithm variants for computing either exact results or approximations. Benchmarks with various concrete biological networks show that exact results can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs can still be treated exactly by a new algorithm combining exhaustive and simple search strategies. For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks (where a comparison with exact results was possible this algorithm delivered results that are very close or equal to the exact values. This phenomenon can probably be attributed to the particular topology of cellular signaling and regulatory networks which contain a relatively low number of negative feedback loops. Conclusion The calculation of shortest positive

  1. Interaction of elementary waves for equations of potential flow

    Institute of Scientific and Technical Information of China (English)

    陈恕行; 王辉

    1997-01-01

    Interaction of elementary waves for equations of unsteady potential flow in gas dynamics is considered . Under the assumptions on weakness of strength of the elementary waves the structure of solutions has been given in various cases of interaction of simple wave with shock, or interaction between simple waves or shocks. Hence the complete results on interaction of weak elementary waves for second-order equation of potential flow are obtained.

  2. Small proteins: untapped area of potential biological importance.

    Science.gov (United States)

    Su, Mingming; Ling, Yunchao; Yu, Jun; Wu, Jiayan; Xiao, Jingfa

    2013-12-16

    Polypeptides containing ≤100 amino acid residues (AAs) are generally considered to be small proteins (SPs). Many studies have shown that some SPs are involved in important biological processes, including cell signaling, metabolism, and growth. SP generally has a simple domain and has an advantage to be used as model system to overcome folding speed limits in protein folding simulation and drug design. But SPs were once thought to be trivial molecules in biological processes compared to large proteins. Because of the constraints of experimental methods and bioinformatics analysis, many genome projects have used a length threshold of 100 amino acid residues to minimize erroneous predictions and SPs are relatively under-represented in earlier studies. The general protein discovery methods have potential problems to predict and validate SPs, and very few effective tools and algorithms were developed specially for SPs identification. In this review, we mainly consider the diverse strategies applied to SPs prediction and discuss the challenge for differentiate SP coding genes from artifacts. We also summarize current large-scale discovery of SPs in species at the genome level. In addition, we present an overview of SPs with regard to biological significance, structural application, and evolution characterization in an effort to gain insight into the significance of SPs.

  3. Method and apparatus to image biological interactions in plants

    Science.gov (United States)

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  4. Twenty years of protein interaction studies for biological function deciphering.

    Science.gov (United States)

    Legrain, Pierre; Rain, Jean-Christophe

    2014-07-31

    Intensive methodological developments and technology innovation have been devoted to protein-protein interaction studies over 20years. Genetic indirect assays and sophisticated large scale biochemical analyses have jointly contributed to the elucidation of protein-protein interactions, still with a lot of drawbacks despite heavy investment in human resources and technologies. With the most recent developments in mass spectrometry and computational tools for studying protein content of complex samples, the initial goal of deciphering molecular bases of biological functions is now within reach. Here, we described the various steps of this process and gave examples of key milestones in this scientific story line. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  5. Passing messages between biological networks to refine predicted interactions.

    Directory of Open Access Journals (Sweden)

    Kimberly Glass

    Full Text Available Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation, a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  6. Passing messages between biological networks to refine predicted interactions.

    Science.gov (United States)

    Glass, Kimberly; Huttenhower, Curtis; Quackenbush, John; Yuan, Guo-Cheng

    2013-01-01

    Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  7. Protein-protein interactions: principles, techniques, and their potential role in new drug development.

    Science.gov (United States)

    Khan, Shagufta H; Ahmad, Faizan; Ahmad, Nihal; Flynn, Daniel C; Kumar, Raj

    2011-06-01

    A vast network of genes is inter-linked through protein-protein interactions and is critical component of almost every biological process under physiological conditions. Any disruption of the biologically essential network leads to pathological conditions resulting into related diseases. Therefore, proper understanding of biological functions warrants a comprehensive knowledge of protein-protein interactions and the molecular mechanisms that govern such processes. The importance of protein-protein interaction process is highlighted by the fact that a number of powerful techniques/methods have been developed to understand how such interactions take place under various physiological and pathological conditions. Many of the key protein-protein interactions are known to participate in disease-associated signaling pathways, and represent novel targets for therapeutic intervention. Thus, controlling protein-protein interactions offers a rich dividend for the discovery of new drug targets. Availability of various tools to study and the knowledge of human genome have put us in a unique position to understand highly complex biological network, and the mechanisms involved therein. In this review article, we have summarized protein-protein interaction networks, techniques/methods of their binding/kinetic parameters, and the role of these interactions in the development of potential tools for drug designing.

  8. The potential of standards-based agriculture biology as an alternative to traditional biology in California

    Science.gov (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  9. Vanadium compounds biological actions and potential as pharmacological agents.

    Science.gov (United States)

    Tsiani, E; Fantus, I G

    1997-03-01

    Vanadium is an element found in low concentrations in mammals, for which a function remains to be discovered. Over the past century, vanadium compounds have been suggested anecdotally as therapeutic agents for a variety of diseases. The discovery that vanadate inhibits various enzymes, in particular protein tyrosine phosphatases, and mimics many of the biological actions of insulin suggested a potential role in the therapy of diabetes mellitus. Successful use and an enhancement of insulin sensitivity in rodents and human diabetic subjects, as well as the finding that these agents are capable of stimulating metabolic effects while bypassing the insulin receptor and the early steps in insulin action, target these agents preferentially toward type II diabetes mellitus. Long-term safety remains a major concern, as tissue accumulation and relative nonspecificity of enzyme inhibition may result in adverse effects. Continued research into mechanism of action, consequences of chronic administration, and improvement of specificity is warranted. Regardless of their ultimate success or failure as therapeutic agents, vanadium compounds continue to be useful probes of enzyme structure and function in various biological processes. (Trends Endocrinol Metab 1997;8:51-58). (c) 1997, Elsevier Science Inc.

  10. Triactome: neuro-immune-adipose interactions. Implication in vascular biology

    Directory of Open Access Journals (Sweden)

    George Nikov Chaldakov

    2014-04-01

    Full Text Available Understanding how the precise interactions of nerves, immune cells and adipose tissue account for cardiovascular and metabolic biology is a central aim of biomedical research at present. A long standing paradigm holds that the vascular wall is composed of three concentric tissue coats (tunicae: intima, media, and adventitia. However, large- and medium-sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded by periadventitial adipose tissue, we recently designated tunica adiposa (in brief, adiposa like intima, media, adventitia. According to present paradigm, atherosclerosis is an immune-mediated inflammatory disease featured by endothelial dysfunction/intimal thickening, medial atrophy and adventitial lesions associated with adipose dysfunction, whereas hypertension is characterized by hyperinnervation-associated medial thickening due to smooth muscle cell hypertrophy/hyperplasia. Periadventitial adipose tissue expansion is associated with increased infiltration of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and anti-inflammatory (metabotrophic signaling proteins collectively dubbed adipokines. However, the role of perivascular nerves and their interactions with immune cells and paracrine adipose tissue is not yet evaluated in such an integrated way. The present review attempts to briefly highlight the findings in basic and translational sciences in this area focusing on neuro-immune-adipose interactions, herein referred to as triactome. Triactome-targeted pharmacology may provide a novel therapeutic approach in cardiovascular disease.

  11. Potential Flow Interactions With Directional Solidification

    Science.gov (United States)

    Buddhavarapu, Sudhir S.; Meiburg, Eckart

    1999-01-01

    The effect of convective melt motion on the growth of morphological instabilities in crystal growth has been the focus of many studies in the past decade. While most of the efforts have been directed towards investigating the linear stability aspects, relatively little attention has been devoted to experimental and numerical studies. In a pure morphological case, when there is no flow, morphological changes in the solid-liquid interface are governed by heat conduction and solute distribution. Under the influence of a convective motion, both heat and solute are redistributed, thereby affecting the intrinsic morphological phenomenon. The overall effect of the convective motion could be either stabilizing or destabilizing. Recent investigations have predicted stabilization by a flow parallel to the interface. In the case of non-parallel flows, e.g., stagnation point flow, Brattkus and Davis have found a new flow-induced morphological instability that occurs at long wavelengths and also consists of waves propagating against the flow. Other studies have addressed the nonlinear aspects (Konstantinos and Brown, Wollkind and Segel)). In contrast to the earlier studies, our present investigation focuses on the effects of the potential flow fields typically encountered in Hele-Shaw cells. Such a Hele-Shaw cell can simulate a gravity-free environment in the sense that buoyancy-driven convection is largely suppressed, and hence negligible. Our interest lies both in analyzing the linear stability of the solidification process in the presence of potential flow fields, as well as in performing high-accuracy nonlinear simulations. Linear stability analysis can be performed for the flow configuration mentioned above. It is observed that a parallel potential flow is stabilizing and gives rise to waves traveling downstream. We have built a highly accurate numerical scheme which is validated at small amplitudes by comparing with the analytically predicted results for the pure

  12. Biological efficiency of interaction between various radiation and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Yu, Dong Han; Lee, Byoung Hun [KAERI, Taejon (Korea, Republic of); Petin, Vladislav G. [Medical Radiology Science Center, Obninsk (Russian Federation); Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Ecology, Obninsk (Russian Federation); Cebulska-Wasilewska, Antonina; Panek, Agnieszka; Wiechec, Anna [Institute of Nuclear Physics, Cracow (Poland)

    2004-06-01

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes.

  13. Heterophilic chemokine receptor interactions in chemokine signaling and biology.

    Science.gov (United States)

    Kramp, Birgit K; Sarabi, Alisina; Koenen, Rory R; Weber, Christian

    2011-03-10

    It is generally accepted that G-protein coupled receptors (GPCR), like chemokine receptors, form dimers or higher order oligomers. Such homo- and heterophilic interactions have been identified not only among and between chemokine receptors of CC- or CXC-subfamilies, but also between chemokine receptors and other classes of GPCR, like the opioid receptors. Oligomerization affects different aspects of receptor physiology, like ligand affinity, signal transduction and the mode of internalization, in turn influencing physiologic processes such as cell activation and migration. As particular chemokine receptor pairs exert specific modulating effects on their individual functions, they might play particular roles in various disease types, such as cancer. Hence, chemokine receptor heteromers might represent attractive therapeutic targets. This review highlights the state-of-the-art knowledge on the technical and functional aspects of chemokine receptor multimerization in chemokine signaling and biology.

  14. Perception of social interactions for spatially scrambled biological motion.

    Science.gov (United States)

    Thurman, Steven M; Lu, Hongjing

    2014-01-01

    It is vitally important for humans to detect living creatures in the environment and to analyze their behavior to facilitate action understanding and high-level social inference. The current study employed naturalistic point-light animations to examine the ability of human observers to spontaneously identify and discriminate socially interactive behaviors between two human agents. Specifically, we investigated the importance of global body form, intrinsic joint movements, extrinsic whole-body movements, and critically, the congruency between intrinsic and extrinsic motions. Motion congruency is hypothesized to be particularly important because of the constraint it imposes on naturalistic action due to the inherent causal relationship between limb movements and whole body motion. Using a free response paradigm in Experiment 1, we discovered that many naïve observers (55%) spontaneously attributed animate and/or social traits to spatially-scrambled displays of interpersonal interaction. Total stimulus motion energy was strongly correlated with the likelihood that an observer would attribute animate/social traits, as opposed to physical/mechanical traits, to the scrambled dot stimuli. In Experiment 2, we found that participants could identify interactions between spatially-scrambled displays of human dance as long as congruency was maintained between intrinsic/extrinsic movements. Violating the motion congruency constraint resulted in chance discrimination performance for the spatially-scrambled displays. Finally, Experiment 3 showed that scrambled point-light dancing animations violating this constraint were also rated as significantly less interactive than animations with congruent intrinsic/extrinsic motion. These results demonstrate the importance of intrinsic/extrinsic motion congruency for biological motion analysis, and support a theoretical framework in which early visual filters help to detect animate agents in the environment based on several fundamental

  15. Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.

    Science.gov (United States)

    Stein, Richard R; Marks, Debora S; Sander, Chris

    2015-07-01

    Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene-gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.

  16. Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    2015-07-01

    Full Text Available Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene-gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.

  17. Microbiology and atmospheric processes: chemical interactions of Primary Biological Aerosols

    Science.gov (United States)

    Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C. E.

    2008-02-01

    This paper discusses the influence of bioaerosols on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that biological matter represents a significant fraction of air particulate matter and hence affects the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of primary biological particles in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  18. Biological Activities of Phosphocitrate: A Potential Meniscal Protective Agent

    Directory of Open Access Journals (Sweden)

    Yubo Sun

    2013-01-01

    Full Text Available Phosphocitrate (PC inhibited meniscal calcification and the development of calcium crystal-associated osteoarthritis (OA in Hartley guinea pigs. However, the mechanisms remain elusive. This study sought to examine the biological activities of PC in the absence of calcium crystals and test the hypothesis that PC is potentially a meniscal protective agent. We found that PC downregulated the expression of many genes classified in cell proliferation, ossification, prostaglandin metabolic process, and wound healing, including bloom syndrome RecQ helicase-like, cell division cycle 7 homolog, cell division cycle 25 homolog C, ankylosis progressive homolog, prostaglandin-endoperoxide synthases-1/cyclooxygenase-1, and plasminogen activator urokinase receptor. In contrast, PC stimulated the expression of many genes classified in fibroblast growth factor receptor signaling pathway, collagen fibril organization, and extracellular structure organization, including fibroblast growth factor 7, collagen type I, alpha 1, and collagen type XI, alpha 1. Consistent with its effect on the expression of genes classified in cell proliferation, collagen fibril organization, and ossification, PC inhibited the proliferation of OA meniscal cells and meniscal cell-mediated calcification while stimulating the production of collagens. These findings indicate that PC is potentially a meniscal-protective agent and a disease-modifying drug for arthritis associated with severe meniscal degeneration.

  19. Occurrence and Potential Biological Effects of Amphetamine on Stream Communities.

    Science.gov (United States)

    Lee, Sylvia S; Paspalof, Alexis M; Snow, Daniel D; Richmond, Erinn K; Rosi-Marshall, Emma J; Kelly, John J

    2016-09-06

    The presence of pharmaceuticals, including illicit drugs in aquatic systems, is a topic of environmental significance because of their global occurrence and potential effects on aquatic ecosystems and human health, but few studies have examined the ecological effects of illicit drugs. We conducted a survey of several drug residues, including the potentially illicit drug amphetamine, at 6 stream sites along an urban to rural gradient in Baltimore, Maryland, U.S.A. We detected numerous drugs, including amphetamine (3 to 630 ng L(-1)), in all stream sites. We examined the fate and ecological effects of amphetamine on biofilm, seston, and aquatic insect communities in artificial streams exposed to an environmentally relevant concentration (1 μg L(-1)) of amphetamine. The amphetamine parent compound decreased in the artificial streams from less than 1 μg L(-1) on day 1 to 0.11 μg L(-1) on day 22. In artificial streams treated with amphetamine, there was up to 45% lower biofilm chlorophyll a per ash-free dry mass, 85% lower biofilm gross primary production, 24% greater seston ash-free dry mass, and 30% lower seston community respiration compared to control streams. Exposing streams to amphetamine also changed the composition of bacterial and diatom communities in biofilms at day 21 and increased cumulative dipteran emergence by 65% and 89% during the first and third weeks of the experiment, respectively. This study demonstrates that amphetamine and other biologically active drugs are present in urban streams and have the potential to affect both structure and function of stream communities.

  20. [Adhesive cell interactions in the biology of cancer].

    Science.gov (United States)

    Bocharova, O A

    2002-01-01

    The present review describes a hypothesis for a critical role of cell adhesive interactions in tumorigenesis. Dysregulation of tissue cell-cell interactions initiates first of all local (in the tissue) and then general (in whole body) conditions for tumor growth. Otherwise imbalance of tissue-specific adhesion factor at the very beginning of carcinogenesis is considered to trigger a cascade of pathological reactions responsible for more severe adhesive disorders that are in turn critical for the "totalitarian" behavior of a tumor and its "colonization" of other tissues and organs. Impaired disturbance is likely to be the key mechanism of carcinogenesis since it is significantly associated with the main features of a tumor: tissue proliferation control loss, anaplasia, invasion, metastasis, and immune surveillance deficit. The hypothesis is supported by evolutionary, biological, histological, immunological, and clinical arguments whose combination does not characterize any other known mechanisms of oncogenesis. The concept of adhesiveness opens new possibilities for the diagnosis, prevention, and treatment of tumors and also improves a strategy for designing new drugs.

  1. VisANT: an online visualization and analysis tool for biological interaction data

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2004-02-01

    Full Text Available Abstract Background New techniques for determining relationships between biomolecules of all types – genes, proteins, noncoding DNA, metabolites and small molecules – are now making a substantial contribution to the widely discussed explosion of facts about the cell. The data generated by these techniques promote a picture of the cell as an interconnected information network, with molecular components linked with one another in topologies that can encode and represent many features of cellular function. This networked view of biology brings the potential for systematic understanding of living molecular systems. Results We present VisANT, an application for integrating biomolecular interaction data into a cohesive, graphical interface. This software features a multi-tiered architecture for data flexibility, separating back-end modules for data retrieval from a front-end visualization and analysis package. VisANT is a freely available, open-source tool for researchers, and offers an online interface for a large range of published data sets on biomolecular interactions, including those entered by users. This system is integrated with standard databases for organized annotation, including GenBank, KEGG and SwissProt. VisANT is a Java-based, platform-independent tool suitable for a wide range of biological applications, including studies of pathways, gene regulation and systems biology. Conclusion VisANT has been developed to provide interactive visual mining of biological interaction data sets. The new software provides a general tool for mining and visualizing such data in the context of sequence, pathway, structure, and associated annotations. Interaction and predicted association data can be combined, overlaid, manipulated and analyzed using a variety of built-in functions. VisANT is available at http://visant.bu.edu.

  2. Parasites and biological invasions: parallels, interactions, and control.

    Science.gov (United States)

    Dunn, Alison M; Hatcher, Melanie J

    2015-05-01

    Species distributions are changing at an unprecedented rate owing to human activity. We examine how two key processes of redistribution - biological invasion and disease emergence - are interlinked. There are many parallels between invasion and emergence processes, and invasions can drive the spread of new diseases to wildlife. We examine the potential impacts of invasion and disease emergence, and discuss how these threats can be countered, focusing on biosecurity. In contrast with international policy on emerging diseases of humans and managed species, policy on invasive species and parasites of wildlife is fragmented, and the lack of international cooperation encourages individual parties to minimize their input into control. We call for international policy that acknowledges the strong links between emerging diseases and invasion risk.

  3. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  4. Calculation of Interaction Potentials between Spherical and Deformed Nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gao-Long; XU Xin-Xing; BAI Chun-Lin; YU Ning; ZHANG Huan-Qiao; LIU Zu-Hua; ZHANG Chun-Lei; LIN Cheng-Jian; YANG Feng; AN Guang-Peng; JIA Hui-Ming; WU Zhen-Dong

    2007-01-01

    The interaction potential for spherical-deformed reaction partners is calculated. The shape, separation and orientation dependence of the interaction potential and fusion cross section of the system 32S+154Sm are investigated within the double-folding model of the deformed nuclei. The effective nucleon-nucleon interaction is taken to be the M3Y-Reid potential. The density is considered for three terms of the expansion using the truncated multipole expansion method, which is a deformed Fermi shape with quadrupole and hexadecapole for the density distribution of 154Sm. It is found for the interaction potential that the height and the position of barrier strongly depend on the deformations, the orientation angle of the deformed nucleus, and hence produce great effects on fusion cross section. The integrated fusion cross section is in good agreement with the experimental data.

  5. Potential of Biological Agents in Decontamination of Agricultural Soil

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  6. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  7. Potential drug interactions in patients given antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Wendel Mombaque dos Santos

    Full Text Available ABSTRACT Objective: to investigate potential drug-drug interactions (PDDI in patients with HIV infection on antiretroviral therapy. Methods: a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r. Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. Results: of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000 and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p < 0.00. The clinical impact was prevalent sedation and cardiotoxicity. Conclusions: the PDDI identified in this study of moderate and higher severity are events that not only affect the therapeutic response leading to toxicity in the central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs.

  8. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    Science.gov (United States)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  9. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2014-12-01

    Full Text Available Soo-Jin Choi,1 Jin-Ho Choy2 1Department of Food Science and Technology, Seoul Women's University, 2Center for Intelligent Nano Bio Materials (CINBM, Department of Bioinspired Science and Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea Abstract: Biokinetic studies of zinc oxide (ZnO nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. Keywords: ZnO nanoparticles, biokinetics, distribution, excretion, fate, interaction

  10. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  11. Incidence of potential drug-drug interactions with antidiabetic drugs.

    Science.gov (United States)

    Samardzic, I; Bacic-Vrca, V

    2015-06-01

    In an effort to achieve normoglycemia more than one antidiabetic agent is usually needed. Diabetes is associated with several comorbidities and patients with diabetes are often treated with multiple medications. Therefore, patients with diabetes are especially exposed to drug-drug interactions (DDIs). The aim of this study was to analyse the incidence and type of potential DDIs of antidiabetic drugs in patients with diabetes. This retrospective study analyzed pharmacy record data of 225 patients with diabetes mellitus. Both type 1 and type 2 diabetic patients who were taking at least one antidiabetic agent during the period of six months were included. We investigated associated therapy in that period in order to identify potential DDIs with antidiabetic therapy. Potential interactions were identified by Lexicomp Lexi-Interat Online (Lexi-Comp, Inc., Hudson, USA) software which categorizes potential DDIs according to clinical significance in five types (A, B, C, D and X). Categories C, D and X are of clinical concern and always require medical attention (therapy monitoring, therapy modification or avoiding combination). We found that 80.9% of patients had at least one potential category C interaction while there were no D and X interactions. Most frequently encountered potential DDI (n = 176) included antidiabetic drugs and thiazide or thiazide like diuretics. Patients with diabetes are exposed to a large number of potential clinically significant DDIs that may require appropriate monitoring. Using databases of DDIs could be helpful in reducing the risk of potential clinically significant DDIs.

  12. Factors Potentially Influencing Student Acceptance of Biological Evolution

    Science.gov (United States)

    Wiles, Jason R.

    This investigation explored scientific, religious, and otherwise nonscientific factors that may influence student acceptance of biological evolution and related concepts, how students perceived these factors to have influenced their levels of acceptance of evolution and changes therein, and what patterns arose among students' articulations of how their levels of acceptance of evolution may have changed. This exploration also measured the extent to which students' levels of acceptance changed following a treatment designed to address factors identified as potentially affecting student acceptance of evolution. Acceptance of evolution was measured using the MATE instrument (Rutledge and Warden, 1999; Rutledge and Sadler, 2007) among participants enrolled in a secondary-level academic program during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than pre-treatment levels both immediately following and slightly over one year after treatment. Qualitative data from informal questionnaires, from formal course evaluations, and from semi-structured interviews of students engaged in secondary level education and former students at various stages of post-secondary education confirmed that the suspected factors were perceived by participants to have influenced their levels of acceptance of evolution. Furthermore, participant reports provided insight regarding the relative effects they perceived these factors to have had on their evolution acceptance levels. Additionally, many participants reported that their science teachers in public schools had avoided, omitted, or denigrated evolution during instruction, and several of these students expressed frustration regarding what they perceived to have been a lack of education of an important scientific principle. Finally, no students expressed feelings of being offended by having been taught about

  13. Risk factors for potential drug interactions in general practice

    DEFF Research Database (Denmark)

    Bjerrum, Lars; Gonzalez Lopez-Valcarcel, Beatriz; Petersen, Gert

    2008-01-01

    Objective: To identify patient- and practice-related factors associated with potential drug interactions. Methods: A register analysis study in general practices in the county of Funen, Denmark. Prescription data were retrieved from a population-based prescription database (Odense University...... Pharmacoepidemiologic Database, OPED) covering prescriptions to all inhabitants in the county of Funen, Denmark. All individuals exposed to concurrent use of two or more drugs (polypharmacy) were identified. Combinations of drugs with potential interactions were registered and classified as major, moderate, or minor......, depending on the severity of outcome and the quality of documentation. A two-level random coefficient logistic regression model was used to investigate factors related to potential drug interactions. Results: One-third of the population was exposed to polypharmacy, and 6% were exposed to potential drug...

  14. Expression Patterns and Potential Biological Roles of Dip2a.

    Directory of Open Access Journals (Sweden)

    Luqing Zhang

    Full Text Available Disconnected (disco-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.

  15. Biological General Repository for Interaction Datasets (BioGRID)

    Data.gov (United States)

    U.S. Department of Health & Human Services — BioGRID is an online interaction repository with data on raw protein and genetic interactions from major model organism species. All interaction data are freely...

  16. On the remote interaction of biological objects with identical genetic structures

    CERN Document Server

    Berkovich, S Y

    2002-01-01

    The paper puts forward an unusual prediction that cultivating a clone can curtail the lifespan of the clone donor. Neither the arrangement of this suggested empirical study nor the analyses of the anticipated outcomes rely on the accompanying theoretical contemplations. This prediction has come from the interpretation of the genome as a "barcode". The genome is considered as an identification label rather than a repository of control information, so living beings are portrayed as a community of users on the "Internet of the physical Universe". Thus, biological objects with identical (or nearly identical) DNA structures can interfere, and the surmised remote impact appears tangible. The effect of clone-donor interaction leads to a decisive Experimentum Crucis that can reject the common view on the organization of biological information processing. Exploitation of this effect can be potentially dangerous.

  17. Effective polarization interaction potentials of the partially ionized dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Omarbakiyeva, Yu A [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Roepke, G [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)

    2006-04-28

    The effective polarization interaction potential between charged and neutral particles is considered for a partially ionized plasma. This pseudopotential is deduced taking into account quantum-mechanical effects at short distances as well as screening effects at large distances. Furthermore, a cutoff radius is obtained using a modified effective-range theory. Explicit results for parameters describing the interaction of the atom with charged particles are given.

  18. Generation of directional EOF by interactive oscillatory zeta potential.

    Science.gov (United States)

    Kuo, Chih-Yu; Wang, Chang-Yi; Chang, Chien-Cheng

    2008-11-01

    A steady directional EOF due to a nonlinear interaction between oscillatory axial electrical fields and oscillatory wall potentials (zeta potentials) is presented. This is a new mechanism to produce such a mean flow. It is found that the flow velocity depends not on the external driving frequency but on the phase angle difference between the electric fields and the zeta potentials. The formulation can also be reduced to the static EOF straightforwardly. For the purpose of theoretical demonstration, we use the Debye-Huckel approximation for the zeta potential. Results of planar and cylindrical capillaries are given.

  19. Social-Biological Interactions in Oral Disease: A 'Cells to Society' View.

    Directory of Open Access Journals (Sweden)

    Noha Gomaa

    Full Text Available Oral diseases constitute a major worldwide public health problem, with their burden concentrating in socially disadvantaged and less affluent groups of the population, resulting in significant oral health inequalities. Biomedical and behavioural approaches have proven relatively ineffective in reducing these inequalities, and have potentially increased the health gap between social groups. Some suggest this stems from a lack of understanding of how the social and psychosocial contexts in which behavioural and biological changes occur influence oral disease. To unravel the pathways through which social factors affect oral health outcomes, a better understanding is thus needed of how the social 'gets under the skin,' or becomes embodied, to alter the biological. In this paper, we present the current knowledge on the interplay between social and biological factors in oral disease. We first provide an overview of the process of embodiment in chronic disease and then evaluate the evidence on embodiment in oral disease by reviewing published studies in this area. Results show that, in periodontal disease, income, education and perceived stress are correlated with elevated levels of stress hormones, disrupted immune biomarkers and increased allostatic load. Similarly, socioeconomic position and increased financial stress are related to increased stress hormones and cariogenic bacterial counts in dental caries. Based on these results, we propose a dynamic model depicting social-biological interactions that illustrates potential interdependencies between social and biological factors that lead to poor oral health. This work and the proposed model may aid in developing a better understanding of the causes of oral health inequalities and implicate the importance of addressing the social determinants of oral health in innovating public health interventions.

  20. Electron interactions in graphene through an effective Coulomb potential

    Science.gov (United States)

    Rodrigues, Joao N. B.; Adam, Shaffique

    A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).

  1. Observational evidences of the Yukawa Potential Interacting Dark Matter

    CERN Document Server

    Chan, Man Ho

    2013-01-01

    Recent observations in galaxies and clusters indicate dark matter density profiles exhibit core-like structures which contradict to the numerical simulation results of collisionless cold dark matter. On the other hand, it has been shown that cold dark matter particles interacting through a Yukawa potential could naturally explain the cores in dwarf galaxies. In this article, I use the Yukawa Potential interacting dark matter model to derive two simple scaling relations on the galactic and cluster scales respectively, which give excellent agreements with observations. Also, in our model, the masses of the force carrier and dark matter particle can be constrained by the observational data.

  2. Interaction potentials for water from accurate cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xantheas, Sotiris S.

    2006-03-15

    The abundance of water in nature, its function as a universal solvent and its role in many chemical and biological processes that are responsible for sustaining life on earth is the driving force behind the need for understanding its behavior under different conditions, and in various environments. The availability of models that describe the properties of either pure water/ice or its mixtures with a variety of solutes ranging from simple chemical species to complex biological molecules and environmental interfaces is therefore crucial in order to be able to develop predictive paradigms that attempt to model solvation and reaction and transport in aqueous environments. In attempting to develop these models the question naturally arises 'is water different/more complex than other hydrogen bonded liquids'. This proposition has been suggested based on the 'anomalous' behavior of its macroscopic properties such as the density maximum at 4 C, the non-monotonic behavior of its compressibility with temperature, the anomalous behavior of its relaxation time below typical temperatures of the human body, the large value and non-monotonic dependence below 35 C of the specific heat of constant pressure, the smaller than expected value of the coefficient of thermal expansion. This suggestion infers that simple models used to describe the relevant inter- and intra-molecular interactions will not suffice in order to reproduce the behavior of these properties under a wide temperature range. To this end, explicit microscopic level detailed information needs to be incorporated into the models in order to capture the appropriate physics at the molecular level. From the simple model of Bernal and Fowler, which was the first attempt to develop an empirical model for water back in 1933, this process has yielded ca. 50 different models to date. A recent review provides a nearly complete account of this effort coupled to the milestones in the area of molecular

  3. TRIAZOLE: A POTENTIAL BIOACTIVE AGENT (SYNTHESIS AND BIOLOGICAL ACTIVITY)

    OpenAIRE

    Pandeya Surendra Nath; Pathak Ashish; Mishra Rupesh

    2011-01-01

    Azoles belong to very important class of Antimicrobial drugs. Triazole is very important Azole which exists in two isomeric forms namely 1, 2, 3-Triazole and 1, 2, 4-Triazole. This Review Article covers the Different approaches to synthesize Triazoles having different substitution and their different biological activity. This Review article can be useful to synthesize new compounds having Triazole nucleolus.

  4. Bronchoconstriction and airway biology : potential impact and therapeutic opportunities

    NARCIS (Netherlands)

    Gosens, Reinoud; Grainge, Chris

    2015-01-01

    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally

  5. Study of interaction in silica glass via model potential approach

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  6. Interactions of dendrimers with biological drug targets: reality or mystery - a gap in drug delivery and development research.

    Science.gov (United States)

    Ahmed, Shaimaa; Vepuri, Suresh B; Kalhapure, Rahul S; Govender, Thirumala

    2016-07-21

    Dendrimers have emerged as novel and efficient materials that can be used as therapeutic agents/drugs or as drug delivery carriers to enhance therapeutic outcomes. Molecular dendrimer interactions are central to their applications and realising their potential. The molecular interactions of dendrimers with drugs or other materials in drug delivery systems or drug conjugates have been extensively reported in the literature. However, despite the growing application of dendrimers as biologically active materials, research focusing on the mechanistic analysis of dendrimer interactions with therapeutic biological targets is currently lacking in the literature. This comprehensive review on dendrimers over the last 15 years therefore attempts to identify the reasons behind the apparent lack of dendrimer-receptor research and proposes approaches to address this issue. The structure, hierarchy and applications of dendrimers are briefly highlighted, followed by a review of their various applications, specifically as biologically active materials, with a focus on their interactions at the target site. It concludes with a technical guide to assist researchers on how to employ various molecular modelling and computational approaches for research on dendrimer interactions with biological targets at a molecular level. This review highlights the impact of a mechanistic analysis of dendrimer interactions on a molecular level, serves to guide and optimise their discovery as medicinal agents, and hopes to stimulate multidisciplinary research between scientific, experimental and molecular modelling research teams.

  7. Lichen-moss interactions within biological soil crusts

    Science.gov (United States)

    Ruckteschler, Nina; Williams, Laura; Büdel, Burkhard; Weber, Bettina

    2015-04-01

    Biological soil crusts (biocrusts) create well-known hotspots of microbial activity, being important components of hot and cold arid terrestrial regions. They colonize the uppermost millimeters of the soil, being composed of fungi, (cyano-) bacteria, algae, lichens, bryophytes and archaea in varying proportions. Biocrusts protect the (semi-) arid landscape from wind and water erosion, and also increase water holding capacity and nutrient content. Depending on location and developmental stage, composition and species abundance vary within biocrusts. As species live in close contact, they are expected to influence each other, but only a few interactions between different organisms have so far been explored. In the present study, we investigated the effects of the lichen Fulgensia fulgens whilst growing on the moss Trichostomum crispulum. While 77% of Fulgensia fulgens thalli were found growing associated with mosses in a German biocrust, up to 95% of Fulgensia bracteata thalli were moss-associated in a Swedish biocrust. In 49% (Germany) and in 78% (Sweden) of cases, thalli were observed on the moss T. crispulum and less frequently on four and three different moss species. Beneath F. fulgens and F. bracteata thalli, the mosses were dead and in close vicinity to the lichens the mosses appeared frail, bringing us to the assumption that the lichens may release substances harming the moss. We prepared a water extract from the lichen F. fulgens and used this to water the moss thalli (n = 6) on a daily basis over a time-span of three weeks. In a control setup, artificial rainwater was applied to the moss thalli (n = 6). Once a week, maximum CO2 gas exchange rates of the thalli were measured under constant conditions and at the end of the experiment the chlorophyll content of the moss samples was determined. In the course of the experiment net photosynthesis (NP) of the treatment samples decreased concurrently with an increase in dark respiration (DR). The control samples

  8. Toward an interactive article: integrating journals and biological databases

    Directory of Open Access Journals (Sweden)

    Marygold Steven J

    2011-05-01

    Full Text Available Abstract Background Journal articles and databases are two major modes of communication in the biological sciences, and thus integrating these critical resources is of urgent importance to increase the pace of discovery. Projects focused on bridging the gap between journals and databases have been on the rise over the last five years and have resulted in the development of automated tools that can recognize entities within a document and link those entities to a relevant database. Unfortunately, automated tools cannot resolve ambiguities that arise from one term being used to signify entities that are quite distinct from one another. Instead, resolving these ambiguities requires some manual oversight. Finding the right balance between the speed and portability of automation and the accuracy and flexibility of manual effort is a crucial goal to making text markup a successful venture. Results We have established a journal article mark-up pipeline that links GENETICS journal articles and the model organism database (MOD WormBase. This pipeline uses a lexicon built with entities from the database as a first step. The entity markup pipeline results in links from over nine classes of objects including genes, proteins, alleles, phenotypes and anatomical terms. New entities and ambiguities are discovered and resolved by a database curator through a manual quality control (QC step, along with help from authors via a web form that is provided to them by the journal. New entities discovered through this pipeline are immediately sent to an appropriate curator at the database. Ambiguous entities that do not automatically resolve to one link are resolved by hand ensuring an accurate link. This pipeline has been extended to other databases, namely Saccharomyces Genome Database (SGD and FlyBase, and has been implemented in marking up a paper with links to multiple databases. Conclusions Our semi-automated pipeline hyperlinks articles published in GENETICS to

  9. Interacting Bose gas confined in a Kronig-Penney potential

    Science.gov (United States)

    Rodríguez, O. A.; Solís, M. A.

    We analyze the effect of the 1D periodic Kronig-Penney potential, composed of barriers of width b and separated a distance a, over an interacting Bose gas. At T = 0 , the Gross-Pitaevskii equation is solved analytically in terms of the Jacobi elliptic functions for repulsive or attractive interaction between bosons. By applying the boundary conditions for periodic solutions as well as the normalization of the wave function, we arrive to a set of nonlinear equations from which we obtain the density profile and the chemical potential of the condensate as a function of the particle momentum. The profiles for attractive and repulsive interactions are compared with that of the non-interacting case. For attractive interaction we are able to observe a pronounced spatial localization in the middle of every two barriers. We reproduce the well known results when the Kronig-Penney potential becomes a Dirac Comb. We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  10. Optimizing Interacting Potentials to Form Targeted Materials Structures

    Energy Technology Data Exchange (ETDEWEB)

    Torquato, Salvatore [Princeton Univ., NJ (United States)

    2015-09-28

    Conventional applications of the principles of statistical mechanics (the "forward" problems), start with particle interaction potentials, and proceed to deduce local structure and macroscopic properties. Other applications (that may be classified as "inverse" problems), begin with targeted configurational information, such as low-order correlation functions that characterize local particle order, and attempt to back out full-system configurations and/or interaction potentials. To supplement these successful experimental and numerical "forward" approaches, we have focused on inverse approaches that make use of analytical and computational tools to optimize interactions for targeted self-assembly of nanosystems. The most original aspect of our work is its inherently inverse approach: instead of predicting structures that result from given interaction potentials among particles, we determine the optimal potential that most robustly stabilizes a given target structure subject to certain constraints. Our inverse approach could revolutionize the manner in which materials are designed and fabricated. There are a number of very tangible properties (e.g. zero thermal expansion behavior), elastic constants, optical properties for photonic applications, and transport properties.

  11. Market potential for interactive audio-visual media

    NARCIS (Netherlands)

    Leurdijk, A.; Limonard, S.

    2005-01-01

    NM2 (New Media for a New Millennium) develops tools for interactive, personalised and non-linear audio-visual content that will be tested in seven pilot productions. This paper looks at the market potential for these productions from a technological, a business and a users' perspective. It shows tha

  12. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection.

    Science.gov (United States)

    Blackburn, Elizabeth H; Epel, Elissa S; Lin, Jue

    2015-12-04

    Telomeres are the protective end-complexes at the termini of eukaryotic chromosomes. Telomere attrition can lead to potentially maladaptive cellular changes, block cell division, and interfere with tissue replenishment. Recent advances in the understanding of human disease processes have clarified the roles of telomere biology, especially in diseases of human aging and in some aging-related processes. Greater overall telomere attrition predicts mortality and aging-related diseases in inherited telomere syndrome patients, and also in general human cohorts. However, genetically caused variations in telomere maintenance either raise or lower risks and progression of cancers, in a highly cancer type-specific fashion. Telomere maintenance is determined by genetic factors and is also cumulatively shaped by nongenetic influences throughout human life; both can interact. These and other recent findings highlight both causal and potentiating roles for telomere attrition in human diseases.

  13. MicroRNAs and potential target interactions in psoriasis

    DEFF Research Database (Denmark)

    Zibert, John Robert; Løvendorf, Marianne B.; Litman, Thomas

    2010-01-01

    BACKGROUND: Psoriasis is a chronic inflammatory skin disease often seen in patients with a genetic susceptibility. MicroRNAs (miRNA) are endogenous, short RNA molecules that can bind to parts of mRNA target genes, thus inhibiting their translation and causing accelerated turnover or transcript...... degradation. MicroRNAs are important in the pathogenesis of human diseases such as immunological disorders, as they regulate a broad range of biological processes. OBJECTIVE: We investigated miRNA-mRNA interactions in involved (PP) and non-involved (PN) psoriatic skin compared with healthy skin (NN). METHODS......: Biopsies were obtained from PP, PN and NN, the miRNA and mRNA expression was analyzed by microarray techniques and a subset of miRNAs and mRNAs were validated by q-RT-PCR. Novel target interactions in psoriasis were found using PubMed, miRBase and RNAhybrid. In addition, TIMP3 protein expression...

  14. Systems biology and its potential role in radiobiology.

    Science.gov (United States)

    Feinendegen, Ludwig; Hahnfeldt, Philip; Schadt, Eric E; Stumpf, Michael; Voit, Eberhard O

    2008-02-01

    About a century ago, Conrad Röentgen discovered X-rays, and Henri Becquerel discovered a new phenomenon, which Marie and Pierre Curie later coined as radio-activity. Since their seminal work, we have learned much about the physical properties of radiation and its effects on living matter. Alas, the more we discover, the more we appreciate the complexity of the biological processes that are triggered by radiation exposure and eventually lead (or do not lead) to disease. Equipped with modern biological methods of high-throughput experimentation, imaging, and vastly increased computational prowess, we are now entering an era where we can piece some of the multifold aspects of radiation exposure and its sequelae together, and develop a more systemic understanding of radiogenic effects such as radio-carcinogenesis than has been possible in the past. It is evident from the complexity of even the known processes that such an understanding can only be gained if it is supported by mathematical models. At this point, the construction of comprehensive models is hampered both by technical inadequacies and a paucity of appropriate data. Nonetheless, some initial steps have been taken already and the generally increased interest in systems biology may be expected to speed up future progress. In this context, we discuss in this article examples of relatively small, yet very useful models that elucidate selected aspects of the effects of exposure to ionizing radiation and may shine a light on the path before us.

  15. A single particle effective potential for interacting positron and positronium

    CERN Document Server

    Zubiaga, A; Puska, M

    2013-01-01

    We have studied small systems composed by an atom and a positron or a positronium atom. We have used many-body quantum mechanical calculations to describe the correlation effects of light particles. Explicitly correlated gaussian for the basis functions and a stochastical variational optimization method has allowed to obtain accurate wavefunctions and energies. We have discussed the chemistry of positrons in those systems by means of analyzing the densities of the light particles (electrons and positrons). During the discussion, we propose an effective potential that describes the properties of the positron in those systems, valid also when it forms a Ps cluster. The effective potential is a mean field description of the interaction of the positron that can be used to calculate the distribution of the positron and its interaction energy. This potential can be a step forward for an accurate single particle description of the positron in cases when it forms positronium, specially molecular soft matter.

  16. Interacting domain-specific languages with biological problem solving environments

    Science.gov (United States)

    Cickovski, Trevor M.

    Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.

  17. Potential disruption of protein-protein interactions by graphene oxide.

    Science.gov (United States)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  18. Potential disruption of protein-protein interactions by graphene oxide

    Science.gov (United States)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  19. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, W.K.; Fry, R.J.M.

    1987-01-01

    An overview of presentations and discussions which took place at the US Department of Energy/Commission of European Communities (DOE/CEC) workshop on ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection,'' held at San Diego, California, January 21-22, 1987, is provided. The Department has traditionally supported fundamental research on interactions of ionizing radiation with different biological systems and at all levels of biological organization. The aim of this workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection.

  20. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  1. A Handy Interactive Class for Teaching Introductory Cell Biology

    Science.gov (United States)

    Hande, Shyamala

    2009-01-01

    In this paper we share the experience of an interactive method of teaching that involves every student in the learning process in the classroom. We describe an interactive class conducted over a two year period for premedical students. The process involved three stages namely a study session, a test-yourself session and a review session. Through…

  2. Developing Molecular Interaction Database and Searching for Similar Pathways (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Kawashima, Shuichi; Katayama, Toshiaki; Kanehisa, Minoru

    1998-01-01

    We have developed a database named BRITE, which contains knowledge of interacting molecules and/or genes concering cell cycle and early development. Here, we report an overview of the database and the method of automatic search for functionally common sub-pathways between two biological pathways in BRITE.

  3. Interactions between cultural, social and biological explanations for language evolution.

    Science.gov (United States)

    Steels, Luc

    2012-03-01

    This is a reply to commentaries on a target article in this volume reviewing models for the cultural evolution of language. Many commentaries amplify positions taken in this article but they also cover novel issues in social evolution and biological evolution, which are briefly addressed here.

  4. Interaction Potential between Parabolic Rotator and an Outside Particle

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-01-01

    Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.

  5. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Appavu; Deepa, Mohan [Molecular Biophysics Unit, Indian Institute of Sciences-Bangalore, Karnataka (India); Govindaraju, Munisamy [Bio-Spatial Technology Research Unit, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India)

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  6. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  7. Cosmological solutions in string theory with dilaton self interaction potential

    CERN Document Server

    Mora, C

    2003-01-01

    In this work we present homogeneous and isotropic cosmological solutions for the low energy limit of string theory with a self interacting potential for the scalar field. For a potential that is a linear combination of two exponential, a family of exact solutions are found for the different spatial curvatures. Among this family a non singular accelerating solution for positive curvature is singled out and the violation of the energy conditions for that solution is studied, and also its astrophysical consequences. The string coupling for this solution is finite. (Author)

  8. Apoptotic cell clearance: basic biology and therapeutic potential.

    Science.gov (United States)

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  9. POTENTIALS OF INTERACTIVE TEACHING TECHNIQUES TO TRAIN EXPERTS IN PHARMACY

    Directory of Open Access Journals (Sweden)

    A. V. Krikova

    2016-01-01

    Full Text Available Various interactive teaching methods and techniques are extensively used in modern higher schools. Their implementation is considered to be one of the most significant and efficient ways to improve quality of pharmaceutical professional training. Efficiency of these interactive techniques applied at the Department of Economics and Management of Pharmaceutical Business of Smolensk State Medical University has been comprehensively investigated and assessed. Obtained results are presented in the paper, as well as students’ survey data as consumers of educational services. Fifth year full-time students were involved into the study. Students’ awareness on potentials and significance of applied interactive teaching methods, as well as their interest in innovative forms to gain professional knowledge comprised 93.3%. Potentials of interactive techniques to teach students to deal with a diversity of real life practical professional tasks and problems are particularly emphasized in the study (86.7% students.

  10. Localization of interacting Fermi gases in quasiperiodic potentials

    Science.gov (United States)

    Pilati, Sebastiano; Varma, Vipin Kerala

    2017-01-01

    We investigate the zero-temperature metal-insulator transition in a one-dimensional two-component Fermi gas in the presence of a quasiperiodic potential resulting from the superposition of two optical lattices of equal intensity but incommensurate periods. A mobility edge separating (low-energy) Anderson localized and (high-energy) extended single-particle states appears in this continuous-space model beyond a critical intensity of the quasiperiodic potential. To discern the metallic phase from the insulating phase in the interacting many-fermion system, we employ unbiased quantum Monte Carlo (QMC) simulations combined with the many-particle localization length familiar from the modern theory of the insulating state. In the noninteracting limit, the critical optical-lattice intensity for the metal-insulator transition predicted by the QMC simulations coincides with the Anderson localization transition of the single-particle eigenstates. We show that weak repulsive interactions induce a shift of this critical point towards larger intensities, meaning that repulsion favors metallic behavior. This shift appears to be linear in the interaction parameter, suggesting that even infinitesimal interactions can affect the position of the critical point.

  11. Comparing Extended System Interactions with Motions in Softened Potentials

    CERN Document Server

    Barnes, Eric I

    2015-01-01

    Using an $N$-body evolution code that does not rely on softened potentials, I have created a suite of interacting binary cluster simulations. The motions of the centers-of-mass of the clusters have been tracked and compared to the trajectories of point masses interacting via one of four different softened potential prescriptions. There is a robust, nearly linear relationship between the impact parameter of the cluster interaction and the point-mass softening length that best approximates the cluster centers-of-mass motion. In an $N$-body simulation that adopts a fixed softening length, such a relationship leads to regimes where two-body effects, like dynamical friction, can be either larger or smaller than the corresponding cluster situation. Further consideration of more specific $N$-body simulations leads to an estimate that roughly 10 per cent of point-mass interactions in an $N$-body simulation will experience two-body effects larger than those for equivalent clusters.

  12. Potential interaction and potential investigation of science center exhibits and visitors' interest

    Science.gov (United States)

    Busque, Laurier

    This research consisted of studying the characteristics of interaction and investigation potential present in museum or science center exhibits. Categories (strong and weak) for the characteristics of interaction potential and investigation potential were established. Fifteen exhibits were chosen from the Museum of Science (Ottawa) and from two science centers (Sudbury and Toronto); these were representative of the established characteristics and categories. A test was constructed that measured the interest in an exhibit in a museum or a science center. The final analysis of the test (20 items) reflects a coefficient of homogeneity (Cronbach alpha) of 0.97 (n = 278). In terms of the characteristics of interaction potential and investigation potential, a significant difference among the ranks of interest was not found once they were regrouped under the categories of strong and weak. The hypothesis of a relationship between the interaction potential and visitors' interest in an exhibit in a museum or science center and the hypothesis of a relationship between the investigation potential and the interest aroused were both rejected. In regards to the interaction potential, median ranks of interest in exhibits of 8.6 for the strong category and of 7.5 for the weak category were observed. In terms of the investigation potential, median ranks of interest of 7.0 for the strong category and of 9.1 for the weak category were observed. In the case of investigation potential, even if the difference is not significant, there is an indication that the strong investigation potential seems to have the effect of creating disinterest in the presentation of an exhibit in a museum or in a science center. In the context of new museum and science centers, the view of developing exhibits which are primarily objects which stimulate interest must be maintained. If this is done with exhibits that arc interactive and have an investigative approach, it is necessary for those in charge of

  13. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2004-01-01

    and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed....

  14. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    Science.gov (United States)

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network.

  15. Interfacial interactions involved in the biological assembly of Chandipura virus nucleocapsid protein.

    Science.gov (United States)

    Sreejith, R; Gulati, Sahil; Gupta, Sanjay

    2013-06-01

    The biological assembly of Chandipura virus nucleocapsid (N) protein has been modeled and the amino acid residues involved in specific intermolecular interactions among N monomers during oligomerisation have been predicted.

  16. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications.

    Science.gov (United States)

    Shivlata, L; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  17. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy.

  18. Compact THz FELs and Their Potential in Biological Applications

    CERN Document Server

    Gallerano, G P; Giovenale, E; Messina, G; Spassovsky, I P

    2005-01-01

    Two THz FEL sources are available at ENEA-Frascati covering the spectral range from 90 GHz to 0.7 THz. The first source, the ENEA Compact FEL, is based on a 5 MeV Microtron providing 4 A of peak current in 13 ps bunches. Peak power in excess of 3kW is obtained at 130 GHz. When the beam is focused, a peak E-field greater than 2 kV/cm can be obtained in the micropulse. The second source, FEL-CATS, is based on a 2.5 MeV RF Linac. After the Linac electrons enter a RF device that correlates their distribution in energy and phase. As a result a strong coherent spontaneous emission occurs in the undulator. Power up to several kW has been measured in the macropulse. The absence of a resonator results in a broad band emission from 0.4 to 0.7 THz. The peculiar temporal structure of the emitted radiation allows the investigation of the effects of high peak power, while maintaining a low average power incident on the sample. A variety of biological systems have been studied with the ENEA Compact FEL in the frame of the E...

  19. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds

    Institute of Scientific and Technical Information of China (English)

    Andrzej B HENDRICH

    2006-01-01

    Flavonoids are found ubiquitously in higher plants and constitute an important component of the majority of peoples' daily diets. The biological activities of flavonoids cover a very broad spectrum, from anticancer and antibacterial activities through to inhibition of bone resorption. In the present paper, the interactions between flavonoids and lipid bilayers as well as biological membranes and their components are reviewed, with special emphasis on the structure-activity relationships and mechanisms underlying the biological activity of flavonoids.

  20. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

    1994-10-01

    To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

  1. Tea polyphenols, their biological effects and potential molecular targets.

    Science.gov (United States)

    Chen, D; Milacic, V; Chen, M S; Wan, S B; Lam, W H; Huo, C; Landis-Piwowar, K R; Cui, Q C; Wali, A; Chan, T H; Dou, Q P

    2008-04-01

    Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.

  2. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications

    Directory of Open Access Journals (Sweden)

    L eShivlata

    2015-09-01

    Full Text Available Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  3. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    Science.gov (United States)

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, Robert M.; In Loh, Suh; Mishra, Arti; Abhay Nagle, Amrita; Satyanarayana, Chitkala; Dhakshinamoorthy, Saravanakumar; Luche, Michele; Kitchen, Douglas B.; Andrews, Kathleen A.; Fong, Nicole L.; Li, Howard J.; Palsson, Bernhard O.; Charusanti, Pep

    2015-01-01

    Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype and phenotype, but their ability to accurately simulate gene-gene interactions has not been investigated extensively. Here we assess how accurately a metabolic model for Escherichia coli computes one particular type of gene-gene interaction, synthetic lethality, and find that the accuracy rate is between 25% and 43%. The most common failure modes were incorrect computation of single gene essentiality and biological information that was missing from the model. Moreover, we performed virtual and biological screening against several synthetic lethal pairs to explore whether two-compound formulations could be found that inhibit the growth of Gram-negative bacteria. One set of molecules was identified that, depending on the concentrations, inhibits E. coli and S. enterica serovar Typhimurium in an additive or antagonistic manner. These findings pinpoint specific ways in which to improve the predictive ability of metabolic models, and highlight one potential application of systems biology to drug discovery and translational medicine. PMID:26531810

  4. Potential interaction between warfarin and high dietary protein intake.

    Science.gov (United States)

    Hornsby, Lori B; Hester, E Kelly; Donaldson, Amy R

    2008-04-01

    A 55-year-old Caucasian man was receiving warfarin therapy after undergoing aortic valve replacement. His international normalized ratio (INR) was stabilized with warfarin 95 mg/week for 5 weeks. Commencement of a low-carbohydrate, high-protein diet resulted in a series of subtherapeutic INRs that led to a 16% increase in the dosage requirement to maintain therapeutic INRs. After the patient discontinued the diet, his INR increased, and several dosage reductions were required until his INR stabilized with his original dosage of 95 mg/week. Two additional case reports have described a possible interaction between warfarin and a high-protein diet. The potential for increased dietary protein intake to raise serum albumin levels and/or cytochrome P450 activity has been postulated as mechanisms for the resulting decrease in INRs. Given the available animal and human data that demonstrate alterations in drug metabolism in the presence of altered dietary protein intake, an increase in warfarin metabolism due to cytochrome P450 activation appears to be the most likely cause. In addition to the previously reported cases, this case indicates a potential interaction between warfarin and a high-protein diet. Because of the popularity of high-protein diets and because of the risks associated with inadequate or excessive warfarin anticoagulation, patients and health care providers should be aware of this interaction to ensure appropriate monitoring when warranted.

  5. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  6. Host-microbiome interaction and cancer: potential application in precision medicine

    Directory of Open Access Journals (Sweden)

    Alejandra V Contreras

    2016-12-01

    Full Text Available It has been experimentally shown that host-microbial interaction plays a major role in shaping the wellness or disease of the human body. Microorganisms coexisting in human tissues provide a variety of benefits that contribute to proper functional activity in the host through the modulation of fundamental processes such as signal transduction, immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been correlated with the genesis and evolution of complex diseases such as cancer. Although this latter disease has been thoroughly studied using different high-throughput technologies, its heterogeneous nature makes its understanding and proper treatment in patients a remaining challenge in clinical settings. Notably, given the outstanding role of host-microbiome interactions, the ecological interactions with microorganisms have become a new significant aspect in the systems that can contribute to the diagnosis and potential treatment of solid cancers. As a part of expanding precision medicine in the area of cancer research, efforts aimed at effective treatments for various kinds of cancer based on the knowledge of genetics, biology of the disease and host-microbiome interactions might improve the prediction of disease risk and implement potential microbiota-directed therapeutics. In this review, we present the state of the art of sequencing and metabolome technologies, computational methods and schemes in systems biology that have addressed recent breakthroughs of uncovering relationships or associations between microorganisms and cancer. Together, microbiome studies extend the horizon of new personalized treatments against cancer from the perspective of precision medicine through a synergistic strategy integrating clinical knowledge, high-throughput data, bioinformatics and systems biology.

  7. Spatial coincidence modulates interaction between visual and somatosensory evoked potentials.

    Science.gov (United States)

    Schürmann, Martin; Kolev, Vasil; Menzel, Kristina; Yordanova, Juliana

    2002-05-07

    The time course of interaction between concurrently applied visual and somatosensory stimulation with respect to evoked potentials (EPs) was studied. Visual stimuli, either in the left or right hemifield, and electric stimuli to the left wrist were delivered either alone or simultaneously. Visual and somatosensory EPs were summed and compared to bimodal EPs (BiEP, response to actual combination of both modalities). Temporal coincidence of stimuli lead to sub-additive or over-additive amplitudes in BiEPs in several time windows between 75 and 275 ms. Additional effects of spatial coincidence (left wrist with left hemifield) were found between 75 and 300 ms and beyond 450 ms. These interaction effects hint at a temporo-spatial pattern of multiple brain areas participating in the process of multimodal integration.

  8. From Statistical to Biological Interactions via Omics Integration

    OpenAIRE

    Bessonov, Kyrylo

    2016-01-01

    The XXI century opened a new ‘Big Data’ era in which, thanks to rapid technological advancements and appearance of high throughput technologies, vast amounts of unstructured omics data (e.g., transcriptomic, genomic, etc.) are generated every day. This thesis mainly focuses on solving the problems related diverse omics data integration and interaction identification tasks. Particular attention is given to useful knowledge extraction in the context of complex diseases including pathological me...

  9. Modular Verification of Interactive Systems with an Application to Biology

    Directory of Open Access Journals (Sweden)

    P. Milazzo

    2011-01-01

    Full Text Available We propose sync-programs, an automata-based formalism for the description of biological systems, and a modular verification technique for such a formalism that allows properties expressed in the universal fragment of CTL to be verified on suitably chosen fragments of models, rather than on whole models. As an application we show the modelling of the lac operon regulation process and the modular verification of some properties. Verification of properties is performed by using the NuSMV model checker and we show that by applying our modular verification technique we can verify properties in shorter times than those necessary to verify the same properties in the whole model.

  10. Gender differences, polypharmacy, and potential pharmacological interactions in the elderly

    Directory of Open Access Journals (Sweden)

    Carina Duarte Venturini

    2011-01-01

    Full Text Available OBJECTIVE: This study aims to analyze pharmacological interactions among drugs taken by elderly patients and their age and gender differences in a population from Porto Alegre, Brazil. METHODS: We retrospectively analyzed the database provided by the Institute of Geriatric and Gerontology, Porto Alegre, Brazil. The database was composed of 438 elderly and includes information about the patients' disease, therapy regimens, utilized drugs. All drugs reported by the elderly patients were classified using the Anatomical Therapeutic and Chemical Classification System. The drug-drug interactions and their severity were assessed using the Micromedex® Healthcare Series. RESULTS: Of the 438 elderly patients in the data base, 376 (85.8% used pharmacotherapy, 274 were female, and 90.4% of females used drugs. The average number of drugs used by each individual younger than 80 years was 3.2±2.6. Women younger than 80 years old used more drugs than men in the same age group whereas men older than 80 years increased their use of drugs in relation to other age groups. Therefore, 32.6% of men and 49.2% of women described at least one interaction, and 8.1% of men and 10.6% of women described four or more potential drug-drug interactions. Two-thirds of drug-drug interactions were moderate in both genders, and most of them involved angiotensin-converting enzyme inhibitor, non-steroidal anti-inflammatory, loop and thiazide diuretics, and β-blockers. CONCLUSION: Elderly patients should be closely monitored, based on drug class, gender, age group and nutritional status.

  11. Preservice Biology Teachers' Use of Interactive Display Systems to Support Reforms-Based Science Instruction

    Science.gov (United States)

    Schnittka, Christine G.; Bell, Randy L.

    2009-01-01

    The purpose of this study was to explore preservice science teachers' use of an interactive display system (IDS), consisting of a computer, digital projector, interactive white board, and Internet connection, to support science teaching and learning. Participants included 9 preservice biology teachers enrolled in a master of teaching program…

  12. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  13. Cooperativity in noncovalent interactions of biologically relevant molecules.

    Science.gov (United States)

    Antony, Jens; Brüske, Björn; Grimme, Stefan

    2009-10-14

    Using a recently published benchmark MP2 database of nucleic acid base trimers, the three-body contribution to the interaction energy (TBE, also termed (non)cooperativity) as a function of base composition and complex geometry is studied. In 28 out of 141 cases (or 20%), the counterpoise-corrected MP2/TZV(2df,2pd) TBE exceeds 1 kcal mol(-1). The TBE is below 1 kcal mol(-1) for all trimers in the benchmark set consisting of U, T, and A, irrespective of the geometrical arrangement in the database. The largest MP2/TZV(2df,2pd) cooperativity of -9 kcal mol(-1) is obtained for a hydrogen-bonded guanine trimer. The largest anti-cooperativity occurs for a protonated cytosine-guanine-cytosine trimer (6 kcal mol(-1)). Generally, the many-body non-additivity term is an order of magnitude smaller than the interaction energies (on average -33 kcal mol(-1)). Employing various density functionals (GGA, meta-GGA, and hybrid) and wave function methods up to third order perturbation theory, and using atomic-orbital basis sets of double-, triple-, and quadruple-zeta quality, we find that the non-additivity effects are almost independent of one particle basis set and method. To enable an interpretation of the TBE, the intermolecular interaction energy is subjected to an energy decomposition analysis (EDA) with a similar definition of the energy terms as the Morokuma decomposition scheme. We find that nonadditive effects are mainly due to the induction, while exchange repulsion, electrostatic, and dispersion contributions are essentially additive, the latter also beyond second order at the MP3/SV(d,p) level. The performance of dispersion-corrected density functional theory for the prediction of structures and binding energies is assessed. While an accurate reproduction of the MP2-optimized reference structures of the trimers can already be accomplished with modern density functionals, only the inclusion of the long-range (London) dispersion interaction provides a consistent picture

  14. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  15. Dynamics of elastic interactions in soft and biological matter

    Science.gov (United States)

    Yuval, Janni; Safran, Samuel A.

    2013-04-01

    Cells probe their mechanical environment and can change the organization of their cytoskeletons when the elastic and viscous properties of their environment are modified. We use a model in which the forces exerted by small, contractile acto-myosin filaments (e.g., nascent stress fibers in stem cells) on the extracellular matrix are modeled as local force dipoles. In some cases, the strain field caused by these force dipoles propagates quickly enough so that only static elastic interactions need be considered. On the other hand, in the case of significant energy dissipation, strain propagation is slower and may be eliminated completely by the relaxation of the cellular cytoskeleton (e.g., by cross-link dissociation). Here, we consider several dissipative mechanisms that affect the propagation of the strain field in adhered cells and consider these effects on the interaction between force dipoles and their resulting mutual orientations. This is a first step in understanding the development of orientational (nematic) or layering (smectic) order in the cytoskeleton. We use the theory to estimate the propagation time of the strain fields over a cellular distance for different mechanisms and find that in some cases it can be of the order of seconds, thus competing with the cytoskeletal relaxation time. Furthermore, for a simple system of two force dipoles, we predict that in some cases the orientation of force dipoles might change significantly with time, e.g., for short times the dipoles exhibit parallel alignment while for later times they align perpendicularly.

  16. Potential interaction between proton pump inhibitor and clopidogrel

    Directory of Open Access Journals (Sweden)

    Indra Kurniawan

    2013-02-01

    Full Text Available Clopidogrel is an anti-platelet agent commonly used in patients with atherosclerotic cardiovascular (CV disease. Although formerly considered safe, several studies reported that the use of clopidogrel may cause a significant increase in the rate of gastrointestinal (GI bleeding. This adverse effect could be minimized by coadministration of proton pump inhibitor (PPI. However, since PPI and clopidogrel share the same metabolic pathway, it has been hypothesized that the administration of PPI following clopidogrel therapy may cause a reduction in its anti-platelet effect, thereby increasing the risk of CV events. Recent studies found no significant inhibition in the activation of clopidogrel by CYP2C19 with administration of PPI in vitro. Pharmacokinetic and pharmacodynamic studies, as well as clinical studies, reported conflicting results regarding the potential interaction between PPI and clopidogrel. Until now, the available study investigated the PPI-clopidogrel interaction are primarily observational. The COGENT study is the only prospective, placebo-controlled trial examined the PPI-clopidogrel interaction. This study revealed no significant increase in CV events in patients receiving PPI following clopidogrel therapy, compared to the control group. Though remains controversial, current expert consensus recommended the administration of PPI in patients receiving clopidogrel, particularly in high-risk patients. (Med J Indones. 2013;22:57-62Keywords: Cardiovascular, clopidogrel, gastrointestinal, proton pump inhibitor

  17. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.

  18. Host-Symbiont Interactions for Potentially Managing Heteropteran Pests

    Directory of Open Access Journals (Sweden)

    Simone Souza Prado

    2012-01-01

    Full Text Available Insects in the suborder Heteroptera, the so-called true bugs, include over 40,000 species worldwide. This insect group includes many important agricultural pests and disease vectors, which often have bacterial symbionts associated with them. Some symbionts have coevolved with their hosts to the extent that host fitness is compromised with the removal or alteration of their symbiont. The first bug/microbial interactions were discovered over 50 years ago. Only recently, mainly due to advances in molecular techniques, has the nature of these associations become clearer. Some researchers have pursued the genetic modification (paratransgenesis of symbionts for disease control or pest management. With the increasing interest and understanding of the bug/symbiont associations and their ecological and physiological features, it will only be a matter of time before pest/vector control programs utilize this information and technique. This paper will focus on recent discoveries of the major symbiotic systems in Heteroptera, highlighting how the understanding of the evolutionary and biological aspects of these relationships may lead to the development of alternative techniques for efficient heteropteran pest control and suppression of diseases vectored by Heteroptera.

  19. Research on the potential use of interactive materials on astronomy education

    Science.gov (United States)

    Voelzke, Marcos Rincon; Macedo, Josue

    2016-07-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.

  20. Arsenic: A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M

    2015-08-19

    Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.

  1. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  2. Recent Developments in Systems Biology and Metabolic Engineering of Plant–Microbe Interactions

    Science.gov (United States)

    Kumar, Vishal; Baweja, Mehak; Singh, Puneet K.; Shukla, Pratyoosh

    2016-01-01

    Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant–microbe interaction plays an important role to balance the ecosystem. The present review explores plant–microbe interactions using gene editing and system biology tools toward the comprehension in improvement of plant traits. Further, system biology tools like FBA (flux balance analysis), OptKnock, and constraint-based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g., single nucleotide polymorphism detection, RNA-seq, proteomics) and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions. PMID:27725824

  3. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  4. Schematic potential energy for interaction between isobutene and zeolite mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, L A [Programa de Crudo Maya, IMP, AP 15-805, DF 07730 (Mexico); Flores-Sandoval, C A [Programa de Crudo Maya, IMP, AP 15-805, DF 07730 (Mexico); Zaragoza, I P [Programa de Ingenieria Molecular, IMP, AP 15-805, DF 07730 (Mexico)

    2004-06-09

    A schematic representation of the potential energy for the interaction between isobutene and H mordenite was presented by using eight different positions (P1-P8) of C{sub 1} or C{sub 2} atoms located in front of the acid hydrogen (H{sup +}). In all cases a {pi} complex was formed yielding different values of the adsorption energy. In some cases of the adsorption point in P1-P8 the frontier orbitals are shown. The P8 position exhibits the highest value obtained for the adsorption energy, where the C{sub 1} atom is in front of the H{sup +}. Calculations were of all electron type employing HF/6-31G**.

  5. Interactions among endophytic bacteria and fungi: effects and potentials

    Indian Academy of Sciences (India)

    W M M S Bandara; Gamini Seneviratne; S A Kulasooriya

    2006-12-01

    Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As such in vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation.

  6. Ciprofloxacin and Clozapine: A Potentially Fatal but Underappreciated Interaction

    Directory of Open Access Journals (Sweden)

    Jonathan M. Meyer

    2016-01-01

    Full Text Available Objective. Clozapine provides a 50%–60% response rate in refractory schizophrenia but has a narrow therapeutic index and is susceptible to pharmacokinetic interactions, particularly with strong inhibitors or inducers of cytochrome P450 (CYP 1A2. Case Report. We report the case of a 28-year-old nonsmoking female with intellectual disability who was maintained for 3 years on clozapine 100 mg orally twice daily. The patient was treated for presumptive urinary tract infection with ciprofloxacin 500 mg orally twice daily and two days later collapsed and died despite resuscitation efforts. The postmortem femoral clozapine plasma level was dramatically elevated at 2900 ng/mL, and the cause of death was listed as acute clozapine toxicity. Conclusion. Given the potentially fatal pharmacokinetic interaction between clozapine and ciprofloxacin, clinicians are advised to monitor baseline clozapine levels prior to adding strong CYP450 1A2 inhibitors, reduce the clozapine dose by at least two-thirds if adding a 1A2 inhibitor such as ciprofloxacin, check subsequent steady state clozapine levels, and adjust the clozapine dose to maintain levels close to those obtained at baseline.

  7. Improving protein-protein interaction article classification using biological domain knowledge.

    Science.gov (United States)

    Chen, Yifei; Guo, Hongjian; Liu, Feng; Manderick, Bernard

    2015-01-01

    Interaction Article Classification (IAC) is a specific text classification application in biological domain that tries to find out which articles describe Protein-Protein Interactions (PPIs) to help extract PPIs from biological literature more efficiently. However, the existing text representation and feature weighting schemes commonly used for text classification are not well suited for IAC. We capture and utilise biological domain knowledge, i.e. gene mentions also known as protein or gene names in the articles, to address the problem. We put forward a new gene mention order-based approach that highlights the important role of gene mentions to represent the texts. Furthermore, we also incorporate the information concerning gene mentions into a novel feature weighting scheme called Gene Mention-based Term Frequency (GMTF). By conducting experiments, we show that using the proposed representation and weighting schemes, our Interaction Article Classifier (IACer) performs better than other leading systems for the moment.

  8. Biology and potential clinical implications of tissue inhibitor of metalloproteinases-1 in colorectal cancer treatment

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Sørensen, irene Vejgaard; Würtz, Sidse Ørnbjerg

    2008-01-01

    be such a marker. TIMP-1 inhibits the proteolytic activity of metalloproteinases, which are centrally involved in tumour invasion and metastases. However, in clinical investigations high tumour tissue or plasma levels of TIMP-1 have shown a strong and independent association with a shorter survival time in CRC...... knowledge of the biology of TIMP-1 as well as the potential use of TIMP-1 as a biological marker in the management of CRC patients....

  9. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits.

    Science.gov (United States)

    Wijesekara, Isuru; Yoon, Na Young; Kim, Se-Kwon

    2010-01-01

    The importance of bioactive derivatives as functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and characterization of novel functional ingredients with biological activities from seaweeds have gained much attention. Ecklonia cava Kjellman is an edible seaweed, which has been recognized as a rich source of bioactive derivatives mainly, phlorotannins. These phlorotannins exhibit various beneficial biological activities such as antioxidant, anticancer, antidiabetic, anti-human immunodeficiency virus, antihypertensive, matrix metalloproteinase enzyme inhibition, hyaluronidase enzyme inhibition, radioprotective, and antiallergic activities. This review focuses on biological activities of phlorotannins with potential health beneficial applications in functional foods, pharmaceuticals, and cosmeceuticals.

  10. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological......, beetles and moths; (2) Preventative treatment of bulk commodities against weevils (Sitophilus spp.) and storage mites; (3) Preventative application of egg-parasitoids against moths in packaged products. Development of methods for biological control and of mass production of natural enemies...

  11. Photon-tissue interaction model for quantitative assessment of biological tissues

    Science.gov (United States)

    Lee, Seung Yup; Lloyd, William R.; Wilson, Robert H.; Chandra, Malavika; McKenna, Barbara; Simeone, Diane; Scheiman, James; Mycek, Mary-Ann

    2014-02-01

    In this study, we describe a direct fit photon-tissue interaction model to quantitatively analyze reflectance spectra of biological tissue samples. The model rapidly extracts biologically-relevant parameters associated with tissue optical scattering and absorption. This model was employed to analyze reflectance spectra acquired from freshly excised human pancreatic pre-cancerous tissues (intraductal papillary mucinous neoplasm (IPMN), a common precursor lesion to pancreatic cancer). Compared to previously reported models, the direct fit model improved fit accuracy and speed. Thus, these results suggest that such models could serve as real-time, quantitative tools to characterize biological tissues assessed with reflectance spectroscopy.

  12. An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, C.E.G.; Malik, A; Jineesh, V.K.; Fernandes, S.O.; Das, A; Pandey, S.S.; Kanolkar, G.; Sujith, P.P.; Velip, D.; Shaikh, S.; Helekar, S.; Gonsalves, M.J.B.D.; Nair, S.; LokaBharathi, P.A

    iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160...

  13. Antiparkinsonian potential of interaction of LEK-8829 with bromocriptine.

    Science.gov (United States)

    Zivin, M; Sprah, L; Sket, D

    1998-05-22

    The ergoline derivative, LEK-8829 (9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylerg oline), has been proposed as a potential atypical antipsychotic drug with antagonistic actions at dopamine D2 and serotonin 5-HT2 and 5-HT1A receptors (Krisch et al., 1994, 1996). LEK-8829 also induces contralateral turning in rats with 6-hydroxydopamine-induced unilateral lesion of dopamine nigrostriatal neurons. Turning is blocked by SCH-23390 (R(+)-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzaze pine), a dopamine D1 receptor antagonist. It has been suggested that LEK-8829 could have beneficial effects in parkinsonian patients suffering from psychotic episodes induced as a side-effect of antiparkinsonian treatment with dopamine D2 receptor agonists. Therefore, we now investigated the interaction of LEK-8829 with the dopamine D2 receptor agonist bromocriptine (2-bromo-alpha-ergokryptine) in 6-hydroxydopamine-lesioned rats. Treatment with either LEK-8829 (3 mg kg(-1)) or bromocriptine (3 mg kg(-1)) induced a vigorous contralateral turning response. The cumulated number of turns induced by the treatment with both drugs combined was not significantly different from the cumulated number of turns induced by single-drug treatment. The pretreatment with SCH-23390 (1 mg kg(-1)) did not have a significant effect on the bromocriptine-induced turning but significantly decreased the turning observed after the combined LEK-8829/bromocriptine treatment. We conclude that in the 6-hydroxydopamine model, the turning behaviour mediated by the LEK-8829/bromocriptine combination may be the result of opposing activity of both drugs at dopamine D2 receptors with concomitant stimulation of dopamine D1 receptors by LEK-8829. Therefore, LEK-8829 may have a potential for the therapy of parkinsonism complicated by dopamine D2 receptor agonist drug-induced psychosis.

  14. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  15. Low-level radiation: biological interactions, risks, and benefits. A bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The bibliography contains 3294 references that were selected from the Department of Energy's data base (EDB). The subjects covered are lower-level radiation effects on man, environmental radiation, and other biological interactions of radiation that appear to be applicable to the low-level radiation problem.

  16. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    Science.gov (United States)

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2016-11-21

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.

  17. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  18. Evolutionary interactions between the invasive tallow tree and herbivores: implications for biological control

    Science.gov (United States)

    Understanding interactions between insect agents and host plants is critical for forecasting their impact before the insects are introduced, and for improving our knowledge of the mechanisms driving success or failure in biological weed control. As invasive plants may undergo rapid adaptive evolutio...

  19. Investigating Student Interactions within a Problem-Based Learning Environment in Biology.

    Science.gov (United States)

    Guerrera, Claudia P.; Lajoie, Susanne P.

    This aim of this study was to analyze the content of students' verbal interactions within a problem-based learning context in biology. This was achieved through the qualitative analysis of the verbal protocols of three groups of two clases of ninth-grade female students (average/high ability, high/high ability, and average/average ability). The…

  20. Biological response modifiers and their potential use in the treatment of inflammatory skin diseases

    DEFF Research Database (Denmark)

    Villadsen, Louise S; Skov, Lone; Baadsgaard, Ole

    2003-01-01

    and fewer side-effects than the current systemic therapies now used for severe psoriasis, contact dermatitis and atopic dermatitis. In the pathogenesis of inflammatory skin diseases, the immune system plays a pivotal role, and this is where biological response modifiers such as monoclonal antibodies......In recent years, a more detailed understanding of the pathogenesis of several inflammatory skin diseases, combined with the developments within biotechnology, has made it possible to design more selective response modifiers. Biological response modifiers hold the potential for greater effectiveness......, recombinant cytokines, or fusion proteins may be effective. Several biological response modifiers have already shown positive results in phase II/III clinical trials in skin diseases, and many new biological response modifiers are in progress....

  1. Commercially available interactive video games in burn rehabilitation: therapeutic potential.

    Science.gov (United States)

    Parry, Ingrid S; Bagley, Anita; Kawada, Jason; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2012-06-01

    Commercially available interactive video games (IVG) like the Nintendo Wii™ (NW) and PlayStation™II Eye Toy (PE) are increasingly used in the rehabilitation of patients with burn. Such games have gained popularity in burn rehabilitation because they encourage range of motion (ROM) while distracting from pain. However, IVGs were not originally designed for rehabilitation purposes but rather for entertainment and may lack specificity for achieving rehabilitative goals. Objectively evaluating the specific demands of IVGs in relation to common burn therapy goals will determine their true therapeutic benefit and guide their use in burn rehabilitation. Upper extremity (UE) motion of 24 normal children was measured using 3D motion analysis during play with the two types of IVGs most commonly described for use after burn: NW and PE. Data was analyzed using t-tests and One-way Analysis of Variance. Active range of motion for shoulder flexion and abduction during play with both PE and NW was within functional range, thus supporting the idea that IVGs offer activities with therapeutic potential to improve ROM. PE resulted in higher demands and longer duration of UE motion than NW, and therefore may be the preferred tool when UE ROM or muscular endurance are the goals of rehabilitation. When choosing a suitable IVG for application in rehabilitation, the user's impairment together with the therapeutic attributes of the IVG should be considered to optimize outcome.

  2. Probiotics: Interaction with gut microbiome and antiobesity potential.

    Science.gov (United States)

    Arora, Tulika; Singh, Satvinder; Sharma, Raj Kumar

    2013-04-01

    Obesity is a metabolic disorder afflicting people globally. There has been a pivotal advancement in the understanding of the intestinal microbiota composition and its implication in extraintestinal (metabolic) diseases. Therefore, any agent modulating gut microbiota may produce an influential effect in preventing the pathogenesis of disease. Probiotics are live microbes that, when administered in adequate amounts, have been shown to confer health benefits to the host. Over the years, probiotics have been a part of the human diet in the form of different fermented foods consumed around the world. Their influence on different physiologic functions in the host is increasingly being documented. The antiobesity potential of probiotics is also gaining wide attention because of increasing evidence of the role of gut microbiota in energy homeostasis and fat accumulation. Probiotics have also been shown to interact with the resident bacterial members already present in the gut by altering their properties, which may also affect the metabolic pathways involved in the regulation of fat metabolism. The underlying pathways governing the antiobesity effects of probiotics remain unclear. However, it is hoped that the evidence presented and discussed in this review will encourage and thus drive more extensive research in this field.

  3. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  4. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    Energy Technology Data Exchange (ETDEWEB)

    Bezares Roder, Nils Manuel

    2010-07-01

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous

  5. Biana: a software framework for compiling biological interactions and analyzing networks

    Directory of Open Access Journals (Sweden)

    Planas-Iglesias Joan

    2010-01-01

    Full Text Available Abstract Background The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. Results We introduce BIANA (Biologic Interactions and Network Analysis, a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i the integration of multiple sources of biological information, including biological entities and their relationships, and ii the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. Conclusions BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.

  6. Development of interactive hypermedia software for high school biology: A research and development study

    Science.gov (United States)

    Alturki, Uthman T.

    The goal of this research was to research, design, and develop a hypertext program for students who study biology. The Ecology Hypertext Program was developed using Research and Development (R&D) methodology. The purpose of this study was to place the final "product", a CD-ROM for learning biology concepts, in the hands of teachers and students to help them in learning and teaching process. The product was created through a cycle of literature review, needs assessment, development, and a cycle of field tests and revisions. I applied the ten steps of R&D process suggested by Borg and Gall (1989) which, consisted of: (1) Literature review, (2) Needs assessment, (3) Planning, (4) Develop preliminary product, (5) Preliminary field-testing, (6) Preliminary revision, (7) Main field-testing, (8) Main revision, (9) Final field-testing, and (10) Final product revision. The literature review and needs assessment provided a support and foundation for designing the preliminary product---the Ecology Hypertext Program. Participants in the needs assessment joined a focus group discussion. They were a group of graduate students in education who suggested the importance for designing this product. For the preliminary field test, the participants were a group of high school students studying biology. They were the potential user of the product. They reviewed the preliminary product and then filled out a questionnaire. Their feedback and suggestions were used to develop and improve the product in a step called preliminary revision. The second round of field tasting was the main field test in which the participants joined a focus group discussion. They were the same group who participated in needs assessment task. They reviewed the revised product and then provided ideas and suggestions to improve the product. Their feedback were categorized and implemented to develop the product as in the main revision task. Finally, a group of science teachers participated in this study by reviewing

  7. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2015-07-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  8. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    An assessment of the biological production and the potential fishery resources has been made based on the data collected over a period of 15 years (1976-1991). The entire Exclusive Economic Zone (EEZ), measuring 2.02 million km sup(2) was divided...

  9. Preliminary study on three pathogens with potential biological control in Barnyard grass (Echinochloa crus galli)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ More than 10 species of pathogenic fungi were isolated from the naturally infected leaves of barnyard grass (Echinochloa crus-galli) in paddy. After preliminary bioassaying, it was found that the Alternaria alternata (Fr.) keissler(AA), Exserohilum monoceras (EM),and "99-10" were three potential agents for biological control of barnyard grass.

  10. Asymptotic Near Nucleus Structure of the Electron-Interaction Potential in Local Effective Potential Theories

    Science.gov (United States)

    Sahni, Viraht; Qian, Zhixin

    2007-03-01

    In previous work, it has been shown that for spherically symmetric or sphericalized systems, the asymptotic near nucleus structure of the electron-interaction potential is vee(r) = vee(0) + βr + γr^2. In this paper we prove via time-independent Quantal Density Functional Theory[1](Q-DFT): (i) correlations due to the Pauli exclusion principle and Coulomb repulsion do not contribute to the linear structure;(ii) these Pauli and Coulomb correlations contribute quadratically; (iii) the linear structure is solely due to Correlation-Kinetic effects, the coefficient β being determined analytically. By application of adiabatic coupling constant perturbation theory via QDFT we further prove: (iv) the Kohn-Sham (KS-DFT) `exchange' potential vx(r) approaches the nucleus linearly, this structure being due solely to lowest- order Correlation-Kinetic effects: (v) the KS-DFT `correlation' potential vc(r) also approaches the nucleus linearly, being solely due to higher-order Correlation-Kinetic contributions. The above conclusions are equally valid for system of arbitrary symmetry, provided spherical averages of the properties are employed. 1 Quantal Density Functional Theory, V. Sahni (Springer-Verlag 2004)

  11. Increased learning observed in redesigned introductory biology course that employed web-enhanced, interactive pedagogy.

    Science.gov (United States)

    McDaniel, Carl N; Lister, Bradford C; Hanna, Michael H; Roy, Harry

    2007-01-01

    Our Introduction to Biology course (BIOL 1010) changed in 2004 from a standard instructor-centered, lecture-homework-exam format to a student-centered format that used Web-enhanced, interactive pedagogy. To measure and compare conceptual learning gains in the traditional course in fall 2003 with a section of the interactive course in fall 2004, we created concept inventories for both evolution and ecology. Both classes were taught by the same instructor who had taught BIOL 1010 since 1976, and each had a similar student composition with comparable biological knowledge. A significant increase in learning gain was observed with the Web-enhanced, interactive pedagogy in evolution (traditional, 0.10; interactive, 0.19; p = 0.024) and ecology (traditional, -0.05; interactive, 0.14; p = 0.000009) when assessment was made unannounced and for no credit in the last week of classes. These results strengthen the case for augmenting or replacing instructor-centered teaching with Web-enhanced, interactive, student-centered teaching. When assessment was made using the final exam in the interactive course, for credit and after studying, significantly greater learning gains were made in evolution (95%, 0.37, p = 0.0001) and ecology (143%, 0.34, p = 0.000003) when compared with learning gains measured without credit or study in the last week of classes.

  12. Fluorescent nanoparticle interactions with biological systems: What have we learned so far?

    Science.gov (United States)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-03-01

    Fluorescent nanoparticles (NPs) are promising optical probes for biological and biomedical applications, thanks to their excellent photophysical properties, color tunability and facile bioconjugation. It still remains unclear, however, how fluorescent NPs behave in the complex biological environment. Our group has quantified interactions of different fluorescent NPs (i.e., semiconductor quantum dots and metal nanoclusters) with serum proteins and living cells by the combined use of different spectroscopic and microscopic techniques. Our studies show that (1) interactions with proteins may significantly alter the photophysical properties of the NPs as well as the responses of cells internalizing them; (2) protein surface charge distributions play an important role in the interactions of NPs with proteins and cells; (3) ultrasmall NPs (diameter less than 10 nm) show a cellular internalization behavior that is distinctly different from the one observed with larger particles (diameter ~100 nm).

  13. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    Science.gov (United States)

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  14. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions.

    Science.gov (United States)

    Thakur, S; Dhiman, M; Tell, G; Mantha, A K

    2015-04-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is a classic example of functionally variable protein. Besides its well-known role in (i) DNA repair of oxidative base damage, APE1 also plays a critical role in (ii) redox regulation of transcription factors controlling gene expression for cell survival pathways, for which it is also known as redox effector factor 1 (Ref-1), and recent evidences advocates for (iii) coordinated control of other non-canonical protein-protein interaction(s) responsible for significant biological functions in mammalian cells. The diverse functions of APE1 can be ascribed to its ability to interact with different protein partners, owing to the attainment of unfolded domains during evolution. Association of dysregulation of APE1 with various human pathologies, such as cancer, cardiovascular diseases and neurodegeneration, is attributable to its multifunctional nature, and this makes APE1 a potential therapeutic target. This review covers the important aspects of APE1 in terms of its significant protein-protein interaction(s), and this knowledge is required to understand the onset and development of human pathologies and to design or improve the strategies to target such interactions for treatment and management of various human diseases.

  15. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  16. Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics.

    Science.gov (United States)

    Montenegro-Nicolini, Miguel; Morales, Javier O

    2017-01-01

    The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film.

  17. Do field-free electromagnetic potentials play a role in biology?

    Science.gov (United States)

    Szasz, A; Vincze, G; Andocs, G; Szasz, O

    2009-01-01

    All bio-systems are imperfect dielectrics. Their general properties however cannot be described by conventional simple electrodynamics; the system is more complex. A central question in our present paper is centered on a controversial debate of the possible effect of the zero fields (only potentials exist). We show that the identical use of the "field-free," "curl-free," and "force-free" terminologies is incorrect, there have definitely different meanings. It is shown that the effective electro-dynamical parameters that describe and modify living systems are the potentials and not the fields. We discuss how the potentials have a role in biological processes even in field-free cases.

  18. Mechanism and biological role of profilin-Srv2/CAP interaction.

    Science.gov (United States)

    Bertling, Enni; Quintero-Monzon, Omar; Mattila, Pieta K; Goode, Bruce L; Lappalainen, Pekka

    2007-04-01

    Profilin and cyclase-associated protein (CAP, known in yeast as Srv2) are ubiquitous and abundant actin monomer-binding proteins. Profilin catalyses the nucleotide exchange on actin monomers and promotes their addition to filament barbed ends. Srv2/CAP recycles newly depolymerized actin monomers from ADF/cofilin for subsequent rounds of polymerization. Srv2/CAP also harbors two proline-rich motifs and has been suggested to interact with profilin. However, the mechanism and biological role of the possible profilin-Srv2/CAP interaction has not been investigated. Here, we show that Saccharomyces cerevisiae Srv2 and profilin interact directly (K(D) approximately 1.3 microM) and demonstrate that a specific proline-rich motif in Srv2 mediates this interaction in vitro and in vivo. ADP-actin monomers and profilin do not interfere with each other's binding to Srv2, suggesting that these three proteins can form a ternary complex. Genetic and cell biological analyses on an Srv2 allele (srv2-201) defective in binding profilin reveals that a direct interaction with profilin is not essential for Srv2 cellular function. However, srv2-201 causes a moderate increase in cell size and partially suppresses the cell growth and actin organization defects of an actin binding mutant profilin (pfy1-4). Together these data suggest that Srv2 is an important physiological interaction partner of profilin.

  19. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  20. Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions.

    Science.gov (United States)

    Winter, Roland

    2015-01-01

    Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.

  1. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  2. 3D-printed biological organs: medical potential and patenting opportunity.

    Science.gov (United States)

    Yoo, Seung-Schik

    2015-05-01

    Three-dimensional (3D) bioprinting has emerged as a new disruptive technology that may address the ever-increasing demand for organ transplants. 3D bioprinting offers many technical features that allow for building functional biological tissue constructs by dispensing the individual or group of cells into specific locations along with various types of bio-scaffold materials and extracellular matrices, and thus, may provide flexibility needed for on-demand individualized construction of biological organs. Several key classes of 3D bioprinting techniques are reviewed, including potential medical and industrial applications. Several unanswered engineering components for the ultimate creation of printed biological organs are also discussed. The complicated nature of the human organs, in addition to the legal and ethical requirements for safe implantation into the human body, would require significant research and development to produce marketable bioprinted organs. This also suggests the possibility for further patenting and licensing opportunities from different sectors of the economy.

  3. The potential of plants as a system for the development and production of human biologics

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  4. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  5. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed.

  6. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region.

    Directory of Open Access Journals (Sweden)

    Paula G Ragone

    Full Text Available Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI. These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region.

  7. Experimental Evidence of Biological Interactions among Different Isolates of Trypanosoma cruzi from the Chaco Region

    Science.gov (United States)

    Ragone, Paula G.; Pérez Brandán, Cecilia; Monje Rumi, Mercedes; Tomasini, Nicolás; Lauthier, Juan J.; Cimino, Rubén O.; Uncos, Alejandro; Ramos, Federico; Alberti D´Amato, Anahí M.; Basombrío, Miguel A.; Diosque, Patricio

    2015-01-01

    Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI). These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI) were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region. PMID:25789617

  8. Computational biology for target discovery and characterization: a feasibility study in protein-protein interaction detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Zemla, A

    2009-02-25

    In this work we developed new code for detecting putative multi-domain protein-protein interactions for a small network of bacterial pathogen proteins, and determined how structure-driven domain-fusion (DF) methods should be scaled up for whole-proteome analysis. Protein-protein interactions are of great interest in structural biology and are important for understanding the biology of pathogens. The ability to predict protein-protein interactions provides a means for development of anti-microbials that may interfer with key processes in pathogenicity. The function of a protein-protein complex can be elucidated through knowledge of its structure. The overall goal of this project was to determine the feasibility of extending current LLNL capabilities to produce a high-throughput systems bio-informatics capability for identification and characterization of putative interacting protein partners within known or suspected small protein networks. We extended an existing LLNL methodology for identification of putative protein-protein interacting partners (Chakicherla et al (in review)) by writing a new code to identify multi-domain-fusion linkages (3 or more per complex). We applied these codes to the proteins in the Yersinia pestis quorum sensing network, known as the lsr operon, which comprises a virulence mechanism in this pathogen. We determined that efficient application of our computational algorithms in high-throughput for detection of putative protein-protein complexes genome wide would require pre-computation of PDB domains and construction of a domain-domain association database.

  9. The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure

    OpenAIRE

    Louati, H.; Ben Said, O.; A. Soltani; Got, P; Mahmoudi, E.; Cravo-Laureau, C.; Duran, R.; Aissa, P.; Pringault, Olivier

    2013-01-01

    Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30...

  10. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    Directory of Open Access Journals (Sweden)

    Lee JA

    2015-03-01

    Full Text Available Jeong-A Lee,1,* Mi-Kyung Kim,1,* Hyoung-Mi Kim,2,* Jong Kwon Lee,3 Jayoung Jeong,4 Young-Rok Kim,5 Jae-Min Oh,2 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea; 3Hazard Substances Analysis Division, Gwangju Regional Food and Drug Administration, Ministry of Food and Drug Safety, Gwangju, Republic of Korea; 4Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea; 5Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea *These authors contributed equally to this work Background: Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics.Methods: We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats.Results: N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen

  11. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.

    Science.gov (United States)

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves

    2013-03-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.

  12. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives.

    Science.gov (United States)

    Sun, Yichun

    2014-07-01

    Poria cocos has a long history of medicinal use in Asian countries such as China, Japan, Korea and Thailand. It is a kind of edible and pharmaceutical mushroom. The chemical compositions of Poria cocos mainly include triterpenes, polysaccharides, steroids, amino acids, choline, histidine, etc. Great advances have been made in chemical and bioactive studies on Poria cocos polysaccharides (PCP) and their derivatives in recent decades. These PCP and their derivatives exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. Therefore, PCP and their derivatives have great potential for further development as therapy or adjuvant therapy for cancer, immune-modulatory and antiviral drugs. This paper presents an overview of biological activities and potential health benefits of PCP and their derivatives.

  13. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae.

    Science.gov (United States)

    Kim, Se-Kwon; Pangestuti, Ratih

    2011-01-01

    The importance of marine algae as sources of functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and investigation of novel bioactive ingredients with biological activities from marine algae have attracted great attention. Among functional ingredients identified from marine algae, fucoxanthin has received particular interest. Fucoxanthin has been attributed with extraordinary potential for protecting the organism against a wide range of diseases and has considerable potential and promising applications in human health. Fucoxanthin has been reported to exhibit various beneficial biological activities such as antioxidant, anticancer, anti-inflammatory, antiobesity, and neuroprotective activities. In this chapter, the currently available scientific literatures regarding the most significant activities of fucoxanthin are summarized.

  14. Design, Synthesis and Biological Evaluation of Benzohydrazide Derivatives Containing Dihydropyrazoles as Potential EGFR Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Hai-Chao Wang

    2016-08-01

    Full Text Available A series of novel benzohydrazide derivatives containing dihydropyrazoles have been synthesized as potential epidermal growth factor receptor (EGFR kinase inhibitors and their biological activities as potential antiproliferative agents have been evaluated. Among these compounds, compound H20 exhibited the most potent antiproliferative activity against four cancer cell line variants (A549, MCF-7, HeLa, HepG2 with IC50 values of 0.46, 0.29, 0.15 and 0.21 μM respectively, which showed the most potent EGFR inhibition activities (IC50 = 0.08 μM for EGFR. Molecular modeling simulation studies were performed in order to predict the biological activity and activity relationship (SAR of these benzohydrazide derivatives. These results suggested that compound H20 may be a promising anticancer agent.

  15. Interaction of biological systems with static and ELF electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  16. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  17. Effective potentials for atom-atom interaction at low temperatures

    OpenAIRE

    Gao, Bo

    2002-01-01

    We discuss the concept and design of effective atom-atom potentials that accurately describe any physical processes involving only states around the threshold. The existence of such potentials gives hope to a quantitative, and systematic, understanding of quantum few-atom and quantum many-atom systems at relatively low temperatures.

  18. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication.

    Science.gov (United States)

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.

  19. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  20. Differential orientation effect in the neural response to interacting biological motion of two agents

    Directory of Open Access Journals (Sweden)

    Kakigi Ryusuke

    2009-04-01

    Full Text Available Abstract Background A recent behavioral study demonstrated that the meaningful interaction of two agents enhances the detection sensitivity of biological motion (BM, however, it remains unclear when and how the 'interaction' information of two agents is represented in our neural system. To clarify this point, we used magnetoencephalography and introduced a novel experimental technique to extract a neuromagnetic response relating to two-agent BM perception. We then investigated how this response was modulated by the interaction of two agents. In the present experiment, we presented two kinds of visual stimuli (interacting and non-interacting BM with two orientations (upright and inverted. Results We found a neuromagnetic response in the bilateral occipitotemporal region, on average 300 – 400 ms after the onset of a two-agent BM stimulus. This result showed that interhemispheric differences were apparent for the peak amplitudes. For the left hemisphere, the orientation effect was manifest when the two agents were made to interact, and the interaction effect was manifest when the stimulus was inverted. In the right hemisphere, the main effects of both orientation and interaction were significant, suggesting that the peak amplitude was attenuated when the visual stimulus was inverted or made to interact. Conclusion These results demonstrate that the 'interaction' information of two agents can affect the neural activities in the bilateral occipitotemporal region, on average 300 – 400 ms after the onset of a two-agent BM stimulus, however, the modulation was different between hemispheres: the left hemisphere is more concerned with dynamics, whereas the right hemisphere is more concerned with form information.

  1. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.

    Science.gov (United States)

    Braak, Etienne; Auby, Sarah; Piveteau, Simon; Guilayn, Felipe; Daumer, Marie-Line

    2016-01-01

    Phosphorus (P) recycling as mineral fertilizer from wastewater activated sludge (WAS) depends on the amount that can be dissolved and separated from the organic matter before the final crystallization step. The aim of the biological phosphorus dissolution potential (BPDP) test developed here was to assess the maximum amount of P that could be biologically released from WAS prior that the liquid phase enters the recovery process. It was first developed for sludge combining enhanced biological phosphorus removal and iron chloride. Because carbohydrates are known to induce acidification during the first stage of anaerobic digestion, sucrose was used as a co-substrate. Best results were obtained after 24-48 h, without inoculum, with a sugar/sludge ratio of 0.5 gCOD/gVS and under strict anaerobic conditions. Up to 75% of the total phosphorus in sludge from a wastewater treatment plant combining enhanced biological phosphorus removal and iron chloride phosphorus removal could be dissolved. Finally, the test was applied to assess BPDP from different sludge using alum compounds for P removal. No dissolution was observed when alum polychloride was used and less than 20% when alum sulphate was used. In all the cases, comparison to chemical acidification showed that the biological process was a major contributor to P dissolution. The possibility to crystallize struvite was discussed from the composition of the liquids obtained. The BPDP will be used not only to assess the potential for phosphorus recycling from sludge, but also to study the influence of the co-substrates available for anaerobic digestion of sludge.

  2. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design.

    Science.gov (United States)

    Prodanov, Dimiter; Delbeke, Jean

    2016-01-01

    Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it.

  3. The Stability of Icosahedral Cluster and the Range of Interaction Potential

    Institute of Scientific and Technical Information of China (English)

    DING Feng; WANG Jin-Lan; SHEN Wei-Feng; WANG Bao-Lin; LI Hui; WANG Guang-Hou

    2001-01-01

    The relation between the stability of icosahedral clusters and the range of interaction potential is discussed.We found that the stability of icosahedral clusters nay decrease with decreasing range of interaction potential. A simple formula about the critical number of icosahedral clusters and the range of interaction potential (M1/3c = A1 + A2r2eff)was proposed. The calculation of the stability of icosahedral fullerence molecular clusters shows that our idea is right.``

  4. Biological interactions in vitro of zinc oxide nanoparticles of different characteristics

    Science.gov (United States)

    Aula, Sangeetha; Lakkireddy, Samyuktha; AVN, Swamy; Kapley, Atya; Jamil, Kaiser; Rao Tata, Narasinga; Hembram, Kaliyan

    2014-09-01

    Zinc oxide nanoparticles (ZnO NPs) have recently received growing attention for various biomedical applications, including use as therapeutic or carrier for drug delivery and/or imaging. For the above applications, the NPs necessitate administration into the body leading to their systemic exposure. To better anticipate the safety, make risk assessment, and be able to interpret the future preclinical and clinical safety data, it is important to systematically understand the biological interaction of the NPs, the consequences of such interaction, and the mechanisms associated with the toxicity induction, with the important components with which the NPs are expected to be in contact after systemic exposure. In this context, we report here a detailed study on the biological interactions in vitro of the ZnO NPs with healthy human primary lymphocytes as these are the important immune components and the first systemic immune contact, and with the whole human blood. Additionally, the influence, if any, of the NPs shape (spheres and rods) on the biological interaction has been evaluated. The ZnO NPs caused toxicity (30% at 12.5 μg ml-1 spheres and 10.5 μg ml-1 rods; 50% at 22 μg ml-1 spheres and 19.5 μg ml-1 rods) to the lymphocytes at molecular and genetic level in a dose-dependent and shape-dependent manner, while the interaction consequences with the blood and blood components such as RBC, platelets was only dose-dependent and not shape-dependent. This is evident from the decreased RBC count due to increased %Hemolysis (5.3% in both the spheres- and rods-treated blood) and decreased platelet count due to increased %platelet aggregation (28% in spheres-treated and 33% in rods-treated platelet-rich plasma). Such in-depth understanding of the biological interaction of the NPs, the consequences, and the associated mechanisms in vitro could be expected to allow anticipating the NP safety for risk assessment and for interpretation of the preclinical and clinical safety

  5. Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition.

    Science.gov (United States)

    Cooper, Christopher D O; Newman, Joseph A; Gileadi, Opher

    2014-02-01

    The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.

  6. Three "quantum" models of competition and cooperation in interacting biological populations and social groups

    CERN Document Server

    Vol, E D

    2012-01-01

    In present paper we propose the consistent statistical approach which appropriate for a number of models describing both behavior of biological populations and various social groups interacting with each other.The approach proposed based on the ideas of quantum theory of open systems (QTOS) and allows one to account explicitly both discreteness of a system variables and their fluctuations near mean values.Therefore this approach can be applied also for the description of small populations where standard dynamical methods are failed. We study in detail three typical models of interaction between populations and groups: 1) antagonistic struggle between two populations 2) cooperation (or, more precisely, obligatory mutualism) between two species 3) the formation of coalition between two feeble groups in their conflict with third one that is more powerful . The models considered in a sense are mutually complementary and include the most types of interaction between populations and groups. Besides this method can ...

  7. Eph/ephrins mediated thymocyte-thymic epithelial cell interactions control numerous processes of thymus biology

    Directory of Open Access Journals (Sweden)

    Javier eGarcia-Ceca

    2015-06-01

    Full Text Available Numerous studies emphasize the relevance of thymocyte-thymic epithelial cell (TECs interactions for the functional maturation of intrathymic T lymphocytes. The tyrosine kinase receptors Ephs (Erythropoietin-producing hepatocyte kinases and their ligands, ephrins (Eph receptor interaction proteins, are molecules known to be involved in the regulation of numerous biological systems in which cell-to-cell interactions are particularly relevant. In the last years, we and other authors have demonstrated the importance of these molecules in the thymic functions and the T-cell development. In the present report, we review data on the effects of Ephs and ephrins, in the functional maturation of both thymic epithelial microenvironment and thymocyte maturation as well as on their role in the lymphoid progenitor recruitment into the thymus.

  8. The influence of interactive technology on student performance in an Oklahoma secondary Biology I program

    Science.gov (United States)

    Feltman, Vallery

    Over the last decade growth in technologies available to teach students and enhance curriculum has become an important consideration in the educational system. The profile of today's secondary students have also been found to be quite different than those of the past. Their learning styles and preferences are issues that should be addressed by educators. With the growth and availability of new technologies students are increasingly expecting to use these as learning tools in their classrooms. This study investigates how interactive technology may impact student performance. This study specifically focuses on the use of the Apple Ipad in 4 Biology I classrooms. This study used an experimental mixed method design to examine how using Ipads for learning impacted student achievement, motivation to learn, and learning strategies. Qualitatively the study examined observed student behaviors and student perceptions regarding the use of interactive technologies. Data was analyzed using descriptive statistics, t-tests, 2-way ANOVAs, and qualitative analysis. Quantitatively the results revealed no significant difference between students who used the interactive technology to learn and those who did not. Qualitative data revealed behaviors indicative of being highly engaged with the subject matter and the development of critical thinking skills which may improve student performance. Student perceptions also revealed overall positive experiences with using interactive technology in the classroom. It is recommended that further studies be done to look at using interactive technologies for a longer period of time using multiple subjects areas. This would provide a more in-depth exploration of interactive technologies on student achievement.

  9. Bubble-bubble interaction: A potential source of cavitation noise

    CERN Document Server

    Ida, Masato

    2009-01-01

    The interaction between microbubbles through pressure pulses has been studied to show that it can be a source of cavitation noise. A recent report demonstrated that the acoustic noise generated by a shrimp originates from the collapse of a cavitation bubble produced when the shrimp closes its snapper claw. The recorded acoustic signal contains a broadband noise that consists of positive and negative pulses, but a theoretical model for single bubbles fails to reproduce the negative ones. Using a nonlinear multibubble model we have shown here that the negative pulses can be explained by considering the interaction of microbubbles formed after the cavitation bubble has collapsed and fragmented: Positive pulses produced at the collapse of the microbubbles hit and impulsively compress neighboring microbubbles to generate reflected pulses whose amplitudes are negative. Discussing the details of the noise generation process, we have found that no negative pulses are generated if the internal pressure of the reflecti...

  10. The importance of biological interactions for the vertical distribution of nematodes in a temperate ultra-dissipative sandy beach

    Science.gov (United States)

    Maria, Tatiana F.; Vanaverbeke, Jan; Esteves, André M.; De Troch, Marleen; Vanreusel, Ann

    2012-01-01

    This study of the vertical distribution of nematode communities in an ultra-dissipative sandy beach on the North Sea coast at De Panne, Belgium showed species-specific vertical migrations occurred over a tidal cycle. During the period of submersion, smaller deposit feeders were dominant at the subsurface, whereas large nematodes (originally classified as predators) were concentrated at the surface. The interstitial water content showed a weak correlation to the observed patterns and biological interactions among nematodes, such as predation and competition, which were measured through stable isotopes, also explained the observed segregation. The predator Enoplolaimus litoralis and its potential prey species did not co-exist in the same part of the sediment, suggesting avoidance of predation by prey species. In addition, the different prey species inhabited different subsurface layers, which can be explained by avoidance of competition for food. Stable isotope signatures further showed that the two major biological components of sandy beaches (macrofauna and meiofauna, including some species assumed to be predators) partly depend on microphytobenthos, demonstrating the importance of in situ primary producers in the diet of the fauna from ultra-dissipative sandy beaches. However, meiofauna and macrofauna do not seem to compete for these food sources. The combined examination of environmental and biological factors revealed the additional importance of the latter in controlling the vertical distribution of nematodes in environments that were previously assumed to be mainly physically controlled.

  11. In vitro interactions between Armillaria species and potential biocontrol fungi

    Directory of Open Access Journals (Sweden)

    Keča Nenad

    2009-01-01

    Full Text Available Interaction between Armillaria species and seven other fungi were tested in vitro. Tree antagonistic (Trichoderma viride, Trichotecium roseum and Penicillium sp. and four decaying (Hypholoma fasciculare¸ Hypholoma capnoides, Phlebiopsis gigantea, and Pleurotus ostreatus fungi were chosen for this study. The best results were noted for Trichoderma viride, because fungus was able to kill both mycelia and rhizomorphs of Armillaria species, while Hypholoma spp. inhibited both growth of Armillaria colonies and rhizomorph production.

  12. Improved Interaction Potentials for Charged Residues in Proteins

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self-consistent, exper...... directly in molecular simulations with no modification of neutral residues needed and are envisioned to be particular important in simulations where charged residues change environment....

  13. Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances

    Science.gov (United States)

    Montaño-Machado, Vanessa; Noël, Céline; Chevallier, Pascale; Turgeon, Stéphane; Houssiau, Laurent; Pauthe, Emmanuel; Pireaux, Jean-Jacques; Mantovani, Diego

    2017-02-01

    Coating medical devices with several bioactive molecules is an interesting approach to achieve specific biological targets upon the interaction of the biomaterial with the living environment. In this work, a fluorocarbon polymer (CFx) was first deposited by plasma treatment on stainless steel (SS) substrate and thereafter, coatings containing fibronectin (FN) and phosphorylcholine (PRC) were created for cardiovascular applications. These two biomolecules were chosen to promote endothelialization and to avoid thrombus formation, respectively. Adsorption and grafting techniques were applied - and combined - to accomplish 4 different coatings containing both molecules. However, big challenge was found to characterize a small molecule (PRC: 184 g/mol) interacting with a protein (FN: 450 kD). For the first time XPS, dynamic water contact angle, immunostaining and ToF-SIMS (imaging and depth profiling) analyses were combined to accomplish the characterization of such a coating. The most encouraging biological performances were obtained for samples where FN was grafted to the CFx film followed by the adsorption of PRC: proliferation of endothelial cells and hemocompatibility properties were observed. Promising coatings for cardiovascular applications were developed. The relevance of characterizing the coatings with high sensitive techniques and the further correlation with their biological performances were evidenced.

  14. Fluid-Structure Interaction Using Retarded Potential and ABAQUS

    Science.gov (United States)

    1992-08-19

    but require the formuation and factoring of a global stiffness matrix. This is very costly and even prohibitive especially for Manuacript approved...Dimensional Retarded Potential Fluid - Finite Element Structural Analysis, NRL Memorandum, Report 5903, May 1987. 20. Tamm. M. A., A Parametric Patch

  15. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    Science.gov (United States)

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  16. Investigation of natural lipid-phenolic interactions on biological properties of virgin olive oil.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Ereifej, Khalil; Gammoh, Sana; Alhamad, Mohammad N; Mhaidat, Nizar; Kubow, Stan; Johargy, Ayman; Alnaiemi, Ola J

    2014-12-10

    There is limited knowledge regarding the impact of naturally occurring lipid-phenolic interactions on the biological properties of phenolics in virgin olive oil. Free and bound phenolics were isolated via sequential methanolic extraction at 30 and 60 °C, and were identified and quantified using reversed phase high performance liquid chromatography, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and gas chromatography. Decreased oleic acid concentrations and increased concentrations of palmitoleic acid, stearic, linoleic, and linolenic acids were observed in virgin olive oil after removal of free and bound lipid phenolic compounds. The presence of p-hydroxybenzoic acid and tyrosol bound to glycerides was determined via LC-MS/MS, which indicates natural lipid-phenolic interactions in virgin olive oil. Both free and lipid bound phenolic extracts exerted antiproliferative activities against the CRC1 and CRC5 colorectal cancer cell lines. The present work indicates that naturally occurring lipid-phenolic interactions can affect the biological properties of phenolics in virgin olive oil.

  17. Fluorescent resonance energy transfer based detection of biological contaminants through hybrid quantum dot-quencher interactions.

    Science.gov (United States)

    Ramadurai, D; Norton, E; Hale, J; Garland, J W; Stephenson, L D; Stroscio, M A; Sivananthan, S; Kumar, A

    2008-06-01

    A nanoscale sensor employing fluorescent resonance energy transfer interactions between fluorescent quantum dots (QDs) and organic quencher molecules can be used for the multiplexed detection of biological antigens in solution. Detection occurs when the antigens to be detected displace quencher-labelled inactivated (or dead) antigens of the same type attached to QD-antibody complexes through equilibrium reactions. This unquenches the QDs, allowing detection to take place through the observation of photoluminescence in solution or through the fluorescence imaging of unquenched QD complexes trapped on filter surfaces. Multiplexing can be accomplished by using several different sizes of QDs, with each size QD labelled with an antibody for a different antigen, providing the ability to detect several types of antigens or biological contaminants simultaneously in near real-time with high specificity and sensitivity.

  18. Biology and host range of Heterapoderopsis bicallosicollis; a potential biological control agent for Chinese tallow Triadica sebifera

    Science.gov (United States)

    Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...

  19. Lipid-lipid and lipid-drug interactions in biological membranes

    Science.gov (United States)

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host

  20. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction.

    Directory of Open Access Journals (Sweden)

    Divyaswetha Peddinti

    Full Text Available BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.

  1. ESL students learning biology: The role of language and social interactions

    Science.gov (United States)

    Jaipal, Kamini

    This study explored three aspects related to ESL students in a mainstream grade 11 biology classroom: (1) the nature of students' participation in classroom activities, (2) the factors that enhanced or constrained ESL students' engagement in social interactions, and (3) the role of language in the learning of science. Ten ESL students were observed over an eight-month period in this biology classroom. Data were collected using qualitative research methods such as participant observation, audio-recordings of lessons, field notes, semi-structured interviews, short lesson recall interviews and students' written work. The study was framed within sociocultural perspectives, particularly the social constructivist perspectives of Vygotsky (1962, 1978) and Wertsch (1991). Data were analysed with respect to the three research aspects. Firstly, the findings showed that ESL students' preferred and exhibited a variety of participation practices that ranged from personal-individual to socio-interactive in nature. Both personal-individual and socio-interactive practices appeared to support science and language learning. Secondly, the findings indicated that ESL students' engagement in classroom social interactions was most likely influenced by the complex interactions between a number of competing factors at the individual, interpersonal and community/cultural levels (Rogoff, Radziszewska, & Masiello, 1995). In this study, six factors that appeared to enhance or constrain ESL students' engagement in classroom social interactions were identified. These factors were socio-cultural factors, prior classroom practice, teaching practices, affective factors, English language proficiency, and participation in the research project. Thirdly, the findings indicated that language played a significant mediational role in ESL students' learning of science. The data revealed that the learning of science terms and concepts can be explained by a functional model of language that includes: (1

  2. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.

    2009-01-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  3. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  4. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    Directory of Open Access Journals (Sweden)

    Cheryl-Emiliane Tien Chow

    2015-04-01

    Full Text Available Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs, remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10m and oxygen-starved basin (200m waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs predicted across all 34 viral fosmids, 77.6% (n=5010 had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI’s non-redundant ‘nr’ database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.

  5. A constructive model potential method for atomic interactions

    Science.gov (United States)

    Bottcher, C.; Dalgarno, A.

    1974-01-01

    A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.

  6. Serum and tissue PIVKA-II expression reflect the biological malignant potential of small hepatocellular carcinoma.

    Science.gov (United States)

    Tamano, Masaya; Sugaya, Hitoshi; Oguma, Motoo; Iijima, Makoto; Yoneda, Masashi; Murohisa, Toshimitsu; Kojima, Kazuo; Kuniyoshi, Toru; Majima, Yuichi; Hashimoto, Takashi; Terano, Akira

    2002-04-01

    A sensitive method for measuring the serum level of protein-induced by vitamin K absence or antagonist II (PIVKA-II) has become so widely available that it is now used for the clinical diagnosis of small hepatocellular carcinoma (HCC). It is known that serum PIVKA-II can be a prognostic indicator for HCC, but there have been no detailed investigations concerning the tissue expression of PIVKA-II. The present study assessed the relationship between serum or tissue PIVKA-II and the biological malignant potential of HCC. The subjects were 25 patients with histologically confirmed HCC, that were solitary and 3 cm or less in diameter. Tissue PIVKA-II was detected by immunostaining using MU-3 as the primary antibody. The biological malignant potential of the tumors was evaluated on the basis of the Ki-67 labeling index of HCC cells and the tumor arterial vascularity assesed by angiography and CO(2) enhanced ultrasonography. The recurrence-free period after treatment was also evaluated. Among the 25 patients, eight were positive for tissue PIVKA-II. Serum PIVKA-II levels were significantly higher in the tissue PIVKA-II-positive patients compared with the negative patients, but serum and tissue PIVKA-II expressions were not consistently parallel. Tumor cell proliferation was closely correlated with the tissue PIVKA-II expression, while the recurrence-free period was correlated with the serum PIVKA-II level. Tumor arterial vascularity showed a strong correlation with the expression of both serum and tissue PIVKA-II. In conclusion, serum and tissue PIVKA-II expression reflect the biological malignant potential of HCC and thus may be useful indicators for the prognosis of small HCC.

  7. On critical stability of three quantum charges interacting through delta potentials

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We consider three one dimensional quantum, charged and spinless particles interacting through delta potentials. We derive sufficient conditions which guarantee the existence of at least one bound state.......We consider three one dimensional quantum, charged and spinless particles interacting through delta potentials. We derive sufficient conditions which guarantee the existence of at least one bound state....

  8. Biological characteristics of dengue virus and potential targets for drug design

    Institute of Scientific and Technical Information of China (English)

    Rui-feng Qi; Ling Zhang; Cheng-wu Chi

    2008-01-01

    Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antiviral drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the progress on studies of vaccines and drugs based on potential targets of the dengue virus.

  9. Identification of potential target levels for Central Baltic Sea fishing mortalities, taking multispecies interactions into account

    DEFF Research Database (Denmark)

    Vinther, Morten; Neuenfeldt, Stefan; Eero, Margit

    2012-01-01

    The main biological interactions between Baltic cod, herring and sprat have been modelled in a stochastic multispecies (SMS) model. Based on this, a simple approach has been developed to quantify candidates for FMSY proxies (fishing mortality that produces the maximum sustainable yield) in a mult......The main biological interactions between Baltic cod, herring and sprat have been modelled in a stochastic multispecies (SMS) model. Based on this, a simple approach has been developed to quantify candidates for FMSY proxies (fishing mortality that produces the maximum sustainable yield...

  10. Biology-environment interaction and evocative biology-environment correlation: contributions of harsh discipline and parental psychopathology to problem adolescent behaviors.

    Science.gov (United States)

    Riggins-Caspers, Kristin M; Cadoret, Remi J; Knutson, John F; Langbehn, Douglas

    2003-05-01

    Using an adoption paradigm, the Bioecological Model of development proposed by Bronfenbrenner and Ceci in 1994 was tested by concurrently modeling for biology-environment interaction and evocative biology-environment correlation. A sample of 150 adult adoptees (ages, 18-45 years) provided retrospective reports of harsh adoptive parent discipline, which served as the environmental independent variables. Birth parent psychopathology served as the biological predictor. The dependent variables were retrospective adoptee and adoptive parent reports on adolescent aggressive and conduct-disordered behaviors. Finally, adoptees were classified as experiencing contextual environmental risk using the presence of two or more adverse factors in the adoptive home (e.g., adoptive parent psychopathology) as the cutoff. The contextual environment was found to moderate the biological process of evocative biology-environment correlation, providing empirical support for the Bronfenbrenner and Ceci (1994) Bioecological Model.

  11. Technological Dangers and the Potential of Human-Robot Interaction

    DEFF Research Database (Denmark)

    2016-01-01

    The ethical debate on social robotics has become one of the cutting edge topics of our time. When it comes to both academic and non-academic debates, the methodological framework is, with few exceptions, typically and tacitly grounded in an us-versus-them perspective. It is as though we were...... technological dangers and opportunities. Finally, aiming for the very limits of the theory, I discuss the contours of a praxis facilitating being-with-robots beyond conceptualization. Basically, this mode of being, pertaining to non-technological HRI, bypasses Heidegger’s warnings, and potentially facilitates...

  12. Proteomic dissection of biological pathways/processes through profiling protein-protein interaction networks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cellular functions, either under the normal or pathological conditions or under different stresses, are the results of the coordinated action of multiple proteins interacting in macromolecular complexes or assemblies. The precise determination of the specific composition of protein complexes, especially using scalable and high-throughput methods, represents a systematic approach toward revealing particular cellular biological functions. In this regard, the direct profiling protein-protein interactions (PPIs) represent an efficient way to dissect functional pathways for revealing novel protein functions. In this review, we illustrate the technological evolution for the large-scale and precise identification of PPIs toward higher physiologically relevant accuracy. These techniques aim at improving the efficiency of complex pull-down, the signal specificity and accuracy in distinguishing specific PPIs, and the accuracy of identifying physiological relevant PPIs. A newly developed streamline proteomic approach for mapping the binary relationship of PPIs in a protein complex is introduced.

  13. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge based with regard to low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify and quantify the mechanisms by which low and atmospheric pressure plasma deactivates endotoxic biomolecules. Additionally, we wanted to understand the mechanism by which atmospheric pressure plasmas (APP) modify surfaces and how these modifications depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish this. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of representative biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic biomolecule changes. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) accompanied these biological effects. One of the most important findings in this work is the significant radical-induced deactivation and surface modification can occur with minimal etching. However, if radical fluxes and corresponding etch rates are relatively high, for example at atmospheric pressure, endotoxic biomolecule film inactivation may require near-complete removal of the film. These findings motivated further work at

  14. Cardiocladius oliffi (Diptera: Chironomidae as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae

    Directory of Open Access Journals (Sweden)

    Wilson Michael D

    2009-04-01

    Full Text Available Abstract Background The control of onchocerciasis in the African region is currently based mainly on the mass drug administration of ivermectin. Whilst this has been found to limit morbidity, it does not stop transmission. In the absence of a macrofilaricide, there is a need for an integrated approach for disease management, which includes vector control. Vector control using chemical insecticides is expensive to apply, and therefore the use of other measures such as biological control agents is needed. Immature stages of Simulium squamosum, reared in the laboratory from egg masses collected from the field at Boti Falls and Huhunya (River Pawnpawn in Ghana, were observed to be attacked and fed upon by larvae of the chironomid Cardiocladius oliffi Freeman, 1956 (Diptera: Chironomidae. Methods Cardiocladius oliffi was successfully reared in the rearing system developed for S. damnosum s.l. and evaluated for its importance as a biological control agent in the laboratory. Results Even at a ratio of one C. oliffi to five S. squamosum, they caused a significant decrease in the number of adult S. squamosum emerging from the systems (treatments. Predation was confirmed by the amplification of Simulium DNA from C. oliffi observed to have fed on S. squamosum pupae. The study also established that the chironomid flies could successfully complete their development on a fish food diet only. Conclusion Cardiocladius oliffi has been demonstrated as potential biological control agent against S. squamosum.

  15. [Glanders--a potential disease for biological warfare in humans and animals].

    Science.gov (United States)

    Lehavi, Ofer; Aizenstien, Orna; Katz, Lior H; Hourvitz, Ariel

    2002-05-01

    Infection with Burkholderia mallei (formerly Pseudomonas mallei) can cause a subcutaneous infection known as "farcy" or can disseminate to condition known as Glanders. It is primarily a disease affecting horses, donkeys and mules. In humans, Glanders can produce four types of disease: localized form, pulmonary form, septicemia, and chronic form. Necrosis of the tracheobronchial tree and pustular skin lesions characterize acute infection with B. mallei. Other symptoms include febrile pneumonia, if the organism was inhaled, or signs of sepsis and multiple abscesses, if the skin was the port of entry. Glanders is endemic in Africa, Asia, the Middle East, and Central and South America. Glanders has low contiguous potential, but because of the efficacy of aerosolized dissemination and the lethal nature of the disease, B. mallei was considered a candidate for biological warfare. During World War I, Glanders was believed to have been spread to infect large numbers of Russian horses and mules on the Eastern front. The Japanese infected horses, civilians and prisoners of war during World War II. The USA and the Soviet Union have shown interest in B. mallei in their biological warfare program. The treatment is empiric and includes mono or poly-therapy with Ceftazidime, Sulfadiazine, Trimethoprim + Sulfamethoxazol, Gentamicin, Imipenem etc. Aggressive control measures essentially eliminated Glanders from the west. However, with the resurgent concern about biological warfare, B. mallei is now being studied in a few laboratories worldwide. This review provides an overview of the disease and presents the only case reported in the western world since 1949.

  16. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  17. Hyperon-nucleon single-particle potentials with low-momentum interactions

    CERN Document Server

    Djapo, Haris; Wambach, Jochen

    2008-01-01

    Single-particle potentials in Hartree-Fock approximation for different hyperon-nucleon (YN) channels are calculated in the framework of the effective low-momentum YN interaction V_lowk. In contrast to the nucleon-nucleon interaction, the available experimental data for the YN interaction are scarce. As a consequence no unique YN low-momentum potential V_lowk can be predicted from the various bare potentials. The resulting momentum- and density-dependent single-particle potentials for several different bare OBE models and for chiral effective field theory are compared to each other.

  18. Estimating the Effects of Habitat and Biological Interactions in an Avian Community.

    Directory of Open Access Journals (Sweden)

    Robert M Dorazio

    Full Text Available We used repeated sightings of individual birds encountered in community-level surveys to investigate the relative roles of habitat and biological interactions in determining the distribution and abundance of each species. To analyze these data, we developed a multispecies N-mixture model that allowed estimation of both positive and negative correlations between abundances of different species while also estimating the effects of habitat and the effects of errors in detection of each species. Using a combination of single- and multispecies N-mixture modeling, we examined for each species whether our measures of habitat were sufficient to account for the variation in encounter histories of individual birds or whether other habitat variables or interactions with other species needed to be considered. In the community that we studied, habitat appeared to be more influential than biological interactions in determining the distribution and abundance of most avian species. Our results lend support to the hypothesis that abundances of forest specialists are negatively affected by forest fragmentation. Our results also suggest that many species were associated with particular types of vegetation as measured by structural attributes of the forests. The abundances of 6 of the 73 species observed in our study were strongly correlated. These species included large birds (American Crow (Corvus brachyrhynchos and Red-winged Blackbird (Agelaius phoeniceus that forage on the ground in open habitats and small birds (Red-eyed Vireo (Vireo olivaceus, House Wren (Troglodytes aedon, Hooded Warbler (Setophaga citrina, and Prairie Warbler (Setophaga discolor that are associated with dense shrub cover. Species abundances were positively correlated within each size group and negatively correlated between groups. Except for the American Crow, which preys on eggs and nestlings of small song birds, none of the other 5 species is known to display direct interactions, so we

  19. The Tip-Sample Interaction in Atomic Force Microscopy and its Implications for Biological Applications.

    Science.gov (United States)

    Baselt, David Randall

    This thesis describes the construction of an atomic force microscope and its application to the study of tip -sample interactions, primarily through the use of friction and hardness (elasticity) imaging. Part one describes the atomic force microscope, which consists of a scanned-cantilever stage (chapter 2); a versatile digital signal processor-based control system with self-optimizing feedback, lock-in amplifier emulation (for hardness imaging), and macro programmability (chapter 3); and image processing software (chapter 4). Part two describes a number of results that have helped to characterize the tip-sample interaction and the contact imaging modes used for its study. Meniscus forces act laterally as well as normally, and that they vary with position (chapter 5). Friction measurements couple with scanner position and feedback, and the meniscus effects friction images (chapter 6). Sliding of the tip over the sample surface introduces slope-dependence into hardness measurements (chapter 7). Dull tips can create prominent topography artifacts even on very flat surfaces (chapter 8). In an investigation of collagen fibrils, AFM has revealed the characteristic 65 nm banding pattern, a second, minor banding pattern, and microfibrils that run along the fibril axis. The distribution of proteoglycans along the fibrils creates a characteristic pattern in friction images. Although imaging in water reduces interaction forces, water can also make biological samples more sensitive to force. However, for robust biological samples imaged in air, tip shape presents a greater obstacle than tip -sample interaction forces to obtaining high-resolution images. Tip contamination increases tip-sample friction and can occasionally improve resolution (chapter 9). For a separate project I have designed a general -purpose nearfield scanning optical microscope (chapter 10).

  20. Arabidopsis thaliana AUCSIA-1 regulates auxin biology and physically interacts with a kinesin-related protein.

    Directory of Open Access Journals (Sweden)

    Barbara Molesini

    Full Text Available Aucsia is a green plant gene family encoding 44-54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum Aucsia genes (SlAucsia-1 and SlAucsia-2 altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i exogenous auxin, ii an inhibitor of polar auxin transport and iii ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570. Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology.

  1. The response of the polarized Fermi mixture to an artificial vector potential: The interaction strength and imbalance chemical potential effects

    Science.gov (United States)

    Ebrahimian, N.; Safiee, Z.

    2017-03-01

    We consider a polarized Fermi mixture (with normal-superfluid phase separation), subjected to artificial vector potential. We concentrate on the BCS regime with various interaction strengths and numerically obtain the polarisability of the system. We obtain the functional dependence of the polarisability of the system on frequency and the relevant physical parameters, namely the interaction strength, the mass ratio, the average and imbalance chemical potentials. Also, we find the special frequency (ωs), for which the rate of the response of system to the potential is changed and the cut-off frequency (ωcutoff), for which the response starts to become infinity. We investigate the behavior of the curves of polarisability versus proper physical parameters for ω physical parameters. Finally, the system's response can be controlled by relevant physical parameters, such as interaction strength.

  2. Transitioning from microbiome composition to microbial community interactions: the potential of the metaorganism Hydra as an experimental model

    Directory of Open Access Journals (Sweden)

    Peter Deines

    2016-10-01

    Full Text Available Animals are home to complex microbial communities, which are shaped through interactions within the community, interactions with the host, and through environmental factors. The advent of high-throughput sequencing methods has led to novel insights in changing patterns of community composition and structure. However, deciphering the different types of interactions among community members, with their hosts and their interplay with their environment is still a challenge of major proportion. The emerging fields of synthetic microbial ecology and community systems biology have the potential to decrypt these complex relationships. Studying host-associated microbiota across multiple spatial and temporal scales will bridge the gap between individual microorganism studies and large-scale whole community surveys. Here, we discuss the unique potential of Hydra as an emerging experimental model in microbiome research. Through in vivo, in vitro, and in silico approaches the interaction structure of host-associated microbial communities and the effects of the host on the microbiota and its interactions can be disentangled. Research in the model system Hydra can unify disciplines from molecular genetics to ecology, opening up the opportunity to discover fundamental rules that govern microbiome community stability.

  3. Severe potential drug-drug interactions in older adults with dementia and associated factors

    Directory of Open Access Journals (Sweden)

    Michele Bogetti-Salazar

    2016-01-01

    Full Text Available OBJECTIVE: To identify the main severe potential drug-drug interactions in older adults with dementia and to examine the factors associated with these interactions. METHOD: This was a cross-sectional study. The enrolled patients were selected from six geriatrics clinics of tertiary care hospitals across Mexico City. The patients had received a clinical diagnosis of dementia based on the current standards and were further divided into the following two groups: those with severe drug-drug interactions (contraindicated/severe (n=64 and those with non-severe drug-drug interactions (moderate/minor/absent (n=117. Additional socio-demographic, clinical and caregiver data were included. Potential drug-drug interactions were identified using Micromedex Drug Reax 2.0® database. RESULTS: A total of 181 patients were enrolled, including 57 men (31.5% and 124 women (68.5% with a mean age of 80.11±8.28 years. One hundred and seven (59.1% patients in our population had potential drug-drug interactions, of which 64 (59.81% were severe/contraindicated. The main severe potential drug-drug interactions were caused by the combinations citalopram/anti-platelet (11.6%, clopidogrel/omeprazole (6.1%, and clopidogrel/aspirin (5.5%. Depression, the use of a higher number of medications, dementia severity and caregiver burden were the most significant factors associated with severe potential drug-drug interactions. CONCLUSIONS: Older people with dementia experience many severe potential drug-drug interactions. Anti-depressants, antiplatelets, anti-psychotics and omeprazole were the drugs most commonly involved in these interactions. Despite their frequent use, anti-dementia drugs were not involved in severe potential drug-drug interactions. The number and type of medications taken, dementia severity and depression in patients in addition to caregiver burden should be considered to avoid possible drug interactions in this population.

  4. Novel factors in the pathogenesis of psoriasis and potential drug candidates are found with systems biology approach.

    Directory of Open Access Journals (Sweden)

    Máté Manczinger

    Full Text Available Psoriasis is a multifactorial inflammatory skin disease characterized by increased proliferation of keratinocytes, activation of immune cells and susceptibility to metabolic syndrome. Systems biology approach makes it possible to reveal novel important factors in the pathogenesis of the disease. Protein-protein, protein-DNA, merged (containing both protein-protein and protein-DNA interactions and chemical-protein interaction networks were constructed consisting of differentially expressed genes (DEG between lesional and non-lesional skin samples of psoriatic patients and/or the encoded proteins. DEGs were determined by microarray meta-analysis using MetaOMICS package. We used STRING for protein-protein, CisRED for protein-DNA and STITCH for chemical-protein interaction network construction. General network-, cluster- and motif-analysis were carried out in each network. Many DEG-coded proteins (CCNA2, FYN, PIK3R1, CTGF, F3 and transcription factors (AR, TFDP1, MEF2A, MECOM were identified as central nodes, suggesting their potential role in psoriasis pathogenesis. CCNA2, TFDP1 and MECOM might play role in the hyperproliferation of keratinocytes, whereas FYN may be involved in the disturbed immunity in psoriasis. AR can be an important link between inflammation and insulin resistance, while MEF2A has role in insulin signaling. A controller sub-network was constructed from interlinked positive feedback loops that with the capability to maintain psoriatic lesional phenotype. Analysis of chemical-protein interaction networks detected 34 drugs with previously confirmed disease-modifying effects, 23 drugs with some experimental evidences, and 21 drugs with case reports suggesting their positive or negative effects. In addition, 99 unpublished drug candidates were also found, that might serve future treatments for psoriasis.

  5. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Science.gov (United States)

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  6. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  7. Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions.

    Science.gov (United States)

    Pelaz, Beatriz; Charron, Gaëlle; Pfeiffer, Christian; Zhao, Yuliang; de la Fuente, Jesus M; Liang, Xing-Jie; Parak, Wolfgang J; Del Pino, Pablo

    2013-05-27

    The innovative use of engineered nanomaterials in medicine, be it in therapy or diagnosis, is growing dramatically. This is motivated by the current extraordinary control over the synthesis of complex nanomaterials with a variety of biological functions (e.g. contrast agents, drug-delivery systems, transducers, amplifiers, etc.). Engineered nanomaterials are found in the bio-context with a variety of applications in fields such as sensing, imaging, therapy or diagnosis. As the degree of control to fabricate customized novel and/or enhanced nanomaterials evolves, often new applications, devices with enhanced performance or unprecedented sensing limits can be achieved. Of course, interfacing any novel material with biological systems has to be critically analyzed as many undesirable adverse effects can be triggered (e.g. toxicity, allergy, genotoxicity, etc.) and/or the performance of the nanomaterial can be compromised due to the unexpected phenomena in physiological environments (e.g. corrosion, aggregation, unspecific absorption of biomolecules, etc.). Despite the need for standard protocols for assessing the toxicity and bio-performance of each new functional nanomaterial, these are still scarce or currently under development. Nonetheless, nanotoxicology and relating adverse effects to the physico-chemical properties of nanomaterials are emerging areas of the utmost importance which have to be continuously revisited as any new material emerges. This review highlights recent progress concerning the interaction of nanomaterials with biological systems and following adverse effects.

  8. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    Science.gov (United States)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  9. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  10. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  11. Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall.

    Directory of Open Access Journals (Sweden)

    Francesco Caruso

    Full Text Available The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activity. To understand the taurolidine antibacterial mechanism of action, we provide the experimental single crystal X-ray diffraction results together with theoretical methods to characterize the hydrolysis/decomposition reactions of taurolidine. The crystal structure features two independent molecules linked through intermolecular H-bonds with one of them somewhat positively charged. Taurolidine in a biological environment exists in equilibrium with taurultam derivatives and this is described theoretically as a 2-step process without an energy barrier: formation of cationic taurolidine followed by a nucleophilic attack of O(hydroxyl on the exocyclic C(methylene. A concerted mechanism describes the further hydrolysis of the taurolidine derivative methylol-taurultam. The interaction of methylol-taurultam with the diaminopimelic NH(2 group in the E. coli bacteria cell wall (peptidoglycan has a negative DeltaG value (-38.2 kcal/mol but a high energy barrier (45.8 kcal/mol suggesting no reactivity. On the contrary, taurolidine docking into E. coli fimbriae protein, responsible for bacteria adhesion to the bladder epithelium, shows it has higher affinity than mannose (the natural substrate, whereas methylol-taurultam and taurultam are less tightly bound. Since taurolidine is readily available because it is administered in high doses after peritonitis surgery, it may successfully compete with mannose explaining its effectiveness against bacterial infections at

  12. Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall.

    Science.gov (United States)

    Caruso, Francesco; Darnowski, James W; Opazo, Cristian; Goldberg, Alexander; Kishore, Nina; Agoston, Elin S; Rossi, Miriam

    2010-01-28

    The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4)methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activity. To understand the taurolidine antibacterial mechanism of action, we provide the experimental single crystal X-ray diffraction results together with theoretical methods to characterize the hydrolysis/decomposition reactions of taurolidine. The crystal structure features two independent molecules linked through intermolecular H-bonds with one of them somewhat positively charged. Taurolidine in a biological environment exists in equilibrium with taurultam derivatives and this is described theoretically as a 2-step process without an energy barrier: formation of cationic taurolidine followed by a nucleophilic attack of O(hydroxyl) on the exocyclic C(methylene). A concerted mechanism describes the further hydrolysis of the taurolidine derivative methylol-taurultam. The interaction of methylol-taurultam with the diaminopimelic NH(2) group in the E. coli bacteria cell wall (peptidoglycan) has a negative DeltaG value (-38.2 kcal/mol) but a high energy barrier (45.8 kcal/mol) suggesting no reactivity. On the contrary, taurolidine docking into E. coli fimbriae protein, responsible for bacteria adhesion to the bladder epithelium, shows it has higher affinity than mannose (the natural substrate), whereas methylol-taurultam and taurultam are less tightly bound. Since taurolidine is readily available because it is administered in high doses after peritonitis surgery, it may successfully compete with mannose explaining its effectiveness against bacterial infections at laparoscopic lesions.

  13. On the theory of interaction potentials in ionic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Roberto [Departamento de Ciencia de los Materiales, Facultad de Ciencias Fisicas y Matematicas, Beauchef 850, Santiago (Chile); Soto-Bubert, Andres [Instituto de Ciencias Basicas, Facultad de Ingenieria, Universidad Diego Portales, Avenida Ejercito 441, Santiago (Chile)], E-mail: roberto.acevedo@umayor.cl

    2008-11-01

    The aim of this research work is to report a more comprehensive and detailed study of both, the intermolecular and intramolecular potencial functions with reference to the various families of the elpasolite type crystals. The cohesive energy has been thought as a sum of three terms; the long range (Coulombic), the Born and the van der Waals contributions to the total energy. The Born-Mayer-Buckingham potential{sup 1} has been employed in all of these current studies and a number of convergence tests are analyzed from a formal viewpoint. Our work has been focused to the following systems: Cs{sub 2}NaLnF{sub 6}, Cs{sub 2}NaLnCl{sub 6}, Cs{sub 2}NaLnBr{sub 6}, Rb{sub 2}NaLnF{sub 6} and Cs{sub 2}KLnF{sub 6} in the Fm3m space group. A substantial amount of theoretical models have been analyzed and several computing simulations have been undertaken to estimate the reticular energies and the corresponding heat of formation for these crystals. To achieve this goal, a Born-Haber thermodynamic cycle has been introduced in our model. It is shown that the calculated energy values are reasonable and follow the expected trend along the lanthanide series in the periodic chart. We also discuss the advantages and disadvantages of the current and proposed generalized model. The most likely sources for improvement are discussed in detail. New convergence tests as well as some master equations have been introduced to study the various diagonal contributions to the total energy.

  14. Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions

    OpenAIRE

    Conrad, Abigail H.; Zhang, Yuntao; Tasheva, Elena S.; Conrad, Gary W.

    2010-01-01

    Corneal glycosaminoglycans KS, CSA, and HA bind many intracellular and extracellular proteins and thus may influence the conformation or availability of these proteins to participate in other biological interactions. KS binds SLIT2 and may convert it from a neurorepellant to a neuroattractant.

  15. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    CERN Document Server

    Shao, Guo-yun; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-01-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential ($\\mu$PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the $\\mu$-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of $u, d$ quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and proper...

  16. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    Directory of Open Access Journals (Sweden)

    Luan Yihui

    2009-09-01

    Full Text Available Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Conclusion Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  17. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    Science.gov (United States)

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  18. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    Science.gov (United States)

    Latinovic, Z.; Sreckovic, M.; Janicijevic, M.; Ilic, J.; Radovanovic, J.

    2014-09-01

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode.

  19. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, R. M.

    2015-01-01

    Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype...... and phenotype, but their ability to accurately simulate gene-gene interactions has not been investigated extensively. Here we assess how accurately a metabolic model for Escherichia coli computes one particular type of gene-gene interaction, synthetic lethality, and find that the accuracy rate is between 25......% and 43%. The most common failure modes were incorrect computation of single gene essentiality and biological information that was missing from the model. Moreover, we performed virtual and biological screening against several synthetic lethal pairs to explore whether two-compound formulations could...

  20. Biological and Pharmacological Evaluation of Dimethoxycurcumin: A Metabolically Stable Curcumin Analogue with a Promising Therapeutic Potential.

    Science.gov (United States)

    Teymouri, Manouchehr; Barati, Nastaran; Pirro, Matteo; Sahebkar, Amirhosein

    2016-12-20

    Dimethoxycurcumin (DiMC) is a synthetic analogue of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles. This article is protected by copyright. All rights reserved.

  1. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  2. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A. [Department of Life Sciences, Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Trott, K. [St. Bartholemew`s and the Royal London School of Medicine and Dentistry, University of London (United Kingdom)

    1997-09-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% {+-} 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.) With 5 figs., 2 tabs., 19 refs.

  3. Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology.

    Science.gov (United States)

    Tóth, Balázs I; Géczy, Tamás; Griger, Zoltán; Dózsa, Anikó; Seltmann, Holger; Kovács, László; Nagy, László; Zouboulis, Christos C; Paus, Ralf; Bíró, Tamás

    2009-02-01

    Transient receptor potential vanilloid-1 (TRPV1), originally described as a central integrator of nociception, is expressed on human epidermal and hair follicle keratinocytes and is involved in regulation of cell growth and death. In human pilosebaceous units, we had shown that TRPV1 stimulation inhibits hair shaft elongation and matrix keratinocyte proliferation, and induces premature hair follicle regression and keratinocyte apoptosis. In the current study, we have explored the role of TRPV1-mediated signaling in sebaceous gland (SG) biology, using a human sebocyte cell culture model (SZ95 sebocytes). Demonstrating that human skin SG in situ and SZ95 sebocytes in vitro express TRPV1, we show that the prototypic TRPV1 agonist, capsaicin, selectively inhibits basal and arachidonic acid-induced lipid synthesis in a dose-, time-, and extracellular calcium-dependent and a TRPV1-specific manner. Low-dose capsaicin stimulates cellular proliferation via TRPV1, whereas higher concentrations inhibit sebocyte growth and induce cell death independent of TRPV1. Moreover, capsaicin suppresses the expression of genes involved in lipid homeostasis and of selected proinflammatory cytokines. Collectively, these findings support the concept that TRPV1 signaling is a significant, previously unreported player in human sebocyte biology and identify TRPV1 as a promising target in the clinical management of inflammatory SG disorders (for example, acne vulgaris).

  4. Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential.

    Science.gov (United States)

    Fajardo-Orduña, Guadalupe R; Mayani, Héctor; Montesinos, Juan J

    2015-11-01

    Mesenchymal stem cells (MSCs) play an important role in the physiology and homeostasis of the hematopoietic system. Because MSCs generate most of the stromal cells present in the bone marrow (BM), form part of the hematopoietic stem cell (HSC) niche, and produce various molecules regulating hematopoiesis, their hematopoiesis-supporting capacity has been demonstrated. In the last decade, BM-MSCs have been proposed to be useful in some ex vivo protocols for HSC expansion, with the aim of expanding their numbers for transplant purposes (HSC transplant, HSCT). Furthermore, application of MSCs has been proposed as an adjuvant cellular therapy for promoting rapid hematopoietic recovery in HSCT patients. Although the MSCs used in preliminary clinical trials have come from the BM, isolation of MSCs from far more accessible sources such as neonatal tissues has now been achieved, and these cells have been found to possess similar biological characteristics to those isolated from the BM. Therefore, such tissues are now considered as a potential alternative source of MSCs for clinical applications. In this review, we discuss current knowledge regarding the biological characteristics of MSCs as related to their capacity to support the formation of hematopoietic stem and progenitor cells. We also describe MSC manipulation for ex vivo HSC expansion protocols used for transplants and their clinical relevance for hematopoietic recovery in HSCT patients.

  5. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Fatma B. Hamad

    2015-04-01

    Full Text Available Cashew nut shells (CNS, which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.

  6. Potential biological applications of bio-based anacardic acids and their derivatives.

    Science.gov (United States)

    Hamad, Fatma B; Mubofu, Egid B

    2015-04-16

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.

  7. The biology of cancer testis antigens: putative function, regulation and therapeutic potential.

    Science.gov (United States)

    Fratta, Elisabetta; Coral, Sandra; Covre, Alessia; Parisi, Giulia; Colizzi, Francesca; Danielli, Riccardo; Nicolay, Hugues Jean Marie; Sigalotti, Luca; Maio, Michele

    2011-04-01

    Cancer testis antigens (CTA) are a large family of tumor-associated antigens expressed in human tumors of different histological origin, but not in normal tissues except for testis and placenta. This tumor-restricted pattern of expression, together with their strong in vivo immunogenicity, identified CTA as ideal targets for tumor-specific immunotherapeutic approaches, and prompted the development of several clinical trials of CTA-based vaccine therapy. Driven by this practical clinical interest, a more detailed characterization of CTA biology has been recently undertaken. So far, at least 70 families of CTA, globally accounting for about 140 members, have been identified. Most of these CTA are expressed during spermatogenesis, but their function is still largely unknown. Epigenetic events, particularly DNA methylation, appear to be the primary mechanism regulating CTA expression in both normal and transformed cells, as well as in cancer stem cells. In view of the growing interest in CTA biology, the aim of this review is to provide the most recent information on their expression, regulation and function, together with a brief summary of the major clinical trials involving CTA as therapeutic agents. The pharmacologic modulation of CTA expression profiles on neoplastic cells by DNA hypomethylating drugs will also be discussed as a feasible approach to design new combination therapies potentially able to improve the clinical efficacy of currently adopted CTA-based immunotherapeutic regimens in cancer patients.

  8. Artificial abelian gauge potentials induced by dipole-dipole interactions between Rydberg atoms

    CERN Document Server

    Cesa, A

    2013-01-01

    We analyze the influence of dipole-dipole interactions between Rydberg atoms on the generation of abelian artificial gauge potentials and fields. When two Rydberg atoms are driven by a uniform laser field, we show that the combined atom-atom and atom-field interactions give rise to new, non-uniform, artificial gauge potentials. We identify the mechanism responsible for the emergence of these gauge potentials. Analytical expressions for the latter indicate that the strongest artificial magnetic fields are reached in the regime intermediate between the dipole blockade regime and the regime in which the atoms are sufficiently far apart such that atom-light interaction dominates over atom-atom interactions. We discuss the differences and similarities of artificial gauge fields originating from resonant dipole-dipole and van der Waals interactions. We also give an estimation of experimentally attainable artificial magnetic fields resulting from this mechanism.

  9. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    Science.gov (United States)

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  10. Student Interactions with CD-ROM Storybooks: A Look at Potential Relationships between Multiple Intelligence Strengths and Levels of Interaction

    Science.gov (United States)

    Huffman, Celia A.

    2012-01-01

    This study looked at the potential relationship that may exist between students' intelligence strengths, in particular their spatial and kinesthetic strengths, and their combined cognitive and metacognitive levels of interaction with a CD-ROM storybook. The multiple intelligence strengths of a sample of students, measured via the MIDAS/My…

  11. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens

    2011-04-01

    We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  12. Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action.

    Directory of Open Access Journals (Sweden)

    Axel Hollmann

    Full Text Available Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC, C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.

  13. Stochastic description of the ligand-receptor interaction of biologically active substances at extremely low doses.

    Science.gov (United States)

    Gurevich, Konstantin G; Agutter, Paul S; Wheatley, Denys N

    2003-04-01

    Signalling molecules can be effective at extraordinarily low concentrations (down to attomolar levels). To handle such cases, probabilistic methods have been used to describe the formal kinetics of action of biologically active substances in these low doses, although it has been necessary to review what is meant by such a term. The mean numbers of transformed/degraded molecules and their dispersions were calculated for the possible range of ligand-receptor binding schemes. We used both analytical equations and numerical simulations to calculate the coefficients of variation (ratio of standard deviation to mean) and demonstrated that the distribution of the coefficient is highly dependent on the reaction scheme. It may, therefore, be used as an additional factor for discriminating between cooperative and noncooperative models of ligand-receptor interaction over extreme ranges of ligand dilution. The relevance to signalling behaviour is discussed.

  14. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  15. Multi-agent-based bio-network for systems biology: protein-protein interaction network as an example.

    Science.gov (United States)

    Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng

    2008-10-01

    Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.

  16. Peculiar features of the interaction potential between hydrogen and antihydrogen at intermediate separations

    Institute of Scientific and Technical Information of China (English)

    Lee Teck-Ghee; Wong Cheuk-Yin; Wang Lee-Shien

    2008-01-01

    This paper evaluates the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. It finds that the H-H interaction potential possesses the peculiar features of a shallow local minimum located around interatomic separations of r ~ 6a.u. and a barrier rising at r<~ 5a.u.

  17. Dynamic interaction potential and the scattering cross sections of the semiclassical plasma particles

    Energy Technology Data Exchange (ETDEWEB)

    Dzhumagulova, K. N.; Shalenov, E. O.; Gabdullina, G. L. [IETP, Al Farabi Kazakh National University, 71al Farabi Street, Almaty 050040 (Kazakhstan)

    2013-04-15

    The dynamic model of the charged particles interaction in non-ideal semiclassical plasma is presented. This model takes into account the quantum mechanical diffraction effect and the dynamic screening effect. On the basis of the dynamic interaction potential, the electron scattering cross sections are investigated. Comparison with the results obtained on the basis of other models and conclusions were made.

  18. A review on computational systems biology of pathogen-host interactions.

    Science.gov (United States)

    Durmuş, Saliha; Çakır, Tunahan; Özgür, Arzucan; Guthke, Reinhard

    2015-01-01

    Pathogens manipulate the cellular mechanisms of host organisms via pathogen-host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein-protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature.

  19. Heroin abuse accelerates biological aging: a novel insight from telomerase and brain imaging interaction.

    Science.gov (United States)

    Cheng, G L F; Zeng, H; Leung, M-K; Zhang, H-J; Lau, B W M; Liu, Y-P; Liu, G-X; Sham, P C; Chan, C C H; So, K-F; Lee, T M C

    2013-05-21

    Heroin abuse and natural aging exert common influences on immunological cell functioning. This observation led to a recent and untested idea that aging may be accelerated in abusers of heroin. We examined this claim by testing whether heroin use is associated with premature aging at both cellular and brain system levels. A group of abstinent heroin users (n=33) and matched healthy controls (n=30) were recruited and measured on various biological indicators of aging. These measures included peripheral blood telomerase activity, which reflects cellular aging, and both structural and functional measures of brain magnetic resonance imaging. We found that heroin users were characterized by significantly low telomerase activity (0.21 vs 1.78; 88% reduction; t(61)=6.96, Pbrain region implicated in aging. Using the PFC location identified from the structural analyses as a 'seed' region, it was further revealed that telomerase activity interacted with heroin use to impact age-sensitive brain functional networks (AlphaSim corrected Pbrain system and behavioral measures in the context of substance abuse. The present finding that heroin abuse is associated with accelerated aging at both cellular and brain system levels is novel and forms a unique contribution to our knowledge in how the biological processes of drug abusers may be disrupted.

  20. Development of Biological Movement Recognition by Interaction between Active Basis Model and Fuzzy Optical Flow Division

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi

    2014-01-01

    Full Text Available Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003. Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human. Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.

  1. Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer.

    Science.gov (United States)

    Wise, Steven G; Liu, Hongjuan; Yeo, Giselle C; Michael, Praveesuda L; Chan, Alex H P; Ngo, Alan K Y; Bilek, Marcela M M; Bao, Shisan; Weiss, Anthony S

    2016-03-01

    Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress-strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair.

  2. Biological Evaluation and Docking Analysis of Daturaolone as Potential Cyclooxygenase Inhibitor

    Directory of Open Access Journals (Sweden)

    Abdur Rauf

    2016-01-01

    Full Text Available This study deals with the isolation of the active constituent(s from a methanolic extract of Pistacia integerrima J. L. Stewart barks and it was also oriented to evaluate the in vivo and in silico anti-inflammatory activity. By NMR and crystallography techniques, we have isolated a triterpenoid identified as daturaolone (compound 1. This compound showed in vivo a significant and dose dependent (1–30 mg/kg anti-inflammatory activity on carrageenan-induced mouse paw oedema (ED50 = 10.1 mg/kg and on acetic acid-induced writhing responses in mice (ED50 = 13.8 mg/kg. In the in vivo experiments, the effect of tested compound was also evaluated in presence of the reference drug diclofenac (1–30 mg/kg. Moreover, in silico analysis of receptor ligand complex shows that compound 1 interacts with cyclooxygenases (COXs binding sites displaying an interesting interaction with COX-1. These findings suggest that compound 1 isolated from P. integerrima possesses in vivo anti-inflammatory and antinociceptive potentials, which are supported in silico by an interaction with COXs receptors.

  3. Reactive Boundary Conditions as Limits of Interaction Potentials for Brownian and Langevin Dynamics

    CERN Document Server

    Chapman, S Jonathan; Isaacson, Samuel A

    2015-01-01

    A popular approach to modeling bimolecular reactions between diffusing molecules is through the use of reactive boundary conditions. One common model is the Smoluchowski partial absorption condition, which uses a Robin boundary condition in the separation coordinate between two possible reactants. This boundary condition can be interpreted as an idealization of a reactive interaction potential model, in which a potential barrier must be surmounted before reactions can occur. In this work we show how the reactive boundary condition arises as the limit of an interaction potential encoding a steep barrier within a shrinking region in the particle separation, where molecules react instantly upon reaching the peak of the barrier. The limiting boundary condition is derived by the method of matched asymptotic expansions, and shown to depend critically on the relative rate of increase of the barrier height as the width of the potential is decreased. Limiting boundary conditions for the same interaction potential in b...

  4. Potential of Chitinolytic Serratia marcescens Strain JPP1 for Biological Control of Aspergillus parasiticus and Aflatoxin

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2013-01-01

    Full Text Available Serratia marcescens strain JPP1 was isolated from peanut hulls in Huai'an city, Jiangsu Province, China. Its potential to inhibit the mycelial growth of Aspergillus parasiticus and the subsequent aflatoxin production was evaluated. The strain JPP1 could produce chitinase to degrade fungal cell walls, which was the main mechanism of strain JPP1 for biocontrol. Scanning electron microscopy of fungi treated with the crude chitinase revealed abnormal morphological changes. While the strain was grown in the peanut hulls-based medium, the chitinase activity reached 7.39 units. RT-PCR analysis showed that the crude chitinase repressed the transcription of genes involved in the aflatoxin gene cluster, such as aflR, aflC (pksL1, and aflO (dmtA genes. By visual agar plate assay and tip culture method, the strain JPP1 exhibited remarkable inhibitory effect on mycelia growth (antifungal ratio >95% and subsequent aflatoxin production (antiaflatoxigenic ratio >98%. An in vitro assay with seed coating agent of bacterial suspension showed that strain JPP1 effectively reduced fungal growth and subsequent aflatoxin production on peanut seeds, and its antagonistic effect was superior to the common agricultural fungicide of carbendazim. These characteristics suggest that S. marcescens JPP1 strain could potentially be utilized for the biological control of phytopathogenic fungi and aflatoxin in Chinese peanut main producing areas.

  5. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin.

    Science.gov (United States)

    Wang, Kai; Yan, Pei-Sheng; Cao, Li-Xin; Ding, Qing-Long; Shao, Chi; Zhao, Teng-Fei

    2013-01-01

    Serratia marcescens strain JPP1 was isolated from peanut hulls in Huai'an city, Jiangsu Province, China. Its potential to inhibit the mycelial growth of Aspergillus parasiticus and the subsequent aflatoxin production was evaluated. The strain JPP1 could produce chitinase to degrade fungal cell walls, which was the main mechanism of strain JPP1 for biocontrol. Scanning electron microscopy of fungi treated with the crude chitinase revealed abnormal morphological changes. While the strain was grown in the peanut hulls-based medium, the chitinase activity reached 7.39 units. RT-PCR analysis showed that the crude chitinase repressed the transcription of genes involved in the aflatoxin gene cluster, such as aflR, aflC (pksL1), and aflO (dmtA) genes. By visual agar plate assay and tip culture method, the strain JPP1 exhibited remarkable inhibitory effect on mycelia growth (antifungal ratio >95%) and subsequent aflatoxin production (antiaflatoxigenic ratio >98%). An in vitro assay with seed coating agent of bacterial suspension showed that strain JPP1 effectively reduced fungal growth and subsequent aflatoxin production on peanut seeds, and its antagonistic effect was superior to the common agricultural fungicide of carbendazim. These characteristics suggest that S. marcescens JPP1 strain could potentially be utilized for the biological control of phytopathogenic fungi and aflatoxin in Chinese peanut main producing areas.

  6. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential.

    Science.gov (United States)

    Liu, Jin; Sun, Zheng; Gerken, Henri; Liu, Zheng; Jiang, Yue; Chen, Feng

    2014-06-10

    Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.

  7. Chlorella zofingiensis as an Alternative Microalgal Producer of Astaxanthin: Biology and Industrial Potential

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2014-06-01

    Full Text Available Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione, a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.

  8. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae)

    Science.gov (United States)

    Ginsberg, Howard S.; LeBrun, Roger A.; Heyer, Klaus; Zhioua, Elyes

    2002-01-01

    The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Guérin-Méneville, house crickets, Acheta domesticus (L.), and the milkweed bugs Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Placing treated insects with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4–10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.

  9. Expanding Interaction Potentials within Virtual Environments: Investigating the Usability of Speech and Manual Input Modes for Decoupled Interaction

    Directory of Open Access Journals (Sweden)

    Alex Stedmon

    2011-01-01

    Full Text Available Distributed technologies and ubiquitous computing now support users who may be detached or decoupled from traditional interactions. In order to investigate the potential usability of speech and manual input devices, an evaluation of speech input across different user groups and a usability assessment of independent-user and collaborative-user interactions was conducted. Whilst the primary focus was on a formative usability evaluation, the user group evaluation provided a formal basis to underpin the academic rigor of the exercise. The results illustrate that using a speech interface is important in understanding user acceptance of such technologies. From the usability assessment it was possible to translate interactions and make them compatible with innovative input devices. This approach to interaction is still at an early stage of development, and the potential or validity of this interfacing concept is still under evaluation; however, as a concept demonstrator, the results of these initial evaluations demonstrate the potential usability issues of both input devices as well as highlighting their suitability for advanced virtual applications.

  10. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itse...... of such interaction for advanced drug delivery are presented.......Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...

  11. Diets and Health: How Food Decisions Are Shaped by Biology, Economics, Geography, and Social Interactions.

    Science.gov (United States)

    Drewnowski, Adam; Kawachi, Ichiro

    2015-09-01

    Health is shaped by both personal choices and features of the food environment. Food-choice decisions depend on complex interactions between biology and behavior, and are further modulated by the built environment and community structure. That lower-income families have lower-quality diets is well established. Yet, diet quality also varies across small geographic neighborhoods and can be influenced by transportation, retail, and ease of access to healthy foods, as well as by attitudes, beliefs, and social interactions. The learnings from the Seattle Obesity Study (SOS II) can be usefully applied to the much larger, more complex, and far more socially and ethnically diverse urban environment of New York City. The Kavli HUMAN Project (KHP) is ideally positioned to advance the understanding of health disparities by exploring the multiple underpinnings of food decision making. By combining geo-localized food shopping and consumption data with health behaviors, diet quality measures, and biomarkers, also coded by geographic location, the KHP will create the first-of-its-kind bio-behavioral, economic, and cultural atlas of diet quality and health for New York City.

  12. Urgent Biophilia: Human-Nature Interactions and Biological Attractions in Disaster Resilience

    Directory of Open Access Journals (Sweden)

    Keith G. Tidball

    2012-06-01

    Full Text Available This contribution builds upon contemporary work on principles of biological attraction as well as earlier work on biophilia while synthesizing literatures on restorative environments, community-based ecological restoration, and both community and social-ecological disaster resilience. It suggests that when humans, faced with a disaster, as individuals and as communities and populations, seek engagement with nature to further their efforts to summon and demonstrate resilience in the face of a crisis, they exemplify an urgent biophilia. This urgent biophilia represents an important set of human-nature interactions in SES characterized by hazard, disaster, or vulnerability, often appearing in the 'backloop' of the adaptive cycle. The relationships that human-nature interactions have to other components within interdependent systems at many different scales may be one critical source of resilience in disaster and related contexts. In other words, the affinity we humans have for the rest of nature, the process of remembering that attraction, and the urge to express it through creation of restorative environments, which may also restore or increase ecological function, may confer resilience across multiple scales. In making this argument, the paper also represents a novel contribution to further theorizing alternatives to anthropocentric understandings of human-nature relations, and strongly makes the case for humans as part of, not separate from, ecosystems.

  13. The application of Biological-Hydraulic coupled model for Tubificidae-microorganism interaction system

    Science.gov (United States)

    Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo

    2010-11-01

    Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.

  14. Interaction of chemical species with biological regulation of the metabolism of essential trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, W. [Center of Life and Food Sciences, Technische Univ. Muenchen, Freising (Germany)

    2002-02-01

    Variations in the chemical speciation of dietary trace elements can result in the provision of different amounts of these micronutrients to the organism and might thus induce interactions with trace-element metabolism. The chemical species of Zn, Fe, Cu, and Mn can interact with other components of the diet even before reaching the site of absorption, e.g. by formation of poorly soluble complexes with phytic acid. This might considerably modify the amount of metabolically available trace elements; differences between absorptive capacity per se toward dietary species seems to be less important. Homeostasis usually limits the quantities of Zn, Fe, Cu, and Mn transported from the gut into the organism, and differences between dietary species are largely eliminated at this step. There is no homeostatic control of absorption of Se and I, and organisms seem to be passively exposed to influx of these micronutrients irrespective of dietary speciation. Inside the organism the trace elements are usually converted into a metabolically recognizable form, channeled into their biological functions, or submitted to homeostatically controlled excretion. Some dietary species can, however, be absorbed as intact compounds. As long as the respective quantities of trace elements are not released from their carriers, they are not recognized properly by trace element metabolism and might induce tissue accumulation, irrespective of homeostatic control. (orig.)

  15. Force fields for simulating the interaction of surfaces with biological molecules

    Science.gov (United States)

    Martin, Lewis; Bilek, Marcela M.; Weiss, Anthony S.; Kuyucak, Serdar

    2016-01-01

    The interaction of biomolecules with solid interfaces is of fundamental importance to several emerging biotechnologies such as medical implants, anti-fouling coatings and novel diagnostic devices. Many of these technologies rely on the binding of peptides to a solid surface, but a full understanding of the mechanism of binding, as well as the effect on the conformation of adsorbed peptides, is beyond the resolution of current experimental techniques. Nanoscale simulations using molecular mechanics offer potential insights into these processes. However, most models at this scale have been developed for aqueous peptide and protein simulation, and there are no proven models for describing biointerfaces. In this review, we detail the current research towards developing a non-polarizable molecular model for peptide–surface interactions, with a particular focus on fitting the model parameters as well as validation by choice of appropriate experimental data. PMID:26855748

  16. Warfarin and acetaminophen interaction: a summary of the evidence and biologic plausibility.

    Science.gov (United States)

    Lopes, Renato D; Horowitz, John D; Garcia, David A; Crowther, Mark A; Hylek, Elaine M

    2011-12-08

    Ms TS is a 66-year-old woman who receives warfarin for prevention of systemic embolization in the setting of hypertension, diabetes, and atrial fibrillation. She had a transient ischemic attack about 4 years ago when she was receiving aspirin. Her INR control was excellent; however, over the past few months it has become erratic, and her average dose required to maintain an INR of 2.0 to 3.0 appears to have decreased. She has had back pain over this same period and has been taking acetaminophen at doses at large as 650 mg four times daily, with her dose varying based on her symptoms. You recall a potential interaction and wonder if (1) her acetaminophen use is contributing to her loss of INR control, and (2) does this interaction place her at increased risk of warfarin-related complications?

  17. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Maribel [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Quimica; Betancourt, Adelmo [Universidad de Carabobo, Valencia (Venezuela). Facultad Experimental de Ciencia y Tecnologia. Dept. de Quimica; Hernandez, Clara [Universidad de Carabobo Sede Aragua, Maracay (Venezuela). Facultad de Ciencias de la Salud. Dept. de Ciencias Basicas; Marchan, Edgar [Universidad de Oriente, Cumana (Venezuela). Inst. de Investigaciones en Biomedicina y Ciencias Aplicadas. Nucleo de Sucre

    2008-07-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl{sub 2}(phen)] and [PdCl{sub 2}(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 {mu}mol L{sup -1} in 48 h. (author)

  18. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  19. [Potential drug-drug interactions among elderly using antihypertensives from the Brazilian List of Essential Medicines].

    Science.gov (United States)

    Mibielli, Pablo; Rozenfeld, Suely; Matos, Guacira Corrêa de; Acurcio, Francisco de Assis

    2014-09-01

    The aim of this study was to estimate the prevalence of potential interactions between antihypertensives and other drugs. A household survey was conducted with individuals 60 years or older residing in Rio de Janeiro, Brazil. Potential moderately or very severe drug-drug interactions with antihypertensives, documented as suspected, probable or established, were identified. A total of 577 elderly were interviewed (mean age = 72 years), 45.2% of whom were using antihypertensives, of which 31.0% were subject to potential drug-drug interactions. Most of the interactions were moderately severe. Compared to the other elderly, those with potential drug-drug interactions showed more than fourfold odds of using five or more medicines and more than twofold odds of having been hospitalized in the previous year. Among the most frequent pairs of interactions, 75% cause a reduction in the hypotensive effect (65/87), which can result in low effectiveness of blood pressure control, prescribing of more drugs, and risk of other adverse events and interactions.

  20. Potential Drug-drug Interactions in Post-CCU of a Teaching Hospital.

    Science.gov (United States)

    Haji Aghajani, Mohammad; Sistanizad, Mohammad; Abbasinazari, Mohammad; Abiar Ghamsari, Mahdieh; Ayazkhoo, Ladan; Safi, Olia; Kazemi, Katayoon; Kouchek, Mehran

    2013-01-01

    Drug-drug interactions (DDIs) can lead to increased toxicity or reduction in therapeutic efficacy. This study was designed to assess the incidence of potential drug interactions (PDI) and rank their clinical value in post coronary care unit (Post-CCU) of a teaching hospital in Tehran, Iran. In this prospective study, three pharmacists with supervision of a clinical pharmacist actively gathered necessary information for detection of DDIs. Data were tabulated according to the combinations of drugs in treatment chart. Verification of potential drug interactions was carried out using the online Lexi-Interact™ 2011. A total of 203 patients (113 males and 90 females) were enrolled in the study. The mean age of patients was 61 ± 12.55 years (range = 26-93). A total of 90 drugs were prescribed to 203 patients and most prescribed drugs were atorvastatin, clopidogrel and metoprolol. Mean of drugs was 11.22 per patient. A total of 3166 potential drug interactions have been identified by Lexi- Interact™, 149 (4.71%) and 55 (1.73%) of which were categorized as D and X, respectively. The most serious interactions were clopidogrel+omeprazole and metoprolol+salbutamol. Drug interactions leading to serious adverse effects are to be cautiously watched for when multiple drugs are used simultaneously. In settings with multiple drug use attendance of a pharmacist or clinical pharmacist, taking the responsibility for monitoring drug interactions and notifying the physician about potential problems could decrease the harm in patient and increase the patient safety.

  1. Soliton-potential interaction in the Nonlinear Klein-Gordon Model

    CERN Document Server

    Saadatmand, Danial

    2011-01-01

    Interaction of solitons with external potentials in nonlinear Klein-Gordon field theory is investigated using an improved model. Presented model is constructed with a better approximation for adding the potential to the lagrangian through the metric of background space-time. The results of the model are compared with the another model and the differences are discussed.

  2. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  3. Potential of Root Exudates from Wetland Plants and Their Potential Role for Denitrification and Allelopathic Interactions

    DEFF Research Database (Denmark)

    Zhai, Xu

    chemicals to suppress the growth of native species. Phragmites australis is recognized as the most invasive species in wetland ecosystems in North America, and allelopathy has been reported to be involved in the invasion success of the introduced exotic P. australis. The composition of the root exudates may...... vary among different Phragmites haplotypes and consequently affect their invasion potential. The studies presented in this dissertation aimed at investigating the quantity and composition of the organic carbon released in root exudates from three common wetland species as affected by temperature...... plants contribute to nitrogen removal in high nitrate and low BOD wastewater. Also, the compositions and quantity of root exudates differed among the species of the Phragmites genus and the Phragmites haplotypes. The research could not confirm that gallic acid in root exudates is responsible...

  4. Collisional interactions between self-interacting nonrelativistic boson stars: Effective potential analysis and numerical simulations

    Science.gov (United States)

    Cotner, Eric

    2016-09-01

    Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations but may be approximated in the nonrelativistic regime with a coupled Schrödinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.

  5. Interactive exploration of integrated biological datasets using context-sensitive workflows

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2014-02-01

    Full Text Available Network inference utilises experimental high-throughput data for the reconstruction of molecular interaction networks where new relationships between the network entities can be predicted. Despite the increasing amount of experimental data, the parameters of each modelling technique cannot be optimised based on the experimental data alone, but needs to be qualitatively assessed if the components of the resulting network describe the experimental setting. Candidate list prioritisation and validation builds upon data integration and data visualisation. The application of tools supporting this procedure is limited to the exploration of smaller information networks because the display and interpretation of large amounts of information is challenging regarding the computational effort and the users’ experience.The Ondex software framework was extended with customisable context-sensitive menus which allow additional integration and data analysis options for a selected set of candidates during interactive data exploration. We provide new functionalities for on-the-fly data integration using InterProScan, PubMed Central literature search, and sequence-based homology search. We applied the Ondex system to the integration of publicly available data for Aspergillus nidulans and analysed transcriptome data. We demonstrate the advantages of our approach by proposing new hypotheses for the functional annotation of specific genes of differentially expressed fungal gene clusters. Our extension of the Ondex framework makes it possible to overcome the separation between data integration and interactive analysis. More specifically, computationally demanding calculations can be performed on selected sub-networks without losing any information from the whole network. Furthermore, our extensions allow for direct access to online biological databases which helps to keep the integrated information up-to-date.

  6. DeepPIV: Measuring in situ Biological-Fluid Interactions from the Surface to Benthos

    Science.gov (United States)

    Katija, K.; Sherman, A.; Graves, D.; Kecy, C. D.; Klimov, D.; Robison, B. H.

    2015-12-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet it remains one of the least explored. Little known marine organisms that inhabit midwater have developed strategies for swimming and feeding that ultimately contributes to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Fluid mechanics governs the interactions that midwater organisms have with their physical environment, but limited access to midwater depths and lack of non-invasive methods to measure in situ small-scale fluid motions prevent these interactions from being better understood. Significant advances in underwater vehicle technologies have only recently improved access to midwater. Unfortunately, in situ small-scale fluid mechanics measurement methods are still lacking in the oceanographic community. Here we present DeepPIV, an instrumentation package that can be affixed to remotely operated underwater vehicles that quantifies small-scale fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient, suspended particulate in the coastal regions of Monterey Bay, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function.

  7. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)

    2013-02-15

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Foerster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: Black-Right-Pointing-Pointer 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. Black-Right-Pointing-Pointer DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. Black-Right-Pointing-Pointer Hydrophobic interactions were the predominant intermolecular forces. Black-Right-Pointing-Pointer The competitive experiment was carried out to identify the DHAQTS binding site on HSA. Black-Right-Pointing-Pointer Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  8. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    Science.gov (United States)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations

  9. A computational study of the protein-ligand interactions in CDK2 inhibitors: using quantum mechanics/molecular mechanics interaction energy as a predictor of the biological activity.

    Science.gov (United States)

    Alzate-Morales, Jans H; Contreras, Renato; Soriano, Alejandro; Tuñon, Iñaki; Silla, Estanislao

    2007-01-15

    We report a combined quantum mechanics/molecular mechanics (QM/MM) study to determine the protein-ligand interaction energy between CDK2 (cyclin-dependent kinase 2) and five inhibitors with the N(2)-substituted 6-cyclohexyl-methoxy-purine scaffold. The computational results in this work show that the QM/MM interaction energy is strongly correlated to the biological activity and can be used as a predictor, at least within a family of substrates. A detailed analysis of the protein-ligand structures obtained from molecular dynamics simulations shows specific interactions within the active site that, in some cases, have not been reported before to our knowledge. The computed interaction energy gauges the strength of protein-ligand interactions. Finally, energy decomposition and multiple regression analyses were performed to check the contribution of the electrostatic and van der Waals energies to the total interaction energy and to show the capabilities of the computational model to identify new potent inhibitors.

  10. Potential drug-drug interactions in intensive care units of a hospital in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Oliveira-Paula

    2014-12-01

    Full Text Available Drug-drug interactions are important causes of adverse reactions in health units. The high consumption of medicines in intensive care units predisposes patients to potential drug-drug interactions. This study aimed at examining the frequency and the characteristics of drug-drug interactions in intensive care units of Hospital Universitario of Universidade Estadual de Londrina. We analyzed the prescriptions of patients over 18 years, admitted from January to May 2010, who remained hospitalized for at least four days. The analysis of drug-drug interactions was carried out using the Micromedex Drug-Reax® system. The interactions were classified by severity, time required for the onset of adverse effects, mechanism of action and quality of scientific evidence. Moreover, the possible adverse events were analyzed, as well as the recommended strategies of management and monitoring. Altogether, 198 different potential drug-drug interactions were identified with the occurrence of 1242 episodes. Of these, 43% were characterized by moderate interactions, 35% major, 16% minor and 6% contraindicated. The therapeutic inefficacy was the most frequent possible adverse event (18% and the main recommended strategy of management was the dose adjustment (35.6%. The most frequent interactions were: fentanyl + midazolam (8.6%, phenytoin + ranitidine (5.5% and midazolam + ranitidine (4.8%. These results demonstrate the importance of drug-drug interactions as a significant adverse event in intensive care units and thus, preventive measures are required to minimize this problem.

  11. Antiepileptic drugs: are women aware of interactions with oral contraceptives and potential teratogenicity?

    Science.gov (United States)

    Pack, Alison M; Davis, Anne R; Kritzer, Jordana; Yoon, Ava; Camus, Adela

    2009-04-01

    Women with epilepsy (WWE)'s knowledge of the interaction between antiepileptic drugs (AEDs) and oral contraceptives (OCs) and the potential teratogenicity of AEDs has received limited study. We conducted a cross-sectional questionnaire study (English or Spanish) among young WWE (18-44 years) to assess demographic characteristics, current AED use, and knowledge of AED interactions with OCs and teratogenicity. We used the Food and Drug Administration's classification system to categorize each AED's teratogenic potential. Participants (n=148) had a mean age of 32 years (SD 8); 32% spoke Spanish and described themselves as Hispanic. Among women prescribed a cytochrome p450-inducing AED, 65% were unaware of decreased OC efficacy. Forty percent of those prescribed Category D AEDs were unaware of potential teratogenic effects. WWE have limited knowledge of the potential interaction between AEDs and OCs and the teratogenic effects of AEDs. Educational efforts should highlight the reproductive health effects of AEDs in WWE.

  12. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.

    Science.gov (United States)

    Sun, Y Y; Kim, Yong-Hyun; Lee, Kyuho; Zhang, S B

    2008-10-21

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  13. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

    Directory of Open Access Journals (Sweden)

    Yazan Haddad

    2016-04-01

    Full Text Available Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated, MAN127 (polyvinylpyrrolidone-coated, MAN158 (phosphate-coated, and MAN164 (tripolyphosphate-coated. All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration. A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  14. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Science.gov (United States)

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  15. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.

    Science.gov (United States)

    Lorent, Joseph H; Quetin-Leclercq, Joëlle; Mingeot-Leclercq, Marie-Paule

    2014-11-28

    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.

  16. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology.

    Science.gov (United States)

    Gutiérrez-Corona, J F; Romo-Rodríguez, P; Santos-Escobar, F; Espino-Saldaña, A E; Hernández-Escoto, H

    2016-12-01

    Chromium (Cr) is a highly toxic metal for microorganisms as well as plants and animal cells. Due to its widespread industrial use, Cr has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The study of the interactions between microorganisms and Cr has been helpful to unravel the mechanisms allowing organisms to survive in the presence of high concentrations of Cr(VI) and to detoxify and remove the oxyanion. Various mechanisms of interactions with Cr have been identified in diverse species of bacteria and fungi, including biosorption, bioaccumulation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution using bioreactors or by in situ treatments. In this review, the interactions of microorganisms with Cr are summarised, emphasising the importance of new research avenues using advanced methodologies, including proteomic, transcriptomic, and metabolomic analyses, as well as the use of techniques based on X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy.

  17. Real time confocal laser scanning microscopy: Potential applications in space medicine and cell biology

    Science.gov (United States)

    Rollan, Ana; Ward, Thelma; McHale, Anthony P.

    Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular target. A major problem associated with these studies is that events occurring during actual exposure of the target cells to the system cannot be examined in real time. In this study HeLa cells were photosensitized and photodynamic activation was accomplished using the scanning microbeam from a confocal laser scanning microscope. This form of activation allowed for simultaneous photoactivation and observation and facilitated the recording of events at a microscopic level during photoactivation. Effects of photodynamic activation on the target cells were monitored using the fluorophores rhodamine 123 and ethidium homodimer-1. Potential applications of these forms of analyses to space medicine and cell biology are discussed.

  18. [Comparative study on biological methane potential and methanogen biodiversity in the anaerobic digestion of excess sludge].

    Science.gov (United States)

    Dong, Hui-Yu; Ji, Min

    2014-04-01

    AP and DH excess sludge, sampled from AP and DH wastewater treatment plants respectively, were inoculated with their anaerobic sludge respectively and tested with biological methane potential (BMP) method. After the regression analysis with modified Gompertz and Michaelis-Menten model, it was found that although the maximum specific CH4 production rates of AP and DH anaerobic sludge were similar [74.21 and 51.99 mL x (g x d)(-1)], the half-saturation constants K(m) differed obviously (54098 and 19005 mg x L(-)), indicating DH anaerobic sludge exhibited a higher affinity for its excess sludge. At the end of both BMP tests, the concentrations of TSS and COD(T) decreased while the concentration of NH4(+)-N increased obviously, which were more significant at higher ratios of F/M. The T-RFLP analysis results were in accordance with BMP tests. After both BMP tests, the relative amount of diverse bacteria decreased while the relative amounts of Methanosaeta spp. (280 bps), Methanomicrobiaceae (80 bps) and RC-I (389 bps) increased obviously, which were more significant in DH-BMP test compared with AP-BMP.

  19. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    Science.gov (United States)

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  20. Synthesis, biological evaluation and SAR of sulfonamide 4-methoxychalcone derivatives with potential antileishmanial activity.

    Science.gov (United States)

    Andrighetti-Fröhner, Carla R; de Oliveira, Kely N; Gaspar-Silva, Daniela; Pacheco, Letícia K; Joussef, Antônio C; Steindel, Mário; Simões, Cláudia M O; de Souza, Alessandra M T; Magalhaes, Uiaran O; Afonso, Ilídio F; Rodrigues, Carlos R; Nunes, Ricardo J; Castro, Helena C

    2009-02-01

    Despite clinical importance of leishmaniasis, an infectious disease that affects 12 thousand million people in 88 countries, the treatment is still unsatisfactory due to its limited efficacy, cost expensive and undesirable side effects. Aiming to develop new antileishmanial lead compounds, we used a rational approach to synthesize a new set of sulfonamide 4-methoxychalcone derivatives (3a-3i) and evaluate the sulfonamide and methoxy moieties as promising adding-groups to chalcones. For that purpose we tested this new set against Leishmania braziliensis promastigotes and intracellular amastigotes and determined its cell toxicity profile. Interestingly all compounds presented a concentration-dependent antileishmanial profile and the benzylamino derivative (3i) showed a biological activity better than pentamidine. None of these compounds affected Trypanosoma cruzi epimastigotes, which suggests a specific antileishmanial profile. The structure-activity analysis of these sulfonamide 4-methoxychalcone derivatives pointed the molecular volume, the HOMO density concentrated in the chalcone moiety and the conformational structure of the compounds as important structural and stereoelectronic features for the antileishmanial activity. In addition, these compounds also fulfilled Lipinski rule of 5 and presented druglikeness similar to antileishmanial drugs. Altogether these results point the sulfonamide 4-methoxychalcone derivatives as potential lead compounds for designing new candidates for leishmaniasis treatment.

  1. DNA binding properties and biological evaluation of dihydropyrimidinones derivatives as potential antitumor agents

    Science.gov (United States)

    Wang, Gongke; Li, Xiangrong; Gou, Yaping; Chen, Yuhan; Yan, Changling; Lu, Yan

    2013-10-01

    The binding properties of two medicinally important dihydropyrimidinones derivatives 5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (EMPD) and 5-(Ethoxycarbonyl)-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (EMCD) with calf-thymus DNA (ctDNA) were investigated by spectroscopy, viscosity, isothermal titration calorimetry (ITC) and molecular modeling techniques. Simultaneously, their biological activities were evaluated with MTT assay method. The binding constants determined with spectroscopic titration and ITC were found to be in the same order of 104 M-1. According to the results of viscosity studies, fluorescence competitive binding experiment and ITC investigations, intercalative binding was evaluated as the dominant binding modes between the two compounds and ctDNA. Furthermore, the results of molecular modeling corroborated those obtained from spectroscopic, viscosimetric and ITC investigations. Evaluation of the antitumor activities of the two derivatives against different tumor cell lines proved that they exhibited significant tumor cell inhibition rate, accordingly blocking DNA transcription and replication. The present results favor the development of potential drugs related with dihydropyrimidinones derivatives in the treatment of some diseases.

  2. α-Synuclein and DJ-1 as potential biological fluid biomarkers for Parkinson's Disease.

    Science.gov (United States)

    Waragai, Masaaki; Sekiyama, Kazunari; Sekigawa, Akio; Takamatsu, Yoshiki; Fujita, Masayo; Hashimoto, Makoto

    2010-10-29

    Parkinson's disease (PD) is the most common form of movement disorder and affects approximately 4% of the population aged over 80 years old. Currently, PD cannot be prevented or cured, and no single diagnostic biomarkers are available. Notably, recent studies suggest that two familial PD-linked molecules, α-synuclein and DJ-1, are present in cerebrospinal fluid (CSF) and that their levels may be altered during the progression of PD. In this regard, sensitive and accurate methods for evaluation of α-synuclein and DJ-1 levels in the CSF and blood have been developed, and the results suggest that the levels of both molecules are significantly decreased in the CSF in patients with PD compared with age-matched controls. Furthermore, specific detection and quantification of neurotoxic oligometric forms of α-synuclein in the blood using enzyme-linked immunosorbent assays might be expected as potential peripheral biomarkers for PD, although further validation is required. Currently, neither α-synuclein nor DJ-1 is satisfactory as a single biomarker for PD, but combinatory evaluation of these biological fluid molecules with other biomarkers and imaging techniques may provide reliable information for diagnosis of PD.

  3. Studies on potential biological control agents of immature mosquitoes in sewage wastewater in southern California.

    Science.gov (United States)

    Mian, L S; Mulla, M S; Wilson, B A

    1986-09-01

    Three biological control agents, a copepod, Mesocyclops leuckarti pilosa, and two fish, Cyprinodon macularius and Poecilia reticulata, were evaluated for their survival in secondary sewage effluent (SSE) and predation potential on mosquito larvae. Results showed that the survival of M. l. pilosa was not significantly affected in SSE or SSE diluted (50%) with water. In predation tests, the copepod consumed from 50 to 90% of the 1st-instar larvae of Culex quinquefasciatus in 24 to 72 hr and P. reticulata fed on almost all stages (egg to pupa) of the test mosquitoes. Survivorship of P. reticulata and C. macularius in SSE was not significantly affected by SSE under both greenhouse and sewage aquaculture conditions. Poecilia reticulata was distributed towards the influent end and C. macularius towards the effluent end of the aquaculture ponds, indicating the former species can tolerate higher levels of pollution which exists at the influent end of the pond. However, low water temperature and dissolved oxygen may be detrimental to these fish species in sewage aquacultural systems.

  4. Tandem shock waves in medicine and biology: a review of potential applications and successes

    Science.gov (United States)

    Lukes, P.; Fernández, F.; Gutiérrez-Aceves, J.; Fernández, E.; Alvarez, U. M.; Sunka, P.; Loske, A. M.

    2016-01-01

    Shock waves have been established as a safe and effective treatment for a wide range of diseases. Research groups worldwide are working on improving shock wave technology and developing new applications of shock waves to medicine and biology. The passage of a shock wave through soft tissue, fluids, and suspensions containing cells may result in acoustic cavitation i.e., the expansion and violent collapse of microbubbles, which generates secondary shock waves and the emission of microjets of fluid. Cavitation has been recognized as a significant phenomenon that produces both desirable and undesirable biomedical effects. Several studies have shown that cavitation can be controlled by emitting two shock waves that can be delayed by tenths or hundreds of microseconds. These dual-pulse pressure pulses, which are known as tandem shock waves, have been shown to enhance in vitro and in vivo urinary stone fragmentation, cause significant cytotoxic effects in tumor cells, delay tumor growth, enhance the bactericidal effect of shock waves and significantly increase the efficiency of genetic transformations in bacteria and fungi. This article provides an overview of the basic physical principles, methodologies, achievements and potential uses of tandem shock waves to improve biomedical applications.

  5. Potential drug-drug interactions in cardiothoracic intensive care unit of a pulmonary teaching hospital.

    Science.gov (United States)

    Farzanegan, Behrooz; Alehashem, Maryam; Bastani, Marjan; Baniasadi, Shadi

    2015-02-01

    Little is known about clinically significant drug-drug interactions (DDIs) in respiratory settings. DDIs are more likely to occur in critically ill patients due to complex pharmacotherapy regimens and organ dysfunctions. The aim of this study was to identify the pattern of potential DDIs (pDDIs) occurring in cardiothoracic intensive care unit (ICU) of a pulmonary hospital. A prospective observational study was conducted for 6 months. All pDDIs for admitted patients in cardiothoracic ICU were identified with Lexi-Interact program and assessed by a clinical pharmacologist. The interacting drugs, reliability, mechanisms, potential outcomes, and clinical management were evaluated for severe and contraindicated interactions. The study included 195 patients. Lung cancer (14.9%) was the most common diagnosis followed by tracheal stenosis (14.3%). The rate of pDDIs was 720.5/100 patients. Interactions were more commonly observed in transplant patients. 17.7% of pDDIs were considered as severe and contraindicated interactions. Metabolism (54.8%) and additive (24.2%) interactions were the most frequent mechanisms leading to pDDIs, and azole antifungals and fluoroquinolones were the main drug classes involved. The pattern of pDDIs in cardiothoracic ICU differs from other ICU settings. Specialized epidemiological knowledge of drug interactions may help clinical practitioners to reduce the risk of adverse drug events.

  6. Safety of biological therapies for psoriasis: effects on reproductive potential and outcomes in male and female patients.

    Science.gov (United States)

    Yiu, Z Z N; Griffiths, C E M; Warren, R B

    2014-09-01

    The effects of biological therapies for psoriasis on pregnancy outcomes and lactation, and male fertility and mutagenicity are common concerns in the clinical setting. There is relatively little evidence to guide the clinician and patient. Here, we review the safety profile of the commonly used biological therapies for psoriasis in individuals of reproductive potential. Safety data were derived from large-scale registries, adverse event reporting databases, clinical trials and case reports. We assessed the effect of each therapy on adverse pregnancy outcomes including congenital malformations, and lactation with maternal administration, and male fertility and potential mutagenicity with paternal administration. We provide applicable guidance to inform clinician and patient before and after conception.

  7. Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Vishwas D. Suryawanshi

    2016-02-01

    Full Text Available A biologically active antibacterial reagent, 2–amino-6-hydroxy–4–(4-N, N-dimethylaminophenyl-pyrimidine-5-carbonitrile (AHDMAPPC, was synthesized. It was employed to investigate the binding interaction with the bovine serum albumin (BSA in detail using different spectroscopic methods. It exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n≈1 were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (ΔH, free energy (ΔG and entropy change (ΔS for the reaction were calculated to be 15.15 kJ/mol, –36.11 kJ/mol and 51.26 J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Förster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV–visible, synchronous fluorescence, circular dichroism (CD and three-dimensional fluorescence spectra. All these results indicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.

  8. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  9. Consistency of multi-time Dirac equations with general interaction potentials

    Science.gov (United States)

    Deckert, Dirk-André; Nickel, Lukas

    2016-07-01

    In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills the physically desirable Poincaré invariance. We conclude that in this sense, Dirac's multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.

  10. Thermodynamic stability of a weakly interacting Fermi gas trapped in a harmonic potential

    Institute of Scientific and Technical Information of China (English)

    Men Fu-Dian; Liu Hui; Zhu Hou-Yu

    2008-01-01

    Based on the theoretical results derived from pseudopotential method and local approximation,this paper studies the thermodynamic stability of a weakly interacting Fermi gas trapped in a harmonic potential by using analytical method of thermodynamics.The effects of the interparticle interactions as well as external potential on the thermodynamic stability of the system are discussed.It is shown that the system is stable as for the complete average,but as for local parts,the system is unstable anywhere.This instability shows that the stability conditions of mechanics cannot be satisfied anywhere,and the stability conditions of thermostatics cannot be satisfied somewhere.In addition,the interactions and external potential have direct effects on the local stability of the system.

  11. Prevalence and factors associated with potential drug interactions among elderly in a population-based study

    Directory of Open Access Journals (Sweden)

    Daniel Riani Gotardelo

    2014-04-01

    Full Text Available Objectives: The aim of this study was to determine the prevalence of potential drug interactions and the factors associated with them among elderly patients covered by the Family Health Strategy in the municipality of Timóteo, state of Minas Gerais, Brazil. Methods: Cross-sectional study, using stratified random sampling. A total of 273 household interviews were conducted in subjects aged 60 years or older, after obtaining informed consent, using a questionnaire containing questions related to identification, demography, health conditions and medication use. Drug interactions were identified and classified according to the software Micromedex®. Results: The overall prevalence of potential drug interactions was 55.6%, a total of 466 cases, of which 5.6% were mild, 81.6% moderate and 12.8% of greater severity. Therapeutic classes most frequently involved were anti-inflammatory drugs and especially drugs used in cardiovascular disease. The absence of hospitalization in the last four months was significantly associated with a lower chance of serious drug interactions and most patients who did not have any moderate drug interactions used only drugs prescribed by physicians. Conclusions: The prevalence of potential drug interactions was similar to that described in the literature, demonstrating the high frequency of this phenomenon among the elderly. The absence of prior hospitalization and drug prescription by physicians were associated with a lower frequency of interactions. The prescription of multiple drugs simultaneously to elderly patients can compromise the safety and health of this population, requiring, by caregivers, observation for the occurrence of potential drug interactions.

  12. Severe potential drug-drug interactions in older adults with dementia and associated factors

    OpenAIRE

    Michele Bogetti-Salazar; Cesar González-González; Teresa Juárez-Cedillo; Sergio Sánchez-García; Oscar Rosas-Carrasco

    2016-01-01

    OBJECTIVE: To identify the main severe potential drug-drug interactions in older adults with dementia and to examine the factors associated with these interactions. METHOD: This was a cross-sectional study. The enrolled patients were selected from six geriatrics clinics of tertiary care hospitals across Mexico City. The patients had received a clinical diagnosis of dementia based on the current standards and were further divided into the following two groups: those with severe drug-drug inte...

  13. Host-pathogen Interaction at the Intestinal Mucosa Correlates With Zoonotic Potential of Streptococcus suis

    DEFF Research Database (Denmark)

    Ferrando, Maria Laura; de Greeff, Astrid; van Rooijen, Willemien J. M.;

    2015-01-01

    of SS2 infection. Methods. We developed a noninvasive in vivo model to study oral SS2 infection in piglets. We compared in vitro interaction of S. suis with human and porcine intestinal epithelial cells (IEC). Results. Two out of 15 piglets showed clinical symptoms compatible with S. suis infection 24...... be considered a food-borne pathogen. S. suis interaction with human and pig IEC correlates with S. suis serotype and genotype, which can explain the zoonotic potential of SS2....

  14. Mitochondrial DNA mapping of social-biological interactions in Brazilian Amazonian African-descendant populations

    Directory of Open Access Journals (Sweden)

    Bruno Maia Carvalho

    2008-01-01

    Full Text Available The formation of the Brazilian Amazonian population has historically involved three main ethnic groups, Amerindian, African and European. This has resulted in genetic investigations having been carried out using classical polymorphisms and molecular markers. To better understand the genetic variability and the micro-evolutionary processes acting in human groups in the Brazilian Amazon region we used mitochondrial DNA to investigate 159 maternally unrelated individuals from five Amazonian African-descendant communities. The mitochondrial lineage distribution indicated a contribution of 50.2% from Africans (L0, L1, L2, and L3, 46.6% from Amerindians (haplogroups A, B, C and D and a small European contribution of 1.3%. These results indicated high genetic diversity in the Amerindian and African lineage groups, suggesting that the Brazilian Amazonian African-descendant populations reflect a possible population amalgamation of Amerindian women from different Amazonian indigenous tribes and African women from different geographic regions of Africa who had been brought to Brazil as slaves. The present study partially mapped the historical biological and social interactions that had occurred during the formation and expansion of Amazonian African-descendant communities.

  15. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.

    Science.gov (United States)

    Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders

    2012-04-01

    Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses.

  16. Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Hu; Ji-Fang Wen; De-Sheng Xiao; Hui Zhen; Chun-Yan Fu

    2005-01-01

    AIM:Transforming growth interacting factor (TGIF) is an inhibitor of both transforming growth factor β (TGF-β) and retinoid signaling pathways. Moreover, the activation of MAPK pathway can prolong its half-life. However, its role in carcinogenesis is still unknown. Thus we attempted to investigate the effect of TGIF on biologic behaviors of gastric carcinoma cells.METHODS: Gastric carcinoma cell line, SGC-7901, was stably transfected with plasmid PcDNA3.1-TGIF. Western blotting and cell immunohistochemistry screening for the highly expressing clone of TGIF were employed. The growth of transfected cells was investigated by MTT and colonyformation assays, and apoptosis was measured by flow cytometry (FCM) and transmission electron microscopy.Tumorigenicity of the transfectant cells was also analyzed.RESULTS: TGIF had no effect on the proliferation, cell cycle and apoptosis of SGC-7901 cells, but cellular organelles of cells transfected with TGIF were richer than those of vector control or parental cells. Its clones were smaller than the control ones in plate efficiency, and its tumor tissues also had no obvious necrosis compared with the vector control or parental cells. Moreover, TGIF could resist TGF-β mediated growth inhibition.CONCLUSION: TGIF may induce differentiation of stomach neoplastic cells. In addition, TGIF can counteract the growth inhibition induced by TGF-β.

  17. Equation of state and interaction potential of helium under high temperatures and high densities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the thermodynamics statistic method, the improved variational perturbation theory and the modified quantum mechanics correction model have been used to calculate the equation of state of liquid helium at pressure from 0.7 to 108 GPa. The calculation results are in good agreement with the experimental data. The EXP-6 potential (α = 13.1) can more accurately describe the interaction of helium atoms than other potentials in the scheme. Finally, a comparison is shown between our interatomic potentials and other potentials.

  18. Equation of state and interaction potential of helium under high temperatures and high densities

    Institute of Scientific and Technical Information of China (English)

    YANG JinWen; YAN YuanHong

    2009-01-01

    Based on the thermodynamics statistic method, the improved variational perturbation theory and the modified quantum mechanics correction model have been used to calculate the equation of state of liquid helium at pressure from 0.7 to 108 GPa. The calculation results are in good agreement with the experimental data. The EXP-6 potential (α=13.1) can more accurately describe the interaction of helium atoms than other potentials in the scheme. Finally, s comparison is shown between our interatomic potentials and other potentials.

  19. The dynamical behaviour of homogeneous scalar-field spacetimes with general self-interaction potentials

    CERN Document Server

    Giambó, Roberto; Magli, Giulio

    2008-01-01

    The dynamics of homogeneous Robertson--Walker cosmological models with a self-interacting scalar field source is examined here in full generality, requiring only the scalar field potential to be bounded from below and divergent when the field diverges. In this way we are able to give a unified treatment of all the already studied cases - such as positive potentials which exhibit asymptotically polynomial or exponential behaviors - together with its extension to a much wider set of physically sensible potentials. Since the set includes potentials with negative inferior bound, we are able to give, in particular, the analysis of the asymptotically anti De Sitter states for such cosmologies.

  20. Intermolecular interaction potentials of methane-argon complex calculated using LDA approaches

    Institute of Scientific and Technical Information of China (English)

    Bai Yu-Lin; Chen Xiang-Rong; Zhou Xiao-Lin; Yang Xiang-Dong; Wang Hai-Yan

    2004-01-01

    The intermolecular interaction potential for methane-argon complex is calculated by local density approximation (LDA) approaches. The calculated potential has a minimum when the intermolecular distance of methane-argon complex is 6.75 a.u.; the corresponding depth of the potential is 0.0163eV which has good agreement with experimental data. We also have made a nonlinear fitting of our results for the Lennard-Jones (12-6) potential function and obtain that V(R) = 143794365.332/R12 - 3032.093/R6 (R in a.u. and V(R) in eV).

  1. Study the Effectiveness of Technology-Enhanced Interactive Teaching Environment on Student Learning of Junior High School Biology

    Science.gov (United States)

    Yang, Kai-Ti; Wang, Tzu-Hua; Chiu, Mei-Hung

    2015-01-01

    This research investigates the effectiveness of integrating Interactive Whiteboard (IWB) into the junior high school biology teaching. This research adopts a quasi-experimental design and divides the participating students into the conventional ICT-integrated learning environment and IWB-integrated learning environment. Before teaching, students…

  2. Evaluation of the Interaction between the Poincianella pyramidalis (Tul. LP Queiroz Extract and Antimicrobials Using Biological and Analytical Models.

    Directory of Open Access Journals (Sweden)

    Thiago P Chaves

    Full Text Available Poincianella pyramidalis (Tul. LP Queiroz (Fabaceae is an endemic tree of northeastern Brazil, occurring mainly in the Caatinga. Its medicinal use is widespread and is an important therapeutic option against diarrhea, dysentery, and respiratory and urinary infections, among other diseases. In this study we determined the chemical marker and evaluated the interaction between P. pyramidalis extract and a commercial antimicrobial through the use of biological and analytical models. To obtain the extract, an ethanol-water mixture (50:50 v/v was used as solvent. It was nebulized in a spray dryer using colloidal silicon dioxide as a drying adjuvant. The extract (ENPp was subjected to HPLC analysis to verify the presence of certain secondary metabolites. The Minimum Inhibitory Concentration (MIC of the extract against Gram-negative bacteria was determined by broth microdilution and the MIC of synthetic antimicrobial drugs in the presence and absence of the extract. The antioxidant activity of ENPp was evaluated by the DPPH method. The compatibility between the antimicrobial and the extract was evaluated by thermal analysis (TG/DTA. The acute toxicity of the extract was evaluated in vivo in rodents. The results indicate significant additive action of the extract on synthetic antibiotics, considerable antioxidant activity and absence of toxicity. This extract shows high potential for the development of formulations for antimicrobial therapy when used with a vegetable-active ingredient.

  3. Cosmological model with fermion and tachyon fields interacting via Yukawa-type potential

    CERN Document Server

    Ribas, Marlos O; Kremer, Gilberto M

    2016-01-01

    A model for the universe with tachyonic and fermionic fields interacting through a Yukawa-type potential is investigated. It is shown that the tachyonic field answers for the initial accelerated regime and for the subsequent decelerated regime so that it behaves as an inflaton at early times and as a matter field at intermediate times, while the fermionic field has the role of a dark energy constituent, since it leads to an accelerated regime at later times. The interaction between the fields via a Yukawa-type potential controls the duration of the decelerated era, since a stronger coupling makes a shorter decelerated period.

  4. A Riccati equation based approach to isotropic scalar field cosmologies with arbitrary self-interaction potentials

    CERN Document Server

    Harko, Tiberiu; Mak, M K

    2014-01-01

    Gravitationally coupled scalar fields $\\phi $, distinguished by the choice of an effective self-interaction potential $V(\\phi )$, simulating a temporarily non-vanishing cosmological term, can generate both inflation and late time acceleration. In scalar field cosmological models the evolution of the Hubble function is determined, in terms of the interaction potential, by a Riccati type equation. In the present work we investigate scalar field cosmological models that can be obtained as solutions of the Riccati evolution equation for the Hubble function. Four exact integrability cases of the field equations are presented, representing classes of general solutions of the Riccati evolution equation, and their cosmological properties are investigated in detail.

  5. Cosmological model with fermion and tachyon fields interacting via Yukawa-type potential

    Science.gov (United States)

    Ribas, Marlos O.; Devecchi, Fernando P.; Kremer, Gilberto M.

    2016-02-01

    A model for the universe with tachyonic and fermionic fields interacting through a Yukawa-type potential is investigated. It is shown that the tachyonic field answers for the initial accelerated regime and for the subsequent decelerated regime so that it behaves as an inflaton at early times and as a matter field at intermediate times, while the fermionic field has the role of a dark energy constituent, since it leads to an accelerated regime at later times. The interaction between the fields via a Yukawa-type potential controls the duration of the decelerated era, since a stronger coupling makes a shorter decelerated period.

  6. Rapid release of tissue enzymes into blood after blast exposure: potential use as biological dosimeters.

    Directory of Open Access Journals (Sweden)

    Peethambaran Arun

    Full Text Available Explosive blast results in multiple organ injury and polytrauma, the intensity of which varies with the nature of the exposure, orientation, environment and individual resilience. Blast overpressure alone may not precisely indicate the level of body or brain injury after blast exposure. Assessment of the extent of body injury after blast exposure is important, since polytrauma and systemic factors significantly contribute to blast-induced traumatic brain injury. We evaluated the activity of plasma enzymes including aspartate aminotransferase (AST, alanine aminotransferase (ALT, lactate dehydrogenase (LDH and creatine kinase (CK at different time points after blast exposure using a mouse model of single and repeated blast exposures to assess the severity of injury. Our data show that activities of all the enzymes in the plasma were significantly increased as early as 1 h after blast exposure. The elevated enzyme activity remained up to 6 h in an overpressure dose-dependent manner and returned close to normal levels at 24 h. Head-only blast exposure with body protection showed no increase in the enzyme activities suggesting that brain injury alone does not contribute to the systemic increase. In contrast to plasma increase, AST, ALT and LDH activity in the liver and CK in the skeletal muscle showed drastic decrease at 6 h after blast exposures. Histopathology showed mild necrosis at 6 h and severe necrosis at 24 h after blast exposures in liver and no changes in the skeletal muscle suggesting that the enzyme release from the tissue to plasma is probably triggered by transient cell membrane disruption from shockwave and not due to necrosis. Overpressure dependent transient release of tissue enzymes and elevation in the plasma after blast exposure suggest that elevated enzyme activities in the blood can be potentially used as a biological dosimeter to assess the severity of blast injury.

  7. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  8. Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential

    CERN Document Server

    Ammari, Zied

    2011-01-01

    We consider the quantum dynamics of many bosons systems in the mean field limit with a singular pair-interaction potential, including the attractive or repulsive Coulombic case in three dimensions. By using a measure transportation technique, we show that Wigner measures propagate along the nonlinear Hartree flow. Such property was previously proved only for bounded potentials in our previous works with a slightly different strategy.

  9. Evolution of a quantum system of many particles interacting via the generalized Yukawa potential

    Science.gov (United States)

    Bogoliubov, N. N.; Rasulova, M. Yu.; Avazov, U. A.

    2016-12-01

    We study the evolution of a system of N particles that have identical masses and charges and interact via the generalized Yukawa potential. The system is placed in a bounded region. The evolution of such a system is described by the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of quantum kinetic equations. Using semigroup theory, we prove the existence of a unique solution of the BBGKY chain of quantum kinetic equations with the generalized Yukawa potential.

  10. Feynman Diagrams for Dispersion Interactions Out of Equilibrium -- Two-Body Potentials for Atoms with Initial Excitation

    CERN Document Server

    Haakh, Harald R; Henkel, Carsten

    2011-01-01

    Diagrammatic techniques are well-known in the calculation of dispersion interactions between atoms or molecules. The multipolar coupling scheme combined with Feynman ordered diagrams significantly reduces the number of graphs compared to elementary stationary perturbation theory. We review calculations of van der Waals-Casimir-Polder forces, focusing on two atoms or molecules one of which is excited. In this case, calculations of the corresponding force are notorious for mathematical issues connected to the spontaneous decay of the excitation. Treating such unstable states in a full non-equilibrium theory provides a physical interpretation of apparent contradictions in previous results and underlines the importance of decay processes for the intermolecular potential. This may have important implications on reactions in biological systems, where excited states may be relatively long-lived and the resonant intermolecular force may result in directed Brownian motion.

  11. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten

    2016-01-01

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture.

  12. The total pregnancy potential per oocyte aspiration after assisted reproduction-in how many cycles are biologically competent oocytes available?

    DEFF Research Database (Denmark)

    Lemmen, J G; Rodríguez, N M; Andreasen, L D

    2016-01-01

    PURPOSE: While stimulation of women prior to assisted reproduction is associated with increased success rates, the total biological pregnancy potential per stimulation cycle is rarely assessed. METHODS: Retrospective sequential cohort study of the cumulative live birth rate in 1148 first IVF...

  13. Potential biological control agents for management of cogongrass [Imperata cylindrica 15 (Cyperales: Poaceae)] in the southeastern USA

    Science.gov (United States)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  14. A review of potential harmful interactions between anticoagulant/antiplatelet agents and Chinese herbal medicines.

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Tsai

    Full Text Available BACKGROUND: The risks attributed to drug-herb interactions, even when known, are often ignored or underestimated, especially for those involving anti-clotting drugs and Chinese medicines. The aim of this study was to structurally search and evaluate the existing evidence-based data associated with potential drug interactions between anticoagulant/antiplatelet drugs and Chinese herbal medicines (CHMs and evaluate the documented mechanisms, consequences, and/or severity of interactions. METHODOLOGY AND FINDINGS: Information related to anticoagulant/antiplatelet drug-CHM interactions was retrieved from eight interaction-based textbooks, four web resources and available primary biomedical literature. The primary literature searches were conducted in English and/or Chinese from January 2000 through December 2011 using the secondary databases (e.g., PubMed, Airiti Library, China Journal full-text database. The search terms included the corresponding medical subject headings and key words. Herbs or natural products not used as a single entity CHM or in Chinese Medicinal Prescriptions were excluded from further review. The corresponding mechanisms and severity ratings of interactions were retrieved using MicroMedex®, Lexicomp® and Natural Medicines Comprehensive Database®. Finally, we found 90 single entity CHMs contributed to 306 documented drug-CHM interactions. A total of 194 (63.4% interactions were verified for its evidence describing possible mechanisms and severity. Of them, 155 interactions (79.9% were attributable to pharmacodynamic interactions, and almost all were rated as moderate to severe interactions. The major consequences of these interactions were increased bleeding risks due to the additive anticoagulant or antiplatelet effects of the CHMs, specifically danshen, dong quai, ginger, ginkgo, licorice, and turmeric. CONCLUSIONS/SIGNIFICANCE: Conventional anticoagulants and antiplatelet drugs were documented to have harmful interactions

  15. A Statistical Analysis of Protein-Protein Interaction with Knowledge-Based Potential at Residue Level

    Institute of Scientific and Technical Information of China (English)

    林巍; 孙飞; 饶子和

    2003-01-01

    Protein-protein recognition is an important step in biological processes, which still largely remains elusive.The inter-residue contact potential, CPij, describes the propensity of contact between two types of residue.In this study, several different CPij variants were examined with the objective of discriminating the binding potential of surface pairs.Using solvent mediated inter-molecule contact potential (SM-IMCPij), an evaluation model was deduced and tested.Using the evaluation model it was found that the SM-IMCPij gives a better performance than either residue mediated IMCPij(RM-IMCPij) or folding-residue contact potential (FCPij).The results suggest that the evaluation model provides a fast, effective, and discriminative method for the evaluation of proposed binding interfaces.

  16. After the Greeting: Realizing the Potential of Physical Models in Cell Biology.

    Science.gov (United States)

    Paluch, Ewa K

    2015-12-01

    Biophysics is increasingly taking center stage in cell biology as the tools for precise quantifications of cellular behaviors expand. Interdisciplinary approaches, combining quantitative physical modeling with cell biology, are of growing interest to journal editors, funding agencies, and hiring committees. However, despite an ever-increasing emphasis on the importance of interdisciplinary research, the student trained in biology may still be at a loss as to what it actually means. I discuss here some considerations on how to achieve meaningful and high-quality interdisciplinary work.

  17. PDZ Domains and Viral Infection: Versatile Potentials of HPV-PDZ Interactions in relation to Malignancy

    Directory of Open Access Journals (Sweden)

    Kazunori Nagasaka

    2013-01-01

    Full Text Available Cervical cancer is caused by high-risk human papillomaviruses (HPVs, and a unique characteristic of these is a PDZ (P̲SD-95/D̲lg/Z̲O-1-binding motif in their E6 proteins. Through this motif HPV E6 interacts with a variety of PDZ domain-containing proteins and targets them mainly for degradation. These E6-PDZ interactions exhibit extraordinarily different functions in relation to HPV-induced malignancy, depending upon various cellular contexts; for example, Dlg and Scrib show different distribution patterns from what is seen in normal epithelium, both in localization and in amount, and their loss may be a late-stage marker in malignant progression. Recent studies show that interactions with specific forms of the proteins may have oncogenic potential. In addition, it is interesting that PDZ proteins make a contribution to the stabilization of E6 and viral episomal maintenance during the course of HPV life cycle. Various posttranslational modifications also greatly affect their functions. Phosphorylation of hDlg and hScrib by certain kinases regulates several important signaling cascades, and E6-PDZ interactions themselves are regulated through PKA-dependent phosphorylation. Thus these interactions naturally have great potential for both predictive and therapeutic applications, and, with development of screening tools for identifying novel targets of their interactions, comprehensive spatiotemporal analysis is currently underway.

  18. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented.

  19. On Local Smooth Solutions for the Vlasov Equation with the Potential of Interactions {\\pm} r^{-2}

    CERN Document Server

    Zhidkov, P E

    2003-01-01

    For the initial value problem for the Vlasov equation with the potential of interactions {\\pm} r^{-2} we prove the existence and uniqueness of a local solution with values in the Schwartz space S of infinitely differentiable functions rapidly decaying at infinity.

  20. On the configuration of systems of interacting particle with minimum potential energy per particle

    NARCIS (Netherlands)

    Ventevogel, W.J.; Nijboer, B.R.A.

    1979-01-01

    In continuation of previous work we extend the class of two-body potentials, either repulsive or of generalized Lennard-Jones type, for which it can be proved that among all configurations of an infinite one-dimensional system of interacting particles (with fixed density in the case of repulsive int

  1. Critical temperature of Bose-Einstein condensation for weakly interacting bose gas in a potential trap

    Institute of Scientific and Technical Information of China (English)

    YU; Xuecai; YE; Yutang; WU; Yunfeng; XIE; Kang; CHENG; Lin

    2005-01-01

    The critical temperature of Bose-Einstein condensation at minimum momentum state for weakly interacting Bose gases in a power-law potential and the deviation of the critical temperature from ideal bose gas are studied. The effect of interaction on the critical temperature is ascribed to the ratiao α/λc, where α is the scattering length for s wave and λc is de Broglie wavelength at critical temperature. As α/λc<<1/(2π)2, the interaction is negligible. The presented deviation of the critical temperature for three dimensional harmonic potential is well in agreement with recent measurement of critical temperature for 87Rb bose gas trapped in a harmonic well.

  2. Excited state potential energy surfaces and their interactions in Fe(IV)=O active sites.

    Science.gov (United States)

    Srnec, Martin; Wong, Shaun D; Solomon, Edward I

    2014-12-21

    The non-heme ferryl active sites are of significant interest for their application in biomedical and green catalysis. These sites have been shown to have an S = 1 or S = 2 ground spin state; the latter is functional in biology. Low-temperature magnetic circular dichroism (LT MCD) spectroscopy probes the nature of the excited states in these species including ligand-field (LF) states that are otherwise difficult to study by other spectroscopies. In particular, the temperature dependences of MCD features enable their unambiguous assignment and thus determination of the low-lying excited states in two prototypical S = 1 and S = 2 NHFe(IV)[double bond, length as m-dash]O complexes. Furthermore, some MCD bands exhibit vibronic structures that allow mapping of excited-state interactions and their effects on the potential energy surfaces (PESs). For the S = 2 species, there is also an unusual spectral feature in both near-infrared absorption and MCD spectra - Fano antiresonance (dip in Abs) and Fano resonance (sharp peak in MCD) that indicates the weak spin-orbit coupling of an S = 1 state with the S = 2 LF state. These experimental data are correlated with quantum-chemical calculations that are further extended to analyze the low-lying electronic states and the evolution of their multiconfigurational characters along the Fe-O PESs. These investigations show that the lowest-energy states develop oxyl Fe(III) character at distances that are relevant to the transition state (TS) for H-atom abstraction and define the frontier molecular orbitals that participate in the reactivity of S = 1 vs. S = 2 non-heme Fe(IV)[double bond, length as m-dash]O active sites. The S = 1 species has only one available channel that requires the C-H bond of a substrate to approach perpendicular to the Fe-oxo bond (the π channel). In contrast, there are three channels (one σ and two π) available for the S = 2 non-heme Fe(IV)[double bond, length as m-dash]O system allowing C-H substrate approach

  3. Hydrologic and biologic influences on stream network nutrient concentrations: Interactions of hydrologic turnover and concentration-dependent nutrient uptake

    Science.gov (United States)

    Mallard, John; McGlynn, Brian; Covino, Tim

    2016-04-01

    Stream networks lie in a crucial landscape position between terrestrial ecosystems and downstream water bodies. As such, whether inferring terrestrial watershed processes from watershed outlet nutrient signals or predicting the effect of observed terrestrial processes on stream nutrient signals, it is requisite to understand how stream networks can modulate terrestrial nutrient inputs. To date integrated understanding and modeling of physical and biological influences on nutrient concentrations at the stream network scale have been limited. However, watershed scale groundwater - surface water exchange (hydrologic turnover), concentration-variable biological uptake, and the interaction between the two can strongly modify stream water nutrient concentrations. Stream water and associated nutrients are lost to and replaced from groundwater with distinct nutrient concentrations while in-stream nutrients can also be retained by biological processes at rates that vary with concentration. We developed an empirically based network scale model to simulate the interaction between hydrologic turnover and concentration-dependent nutrient uptake across stream networks. Exchange and uptake parameters were measured using conservative and nutrient tracer addition experiments in the Bull Trout Watershed, central Idaho. We found that the interaction of hydrologic turnover and concentration-dependent uptake combined to modify and subsequently stabilize in-stream concentrations, with specific concentrations dependent on the magnitude of hydrologic turnover, groundwater concentrations, and the shape of nutrient uptake kinetic curves. We additionally found that by varying these physical and biological parameters within measured ranges we were able to generate a spectrum of stream network concentration distributions representing a continuum of shifting magnitudes of physical and biological influences on in-stream concentrations. These findings elucidate the important and variable role of

  4. Potential pharmacokinetic interactions between antiretrovirals and medicinal plants used as complementary and African traditional medicines.

    Science.gov (United States)

    Müller, Adrienne C; Kanfer, Isadore

    2011-11-01

    The use of traditional/complementary/alternate medicines (TCAMs) in HIV/AIDS patients who reside in Southern Africa is quite common. Those who use TCAMs in addition to antiretroviral (ARV) treatment may be at risk of experiencing clinically significant pharmacokinetic (PK) interactions, particularly between the TCAMs and the protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). Mechanisms of PK interactions include alterations to the normal functioning of drug efflux transporters, such as P-gp and/or CYP isoenzymes, such a CYP3A4 that mediate the absorption and elimination of drugs in the small intestine and liver. Specific mechanisms include inhibition and activation of these proteins and induction via the pregnane X receptor (PXR). Several clinical studies and case reports involving ARV-herb PK interactions have been reported. St John's Wort, Garlic and Cat's Claw exhibited potentially significant interactions, each with a PI or NNRTI. The potential for these herbs to induce PK interactions with drugs was first identified in reports of in vitro studies. Other in vitro studies have shown that several African traditional medicinal (ATM) plants and extracts may also demonstrate PK interactions with ARVs, through effects on CYP3A4, P-gp and PXR. The most complex effects were exhibited by Hypoxis hemerocallidea, Sutherlandia frutescens, Cyphostemma hildebrandtii, Acacia nilotica, Agauria salicifolia and Elaeodendron buchananii. Despite a high incidence of HIV/AIDs in the African region, only one clinical study, between efavirenz and Hypoxis hemerocallidea has been conducted. However, several issues/concerns still remain to be addressed and thus more studies on ATMs are warranted in order for more meaningful data to be generated and the true potential for such interactions to be determined.

  5. Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets.

    Directory of Open Access Journals (Sweden)

    Peter B McGarvey

    Full Text Available The NIAID (National Institute for Allergy and Infectious Diseases Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1 The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells infected by different bacterial (Bacillus anthracis and Salmonella typhimurium and viral (orthopox pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2 The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3 Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and

  6. The acquisition of dangerous biological materials: Technical facts sheets to assist risk assessments of 46 potential BW agents

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Astuto-Gribble, Lisa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaudioso, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  7. Assessment of students’ health condition by indicators of adaptation potential, biological age and bio-energetic reserves of organism

    Directory of Open Access Journals (Sweden)

    Martyniuk O.V.

    2015-06-01

    Full Text Available Purpose: to assess students’ health condition by indicators of adaptation potential, biological age and express-assessment. Material: in the research 47 first and second year girl students participated, who belonged to main health group. Results: we distributed the girl students into three groups: 14.89% of them were included in group with “safe” health condition; 34.04% - in group of “third state”; 51.06% were related to group with “ dangerous” health condition. We established that dangerous level was characterized by energy potential of below middle and low level. It is accompanied by accelerated processes of organism’s age destructions and tension of regulation mechanisms. Conclusions: the received results permit to further develop and generalize the data of students’ health’s assessment by indicators of adaptation potentials, biological age and physical health’s condition.

  8. Time evolution of initial states that extend beyond the potential interaction region in quantum decay

    Science.gov (United States)

    García-Calderón, Gastón; Villavicencio, Jorge; Hernández-Maldonado, Alberto; Romo, Roberto

    2016-08-01

    We investigate the decay of initial states that possess a tail that extends beyond the interaction potential region, for potentials of arbitrary shape that vanish exactly after a distance. This is the case for a relevant class of artificial quantum structures. We obtain that along the internal interaction region, the time evolution of the decaying wave function is formed by two terms. The first one refers to the proper decay of the internal portion of the initial state, whereas the second one, that arises from the external tail, yields a transient contribution that tunnels into the internal region, builds up to a value, and then decays. We obtain that depending on the parameters of the initial state, the nonexponential tail decaying contribution may be larger than the contribution of the proper nonexponential term. These results are illustrated by an exactly solvable model and the Heidelberg potential for decay of ultracold atoms and open the possibility to control initial states in artificial decaying systems.

  9. Evaluation of screening length corrections for interaction potentials in impact-collision ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Wataru, E-mail: take@sp.ous.ac.jp

    2013-10-15

    Since in impact-collision ion scattering spectroscopy (ICISS) data analysis the interaction potential represented by the screening length as the screening effect is not satisfactorily established up to the present, we introduce commonly the correction factor in the screening length. Previously, Yamamura, Takeuchi and Kawamura (YTK) have suggested the theory taking the shell effect of electron distributions into account for the correction factor to Firsov screening length in the Moliere potential. The application of YTK theory to the evaluation of screening length corrections for the interaction potentials in ICISS manifested that the screening length corrections calculated by the YTK theory agree almost with those determined by simulations or numerical calculations in ICISS and its variants data analyses, being superior to the evaluation of screening length corrections with the O’Connor and Biersack (OB) formula.

  10. Many-Body Coarse-Grained Interactions using Gaussian Approximation Potentials

    CERN Document Server

    John, S T

    2016-01-01

    This thesis introduces a framework that is able to describe general many-body coarse-grained interactions. We make use of this to describe the free energy surface as a cluster expansion in terms of monomer, dimer, and trimer terms. The contributions to the free energy due to these terms are inferred from MD results of the underlying all-atom model using Gaussian Approximation Potentials, a type of machine-learning potential based on Gaussian process regression. This provides CG interactions that are much more accurate than is possible with site-based pair potentials. While slower than these, it can still be faster than all-atom simulations for solvent-free CG models of systems with a large amount of solvent, as is common in biomolecular simulations.

  11. Taurolidine Antiadhesive Properties on Interaction with E. coli; Its Transformation in Biological Environment and Interaction with Bacteria Cell Wall

    OpenAIRE

    Francesco Caruso; James W Darnowski; Cristian Opazo; Alexander Goldberg; Nina Kishore; Agoston, Elin S.; Miriam Rossi

    2010-01-01

    The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4)methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activit...

  12. Fragment Produced by Nuclear Reaction of Heavy Ions Interacted with Tissue-equivalent Biological Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In heavy ion therapy and radiation biological effects the nuclear fragments from the heavy ion collisions may cause a significant alteration of the radiation field. Nuclear collision between beam particles and tissue nuclei along the penetration path of high-energy ions in tissue or biological-equivalent material causes a loss

  13. Interactions of nanomaterials with biological systems: A study of bio-mineralized nanoparticles and nanoparticle antibiotics

    Science.gov (United States)

    Gifford, Jennifer Chappell

    Nature is continually able to out-perform laboratory syntheses of nanomaterials with control of specific properties under ambient temperatures, pressures and pH. The investigation of existing biomolecule-mediated nanoparticle synthesis provides insight and knowledge necessary for duplicating these processes. In this way, peptides or proteins with nanomaterial mediation capabilities can be: 1) explored to further understand the ways in which biomolecules create specific nanoparticles then 2) used to create genetically encodable tags for use in electron tomography. The goal of designing such a tag was to assist in closing the resolution gap that exists in current imaging techniques between approximately 5 nm and 100 nm. Presented in this thesis are examples of peptides and proteins that form iron oxide, silver or gold nanoparticles under discrete circumstances. Three iron oxide-related bacterial proteins -- bacterioferritin, Dps and Mms6 -- were investigated for potential use. Similarly, a silver mineralizing peptide, Ge8, was studied upon attachment to the filamentous protein, FtsZ, and a gold mineralizing peptide, A3, was examined to characterize the way in which it mediates the formation of both Au0 nanoclusters and nanoparticles. Given the established interactions that occur between nanoparticles and biomolecules, it may not be surprising that gold nanoparticles displaying specific ratios of functional groups are able to interact with bacteria, in some cases inhibiting growth or causing cell death as antibiotics. A previously developed small molecule variable ligand display (SMVLD) method was expanded to identify a nanoparticle conjugate with a minimal inhibitory concentration (MIC99.9) of 6 muM for Mycobacterium smegmatis, a common laboratory model for M. tuberculosis and the first example of SMVLD applied to mycobacteria. Nanoparticle structure-activity relationships, modes of action and approximations of mammalian cell toxicities were also explored to expand

  14. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria.

    Science.gov (United States)

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Dobslaff, Kristin; Wiesner, Jochen; Twyman, Richard M; Zuchner, Thole; Sadd, Ben M; Regoes, Roland R; Schmid-Hempel, Paul; Vilcinskas, Andreas

    2015-05-01

    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.

  15. An overview of biological processes and their potential for CO2 capture.

    Science.gov (United States)

    Goli, Amin; Shamiri, Ahmad; Talaiekhozani, Amirreza; Eshtiaghi, Nicky; Aghamohammadi, Nasrin; Aroua, Mohamed Kheireddine

    2016-12-01

    The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation.

  16. Preliminary assessment of the interaction of introduced biological agents with biofilms in water distribution systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Caldwell, Sara; Jones, Howland D. T.; Altman, Susan Jeanne; Souza, Caroline Ann; McGrath, Lucas K.

    2005-12-01

    Basic research is needed to better understand the potential risk of dangerous biological agents that are unintentionally or intentionally introduced into a water distribution system. We report on our capabilities to conduct such studies and our preliminary investigations. In 2004, the Biofilms Laboratory was initiated for the purpose of conducting applied research related to biofilms with a focus on application, application testing and system-scale research. Capabilities within the laboratory are the ability to grow biofilms formed from known bacteria or biofilms from drinking water. Biofilms can be grown quickly in drip-flow reactors or under conditions more analogous to drinking-water distribution systems in annular reactors. Biofilms can be assessed through standard microbiological techniques (i .e, aerobic plate counts) or with various visualization techniques including epifluorescent and confocal laser scanning microscopy and confocal fluorescence hyperspectral imaging with multivariate analysis. We have demonstrated the ability to grow reproducible Pseudomonas fluorescens biofilms in the annular reactor with plate counts on the order of 10{sup 5} and 10{sup 6} CFU/cm{sup 2}. Stationary phase growth is typically reached 5 to 10 days after inoculation. We have also conducted a series of pathogen-introduction experiments, where we have observed that both polystyrene microspheres and Bacillus cereus (as a surrogate for B. anthracis) stay incorporated in the biofilms for the duration of our experiments, which lasted as long as 36 days. These results indicated that biofilms may act as a safe harbor for bio-pathogens in drinking water systems, making it difficult to decontaminate the systems.

  17. Potential drug–drug interactions in Alzheimer patients with behavioral symptoms

    Directory of Open Access Journals (Sweden)

    Pasqualetti G

    2015-09-01

    Full Text Available Giuseppe Pasqualetti, Sara Tognini, Valeria Calsolaro, Antonio Polini, Fabio Monzani Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy Abstract: The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug–drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug–drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer’s disease (AD patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug–drug interactions, potentially harmful, in AD patients with

  18. Frequency of potential interactions between drugs in medical prescriptions in a city in southern Brazil

    Directory of Open Access Journals (Sweden)

    Genici Weyh Bleich

    Full Text Available CONTEXT AND OBJECTIVE: Drug interactions form part of current clinical practice and they affect between 3 and 5% of polypharmacy patients. The aim of this study was to identify the frequency of potential drug-drug interactions in prescriptions for adult and elderly patients. TYPE OF STUDY AND SETTING: Cross-sectional pharmacoepidemiological survey in the Parque Verde housing project, municipality of Cascavel, Paraná, Brazil, between December 2006 and February 2007. METHODS: Stratified cluster sampling, proportional to the total number of homes in the housing project, was used. The sample consisted of 95 homes and 96 male or female patients aged 19 or over, with medical prescriptions for at least two pharmaceutical drugs. Interactions were identified using DrugDigest, Medscape and Micromedex softwares. RESULTS: Most of the patients were female (69.8%, married (59.4% and in the age group of 60 years or over (56.3%, with an income less than or equal to three minimum monthly salaries (81.3% and less than eight years of schooling (69.8%; 90.6% of the patients were living with another person. The total number of pharmaceutical drugs was 406 (average of 4.2 medications per patient. The drugs most prescribed were antihypertensives (47.5%. The frequency of drug interactions was 66.6%. Among the 154 potential drug interactions, 4.6% were classified as major, 65.6% as moderate and 20.1% as minor. CONCLUSION: The high frequency of drug prescriptions with a potential for differentiated interactions indicates a situation that has so far been little explored, albeit a reality in household surveys.

  19. Association of COMT and COMT-DRD2 interaction with creative potential

    Directory of Open Access Journals (Sweden)

    Shun eZhang

    2014-04-01

    Full Text Available Several lines of evidence suggest that genes involved in dopamine (DA transmission may contribute to creativity. Among these genes, the catechol-O-methyltransferase gene (COMT and the dopamine D2 receptor gene (DRD2 are the most promising candidates. Our previous study has revealed evidence for the involvement of DRD2 in creative potential. The present study extended our previous study by systematically exploring the association of COMT with creative potential as well as the interaction between COMT and DRD2. Twelve single nucleotide polymorphisms (SNPs covering COMT were genotyped in 543 healthy Chinese college students whose creative potentials were assessed by divergent thinking tests. Single SNP analysis showed that rs174697 was nominally associated with verbal originality, two SNPs (rs737865 and rs5993883 were nominally associated with figural fluency, and two SNPs (rs737865 and rs4680 were nominally associated with figural originality. Haplotype analysis showed that, the TCT and CCT haplotype (rs737865-rs174675-rs5993882 were nominally associated with figural originality, and the TATGCAG and CGCGGGA haplotype (rs4646312-rs6269-rs4633-rs6267-rs4818-rs4680-rs769224 were nominally associated with figural originality and verbal flexibility, respectively. However, none of these nominal findings survived correction for multiple testing. Gene-gene interaction analysis identified one significant four-way interaction of rs174675 (COMT, rs174697 (COMT, rs1076560 (DRD2 and rs4436578 (DRD2 on verbal fluency, one significant four-way interaction of rs174675 (COMT, rs4818 (COMT, rs1076560 (DRD2 and rs4648317 (DRD2 on verbal flexibility, and one significant three-way interaction of rs5993883 (COMT, rs4648319 (DRD2 and rs4648317 (DRD2 on figural flexibility. In conclusion, the present study provides nominal evidence for the involvement of COMT in creative potential and suggests that DA related genes may act in coordination to contribute to creativity.

  20. A new method for detecting interactions between the senses in event-related potentials

    DEFF Research Database (Denmark)

    Gondan, Matthias; Röder, B.

    2006-01-01

    Event-related potentials (ERPs) can be used in multisensory research to determine the point in time when different senses start to interact, for example, the auditory and the visual system. For this purpose, the ERP to bimodal stimuli (AV) is often compared to the sum of the ERPs to auditory (A...... - (A + V), but common activity is eliminated because two ERPs are subtracted from two others. With this new comparison technique, the first auditory-visual interaction starts around 80 ms after stimulus onset for the present experimental setting. It is possible to apply the new comparison method...

  1. A Study on Potential of Integrating Multimodal Interaction into Musical Conducting Education

    CERN Document Server

    Siang, Gilbert Phuah Leong; Yong, Pang Yee

    2010-01-01

    With the rapid development of computer technology, computer music has begun to appear in the laboratory. Many potential utility of computer music is gradually increasing. The purpose of this paper is attempted to analyze the possibility of integrating multimodal interaction such as vision-based hand gesture and speech interaction into musical conducting education. To achieve this purpose, this paper is focus on discuss some related research and the traditional musical conducting education. To do so, six musical conductors had been interviewed to share their musical conducting learning/ teaching experience. These interviews had been analyzed in this paper to show the syllabus and the focus of musical conducting education for beginners.

  2. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  3. The potential of plants as a system for the development and production of human biologics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-05-01

    Full Text Available The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  4. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  5. Interactions of neuropathy inducers and potentiators/promoters with soluble esterases.

    Science.gov (United States)

    Estévez, Jorge; Mangas, Iris; Sogorb, Miguel Ángel; Vilanova, Eugenio

    2013-03-25

    Organophosphorus compounds (OPs) cause neurotoxic disorders through interactions with well-known target esterases, such as acetylcholinesterase and neuropathy target esterase (NTE). However, the OPs can potentially interact with other esterases of unknown significance. Therefore, identifying, characterizing and elucidating the nature and functional significance of the OP-sensitive pool of esterases in the central and peripheral nervous systems need to be investigated. Kinetic models have been developed and applied by considering multi-enzymatic systems, inhibition, spontaneous reactivation, the chemical hydrolysis of the inhibitor and "ongoing inhibition" (inhibition during the substrate reaction time). These models have been applied to discriminate enzymatic components among the esterases in nerve tissues of adult chicken, this being the experimental model for delayed neuropathy and to identify different modes of interactions between OPs and soluble brain esterases. The covalent interaction with the substrate catalytic site has been demonstrated by time-progressive inhibition during ongoing inhibition. The interaction of sequential exposure to an esterase inhibitor has been tested in brain soluble fraction where exposure to one inhibitor at a non inhibitory concentration has been seen to modify sensitivity to further exposure to others. The effect has been suggested to be caused by interaction with sites other than the inhibition site at the substrate catalytic site. This kind of interaction among esterase inhibitors should be considered to study the potentiation/promotion phenomenon, which is observed when some esterase inhibitors enhance the severity of the OP induced neuropathy if they are dosed after a non neuropathic low dose of a neuropathy inducer.

  6. Concomitant therapy in people with epilepsy: potential drug-drug interactions and patient awareness.

    Science.gov (United States)

    Eyal, Sara; Rasaby, Sivan; Ekstein, Dana

    2014-02-01

    People with epilepsy (PWE) may use prescription and over-the-counter (OTC) drugs for the treatment of concomitant diseases. Combinations of these drugs, as well as dietary supplements, with antiepileptic drugs (AEDs) may lead to reduced control of seizures and of coexisting medical conditions and increased risk of adverse drug reactions (ADRs). The aims of this study were to obtain comprehensive lists of medications, dietary supplements, botanicals, and specific food components used by adult PWE and to evaluate the potential for interactions involving AEDs and patients' awareness of such potential interactions. We conducted a prospective, questionnaire-based study of PWE attending the Hadassah-Hebrew University Epilepsy Clinic over a period of 7months. The questionnaire interview included the listing of medications, medicinal herbs, dietary supplements, and specific food components consumed and the knowledge of potential drug-drug interactions (DDIs), and it was conducted by a pharmacist. Drug-drug interactions were analyzed via the Micromedex online database. Out of 179 patients who attended the clinic over the study period, we interviewed 73 PWE, of which 71 were included in our final analysis. The mean number of AEDs consumed per subject was 1.7 (SD: 0.8, range: 1-4). Forty (56%) subjects were also treated with other prescription and/or OTC medications, and thirty-four (48%) took dietary supplements. Drug families most prone to DDIs involving AEDs included antipsychotic agents, selective serotonin reuptake inhibitors, and statins. Two-thirds of study participants (67%) knew that DDIs may lead to ADRs, but only half (56%) were aware of the potential for reduced seizure control. Only 44% always reported treatment with AEDs to medical professionals. This study provides for the first time a comprehensive picture of prescription and OTC drugs and food supplements used by PWE. Despite a considerable potential for DDIs involving AEDs, patient awareness is limited

  7. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical–biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...

  8. Can Bibliographic Pointers for Known Biological Data Be Found Automatically? Protein Interactions as a Case Study

    Directory of Open Access Journals (Sweden)

    Christian Blaschke

    2001-01-01

    Full Text Available The Dictionary of Interacting Proteins (DIP (Xenarios et al., 2000 is a large repository of protein interactions: its March 2000 release included 2379 protein pairs whose interactions have been detected by experimental methods. Even if many of these correspond to poorly characterized proteins, the result of massive yeast two-hybrid screenings, as many as 851 correspond to interactions detected using direct biochemical methods.

  9. Medicinal plant reported with adverse reactions in Cuba: potential interactions with conventional drugs

    Directory of Open Access Journals (Sweden)

    Ioanna Martínez

    2015-04-01

    Full Text Available Context: Herbal drugs are a mixture of active compounds and the chemical complexity of each formulation increase with the possibility of interactions between them and conventional drugs. Many mechanisms are implicated in the interactions; scientific community has dedicated the attentions to enzymes as P-gp and CYP450. Aims: To investigate in the literature the principal plants with suspicions of adverse reactions in Cuba and their potential interactions with conventional drugs. Methods: PubMed was the database used as source of information until February 2014. Key words: Herb-Drug, Drug-Plant, Herbal–Drug, Interactions with scientific names of plants was used. Information was structured and analysed with EndNote X4. Analysis and integration of the information: Allium sativum L. (garlic was the plant with the high number of studies related with CYP450 and P-gp. Plants with great demand as Morinda citrifolia L. (noni, Psidium guajava L. (guayaba, Zingiber officinale Roscoe (ginger and Eucalyptus spp. (eucalyptus have a very small number of studies. The professionals of the health should keep in mind the possibility of interactions between herbal products and conventional drugs to increase the effectiveness of phytotherapy. Conclusions: It is necessary enhance reports and investigations and to put to disposition of the system of health information on the interactions of plants and to stimulate the investigation that offers information for the rational use of our medicinal plants.

  10. Smart interactive electronic system for monitoring the electromagnetic activities of biological systems

    Science.gov (United States)

    Popa, Sorin G.; Shahinpoor, Mohsen

    2001-08-01

    A novel electronic device capable of sensing and monitoring the myoelectric, polarization wave and electromagnetic activities of the biological systems and in particular the human body is presented. It is known that all the physical and chemical processes within biological systems are associated with polarization, depolarization waves from the brain, neural signals and myoelectric processes that manifest themselves in ionic and dipole motion. The technology developed in our laboratory is based on certain charge motion sensitive electronics. The electronic system developed is capable of sensing the electromagnetic activities of biological systems. The information obtained is then processed by specialized software in order to interpret it from physical and chemical point of view.

  11. Electrostatic potential profile and nonlinear current in an interacting one-dimensional molecular wire

    Indian Academy of Sciences (India)

    S Lakshmi; Swapan K Pati

    2003-10-01

    We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends on charge densities, we have considered different Hamiltonian parameters to model the nanoscale wire. We find that for very weak electron correlations, the potential gradient is almost zero in the middle of the wire but are large near the chain ends. However, for strong correlations, the potential is essentially a ramp function. The nonlinear current, obtained from the scattering formalism, is found to be less with the ramp potential than for weak correlations. Some of the interesting features in current-voltage characteristics have been explained using one-electron formalism and instabilities in the system.

  12. Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2017-01-01

    We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.

  13. Hyperon Single-Particle Potentials Calculated from SU6 Quark-Model Baryon-Baryon Interactions

    CERN Document Server

    Kohno, M; Fujita, T; Nakamoto, C; Suzuki, Y

    2000-01-01

    Using the SU6 quark-model baryon-baryon interaction recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in ordinary nuclear matter. This is the first attempt to discuss the Lambda and Sigma single-particle potentials in nuclear medium, based on the realistic quark-model potential. The Lambda potential has the depth of more than 40 MeV, which is more attractive than the value expected from the experimental data of Lambda-hypernuclei. The Sigma potential turns out to be repulsive, the origin of which is traced back to the strong Pauli repulsion in the Sigma N (I=3/2) ^3S_1 state.

  14. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  15. Flower power? Potential benefits and pitfalls of using (flowering) vegetation for conservation biological control

    NARCIS (Netherlands)

    Wackers, F.L.; Rijn, van P.C.J.; Winkler, K.; Olson, D.

    2007-01-01

    Whereas nectar and pollen provision to predators and parasitoids is often a main objective in pursuing agricultural biodiversity, we generally know little about whether the flowering plant species involved are actually suitable as insect food sources or what their ultimate impact is on biological pe

  16. Flower power? Potential benefits and pitfalls of using (flowering) vegetation for conservation biological control

    NARCIS (Netherlands)

    Wackers, F.L.; Rijn, van P.C.J.; Winkler, K.; Olson, D.

    2006-01-01

    Whereas nectar and pollen provision to predators and parasitoids is a main objective in pursuing agricultural biodiversity, we often know little about whether the flowering plant species involved are actually suitable as insect food sources or about their ultimate impact on biological pest control.

  17. Pediatric Asthma: Guidelines-Based Care, Omalizumab, and Other Potential Biologic Agents

    OpenAIRE

    2014-01-01

    Over the past several decades, the evidence supporting rational pediatric asthma management has grown exponentially. As more is learned about the various phenotypes of asthma, the complexity of management will continue to grow. This review focuses on the evidence supporting the current guidelines-based pediatric asthma management and explores the future of asthma management with respect to phenotypic heterogeneity and biologics.

  18. Reconstructing interaction potentials in thin films from real-space images.

    Science.gov (United States)

    Gienger, Jonas; Severin, Nikolai; Rabe, Jürgen P; Sokolov, Igor M

    2016-04-01

    We demonstrate that an inverse Monte Carlo approach allows one to reconstruct effective interaction potentials from real-space images. The method is exemplified on monomolecular ethanol-water films imaged with scanning force microscopy, which provides the spatial distribution of the molecules. Direct Monte Carlo simulations with the reconstructed potential allow for obtaining characteristics of the system which are unavailable in the experiment, such as the heat capacity of the monomolecularly thin film, and for a prediction of the critical temperature of the demixing transition.

  19. Isospin effects of the Skyrme potential and the momentum dependent interaction at intermediate energy heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-Jun; LIU Jian-Ye

    2008-01-01

    We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio.

  20. Understanding consumer motivations for interacting in online food communities – potential for innovation

    DEFF Research Database (Denmark)

    Jacobsen, Lina; Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    This study contributes to the understanding of online user communities as a potential source of innovation. That would require an interest from users in interacting in such communities. In order to establish interaction, users must provide as well as consume information. However, depending...... on the innovation task, one may be more important than the other. It is therefore important to understand, how companies can increase user willingness to engage in these different interaction forms. This study investigates the influence of various motivation factors and user interests on intention to provide...... or consume information in online food communities. A survey was conducted among 1009 respondents followed by analysis based on Structural Equation Modelling. Results revealed the effect of motivation factors to be stronger than basic consumer interests indicating that companies can influence the intended...

  1. Potential costs of heterospecific sexual interactions in golden orbweb spiders (Nephila spp.).

    Science.gov (United States)

    Quiñones-Lebrón, Shakira G; Kralj-Fišer, Simona; Gregorič, Matjaž; Lokovšek, Tjaša; Čandek, Klemen; Haddad, Charles R; Kuntner, Matjaž

    2016-11-15

    Though not uncommon in other animals, heterospecific mating is rarely reported in arachnids. We investigated sexual interactions among four closely related and syntopical African golden orbweb spiders, Nephila inaurata, N. fenestrata, N. komaci, and N. senegalensis. In two South African localities, female webs were often inhabited by heterospecific males that sometimes outnumbered conspecifics. Species association of males with females was random in nature. In subsequent laboratory choice experiments, N. inaurata males chose heterospecific females in 30% of trials. We also observed natural mating interactions between N. inaurata males and N. komaci females, and between N. komaci males and N. inaurata females in laboratory experiments. While heterospecific mating in the laboratory never produced offspring, conspecific mating did. We discuss potential ecological and evolutionary consequences of heterospecific mating interactions in Nephila that may be particularly costly to the rarer species.

  2. Interaction potential of microparticles in a plasma: role of collisions with plasma particles.

    Science.gov (United States)

    Khrapak, S A; Ivlev, A V; Morfill, G

    2001-10-01

    The interaction potential of two charged microparticles in a plasma is studied. Violation of the plasma equilibrium around the dust particles due to plasma-particle inelastic collisions results in three effects: long-range (non-Yukawa) electrostatic repulsion, attraction due to ion shadowing, and attraction or repulsion due to neutral shadowing (depending on the sign of the temperature difference between the particle surface and neutral gas). An analytical expression for the total potential is obtained and compared with previous theoretical results. The relative contribution of these effects is studied in two limiting cases-an isotropic bulk plasma and the plasma sheath region. The results obtained are compared with existing experimental results on pair particle interaction. The possibility of the so-called dust molecule formation is discussed.

  3. Multiple scattering of low energy ions in matter: Influence of energy loss and interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Mekhtiche, A. [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria); Faculté des Sciences et de la Technologie, Université Yahia Farès de Médéa (Algeria); Khalal-Kouache, K., E-mail: kkouache@yahoo.fr [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)

    2015-07-01

    In this paper, the effect of inelastic energy loss and interaction potential on transmitted ions at low energy is studied. For this purpose, angular distributions of slow He{sup +} ions transmitted through thin Ag films are calculated using the theory of multiple scattering. Thin films (20–50 Å at 2 keV and 50–200 Å at 10 keV) are considered so that the total path length of transmitted ions can be approximated by the value of the target thickness in this calculation. The corresponding values of the relative energy loss ΔE/E are comprised between 0.04 and 0.17. We show that even if low values of the thickness are considered, the total energy loss of ions in the target should be included in the calculation. These calculated angular distributions are also influenced by the potential used to describe the interaction between the incident ion and the target atom.

  4. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    Energy Technology Data Exchange (ETDEWEB)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  5. Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells

    Science.gov (United States)

    Castro-Smirnov, Fidel Antonio; Piétrement, Olivier; Aranda, Pilar; Bertrand, Jean-Rémi; Ayache, Jeanne; Le Cam, Eric; Ruiz-Hitzky, Eduardo; Lopez, Bernard S.

    2016-01-01

    Nanofibers of sepiolite, a natural silicate belonging to the clay minerals family, might constitute a potential promising nanocarrier for the non-viral transfer of bio-molecules. We show here that sepiolite nanofibers efficiently bind different types of DNA molecules through electrostatic interactions, hydrogen bonding, cation bridges, and van der Waals forces. Moreover, Fourier-transform infrared spectroscopy identified the external silanol groups as the main sites of interaction with the DNA. Furthermore, as a proof of concept, we show that sepiolite is able to stably transfer plasmid DNA into mammalian cells and that the efficiency can be optimized. Indeed, sonication of sepiolite 100-fold stimulated DNA transfection efficiency. These results open the way to the use of sepiolite-based biohybrids as a novel class of nanoplatform for gene transfer with potential clinical applications. PMID:27808269

  6. Herbal medicines in Brazil: pharmacokinetic profile and potential herb-drug interactions.

    Science.gov (United States)

    Mazzari, Andre L D A; Prieto, Jose M

    2014-01-01

    A plethora of active compounds found in herbal medicines can serve as substrate for enzymes involved in the metabolism of xenobiotics. When a medicinal plant is co-administered with a conventional drug and little or no information is known about the pharmacokinetics of the plant metabolites, there is an increased risk of potential herb-drug interactions. Moreover, genetic polymorphisms in a population may act to predispose individuals to adverse reactions. The use of herbal medicines is rapidly increasing in many countries, particularly Brazil where the vast biodiversity is a potential source of new and more affordable treatments for numerous conditions. Accordingly, the Brazilian Unified Public Health System (SUS) produced a list of 71 plant species of interest, which could be made available to the population in the near future. Physicians at SUS prescribe a number of essential drugs and should herbal medicines be added to this system the chance of herb-drug interactions further increases. A review of the effects of these medicinal plants on Phase 1 and Phase 2 metabolic mechanisms and the transporter P-glycoprotein was conducted. The results have shown that approximately half of these medicinal plants lack any pharmacokinetic data. Moreover, most of the studies carried out are in vitro. Only a few reports on herb-drug interactions with essential drugs prescribed by SUS were found, suggesting that very little attention is being given to the safety of herbal medicines. Here we have taken this information to discuss the potential interactions between herbal medicines and essential drugs prescribed to Brazilian patients whilst taking into account the most common polymorphisms present in the Brazilian population. A number of theoretical interactions are pinpointed but more pharmacokinetic studies and pharmacovigilance data are needed to ascertain their clinical significance.

  7. Potential drug-drug interactions in Alzheimer patients with behavioral symptoms.

    Science.gov (United States)

    Pasqualetti, Giuseppe; Tognini, Sara; Calsolaro, Valeria; Polini, Antonio; Monzani, Fabio

    2015-01-01

    The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug-drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug-drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer's disease (AD) patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug-drug interactions, potentially harmful, in AD patients with behavioral symptoms considering both physiological and pathological changes in AD patients, and potential pharmacodynamic/pharmacokinetic drug interaction mechanisms.

  8. Development of a General Modeling Framework for Investigating Complex Interactions among Biological and Physical Ecosystem Dynamics

    Science.gov (United States)

    Bennett, C.; Poole, G. C.; Kimball, J. S.; Stanford, J. A.; O'Daniel, S. J.; Mertes, L. A.

    2005-05-01

    Historically, physical scientists have developed models with highly accurate governing equations, while biologists have excelled at abstraction (the strategic simplification of system complexity). These different modeling paradigms yield biological (e.g. food web) and physical (e.g. hydrologic) models that can be difficult to integrate. Complex biological dynamics may be impossible to represent with governing equations. Conversely, physical processes may be oversimplified in biological models. Using agent-based modeling, a technique applied widely in social sciences and economics, we are developing a general modeling system to integrate accurate representations of physical dynamics such as water and heat flux with abstracted biological processes such as nutrient transformations. The modeling system represents an ecosystem as a complex integrated network of intelligent physical and biological "agents" that store, transform, and trade ecosystem resources (e.g., water, heat, nutrients, carbon) using equations that describe either abstracted concepts and/or physical laws. The modular design of the system allows resource submodels to be developed independently and installed into the simulation architecture. The modeling system provides a useful heuristic tool to support integrated physical and biological research topics, such as the influence of hydrologic dynamics and spatio-temporal physical heterogeneity on trophic (food web) dynamics and/or nutrient cycling.

  9. Biological potential of fungi associated to Prays oleae in Trás-os-Montes (Northeastern region of Portugal)

    OpenAIRE

    Oliveira,Ivo; Baptista, Paula; Lino-Neto, Teresa; Bento, Albino; PEREIRA, J. A.

    2010-01-01

    Olive groves represent an important fraction of the agricultural practices in Portugal, mainly in the region of Trás-os-Montes. Our work pretends to disclose the fungal diversity associated to one of the major olives pests, the Prays oleae Bern. Besides evaluating the extent of the presence of entomopathogenic fungi, we also intend to reveal other promising fungi with potential to be used as biological control agents. In order to achieve this goal, larvae and pupae of the three generations...

  10. Effect of taurine and potential interactions with caffeine on cardiovascular function.

    Science.gov (United States)

    Schaffer, Stephen W; Shimada, Kayoko; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi; Takahashi, Kyoko

    2014-05-01

    The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union's Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that "if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine." Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine-taurine containing beverages.

  11. Advances in adult asthma diagnosis and treatment in 2012: potential therapeutics and gene-environment interactions.

    Science.gov (United States)

    Apter, Andrea J

    2013-01-01

    In the Journal of Allergy and Clinical Immunology in 2012, research reports related to asthma in adults clustered around mechanisms of disease, with a special focus on their potential for informing new therapies. There was also consideration of the effect of the environment on health from pollution, climate change, and epigenetic influences, underlining the importance of understanding gene-environment interactions in the pathogenesis of asthma and response to treatment.

  12. Formation of chain structures in systems of charged grains interacting via isotropic pair potentials

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I.; Koss, K. G., E-mail: Xeniya.Koss@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-05-15

    Conditions for the formation of chain structures of charged grains confined in the gravitational field by external electric fields are studied analytically and numerically. The relationships between the parameters of the pair interaction potential, the number of grains, and the electric field gradient in the trap are found. A criterion for the violation of stable equilibrium in a quasi-one-dimensional chain of grains and the formation of a new configuration in the system is proposed.

  13. Using a biological indicator to detect potential sources of cross-contamination in the dental operatory.

    Science.gov (United States)

    Hackney, R W; Crawford, J J; Tulis, J J

    1998-11-01

    The authors conducted a study using surveillance monitoring methodology to identify operatory contamination and to evaluate the effectiveness of infection control procedures. Viridans streptococci were evaluated as biological indicators of oral contamination. Viridans streptococci, abundant in human saliva, were detected on operatory surfaces after dental treatments were finished and surfaces were disinfected. The findings validate current concepts of infection control as demonstrated in barrier methods.

  14. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  15. Semi-Empirical Effective Interactions for Inelastic Scattering Derived from the Reid Potential

    Science.gov (United States)

    Fiase, J. O.; Sharma, L. K.; Winkoun, D. P.; Hosaka, A.

    2001-09-01

    An effective local interaction suitable for inelastic scattering is constructed from the Reid soft - core potential. We proceed in two stages: We first calculated a set of relative two - body matrix elements in a variational approach using the Reid soft-core potential folded with two-body correlation functions. In the second stage we constructed a potential for inelastic scattering by fitting the matrix elements to a sum of Yukawa central, tensor and spin-orbit terms to the set of relative two - body matrix elements obtained in the first stage by a least squares fitting procedure. The ranges of the new potential were selected to ensure the OPEP tails in the relevant channels as well as the short - range part of the interaction. It is found that the results of our variational techniques are very similar to the G - matrix calculations of Bertsch and co - workers in the singlet - even, triplet - even, tensor - even and spin-orbit odd channels thus putting our calculations of two - body matrix elements of nuclear forces in these channels on a sound footing. However, there exist major differences in the singlet - odd, triplet - odd, tensor - odd and spin - orbit even channels which casts some doubt on our understanding of nuclear forces in these channels.

  16. Potential interactions of central nervous system drugs used in the elderly population

    Directory of Open Access Journals (Sweden)

    Fernanda Bueno Morrone

    2009-06-01

    Full Text Available OBJECTIVE: To describe the use of CNS drugs and to identify the most frequently observed potential drug interactions in the elderly living in Southern Brazil. METHODS: A population-based, transversal and observational study was carried out during 2006-2007. Four hundred and eighty elderly individuals of both genders were randomly recruited and interviewed. A validated pharmacotherapeutic questionnaire and the Micromedex® Healthcare Series were utilized to analyze potential drug interactions. A severity rating scale employing the categories of "mild", "moderate" and "severe" was used to describe the interactions. RESULTS: A population of elderly living in Southern Brazil was interviewed and 98 reported using CNS drugs, 74.5% female and 25.5% male. Out of these patients, 32.0% reported severe or moderate pharmacological interactions related to the use of other drugs. Alprazolam and imipramine were reported to potentially interact with tobacco. Twenty potential moderate drug/ethanol interactions were found. The potential drug/caffeine interactions were classified as mild on the severity scale. CONCLUSION: Elderly being prescribed drugs that act on the CNS should be closely monitored, and furthermore, should be warned against potential drug-drug, drug-ethanol, and drug-tobacco interactions.OBJETIVO: Descrever o uso de medicamentos que atuam no sistema nervoso central (SNC e identificar as possíveis interações mais frequentes com esses medicamentos em idosos do sul do Brasil. MÉTODOS: Estudo de base populacional, transversal e observacional, realizado durante 2006-2007. Quatrocentos e oitenta idosos de ambos os sexos foram randomizados e entrevistados. Foram utilizados um questionário farmacoterapêutico validado e o programa Micromedex® Healthcare Series para analisar as potenciais interações com os medicamentos. Foi utilizada uma escala para descrever a gravidade das interações nas categorias de "leve", "moderada" e "grave". RESULTADOS

  17. First Evaluation of the Biologically Active Substances and Antioxidant Potential of Regrowth Velvet Antler by means of Multiple Biochemical Assays

    Directory of Open Access Journals (Sweden)

    Yujiao Tang

    2015-01-01

    Full Text Available We investigated the biologically active substances contained in RVA (regrowth velvet antler by comparing the composition of biologically active substances and antioxidant potential of different antler segments. RVA was subjected to extraction using DW (distilled water. RVA was divided into 3 segments: T-RVA (top RVA, M-RVA (middle RVA, and B-RVA (base RVA. The T-RVA section possessed the greatest amounts of uronic acid (36.251 mg/g, sulfated GAGs (sulfated glycosaminoglycans (555.76 mg/g, sialic acid (111.276 mg/g, uridine (0.957 mg/g, uracil (1.084 mg/g, and hypoxanthine (1.2631 mg/g. In addition, the T-RVA section possessed the strongest antioxidant capacity as determined by DPPH, H2O2 (hydrogen peroxide, hydroxyl, and ABTS (2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate radical scavenging activity as well as FRAP (ferric reducing antioxidant power and ORAC (oxygen radical absorbance capacity. The values of those were 53.44, 23.09, 34.12, 60.31, and 35.81 TE/μM at 1 mg/mL and 113.57 TE/μM at 20 μg/mL. These results indicate that the T-RVA section possesses the greatest amount of biologically active substances and highest antioxidant potential. This is the first report on the biologically active substances and antioxidant potential of RVA.

  18. Study of Potential Drug-Drug Interactions in Prescriptions of University- Based Pharmacies

    Directory of Open Access Journals (Sweden)

    Sarah Mousavi

    2015-10-01

    Full Text Available Background: Drug-Drug Interactions (DDIs are adverse reactions caused by a combination of drugs; they are often predictable and therefore avoidable or manageable. The objective of this study was to evaluate the nature, type and prevalence of potential DDIs in prescriptions dispensed in university-based community pharmacies in Tehran, Iran.Methods: From July 2012 to February 2014, sample of 1260 prescriptions were collected from community and outpatient hospital pharmacies affiliated to Tehran University of Medical Sciences (TUMS, Iran. The prescriptions were assessed using the reference text “drug interaction facts”. The identified DDIs were categorized according to their level of significance into three classes (minor, moderate, major.Results: At least one drug-drug interaction was present in 339 (26.9% of prescriptions and a total of 751 cases of interactions were found in prescriptions. Major DDIs represented 7.3% of all DDIs detected, whereas moderate DDIs were 75% of all DDIs. The mean number of drugs per prescriptions was 3.2, with a median of 4 (range, 2-10.There was a positive association between number of prescribed drugs and occurrence of DDIs (OR: 2.14, 95% CI: 1.9-2.4. The prescriptions of medical specialist had greater risk of occurrence of moderate severity DDIs than general practitioners (OR: 1.52, 95%CI: 1.08-2.15.Conclusion: Despite the prescriptions were collected from university-based pharmacies, but the overall prevalence of potential DDIs were high among patients. Physicians should be aware of potentially harmful DDIs. Meanwhile Pharmacists can contribute to the detection and prevention of drug-related injuries. Appropriate education, collaborating drug selection and pharmaceutical care are strongly recommended for physicians and pharmacists.

  19. Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen.

    Science.gov (United States)

    Tomback, Diana F; Blakeslee, Sarah C; Wagner, Aaron C; Wunder, Michael B; Resler, Lynn M; Pyatt, Jill C; Diaz, Soledad

    2016-08-01

    In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress-tolerant pine, initiates tree islands at higher frequencies than other conifers - that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life-history stages for leeward conifers, but it is not known which life-history stages are influenced and protection provided. However, P. albicaulis mortality from the non-native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant-plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life-history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.

  20. Dirac equation for the Hulthén potential within the Yukawa-type tensor interaction

    Institute of Scientific and Technical Information of China (English)

    Oktay Aydo(g)du; Elham Maghsoodi; Hassan Hassanabadi

    2013-01-01

    Using the Nikiforov-Uvarov (NU) method,pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthén potentials with the Yukawa-type tensor potential are obtained for an arbitrary spin-orbit coupling quantum number κ.We deduce the energy eigenvalue equations and corresponding upper-and lower-spinor wave functions in both the pseudospin and spin symmetry cases.Numerical results of the energy eigenvalue equations and the upper-and lower-spinor wave functions are presented to show the effects of the external potential and particle mass parameters as well as pseudospin and spin symmetric constants on the bound-state energies and wave functions in the absence and presence of the tensor interaction.

  1. Unexplored regions in QFT: delocalization of quantum matter through interactions with zero mass potentials

    CERN Document Server

    Schroer, Bert

    2010-01-01

    Massive quantum matter of prescribed spin permits infinitely many possibilities of covariantization in terms of spinorial (undotted/dotted) pointlike fields, whereas massless finite helicity representations lead to large gap in this spinorial spectrum which quantum field theorists usually try to fill by inventing an indefinite metric vectorpotential (Gupta-Bleuler, BRST) outside the quantum theoretic realm. Only after completing the computation the expecration of the gauge invariant observables are obtained. The full range of covariant possiblities (without indefinite metric) is restored if one allows localization along semiinfinite strings in addition to pointlike localization. These stringlike potentials fluctuate in the direction of the string (points in a lower de Sitter space) and absorb part of the short distance singularity: there always exists a potential with the smallest short distance dimension allowed by unitarity: sdd=1. In case the interaction with the potential remains linear (QED), there is a ...

  2. Mapping of the interaction sites of galanthamine: a quantitative analysis through pairwise potentials and quantum chemistry.

    Science.gov (United States)

    Galland, Nicolas; Kone, Soleymane; Le Questel, Jean-Yves

    2012-10-01

    A quantitative analysis of the interaction sites of the anti-Alzheimer drug galanthamine with molecular probes (water and benzene molecules) representative of its surroundings in the binding site of acetylcholinesterase (AChE) has been realized through pairwise potentials calculations and quantum chemistry. This strategy allows a full and accurate exploration of the galanthamine potential energy surface of interaction. Significantly different results are obtained according to the distances of approaches between the various molecular fragments and the conformation of the galanthamine N-methyl substituent. The geometry of the most relevant complexes has then been fully optimized through MPWB1K/6-31 + G(d,p) calculations, final energies being recomputed at the LMP2/aug-cc-pVTZ(-f) level of theory. Unexpectedly, galanthamine is found to interact mainly from its hydrogen-bond donor groups. Among those, CH groups in the vicinity of the ammonium group are prominent. The trends obtained provide rationales to the predilection of the equatorial orientation of the galanthamine N-methyl substituent for binding to AChE. The analysis of the interaction energies pointed out the independence between the various interaction sites and the rigid character of galanthamine. The comparison between the cluster calculations and the crystallographic observations in galanthamine-AChE co-crystals allows the validation of the theoretical methodology. In particular, the positions of several water molecules appearing as strongly conserved in galanthamine-AChE co-crystals are predicted by the calculations. Moreover, the experimental position and orientation of lateral chains of functionally important aminoacid residues are in close agreement with the ones predicted theoretically. Our study provides relevant information for a rational drug design of galanthamine based AChE inhibitors.

  3. Interaction of electromagnetic energy with biological material - relation to food processing

    NARCIS (Netherlands)

    Ponne, C.T.; Bartels, P.V.

    1995-01-01

    For food scientists and technologists, the interaction of electromagnetic energy with enzymes, microorganisms and other food compounds is important in optimizing process efficiency and/or product quality. To be able to implement research findings on interaction of electromagnetic energy with matter;

  4. Intermolecular Interaction Potentials of CH4-Ne Complex Calculated with Local Density Approximation Methods

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHENG Xiao-Hong; CHEN Xiang-Rong; YANG Xiang-Dong; ZHU Jun

    2004-01-01

    @@ The intermolecular interactions potentials for two configurations of CH4-Ne complex are calculated with local density approximation methods in the frame of density functional theory. It is found that the calculated potentials have two minima when the distance between the carbon atom of CH4 and the Ne atom takes R = 5.80 a.u.and 6.20a. u. for both the two configurations. For the edge configuration, the corresponding depth of the potential is 0.0669536 eV and 0.0671416 eV. For the face configuration, the corresponding depth of the potential is 0.0737956 eV and 0.0645506 eV. The global minimum occurs at R = 5.80 a.u. for the face configuration with a depth of the potential 0.0737956 eV. The depths of our calculation are in better agreement with the experimental data than the quantum chemical calculation approach, while the position of minimum potential for our calculation is underestimated.

  5. Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control.

    Science.gov (United States)

    Kurose, Daisuke; Furuya, Naruto; Tsuchiya, Kenichi; Tsushima, Seiya; Evans, Harry C

    2012-07-01

    Fallopia japonica (Polygonaceae), or Japanese knotweed, is now spreading globally, causing serious problems in Europe and North America in both natural and urban habitats. There is an urgent need for alternative management solutions, and classical biological control, using coevolved natural enemies found in the native range, is currently being investigated. Here, we isolated fungal endophytes from F. japonica in Japan, its natural habitat, to find endophytes that might increase the virulence of a coevolved rust pathogen, Puccinia polygoni-amphibii var. tovariae. A total of 1581 fungal endophytes were recovered from F. japonica and classified into 15 taxa. Five genera (Colletotrichum, Pestalotiopsis, Phoma, Phomopsis, and Alternaria) were dominant as endophytes in F. japonica. A greenhouse study of the dominant endophyte-pathogen interactions revealed three types of reactions: suppressive, synergistic, and neutral. In particular, one Phomopsis isolate--closely related to Diaporthe medusaea, based on ITS sequences--promoted the pathogenic aggressiveness of P. polygoni-amphibii var. tovariae and, therefore, this interaction is potentially useful to increase the effectiveness of the rust fungus as a biological control agent of F. japonica in its invasive range.

  6. Biological ensemble modeling to evaluate potential futures of living marine resources

    DEFF Research Database (Denmark)

    Gårdmark, Anna; Lindegren, Martin; Neuenfeldt, Stefan

    2013-01-01

    trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator–prey feedbacks. Yet......Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the “biological ensemble modeling approach,” using the Eastern Baltic cod (Gadus morhua callarias...

  7. Developmental changes in sleep biology and potential effects on adolescent behavior and caffeine use.

    Science.gov (United States)

    Carskadon, Mary A; Tarokh, Leila

    2014-10-01

    Adolescent development includes changes in the biological regulatory processes for the timing of sleep. Circadian rhythm changes and changes to the sleep-pressure system (sleep homeostasis) during adolescence both favor later timing of sleep. These changes, combined with prevailing social pressures, are responsible for most teens sleeping too late and too little; those who sleep least report consuming more caffeine. Although direct research findings are scarce, the likelihood of use and abuse of caffeine-laden products grows across the adolescent years due, in part, to excessive sleepiness.

  8. Exploring the potential of second-generation sequencing in diverse biological contexts

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise

    Second generation sequencing (SGS) has revolutionized the study of DNA, allowing massive parallel sequencing of nucleic acids with unprecedented depths of coverage. The research undertaken in this thesis occurred in parallel with the increased accessibility of SGS platforms for routine genetic...... H1N1 influenza A virus genomes. The results of these studies demonstrate the power of SGS for gaining insight into the genetic variation of diverse biological samples and highlight the importance of using optimized protocols for sequencing non-conventional samples....

  9. Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically

    Directory of Open Access Journals (Sweden)

    V. T. J. Phillips

    2009-06-01

    Full Text Available An aerosol-cloud modeling framework is described to simulate the activation of ice particles and droplets by biological aerosol particles, such as airborne ice-nucleation active (INA bacteria. It includes the empirical parameterisation of heterogeneous ice nucleation and a semi-prognostic aerosol component, which have been incorporated into a cloud-system resolving model (CSRM with double-moment bulk microphysics. The formation of cloud liquid by soluble material coated on these partially insoluble organic aerosols is represented. It determines their partial removal from deep convective clouds by accretion onto precipitation in the cloud model. This "aerosol-cloud model" is validated for diverse cases of deep convection with contrasting aerosol conditions, against satellite, ground-based and aircraft observations.

    Simulations are performed with the aerosol-cloud model for a month-long period of summertime convective activity over Oklahoma. It includes three cases of continental deep convection simulated previously by Phillips and Donner (2006. Elevated concentrations of insoluble organic aerosol, boosted by a factor of 100 beyond their usual values for this continental region, are found to influence significantly the following quantities: (1 the average numbers and sizes of ice crystals and droplets in the clouds; (2 the horizontal cloud coverage in the free troposphere; (3 precipitation at the ground; and (4 incident solar insolation at the surface. This factor of 100 is plausible for natural fluctuations of the concentration of insoluble organic aerosol, in view of variability of cell concentrations for airborne bacteria seen by Lindemann et al. (1982.

    In nature, such boosting of the insoluble organic aerosol loading could arise from enhanced emissions of biological aerosol particles from a land surface. Surface wetness and solar insolation at the ground are meteorological quantities known to influence rates of growth of

  10. Subsystem-DFT potential-energy curves for weakly interacting systems.

    Science.gov (United States)

    Schlüns, Danny; Klahr, Kevin; Mück-Lichtenfeld, Christian; Visscher, Lucas; Neugebauer, Johannes

    2015-06-14

    Kohn-Sham density-functional theory (DFT) within the local-density approximation (LDA) or the generalized-gradient approximation (GGA) is known to fail for the correct description of London dispersion interactions. Often, not even bound potential-energy surfaces are obtained for van der Waals complexes, unless special correction schemes are employed. In contrast to that, there has been some evidence for the fact that subsystem-based density functional theory produces interaction energies for weakly bound systems which are superior to Kohn-Sham DFT results without dispersion corrections. This is usually attributed to an error cancellation between the approximate exchange-correlation and non-additive kinetic-energy functionals employed in subsystem DFT. Here, we investigate the accuracy of subsystem DFT for weakly interacting systems in detail, paying special attention to the shape of the potential-energy surfaces (PESs). Our test sets include the extensive S22x5 and S66x8 data sets. Our results indicate that subsystem DFT PESs strongly vary depending on the functional. LDA results are usually quite good, but behave differently from their KS counterparts. GGA results from the popular Perdew-Wang (PW91) set of functionals produce PESs that are often, but not in general overbinding. Results from Becke-Perdew (BP86) GGAs, by contrast, show the typical problems known from the corresponding KS results. We provide some preliminary results for empirical corrections for both PW91 and BP86 in subsystem DFT.

  11. A method for computing the inter-residue interaction potentials for reduced amino acid alphabet

    Indian Academy of Sciences (India)

    Abhinav Luthra; Anupam Nath Jha; G K Ananthasuresh; Saraswathi Vishveswara

    2007-08-01

    Inter-residue potentials are extensively used in the design and evaluation of protein structures. However, dealing with all (20×20) interactions becomes computationally difficult in extensive investigations. Hence, it is desirable to reduce the alphabet of 20 amino acids to a smaller number. Currently, several methods of reducing the residue types exist; however a critical assessment of these methods is not available. Towards this goal, here we review and evaluate different methods by comparing with the complete (20×20) matrix of Miyazawa-Jernigan potential, including a method of grouping adopted by us, based on multi dimensional scaling (MDS). The second goal of this paper is the computation of inter-residue interaction energies for the reduced amino acid alphabet, which has not been explicitly addressed in the literature until now. By using a least squares technique, we present a systematic method of obtaining the interaction energy values for any type of grouping scheme that reduces the amino acid alphabet. This can be valuable in designing the protein structures.

  12. Accuracy of simple folding model in the calculation of the direct part of real − interaction potential

    Indian Academy of Sciences (India)

    Keshab C Panda; Binod C Sahu; Jhasaketan Bhoi

    2014-05-01

    The direct part of real − interaction potential is calculated in the simple folding model using density-dependent Brink–Boeker effective interaction. The simple folding potentials calculated from the short- and finite-range components of this effective interaction are compared with their corresponding double folding results obtained from the oscillator model wave function to establish the relative accuracy of the model. It is found that the direct part of real – interaction potential calculated in the simple folding model is reliable.

  13. Assessment of potential drug–drug interactions and its associated factors in the hospitalized cardiac patients

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2016-03-01

    Full Text Available Drug–drug interactions (DDIs may result in the alteration of therapeutic response. Sometimes they may increase the untoward effects of many drugs. Hospitalized cardiac patients need more attention regarding drug–drug interactions due to complexity of their disease and therapeutic regimen. This research was performed to find out types, prevalence and association between various predictors of potential drug–drug interactions (pDDIs in the Department of Cardiology and to report common interactions. This study was performed in the hospitalized cardiac patients at Ayub Teaching Hospital, Abbottabad, Pakistan. Patient charts of 2342 patients were assessed for pDDIs using Micromedex® Drug Information. Logistic regression was applied to find predictors of pDDIs. The main outcome measure in the study was the association of the potential drug–drug interactions with various factors such as age, gender, polypharmacy, and hospital stay of the patients. We identified 53 interacting-combinations that were present in total 5109 pDDIs with median number of 02 pDDIs per patient. Overall, 91.6% patients had at least one pDDI; 86.3% were having at least one major pDDI, and 84.5% patients had at least one moderate pDDI. Among 5109 identified pDDIs, most were of moderate (55% or major severity (45%; established (24.2%, theoretical (18.8% or probable (57% type of scientific evidence. Top 10 common pDDIs included 3 major and 7 moderate interactions. Results obtained by multivariate logistic regression revealed a significant association of the occurrence of pDDIs in patient with age of 60 years or more (p < 0.001, hospital stay of 7 days or longer (p < 0.001 and taking 7 or more drugs (p < 0.001. We found a high prevalence for pDDIs in the Department of Cardiology, most of which were of moderate severity. Older patients, patients with longer hospital stay and with elevated number of prescribed drugs were at higher risk of pDDIs.

  14. Assessment of potential drug-drug interactions and its associated factors in the hospitalized cardiac patients.

    Science.gov (United States)

    Murtaza, Ghulam; Khan, Muhammad Yasir Ghani; Azhar, Saira; Khan, Shujaat Ali; Khan, Tahir M

    2016-03-01

    Drug-drug interactions (DDIs) may result in the alteration of therapeutic response. Sometimes they may increase the untoward effects of many drugs. Hospitalized cardiac patients need more attention regarding drug-drug interactions due to complexity of their disease and therapeutic regimen. This research was performed to find out types, prevalence and association between various predictors of potential drug-drug interactions (pDDIs) in the Department of Cardiology and to report common interactions. This study was performed in the hospitalized cardiac patients at Ayub Teaching Hospital, Abbottabad, Pakistan. Patient charts of 2342 patients were assessed for pDDIs using Micromedex® Drug Information. Logistic regression was applied to find predictors of pDDIs. The main outcome measure in the study was the association of the potential drug-drug interactions with various factors such as age, gender, polypharmacy, and hospital stay of the patients. We identified 53 interacting-combinations that were present in total 5109 pDDIs with median number of 02 pDDIs per patient. Overall, 91.6% patients had at least one pDDI; 86.3% were having at least one major pDDI, and 84.5% patients had at least one moderate pDDI. Among 5109 identified pDDIs, most were of moderate (55%) or major severity (45%); established (24.2%), theoretical (18.8%) or probable (57%) type of scientific evidence. Top 10 common pDDIs included 3 major and 7 moderate interactions. Results obtained by multivariate logistic regression revealed a significant association of the occurrence of pDDIs in patient with age of 60 years or more (p < 0.001), hospital stay of 7 days or longer (p < 0.001) and taking 7 or more drugs (p < 0.001). We found a high prevalence for pDDIs in the Department of Cardiology, most of which were of moderate severity. Older patients, patients with longer hospital stay and with elevated number of prescribed drugs were at higher risk of pDDIs.

  15. A Biological Security Motivation System for Potential Threats: Are There Implications for Policy-Making?

    OpenAIRE

    Woody, Erik Z.; Henry eSzechtman

    2013-01-01

    Research indicates that there is a specially adapted, hard-wired brain circuit, the security motivation system, which evolved to manage potential threats, such as the possibility of contamination or predation. The existence of this system may have important implications for policy-making related to security. The system is sensitive to partial, uncertain cues of potential danger, detection of which activates a persistent, potent motivational state of wariness or anxiety. This state motivates ...

  16. Perspectives on the potential of entomopathogenic fungi in biological control of ticks.

    Science.gov (United States)

    Fernandes, Éverton K K; Bittencourt, Vânia R E P; Roberts, Donald W

    2012-03-01

    Ticks are serious health threats for humans, and both domestic and wild animals. Ticks are controlled mostly by application of chemical products; but these acaricides have several negative side effects, including toxicity to animals, environmental contamination, and induction of chemical resistance in some tick populations. Entomopathogenic fungi infect arthropods in nature and can occur at enzootic or epizootic levels in their host populations. Laboratory studies clearly demonstrate that these fungi can cause high mortality in all developmental stages of several tick species, and also reduce oviposition of infected engorged females. Tick mortality following application of fungi in the field, however, often is less than that suggested by laboratory tests. This is due to many negative biotic and climatic factors. To increase efficacy of fungal agents for biological control of ticks under natural conditions, several points need consideration: (1) select effective isolates (viz., high virulence; and tolerance to high temperature, ultraviolet radiation and desiccation); (2) understand the main factors that affect virulence of fungal isolates to their target arthropods including the role of toxic metabolites of the fungal isolates; and (3) define with more precision the immune response of ticks to infection by entomopathogenic fungi. The current study reviews recent literature on biological control of ticks, and comments on the relevance of these results to advancing the development of fungal biocontrol agents, including improving formulation of fungal spores for use in tick control, and using entomopathogenic fungi in integrated pest (tick) management programs.

  17. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.

    Science.gov (United States)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K; Zeng, Qiang; Edelmann, Richard E; Pentrák, Martin; Agrawal, Abinash

    2015-05-05

    Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective of this research was to study microbially mediated redox cycles of Fe in nontronite (NAu-2). During the reduction phase, structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 as mediator in bicarbonate- and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served as electron donor and nitrate as electron acceptor. Nitrate-dependent Fe(II)-oxidizing bacterium Pseudogulbenkiania sp. strain 2002 was added as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo three redox cycles without significant dissolution. Fe(II) in bioreduced samples occurred in two distinct environments, at edges and in the interior of the NAu-2 structure. Nitrate reduction to nitrogen gas was coupled with oxidation of edge-Fe(II) and part of interior-Fe(II) under both buffer conditions, and its extent and rate did not change with Fe redox cycles. These results suggest that biological redox cycling of structural Fe in phyllosilicates is a reversible process and has important implications for biogeochemical cycles of carbon, nitrogen, and other nutrients in natural environments.

  18. Biological performance of functionalized biomedical polymers for potential applications as intraocular lens.

    Science.gov (United States)

    Zheng, Zhiwen; Wang, Yingjun; Jiao, Yan; Zhai, Zhichen

    2016-08-01

    To study the biological performance of surface-modified biomedical polymer materials, a model of the functional mechanism of nonspecific adsorption resistance was constructed. Cell behavior on the surface and in vivo transplantation features of intraocular lens (IOL) materials, such as hydrophobic acrylic ester and polymethyl methacrylate (PMMA), were investigated. The results of cell adhesion and proliferation studies showed that the addition of hirudin can significantly resist epithelial cell adhesion, better than the pure amination process, and thereby inhibit excessive proliferation on the surface. Experiments on the eyes of rabbits indicated that the IOL surfaces with hirudin modification reduced the incidence of cell aggregation and inflammation. Combined with a study of protein-resistant layer construction with recombinant hirudin on the material surface, the mechanism of surface functionalization was determined. The biological performance indicated that nonspecific adsorption is greatly decreased due to the existence of amphiphilic ions or hydration layers, which lead to stability and long-term resistance to nonspecific adsorption. These results offer a theoretical basis for the use of traditional biomedical polymer materials in long-term clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1961-1967, 2016.

  19. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    Science.gov (United States)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment.

  20. Language learning, recasts, and interaction involving AAC: background and potential for intervention.

    Science.gov (United States)

    Clarke, Michael T; Soto, Gloria; Nelson, Keith

    2017-03-01

    For children with typical development, language is learned through everyday discursive interaction. Adults mediate child participation in such interactions through the deployment of a range of co-constructive strategies, including repeating, questioning, prompting, expanding, and reformulating the child's utterances. Adult reformulations of child utterances, also known as recasts, have also been shown to relate to the acquisition of linguistic structures in children with language and learning disabilities and children and adults learning a foreign language. In this paper we discuss the theoretical basis and empirical evidence for the use of different types of recasts as a major language learning catalyst, and what may account for their facilitative effects. We consider the occurrence of different types of recasts in AAC-mediated interactions and their potential for language facilitation, within the typical operational and linguistic constraints of such interactions. We also consider the benefit of explicit and corrective forms of recasts for language facilitation in conversations with children who rely on AAC. We conclude by outlining future research directions.

  1. Clinical relevancy and risks of potential drug–drug interactions in intensive therapy

    Science.gov (United States)

    Rodrigues, Aline Teotonio; Stahlschmidt, Rebeca; Granja, Silvia; Falcão, Antonio Luis Eiras; Moriel, Patricia; Mazzola, Priscila Gava

    2014-01-01

    Purpose Evaluate the potential Drug–Drug Interactions (pDDI) found in prescription orders of adult Intensive Care Unit (ICU) of a Brazilian public health system hospital; quantify and qualify the pDDI regarding their severity and risks to the critical patient, using the database from Micromedex®. Methods Prospective study (January–December of 2011) collecting and evaluating 369 prescription orders (convenient sampling), one per patient. Results During the study 1844 pDDIs were identified and distributed in 405 pairs (medication A × medication B combination). There was an average of 5.00 ± 5.06 pDDIs per prescription order, the most prevalent being moderate and important interactions, present in 74% and 67% of prescription orders, respectively. In total, there were 9 contraindicated, 129 important and 204 moderate pDDIs. Among them 52 had as management recommendation to “avoid concomitant use” or “suspension of medication”, while 306 had as recommendation “continuous and adequate monitoring”. Conclusion The high number of pDDIs found in the study combined with the evaluation of the clinical relevancy of the most frequent pDDIs in the ICU shows that moderate and important interactions are highly incident. As the majority of them demand monitoring and adequate management, being aware of these interactions is major information for the safe and individualized risk management. PMID:27134536

  2. Entangling spin-spin interactions of ions in individually controlled potential wells

    Science.gov (United States)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  3. Analytical Determination of the Confinement Potential and Coupling Constant of Spin--Orbit Interactions of Electrons in Nanostructures

    CERN Document Server

    Dineykhan, M; Zhaugasheva, S A; Al Farabi Kazakh State National University. Almaty

    2005-01-01

    Multilayer nanocrystalline structure is represented by the electrostatic field inducted by total image charge, and the confinement potential for electrons is determined. Assuming that at a given distance the confinement potential is equal to the Coulomb repulsion and an interaction between electrons becomes spin-orbit, the constant of the spin-orbit interaction of electrons in nanostructures is determined. The dependence of the constant of the spin-orbit interaction on environment parameters and the distance between electrons is studied.

  4. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  5. Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies.

    Science.gov (United States)

    Rivalain, Nolwennig; Roquain, Jean; Demazeau, Gérard

    2010-01-01

    Compared to temperature, the development of pressure as a tool in the research field has emerged only recently (at the end of the XIXth century). Following several developments in Physics and Chemistry during the first half of the XXth century (in particular the synthesis of diamond in 1953-1954), high pressures were applied in Food Science, especially in Japan. The main objective was then to achieve the decontamination of foods while preserving their organoleptic properties. Now, a new step is engaged: the biological applications of high pressures, from food to pharmaceuticals and biomedical applications. This paper will focus on three main points: (i) a brief presentation of the pressure parameter and its characteristics, (ii) a description of the pressure effects on biological constituents from simple to more complex structures and (iii) a review of the different domains for which the application of high pressures is able to initiate potential developments in Biotechnologies.

  6. Antinucleon-nucleus interaction near threshold from the Paris $\\bar NN$ potential

    CERN Document Server

    Friedman, E; Loiseau, B; Wycech, S

    2015-01-01

    A general algorithm for handling the energy dependence of hadron-nucleon amplitudes in the nuclear medium, consistently with their density dependence, has been recently applied to antikaons, eta mesons and pions interacting with nuclei. Here we apply this approach to antiprotons below threshold, analyzing experimental results for antiprotonic atoms across the periodic table. It is also applied to antiproton and antineutron interaction with nuclei up to 400~MeV/c, comparing with elastic scattering and annihilation cross sections. The underlying $\\bar pN$ scattering amplitudes are derived from the Paris $\\bar NN$ potential, including modifications in the medium. Emphasis is placed on the role of the $P$-wave amplitudes with respect to the repulsive $S$-wave amplitudes.

  7. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems.

    Science.gov (United States)

    Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl

    2014-06-01

    Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.

  8. Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential

    CERN Document Server

    Petraki, Kalliopi; de Vries, Jordy

    2016-01-01

    We calculate the cross-sections for the radiative formation of bound states by dark matter whose interactions are described in the non-relativistic regime by a Yukawa potential. These cross-sections are important for cosmological and phenomenological studies of dark matter with long-range interactions, residing in a hidden sector, as well as for TeV-scale WIMP dark matter. We provide the leading-order contributions to the cross-sections for the dominant capture processes occurring via emission of a vector or a scalar boson. We offer a detailed inspection of their features, including their velocity dependence within and outside the Coulomb regime, and their resonance structure. For pairs of annihilating particles, we compare bound-state formation with annihilation.

  9. Antinucleon-nucleus interaction near threshold from the Paris N bar N potential

    Science.gov (United States)

    Friedman, E.; Gal, A.; Loiseau, B.; Wycech, S.

    2015-11-01

    A general algorithm for handling the energy dependence of hadron-nucleon amplitudes in the nuclear medium, consistently with their density dependence, has been recently applied to antikaons, eta mesons and pions interacting with nuclei. Here we apply this approach to antiprotons below threshold, analyzing experimental results for antiprotonic atoms across the periodic table. It is also applied to antiproton and antineutron interactions with nuclei up to 400 MeV/c, comparing with elastic scattering and annihilation cross sections. The underlying p bar N scattering amplitudes are derived from the Paris N bar N potential, including in-medium modifications. Emphasis is placed on the role of the P-wave amplitudes with respect to the repulsive S-wave amplitudes.

  10. Matter-Wave Solitons in Two-Component Bose-Einstein Condensates with Tunable Interactions and Time Varying Potential

    Institute of Scientific and Technical Information of China (English)

    宣恒农; 左苗

    2011-01-01

    We present three families of exact matter-wave soliton solutions for an effective one-dimension two- component Bose-Einstein condensates (BECs) with tunable interactions, harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons, bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential, periodically modulated harmonic trap potential, and kinklike modulated harmonic trap potential. Through the Feshbach resonance, these dynamics can be realized in experiments by suitable control of time-dependent trap parameters, atomic interactions, and interaction with thermal cloud.

  11. Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy.

    Science.gov (United States)

    Corr, Stuart J; Cisneros, Brandon T; Green, Leila; Raoof, Mustafa; Curley, Steven A

    2013-08-28

    Cancer therapies which are less toxic and invasive than their existing counterparts are highly desirable. The use of RF electric-fields that penetrate deep into the body, causing minimal toxicity, are currently being studied as a viable means of non-invasive cancer therapy. It is envisioned that the interactions of RF energy with internalized nanoparticles (NPs) can liberate heat which can then cause overheating (hyperthermia) of the cell, ultimately ending in cell necrosis. In the case of non-biological systems, we present detailed protocols relating to quantifying the heat liberated by highly-concentrated NP colloids. For biological systems, in the case of in vitro experiments, we describe the techniques and conditions which must be adhered to in order to effectively expose cancer cells to RF energy without bulk media heating artifacts significantly obscuring the data. Finally, we give a detailed methodology for in vivo mouse models with ectopic hepatic cancer tumors.

  12. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    CERN Document Server

    Iritani, Takumi

    2016-01-01

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can b...

  13. Solid phase stability of a double-minimum interaction potential system

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Ayumi; Yoshimori, Akira, E-mail: a.yoshimori@cmt.phys.kyushu-u.ac.jp; Saiki, Masafumi; Matsui, Jun [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Odagaki, Takashi [School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394 (Japan)

    2014-06-28

    We study phase stability of a system with double-minimum interaction potential in a wide range of parameters by a thermodynamic perturbation theory. The present double-minimum potential is the Lennard-Jones-Gauss potential, which has a Gaussian pocket as well as a standard Lennard-Jones minimum. As a function of the depth and position of the Gaussian pocket in the potential, we determine the coexistence pressure of crystals (fcc and bcc). We show that the fcc crystallizes even at zero pressure when the position of the Gaussian pocket is coincident with the first or third nearest neighbor site of the fcc crystal. The bcc crystal is more stable than the fcc crystal when the position of the Gaussian pocket is coincident with the second nearest neighbor sites of the bcc crystal. The stable crystal structure is determined by the position of the Gaussian pocket. These results show that we can control the stability of the solid phase by tuning the potential function.

  14. Maize benefits the predatory beetle, Propylea japonica (Thunberg, to provide potential to enhance biological control for aphids in cotton.

    Directory of Open Access Journals (Sweden)

    Fang Ouyang

    Full Text Available BACKGROUND: Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. METHODOLOGY: The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008-2010. PRINCIPAL FINDING: Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ(13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C(3- to a C(4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C(4 resources within one week. Approximately 80-100% of the diet of P. japonica adults in maize originated from a C(3-based resource in June, July and August, while approximately 80% of the diet originated from a C(4-based resource in September. CONCLUSION/SIGNIFICANCE: Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.

  15. Above-belowground interactions govern the course and impact of biological invasions

    DEFF Research Database (Denmark)

    Vestergård, Mette; Rønn, Regin; Ekelund, Flemming

    2015-01-01

    in an evolutionary and ecological context; in the case of invasive plants, we must have a major focus on above-belowground interactions. Thus, we discuss different theories that have been proposed to explain the course of invasions through interactions between plants and soil organisms. Further, a thorough analysis......, declines or its negative impact decreases. If the fundamental ecosystem structure and flows of energy and matter have not been changed, the system will return to a state not principally different from the original....

  16. In vitro and in vivo evaluation of CYP1a interaction potential of terminalia arjuna bark

    Directory of Open Access Journals (Sweden)

    Alice Varghese

    2014-01-01

    Full Text Available Terminalia arjuna Wight and Arn. (Combretaceae is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Aqueous, hydroalcoholic and alcoholic extract of T. arjuna, arjunic acid and arjungenin were examined for their potential to inhibit CYP1A enzyme in rat and human liver microsomes. IC 50 values of aqueous, hydroalcoholic and alcoholic extract of T. arjuna was found to be 11.4, 28.9 and 44.6 μg/ml in rat liver microsomes while 30.0, 29.7 and 39.0 μg/ml in human liver microsomes, respectively for CYP1A. However IC 50 values of arjunic acid and arjungenin for both rat liver microsomes and human liver microsomes were found to be >50 μM. Arjunic acid and arjungenin did not show inhibition of CYP1A enzyme up to concentrations of 50 μM. These in vitro data indicate that Terminalia arjuna extracts contain constituents that can potently inhibit the activity of CYP1A, which could in turn lead to undesirable pharmacokinetic drug-herb interactions in vivo. Based on the in vitro data, interaction potential of the aqueous extract of Terminalia arjuna orally in rats was investigated. A probe substrate, phenacetin, was used to index the activity of CYP1A. In vivo pharmacokinetic study of coadministration of aqueous extract of Terminalia arjuna and phenacetin, revealed that the aqueous extract did not lead to any significant change in the pharmacokinetic parameters of phenacetin as compared with control group. Though there was no in vivo-in vitro correlation, drug interactions could arise with drugs having a narrow therapeutic range and extensively cleared by CYP1A enzyme, which could lead to undesirable side effects.

  17. Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects.

    Science.gov (United States)

    Mason, Tom H E; Stephens, Philip A; Apollonio, Marco; Willis, Stephen G

    2014-12-01

    The altitudinal shifts of many montane populations are lagging behind climate change. Understanding habitual, daily behavioural rhythms, and their climatic and environmental influences, could shed light on the constraints on long-term upslope range-shifts. In addition, behavioural rhythms can be affected by interspecific interactions, which can ameliorate or exacerbate climate-driven effects on ecology. Here, we investigate the relative influences of ambient temperature and an interaction with domestic sheep (Ovis aries) on the altitude use and activity budgets of a mountain ungulate, the Alpine chamois (Rupicapra rupicapra). Chamois moved upslope when it was hotter but this effect was modest compared to that of the presence of sheep, to which they reacted by moving 89-103 m upslope, into an entirely novel altitudinal range. Across the European Alps, a range-shift of this magnitude corresponds to a 46% decrease in the availability of suitable foraging habitat. This highlights the importance of understanding how factors such as competition and disturbance shape a given species' realised niche when predicting potential future responses to change. Furthermore, it exposes the potential for manipulations of species interactions to ameliorate the impacts of climate change, in this case by the careful management of livestock. Such manipulations could be particularly appropriate for species where competition or disturbance already strongly restricts their available niche. Our results also reveal the potential role of behavioural flexibility in responses to climate change. Chamois reduced their activity when it was warmer, which could explain their modest altitudinal migrations. Considering this behavioural flexibility, our model predicts a small 15-30 m upslope shift by 2100 in response to climate change, less than 4% of the altitudinal shift that would be predicted using a traditional species distribution model-type approach (SDM), which assumes that species' behaviour

  18. The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics

    Science.gov (United States)

    Rempe, Caroline S.; Burris, Kellie P.; Lenaghan, Scott C.; Stewart, C. Neal

    2017-01-01

    Drug resistance of bacterial pathogens is a growing problem that can be addressed through the discovery of compounds with novel mechanisms of antibacterial activity. Natural products, including plant phenolic compounds, are one source of diverse chemical structures that could inhibit bacteria through novel mechanisms. However, evaluating novel antibacterial mechanisms of action can be difficult and is uncommon in assessments of plant phenolic compounds. With systems biology approaches, though, antibacterial mechanisms can be assessed without the bias of target-directed bioassays to enable the discovery of novel mechanism(s) of action against drug resistant microorganisms. This review article summarizes the current knowledge of antibacterial mechanisms of action of plant phenolic compounds and discusses relevant methodology. PMID:28360902

  19. Primary Study on Biological Control Potential of Trichoderma harzianum TL-1

    Institute of Scientific and Technical Information of China (English)

    Su; Zhenyu; Xiao; Man; Gao; Xinzheng; Tang; Libo; Li; Li

    2014-01-01

    Trichoderma harzianum is a widely used biocontrol fungus. The growth promoting effect of strain Trichoderma harzianum TL-1 on tomato and pepper and its biological control effects against tomato seedling damping-off and pepper blight were investigated through pot experiments. The results showed that the stain TL-1 had significant promotion effect on growth of pepper and tomato in sterilized and natural soils. With the application dose of 3. 0 and 0. 5g/ pot,their dry weight were increased up to 46% and 150% compared with control,respectively. In addition,TL-1 had good control effects against tomato seedling damping-off and pepper blight. Compared with fungicide treatment,TL-1 treatment could control diseases for long term,without repeat occurrence of diseases.

  20. Aloe vera : Potential candidate in health management via modulation of biological activities

    Directory of Open Access Journals (Sweden)

    Arshad H Rahmani

    2015-01-01

    Full Text Available Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities.

  1. A Biological Security Motivation System for Potential Threats: Are There Implications for Policy-Making?

    Directory of Open Access Journals (Sweden)

    Erik Z Woody

    2013-09-01

    Full Text Available Research indicates that there is a specially adapted, hard-wired brain circuit, the security motivation system, which evolved to manage potential threats, such as the possibility of contamination or predation. The existence of this system may have important implications for policy-making related to security. The system is sensitive to partial, uncertain cues of potential danger, detection of which activates a persistent, potent motivational state of wariness or anxiety. This state motivates behaviours to probe the potential danger, such as checking, and to correct for it, such as washing. Engagement in these behaviours serves as the terminating feedback for the activation of the system. Because security motivation theory makes predictions about what kinds of stimuli activate security motivation and what conditions terminate it, the theory may have applications both in understanding how policy-makers can best influence others, such as the public, and also in understanding the behavior of policy-makers themselves.

  2. Scalar-field cosmological and collapse models with general self-interaction potentials

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, Roberto; Giannoni, Fabio [Dipartimento di Matematica e Informatica, Universita di Camerino (Italy); Magli, Giulio, E-mail: roberto.giambo@unicam.i, E-mail: fabio.giannoni@unicam.i, E-mail: magli@mate.polimi.i [Dipartimento di Matematica, Politecnico di Milano (Italy)

    2009-10-01

    We present the results of the investigation of a wide class of self-interacting, self-gravitating homogeneous scalar fields models, characterized by quite general conditions on the scalar field potential, and including both asymptotically polynomial and exponential behaviors. We show that the generic evolution is always divergent in a finite time, and this result is used to construct cosmological models as well as radiating collapsing star models of the Vaidya type - for the latter it turns out that black holes are generically formed.

  3. A case of a potential drug interaction between clobazam and etravirine-based antiretroviral therapy.

    Science.gov (United States)

    Naccarato, Mark; Yoong, Deborah; Kovacs, Colin; Gough, Kevin

    2012-01-01

    The cytochrome P450 isoforms primarily involved in clobazam metabolism are CYP3A4 and 2C19. Drugs that modulate these enzymes would then be expected to alter the exposure of clobazam and its major metabolites. Etravirine, a second-generation non-nucleoside reverse transcriptase inhibitor has been shown to induce CYP3A4, while inhibiting CYP2C9 and CYP2C19. We report a case in which a potential drug interaction between clobazam and etravirine may have led to increased concentrations of clobazam and its pharmacologically active metabolite, N-desmethylclobazam, causing neurotoxic symptoms.

  4. Thermal and nonThermal Mechanisms of Biological Interaction of Microwaves

    CERN Document Server

    Williams, J M

    2001-01-01

    Research in the past on the biological effects of microwaves often has been based on faulty assumptions. The major flaw has been the premise that microwaves only produce thermal effects in tissue. This premise easily may be proven physically incorrect. Furthermore, assuming only thermal effects leads one to an optimist's error of quantification in which calories are counted instead of joules. Past investigations have been misled both by these assumptions and by stereotyped experiments using only narrow band radiation sources. Recent studies show that wide band microwaves bring out biological effects which are unrelated to those caused by heat flow. A review by Kenneth Foster provides a basis for criticism and improved understanding. PACS: 87.10 87.22 87.50 87.54

  5. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors

    Science.gov (United States)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.

    2008-12-01

    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  6. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Science.gov (United States)

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  7. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Directory of Open Access Journals (Sweden)

    Heather A Hager

    Full Text Available In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  8. Nonlinear Effects of Nanoparticles: Biological Variability From Hormetic Doses, Small Particle Sizes, and Dynamic Adaptive Interactions

    OpenAIRE

    Bell, Iris R.; Ives, John A.; Wayne B. Jonas

    2013-01-01

    Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1–100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). B...

  9. Identification and biological activity of potential probiotic bacterium isolated from the stomach mucus of breast-fed lamb

    Directory of Open Access Journals (Sweden)

    H. Kiňová Sepov��

    2011-09-01

    Full Text Available The lactic acid bacterium E isolated from the stomach mucus of breast-fed lamb was identified by sequencing of 16S rDNA fragment and species-specific PCR as Lactobacillus reuteri. Its potential antimicrobial activity and ability to modulate immune system in vitro and in vivo was determined. The growth inhibition of potential pathogens decreased from Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica ser. Minnesota to Escherichia coli. The lowest inhibition activity was observed in the case of Candida albicans. The ability of L. reuteri E to modulate biological activities of human and mouse mononuclear cells was estimated in vitro and in vivo, respectively. The production of IL-1β by monocytes in vitro was significantly induced by L. reuteri E (relative activity 2.47. The ability to modulate biological activities of mononuclear cells by living L. reuteri E cells in vitro in comparison to disintegrated L. reuteri E cells in vivo differed. For example lysozyme activity in vitro was inhibited while in vivo was stimulated (relative activities 0.30 and 1.83, respectively. The peroxidase activity in vitro was stimulated while in vivo was inhibited (relative activities 1.53 and 0.17, respectively. Obtained results indicate that L. reuteri E is potential candidate to be used in probiotic preparations for animals and/or human.

  10. Identification and biological activity of potential probiotic bacterium isolated from the stomach mucus of breast-fed lamb

    Science.gov (United States)

    Sepová, H. Kiňová; Dubnicková, M.; Bilková, A.; Bukovský, M.; Bezáková, L.

    2011-01-01

    The lactic acid bacterium E isolated from the stomach mucus of breast-fed lamb was identified by sequencing of 16S rDNA fragment and species-specific PCR as Lactobacillus reuteri. Its potential antimicrobial activity and ability to modulate immune system in vitro and in vivo was determined. The growth inhibition of potential pathogens decreased from Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica ser. Minnesota to Escherichia coli. The lowest inhibition activity was observed in the case of Candida albicans. The ability of L. reuteri E to modulate biological activities of human and mouse mononuclear cells was estimated in vitro and in vivo, respectively. The production of IL-1β by monocytes in vitro was significantly induced by L. reuteri E (relative activity 2.47). The ability to modulate biological activities of mononuclear cells by living L. reuteri E cells in vitro in comparison to disintegrated L. reuteri E cells in vivo differed. For example lysozyme activity in vitro was inhibited while in vivo was stimulated (relative activities 0.30 and 1.83, respectively). The peroxidase activity in vitro was stimulated while in vivo was inhibited (relative activities 1.53 and 0.17, respectively). Obtained results indicate that L. reuteri E is potential candidate to be used in probiotic preparations for animals and/or human. PMID:24031741

  11. Spectroscopic studies of silica nanoparticles: Magnetic resonance and nanomaterial-biological interactions

    Science.gov (United States)

    Lehman, Sean E.

    Primarily concerned with manipulation and study of matter at the nanoscale, the concept of nanoscience encompasses ideas such as nanomaterial synthesis, characterization, and applications to modern scientific and societal problems. These problems encompass a broad range of issues such as energy storage and conversion, medical diagnostics and treatment, environmental remediation and detection, carbon economy and as well as many others. Silica nanoparticles of porous morphology have broad application to many of these issues. In particular, the utility of silica nanoparticles is facilitated by their large intrinsic surface area, tunable surface chemistry, and synthetic variability in both their size and morphology. This facilitates applications to these problems. However, extensive characterization and deeper understanding is needed before full implementation in key applications can be realized. The work described in this thesis aims to explore fundamental and applied characterization of silica nanoparticles that might be used in biomedical and environmental applications. Fundamental studies of functionalized nanomaterials using NMR spectroscopy reveal complex, dynamic phenomena related to-and ultimately deriving from-the intrinsic and/or modified surface chemistry. Applied studies of nanomaterial-biological interfaces demonstrate free radical chemistry as dominating the toxic response of the materials when exposed to biological systems of interest. Characterization of protein adsorbed on the interface reinforces the ubiquitous nature of protein adsorption on nanomaterial surface in biological and environmental media. Overall, this work illuminates and highlights complex changes that take place in aqueous solution for silica nanoparticles of varied morphology and surface chemistry.

  12. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    OpenAIRE

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P; Zemlyanov, Dmitry; Ivanisevic, Albena

    2008-01-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions ...

  13. Systems biology and systems genetics - novel innovative approaches to study host-pathogen interactions during influenza infection.

    Science.gov (United States)

    Kollmus, Heike; Wilk, Esther; Schughart, Klaus

    2014-06-01

    Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host-pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead.

  14. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    Science.gov (United States)

    Ribas, M. O.; Samojeden, L. L.; Devecchi, F. P.; Kremer, G. M.

    2015-10-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated-decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field.

  15. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    CERN Document Server

    Ribas, M O; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated-decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field.

  16. The interaction of anticipatory anxiety and emotional picture processing: an event-related brain potential study.

    Science.gov (United States)

    Bublatzky, Florian; Flaisch, Tobias; Stockburger, Jessica; Schmälzle, Ralf; Schupp, Harald T

    2010-07-01

    The present study examined the interaction of anticipatory anxiety and selective emotion processing. Toward this end, a rapid stream of pleasant, neutral, and unpleasant pictures was presented in alternating blocks of threat-of-shock or safety, which were signaled by colored picture frames. The main finding is that pleasant pictures elicited a sustained negative difference potential over occipital regions during threat as compared to safety periods. In contrast, unpleasant and neutral picture processing did not vary as a function of threat-of-shock. Furthermore, in both the safety and threat-of-shock conditions, emotional pictures elicited an enlarged early posterior negativity and late positive potential. These data show that the activation of the fear/anxiety network exerts valence-specific effects on affective picture processing. Pleasant stimuli mismatching the current state of anticipatory anxiety apparently draw more attentional resources.

  17. Biological evaluation of tubulysin A: A potential anticancer and antiangiogenic natural product

    NARCIS (Netherlands)

    Kaur, Gurmeet; Hollingshead, Melinda; Holbeck, Susan; Schauer-Vukašinović, Vesna; Camalier, Richard F.; Dömling, Alexander; Agarwal, Seema

    2006-01-01

    Tubulysin A (tubA) is a natural product isolated from a strain of myxobacteria that has been shown to depolymerize microtubules and induce mitotic arrest. The potential of tubA as an anticancer and antiangiogenic agent is explored in the present study. tubA shows potent antiproliferative activity in

  18. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Science.gov (United States)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  19. Effect of SRT and temperature on biological conversions and the related scum-forming potential

    NARCIS (Netherlands)

    Halalsheh, M.M.I.; Koppes, J.; Elzen, den J.; Zeeman, G.; Fayyad, M.; Lettinga, G.

    2005-01-01

    Sludge flotation was reported to cause several operational problems in anaerobic systems including UASB reactors treating both strong domestic sewage and some industrial wastewater. This research is to investigate the effect of anaerobic digestion on scum-forming potential (SFP) of sludge and other

  20. A C-code for the double folding interaction potential of two spherical nuclei

    Science.gov (United States)

    Gontchar, I. I.; Chushnyakova, M. V.

    2010-01-01

    We present a C-code designed to obtain the nucleus-nucleus potential by using the double folding model (DFM) and in particular to find the Coulomb barrier. The program calculates the nucleus-nucleus potential as a function of the distance between the centers of mass of colliding nuclei. The most important output parameters are the Coulomb barrier energy and the radius. Since many researchers use a Woods-Saxon profile for the nuclear term of the potential we provide an option in our code for fitting the DFM potential by such a profile. Program summaryProgram title: DFMSPH Catalogue identifier: AEFH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5929 No. of bytes in distributed program, including test data, etc.: 115 740 Distribution format: tar.gz Programming language: C Computer: PC Operating system: Windows XP (with the GCC-compiler version 2) RAM: Below 10 Mbyte Classification: 17.9 Nature of problem: The code calculates in a semimicroscopic way the bare interaction potential between two colliding spherical nuclei as a function of the center of mass distance. The height and the position of the Coulomb barrier are found. The calculated potential is approximated by a conventional Woods-Saxon profile near the barrier. Dependence of the barrier parameters upon the characteristics of the effective NN forces (like, e.g. the range of the exchange part of the nuclear term) can be investigated. Solution method: The nucleus-nucleus potential is calculated using the double folding model with the Coulomb and the effective M3Y NN interactions. For the direct parts of the Coulomb and the nuclear terms, the Fourier transform method is used. In order to calculate the exchange parts the density matrix expansion method

  1. Interaction of landscape varibles on the potential geographical distribution of parrots in the Yucatan Peninsula, Mexico

    Directory of Open Access Journals (Sweden)

    Plasencia–Vázquez, A. H.

    2014-12-01

    Full Text Available The loss, degradation, and fragmentation of forested areas are endangering parrot populations. In this study, we determined the influence of fragmentation in relation to vegetation cover, land use, and spatial configuration of fragments on the potential geographical distribution patterns of parrots in the Yucatan Peninsula, Mexico. We used the potential geographical distribution for eight parrot species, considering the recently published maps obtained with the maximum entropy algorithm, and we incorporated the probability distribution for each species. We calculated 71 metrics/variables that evaluate forest fragmentation, spatial configuration of fragments, the ratio occupied by vegetation, and the land use in 100 plots of approximately 29 km², randomly distributed within the presence and absence areas predicted for each species. We also considered the relationship between environmental variables and the distribution probability of species. We used a partial least squares regression to explore patterns between the variables used and the potential distribution models. None of the environmental variables analyzed alone determined the presence/absence or the probability distribution of parrots in the Peninsula. We found that for the eight species, either due to the presence/absence or the probability distribution, the most important explanatory variables were the interaction among three variables, particularly the interactions among the total forest area, the total edge, and the tropical semi–evergreen medium– height forest. Habitat fragmentation influenced the potential geographical distribution of these species in terms of the characteristics of other environmental factors that are expressed together with the geographical division, such as the different vegetation cover ratio and land uses in deforested areas.

  2. An accurate H2-H2 interaction potential from first principles

    Science.gov (United States)

    Diep, Phong; Johnson, J. Karl

    2000-03-01

    We have calculated the potential energy surface extrapolated to the complete basis set limit using coupled-cluster theory with singles, doubles, and perturbational triples excitations [CCSD(T)] for the rigid monomer model of (H2)2. There is significant anisotropy among the 37 unique angular configurations selected to represent the surface. A four term spherical harmonics expansion model was chosen to fit the surface. The calculated potential energy surface reproduces the quadrupole moment to within 0.58% and the experimental well depth to within 1%. The second virial coefficient has been computed from the fitted potential energy surface. The usual semiclassical treatment of quantum mechanical effects on the second virial coefficient was applied in the temperature range of 100-500 K. We have developed a new technique for computing the quantum second virial coefficient by combining Feynman's path integral formalism and Monte Carlo integration. The calculated virial coefficient compares very well with published experimental measurements. Integral elastic cross sections were calculated for the scattering of para-H2/para-H2 by use of the close-coupling method. The interaction potential model from this work is able to reproduce the experimental cross sections in the relative kinetic velocity range of 900-2300 m/s.

  3. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    Science.gov (United States)

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  4. Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater.

    Science.gov (United States)

    Malachova, Katerina; Rybkova, Zuzana; Sezimova, Hana; Cerven, Jiri; Novotny, Cenek

    2013-12-01

    Use of fungal organisms in rotating biological contactors (RBC) for bioremediation of liquid industrial wastes has so far been limited in spite of their significant biodegradation potential. The purpose was to investigate the power of RBC using Irpex lacteus for decolorization and detoxification of industrial dyes and dyeing textile liquors. Recalcitrant dye Methylene Blue (150 mg L(-1)) was decolorized within 70 days, its mutagenicity removed, and the biological toxicity decreased more than 10-fold. I. lacteus biofilm in the RBC completely decolorized within 26 and 47 days dyeing liquors containing disperse or reactive dyes adjusted to pH4.5 and 5-fold diluted with the growth medium, respectively. Their respective biological toxicity values were reduced 10- to 10(4)-fold in dependence of the test used. A battery of toxicity tests comprising Vibrio fisheri, Lemna minor and Sinapis alba was efficient to monitor the toxicity of textile dyes and wastewaters. Strong decolorization and detoxification power of RBC using I. lacteus biofilms was demonstrated.

  5. Quality of Life Theory II. Quality of Life as the Realization of Life Potential: A Biological Theory of Human Being

    Directory of Open Access Journals (Sweden)

    Soren Ventegodt

    2003-01-01

    Full Text Available This review presents one of the eight theories of the quality of life (QOL used for making the SEQOL (self-evaluation of quality of life questionnaire or the quality of life as realizing life potential. This theory is strongly inspired by Maslow and the review furthermore serves as an example on how to fulfill the demand for an overall theory of life (or philosophy of life, which we believe is necessary for global and generic quality-of-life research.Whereas traditional medical science has often been inspired by mechanical models in its attempts to understand human beings, this theory takes an explicitly biological starting point. The purpose is to take a close view of life as a unique entity, which mechanical models are unable to do. This means that things considered to be beyond the individual's purely biological nature, notably the quality of life, meaning in life, and aspirations in life, are included under this wider, biological treatise. Our interpretation of the nature of all living matter is intended as an alternative to medical mechanism, which dates back to the beginning of the 20th century. New ideas such as the notions of the human being as nestled in an evolutionary and ecological context, the spontaneous tendency of self-organizing systems for realization and concord, and the central role of consciousness in interpreting, planning, and expressing human reality are unavoidable today in attempts to scientifically understand all living matter, including human life.

  6. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  7. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.

    2015-01-01

    Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC...... radiation (PAR, 400-700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river...... runoff into the Arctic Ocean. Role of attenuation of light by CDOM in determining underwater light regime will become more important, with a potential for future increase in marine productivity in the area of EGC due to elevated PAR and lowered UV light exposures....

  8. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    Science.gov (United States)

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi.

  9. Spatial representation in the social interaction potential metric: an analysis of scale and parameter sensitivity

    Science.gov (United States)

    Li, Xiao; Farber, Steven

    2016-10-01

    The social interaction potential (SIP) metric measures urban structural constraints on social interaction opportunities of a metropolitan region based on the time geographic concept of joint accessibility. Previous implementations of the metric used an interaction surface based on census tracts and the locations of their centroids. This has been shown to be a shortcoming, as the metric strongly depends on the scale of the zoning system in the region, making it difficult to compare the SIP metric between metropolitan regions. This research explores the role of spatial representation in the SIP metric and identifies a suitable grid-based representation that allows for comparison between regions while retaining cost-effectiveness with respect to computational burden. We also report on findings from an extensive sensitivity analysis investigating the SIP metric's input parameters such as a travel flow congestion factor and the length of the allowable time budget for social activities. The results provide new insights on the role of the modifiable areal unit problem in the computation of time geographic measures of accessibility.

  10. Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust

    Science.gov (United States)

    Ivarsson, Magnus; Schnürer, Anna; Bengtson, Stefan; Neubeck, Anna

    2016-01-01

    The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here, we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes. PMID:27433154

  11. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    Science.gov (United States)

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients.

  12. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated.

  13. Phytotoxic Potential and Biological Activity of Three Synthetic Coumarin Derivatives as New Natural-Like Herbicides

    Directory of Open Access Journals (Sweden)

    Fabrizio Araniti

    2015-09-01

    Full Text Available Coumarin is a natural compound well known for its phytotoxic potential. In the search for new herbicidal compounds to manage weeds, three synthetic derivatives bearing the coumarin scaffold (1–3, synthesized by a carbonylative organometallic approach, were in vitro assayed on germination and root growth of two noxious weeds, Amaranthus retroflexus and Echinochloa crus-galli. Moreover, the synthetic coumarins 1–3 were also in vitro assayed on seedlings growth of the model species Arabidopsis thaliana to identify the possible physiological targets. All molecules strongly affected seed germination and root growth of both weeds. Interestingly, the effects of synthetic coumarins on weed germination were higher than template natural coumarin, pointing out ED50 values ranging from 50–115 µM. Moreover, all synthetic coumarins showed a strong phytotoxic potential on both Arabidopsis shoot and root growth, causing a strong reduction in shoot fresh weight (ED50 values ≤ 60 µM, accompanied by leaf development and a decrease in pigment content. Furthermore, they caused a strong alteration in root growth (ED50 values ≤ 170 µM and morphology with evident alterations in root tip anatomy. Taken together, our results highlight the promising potential herbicidal activity of these compounds.

  14. Underwater-Shock/Bubble Interaction and Its Application to Biology and Medicine

    Science.gov (United States)

    Takayama, Kazuyoshi; Yamamoto, H.; Abe, A.

    In 1988 we produced lead azide pellets in house and studied propagation of microunderwater shock wave and its interaction with air bubble. Later we replaced lead azide pellets with silver azide pellets supplied by Chugiku Kayaku Co. Ltd, weighing a few mg to 30 mg [1] and devoted to safely study underwater shock waves and its application to medicine.

  15. An apparatus for conducting physical, chemical, or biological interaction between gases and solid particles

    DEFF Research Database (Denmark)

    2013-01-01

    The invention provides an apparatus for conducting interaction between gases and solid particles. The apparatus has a vertical hollow shaft with a vertical row of constrictions formed internally and defining a series of intercommunicating chambers in the shaft for guiding the gas and particles e....

  16. Interaction of Biologically Active Molecules with Sulfur-modified Gold Surface

    Institute of Scientific and Technical Information of China (English)

    DING Xue-feng; YANG Gui-fu; WANG Xiao; WANG Zi-chen; LIN Hai-bo

    2007-01-01

    The immobilization of cytochrome c or horseradish peroxidase at the sulfur-modified gold electrode exhibits a ra-pid electron transfer behavior because of its specific orientation on the electrode surface and the interaction between cytochrome c or horseradish peroxidase and sulfur-modified on the surface of the Au electrode.

  17. Synthetic Biology Tools for the Membrane – Targeted Localisation and Elucidation of Protein Interactions

    DEFF Research Database (Denmark)

    Wendel, Sofie; Seppala, Susanna; Nørholm, Morten

    2014-01-01

    (SMA) for isolation of membrane proteins. SMA is a polymer which spontaneously digs into a lipid membrane and carves out a disc containing protein and native lipids (2). By elucidating protein interactions we will be able to tune and optimise heterologous pathway expression in our E. coli cell...

  18. Asthma and obesity in children: current evidence and potential systems biology approaches.

    Science.gov (United States)

    Frey, U; Latzin, P; Usemann, J; Maccora, J; Zumsteg, U; Kriemler, S

    2015-01-01

    Both obesity and asthma are highly prevalent, complex diseases modified by multiple factors. Genetic, developmental, lung mechanical, immunological and behavioural factors have all been suggested as playing a causal role between the two entities; however, their complex mechanistic interactions are still poorly understood and evidence of causality in children remains scant. Equally lacking is evidence of effective treatment strategies, despite the fact that imbalances at vulnerable phases in childhood can impact long-term health. This review is targeted at both clinicians frequently faced with the dilemma of how to investigate and treat the obese asthmatic child and researchers interested in the topic. Highlighting the breadth of the spectrum of factors involved, this review collates evidence regarding the investigation and treatment of asthma in obese children, particularly in comparison with current approaches in 'difficult-to-treat' childhood asthma. Finally, the authors propose hypotheses for future research from a systems-based perspective.

  19. Non-chemical stressors and cumulative risk assessment: an overview of current initiatives and potential air pollutant interactions.

    Science.gov (United States)

    Lewis, Ari S; Sax, Sonja N; Wason, Susan C; Campleman, Sharan L

    2011-06-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  20. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    Science.gov (United States)

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-06-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (˜80 mV/decade), whereas "dummy" RNA induced a small positive VP shift (˜0.3 V) without a significant change in subthreshold slopes (˜330 mV/decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules.