WorldWideScience

Sample records for biological information processing

  1. Information processing in biology

    OpenAIRE

    Ramalho, Tiago

    2015-01-01

    To survive, organisms must respond appropriately to a variety of challenges posed by a dynamic and uncertain environment. The mechanisms underlying such responses can in general be framed as input-output devices which map environment states (inputs) to associated responses (output. In this light, it is appealing to attempt to model these systems using information theory, a well developed mathematical framework to describe input-output systems. Under the information theoretical perspective,...

  2. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  3. Dynamic phases in control and information processing biological circuits

    Science.gov (United States)

    Vaikuntanathan, Suriyanarayanan

    2015-03-01

    Recent work using the mathematical framework of large deviation theory has shown that fluctuations about the steady state can have a particularly rich structure even in extremely simple non-equilibrium systems [Phys. Rev. E. 89, 062108, 2014]. In certain instances the fluctuations can encode the presence of a dynamical phase with properties distinct from those of the steady state of the system. The transition between these two regimes is akin to a first order thermodynamic phase transition. Specifically, it implies an extreme sensitivity of the system to changes in certain sets of parameters. I will show that such dynamical phase transitions can serve as a general organizing principle to understand biological circuits that are involved in information processing and control. I will focus on two specific examples: adaptation control in E. coli chemotaxis and ultra sensitive response of the E. coli flagella motor, to illustrate these calculations. This work also elucidates the role played by energy dissipation in ensuring control and suggests general guidelines for the construction of robust non equilibrium circuits that perform various specified functions.

  4. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  5. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    Science.gov (United States)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  6. Optimal Size for Maximal Energy Efficiency in Information Processing of Biological Systems Due to Bistability

    CERN Document Server

    Zhang, Chi; Wang, Long-Fei; Yue, Yuan; Yu, Lian-Chun

    2015-01-01

    Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.

  7. Insights into biological information processing: structural and dynamical analysis of a human protein signalling network

    International Nuclear Information System (INIS)

    We present an investigation on the structural and dynamical properties of a 'human protein signalling network' (HPSN). This biological network is composed of nodes that correspond to proteins and directed edges that represent signal flows. In order to gain insight into the organization of cell information processing this network is analysed taking into account explicitly the edge directions. We explore the topological properties of the HPSN at the global and the local scale, further applying the generating function formalism to provide a suitable comparative model. The relationship between the node degrees and the distribution of signals through the network is characterized using degree correlation profiles. Finally, we analyse the dynamical properties of small sub-graphs showing high correlation between their occurrence and dynamic stability

  8. Fröhlich Condensate: Emergence of Synergetic Dissipative Structures in Information Processing Biological and Condensed Matter Systems

    Directory of Open Access Journals (Sweden)

    Roberto Luzzi

    2012-10-01

    Full Text Available We consider the case of a peculiar complex behavior in open boson systems sufficiently away from equilibrium, having relevance in the functioning of information-processing biological and condensed matter systems. This is the so-called Fröhlich–Bose–Einstein condensation, a self-organizing-synergetic dissipative structure, a phenomenon apparently working in biological processes and present in several cases of systems of boson-like quasi-particles in condensed inorganic matter. Emphasis is centered on the quantum-mechanical-statistical irreversible thermodynamics of these open systems, and the informational characteristics of the phenomena.

  9. Collection and processing of information in biological kinetics studies with radioactive tracers

    International Nuclear Information System (INIS)

    The authors present an automatic method for the collection and treatment of information in biological kinetics experiments using radioactive tracers. The recording are made without any time constant on magnetic tape. The information recorded is sampled by a 400 channel multi-scale analyzer and transferred to punched cards. The digital analysis is done by an I.B.M. computer. The method is illustrated by an example: the hepatic fixation of colloidal gold in the pig. Its advantages and requirements are discussed. In the appendix are given the FORTRAN texts for two programmes used in treating the example presented. (authors)

  10. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  11. Evolution of biological information

    OpenAIRE

    Schneider, Thomas D.

    2000-01-01

    How do genetic systems gain information by evolutionary processes? Answering this question precisely requires a robust, quantitative measure of information. Fortunately, 50 years ago Claude Shannon defined information as a decrease in the uncertainty of a receiver. For molecular systems, uncertainty is closely related to entropy and hence has clear connections to the Second Law of Thermodynamics. These aspects of information theory have allowed the development of a straightforward and practic...

  12. Evolution of biological information.

    Science.gov (United States)

    Schneider, T D

    2000-07-15

    How do genetic systems gain information by evolutionary processes? Answering this question precisely requires a robust, quantitative measure of information. Fortunately, 50 years ago Claude Shannon defined information as a decrease in the uncertainty of a receiver. For molecular systems, uncertainty is closely related to entropy and hence has clear connections to the Second Law of Thermodynamics. These aspects of information theory have allowed the development of a straightforward and practical method of measuring information in genetic control systems. Here this method is used to observe information gain in the binding sites for an artificial 'protein' in a computer simulation of evolution. The simulation begins with zero information and, as in naturally occurring genetic systems, the information measured in the fully evolved binding sites is close to that needed to locate the sites in the genome. The transition is rapid, demonstrating that information gain can occur by punctuated equilibrium. PMID:10908337

  13. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  14. Accuracy in Biological Information Technology Involves Enzymatic Quantum Processing and Entanglement of Decohered Isomers

    Directory of Open Access Journals (Sweden)

    Willis Grant Cooper

    2011-02-01

    Full Text Available Genetic specificity information “seen by” the transcriptase is in terms of hydrogen bonded proton states, which initially are metastable amino (–NH2 and, consequently, are subjected to quantum uncertainty limits. This introduces a probability of arrangement, keto-amino → enol-imine, where product protons participate in coupled quantum oscillations at frequencies of ~ 1013 s−1 and are entangled. The enzymatic ket for the four G′-C′ coherent protons is │ψ > = α│+ − + − > + β│+ − − + > + γ│− + + − > + δ│− + − + >. Genetic specificities of superposition states are processed quantum mechanically, in an interval ∆t < < 10−13 s, causing an additional entanglement between coherent protons and transcriptase units. The input qubit at G-C sites causes base substitution, whereas coherent states within A-T sites cause deletion. Initially decohered enol and imine G′ and *C isomers are “entanglement-protected” and participate in Topal-Fresco substitution-replication which, in the 2nd round of growth, reintroduces the metastable keto-amino state. Since experimental lifetimes of metastable keto-amino states at 37 °C are ≥ ~3000 y, approximate quantum methods for small times, t < ~100 y, yield the probability, P(t, of keto-amino → enol-imine as Pρ(t = ½ (γρ/ħ2 t2. This approximation introduces a quantum Darwinian evolution model which (a simulates incidence of cancer data and (b implies insight into quantum information origins for evolutionary extinction.

  15. Evolution, Entropy, & Biological Information

    Science.gov (United States)

    Peterson, Jacob

    2014-01-01

    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  16. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    OpenAIRE

    D'Onofrio David J; An Gary

    2010-01-01

    Abstract Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these pr...

  17. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  18. Biological indicators and sterilization processes

    International Nuclear Information System (INIS)

    A review is given of biological indicators, e.g. bacterial spores, used for monitoring the efficiency of sterilization processes. The choice of a suitable biological indicator depending on its resistance to heat sterilization, ionizing radiation and gaseous sterilization is discussed. Factors affecting the reliability of biological indicators are also discussed including genotypically determined resistance, environmental influences during growth and sporulation, the influence of the environment during storage and sterilization and the influence of recovery conditions. (U.K.)

  19. Biological and Chemical Information Technologies

    DEFF Research Database (Denmark)

    Amos, Martyn; Dittrich, Peter; McCaskill, John;

    2011-01-01

    Biological and chemical information technologies (bio/chem IT) have the potential to reshape the scientific and technological landscape. In this paper we briefly review the main challenges and opportunities in the field, before presenting several case studies based on ongoing FP7 research projects....

  20. Adaptive multiscale biological signal processing

    OpenAIRE

    Testoni, Nicola

    2008-01-01

    Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image rec...

  1. Pragmatic information in biology and physics.

    Science.gov (United States)

    Roederer, Juan G

    2016-03-13

    I will show how an objective definition of the concept of information and the consideration of recent results about information processing in the human brain help clarify some fundamental aspects of physics and biology. Rather than attempting to define information ab initio, I introduce the concept of interaction between material bodies as a primary concept. Two distinct categories can be identified: (i) interactions which can always be reduced to a superposition of physical interactions (forces) between elementary constituents; and (ii) interactions between complex bodies which cannot be expressed as a superposition of interactions between parts, and in which patterns and forms (in space and/or time) play the determining role. Pragmatic information is then defined as the link between a given pattern and the ensuing pattern-specific change. I will show that pragmatic information is a biological concept; it plays no active role in the purely physical domain-it only does so when a living organism intervenes. The consequences for physics (including foundations of quantum mechanics) and biology (including brain function) will be discussed. This will include speculations about three fundamental transitions, from the quantum to the classical domain, from natural inanimate to living systems, and from subhuman to human brain information-processing operations, introduced here in their direct connection with the concept of pragmatic information. PMID:26857662

  2. Integrated Bio-Search: challenges and trends for the integration, search and comprehensive processing of biological information.

    Science.gov (United States)

    Masseroli, Marco; Mons, Barend; Bongcam-Rudloff, Erik; Ceri, Stefano; Kel, Alexander; Rechenmann, François; Lisacek, Frederique; Romano, Paolo

    2014-01-01

    Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and social aspects appear to be essential for the development of a new generation of best practices and tools. In this paper, we analyse and discuss these aspects from different perspectives, by extending some of the ideas that arose during the NETTAB 2012 Workshop, making reference especially to the European context. First, relevance of using data and software models for the management and analysis of biological data is stressed. Second, some of the most relevant community achievements of the recent years, which should be taken as a starting point for future efforts in this research domain, are presented. Third, some of the main outstanding issues, challenges and trends are analysed. The challenges related to the tendency to fund and create large scale international research infrastructures and public-private partnerships in order to address the complex challenges of data intensive science are especially discussed. The needs and opportunities of Genomic Computing (the integration, search and display of genomic information at a very specific level, e.g. at the level of a single DNA region) are then considered. In the current data and network-driven era, social aspects can become crucial bottlenecks. How these may best be tackled to unleash the technical abilities for effective data integration and validation efforts is then discussed. Especially the apparent lack of incentives for already overwhelmed researchers appears to be a limitation for sharing information and knowledge with other scientists. We point out as well how the bioinformatics market is growing at an unprecedented speed due to the impact that new powerful in silico

  3. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  4. Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia

    Directory of Open Access Journals (Sweden)

    Jong H. Yoon

    2013-10-01

    Full Text Available Cognitive and information processing deficits are core features and important sources of disability in schizophrenia. Our understanding of the neural substrates of these deficits remains incomplete, in large part because the complexity of impairments in schizophrenia makes the identification of specific deficits very challenging. Vision science presents unique opportunities in this regard: many years of basic research have led to detailed characterization of relationships between structure and function in the early visual system and have produced sophisticated methods to quantify visual perception and characterize its neural substrates. We present a selective review of research that illustrates the opportunities for discovery provided by visual studies in schizophrenia. We highlight work that has been particularly effective in applying vision science methods to identify specific neural abnormalities underlying information processing deficits in schizophrenia. In addition, we describe studies that have utilized psychophysical experimental designs that mitigate generalized deficit confounds, thereby revealing specific visual impairments in schizophrenia. These studies contribute to accumulating evidence that early visual cortex is a useful experimental system for the study of local cortical circuit abnormalities in schizophrenia. The high degree of similarity across neocortical areas of neuronal subtypes and their patterns of connectivity suggests that insights obtained from the study of early visual cortex may be applicable to other brain regions. We conclude with a discussion of future studies that may combine vision science and neuroimaging methods. These studies have the potential to address pressing questions in schizophrenia, including the dissociation of local circuit deficits vs. impairments in feedback modulation by cognitive processes such as spatial attention and working memory, and the relative contributions of glutamatergic and

  5. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    Directory of Open Access Journals (Sweden)

    D'Onofrio David J

    2010-01-01

    Full Text Available Abstract Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Methods Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1 orthogonal uniqueness, (2 low level formatting, (3 high level formatting and (4 translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Results Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT during high level formatting of the computer hard drive and the subsequent loading of an operating

  6. Information-processing genes

    International Nuclear Information System (INIS)

    There are an estimated 100,000 genes in the human genome of which 97% is non-coding. On the other hand, bacteria have little or no non-coding DNA. Non-coding region includes introns, ALU sequences, satellite DNA, and other segments not expressed as proteins. Why it exists? Why nature has kept non-coding during the long evolutionary period if it has no role in the development of complex life forms? Does complexity of a species somehow correlated to the existence of apparently useless sequences? What kind of capability is encoded within such nucleotide sequences that is a necessary, but not a sufficient condition for the evolution of complex life forms, keeping in mind the C-value paradox and the omnipresence of non-coding segments in higher eurkaryotes and also in many archea and prokaryotes. The physico-chemical description of biological processes is hardware oriented and does not highlight algorithmic or information processing aspect. However, an algorithm without its hardware implementation is useless as much as hardware without its capability to run an algorithm. The nature and type of computation an information-processing hardware can perform depends only on its algorithm and the architecture that reflects the algorithm. Given that enormously difficult tasks such as high fidelity replication, transcription, editing and regulation are all achieved within a long linear sequence, it is natural to think that some parts of a genome are involved is these tasks. If some complex algorithms are encoded with these parts, then it is natural to think that non-coding regions contain processing-information algorithms. A comparison between well-known automatic sequences and sequences constructed out of motifs is found in all species proves the point: noncoding regions are a sort of ''hardwired'' programs, i.e., they are linear representations of information-processing machines. Thus in our model, a noncoding region, e.g., an intron contains a program (or equivalently, it is

  7. Integrated Bio-Search: challenges and trends for the integration, search and comprehensive processing of biological information

    OpenAIRE

    Masseroli, Marco; Mons, Barend; Bongcam-Rudloff, Erik; Ceri, Stefano; Kel, Alexander; Rechenmann, François; Lisacek, Frederique; Romano, Paolo

    2014-01-01

    Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and social aspects appear to be essential for the development of a new generation of best practices and tools. In this paper, we analyse and discuss these asp...

  8. Financial information processing

    Institute of Scientific and Technical Information of China (English)

    Shuo BAI; Shouyang WANG; Lean YU; Aoying ZHOU

    2009-01-01

    @@ The rapid growth in financial data volume has made financial information processing more and more difficult due to the increase in complexity, which has forced businesses and academics alike to turn to sophisticated information processing technologies for better solutions. A typical feature is that high-performance computers and advanced computational techniques play ever-increasingly important roles for business and industries to have competitive advantages. Accordingly, financial information processing has emerged as a new cross-disciplinary field integrating computer science, mathematics, financial economics, intelligent techniques, and computer simulations to make different decisions based on processed financial information.

  9. Information Sets and Information Processing

    Directory of Open Access Journals (Sweden)

    Madasu Hanmandlu

    2011-09-01

    Full Text Available The area of image processing has made rapid strides because of enormous applications it has in different fields. This growth can also be attributed to the increasing use of fuzzy logic in all tasks of image processing as the fuzzy logic facilitates the representation of inherent uncertainty in the image information which can be local or global. For problems like enhancement global information is of interest whereas the local information is needed for the problems of edge detection, segmentation, and recognition. However we need both for the noise removal. The images are of varied types: Medical images (CT scans, MR, X-rays, ECG, etc., satellite images, natural scenes, videos, games, multimedia, biometrics, industrial, astronomical so on and so forth. The approaches to tackle different images have to be different. For example skin texture can’t represented by a colour model.Defence Science Journal, 2011, 61(5, pp.405-407, DOI:http://dx.doi.org/10.14429/dsj.61.1192

  10. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  11. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  12. Promoting Information Competency in Biological Psychology

    OpenAIRE

    Freberg, Laura A.; Brosnan-Watters, Gayle

    2005-01-01

    Information competency refers to skills that allow a student to identify appropriate sources of information, evaluate information critically, and use it ethically. Although the sudden increase of information available in electronic form has stimulated interest in information competency, the basic principles apply to all sources of information, including print. Information competency is especially critical in biological psychology. New discoveries in the neurosciences are featured every day by...

  13. Quantum Information Processing

    CERN Document Server

    Leuchs, Gerd

    2005-01-01

    Quantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) started a focused research program on quantum information in 1999. The contributions - written by leading experts - bring together the latest results in quantum information as well as addressing all the relevant questions

  14. PREFACE: Quantum information processing

    Science.gov (United States)

    Briggs, Andrew; Ferry, David; Stoneham, Marshall

    2006-05-01

    Microelectronics and the classical information technologies transformed the physics of semiconductors. Photonics has given optical materials a new direction. Quantum information technologies, we believe, will have immense impact on condensed matter physics. The novel systems of quantum information processing need to be designed and made. Their behaviours must be manipulated in ways that are intrinsically quantal and generally nanoscale. Both in this special issue and in previous issues (see e.g., Spiller T P and Munro W J 2006 J. Phys.: Condens. Matter 18 V1-10) we see the emergence of new ideas that link the fundamentals of science to the pragmatism of market-led industry. We hope these papers will be followed by many others on quantum information processing in the Journal of Physics: Condensed Matter.

  15. A Study of the Information Literacy of Biomedical Graduate Students: Based on the Thesis Topic Discovery Process in Molecular Biology Research

    Directory of Open Access Journals (Sweden)

    Jhao-Yen Huang

    2014-06-01

    Full Text Available The biomedical information environment is in a state of constant and rapid change due to the increase in research data and rapid technological advances. In Taiwan, few research has investigated the information literacy of biomedical graduate students. This exploratory study examined the information literacy abilities and training of biomedical graduate students in Taiwan. Semi-structured interviews based on the Association of College and Research Libraries Information Literacy Competency Standards for Science and Engineering/Technology were conducted with 20 molecular biological graduate students. The interview inquired about their information-seeking channels and information literacy education. The findings show that the biomedical graduate students developed a workable thesis topic with their advisors. Through various information-seeking channels and retrieval strategies, they obtained and critically evaluated information to address different information needs for their thesis research. Through seminars, annual conferences and papers, the interviewees were informed of current developments in their field. Subsequently, through written or oral communications, they were able to integrate and exchange the information. Most interviewees cared about the social, economic, legal, and ethical issues surrounding the use of information. College courses and labs were the main information literacy education environment for them to learn about research skills and knowledge. The study concludes four areas to address for the information literacy of biomedical graduate students, i.e., using professional information, using the current information, efficiency in assessing the domain information, and utilization of diverse information channels. Currently, the interviewees showed rather low usage of library resources, which is a concern for biomedical educators and libraries. [Article content in Chinese

  16. Information Processing - Administrative Data Processing

    Science.gov (United States)

    Bubenko, Janis

    A three semester, 60-credit course package in the topic of Administrative Data Processing (ADP), offered in 1966 at Stockholm University (SU) and the Royal Institute of Technology (KTH) is described. The package had an information systems engineering orientation. The first semester focused on datalogical topics, while the second semester focused on the infological topics. The third semester aimed to deepen the students’ knowledge in different parts of ADP and at writing a bachelor thesis. The concluding section of this paper discusses various aspects of the department’s first course effort. The course package led to a concretisation of our discipline and gave our discipline an identity. Our education seemed modern, “just in time”, and well adapted to practical needs. The course package formed the first concrete activity of a group of young teachers and researchers. In a forty-year perspective, these people have further developed the department and the topic to an internationally well-reputed body of knowledge and research. The department has produced more than thirty professors and more than one hundred doctoral degrees.

  17. Information Processing of Trauma.

    Science.gov (United States)

    Hartman, Carol R.; Burgess, Ann W.

    1993-01-01

    This paper presents a neuropsychosocial model of information processing to explain a victimization experience, specifically child sexual abuse. It surveys the relation of sensation, perception, and cognition as a systematic way to provide a framework for studying human behavior and describing human response to traumatic events. (Author/JDD)

  18. New scaling relation for information transfer in biological networks.

    Science.gov (United States)

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  19. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  20. Introduction to information processing

    CERN Document Server

    Dietel, Harvey M

    2014-01-01

    An Introduction to Information Processing provides an informal introduction to the computer field. This book introduces computer hardware, which is the actual computing equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the evolution of personal computing and includes detailed case studies on two of the most essential personal computers for the 1980s, namely, the IBM Personal Computer and Apple's Macintosh. This text then traces the evolution of modern computing systems from the earliest mechanical calculating devices to microchips. Other chapte

  1. Information technology developments within the national biological information infrastructure

    Science.gov (United States)

    Cotter, G.; Frame, M.T.

    2000-01-01

    Looking out an office window or exploring a community park, one can easily see the tremendous challenges that biological information presents the computer science community. Biological information varies in format and content depending whether or not it is information pertaining to a particular species (i.e. Brown Tree Snake), or a specific ecosystem, which often includes multiple species, land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993. The NBII is designed to address these issues on a National scale within the United States, and through international partnerships abroad. This paper discusses current computer science efforts within the National Biological Information Infrastructure Program and future computer science research endeavors that are needed to address the ever-growing issues related to our Nation's biological concerns.

  2. Photonic Quantum Information Processing

    International Nuclear Information System (INIS)

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  3. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  4. Optimal Information Retrieval Model for Molecular Biology Information

    OpenAIRE

    Paulsen, Jon Rune

    2007-01-01

    Search engines for biological information are not a new technology. Since the 1960s computers have emerged as an important tool for biologists. Online Mendelian Inheritance in Man (OMIM) is a comprehensive catalogue containing approximately 14 000 records with information about human genes and genetic disorders. An approach called Latent Semantic Indexing (LSI) was introduced in 1990 that is based on Singular Value Decomposition (SVD). This approach improved the information retrieval and red...

  5. Perception and information processing

    DEFF Research Database (Denmark)

    Scholderer, Joachim

    2010-01-01

    Consumer researchers are interested in the responses of people to commercial stimuli. Usually, these stimuli are products and services, including all attributes, issues, persons, communications, situations, and behaviours related to them. Perception is the first bottleneck in this process...... information and to characterise the operations they perform. To avoid confusion, it should be stressed that the term "perception" is often used in a colloquial sense in consumer research. In concepts like perceived quality, perceived value, or perceived risk, the modifier "perceived" simply highlights...... the subjective nature of these phenomena. However, many of these phenomena are the result of rather complex evaluative judgments and should therefore be regarded as attitudes, not as perceptions in a narrow sense. In this chapter, the term perception will be used in its narrow sense, referring to the selection...

  6. Reading biological processes from nucleotide sequences

    Science.gov (United States)

    Murugan, Anand

    Cellular processes have traditionally been investigated by techniques of imaging and biochemical analysis of the molecules involved. The recent rapid progress in our ability to manipulate and read nucleic acid sequences gives us direct access to the genetic information that directs and constrains biological processes. While sequence data is being used widely to investigate genotype-phenotype relationships and population structure, here we use sequencing to understand biophysical mechanisms. We present work on two different systems. First, in chapter 2, we characterize the stochastic genetic editing mechanism that produces diverse T-cell receptors in the human immune system. We do this by inferring statistical distributions of the underlying biochemical events that generate T-cell receptor coding sequences from the statistics of the observed sequences. This inferred model quantitatively describes the potential repertoire of T-cell receptors that can be produced by an individual, providing insight into its potential diversity and the probability of generation of any specific T-cell receptor. Then in chapter 3, we present work on understanding the functioning of regulatory DNA sequences in both prokaryotes and eukaryotes. Here we use experiments that measure the transcriptional activity of large libraries of mutagenized promoters and enhancers and infer models of the sequence-function relationship from this data. For the bacterial promoter, we infer a physically motivated 'thermodynamic' model of the interaction of DNA-binding proteins and RNA polymerase determining the transcription rate of the downstream gene. For the eukaryotic enhancers, we infer heuristic models of the sequence-function relationship and use these models to find synthetic enhancer sequences that optimize inducibility of expression. Both projects demonstrate the utility of sequence information in conjunction with sophisticated statistical inference techniques for dissecting underlying biophysical

  7. Informing Biological Design by Integration of Systems and Synthetic Biology

    OpenAIRE

    Smolke, Christina D.; Silver, Pamela A.

    2011-01-01

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.

  8. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  9. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  10. Information Processing in Living Systems

    Science.gov (United States)

    Tkačik, Gašper; Bialek, William

    2016-03-01

    Life depends as much on the flow of information as on the flow of energy. Here we review the many efforts to make this intuition precise. Starting with the building blocks of information theory, we explore examples where it has been possible to measure, directly, the flow of information in biological networks, or more generally where information-theoretic ideas have been used to guide the analysis of experiments. Systems of interest range from single molecules (the sequence diversity in families of proteins) to groups of organisms (the distribution of velocities in flocks of birds), and all scales in between. Many of these analyses are motivated by the idea that biological systems may have evolved to optimize the gathering and representation of information, and we review the experimental evidence for this optimization, again across a wide range of scales.

  11. Adaptive filtering in biological signal processing.

    Science.gov (United States)

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633

  12. Modeling information flow in biological networks

    International Nuclear Information System (INIS)

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method

  13. The reverse control of irreversible biological processes.

    Science.gov (United States)

    Cho, Kwang-Hyun; Joo, Jae Il; Shin, Dongkwan; Kim, Dongsan; Park, Sang-Min

    2016-09-01

    Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366-377. doi: 10.1002/wsbm.1346 For further resources related to this article, please visit the WIREs website. PMID:27327189

  14. Pragmatics and Information Processing.

    Science.gov (United States)

    Snyder, Lynn Sebestyen; Downey, Doris C.

    1983-01-01

    Findings from studies of attention, semantic memory, and the pragmatics of language are reviewed and implications for intervention with children whose language is disordered are discussed. Selectivity and resource allocation are the attention topics considered while schemata, frames, inferences, and narrative discourse processing are addressed…

  15. Industrial Information Processing

    DEFF Research Database (Denmark)

    Svensson, Carsten

    2002-01-01

    This paper demonstrates, how cross-functional business processes may be aligned with product specification systems in an intra-organizational environment by integrating planning systems and expert systems, thereby providing an end-to-end integrated and an automated solution to the “build-to-order...

  16. Is metabolic rate a universal 'pacemaker' for biological processes?

    Science.gov (United States)

    Glazier, Douglas S

    2015-05-01

    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  17. Building phenomenological models of complex biological processes

    Science.gov (United States)

    Daniels, Bryan; Nemenman, Ilya

    2009-11-01

    A central goal of any modeling effort is to make predictions regarding experimental conditions that have not yet been observed. Overly simple models will not be able to fit the original data well, but overly complex models are likely to overfit the data and thus produce bad predictions. Modern quantitative biology modeling efforts often err on the complexity side of this balance, using myriads of microscopic biochemical reaction processes with a priori unknown kinetic parameters to model relatively simple biological phenomena. In this work, we show how Bayesian model selection (which is mathematically similar to low temperature expansion in statistical physics) can be used to build coarse-grained, phenomenological models of complex dynamical biological processes, which have better predictive powers than microscopically correct, but poorely constrained mechanistic molecular models. We illustrate this on the example of a multiply-modifiable protein molecule, which is a simplified description of multiple biological systems, such as an immune receptors and an RNA polymerase complex. Our approach is similar in spirit to the phenomenological Landau expansion for the free energy in the theory of critical phenomena.

  18. Industrial Information Processing

    DEFF Research Database (Denmark)

    Svensson, Carsten

    2002-01-01

    This paper demonstrates, how cross-functional business processes may be aligned with product specification systems in an intra-organizational environment by integrating planning systems and expert systems, thereby providing an end-to-end integrated and an automated solution to the “build-to-order......This paper demonstrates, how cross-functional business processes may be aligned with product specification systems in an intra-organizational environment by integrating planning systems and expert systems, thereby providing an end-to-end integrated and an automated solution to the “build......-to-order” challenge. An outcome of this capability is that the potential market for customized products will expand, resulting in a reduction in administrative and manufacturing costs. This potential for cost reduction, simultaneous with market expansion, is a source of competitive advantage; hence manufacturers have...

  19. Risk and information processing

    International Nuclear Information System (INIS)

    The reasons for the current widespread arguments between designers of advanced technological systems like, for instance, nuclear power plants and opponents from the general public concerning levels of acceptable risk may be found in incompatible definitions of risk, in differences in risk perception and criteria for acceptance, etc. Of importance may, however, also be the difficulties met in presenting the basis for risk analysis, such as the conceptual system models applied, in an explicit and credible form. Application of modern information technology for the design of control systems and human-machine interfaces together with the trends towards large centralised industrial installations have made it increasingly difficult to establish an acceptable model framework, in particular considering the role of human errors in major system failures and accidents. Different aspects of this problem are discussed in the paper, and areas are identified where research is needed in order to improve not only the safety of advanced systems, but also the basis for their acceptance by the general public. (author)

  20. BRICS and Quantum Information Processing

    DEFF Research Database (Denmark)

    Schmidt, Erik Meineche

    1998-01-01

    BRICS is a research centre and international PhD school in theoretical computer science, based at the University of Aarhus, Denmark. The centre has recently become engaged in quantum information processing in cooperation with the Department of Physics, also University of Aarhus. This extended...... abstract surveys activities at BRICS with special emphasis on the activities in quantum information processing....

  1. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. PMID:25080124

  2. Cognitive biology dealing with information from bacteria to minds

    CERN Document Server

    Auletta, Gennaro

    2011-01-01

    Providing a new conceptual scaffold for further research in biology and cognition, this text introduces the new field of cognitive biology, treating developing organisms as information processors which use cognition to control and modify their environments.

  3. Diffusion processes and related topics in biology

    CERN Document Server

    Ricciardi, Luigi M

    1977-01-01

    These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol­ ogy and neurobiology literature. While the subject may be classical, the nov­ elty here lies in the approach and point of view, particularly in the applica­ tions such as the approach to the neuronal firing problem and its related dif­ fusion approximations. It is a ple...

  4. Information Symmetries in Irreversible Processes

    OpenAIRE

    Ellison, Christopher J.; Mahoney, John R.; James, Ryan G.; Crutchfield, James P.; Reichardt, Joerg

    2011-01-01

    We study dynamical reversibility in stationary stochastic processes from an information theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes with the consequence...

  5. Modeling biochemical transformation processes and information processing with Narrator

    Directory of Open Access Journals (Sweden)

    Palfreyman Niall M

    2007-03-01

    Full Text Available Abstract Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs, which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a

  6. Teaching Information Literacy Skills to Sophomore-Level Biology Majors

    OpenAIRE

    Leigh Thompson; Lisa Ann Blankinship

    2015-01-01

    Many undergraduate students lack a sound understanding of information literacy. The skills that comprise information literacy are particularly important when combined with scientific writing for biology majors as they are the foundation skills necessary to complete upper-division biology course assignments, better train students for research projects, and prepare students for graduate and professional education. To help undergraduate biology students develop and practice information literacy ...

  7. Grey Vancouver's information architecture process

    OpenAIRE

    LeBlanc, Christopher Francis

    2010-01-01

    This project report provides an overview and analysis of Grey’s process for developing the information architecture (IA) of two client websites: UBC Electrical and Computer Engineering and the Kelty Mental Health Resource Centre. The report details the initial stages of IA development, including research into user groups, and covers the development process prior to site building. Further, the report discusses the process and purpose behind usability testing for the two websites, and details k...

  8. ROLE OF BIOLOGICAL PROCESSES IN TECHNOLOGY OF GROUND WATER TREATMENT

    OpenAIRE

    Yu. P. Sedluho; M. I. Lemesh

    2015-01-01

    Technological peculiar features of biocenosis development in water treatment facilities and a role of biological processes in the technology of ground water treatment are considered in the paper. The paper provides main factors that influence on biological process development.

  9. Design of the RFID for Storage of Biological Information

    Directory of Open Access Journals (Sweden)

    Sang-Hee Son

    2009-02-01

    Full Text Available Recent advances in RFID (radio frequency identification technology promises to create a wireless circuitry capable of interfacing with biological systems for acquisition, identification and processing of biological data based on radio frequency interaction. Thus, the RFID tag can be attached not only to consumer products and form part of the supply chain, but also to animals, plants and in particular human body. This paper describes the strategy for the design of a novel RFID tag, which stores vital biological information such as body temperature and blood pressure and heartbeat in accordance with the EPC global Class-1 standard. Biological data is obtained from a sensor technology that is based on resistance deviation-to-pulse width converter. The integrated chip consists of an analog front end, command interpreter, collision avoidance block, data storage, sensors, and interface circuitry. The system is capable of supporting heartbeats in the range of 40~200 beats per a minute and blood pressure 0~300mmHg. The proposed system employs collision free algorithm that supports access to single tag within a multiple tag environment. The approach facilitates intelligent management of patients in hospitals as part of an integrated healthcare management system.

  10. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  11. Optical Hybrid Quantum Information Processing

    Science.gov (United States)

    Takeda, Shuntaro; Furusawa, Akira

    Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

  12. Physical limits on information processing

    CERN Document Server

    Hsu, S D H

    2006-01-01

    We derive a fundamental upper bound on the rate at which a device can process information (i.e., the number of logical operations per unit time), arising from quantum mechanics and general relativity. In Planck units a device of volume V can execute no more than the cube root of V operations per unit time. We compare this to the rate of information processing performed by nature in the evolution of physical systems, and find a connection to black hole entropy and the holographic principle.

  13. Physical limits on information processing

    International Nuclear Information System (INIS)

    We derive a fundamental upper bound on the rate at which a device can process information (i.e., the number of logical operations per unit time), arising from quantum mechanics and general relativity. In Planck units a device of volume V can execute no more than the cube root of V operations per unit time. We compare this to the rate of information processing performed by nature in the evolution of physical systems, and find a connection to black hole entropy and the holographic principle

  14. Information symmetries in irreversible processes

    Science.gov (United States)

    Ellison, Christopher J.; Mahoney, John R.; James, Ryan G.; Crutchfield, James P.; Reichardt, Jörg

    2011-09-01

    We study dynamical reversibility in stationary stochastic processes from an information-theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes. As a consequence, the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the process's statistical properties, and its reversibility in detail. A process's temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time ɛ-machines. We analyze example irreversible processes whose ɛ-machine representations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time ɛ-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process—the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a process's fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.

  15. Information Network Model Query Processing

    Science.gov (United States)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  16. Marine biological data and information management system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.

    on the concept of open architecture, so that information flow in future can be added without disturbing the existing structure. In the present communication, it describes the principle underlying the BIODIMS and its capability for supporting information...

  17. Information resources and the correlation of response patterns between biological end points

    Energy Technology Data Exchange (ETDEWEB)

    Malling, H.V. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Wassom, J.S. [Oak Ridge National Laboratory, TN (United States)

    1990-12-31

    This paper focuses on the analysis of information for mutagenesis, a biological end point that is important in the overall process of assessing possible adverse health effects from chemical exposure. 17 refs.

  18. Process efficiency simulation for key process parameters in biological methanogenesis

    Directory of Open Access Journals (Sweden)

    Sébastien Bernacchi

    2014-09-01

    Full Text Available New generation biofuels are a suitable approach to produce energy carriers in an almost CO2 neutral way. A promising reaction is the conversion of CO2 and H2 to CH4. This contribution aims at elucidating a bioprocess comprised of a core reaction unit using microorganisms from the Archaea life domain, which metabolize CO2 and H2 to CH4, followed by a gas purification step. The process is simulated and analyzed thermodynamically using the Aspen Plus process simulation environment. The goal of the study was to quantify effects of process parameters on overall process efficiency using a kinetic model derived from previously published experimental results. The used empirical model links the production rate of CH4 and biomass to limiting reactant concentrations. In addition, Aspen Plus was used to improve bioprocess quantification. Impacts of pressure as well as dilution of reactant gas with up to 70% non-reactive gas on overall process efficiency was evaluated. Pressure in the reactor unit of 11 bar at 65℃ with a pressure of 21 bar for gas purification led to an overall process efficiency comprised between 66% and 70% for gaseous product and between 73% and 76% if heat of compression is considered a valuable product. The combination of 2 bar pressure in the reactor and 21 bar for purification was the most efficient combination of parameters. This result shows Aspen Plus potential for similar bioprocess development as it accounts for the energetic aspect of the entire process. In fact, the optimum for the overall process efficiency was found to differ from the optimum of the reaction unit. High efficiency of over 70% demonstrates that biological methanogenesis is a promising alternative for a chemical methanation reaction.

  19. Information management and the biological warfare threat

    OpenAIRE

    Martinez, Antonio

    2002-01-01

    Approved for public release; distribution is unlimited This thesis explores the implications of information management of government-funded projects on national security objectives. A case study of the Human Genome Project is used to illustrate the risk of information transfer between government sources and private industry and the implications posed to the proliferation of Weapons of Mass Destruction. The issue of risk in information management is approached by developing three theoretica...

  20. BENZIMIDAZOLES: THE LATEST INFORMATION ON BIOLOGICAL ACTIVITIES

    OpenAIRE

    Singh Gurvinder; Kaur Maninderjit; Chander Mohan

    2013-01-01

    Benzimidazole is a heterocyclic aromatic organic compound. It is an important pharmacophore and a privileged structure in medicinal chemistry. Benzimidazole and its derivatives play an important role in medical field with large number of Pharmacological activities such as antimicrobial, antiviral, antidiabetic and anticancer activity. This review is summarized to know about the chemistry of different derivatives of benzimidazoles along with their biological actions such as antioxidant, antimi...

  1. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  2. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  3. Quantum information processing in diamond

    OpenAIRE

    Jelezko, F.; Wrachtrup, J.

    2005-01-01

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This...

  4. Quantum Technologies for Information Processing

    OpenAIRE

    Tura i Brugués, Jordi

    2011-01-01

    English: Since its genesis, quantum mechanics has proved to be a very accurate model for predicting the behavior of the world below the nanoscale. However, crucial breakthroughs in technology were needed in order to be able to effectively access and manipulate such small magnitudes. During the last twenty years, the field of quantum information processing has experienced a growing interest, in its many variants, both theoretically and practically. Despite being still at a very basic stage, ex...

  5. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    OpenAIRE

    Porter, John R

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information literacy instruction and then proceed to select, update, and write about a current research topic in an upper-level cell biology course is described....

  6. Optimization criteria and biological process enrichment in homologous multiprotein modules.

    Science.gov (United States)

    Hodgkinson, Luqman; Karp, Richard M

    2013-06-25

    Biological process enrichment is a widely used metric for evaluating the quality of multiprotein modules. In this study, we examine possible optimization criteria for detecting homologous multiprotein modules and quantify their effects on biological process enrichment. We find that modularity, linear density, and module size are the most important criteria considered, complementary to each other, and that graph theoretical attributes account for 36% of the variance in biological process enrichment. Variations in protein interaction similarity within module pairs have only minor effects on biological process enrichment. As random modules increase in size, both biological process enrichment and modularity tend to improve, although modularity does not show this upward trend in modules with size at most 50 proteins. To adjust for these trends, we recommend a size correction based on random sampling of modules when using biological process enrichment or other attributes to evaluate module boundaries. Characteristics of homologous multiprotein modules optimized for each of the optimization criteria are examined. PMID:23757502

  7. The information-processing approach.

    Science.gov (United States)

    van der Heijden, A H; Stebbins, S

    1990-01-01

    The information-processing (IP) approach to perception and cognition arose as a reaction to behaviourism. This reaction mainly concerned the nature of explanation in scientific psychology. The "standard" account of behaviour, phrased in strictly external terms, was replaced by a "realist" account, phrased in terms of internal entities and processes. An analysis of the theoretical language used in IP psychology shows an undisciplined state of affairs. A great number of languages is simultaneously in use; no level of analysis is unambiguously referred to; and basic concepts such as information and processing remain largely undefined. Nevertheless, over the past 25 years the IP approach has developed into a disciplined and sophisticated experimental science. A look at actual practice hints at the basic reason for its success. The approach is not so much concerned with absolute or intrinsic properties of the human information processor, but with what can be called its relative or differential properties. A further analysis of this feature of the IP approach in terms of the formal language of a logical system makes explicit the basis of its success. The IP approach can be regarded as developing an empirical difference calculus on an unspecified class of objects, phrased in terms of a simulated "theory-neutral" observation language, and with operators that are structurally analogous to logical operators. This reinterpretation of what the IP approach is about brings a number of advantages. It strengthens its position as an independent science, clarifies its relation with other approaches within psychology and other sciences within the cognitive science group, and makes it independent of philosophical subtleties. PMID:2281128

  8. Liguistic scale based information processing

    Czech Academy of Sciences Publication Activity Database

    Mareš, Milan; Mesiar, Radko

    Antalya : b-Quadrat Verlag, 2007 - (Pedrycz, W.; Aliev, R.; Jamshidi, M.; Turksen, B.), s. 56-62 ISBN 3-933609-24-2. [International Conference on Soft Computing, Computing with Words and Perception in Systems /4./. Antalya (TR), 27.08.2007-28.08.2007] R&D Projects: GA MŠk(CZ) 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Fuzzy set * triangular norm * information processing * fuzzy logic * linguistics Subject RIV: BB - Applied Statistics, Operational Research

  9. Real-time optical information processing

    CERN Document Server

    Javidi, Bahram

    1994-01-01

    Real-Time Optical Information Processing covers the most recent developments in optical information processing, pattern recognition, neural computing, and materials for devices in optical computing. Intended for researchers and graduate students in signal and information processing with some elementary background in optics, the book provides both theoretical and practical information on the latest in information processing in all its aspects. Leading researchers in the field describe the significant signal processing algorithms architectures in optics as well as basic hardware concepts,

  10. Building Better Biology Undergraduates through Information Literacy Integration

    Science.gov (United States)

    Winterman, Brian

    2009-01-01

    Biology undergraduates at Indiana University have often been expected to find information for course exercises or written reports, but the skills necessary to do so are not taught consistently in the curriculum. Other efforts described in the literature have been successful in teaching information literacy skills, but not always in a way that is…

  11. ROLE OF BIOLOGICAL PROCESSES IN TECHNOLOGY OF GROUND WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedluho

    2008-01-01

    Full Text Available Technological peculiar features of biocenosis development in water treatment facilities and a role of biological processes in the technology of ground water treatment are considered in the paper. The paper provides main factors that influence on biological process development.

  12. Sender-receiver systems and applying information theory for quantitative synthetic biology.

    Science.gov (United States)

    Barcena Menendez, Diego; Senthivel, Vivek Raj; Isalan, Mark

    2015-02-01

    Sender-receiver (S-R) systems abound in biology, with communication systems sending information in various forms. Information theory provides a quantitative basis for analysing these processes and is being applied to study natural genetic, enzymatic and neural networks. Recent advances in synthetic biology are providing us with a wealth of artificial S-R systems, giving us quantitative control over networks with a finite number of well-characterised components. Combining the two approaches can help to predict how to maximise signalling robustness, and will allow us to make increasingly complex biological computers. Ultimately, pushing the boundaries of synthetic biology will require moving beyond engineering the flow of information and towards building more sophisticated circuits that interpret biological meaning. PMID:25282688

  13. Biological risk factors in informal recyclers of Medellin city, 2005

    Directory of Open Access Journals (Sweden)

    Viviana L. Ballesteros

    2008-06-01

    Full Text Available The informal recyclers constitute a vulnerable population to problems of health by their constant exhibition to biological, chemical, physical and social risks, without protection. Objective: this work identify the biological risk facts to which the informal recyclers of the Bazaar of the Bridges of Medellin city. Methods: it was performed a Cross-sectional study. The sample was no probabilistic with 88 recyclers and the analysis unit was the informal recycler. It was applied a survey, a guide of observation of the activity of the recycler and were studied variables of person, place, time, type of biological risk facts, frequency of exhibition, felt morbidity and measures of protection. The analysis was statistical descriptive. Results: it was identified biological risk facts related to the contact with material in decomposition (96.6%, contaminated material (96.6%, animals (62.5% and arthropoda (79.5%. The se The se--curity measures to protect them from biological risk facts are used in less than 52% of recyclers; in addition, only 13.6% of the population were vaccinated, which increases the probability of becoming ill in this population. Conclusions: that the informal recyclers are exposed to different biological risk facts with little prevention, causing that population be vulnerable for the acquisition of infectious diseases.

  14. Information processing in medical imaging

    International Nuclear Information System (INIS)

    Fast-track conference proceedings. State-of-the-art research. Up-to-date results. This book constitutes the refereed proceedings of the 22nd International Conference on Information Processing in Medical Imaging, IPMI 2011, held at Kloster Irsee, Germany, in July 2011. The 24 full papers and 39 poster papers included in this volume were carefully reviewed and selected from 224 submissions. The papers are organized in topical sections on segmentation, statistical methods, shape analysis, registration, diffusion imaging, disease progression modeling, and computer aided diagnosis. The poster sessions deal with segmentation, shape analysis, statistical methods, image reconstruction, microscopic image analysis, computer aided diagnosis, diffusion imaging, functional brain analysis, registration and other related topics.

  15. Processing quantum information in diamond

    International Nuclear Information System (INIS)

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during the last decade. Among other systems, such as ions in traps and superconducting circuits, solid state based qubits are considered to be promising candidates for use in first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defects in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploration of long coherence times (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to spin state read-out via spin-selective scattering of photons. This also allows the use of spin states as robust memory for flying qubits (photons)

  16. Quantum information processing in diamond

    CERN Document Server

    Jelezko, F

    2005-01-01

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).

  17. THE SEMANTIC INFORMATION MODEL FOR CLUSTER "BIOLOGICAL ACTIVE SUBSTANCES IN FEEDING AND COSMETICS"

    OpenAIRE

    Stefan Velikov

    2015-01-01

    The article presents a unified data model for cluster "Biologically active substances in feeding and cosmetics”. The basic information components and their relationship are indicated. The information system provides the data in a structured format thereby realize the concept of interoperability and allows the integration of different systems, storages, processing and re-using of information. The best practices for combining and adapting information resources to support semantic interoperabili...

  18. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond. PMID:18316808

  19. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    Science.gov (United States)

    Porter, John R.

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information…

  20. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    Science.gov (United States)

    Štys, Dalibor; Urban, Jan; Vaněk, Jan; Císař, Petr

    2011-06-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space. This space is reflected as colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them. PMID:25478628

  1. Information processing in miniature brains.

    Science.gov (United States)

    Chittka, L; Skorupski, P

    2011-03-22

    Since a comprehensive understanding of brain function and evolution in vertebrates is often hobbled by the sheer size of the nervous system, as well as ethical concerns, major research efforts have been made to understand the neural circuitry underpinning behaviour and cognition in invertebrates, and its costs and benefits under natural conditions. This special feature of Proceedings of the Royal Society B contains an idiosyncratic range of current research perspectives on neural underpinnings and adaptive benefits (and costs) of such diverse phenomena as spatial memory, colour vision, attention, spontaneous behaviour initiation, memory dynamics, relational rule learning and sleep, in a range of animals from marine invertebrates with exquisitely simple nervous systems to social insects forming societies with many thousands of individuals working together as a 'superorganism'. This introduction provides context and history to tie the various approaches together, and concludes that there is an urgent need to understand the full neuron-to-neuron circuitry underlying various forms of information processing-not just to explore brain function comprehensively, but also to understand how (and how easily) cognitive capacities might evolve in the face of pertinent selection pressures. In the invertebrates, reaching these goals is becoming increasingly realistic. PMID:21227971

  2. Infochemistry Information Processing at the Nanoscale

    CERN Document Server

    Szacilowski, Konrad

    2012-01-01

    Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an int

  3. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  4. Design of the RFID for Storage of Biological Information

    OpenAIRE

    Sang-Hee Son; Seok-Man Kim; Yu-Lee Choi; Kyoung-Rok Cho

    2009-01-01

    Recent advances in RFID (radio frequency identification) technology promises to create a wireless circuitry capable of interfacing with biological systems for acquisition, identification and processing of biological data based on radio frequency interaction. Thus, the RFID tag can be attached not only to consumer products and form part of the supply chain, but also to animals, plants and in particular human body. This paper describes the strategy for the design of a novel RFID tag, which stor...

  5. Social Information Processing in Deaf Adolescents

    Science.gov (United States)

    Torres, Jesús; Saldaña, David; Rodríguez-Ortiz, Isabel R.

    2016-01-01

    The goal of this study was to compare the processing of social information in deaf and hearing adolescents. A task was developed to assess social information processing (SIP) skills of deaf adolescents based on Crick and Dodge's (1994; A review and reformulation of social information-processing mechanisms in children's social adjustment.…

  6. Handbook on neural information processing

    CERN Document Server

    Maggini, Marco; Jain, Lakhmi

    2013-01-01

    This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to ...

  7. Summing up dynamics: modelling biological processes in variable temperature scenarios

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Verdenius, F.

    2000-01-01

    The interest of modelling biological processes with dynamically changing external conditions (temperature, relative humidity, gas conditions) increases. Several modelling approaches are currently available. Among them are approaches like modelling under standard conditions, temperature sum models an

  8. A Real-Time and Dynamic Biological Information Retrieval and Analysis System (BIRAS)

    Institute of Scientific and Technical Information of China (English)

    Qi Zhou; Hong Zhang; Meiying Geng; Chenggang Zhang

    2003-01-01

    The aim of this study is to design a biological information retrieval and analysis system (BIRAS) based on the Internet. Using the specific network protocol, BIRAS system could send and receive information from the Entrez search and retrieval system maintained by National Center for Biotechnology Information (NCBI) in USA. The literatures, nucleotide sequence, protein sequences, and other resources according to the user-defined term could then be retrieved and sent to the user by pop up message or by E-mail informing automatically using BIRAS system.All the information retrieving and analyzing processes are done in real-time. As a robust system for intelligently and dynamically retrieving and analyzing on the user-defined information, it is believed that BIRAS would be extensively used to retrieve specific information from large amount of biological databases in now days.The program is available on request from the corresponding author.

  9. A Real—Time and Dynamic Biological Information Retrieval and Analysis System(BIRAS)

    Institute of Scientific and Technical Information of China (English)

    QiZhou; HongZhang; MeiyingGeng; ChenggangZhang

    2003-01-01

    The aim of this study is to design a biological information retrieval and analysis system(BIRAS) based on the Internet.Using the specific network protocol,BIRAS system could send and receive information from the Entrez search and retrieval system maintained by National Center for Biotechnology Information(NCBI)in USA.The literatures,nucleotide sequence,protein sequences,and other resources according to the user-defined term could then be retrieved and sent to the user by pop up message or by E-amil informing automatically using BIRAS system.All the information retrieving and analyzing processes are done in real-time.As a robust system for intelligently and dynamically retrieving and analyzing on the user-defined information,it is believed that BIRAS would be extensively used to retrieve specific information from large amount of biological databases in now days.The program is available on request from the corresponding author.

  10. Five Computational Actions in Information Processing

    Directory of Open Access Journals (Sweden)

    Stefan Vladutescu

    2014-12-01

    Full Text Available This study is circumscribed to the Information Science. The zetetic aim of research is double: a to define the concept of action of information computational processing and b to design a taxonomy of actions of information computational processing. Our thesis is that any information processing is a computational processing. First, the investigation trays to demonstrate that the computati onal actions of information processing or the informational actions are computationalinvestigative configurations for structuring information: clusters of highlyaggregated operations which are carried out in a unitary manner operate convergent and behave like a unique computational device. From a methodological point of view, they are comprised within the category of analytical instruments for the informational processing of raw material, of data, of vague, confused, unstructured informational elements. As internal articulation, the actions are patterns for the integrated carrying out of operations of informational investigation. Secondly, we propose an inventory and a description of five basic informational computational actions: exploring, grouping, anticipation, schematization, inferential structuring. R. S. Wyer and T. K. Srull (2014 speak about "four information processing". We would like to continue with further and future investigation of the relationship between operations, actions, strategies and mechanisms of informational processing.

  11. Signal processing with Levy information

    OpenAIRE

    Brody, Dorje C.; Hughston, Lane P.; Xun Yang

    2012-01-01

    Levy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Levy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a "message", then under the transformed measure the original Levy process takes on the character of an "in...

  12. HMM Search for Apoptotic Domains (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Hattori, Masahiro; Kanehisa, Minoru

    2000-01-01

    For the purpose of analyzing apoptotic molecular interactions, we have developed a knowledge base, which consists of apoptotic molecular interactions, together with the WWW interface for it. This database and the user interface enabled us to find out entries containing various information about cell death. This information tells us that the apoptotic molecular interactions are likely to be controlled under a series of specific conserved domains. Thus, the viewpoint of domain seems to be more ...

  13. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  14. Information in the Biosphere: Biological and Digital Worlds.

    Science.gov (United States)

    Gillings, Michael R; Hilbert, Martin; Kemp, Darrell J

    2016-03-01

    Evolution has transformed life through key innovations in information storage and replication, including RNA, DNA, multicellularity, and culture and language. We argue that the carbon-based biosphere has generated a cognitive system (humans) capable of creating technology that will result in a comparable evolutionary transition. Digital information has reached a similar magnitude to information in the biosphere. It increases exponentially, exhibits high-fidelity replication, evolves through differential fitness, is expressed through artificial intelligence (AI), and has facility for virtually limitless recombination. Like previous evolutionary transitions, the potential symbiosis between biological and digital information will reach a critical point where these codes could compete via natural selection. Alternatively, this fusion could create a higher-level superorganism employing a low-conflict division of labor in performing informational tasks. PMID:26777788

  15. Mathematics of Information Processing and the Internet

    Science.gov (United States)

    Hart, Eric W.

    2010-01-01

    The mathematics of information processing and the Internet can be organized around four fundamental themes: (1) access (finding information easily); (2) security (keeping information confidential); (3) accuracy (ensuring accurate information); and (4) efficiency (data compression). In this article, the author discusses each theme with reference to…

  16. Information theory in stochastic process

    International Nuclear Information System (INIS)

    Methods for calculating the Kolmogorov-Sinai disorder from Gaussian Probability density functions and by using information theory for chaotic dynamical systems are suggested. The autoregressive models may prove stochastic deterministic both for chaotic and non-chaotic dynamical systems. (author)

  17. Information-Processing Models and Curriculum Design

    Science.gov (United States)

    Calfee, Robert C.

    1970-01-01

    "This paper consists of three sections--(a) the relation of theoretical analyses of learning to curriculum design, (b) the role of information-processing models in analyses of learning processes, and (c) selected examples of the application of information-processing models to curriculum design problems." (Author)

  18. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  19. Electron beam/biological processing of anaerobic and aerobic sludge

    International Nuclear Information System (INIS)

    Besides common chemical and biological methods, the radiation technology is a promising way of sludge treatment. The paper describes possibilities of combined accelerated electrons/biological processing of both anaerobic and aerobic sludge. Besides one-shot experiments, experimental reactors for the simulation of anaerobic processes have been used. Main effort has been aimed to decrease organic compounds concentration and overall volume of solids, to improve some physico-chemical parameters of sludge, to validate hygienisation effects of the ionising radiation, and in the case of anaerobic sludge, to increase the volume of the produced biogas. Positive effects of the electron beam processing have been observed on all previously named parameters. (author)

  20. Investigations of biological processes in Austrian MBT plants

    International Nuclear Information System (INIS)

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment.

  1. Investigations of biological processes in Austrian MBT plants.

    Science.gov (United States)

    Tintner, J; Smidt, E; Böhm, K; Binner, E

    2010-10-01

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment. PMID:20580543

  2. Biological and Biomedical Coatings Handbook Processing and Characterization

    CERN Document Server

    Zhang, Sam

    2011-01-01

    Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes--Processing and Characterization and Applications--this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contri

  3. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  4. 國中生物教師教學歷程與資訊行為之探討 | The Study of Instructional Process and Information Behavior of Biology Teachers in Junior High School

    Directory of Open Access Journals (Sweden)

    藍治平、張永達 Chih-Ping Lan、Yung-Ta Chang

    2001-10-01

    -fareast-theme-font: minor-fareast; mso-font-kerning: 0pt; mso-hansi-font-family: 'Times New Roman';">(如學校圖書館或教學網站應當考量到教師使用資訊的方式,讓教師在搜尋、轉形及使用上更能符合實際教學。

    This study aims to explore the information seeking behavior of junior high school teachers of biology in their teaching context Semi-structured interview data of five teachers was collected and analyzed using the qualitative approach. Research results show that the teaching process of biology teachers exhibits the following ten behavioral characteristics, namely, (1 defining, (2 understanding, (3 collecting, (4 selecting, (5 organizing, (6 transforming, (7 instructing, (8 evaluating, (9 reflecting and (10 modifying. It was also found that biology teachers' pedagogical

  5. Biological agents and biosimilars: Essential information for the internist.

    Science.gov (United States)

    Pasina, Luca; Casadei, Gianluigi; Nobili, Alessandro

    2016-09-01

    Biologics embrace a wide range of substances synthesized by cells or living organisms by means of different biological processes, including recombinant DNA technology, controlled gene expression, or antibody technologies. A biosimilar establishes similarity to the reference medicinal product in terms of quality characteristics, biological activity, safety, and efficacy based on a comprehensive comparability exercise. Minimizing development costs and accelerating their market access create a convergence of interests between health services, worried about sustainability, and generic manufacturers. While the demonstration of bioequivalence is sufficient for small synthetic molecules, this approach is not scientifically applicable to a copy of biological drug constituted by large and complex molecules, which are similar but not identical to the originator and are also subject to different post-translational processes. Internists should be confident that the development process of biosimilars ensures a comparable risk-to-benefit balance with the originators. On the basis of available evidence and pharmacovigilance network, there are no grounds to believe that the use of a biosimilar carries more risks for the patient than the use of an originator. Since the first biosimilar was authorized in Europe in 2006, no clinical alerts have raised red flags about the established EMA biosimilar pathway. In this article, we discuss some of the most frequent concerns raised by clinicians about biosimilars and try to explains the scientific principles underlying the biosimilar concept established in the EU in order to license biosimilar drugs. PMID:27342030

  6. Pyrroloquinoline-quinone and its versatile roles in biological processes

    Indian Academy of Sciences (India)

    H S Misra; Y S Rajpurohit; N P Khairnar

    2012-06-01

    Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological processes, as a nutrient and a perspective vitamin.

  7. Pyrroloquinoline-quinone and its versatile roles in biological processes.

    Science.gov (United States)

    Misra, H S; Rajpurohit, Y S; Khairnar, N P

    2012-06-01

    Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological processes, as a nutrient and a perspective vitamin. PMID:22581337

  8. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  9. Process efficiency simulation for key process parameters in biological methanogenesis

    OpenAIRE

    Sébastien Bernacchi; Michaela Weissgram; Walter Wukovits; Christoph Herwig

    2014-01-01

    New generation biofuels are a suitable approach to produce energy carriers in an almost CO2 neutral way. A promising reaction is the conversion of CO2 and H2 to CH4. This contribution aims at elucidating a bioprocess comprised of a core reaction unit using microorganisms from the Archaea life domain, which metabolize CO2 and H2 to CH4, followed by a gas purification step. The process is simulated and analyzed thermodynamically using the Aspen Plus process simulation environment. The goal of t...

  10. Qualitative analysis of biological oscillators as processing structures

    OpenAIRE

    Bordon, Jure

    2011-01-01

    Recently there is a certain tendency in the field of computer science to find alternative processing platforms, which would replace the conventional ones that are starting to reach their limits in the meaning of components' size and speed. Computer science is trying to avoid its dependency on traditional electronic components. One of such alternatives is also processing in biological systems. Whatever the future processing platform might be, computer science will most likely always need a com...

  11. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  12. Process engineering in biological aerobic waste-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilescu, M.; Macoveanu, M. [Technical Univ. Gh. Asachi, Iasi (Romania). Dept. of Environmental Engineering

    1999-11-01

    A non-comprehensive review of several technical developments in the field of aerobic biological waste-water treatment engineering is carried out, considering the active role the engineers have to play in this field. This paper brings together conventional and advanced problems in the field of aerobic biological waste-water treatment. Such an overview of biological waste-water treatment also precedes comments on some important aspects concerning the microorganisms responsible for waste-water treatment as well as consideration of the application of fundamentals and kinetics to the analysis of the biological processes used most commonly for aerobic biological waste-water treatment. A survey of the development of the biological activated-sludge process and some modifications are given. Some problems implied in the conventional activated-sludge waste-water treatment are analyzed, considering conventional processes and bioreactor models (the continuous stirred-tank reactor model and the plug-flow reactor models of the activated-sludge process) as well as aerated lagoons. Further, modifications of the activated-sludge process are presented. These include additional details on the bioreactor progress and applications, with emphasis on aspects concerning airlift bioreactors and their variants, deep-shaft bioreactors and reciprocating jet bioreactors which are considered as the third generation of bioreactors owing to their important advantages in design, operation and performance in waste-water treatment. Sequencing-batch reactors and aerobic digestion processes, including conventional aerobic digestion, high-purity oxygen digestion, thermophilic aerobic digestion and cryophylic aerobic digestion are also reviewed. Finally, some aspects regarding the operational factors that are involved in the selection of the reactor type are included. (orig.)

  13. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-01

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940

  14. Animal models for information processing during sleep

    NARCIS (Netherlands)

    Coenen, A.M.L.; Drinkenburg, W.H.I.M.

    2002-01-01

    Information provided by external stimuli does reach the brain during sleep, although the amount of information is reduced during sleep compared to wakefulness. The process controlling this reduction is called `sensory' gating and evidence exists that the underlying neurophysiological processes take

  15. Chinese Information Processing and Its Prospects

    Institute of Scientific and Technical Information of China (English)

    Sheng Li; Tie-Jun Zhao

    2006-01-01

    The paper presents some main progresses and achievements in Chinese information processing. It focuses on six aspects, I.e., Chinese syntactic analysis, Chinese semantic analysis, machine translation, information retrieval, information extraction, and speech recognition and synthesis. The important techniques and possible key problems of the respective branch in the near future are discussed as well.

  16. Discovering Networks of Perturbed Biological Processes in Hepatocyte Cultures

    Science.gov (United States)

    Lasher, Christopher D.; Rajagopalan, Padmavathy; Murali, T. M.

    2011-01-01

    The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs) and collagen sandwiches (CS). Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs). CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior. PMID:21245926

  17. Information processing in global virtual NPD projects

    OpenAIRE

    Lohikoski, P. (Päivi)

    2016-01-01

    Abstract In knowledge-based economy an increasing amount of work is conducted in projects in dispersed virtual organisational settings. Information is the raw material of virtual knowledge-based project work and therefore an understanding of information processing in virtual NPD (New Product Development) projects is essential. Information processing is particularly crucial for virtual NPD projects, which are typically implemented in demanding, turbulent and complex institutional settings,...

  18. Organization of information protection in the information system of determining the toxicity focus of biological objects

    OpenAIRE

    Руженцев, Віктор Ігоревич; Порван, Андрій Павлович; Пащенко, Марія Анатоліївна

    2016-01-01

    It is proposed an approach to the organization of information protection in the information system of determining the toxicity focus of aquatic biological objects to prevent unauthorized access to data. As the most efficient algorithm for the information protection has been elected a symmetric block encryption algorithm. The use of this algorithm is enabled to achieve the necessary and sufficient performance of operations of encryption and decryption of data monitoring of water bodies on diff...

  19. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  20. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu

    2005-01-01

    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  1. Biological Information Transfer Beyond the Genetic Code: The Sugar Code

    Science.gov (United States)

    Gabius, H.-J.

    In the era of genetic engineering, cloning, and genome sequencing the focus of research on the genetic code has received an even further accentuation in the public eye. In attempting, however, to understand intra- and intercellular recognition processes comprehensively, the two biochemical dimensions established by nucleic acids and proteins are not sufficient to satisfactorily explain all molecular events in, for example, cell adhesion or routing. The consideration of further code systems is essential to bridge this gap. A third biochemical alphabet forming code words with an information storage capacity second to no other substance class in rather small units (words, sentences) is established by monosaccharides (letters). As hardware oligosaccharides surpass peptides by more than seven orders of magnitude in the theoretical ability to build isomers, when the total of conceivable hexamers is calculated. In addition to the sequence complexity, the use of magnetic resonance spectroscopy and molecular modeling has been instrumental in discovering that even small glycans can often reside in not only one but several distinct low-energy conformations (keys). Intriguingly, conformers can display notably different capacities to fit snugly into the binding site of nonhomologous receptors (locks). This process, experimentally verified for two classes of lectins, is termed "differential conformer selection." It adds potential for shifts of the conformer equilibrium to modulate ligand properties dynamically and reversibly to the well-known changes in sequence (including anomeric positioning and linkage points) and in pattern of substitution, for example, by sulfation. In the intimate interplay with sugar receptors (lectins, enzymes, and antibodies) the message of coding units of the sugar code is deciphered. Their recognition will trigger postbinding signaling and the intended biological response. Knowledge about the driving forces for the molecular rendezvous, i

  2. Cancer systems biology: signal processing for cancer research

    Institute of Scientific and Technical Information of China (English)

    Olli Yli-Harja; Antti Ylip(a)(a); Matti Nykter; Wei Zhang

    2011-01-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  3. Transport processes in biological systems: Tumoral cells and human brain

    Science.gov (United States)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  4. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  5. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  6. Proceedings Fourth Workshop on Membrane Computing and Biologically Inspired Process Calculi 2010

    CERN Document Server

    Ciobanu, Gabriel; 10.4204/EPTCS.40

    2010-01-01

    The 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010) is organized in Jena as a satellite event of the Eleventh International Conference on Membrane Computing (CMC11). Biological membranes play a fundamental role in the complex reactions which take place in cells of living organisms. The importance of this role has been considered in two different types of formalisms introduced recently. Membrane systems were introduced as a class of distributed parallel computing devices inspired by the observation that any biological system is a complex hierarchical structure, with a flow of biochemical substances and information that underlies their functioning. The modeling and analysis of biological systems has also attracted considerable interest of the process algebra research community. Thus the notions of membranes and compartments have been explicitly represented in a family of calculi, such as ambients and brane calculi. A cross fertilization of these two research areas has ...

  7. Controlled Hawking Process by Quantum Information

    CERN Document Server

    Hotta, Masahiro

    2009-01-01

    Without using any non-established physics of quantum gravity, we show that black holes remember quantum information of swallowed matter even after the shifted horizons are settled. By using saved information, a part of the absorbed energy can be retrieved from the horizon by quantum energy teleportation in quantum information theory. This process can be regarded as a controlled Hawking process by measurement information about field fluctuation, in which negative energy flux is generated outside the horizon, falls into the horizon, and decreases mass of the black hole.

  8. Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes

    CERN Document Server

    Adams, Ryan Prescott; Murray, Iain

    2010-01-01

    Probabilistic matrix factorization (PMF) is a powerful method for modeling data associated with pairwise relationships, finding use in collaborative filtering, computational biology, and document analysis, among other areas. In many domains, there is additional information that can assist in prediction. For example, when modeling movie ratings, we might know when the rating occurred, where the user lives, or what actors appear in the movie. It is difficult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multiple PMF problems via Gaussian process priors. We replace scalar latent features with functions that vary over the space of side information. The GP priors on these functions require them to vary smoothly and share information. We successfully use this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.

  9. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  10. Human development I: Twenty Fundamental Problems of Biology, Medicine, and Neuro-Psychology Related to Biological Information

    OpenAIRE

    Tyge Dahl Hermansen; Søren Ventegodt; Erik Rald; Birgitte Clausen; Maj Lyck Nielsen; Joav Merrick

    2006-01-01

    In a new series of papers, we address a number of unsolved problems in biology today. First of all, the unsolved enigma concerning how the differentiation from a single zygote to an adult individual happens has been object for severe research for decades. By uncovering a new holistic biological paradigm that introduces an energetic-informational interpretation of reality as a new way to experience biology, these papers will try to solve the problems connected with the events of biological ont...

  11. Quantum Information Processing in the Radical-Pair Mechanism

    CERN Document Server

    Mouloudakis, K

    2016-01-01

    Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We here show that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering the quantum information extracted during the reaction we unravel new magnetic-field effects not conveyed by reaction yields.

  12. Revealing biological information using data structuring and automated learning.

    Science.gov (United States)

    Mohorianu, Irina; Moulton, Vincent

    2010-11-01

    The intermediary steps between a biological hypothesis, concretized in the input data, and meaningful results, validated using biological experiments, commonly employ bioinformatics tools. Starting with storage of the data and ending with a statistical analysis of the significance of the results, every step in a bioinformatics analysis has been intensively studied and the resulting methods and models patented. This review summarizes the bioinformatics patents that have been developed mainly for the study of genes, and points out the universal applicability of bioinformatics methods to other related studies such as RNA interference. More specifically, we overview the steps undertaken in the majority of bioinformatics analyses, highlighting, for each, various approaches that have been developed to reveal details from different perspectives. First we consider data warehousing, the first task that has to be performed efficiently, optimizing the structure of the database, in order to facilitate both the subsequent steps and the retrieval of information. Next, we review data mining, which occupies the central part of most bioinformatics analyses, presenting patents concerning differential expression, unsupervised and supervised learning. Last, we discuss how networks of interactions of genes or other players in the cell may be created, which help draw biological conclusions and have been described in several patents. PMID:21288193

  13. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  14. Assessment of biological Hydrogen production processes: A review

    Science.gov (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  15. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    This paper describes the implementation of a simulation benchmark for studying the influence of control strategy implementations on combined nitrogen and phosphorus removal processes in a biological wastewater treatment plant. The presented simulation benchmark plant and its performance criteria...... conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...... are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...

  16. Revealed Quantum Information in Weak Interaction Processes

    CERN Document Server

    Hiesmayr, B C

    2014-01-01

    We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay $\\Sigma^+\\longrightarrow p \\pi^0$). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities $\\frac{1\\pm\\alpha}{2}$ where $\\alpha$ is proportional to the visibility times the real part of the phase shift. Differently stated the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this...

  17. Development and Plasticity of Intra- and Intersensory Information Processing

    OpenAIRE

    Polley, Daniel B.; Hillock, Andrea R.; Spankovich, Christopher; Popescu, Maria V.; Royal, David W.; Wallace, Mark T.

    2008-01-01

    The functional architecture of sensory brain regions reflects an ingenious biological solution to the competing demands of a continually changing sensory environment. While they are malleable, they have the constancy necessary to support a stable sensory percept. How does the functional organization of sensory brain regions contend with these antithetical demands? Here we describe the functional organization of auditory and multisensory (i.e., auditory-visual) information processing in three ...

  18. Occurrence reporting and processing of operations information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-21

    DOE O 232.1A, Occurrence Reporting and Processing of Operations Information, and 10 CFR 830.350, Occurrence Reporting and Processing of Operations Information (when it becomes effective), along with this manual, set forth occurrence reporting requirements for Department of Energy (DOE) Departmental Elements and contractors responsible for the management and operation of DOE-owned and -leased facilities. These requirements include categorization of occurrences related to safety, security, environment, health, or operations (``Reportable Occurrences``); DOE notification of these occurrences; and the development and submission of documented follow-up reports. This Manual provides detailed information for categorizing and reporting occurrences at DOE facilities. Information gathered by the Occurrence Reporting and processing System is used for analysis of the Department`s performance in environmental protection, safeguards and security, and safety and health of its workers and the public. This information is also used to develop lessons learned and document events that significantly impact DOE operations.

  19. Occurrence reporting and processing of operations information

    International Nuclear Information System (INIS)

    DOE O 232.1A, Occurrence Reporting and Processing of Operations Information, and 10 CFR 830.350, Occurrence Reporting and Processing of Operations Information (when it becomes effective), along with this manual, set forth occurrence reporting requirements for Department of Energy (DOE) Departmental Elements and contractors responsible for the management and operation of DOE-owned and -leased facilities. These requirements include categorization of occurrences related to safety, security, environment, health, or operations (''Reportable Occurrences''); DOE notification of these occurrences; and the development and submission of documented follow-up reports. This Manual provides detailed information for categorizing and reporting occurrences at DOE facilities. Information gathered by the Occurrence Reporting and processing System is used for analysis of the Department's performance in environmental protection, safeguards and security, and safety and health of its workers and the public. This information is also used to develop lessons learned and document events that significantly impact DOE operations

  20. Certainty and Uncertainty in Quantum Information Processing

    OpenAIRE

    Rieffel, Eleanor G.

    2007-01-01

    This survey, aimed at information processing researchers, highlights intriguing but lesser known results, corrects misconceptions, and suggests research areas. Themes include: certainty in quantum algorithms; the "fewer worlds" theory of quantum mechanics; quantum learning; probability theory versus quantum mechanics.

  1. HUMAN RESOURCES PREPARATION FOR DIGITAL INFORMATION PROCESSING

    OpenAIRE

    Ladislav Burita; Vojtech Ondryhal

    2014-01-01

    The article describes the content and teaching methodology of information systems development and processing of information sources. The authors present the structure of courses, motivational aspects applied and the approaches leading to the development of creative abilities of students. The illustrative example of student’s work is shown. As a theoretical approach, the structured methodology for information systems development is applied. The term of creative ability is analyzed. SW Tovek To...

  2. Biological Signal Processing with a Genetic Toggle Switch

    Science.gov (United States)

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  3. Information processing among high-performance managers

    Directory of Open Access Journals (Sweden)

    S.C. Garcia-Santos

    2010-01-01

    Full Text Available The purpose of this study was to evaluate the information processing of 43 business managers with a professional superior performance. The theoretical framework considers three models: the Theory of Managerial Roles of Henry Mintzberg, the Theory of Information Processing, and Process Model Response to Rorschach by John Exner. The participants have been evaluated by Rorschach method. The results show that these managers are able to collect data, evaluate them and establish rankings properly. At same time, they are capable of being objective and accurate in the problems assessment. This information processing style permits an interpretation of the world around on basis of a very personal and characteristic processing way or cognitive style.

  4. PREFACE: Complex Networks: from Biology to Information Technology

    Science.gov (United States)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    clustering coefficient constructed using this approach is used to identify a number of biologically significant genes in data sets from microarray experiments. The paper Quantifying the taxonomic diversity in real species communities by Caretta Cartozo et al reports on universal statistical properties in taxonomic trees. The results, which are obtained by sampling a large pool of species from all over the world, suggest that it is possible to quantitatively distinguish real species assemblage from random collections. In the contribution Insights into biological information processing: structural and dynamical analysis of a human protein signalling network, de la Fuente et al investigate the dynamical properties of a human protein signalling network while accounting for edge directionality and topological properties both at the local and global scale. The relationship between the node degrees and the distribution of signals through the network is characterised using degree correlation profiles. A study of a brain network is presented by de Vico Fallani et al in Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. The authors introduce an approach based on the estimate of time-varying graph indexes that allows the capture of schemes of communication within the network. The method is applied to a set of high resolution EEG data recorded from a group of subjects performing a simple foot movement. The last section, devoted to Social and Technological Applications, includes nine contributions in the broad area of infrastructure, economic, and social systems: The paper Uncovering individual and collective human dynamics from mobile phone records by Cándia et al explores extensive phone records resolved in both time and space to study collective behaviour and the occurrence of anomalous events. At the individual level, it is shown that the distribution of time intervals between

  5. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area

  6. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  7. Information Processing in Cognition Process and New Artificial Intelligent Systems

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  8. Processing biological literature with customizable Web services supporting interoperable formats

    OpenAIRE

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specific...

  9. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity

    OpenAIRE

    Le, Thi Hong Van; Lee, Seo Young; Kim, Tae Ryong; Kim, Jae Young; Kwon, Sung Won; NGUYEN, NGOC KHOI; Park, Jeong Hill; Nguyen, Minh Duc

    2013-01-01

    Background This study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng. Methods Samples of powdered Vietnamese ginseng were steamed at 120°C for various times and their extracts were subjected to chemical and biological studies. Results Upon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenos...

  10. Optimizing processes for biological nitrogen removal in Nakivubo wetland, Uganda

    OpenAIRE

    Kyambadde, Joseph

    2005-01-01

    The ability of Nakivubo wetland (which has performed tertiary water treatment for Kampala city for the past 40 years) to respond to pollution and to protect the water quality of Inner Murchison Bay of Lake Victoria was investigated. The aim of this study was to assess the capacity of Nakivubo wetland to remove nitrogen from the wastewater after its recent encroachment and modification, in order to optimize biological nitrogen removal processes using constructed wetland technology. Field studi...

  11. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    OpenAIRE

    Susy Albert; Amee Padhiar

    2012-01-01

    Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepens...

  12. Diverse Biological Functions of Extracellular Collagen Processing Enzymes

    OpenAIRE

    Trackman, Philip C.

    2005-01-01

    Collagens are abundant proteins in higher organisms, and are formed by a complex biosynthetic pathway involving intracellular and extracellular post-translational modifications. Starting from simple soluble precursors, this interesting pathway produces insoluble functional fibrillar and non-fibrillar elements of the extracellular matrix. The present review highlights recent progress and new insights into biological regulation of extracellular procollagen processing, and some novel functions o...

  13. ENERGETIC CHARGE OF AN INFORMATION PROCESS

    Directory of Open Access Journals (Sweden)

    Popova T.M.

    2009-12-01

    Full Text Available Main laws of technical thermodynamics are universal and could be applied to processes other than thermodynamic ones. The results of the comparison of peculiarities of irreversible informational and thermodynamic processes are presented in the article and a new term “Infopy” is used. A more precise definition of “infopy” as an energetic charge is given in the article.

  14. Teaching Information Systems Development via Process Variants

    Science.gov (United States)

    Tan, Wee-Kek; Tan, Chuan-Hoo

    2010-01-01

    Acquiring the knowledge to assemble an integrated Information System (IS) development process that is tailored to the specific needs of a project has become increasingly important. It is therefore necessary for educators to impart to students this crucial skill. However, Situational Method Engineering (SME) is an inherently complex process that…

  15. Selection of informative parameters of vibroacoustic processes

    Science.gov (United States)

    Koshek, L. N.

    1973-01-01

    The problem of selecting informative parameters of vibro-acoustic processes and the construction of apparatus for their determination are discussed. It is assumed that the processes being investigated are structurally uniform and either purely random or contain not very many determinative components.

  16. Process Information Model for Sheet Metal Operations

    OpenAIRE

    Gupta, Ravi Kumar; Sreenu, Pothala; Bernard, Alain; LAROCHE, Florent

    2016-01-01

    The paper extracts the process parameters from a sheet metal part model (B-Rep). These process parameters can be used in sheet metal manufacturing to control the manufacturing operations. By extracting these process parameters required for manufacturing, CAM program can be generated automatically using the part model and resource information. A Product model is generated in modeling software and converted into STEP file which is used for extracting B-Rep which interned is used to classify and...

  17. New approaches in mathematical biology: Information theory and molecular machines

    International Nuclear Information System (INIS)

    My research uses classical information theory to study genetic systems. Information theory was founded by Claude Shannon in the 1940's and has had an enormous impact on communications engineering and computer sciences. Shannon found a way to measure information. This measure can be used to precisely characterize the sequence conservation at nucleic-acid binding sites. The resulting methods, by completely replacing the use of ''consensus sequences'', provide better models for molecular biologists. An excess of conservation led us to do experimental work on bacteriophage T7 promoters and the F plasmid IncD repeats. The wonderful fidelity of telephone communications and compact disk (CD) music can be traced directly to Shannon's channel capacity theorem. When rederived for molecular biology, this theorem explains the surprising precision of many molecular events. Through connections with the Second Law of Thermodyanmics and Maxwell's Demon, this approach also has implications for the development of technology at the molecular level. Discussions of these topics are held on the internet news group bionet.info-theo. (author). (Abstract only)

  18. Environment. Biological processing of wastes; Environnement. Traitement biologique des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, R. [Institut National des Sciences Appliquees, INSA, Lab. d' Analyse Environnementale des Procedes et des Systemes Industriels, 69 - Villeurbanne (France)

    2001-01-01

    The main principle of the biological processing is the utilization of microbial activities by a control stimulation in order to decrease the wastes harmful effects, or by an energetic valorization. This paper deals with the solid wastes or the sludges. After a short presentation of the concerned wastes, their metabolism and their consequences, the author details two treatments: the composting (aerobic) and the methanization (anaerobic). The last part is devoted to the alcoholic fermentation and the industrial wastes (non agricultural) processing. (A.L.B.)

  19. Continuous-variable quantum information processing

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Leuchs, G.; Silberhorn, C.

    2010-01-01

    Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements of the photon number of a light state, discrete outcomes will result whereas measurements of the light's quadrature amplitudes result in continuous outcomes. If one uses the conti......Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements of the photon number of a light state, discrete outcomes will result whereas measurements of the light's quadrature amplitudes result in continuous outcomes. If one uses...... the continuous degree of freedom of a quantum system for encoding, processing or detecting information, one enters the field of continuous-variable (CV) quantum information processing. In this paper we review the basic principles of CV quantum information processing with main focus on recent developments...... in the field. We will be addressing the three main stages of a quantum information system; the preparation stage where quantum information is encoded into CVs of coherent states and single-photon states, the processing stage where CV information is manipulated to carry out a specified protocol and a detection...

  20. Keeping Signals Straight: How Cells Process Information and Make Decisions.

    Science.gov (United States)

    Laub, Michael T

    2016-07-01

    As we become increasingly dependent on electronic information-processing systems at home and work, it's easy to lose sight of the fact that our very survival depends on highly complex biological information-processing systems. Each of the trillions of cells that form the human body has the ability to detect and respond to a wide range of stimuli and inputs, using an extraordinary set of signaling proteins to process this information and make decisions accordingly. Indeed, cells in all organisms rely on these signaling proteins to survive and proliferate in unpredictable and sometimes rapidly changing environments. But how exactly do these proteins relay information within cells, and how do they keep a multitude of incoming signals straight? Here, I describe recent efforts to understand the fidelity of information flow inside cells. This work is providing fundamental insight into how cells function. Additionally, it may lead to the design of novel antibiotics that disrupt the signaling of pathogenic bacteria or it could help to guide the treatment of cancer, which often involves information-processing gone awry inside human cells. PMID:27427909

  1. Algorithmic information theory mathematics of digital information processing

    CERN Document Server

    Seibt, Peter

    2007-01-01

    Treats the Mathematics of many important areas in digital information processing. This book covers, in a unified presentation, five topics: Data Compression, Cryptography, Sampling (Signal Theory), Error Control Codes, Data Reduction. It is useful for teachers, students and practitioners in Electronic Engineering, Computer Science and Mathematics.

  2. HUMAN RESOURCES PREPARATION FOR DIGITAL INFORMATION PROCESSING

    Directory of Open Access Journals (Sweden)

    Ladislav Burita

    2014-03-01

    Full Text Available The article describes the content and teaching methodology of information systems development and processing of information sources. The authors present the structure of courses, motivational aspects applied and the approaches leading to the development of creative abilities of students. The illustrative example of student’s work is shown. As a theoretical approach, the structured methodology for information systems development is applied. The term of creative ability is analyzed. SW Tovek Tools have been applied as a process tool for information retrieval and analysis. A discussion is held on whether to provide the students with detailed care, or rather let them struggle on their own to find a creative solution to tasks.

  3. Social Information Processing in Deaf Adolescents.

    Science.gov (United States)

    Torres, Jesús; Saldaña, David; Rodríguez-Ortiz, Isabel R

    2016-07-01

    The goal of this study was to compare the processing of social information in deaf and hearing adolescents. A task was developed to assess social information processing (SIP) skills of deaf adolescents based on Crick and Dodge's (1994; A review and reformulation of social information-processing mechanisms in children's social adjustment. Psychological Bulletin, 115, 74-101) reformulated six-stage model. It consisted of a structured interview after watching 18 scenes of situations depicting participation in a peer group or provocations by peers. Participants included 32 deaf and 20 hearing adolescents and young adults aged between 13 and 21 years. Deaf adolescents and adults had lower scores than hearing participants in all the steps of the SIP model (coding, interpretation, goal formulation, response generation, response decision, and representation). However, deaf girls and women had better scores on social adjustment and on some SIP skills than deaf male participants. PMID:27143715

  4. Energy landscape exploration of the folding processes of biological molecules

    Science.gov (United States)

    Engel, Megan Clare

    For decades, scientists from every discipline have struggled to understand the mechanism of biological self-assembly, which allows proteins and nucleic acids to fold reliably into functional three-dimensional structures. Such an understanding may hold the key to eliminating diseases such as Alzheimer's and Parkinson's and to effective protein engineering. The current best framework for describing biological folding processes is that of statistical mechanical energy landscape theory, and one of the most promising experimental techniques for exploring molecular energy landscapes is single molecule force spectroscopy (SMFS), in which molecules are mechanically denatured. Theoretical advances have enabled the extraction of complete energy landscape profiles from SMFS data. Here, SMFS experiments performed using laser optical tweezers are analyzed to yield the first ever full landscape profile for an RNA pseudoknot. Further, a promising novel landscape reconstruction technique is validated for the first time using experimental data from a DNA hairpin.

  5. Information Support of Processes in Warehouse Logistics

    OpenAIRE

    Gordei Kirill; Borisova Vera

    2013-01-01

    In the conditions of globalization and the world economic communications, the role of information support of business processes increases in various branches and fields of activity. There is not an exception for the warehouse activity. Such information support is realized in warehouse logistic systems. In relation to territorial administratively education, the warehouse logistic system gets a format of difficult social and economic structure which controls the economic str...

  6. Process Information System - Nuclear Power Plant Krsko

    International Nuclear Information System (INIS)

    Original NEK design was using several Process Computer Systems (PCS) for both process control and process supervision. PCS were built by different manufacturers around different hardware and software platforms. Operational experience and new regulatory requirements imposed new technical and functional requirements on the PCS. Requirements such as: - Acquisition of new signals from the technological processes and environment - Implementation of new application programs - Significant improvement of MMI (Man Machine Interface) - Process data transfer to other than Main Control Room (MCR) locations - Process data archiving and capability to retrieve same data for future analysis were impossible to be implemented within old systems. In order to satisfy new requirements, NEK has decided to build new Process Information System (PIS). During the design and construction of the PIS Project Phase I, in addition to the main foreign contractor, there was significant participation of local architect engineering and construction companies. This paper presents experience of NEK and local partners. (author)

  7. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  8. Introduction to quantum physics and information processing

    CERN Document Server

    Vathsan, Radhika

    2015-01-01

    An Elementary Guide to the State of the Art in the Quantum Information FieldIntroduction to Quantum Physics and Information Processing guides beginners in understanding the current state of research in the novel, interdisciplinary area of quantum information. Suitable for undergraduate and beginning graduate students in physics, mathematics, or engineering, the book goes deep into issues of quantum theory without raising the technical level too much.The text begins with the basics of quantum mechanics required to understand how two-level systems are used as qubits. It goes on to show how quant

  9. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  10. Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis--biological contact oxidation process.

    Science.gov (United States)

    Cao, X Z; Li, Y M

    2011-01-01

    Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment. PMID:22053469

  11. Information Processing Structure of Quantum Gravity

    OpenAIRE

    Gyongyosi, Laszlo

    2014-01-01

    The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide a model for the information processing structure of quantum gravity. We show that the quantum gravit...

  12. Gaussian Process Optimization with Mutual Information

    OpenAIRE

    Contal, Emile; Perchet, Vianney; Vayatis, Nicolas

    2013-01-01

    In this paper, we analyze a generic algorithm scheme for sequential global optimization using Gaussian processes. The upper bounds we derive on the cumulative regret for this generic algorithm improve by an exponential factor the previously known bounds for algorithms like GP-UCB. We also introduce the novel Gaussian Process Mutual Information algorithm (GP-MI), which significantly improves further these upper bounds for the cumulative regret. We confirm the efficiency of this algorithm on sy...

  13. A process Approach to Information Services: Information Search Process (ISP Model

    Directory of Open Access Journals (Sweden)

    Hamid Keshavarz

    2010-12-01

    Full Text Available Information seeking is a behavior emerging out of the interaction between information seeker and information system and should be regarded as an episodic process so as to meet information needs of users and to take different roles in different stages of it. The present article introduces a process approach to information services in libraries using Carol Collier Kuhlthau Model. In this model, information seeking is regarded as a process consisting of six stages in each of which users have different thoughts, feelings and actions and librarians also take different roles at any stage correspondingly. These six stages are derived from instructive learning theory based on uncertainty principle. Regardless of some acceptable shortcomings, this model may be regarded as a new solution for rendering modern information services in libraries especially in relation to new information environments and media.

  14. [Hadamard Transform NIR Spectrometer for the Biological Processes].

    Science.gov (United States)

    Liu, Peng; Li, Kai; Zeng, Li-bo; Wu, Qiong-shui

    2015-09-01

    Monitoring the consumption of nutrients of biological process helps control the growth environment of the microbes. It ensures the microbes are always in the best growing conditions, so as to maximize the yield of the target product. To monitor the content of glycerol, methanol and glucose in yeast culture medium, a new NIR spectrometer was developed which is based on Hadamard Transform (HT)technique. It uses the Near IR probe, which was designed all by ourselves, to collect the spectral signals, and uses the Digital Micro-mirror Devices(DMD) to complete the coding and modulation of Hadamard template. With self-developed software, aiming at spectral acquisition and spectral processing, the spectrometer has realized the real-time monitoring. The designs of optical path, Near IR probe, hardware circuit and software modules are given. Through lots of experiments, it turns out that the value of stray light is 0.875% and the volatility is ±4.28% in this spectrometer. The spectrometer shows high precision in a series of tests which means it totally meets the requirements of monitoring the biological processes. PMID:26669185

  15. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. PMID:24953199

  16. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  17. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    Directory of Open Access Journals (Sweden)

    Susy Albert

    2012-12-01

    Full Text Available Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepense culm were prepared and subjected to four different pretreatment. Daedaleopsis confragosa was found to be effective in biopulping with a supplement of Potato dextrose broth medium to the raw material.

  18. Information Processing in Auto-regulated Systems

    Directory of Open Access Journals (Sweden)

    Karl Javorszky

    2003-06-01

    Full Text Available Abstract: We present a model of information processing which is based on two concurrent ways of describing the world, where a description in one of the languages limits the possibilities for realisations in the other language. The two describing dimensions appear in our common sense as dichotomies of perspectives: subjective - objective; diversity - similarity; individual - collective. We abstract from the subjective connotations and treat the test theoretical case of an interval on which several concurrent categories can be introduced. We investigate multidimensional partitions as potential carriers of information and compare their efficiency to that of sequenced carriers. We regard the same assembly once as a contemporary collection, once as a longitudinal sequence and find promising inroads towards understanding information processing by auto-regulated systems. Information is understood to point out that what is the case from among alternatives, which could be the case. We have translated these ideas into logical operations on the set of natural numbers and have found two equivalence points on N where matches between sequential and commutative ways of presenting a state of the world can agree in a stable fashion: a flip-flop mechanism is envisioned. By following this new approach, a mathematical treatment of some poignant biomathematical problems is allowed. Also, the concepts presented in this treatise may well have relevance and applications within the information processing and the theory of language fields.

  19. Motivated information processing and group decision refusal

    NARCIS (Netherlands)

    Nijstad, Bernard A.; Oltmanns, Jan

    2012-01-01

    Group decision making has attracted much scientific interest, but few studies have investigated group decisions that do not get made. Based on the Motivated Information Processing in Groups model, this study analysed the effect of epistemic motivation (low vs. high) and social motivation (proself vs

  20. Temporal information processing technology and its applications

    CERN Document Server

    Tang, Yong; Tang, Na

    2011-01-01

    Presenting a systematic introduction to temporal model and time calculation, this volume explores temporal information processing technology and its applications. Topics include the time model in terms of calculus and logic, temporal data models and database concepts, temporal query language, and more.

  1. Fractal states in quantum information processing

    OpenAIRE

    Jaeger, Gregg

    2007-01-01

    The fractal character of some quantum properties has been shown for systems described by continuous variables. Here, a definition of quantum fractal states is given that suits the discrete systems used in quantum information processing, including quantum coding and quantum computing. Several important examples are provided.

  2. Influence Processes for Information Technology Acceptance

    DEFF Research Database (Denmark)

    Bhattacherjee, Anol; Sanford, Clive Carlton

    2006-01-01

    This study examines how processes of external influence shape information technology acceptance among potential users, how such influence effects vary across a user population, and whether these effects are persistent over time. Drawing on the elaboration-likelihood model (ELM), we compared two...

  3. Introduction: Natural Language Processing and Information Retrieval.

    Science.gov (United States)

    Smeaton, Alan F.

    1990-01-01

    Discussion of research into information and text retrieval problems highlights the work with automatic natural language processing (NLP) that is reported in this issue. Topics discussed include the occurrences of nominal compounds; anaphoric references; discontinuous language constructs; automatic back-of-the-book indexing; and full-text analysis.…

  4. Springfield Processing Plant (SPP) Facility Information

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  5. Information Processing Concepts: A Cure for "Technofright." Information Processing in the Electronic Office. Part 1: Concepts.

    Science.gov (United States)

    Popyk, Marilyn K.

    1986-01-01

    Discusses the new automated office and its six major technologies (data processing, word processing, graphics, image, voice, and networking), the information processing cycle (input, processing, output, distribution/communication, and storage and retrieval), ergonomics, and ways to expand office education classes (versus class instruction). (CT)

  6. Biomolecular nonlinear dynamic mechanisms as a foundation for human traits of information processing machine

    Directory of Open Access Journals (Sweden)

    Nicholas G. Rambaidi

    2001-01-01

    Full Text Available A pseudo-biological paradigm in information processing launched by McCulloch and Pitts in the early 1940s has been advanced during the last decades. Different attempts were made based on these developments to design operational information processing devices capable of solving problems of high computational complexity.

  7. A Coprocessor for Accelerating Visual Information Processing

    CERN Document Server

    Stechele, W; Herrmann, S; Simon, J Lidon

    2011-01-01

    Visual information processing will play an increasingly important role in future electronics systems. In many applications, e.g. video surveillance cameras, data throughput of microprocessors is not sufficient and power consumption is too high. Instruction profiling on a typical test algorithm has shown that pixel address calculations are the dominant operations to be optimized. Therefore AddressLib, a structured scheme for pixel addressing was developed, that can be accelerated by AddressEngine, a coprocessor for visual information processing. In this paper, the architectural design of AddressEngine is described, which in the first step supports a subset of the AddressLib. Dataflow and memory organization are optimized during architectural design. AddressEngine was implemented in a FPGA and was tested with MPEG-7 Global Motion Estimation algorithm. Results on processing speed and circuit complexity are given and compared to a pure software implementation. The next step will be the support for the full Addres...

  8. Adoption: biological and social processes linked to adaptation.

    Science.gov (United States)

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood. PMID:24016275

  9. Photonic qubits for remote quantum information processing

    Science.gov (United States)

    Maunz, P.; Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.

    2009-05-01

    Quantum information processing between remote quantum memories relies on a fast and faithful quantum channel. Recent experiments employed both, the photonic polarization and frequency qubits, in order to entangle remote atoms [1, 2], to teleport quantum information [3] and to operate a quantum gate between distant atoms. Here, we compare the dierent schemes used in these experiments and analyze the advantages of the dierent choices of atomic and photonic qubits and their coherence properties. [4pt] [1] D. L. Moehring et al. Nature 449, 68 (2007).[0pt] [2] D. N. Matsukevich et al. Phys. Rev. Lett. 100, 150404 2008).[0pt] [3] S. Olmschenk et al. Science, 323, 486 (2009).

  10. Disjunctive Information Flow for Communicating Processes

    DEFF Research Database (Denmark)

    Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis;

    2016-01-01

    The security validation of practical computer systems calls for the ability to specify and verify information flow policies that are dependent on data content. Such policies play an important role in concurrent, communicating systems: consider a scenario where messages are sent to different...... processes according to their tagging. We devise a security type system that enforces content-dependent information flow policies in the presence of communication and concurrency. The type system soundly guarantees a compositional noninterference property. All theoretical results have been formally proved in...

  11. Quantifying control effort of biological and technical movements: An information-entropy-based approach

    Science.gov (United States)

    Haeufle, D. F. B.; Günther, M.; Wunner, G.; Schmitt, S.

    2014-01-01

    In biomechanics and biorobotics, muscles are often associated with reduced movement control effort and simplified control compared to technical actuators. This is based on evidence that the nonlinear muscle properties positively influence movement control. It is, however, open how to quantify the simplicity aspect of control effort and compare it between systems. Physical measures, such as energy consumption, stability, or jerk, have already been applied to compare biological and technical systems. Here a physical measure of control effort based on information entropy is presented. The idea is that control is simpler if a specific movement is generated with less processed sensor information, depending on the control scheme and the physical properties of the systems being compared. By calculating the Shannon information entropy of all sensor signals required for control, an information cost function can be formulated allowing the comparison of models of biological and technical control systems. Exemplarily applied to (bio-)mechanical models of hopping, the method reveals that the required information for generating hopping with a muscle driven by a simple reflex control scheme is only I =32bits versus I =660bits with a DC motor and a proportional differential controller. This approach to quantifying control effort captures the simplicity of a control scheme and can be used to compare completely different actuators and control approaches.

  12. Fractional Transforms in Optical Information Processing

    Directory of Open Access Journals (Sweden)

    Maria Luisa Calvo

    2005-06-01

    Full Text Available We review the progress achieved in optical information processing during the last decade by applying fractional linear integral transforms. The fractional Fourier transform and its applications for phase retrieval, beam characterization, space-variant pattern recognition, adaptive filter design, encryption, watermarking, and so forth is discussed in detail. A general algorithm for the fractionalization of linear cyclic integral transforms is introduced and it is shown that they can be fractionalized in an infinite number of ways. Basic properties of fractional cyclic transforms are considered. The implementation of some fractional transforms in optics, such as fractional Hankel, sine, cosine, Hartley, and Hilbert transforms, is discussed. New horizons of the application of fractional transforms for optical information processing are underlined.

  13. Processing threatening information in posttraumatic stress disorder.

    Science.gov (United States)

    Bryant, R A; Harvey, A G

    1995-08-01

    The authors used a modified Stroop task to study how people with posttraumatic stress disorder (PTSD) process threatening information. Participants were motor vehicle accident (MVA) survivors with either PTSD (n = 15), simple phobia of driving (n = 15), or low anxiety (n = 15). Participants named colors of 4 types of words: strong threat words (MVA related), mild threat words (MVA related), positive words, and neutral words. Participants with PTSD demonstrated greater interference on strong threat words than those with simple phobia or low anxiety. Contrary to expectation, participants with simple phobia did not display an interference effect. Findings suggest that individuals with PTSD and simple phobia may process threatening information differently. The nature of attentional bias in different anxiety conditions following trauma is discussed. PMID:7673578

  14. Precisely timing dissipative quantum information processing

    CERN Document Server

    Kastoryano, M J; Eisert, J

    2012-01-01

    Dissipative engineering constitutes a framework within which quantum information processing protocols are powered by weak (Markovian) system-environment interaction rather than by unitary dynamics alone. This framework embraces noise as a resource, and consequently, offers a number of advantages compared to one based on unitary dynamics alone, e.g., that large classes of initial states are rapidly driven to desirable steady states. One apparent drawback of this scheme is that it does not seem to allow for precisely timed sequential operations, conditional measurements or error correction. In this work, we provide a solution to these challenges, by introducing some basic dissipative gadgets which allow us to precisely initiate, trigger and time dissipative operations, while keeping the system Liouvillian time independent. These gadgets open up novel perspectives for thinking of timed, protected dissipative quantum information processing. As an example, we sketch how universal computation can be performed with ...

  15. Processing Information in Quantum Decision Theory

    Directory of Open Access Journals (Sweden)

    Vyacheslav I. Yukalov

    2009-12-01

    Full Text Available A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention interference. The self-consistent procedure of decision making, in the frame of the quantum decision theory, takes into account both the available objective information as well as subjective contextual effects. This quantum approach avoids any paradox typical of classical decision theory. Conditional maximization of entropy, equivalent to the minimization of an information functional, makes it possible to connect the quantum and classical decision theories, showing that the latter is the limit of the former under vanishing interference terms.

  16. Quantum information processing with trapped ions

    International Nuclear Information System (INIS)

    Single Ca+ ions and crystals of Ca+ ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S1/2 ground state and the metastable D5/2 excited state of Ca+. Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)

  17. Processing Information in Quantum Decision Theory

    OpenAIRE

    Yukalov, Vyacheslav I.; Didier Sornette

    2008-01-01

    A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention int...

  18. Information processing in children's choices among bets

    OpenAIRE

    Hommers, Wilfried

    2010-01-01

    Children's information processing of risky choice alternatives was investigated in two studies without using verbal reports. In Study 1, the ability to integrate the probabilities and the payoffs of simple bets was examined using the rating scale methodology. Children's choices among three of those simple bets were recorded also. By cross-classifying the children's choice and rating behavior it was shown that a three-stage developmental hypothesis of decision making is not sufficient. A four-...

  19. Information Processing Structure of Quantum Gravity

    CERN Document Server

    Gyongyosi, Laszlo

    2014-01-01

    The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide a model for the information processing structure of quantum gravity. We show that the quantum gravity environment is an information resource-pool from which valuable information can be extracted. We analyze the structure of the quantum gravity space and the entanglement of the space-time geometry. We study the information transfer capabilities of quantum gravity space and define the quantum gravity channel. We reveal that the quantum gravity space acts as a background noise on the local environment states. We characterize the properties of the noise of the quantum gravity space and show that it allows the separate local...

  20. Biological Processes Discovered by High-Throughput Sequencing.

    Science.gov (United States)

    Reon, Brian J; Dutta, Anindya

    2016-04-01

    Advances in DNA and RNA sequencing technologies have completely transformed the field of genomics. High-throughput sequencing (HTS) is now a widely used and accessible technology that allows scientists to sequence an entire transcriptome or genome in a timely and cost-effective manner. Application of HTS techniques has led to many key discoveries, including the identification of long noncoding RNAs, microDNAs, a family of small extrachromosomal circular DNA species, and tRNA-derived fragments, which are a group of small non-miRNAs that are derived from tRNAs. Furthermore, public sequencing repositories provide unique opportunities for laboratories to parse large sequencing databases to identify proteins and noncoding RNAs at a scale that was not possible a decade ago. Herein, we review how HTS has led to the discovery of novel nucleic acid species and uncovered new biological processes during the course. PMID:26828742

  1. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  2. [Biological Process Oriented Online Fourier Transform Infrared Spectrometer].

    Science.gov (United States)

    Xie, Fei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    An online Fourier Transform Infrared Spectrometer and an ATR (Attenuated Total Reflection) probe, specifically at the application of real time measurement of the reaction substrate concentration in biological processes, were designed. (1) The spectrometer combined the theories of double cube-corner reflectors and flat mirror, which created a kind of high performance interferometer system. The light path folding way was utilized to makes the interferometer compact structure. Adopting double cube-corner reflectors, greatly reduces the influence of factors in the process of moving mirror movement such as rotation, tilt, etc. The parallelogram oscillation flexible support device was utilized to support the moving mirror moves. It cancelled the friction and vibration during mirror moving, and ensures the smooth operation. The ZnSe splitter significantly improved the hardware reliability in high moisture environment. The method of 60° entrance to light splitter improves the luminous flux. (2) An ATR in situ measuring probe with simple structure, large-flux, economical and practical character was designed in this article. The transmission of incident light and the light output utilized the infrared pipe with large diameter and innerplanted-high plating membrane, which conducted for the infrared transmission media of ATR probe. It greatly reduced the energy loss of infrared light after multiple reflection on the inner wall of the light pipe. Therefore, the ATR probe obtained high flux, improved the signal strength, which make the signal detected easily. Finally, the high sensitivity of MCT (Mercury Cadmium Telluride) detector was utilized to realize infrared interference signal collection, and improved the data quality of detection. The test results showed that the system yields the advantages of perfect moisture-proof performance, luminous flux, online measurement, etc. The designed online Fourier infrared spectrometer can real-time measured common reactant substrates

  3. Animal models for information processing during sleep.

    Science.gov (United States)

    Coenen, A M L; Drinkenburg, W H I M

    2002-12-01

    Information provided by external stimuli does reach the brain during sleep, although the amount of information is reduced during sleep compared to wakefulness. The process controlling this reduction is called 'sensory' gating and evidence exists that the underlying neurophysiological processes take place in the thalamus. Furthermore, it is clear that stimuli given during sleep can alter the functional state of the brain. Two factors have been shown to play a crucial role in causing changes in the sleeping brain: the intensity and the relevance of the stimulus. Intensive stimuli arouse the brain, as well as stimuli having a high informational impact on the sleeping person. The arousal threshold for important stimuli is quite low compared to neutral stimuli. A central question in sleep research is whether associative learning, or in other words the formation of new associations between stimuli, can take place in a sleeping brain. It has been shown that simple forms of learning are still possible during sleep. In sleeping rats, it is proven that habituation, an active, simple form of learning not to respond to irrelevant stimuli, can occur. Moreover, there is evidence for the view that more complex associations can be modulated and newly formed during sleep. This is shown by two experimental approaches: an extinction paradigm and a latent inhibition (pre-exposure) paradigm. The presentation of non-reinforced stimuli during sleep causes slower extinction compared to the same presentation of these stimuli during wakefulness. Consistently, the suppressive capacity of a stimulus in the latent inhibition paradigm is less when previously pre-exposed during sleep, as compared to pre-exposure during wakefulness. Thus, while associative learning is not completely blocked during sleep, aspects of association formation are clearly altered. However, animal studies also clearly indicate that complex forms of learning are not possible during sleep. It is hypothesised that this

  4. Information processing in convex operational theories

    Energy Technology Data Exchange (ETDEWEB)

    Barnum, Howard Nelch [Los Alamos National Laboratory; Wilce, Alexander G [SUSQUEHANNA UNIV

    2008-01-01

    In order to understand the source and extent of the greater-than-classical information processing power of quantum systems, one wants to characterize both classical and quantum mechanics as points in a broader space of possible theories. One approach to doing this, pioneered by Abramsky and Coecke, is to abstract the essential categorical features of classical and quantum mechanics that support various information-theoretic constraints and possibilities, e.g., the impossibility of cloning in the latter, and the possibility of teleportation in both. Another approach, pursued by the authors and various collaborators, is to begin with a very conservative, and in a sense very concrete, generalization of classical probability theory--which is still sufficient to encompass quantum theory--and to ask which 'quantum' informational phenomena can be reproduced in this much looser setting. In this paper, we review the progress to date in this second programme, and offer some suggestions as to how to link it with the categorical semantics for quantum processes developed by Abramsky and Coecke.

  5. Ontology of physics for biology: representing physical dependencies as a basis for biological processes

    Science.gov (United States)

    2013-01-01

    Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137

  6. Physiological arousal in processing recognition information

    Directory of Open Access Journals (Sweden)

    Guy Hochman

    2010-07-01

    Full Text Available The recognition heuristic (RH; Goldstein and Gigerenzer, 2002 suggests that, when applicable, probabilistic inferences are based on a noncompensatory examination of whether an object is recognized or not. The overall findings on the processes that underlie this fast and frugal heuristic are somewhat mixed, and many studies have expressed the need for considering a more compensatory integration of recognition information. Regardless of the mechanism involved, it is clear that recognition has a strong influence on choices, and this finding might be explained by the fact that recognition cues arouse affect and thus receive more attention than cognitive cues. To test this assumption, we investigated whether recognition results in a direct affective signal by measuring physiological arousal (i.e., peripheral arterial tone in the established city-size task. We found that recognition of cities does not directly result in increased physiological arousal. Moreover, the results show that physiological arousal increased with increasing inconsistency between recognition information and additional cue information. These findings support predictions derived by a compensatory Parallel Constraint Satisfaction model rather than predictions of noncompensatory models. Additional results concerning confidence ratings, response times, and choice proportions further demonstrated that recognition information and other cognitive cues are integrated in a compensatory manner.

  7. Quantum teleportation for continuous variables and related quantum information processing

    International Nuclear Information System (INIS)

    Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view

  8. On Optimality in Auditory Information Processing

    CERN Document Server

    Karlsson, M

    2000-01-01

    We study limits for the detection and estimation of weak sinusoidal signals in the primary part of the mammalian auditory system using a stochastic Fitzhugh-Nagumo (FHN) model and an action-reaction model for synaptic plasticity. Our overall model covers the chain from a hair cell to a point just after the synaptic connection with a cell in the cochlear nucleus. The information processing performance of the system is evaluated using so called phi-divergences from statistics which quantify a dissimilarity between probability measures and are intimately related to a number of fundamental limits in statistics and information theory (IT). We show that there exists a set of parameters that can optimize several important phi-divergences simultaneously and that this set corresponds to a constant quiescent firing rate (QFR) of the spiral ganglion neuron. The optimal value of the QFR is frequency dependent but is essentially independent of the amplitude of the signal (for small amplitudes). Consequently, optimal proce...

  9. Processing biological literature with customizable Web services supporting interoperable formats.

    Science.gov (United States)

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk. PMID:25006225

  10. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700. PMID:20658333

  11. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  12. Biologically inspired large scale chemical sensor arrays and embedded data processing

    Science.gov (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  13. DNA as information: at the crossroads between biology, mathematics, physics and chemistry

    Science.gov (United States)

    2016-01-01

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems—or parts of them—within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674

  14. DNA as information: at the crossroads between biology, mathematics, physics and chemistry.

    Science.gov (United States)

    Cartwright, Julyan H E; Giannerini, Simone; González, Diego L

    2016-03-13

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems-or parts of them-within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674

  15. Biological sulfuric acid transformation: Reactor design and process optimization.

    Science.gov (United States)

    Stucki, G; Hanselmann, K W; Hürzeler, R A

    1993-02-01

    As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. PMID:18609554

  16. Biologically inspired information theory: Adaptation through construction of external reality models by living systems.

    Science.gov (United States)

    Nakajima, Toshiyuki

    2015-12-01

    Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes. PMID:26196087

  17. Quantum Information Processing using Scalable Techniques

    Science.gov (United States)

    Hanneke, D.; Bowler, R.; Jost, J. D.; Home, J. P.; Lin, Y.; Tan, T.-R.; Leibfried, D.; Wineland, D. J.

    2011-05-01

    We report progress towards improving our previous demonstrations that combined all the fundamental building blocks required for scalable quantum information processing using trapped atomic ions. Included elements are long-lived qubits; a laser-induced universal gate set; state initialization and readout; and information transport, including co-trapping a second ion species to reinitialize motion without qubit decoherence. Recent efforts have focused on reducing experimental overhead and increasing gate fidelity. Most of the experimental duty cycle was previously used for transport, separation, and recombination of ion chains as well as re-cooling of motional excitation. We have addressed these issues by developing and implementing an arbitrary waveform generator with an update rate far above the ions' motional frequencies. To reduce gate errors, we actively stabilize the position of several UV (313 nm) laser beams. We have also switched the two-qubit entangling gate to one that acts directly on 9Be+ hyperfine qubit states whose energy separation is magnetic-fluctuation insensitive. This work is supported by DARPA, NSA, ONR, IARPA, Sandia, and the NIST Quantum Information Program.

  18. Latency Minimizing Tasking for Information Processing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Horey, James L [ORNL; Lagesse, Brent J [ORNL

    2011-01-01

    Real-time cyber-physical systems and information processing clusters require system designers to consider the total latency involved in collecting and aggregating data. For example, applications such as wild-fire monitoring require data to be presented to users in a timely manner. However, most models and algorithms for sensor networks have focused on alternative metrics such as energy efficiency. In this paper, we present a new model of sensor network aggregation that focuses on total latency. Our model is flexible and enables users to configure varying transmission and computation time on a node-by-node basis, and thus enables the simulation of complex computational phenomena. In addition, we present results from three tasking algorithms that trade-off local communication for overall latency performance. These algorithms are evaluated in simulated networks of up to 200 nodes. We've presented an aggregation-focused model of sensor networks that can be used to study the trade-offs between computational coverage and total latency. Our model explicitly takes into account transmission and computation times, and enables users to define different values for the basestation. In addition, we've presented three different tasking algorithms that operate over model to produce aggregation schedules of varying quality. In the future, we expect to continue exploring distributed tasking algorithms for information processing systems. We've shown that the gap between highly optimized schedules that use global information is quite large relative to our distributed algorithms. This gives us encouragement that future distributed tasking algorithms can still make large gains.

  19. Quantum-Classical Hybrid for Information Processing

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    , or a sender of the signal, because each receiver can become a sender as well. An observer receives a signal by performing certain measurements synchronized with the measurements of the others. This means that the signal is uniformly and simultaneously distributed over the observers in a decentralized way. The signals transmit no intentional information that would favor one agent over another. All the sequence of signals received by different observers are not only statistically equivalent, but are also point-by-point identical. It is important to assume that each agent knows that the other agent simultaneously receives the identical signals. The sequences of the signals are true random, so that no agent could predict the next step with the probability different from those described by the density. Under these quite general assumptions, the entangled observers-agents can perform non-trivial tasks that include transmission of conditional information from one agent to another, simple paradigm of cooperation, etc. The problem of behavior of intelligent agents correlated by identical random messages in a decentralized way has its own significance: it simulates evolutionary behavior of biological and social systems correlated only via simultaneous sensoring sequences of unexpected events.

  20. Next generation tools to accelerate the synthetic biology process.

    Science.gov (United States)

    Shih, Steve C C; Moraes, Christopher

    2016-05-16

    Synthetic biology follows the traditional engineering paradigm of designing, building, testing and learning to create new biological systems. While such approaches have enormous potential, major challenges still exist in this field including increasing the speed at which this workflow can be performed. Here, we present recently developed microfluidic tools that can be used to automate the synthetic biology workflow with the goal of advancing the likelihood of producing desired functionalities. With the potential for programmability, automation, and robustness, the integration of microfluidics and synthetic biology has the potential to accelerate advances in areas such as bioenergy, health, and biomaterials. PMID:27146265

  1. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes

    Science.gov (United States)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive

  2. Online information seeking practices of biology teachers and the perceived influences on instructional planning

    Science.gov (United States)

    Perrault, Anne Marie

    The purpose of this study was to examine biology teachers' perceptions of how their online information seeking practices influence their instructional planning. When teachers engage in activities to locate, evaluate, and use online information and resources, a myriad of inter-related and often inseparable consequences follows. These influences may be any combination of direct/indirect, desirable/undesirable, or anticipated/unanticipated (Rogers, 2003). This exploratory study collected baseline data regarding teachers' online practices and its influence on their practice. There were two phases of data collection in this study. Phase I was an online survey of more than seventy New York State biology teachers. The survey was intended to capture (1) a snapshot of the biology teachers' online information seeking practices during the summer and fall 2004, and (2) their perceptions regarding how their online practices influenced their instructional planning. In Phase II, ten study participants were interviewed in order to explore in greater detail the consequences of their online information seeking practices on their instructional planning. Four themes reflecting the consequences of teachers' information seeking practices emerged from the data analysis: Currency of Information; Sparking of Ideas and Gaining Personal Knowledge; Resource Management and the Role of Time; and Webs of Sharing. Each theme encompassed both the purposeful and the indirect actions by teachers to access knowledge and resources to refine and improve their instructional planning. This study's findings show that teachers are using a greater number and wider range of current and multi-modal resources than pre-Internet and they perceive this as an advantage in creating authentic, inquiry-based learning experiences. A notable discovery was of the under-use by teachers of educational online resources specifically designed to support teaching and learning activities (e.g., digital libraries, online

  3. Is Analytic Information Processing a Feature of Expertise in Medicine?

    Science.gov (United States)

    McLaughlin, Kevin; Rikers, Remy M.; Schmidt, Henk G.

    2008-01-01

    Diagnosing begins by generating an initial diagnostic hypothesis by automatic information processing. Information processing may stop here if the hypothesis is accepted, or analytical processing may be used to refine the hypothesis. This description portrays analytic processing as an optional extra in information processing, leading us to…

  4. The Search for New Information Processing technologies

    Science.gov (United States)

    Cavin, Ralph K.

    2005-03-01

    Our society has benefited from the ‘Golden Age of Electronics’ for the last half century. The ubiquitous transistor, in its many manifestations, has enabled an explosion of capabilities in information processing, communications, and sensing that has spurred exponential growth in performance-benefit ratios. Much of the credit for this progress is due to the continued scaling of the silicon integrated circuit (IC) components and to the associated efficient fabrication processes that have made the IC affordable. There is a growing realization, from simple physics arguments, that as minimum features sizes approach the ten nanometer regime, scaling will very likely slow and eventually end. This doesn’t mean that the MOSFET will disappear, but more likely that it will need to be supplemented by other device and interconnect technologies if the exponential gains are to continue. In this talk we discuss the basis for the projected limitation of scaling of charge-based devices for logic and memory devices. We argue that a fundamental consideration for all devices, including those based on charge, relates to the capacity to manage heat generated by circuit operation. Our preference is for devices that operate at room temperature since the energy costs for cooling the devices must also be charged against the overall system energy consumption. (Cooling costs increase as a power of the difference between the ambient and the target temperature.) Therefore we seek new state variables to serve as an alternative to electrical charge for future information processing technologies. These technologies must provide the potential for sustaining exponential performance-cost benefits with time. The search must not only focus on device structures but on the underlying materials and process technologies that enable these structures. Indeed, to obtain extremely scaled CMOS, new materials and processes must also be developed. In this talk, we survey some of the candidates for

  5. Oilfield wastewater treatment by combined microfiltration and biological processes.

    Science.gov (United States)

    Campos, J C; Borges, R M H; Oliveira Filho, A M; Nobrega, R; Sant'Anna, G L

    2002-01-01

    This work deals with the treatment of offshore oilfield wastewater from the Campos Basin (Rio de Janeiro State, Brazil). After coarse filtration, this high saline wastewater was microfiltrated through mixed cellulose ester (MCE) membranes, resulting in average removals of COD, TOC, O&G and phenols of 35%, 25%, 92% and 35%, respectively. The permeate effluent was fed into a 1-L air-lift reactor containing polystyrene particles of 2mm diameter, used as support material. This reactor was operated for 210 days, at three hydraulic retention times (HRT): 48, 24 and 12h. Even when operated at the lowest HRT (12 h), removal efficiencies of 65% COD, 80% TOC, 65% phenols and 40% ammonium were attained. The final effluent presented COD and TOC values of 230 and 55 mg/L, respectively. Results obtained by gas chromatography analyses and toxicity tests with Artemia salina showed that a significant improvement in the effluent's quality was achieved after treatment by the combined (microfiltration/biological) process. PMID:11767743

  6. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  7. Crowdsourcing and curation: perspectives from biology and natural language processing.

    Science.gov (United States)

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie; Kyrpides, Nikos; Islamaj Doğan, Rezarta; Cohen, Kevin Bretonnel

    2016-01-01

    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging 'the crowd'; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9-11, 2015). The session consisted of four short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.Database URL: http://www.mitre.org/publications/technical-papers/crowdsourcing-and-curation-perspectives. PMID:27504010

  8. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  9. The neurophysiology of human biological motion processing: a high-density electrical mapping study.

    Science.gov (United States)

    Krakowski, Aaron I; Ross, Lars A; Snyder, Adam C; Sehatpour, Pejman; Kelly, Simon P; Foxe, John J

    2011-05-01

    The neural processing of biological motion (BM) is of profound experimental interest since it is often through the movement of another that we interpret their immediate intentions. Neuroimaging points to a specialized cortical network for processing biological motion. Here, high-density electrical mapping and source-analysis techniques were employed to interrogate the timing of information processing across this network. Participants viewed point-light-displays depicting standard body movements (e.g. jumping), while event-related potentials (ERPs) were recorded and compared to ERPs to scrambled motion control stimuli. In a pair of experiments, three major phases of BM-specific processing were identified: 1) The earliest phase of BM-sensitive modulation was characterized by a positive shift of the ERP between 100 and 200 ms after stimulus onset. This modulation was observed exclusively over the right hemisphere and source-analysis suggested a likely generator in close proximity to regions associated with general motion processing (KO/hMT). 2) The second phase of BM-sensitivity occurred from 200 to 350 ms, characterized by a robust negative-going ERP modulation over posterior middle temporal regions bilaterally. Source-analysis pointed to bilateral generators at or near the posterior superior temporal sulcus (STS). 3) A third phase of processing was evident only in our second experiment, where participants actively attended the BM aspect of the stimuli, and was manifest as a centro-parietal positive ERP deflection, likely related to later cognitive processes. These results point to very early sensory registration of biological motion, and highlight the interactive role of the posterior STS in analyzing the movements of other living organisms. PMID:21276862

  10. Development of the operational information processing platform

    International Nuclear Information System (INIS)

    The Operational Information Processing Platform(OIPP) is platform system which was designed to provide the development and operation environments for plant operation and plant monitoring. It is based on the Plant Computer Systems (PCS) of Yonggwang 3 and 4, Ulchin 3 and 4, and Yonggwang 5 and 6 Nuclear Power Plants (NPP). The UNIX based workstation, real time kernel and graphics design tool are selected and installed through the reviewing the function of PCS. In order to construct the development environment for open system architecture and distributed computer system, open computer system architecture was adapted both in hardware and software. For verification of system design and evaluation of technical methodologies, the PCS running under the OIPP is being designed and implemented. In this system, the man-machine interface and system functions are being designed and implemented to evaluate the differences between the UCN 3, 4 PCS and OIPP. 15 tabs., 32 figs., 11 refs. (Author)

  11. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  12. Quantum information processing with trapped ion chains

    Science.gov (United States)

    Manning, Timothy Andrew

    Trapped atomic ion systems are currently the most advanced platform for quantum information processing. Their long coherence times, pristine state initialization and detection, and precisely controllable and versatile interactions make them excellent quantum systems for experiments in quantum computation and quantum simulation. One of the more promising schemes for quantum computing consists of performing single and multi-qubit quantum gates on qubits in a linear ion crystal. Some of the key challenges of scaling such a system are the individual addressing of arbitrary subsets of ions and controlling the growing complexity of motional mode interactions as the number of qubits increases or when the gates are performed faster. Traditional entangling quantum gates between ion qubits use laser pulses to couple the qubit states to the collective motion of the crystal, thereby generating a spin-spin interaction that can produce entanglement between selected qubits. The intrinsic limitations on the performance of gates using this method can be alleviated by applying optimally shaped pulses instead of pulses with constant amplitude. This thesis explains the theory behind this pulse shaping scheme and how it is implemented on a chain of Yb ions held in a linear radiofrequency 'Paul' trap. Several experiments demonstrate the technique in chains of two, three, and five ions using various types of pulse shapes. A tightly focused individual addressing beam allows us to apply the entangling gates to a target pair of ions, and technical issues related to such tight focusing are discussed. Other advantages to the pulse shaping scheme include a robustness against detuning errors and the possibility of suppressing undesirable coupling due to optical spillover on neighboring ions. Combined with ion shuttling, we harness these features to perform sequential gates to different qubit pairs in order to create genuine tripartite entangled states and demonstrate the programmable quantum

  13. Quantum Information Processing with Single Photons

    CERN Document Server

    Lim, Y L

    2005-01-01

    Photons are natural carriers of quantum information due to their ease of distribution and long lifetime. This thesis concerns various related aspects of quantum information processing with single photons. Firstly, we demonstrate N-photon entanglement generation through a generalised N X N symmetric beam splitter known as the Bell multiport. A wide variety of 4-photon entangled states as well as the N-photon W-state can be generated with an unexpected non-monotonic decreasing probability of success with N. We also show how the same setup can be used to generate multiatom entanglement. A further study of multiports also leads us to a multiparticle generalisation of the Hong-Ou-Mandel dip which holds for all Bell multiports of even number of input ports. Next, we demonstrate a generalised linear optics based photon filter that has a constant success probability regardless of the number of photons involved. This filter has the highest reported success probability and is interferometrically robust. Finally, we dem...

  14. Information Support of Processes in Warehouse Logistics

    Directory of Open Access Journals (Sweden)

    Gordei Kirill

    2013-11-01

    Full Text Available In the conditions of globalization and the world economic communications, the role of information support of business processes increases in various branches and fields of activity. There is not an exception for the warehouse activity. Such information support is realized in warehouse logistic systems. In relation to territorial administratively education, the warehouse logistic system gets a format of difficult social and economic structure which controls the economic streams covering the intermediary, trade and transport organizations and the enterprises of other branches and spheres. Spatial movement of inventory items makes new demands to participants of merchandising. Warehousing (in the meaning – storage – is one of the operations entering into logistic activity, on the organization of a material stream, as a requirement. Therefore, warehousing as "management of spatial movement of stocks" – is justified. Warehousing, in such understanding, tries to get rid of the perception as to containing stocks – a business expensive. This aspiration finds reflection in the logistic systems working by the principle: "just in time", "economical production" and others. Therefore, the role of warehouses as places of storage is transformed to understanding of warehousing as an innovative logistic system.

  15. Natural language processing and advanced information management

    Science.gov (United States)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  16. Codifications of anaesthetic information for computer processing.

    Science.gov (United States)

    Harrison, M J; Johnson, F

    1981-07-01

    In order for any decision-making process to be computer-assisted it is necessary for the information to be encodable in some way so that the computer can manipulate the data using logical operations. In this paper the information used to generate an anaesthetic regiment is examined. A method is presented for obtaining a suitable set of statements to describe the patient's history and surgical requirements. These statements are then sorted by an algorithm which uses standard Boolean operators to produce a protocol for six phases of anaesthetic procedure. An example is given of the system in operation. The system incorporate knowledge at the level of a consultant anaesthetist. The program used 428 statements to encode patient data, and drew upon a list of 163 possible prescriptions. The program ran on an LSI-11/2 computer using one disc drive. The scheme has direct application in training of junior anaesthetist, as well as producing guidelines to application in other areas of medicine where the possibility of a similar codification may exist. PMID:7306370

  17. Partitioning of genomic variance using prior biological information

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per;

    variants influence complex diseases. Despite the successes, the variants identified as being statistically significant have generally explained only a small fraction of the heritable component of the trait, the so-called problem of missing heritability. Insufficient modelling of the underlying genetic...... that the associated genetic variants are enriched for genes that are connected in biol ogical pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes...... on the basis of single nucleotide polymorphism (SNP) data and trait phenotypes and can account for a much larger fraction of the heritable component of the trait. A disadvantage is that this “black box” modelling approach does not provide any insight into the biological mechanisms underlying the...

  18. Partitioning of genomic variance using prior biological information

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per;

    2013-01-01

    variants influence complex diseases. Despite the successes, the variants identified as being statistically significant have generally explained only a small fraction of the heritable component of the trait, the so-called problem of missing heritability. Insufficient modelling of the underlying genetic...... that the associated genetic variants are enriched for genes that are connected in biol ogical pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes...... on the basis of single nucleotide polymorphism (SNP) data and trait phenotypes and can account for a much larger fraction of the heritable component of the trait. A disadvantage is that this “black box” modelling approach does not provide any insight into the biological mechanisms underlying the...

  19. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  20. Structural biology at York Structural Biology Laboratory; laboratory information management systems for structural genomics

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2005-01-01

    Roč. 12, č. 1 (2005), s. 3. ISSN 1211-5894. [Meeting of Structural Biologists /4./. 10.03.2005-12.03.2005, Nové Hrady] R&D Projects: GA MŠk(CZ) 1K05008 Keywords : structural biology * LIMS * structural genomics Subject RIV: CD - Macromolecular Chemistry

  1. Photo-activated biological processes as quantum measurements

    CERN Document Server

    Imamoglu, Atac

    2014-01-01

    We outline a framework for describing photo-activated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit non-equilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception.

  2. Aligning Business Process Quality and Information System Quality

    OpenAIRE

    Heinrich, Robert

    2013-01-01

    Business processes and information systems mutually affect each other in non-trivial ways. Frequently, the business process design and the information system design are not well aligned. This means that business processes are designed without taking the information system impact into account, and vice versa. Missing alignment at design time often results in quality problems at runtime, such as large response times of information systems, large process execution times, overloaded information s...

  3. Developing Molecular Interaction Database and Searching for Similar Pathways (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Kawashima, Shuichi; Katayama, Toshiaki; Kanehisa, Minoru

    1998-01-01

    We have developed a database named BRITE, which contains knowledge of interacting molecules and/or genes concering cell cycle and early development. Here, we report an overview of the database and the method of automatic search for functionally common sub-pathways between two biological pathways in BRITE.

  4. Information Integration - the process of integration, evolution and versioning

    OpenAIRE

    Keijzer, de, Bart; Keulen, van, H.

    2005-01-01

    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration of the information sources provides a global information source with all information needed present. All of these information sources also change over time. With each change of the information sour...

  5. Expanding biological data standards development processes for US IOOS: visual line transect observing community for mammal, bird, and turtle data

    Science.gov (United States)

    Fornwall, M.; Gisiner, R.; Simmons, S. E.; Moustahfid, Hassan; Canonico, G.; Halpin, P.; Goldstein, P.; Fitch, R.; Weise, M.; Cyr, N.; Palka, D.; Price, J.; Collins, D.

    2012-01-01

    The US Integrated Ocean Observing System (IOOS) has recently adopted standards for biological core variables in collaboration with the US Geological Survey/Ocean Biogeographic Information System (USGS/OBIS-USA) and other federal and non-federal partners. In this Community White Paper (CWP) we provide a process to bring into IOOS a rich new source of biological observing data, visual line transect surveys, and to establish quality data standards for visual line transect observations, an important source of at-sea bird, turtle and marine mammal observation data. The processes developed through this exercise will be useful for other similar biogeographic observing efforts, such as passive acoustic point and line transect observations, tagged animal data, and mark-recapture (photo-identification) methods. Furthermore, we suggest that the processes developed through this exercise will serve as a catalyst for broadening involvement by the larger marine biological data community within the goals and processes of IOOS.

  6. Carbonate Beaches: A Balance Between Biological and Physical Processes

    Science.gov (United States)

    Nairn, R.; Risk, M.

    2004-12-01

    Carbonate beaches are a unique example of the interaction between biological processes, creating the sediments, and physical processes, moving and often removing the sediments. On the sediment supply side, carbonate sediments are born, not made. They exist in dynamic equilibrium between production and destruction. Following the creation of carbonate sediment in coral reef and lagoon environments, the sediments are moved shoreward to the beach, transport along the shore and sometimes, eventually lost offshore, often as the result of tropical storms. Comprehensive studies of the balance between the supply and loss of carbonate sediments and beach dynamics have been completed for the islands of Mauritius and Barbados. Field studies and remote sensing (Compact Airborne Spectrometry Imaging) have been applied to develop carbonate sediment production rates for a range of reef and lagoon conditions. Using GIS, these production rates have been integrated to determine sediment supply rates for different segments of the coastline. 1-D and 2-D models of waves, hydrodynamics, sediment transport and morphodynamics were set-up and tested against observed beach response to storm events or a sequence of storm events. These complex deterministic models are not suitable for application over periods of decades. However, it was possible to characterize storm events by the extent of sand loss, and relate this to key descriptive factors for groups of storm events, thereby encapsulating the erosion response. A long-term predictive tool for evaluating beach erosion and accretion response, over a period of several decades, was developed by combining the supply rates for carbonate sediment and the encapsulated representation of the loss rates through physical processes. The ability of this predictive tool was successfully tested against observed long term beach evolution along sections of the coast in Barbados and Mauritius using air photo analysis in GIS for shoreline change over periods

  7. Understanding the Information Needs of Academic Scholars in Agricultural and Biological Sciences

    Science.gov (United States)

    Kuruppu, Pali U.; Gruber, Anne Marie

    2006-01-01

    This study investigates the information needs of faculty and graduate students in agricultural and biological sciences. Qualitative research methods, interviews and focus groups, were used to examine what types of information these scholars need for their research, teaching and learning, how they seek that information, and perceptions. The…

  8. Students’ Ability to Solve Process-diagram Problems in Secondary Biology Education

    NARCIS (Netherlands)

    M. Kragten; W. Admiraal; G. Rijlaarsdam

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and workin

  9. Diffusion and association processes in biological systems: theory, computation and experiment

    OpenAIRE

    Mereghetti Paolo; Kokh Daria; McCammon J Andrew; Wade Rebecca C

    2011-01-01

    Abstract Macromolecular diffusion plays a fundamental role in biological processes. Here, we give an overview of recent methodological advances and some of the challenges for understanding how molecular diffusional properties influence biological function that were highlighted at a recent workshop, BDBDB2, the second Biological Diffusion and Brownian Dynamics Brainstorm.

  10. Science Seeker: A New Model for Teaching Information Literacy to Entry-Level Biology Undergraduates

    Science.gov (United States)

    Petzold, Jacquelyn; Winterman, Brian; Montooth, Kristi

    2010-01-01

    In order to integrate library instruction seamlessly into an introductory biology course, two librarians collaborated with a biology faculty member to create a three-part series of instruction sessions known as the Science Seeker. The Science Seeker taught students about the structure of scientific information by tracing the path that discoveries…

  11. Human development I: Twenty Fundamental Problems of Biology, Medicine, and Neuro-Psychology Related to Biological Information

    Directory of Open Access Journals (Sweden)

    Tyge Dahl Hermansen

    2006-01-01

    Full Text Available In a new series of papers, we address a number of unsolved problems in biology today. First of all, the unsolved enigma concerning how the differentiation from a single zygote to an adult individual happens has been object for severe research for decades. By uncovering a new holistic biological paradigm that introduces an energetic-informational interpretation of reality as a new way to experience biology, these papers will try to solve the problems connected with the events of biological ontogenesis involving a fractal hierarchy, from a single cell to the function of the human brain. The problems discussed are interpreted within the frames of a universe of roomy fractal structures containing energetic patterns that are able to deliver biological information. We think biological organization is guided by energetic changes on the level of quantum mechanics, interacting with the intention that again guides the energetic conformation of the fractal structures to gain disorders or healthiness. Furthermore, we introduce two new concepts: “metamorphous top down” evolution and “adult human metamorphosis”. The first is a new evolutionary theory involving metamorphosis as a main concept of evolution. The last is tightly linked to the evolutionary principle and explains how human self-recovery is governed. Other subjects of special interest that we shall look deeper into are the immunological self-nonself discrimination, the structure and function of the human brain, the etiology and salutogenesis of mental and somatic diseases, and the structure of the consciousness of a human being. We shall criticize Szentagothai’s model for the modulated structure of the human cerebral cortex and Jerne’s theory of the immunological regulatory anti-idiotypic network.

  12. A method to build information systems engineering process metamodels

    OpenAIRE

    Hug, Charlotte; Front, Agnès; Rieu, Dominique; Henderson-Sellers, Brian

    2009-01-01

    Several process metamodels exist. Each of them presents a different viewpoint of the same information systems engineering process. However, there are no existing correspondences between them. We propose a method to build unified, fitted and multi-viewpoint process metamodels for information systems engineering. Our method is based on a process domain metamodel that contains the main concepts of information systems engineering process field. This process domain metamodel helps selecting the ne...

  13. Attention and information processing in schizophrenia.

    Science.gov (United States)

    Hemsley, D R

    1976-06-01

    The performance of 20 acute schizophrenics and 10 depressives, matched for age, verbal intelligence, and pre-morbid functioning, was assessed on a choice reaction-time card-sorting task. Stimulus and response uncertainty were varied independently, and there were two main conditions, distraction and no distraction. The schizophrenics were slower than the depressives over all the functions examined in the study. Schizophrenics were significantly more affected by increases in response uncertainty than the depressives. Although there was a tendency for the schizophrenic group to be more affected by distraction and by increasing stimulus uncertainty, these differences were not significant. There was no significant interaction between the effects of stimulus and response uncertainty, nor between the effects of distraction and stimulus uncertainty. The effects of distraction increased with increasing response uncertainty. The results are discussed in relation to two models of information processing, suggested by Broadbent (1971) and by Sternberg (1969). Such models allow a more detailed examination of the cognitive abnormalities found in schizophrenia. PMID:938824

  14. Does “quorum sensing” imply a new type of biological information?

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2002-01-01

    When dealing with biological communication and information, unifying concepts are necessary in order to couple the different “codes” that are being inductively “cracked” and defined at different emergent and “de-emergent” levels of the biological hierarchy. In this paper I compare the type of...... biological information implied by genetic information with that implied in the concept of “quorum sensing” (which refers to a prokaryotic cell-to-cell communication system) in order to explore if such integration is being achieved. I use the Lux operon paradigm and the Vibrio fischeri – Euprymna scolopes...... symbiotic partnership to exemplify the emergence of informational contexts along the biological hierarchy (from molecules to ecologies). I suggest that the biosemiotic epistemological framework can play an integra¬tive role to overcome the limits of dyadic mechanistic descriptions when relating the...

  15. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. PMID:26701126

  16. Developing Information Fluency in Introductory Biology Students in the Context of an Investigative Laboratory

    OpenAIRE

    Lindquester, Gary J.; Burks, Romi L.; Jaslow, Carolyn R.

    2005-01-01

    Students of biology must learn the scientific method for generating information in the field. Concurrently, they should learn how information is reported and accessed. We developed a progressive set of exercises for the undergraduate introductory biology laboratory that combine these objectives. Pre- and postassessments of approximately 100 students suggest that increases occurred, some statistically significant, in the number of students using various library-related resources, in the number...

  17. Genes are information, so information theory is coming to the aid of evolutionary biology.

    Science.gov (United States)

    Sherwin, William B

    2015-11-01

    Speciation is central to evolutionary biology, and to elucidate it, we need to catch the early genetic changes that set nascent taxa on their path to species status (Via 2009). That challenge is difficult, of course, for two chief reasons: (i) serendipity is required to catch speciation in the act; and (ii) after a short time span with lingering gene flow, differentiation may be low and/or embodied only in rare alleles that are difficult to sample. In this issue of Molecular Ecology Resources, Smouse et al. (2015) have noted that optimal assessment of differentiation within and between nascent species should be robust to these challenges, and they identified a measure based on Shannon's information theory that has many advantages for this and numerous other tasks. The Shannon measure exhibits complete additivity of information at different levels of subdivision. Of all the family of diversity measures ('0' or allele counts, '1' or Shannon, '2' or heterozygosity, F(ST) and related metrics) Shannon's measure comes closest to weighting alleles by their frequencies. For the Shannon measure, rare alleles that represent early signals of nascent speciation are neither down-weighted to the point of irrelevance, as for level 2 measures, nor up-weighted to overpowering importance, as for level 0 measures (Chao et al. 2010, )2015. Shannon measures have a long history in population genetics, dating back to Shannon's PhD thesis in 1940 (Crow 2001), but have received only sporadic attention, until a resurgence of interest in the last ten years, as reviewed briefly by Smouse et al. (2015). PMID:26452559

  18. Influence Business Process On The Quality Of Accounting Information System

    OpenAIRE

    Meiryani; Muhammad Syaifullah

    2015-01-01

    Abstract The purpose of this study was to determine the influence of business process to the quality of the accounting information system. This study aims to examine the influence of business process on the quality of the information system of accounting information system. The study was theoritical research which considered the roles of business process on quality of accounting information system which use secondary data collection. The results showed that the business process have a signifi...

  19. Development of technical information processing system (VII)

    International Nuclear Information System (INIS)

    The goal of this project is to establish integrated environment focused on enhanced information services to researchers through the providing of acquisition information, key phrase retrieval function, journal content information linked with various subsystems already developed. The results of the project are as follows. 1. It is possible to serve information on unreceivable materials among required materials throughout the system. 2. Retrieval efficiency is increased by the adding of key phrase retrieval function. 3. Rapidity of information service is enhanced by the providing of journal contents of each issue received and work performance of contents service is become higher. 4. It is possible to acquire, store, serve technical information needed in R and D synthetically and systematically throughout the development of total system linked with various subsystems required to technical information management and service. 21 refs. (Author)

  20. NLP Meets the Jabberwocky: Natural Language Processing in Information Retrieval.

    Science.gov (United States)

    Feldman, Susan

    1999-01-01

    Focuses on natural language processing (NLP) in information retrieval. Defines the seven levels at which people extract meaning from text/spoken language. Discusses the stages of information processing; how an information retrieval system works; advantages to adding full NLP to information retrieval systems; and common problems with information…

  1. Information Integration from Semantically Heterogeneous Biological Data Sources

    OpenAIRE

    Caragea, Doina; Bao, Jie; Pathak, Jyotishman; Silvescu, Adrian; Andorf, Carson; Dobbs, Drena; HONAVAR, VASANT

    2005-01-01

    We present the first prototype of INDUS (Intelligent Data Understanding System), a federated, query-centric system for information integration and knowledge acquisition from distributed, semantically heterogeneous data sources that can be viewed (conceptually) as tables. INDUS employs ontologies and inter-ontology mappings, to enable a user to view a collection of such data sources (regardless of location, internal structure and query interfaces) as though they were a collection of tables str...

  2. Signal processing for molecular and cellular biological physics: an emerging field

    Science.gov (United States)

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  3. NEA, Nuclear law and information processing

    International Nuclear Information System (INIS)

    NEA has for many years now been collating information on, and analysing, laws and regulations on the peaceful uses of nuclear energy, and this work has resulted in a series of publications. However, as seen by the multiplication of computer-based legal information centres, both at national and international level, conventional information systems are no longer adequate to deal with the increasing volume of information and with users' needs. In view of the particular aspects of nuclear law and of its own availabilities, NEA has endeavoured to make the best possible use of existing structures by opting for participation in the IAEA International Nuclear Information System rather than by creating a specialised centre. Before becoming operational, the arrangements concluded between NEA and IAEA required that the INIS rules be altered somewhat to take account of the specific problems raised by treatment of legal literature and also to improve the quality of information provided to users. (auth.)

  4. Framework for information systems development process improvement using heuristics for business processes improvement

    OpenAIRE

    Kojić, Aleksandar

    2015-01-01

    Information systems have an increasingly important role in the successful execution of business processes. Information systems need to be planned and developed so that they create added value. Information system development processes are constantly changing and adjusting to new information technologies, needs of projects, development groups etc. Information system development process can be considered as a special form of general business processes. For general business processes already exis...

  5. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in

  6. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in

  7. Information processing in bacteria: memory, computation, and statistical physics: a key issues review.

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in

  8. Information Integration from Semantically Heterogeneous Biological Data Sources.

    Science.gov (United States)

    Caragea, Doina; Bao, Jie; Pathak, Jyotishman; Silvescu, Adrian; Andorf, Carson; Dobbs, Drena; Honavar, Vasant

    2005-08-26

    We present the first prototype of INDUS (Intelligent Data Understanding System), a federated, query-centric system for information integration and knowledge acquisition from distributed, semantically heterogeneous data sources that can be viewed (conceptually) as tables. INDUS employs ontologies and inter-ontology mappings, to enable a user to view a collection of such data sources (regardless of location, internal structure and query interfaces) as though they were a collection of tables structured according to an ontology supplied by the user. This allows INDUS to answer user queries against distributed, semantically heterogeneous data sources without the need for a centralized data warehouse or a common global ontology. PMID:20802821

  9. Essays on Imperfect Information Processing in Economics

    NARCIS (Netherlands)

    S.S. Ficco (Stefano)

    2007-01-01

    textabstractEconomic agents generally operate in uncertain environments and, prior to making decisions, invest time and resources to collect useful information. Consumers compare the prices charged by di..erent firms before purchasing a product. Politicians gather information from di..erent sourc

  10. Biological Signal Processing with a Genetic Toggle Switch

    OpenAIRE

    Patrick Hillenbrand; Georg Fritz; Ulrich Gerland

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, ...

  11. Reactome: a database of reactions, pathways and biological processes

    OpenAIRE

    Croft, David; O’Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson

    2010-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualiz...

  12. Imperfect information in software design processes

    OpenAIRE

    Noppen, Johannnes Albertus Rudolf

    2007-01-01

    The process of designing high-quality software systems is one of the major issues in software engineering research. Over the years, this has resulted in numerous design methods, each with specific qualities and drawbacks. For example, the Rational Unified Process is a comprehensive design process, which is proposed to support the major phases in the software engineering life-cycle. Agile processes, like for instance Extreme Programming, aim at flexibility, since the design steps are not defin...

  13. Text-mining and information-retrieval services for molecular biology

    OpenAIRE

    Krallinger, Martin; Valencia, Alfonso

    2005-01-01

    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators.

  14. 77 FR 40090 - Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification...

    Science.gov (United States)

    2012-07-06

    ... Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification Form... Foundation, 4201 Wilson Blvd., Rm. 295, Arlington, VA 22230, or by email to splimpto@nsf.gov . FOR FURTHER INFORMATION CONTACT: Suzanne Plimpton on (703) 292-7556 or send email to splimpto@nsf.gov . Individuals...

  15. PUBLIC RELATIONS AS AN INFORMATION PROCESS PHENOMENON

    Directory of Open Access Journals (Sweden)

    TKACH L. M.

    2016-06-01

    Full Text Available Formulation of the problem. If public relations as a phenomenon of information management are examined, we deal with the question of knowledge content and nature of relationship of PR with environment, ability to manage the perception and attitude of people to events in the environment; ensure priority of information over other resources. Goal. To investigate the concept of "public relations" of foreign and domestic experts; consider the typology of the public and the "laws" of public opinion; define the basic principles according to which relations with public should be built, and to identify PR activities as a kind of social communication. Conclusions. Public relations on the basis of advanced information and communication technologies create fundamentally new opportunities for information control and influence on public consciousness.

  16. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. PMID:26691180

  17. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  18. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    International Nuclear Information System (INIS)

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the

  19. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    Energy Technology Data Exchange (ETDEWEB)

    Luke, S J

    2011-12-20

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the

  20. Influence Business Process On The Quality Of Accounting Information System

    Directory of Open Access Journals (Sweden)

    Meiryani

    2015-01-01

    Full Text Available Abstract The purpose of this study was to determine the influence of business process to the quality of the accounting information system. This study aims to examine the influence of business process on the quality of the information system of accounting information system. The study was theoritical research which considered the roles of business process on quality of accounting information system which use secondary data collection. The results showed that the business process have a significant effect on the quality of accounting information systems.

  1. Information Accretion and Reduction in Text Processing: Inferences.

    Science.gov (United States)

    Kintsch, Walter

    1993-01-01

    Suggests that the term "inference" itself has had a negative effect on the study of how information is elaborated and reduced in text processing. Discusses some of the current views of inferencing in text comprehension. Suggests viewing information reduction processes within the same framework as information accretion. (HB)

  2. Extending Conceptual Schemas with Business Process Information

    Directory of Open Access Journals (Sweden)

    Marco Brambilla

    2010-01-01

    Full Text Available The specification of business processes is becoming a more and more critical aspect for organizations. Such processes are specified as workflow models expressing the logical precedence among the different business activities (i.e., the units of work. Typically, workflow models are managed through specific subsystems, called workflow management systems, to ensure a consistent behavior of the applications with respect to the organization business process. However, for small organizations and/or simple business processes, the complexity and capabilities of these dedicated workflow engines may be overwhelming. In this paper, we therefore, advocate for a different and lightweight approach, consisting in the integration of the business process specification within the system conceptual schema. We show how a workflow-extended conceptual schema can be automatically obtained, which serves both to enforce the organization business process and to manage all its relevant domain data in a unified way. This extended model can be directly processed with current CASE tools, for instance, to generate an implementation of the system (including its business process in any technological platform.

  3. Coupled model of physical and biological processes affecting maize pollination

    Science.gov (United States)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  4. Markovian Processes for Quantitative Information Leakage

    DEFF Research Database (Denmark)

    Biondi, Fabrizio

    Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount of...... information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output. Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially in the...... size of the secret and observables, are cumbersome to compute and store, encode both the behavior of the system and assumptions about the attacker, and assume an input-output behavior of the system. For these reasons we propose to model the systemattacker scenario with Markovian models. We show that...

  5. Development of technical information processing systems

    International Nuclear Information System (INIS)

    The major goal of this project is to develop a more efficient information management system by connecting the KAREI serials database which enable the users to access from their own laboratory facilities through KAREI-NET. The importance of this project is to make the serials information of KAERI easily accessible to users as valuable resources for R and D activities. The results of the project are as follows. 1) Development of the serials database and retrieval system enabled us to access to the serials holding information through KAERI-NET. 2) The database construction establishes a foundation for the management of 1,600 serials held in KAERI. 3) The system can be applied not only to KAERI but also to similar medium-level libraries. (Author)

  6. Internet-based intelligent information processing systems

    CERN Document Server

    Tonfoni, G; Ichalkaranje, N S

    2003-01-01

    The Internet/WWW has made it possible to easily access quantities of information never available before. However, both the amount of information and the variation in quality pose obstacles to the efficient use of the medium. Artificial intelligence techniques can be useful tools in this context. Intelligent systems can be applied to searching the Internet and data-mining, interpreting Internet-derived material, the human-Web interface, remote condition monitoring and many other areas. This volume presents the latest research on the interaction between intelligent systems (neural networks, adap

  7. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528561

  8. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    International Nuclear Information System (INIS)

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  9. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    Science.gov (United States)

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  10. Structural Information Retention in Visual Art Processing.

    Science.gov (United States)

    Koroscik, Judith Smith

    The accuracy of non-art college students' longterm retention of structural information presented in Leonardo da Vinci's "Mona Lisa" was tested. Seventeen female undergraduates viewed reproductions of the painting and copies that closely resembled structural attributes of the original. Only 3 of the 17 subjects reported having viewed a reproduction…

  11. Causality, Information and Biological Computation: An algorithmic software approach to life, disease and the immune system

    OpenAIRE

    Zenil, Hector; Schmidt, Angelika; Tegnér, Jesper

    2015-01-01

    Biology has taken strong steps towards becoming a computer science aiming at reprogramming nature after the realisation that nature herself has reprogrammed organisms by harnessing the power of natural selection and the digital prescriptive nature of replicating DNA. Here we further unpack ideas related to computability, algorithmic information theory and software engineering, in the context of the extent to which biology can be (re)programmed, and with how we may go about doing so in a more ...

  12. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    OpenAIRE

    Zou Haiming; Ma Wanzheng; Wang Yan

    2015-01-01

    Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of dischar...

  13. Two-way feedback between biology and deep Earth processes

    Science.gov (United States)

    Sleep, N. H.; Pope, E.; Bird, D.

    2012-12-01

    The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth's surface and interior cooled following the moon-forming impact. The oceans passed through conditions favored by thermophile organisms before becoming clement. Ocean pH was ~6 and bars of CO2 existed in the atmosphere. Subduction removed the CO2 into the mantle before the time of rock record. Serpentinite likely existed in land, tidal, and marine environments as it does today. Seafloor spreading and arc volcanism likely drove hydrothermal circulation. The late heavy bombardment occurred after ca. 4.1 Ga; low heat flow environments and hence habitable subsurface refugia existed. It is conceivable that one or a few ocean-boiling impacts left thermophile survivors in their wake. Overall, the molecular biology of extant life likely conserves features that relate to its earliest abodes.

  14. Living is information processing; from molecules to global systems

    CERN Document Server

    Farnsworth, Keith D; Gershenson, Carlos

    2012-01-01

    We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function - to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to appear at higher levels in complex systems (emergence). We show how information patterns, are united by the creation of mutual context, generating persistent consequences, to result in `functional information'. This constructive process forms arbitrarily large complexes of information, the combined effects of which include the functions of life. Molecules and simple organisms have already been measured in terms of functional information content; we show how quantification may extended to each le...

  15. A framework for modeling information propagation of biological systems at critical states.

    Science.gov (United States)

    Hu, Feng; Yang, Fang

    2016-03-01

    We explore the dynamics of information propagation at the critical state of a biologically inspired system by an individual-based computer model. "Quorum response", a type of social interaction which has been recognized taxonomically in animal groups, is applied as the sole interaction rule among individuals. In the model, we assume a truncated Gaussian distribution to depict the distribution of the individuals' vigilance level. Each individual can assume either a naïve state or an alarmed one and only switches from the former state to the latter one. If an individual has turned into an alarmed state, it stays in the state during the process of information propagation. Initially, each individual is set to be at the naïve state and information is tapped into the system by perturbing an individual at the boundaries (alerting it to the alarmed state). The system evolves as individuals turn into the alarmed state, according to the quorum response rules, consecutively. We find that by fine-tuning the parameters of the mean and the standard deviation of the Gaussian distribution, the system is poised at a critical state. We present the phase diagrams to exhibit that the parameter space is divided into a super-critical and a sub-critical zone, in which the dynamics of information propagation varies largely. We then investigate the effects of the individuals' mobility on the critical state, and allow a proportion of randomly chosen individuals to exchange their positions at each time step. We find that mobility breaks down criticality of the system. PMID:26876332

  16. Information interfaces for process plant diagnosis

    International Nuclear Information System (INIS)

    The paper describes a systematic approach to the design of information interfaces for operator support in diagnosing complex systems faults. The need of interpreting primary measured plant variables within the framework of different system representations organized into an abstraction hierarchy is identified from an analysis of the problem of diagnosing complex systems. A formalized approach to the modelling of production systems, called Multilevel Flow Modelling, is described. A MFM model specifies plant control requirements and the associated need for plant information and provide a consistent context for the interpretation of real time plant signals in diagnosis of malfunctions. The use of MFM models as a basis for functional design of the plant instrumentation system is outlined, and the use of knowledge Based (Expert) Systems for the design of man-machine interfaces is mentioned. Such systems would allow an active user participation in diagnosis and thus provide the basis for cooperative problem solving. 14 refs. (author)

  17. Processing and classification of biological images: Application to histology

    OpenAIRE

    Nunes, B.; Rato, Luis; Capela e Silva, F.; Rafael, A; Cabrita, AS

    2011-01-01

    This article deals with a histological problem by using image processing and feature extraction in images of renal tissues of rats and their classification through various methods such as: Bayesian inference, decision trees and support vector machines.

  18. Sustainable Production Process of Biological Mineral Feed Additives

    Directory of Open Access Journals (Sweden)

    Agnieszka Zielinska

    2009-01-01

    Full Text Available Problem statement: This study discussed the problem of accumulation of Zn and Cu in the topsoil as a result of application of mineral feed additives that possess low bioavailability in animal diet. The review considered the production process of mineral feed additives in which a product supplies microelements in highly bioavailable form. Enrichment of natural biomass of edible microalgae with microelement metal ions, which supply microelements of feeding significance in livestock diet, is considered in term of sustainable production. Approach: Production of microalgae-derived products as mineral feed additives requires elaboration of the processes for cultivation of alga, enrichment process and afterwards recovery of the enriched biomass from the solution to obtain liquid free of cells that could be reused in the next process. In this study membrane bioreactor was considered as a method for separation, both in photobioreactor (growth of microorganism as well as in the enrichment process. Results: Effort involved in thermal and chemical separation techniques is higher than that in mechanical techniques. Membrane bioreactors which are usually applied to treat wastewater, both industrial and domestic. This study discussed method to separate a valuable biomass of enriched microalgae and reuse the solution with residual metal ions that can be used once again in the subsequent biosorption process. Conclusion/Recommendation: Taking into consideration care about the environment it is better to apply membrane modules in the production process in terms of sustainable production. The proposed solution assumed the application of membrane modules as a separation step after enrichment process and biomass recovery.

  19. Biological Activity and Nutritional Properties of Processed Onion Products

    OpenAIRE

    Rolán Marín, María Eduvigis

    2009-01-01

    The first part of the PhD Thesis aimed to evaluate in vitro effects of food processing and preservation technologies on onion nutritional and technological properties. The first in vitro study analyzed ‘Figueres’ and ‘Recas’ onion by-products (juices, pastes and bagasses) stabilized by sterilization, pasteurization, and freezing technologies. Results demonstrated that processing ‘Recas’ onion wastes to obtain onion pastes and the subsequent stabilization with pasteurization trigge...

  20. Exploiting Graphics Processing Units for Computational Biology and Bioinformatics

    OpenAIRE

    Payne, Joshua L.; Nicholas A. Sinnott-Armstrong; Jason H Moore

    2010-01-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of general-purpose GPUs and Nvidia's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational b...

  1. Living is information processing: from molecules to global systems

    OpenAIRE

    Farnsworth, Keith D.; Nelson, John; Gershenson, Carlos

    2012-01-01

    We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function - to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, info...

  2. An Approach to Representing the Process of Information Business Modeling

    OpenAIRE

    Filipova, Nadezhda; Filipov, Filcho

    2008-01-01

    The compact and visualized documenting of information business modeling is a major prerequisite for comprehending its basic concepts, as well as for its effective application and improvement. The documenting of this process is related to its modeling. Thus, the process of information business modeling can be represented by its own tools. Being based on this thesis, the authors suggest an approach to representing the process of information business modeling. A profile for its d...

  3. A Practical Approach to Quantitative Processing and Analysis of Small Biological Structures by Fluorescent Imaging

    Science.gov (United States)

    Noller, Crystal M.; Boulina, Maria; McNamara, George; Szeto, Angela; McCabe, Philip M.

    2016-01-01

    Standards in quantitative fluorescent imaging are vaguely recognized and receive insufficient discussion. A common best practice is to acquire images at Nyquist rate, where highest signal frequency is assumed to be the highest obtainable resolution of the imaging system. However, this particular standard is set to insure that all obtainable information is being collected. The objective of the current study was to demonstrate that for quantification purposes, these correctly set acquisition rates can be redundant; instead, linear size of the objects of interest can be used to calculate sufficient information density in the image. We describe optimized image acquisition parameters and unbiased methods for processing and quantification of medium-size cellular structures. Sections of rabbit aortas were immunohistochemically stained to identify and quantify sympathetic varicosities, >2 μm in diameter. Images were processed to reduce background noise and segment objects using free, open-access software. Calculations of the optimal sampling rate for the experiment were based on the size of the objects of interest. The effect of differing sampling rates and processing techniques on object quantification was demonstrated. Oversampling led to a substantial increase in file size, whereas undersampling hindered reliable quantification. Quantification of raw and incorrectly processed images generated false structures, misrepresenting the underlying data. The current study emphasizes the importance of defining image-acquisition parameters based on the structure(s) of interest. The proposed postacquisition processing steps effectively removed background and noise, allowed for reliable quantification, and eliminated user bias. This customizable, reliable method for background subtraction and structure quantification provides a reproducible tool for researchers across biologic disciplines.

  4. Business process management in a SAP-based information system

    OpenAIRE

    Završnik, Gašper

    2011-01-01

    This thesis deals with business process management, SAP information system and SAP Netweaver Composition Environment tool. The content is divided in three main area. In first we try to explain foundations of business process management, like definition of business process, basic principles of business process management, business process life-cycle, designing and executing business processes. Two standards are emphasized: business process modeling notation and service-oriented arhitecture. T...

  5. Information processing at single neuron level

    OpenAIRE

    Vidybida, A. K.

    2007-01-01

    Based on numerical simulation of Hodgkin and Huxley type neuron stimulated from many synaptic inputs, an abstract concept of signal processing in individual neuron is proposed. In the concept proposed, neuron performs binding of synaptic inputs into a single output event, based on the degree of temporal coherence between the inputs. Inhibition serves as controlling factor of this type of binding.

  6. Reactome: a database of reactions, pathways and biological processes.

    Science.gov (United States)

    Croft, David; O'Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson; Schmidt, Esther; Shamovsky, Veronica; Yung, Christina; Birney, Ewan; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice. PMID:21067998

  7. Facilitating effects of exercise on information processing.

    Science.gov (United States)

    Davranche, Karen; Audiffren, Michel

    2004-05-01

    The aim of this study was to examine the facilitating effects of moderate physical exercise on the reaction process to gain a better understanding of the interaction between physiological and cognitive processes. Sixteen participants with specific expertise in decision-making sports performed a double task consisting of choice reaction time while cycling. Signal quality, stimulus-response compatibility and time uncertainty were manipulated. Participants were tested at rest and while cycling at 20% and at 50% of their maximal aerobic power. A mood assessment questionnaire and a critical flicker fusion test were administered before and after the choice reaction time task. The results showed that moderate-intensity exercise (50% maximal aerobic power) improves cognitive performance and that low-intensity exercise (20% maximal aerobic power) enables participants to compensate the negative dual-task effect. PMID:15160595

  8. Trickling Filters. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  9. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  10. XML-based product information processing method for product design

    Science.gov (United States)

    Zhang, Zhen Yu

    2012-01-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  11. Cloud Standardization: Consistent Business Processes and Information

    OpenAIRE

    Razvan Daniel ZOTA; Lucian-Alexandru FRATILA

    2013-01-01

    Cloud computing represents one of the latest emerging trends in distributed computing that enables the existence of hardware infrastructure and software applications as services. The present paper offers a general approach to the cloud computing standardization as a mean of improving the speed of adoption for the cloud technologies. Moreover, this study tries to show out how organizations may achieve more consistent business processes while operating with cloud computing technologies.

  12. Cloud Standardization: Consistent Business Processes and Information

    Directory of Open Access Journals (Sweden)

    Razvan Daniel ZOTA

    2013-01-01

    Full Text Available Cloud computing represents one of the latest emerging trends in distributed computing that enables the existence of hardware infrastructure and software applications as services. The present paper offers a general approach to the cloud computing standardization as a mean of improving the speed of adoption for the cloud technologies. Moreover, this study tries to show out how organizations may achieve more consistent business processes while operating with cloud computing technologies.

  13. Holledge gauge failure testing using concurrent information processing algorithm

    International Nuclear Information System (INIS)

    For several decades, computerized information processing systems and human information processing models have developed with a good deal of mutual influence. Any comprehensive psychology text in this decade uses terms that originated in the computer industry, such as ''cache'' and ''memory'', to describe human information processing. Likewise, many engineers today are using ''artificial intelligence''and ''artificial neural network'' computing tools that originated as models of human thought to solve industrial problems. This paper concerns a recently developed human information processing model, called ''concurrent information processing'' (CIP), and a related set of computing tools for solving industrial problems. The problem of focus is adaptive gauge monitoring; the application is pneumatic pressure repeaters (Holledge gauges) used to measure liquid level and density in the Defense Waste Processing Facility and the Integrated DWPF Melter System

  14. Geographic Information Processings for Astronomical Site Survey

    Science.gov (United States)

    Wu, N.; Liu, Y.; Zhao, M. Y.

    2015-01-01

    The geographic information is of great importance for the site survey of ground-based telescopes. Especially, an effective utilization of the geographic information system (GIS) has been one of the most significant methods for the remote analysis of modern site survey. The astronomical site survey should give consideration to the following geographical conditions: a large relative fall, convenient traffic conditions, and far away from populated areas. Taking into account of the convenience of construction and maintenance of the observatories as well as the living conditions of the scientists-in-residence, the optimum candidate locations may meet the conditions to be at a altitude between 3000 m and 5000 m and within one-hour drive from villages/towns. In this paper, as an example, we take the regions of the Great Baicao mountain ridge at Dayao county in Yunnan province to research the role of the GIS for site survey task. The results indicate that the GIS can provide accurate and intuitive data for us to understand the three dimensional landforms, rivers, roads, villages, and the distributions of the electric power as well as to forecast the tendency of the population and city development around. According to the analysis based on the GIS, we find that the top of the Great Baicao mountain ridge is flat and droughty. There are few inhabitants to distribute around the place while the traffic conditions are convenient. Moreover, it is a natural conservation area protected by the local government, and no industry with pollution sources exists in this region. Its top is 1500 m higher than the nearby village 10 km away, and 1800 m higher than the town center 50 km away. The Great Baicao mountain ridge is definitely an isolated peak in the area of the Yi nationality of Yunnan. Therefore, the GIS data analysis is a very useful for the remote investigation stage for site survey, and the GIS is the indispensable source for modern astronomical site survey.

  15. Living is information processing: from molecules to global systems.

    Science.gov (United States)

    Farnsworth, Keith D; Nelson, John; Gershenson, Carlos

    2013-06-01

    We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function-to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to appear at higher levels in complex systems (emergence). We show how information patterns, are united by the creation of mutual context, generating persistent consequences, to result in 'functional information'. This constructive process forms arbitrarily large complexes of information, the combined effects of which include the functions of life. Molecules and simple organisms have already been measured in terms of functional information content; we show how quantification may be extended to each level of organisation up to the ecological. In terms of a computer analogy, life is both the data and the program and its biochemical structure is the way the information is embodied. This idea supports the seamless integration of life at all scales with the physical universe. The innovation reported here is essentially to integrate these ideas, basing information on the 'general definition' of information, rather than simply the statistics of information, thereby explaining how functional information operates throughout life. PMID:23456459

  16. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...

  17. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  18. Biological Treatment of tannery wastewater using activated sludge process

    International Nuclear Information System (INIS)

    A study was conducted to evaluate the feasibility of Activated Sludge Process (ASP) for the treatment of tannery wastewater and to develop a simple design criteria under local conditions. A bench scale model comprising of an aeration tank and final clarifier was used for this purpose. The model was operated continuously for 267 days. Settled tannery wastewater was used as influent to the aeration tank. Five days Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) of the influent and effluent were measured to find process efficiency at various mixed liquor volatile suspended solids (MLVSS) and hydraulic detention time. The results of the study demonstrated that an efficiency of above 90% and 80% for BOD5 and COD, respectively could be obtained if the ASP is operated at an MLVSS concentration of 3500 mg/L keeping an aeration time of 12 hours. (author)

  19. Treatment of Dye Effluent by Electrochemical and Biological Processes

    OpenAIRE

    Sirasanaganbla Udya Bhanu; Saravanan Arun Kumar; Anand Kuber Parande; Balakrishnan Ramesh Babu

    2011-01-01

    Textile dye wastewater is well known to contain strong colour, high pH, temperature, Chemical Oxygen Demand (COD) and biodegradable materials. The electrochemical treatment of wastewater is considered as one of the advanced oxidation processes, potentially a powerful method of pollution control, offering high removal efficiencies the removal of colour of methyl red azo dye is a challenge in textile industry. The following methods have been adopted for the treatment of real textile wastewater:...

  20. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    OpenAIRE

    Petrov, E. G.; Teslenko, V. I.

    2012-01-01

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechani...

  1. Biological processing in oscillatory baffled reactors: operation, advantages and potential.

    Science.gov (United States)

    Abbott, M S R; Harvey, A P; Perez, G Valente; Theodorou, M K

    2013-02-01

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing 'long' processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509

  2. Characteristics of biological aerosols in dairy processing plants.

    Science.gov (United States)

    Kang, Y J; Frank, J F

    1990-03-01

    The viable aerosol in dairy processing plant environments was characterized by using an Andersen six-stage sieve sampler and a Reuter centrifugal sampler. Artificially introduced Serratia marcescens were detected in the air during drain flooding and after rinsing the floor with a pressured water hose, thus illustrating the ability of a specific microorganism to be disseminated from drains and wet surfaces via physical disruption activities often observed in food plants. Once a high concentration of wet viable aerosol was generated, it took 40 or more min to return to the background level in the absence of forced ventilation or other activity. The greatest reduction in viable particles occurred during the first 10 min. Estimated mean aerosol particle sizes were decreased from approximately 4.6 to 3.2 mu with time lapse. The estimated mean aerosol particle sizes from actual dairy processing plant environments ranged from approximately 4.3 to 5.3 mu. In addition, a more heavily contaminated dairy processing environment contained larger aerosol particles. These results indicate that the RCS sampler will often overestimate the true aerosol concentration in highly contaminated air, because mean particle sizes are over 4 mu in diameter. PMID:2187913

  3. Are Aquatic Viruses a Biological Archive of Genetic Information from Universe?

    Science.gov (United States)

    Toparceanu, F.; Negoita, Gh. T.; Nita, I. I.; Sava, D.

    2009-04-01

    After 1990, when the viruses were admited as the most abundant lifeforms from aquatic environments, it became obvious that viral lysis had an essential role on release and recycling of nutrients. Studies on cellular cultures and modeling suggest that this is an important quantitative process. The viruses from oceans represent the widest source of genetic diversity on the Earth, uncharacterized yet. The ancient lifeforms records stretching back a million years are locked in ice caps. The trend of glaciers melting as effect of actual climate change will promote the release of ancient viruses from ice caps. The increasing of the freshwater layer led to the replace of some algae species by others. Law-Racovitza Station (69o23'S 76o23'E) from East Antarctica (Larsemann Hills Oasis) offers opportunities to study the Antarctic marine ecosystem, as well as archaic aquatic ecosystems from this area ( 150 lakes and waterways resulted from ice and snow melting during the austral summer). According to Law-Racovitza Station Scientific Program, we are performing studies regarding the effect of climate changes on virus-algae host relationship in these aquatic ecosystems. Phycodnaviruses, that infect the eukaryote algae, are comprised of ancient genes and they are considered a "peek" of genetic diversity useful in biological studies and exobiology regarding the evolution of genetic sequencing. The latest discoveries of the giant aquatic viruses open the unexpected perspectives for understanding the role of viral infection in global ecosystem; beyond the old concept which considered that the viruses were only etiological agents of human, animals and plants illnesses. The aquatic viruses which infect microalgae contain similar genes of other viruses, bacteria, arhebacteria and eukaryotes, all of them being on the same genome. Which is the signification of enormous abundance of viruses and excessive diversity of genetic information encoded by viruses? There is the possibility that

  4. Somatosensory information processing in the aging population

    Directory of Open Access Journals (Sweden)

    Zheng eZhang

    2011-12-01

    Full Text Available While it is well known that skin physiology – and consequently sensitivity to peripheral stimuli - degrades with age, what is less appreciated is that centrally mediated mechanisms allow for maintenance of the same degree of functionality in processing these peripheral inputs and interacting with the external environment. In order to demonstrate this concept, we obtained observations of processing speed, sensitivity (thresholds, discriminative capacity and adaptation metrics on subjects ranging in age from 18 to 70. The results indicate that although reaction speed and sensory thresholds change with age, discriminative capacity and adaptation metrics do not. The significance of these findings is that similar metrics of adaptation have been demonstrated to change significantly when the central nervous system (CNS is compromised. Such compromise has been demonstrated in subject populations with autism (Tannan et al., 2008; Tommerdahl et al., 2007a, chronic pain (Hollins et al., 1996; Hollins and Sigurdsson, 1998; Zhang et al., 2011, acute NMDA receptor block (Folger et al., 2008 and with tactile-thermal interactions (Zhang et al., 2009. Thus, these quantitative measures – since they can be obtained efficiently and objectively, and appear to deviate from normative values significantly with systemic cortical alterations – could be useful indicators of cerebral cortical health.

  5. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna

    2006-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  6. A strategy for xenobiotic removal using photocatalytic treatment, microbial degradation or integrated photocatalytic-biological process

    OpenAIRE

    Lapertot, Miléna; Pulgarin, César

    2007-01-01

    According to the limited natural resources and due to the risks of anthropogenic pollution, it appears necessary to react efficiently in order to remove existing contaminations and avoid the creation of new ones. Therefore, the purpose of this thesis is to propose a sustainable strategy for treating problematic pollutants with the most adequate process. First, an overview of the different treatment processes has been given. In particular, biological, photocatalytic and integrated biological-p...

  7. Quantum information processing with mesoscopic photonic states

    DEFF Research Database (Denmark)

    Madsen, Lars Skovgaard

    2012-01-01

    The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...... dissipation in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with...

  8. Virtual HRD and National Culture: An Information Processing Perspective

    Science.gov (United States)

    Chung, Chih-Hung; Angnakoon, Putthachat; Li, Jessica; Allen, Jeff

    2016-01-01

    Purpose: The purpose of this study is to provide researchers with a better understanding of the cultural impact on information processing in virtual learning environment. Design/methodology/approach: This study uses a causal loop diagram to depict the cultural impact on information processing in the virtual human resource development (VHRD)…

  9. Revealing the Black Box: Information Processing and Media Effects.

    Science.gov (United States)

    Geiger, Seth; Newhagen, John

    1993-01-01

    Addresses some of the fundamental assumptions of an information processing approach to mass media effects and the contributions it brings to mass communication. Traces the conceptual and methodological innovations of an information processing perspective as they have been applied to the study of television since the 1980s. (SR)

  10. Information paths within the new product development process

    DEFF Research Database (Denmark)

    Jespersen, Kristina Risom

    2007-01-01

    The present study explores the information acquisition within the new product development process (NPD). The effect of the front-end and environmental turbulence on the inter-stage connectedness of information within the NPD process is examined. An agent-based simulation is applied as the data...

  11. TWRS systems engineering process and information model report

    Energy Technology Data Exchange (ETDEWEB)

    Gneiting, B.C., Westinghouse Hanford

    1996-05-22

    The TWRS System Engineering (SE) process and information flows are described using a process modeling methodology. The results of this activity, and the next phase of developing a normalized data model, will be used in training and implemented in SE information systems and support tools.

  12. Information support for business processes in agro-industrial complex

    Directory of Open Access Journals (Sweden)

    Gairabekova Tamara Izrailovna

    2012-08-01

    Full Text Available The structure of agro-industrial complex management is investigated and typical business processes are singled out. Information tasks for every management level are defined. Variants of information exchange are considered for joining agricultural manufacturers into cooperative societies. Classification of information and analytical reports is offered.

  13. Modeling Visual Information Processing in Brain: A Computer Vision Point of View and Approach

    CERN Document Server

    Diamant, Emanuel

    2007-01-01

    We live in the Information Age, and information has become a critically important component of our life. The success of the Internet made huge amounts of it easily available and accessible to everyone. To keep the flow of this information manageable, means for its faultless circulation and effective handling have become urgently required. Considerable research efforts are dedicated today to address this necessity, but they are seriously hampered by the lack of a common agreement about "What is information?" In particular, what is "visual information" - human's primary input from the surrounding world. The problem is further aggravated by a long-lasting stance borrowed from the biological vision research that assumes human-like information processing as an enigmatic mix of perceptual and cognitive vision faculties. I am trying to find a remedy for this bizarre situation. Relying on a new definition of "information", which can be derived from Kolmogorov's compexity theory and Chaitin's notion of algorithmic inf...

  14. Why Are There Old People? Senescence as Biological and Cultural Preparedness for the Transmission of Information.

    Science.gov (United States)

    Mergler, N.L.; Goldstein, M.D.

    1983-01-01

    Biological theories of adaptation are used to generate a model of human cognitive development in which physiological and cognitive change in aged persons can be understood as an adaptive stage of development. Related literature is reviewed that focuses on the elderly as information transmitters and on the psychology of "telling." (Author/RH)

  15. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  16. 1st International Conference on Cognitive Systems and Information Processing

    CERN Document Server

    Hu, Dewen; Liu, Huaping

    2014-01-01

    "Foundations and Practical Applications of Cognitive Systems and Information Processing" presents selected papers from the First International Conference on Cognitive Systems and Information Processing, held in Beijing, China on December 15-17, 2012 (CSIP2012). The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in artificial cognitive systems and advanced information processing, and to present new findings and perspectives on future development. This book introduces multidisciplinary perspectives on the subject areas of Cognitive Systems and Information Processing, including cognitive sciences and technology, autonomous vehicles, cognitive psychology, cognitive metrics, information fusion, image/video understanding, brain-computer interfaces, visual cognitive processing, neural computation, bioinformatics, etc. The book will be beneficial for both researchers and practitioners in the fields of Cognitive Science, Computer Science and Cogni...

  17. Financial information processing and development of emerging financial markets

    Institute of Scientific and Technical Information of China (English)

    Shuo BAI; Shouyang WANG; Lean YU; Aoying ZHOU

    2010-01-01

    @@ With the rapid development and globalization of financial markets (especially emerging financial markets), financial information processing has become a hot research area due to its immense practical applications. Such applications include stock market analysis, foreign exchange rate forecasting, option pricing, bank failure prediction, financial risk management, credit rating and scoring, bank loan management, customer relationship management, and antimoney laundering. Accordingly, there has been an increasing demand in using financial information processing techniques for many core financial tasks. Nevertheless, as a new cross-disciplinary field, the existing financial information processing methods are far from practical for scenarios in the global financial market; it is currently not clear how the information processing techniques, which are rapidly emerging, can be used to improve the quality of financial information processing.

  18. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p vocabulary terms, physical characteristics, and types of evidence used to classify. Both groups extended their understanding, but only POGIL students could explain how molecular evidence is used in classification. 2) The challenges preventing students from understanding classification were: familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  19. ADMINISTRATION OF THE INFORMATION AND THE PROCESS OF BANK NEGOTIATION

    OpenAIRE

    Almir Lindemann; Clea Beatriz Macagnan

    2009-01-01

    This paper analyzes the quality of the administration of information, identifying deficiencies in the information systems, used in the negotiation process for concession of bank credit, to small and mid-sized companies, under the business managers' perspective. The results make the deficiencies evident and confirm the need for change in the systems of administration of information, in order to allow for both an improvement in the negotiation process of bank credit as well as a larger economic...

  20. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    International Nuclear Information System (INIS)

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X3 receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  1. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    CERN Document Server

    ,

    2012-01-01

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X$_3$ receptor desensitization in neuronal membranes, as well as degradation o...

  2. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  3. Semantic Network in Information Processing for the Pork Market

    Directory of Open Access Journals (Sweden)

    J. Rydval

    2014-09-01

    Full Text Available The main aim of this paper is to capture the elements of individual information frames and their relations using semantic network; and to express the loss of information and information asymmetry in the market environment. Preferences of elements in the network are evaluated by the Analytical network process. The benefits of applying semantic networks in the market environment are in increasing consumer information and reducing information asymmetry. The use of semantic networks will be shown in the analysis of the information frames of the producer, distributor and consumer in the pork market. The consumer’s frame expresses expectations and preferences, according to which decisions are made. Producer operates with greater range of information about the product than is available to the consumer. Distributor receives information from both the producer and from the consumer, but this information is not usually fully shared to the consumers or producers. This creates information asymmetry.

  4. BIOLOGY STUDENTS’ TEACHER OPINIONS ABOUT THE INTEGRATION OF ICT INTO THE LEARNING AND TEACHING PROCESS

    OpenAIRE

    Andreja Špernjak

    2014-01-01

    Biology laboratory work can be performed in various ways, even using information and communication technologies (ICT). Whether a teacher incorporates it into laboratory work is related to different factors, but educators can influence students’ beliefs about the value of ICT through their pedagogical practice. In our study, student teachers of biology gave opinions on how successfully university professors use ICT in the classroom, where they acquired most knowledge about ICT and their attitu...

  5. Social inclusion enhances biological motion processing: A functional near-infrared spectroscopy study

    OpenAIRE

    Bolling, Danielle Z.; Pelphrey, Kevin A.; Kaiser, Martha D.

    2012-01-01

    Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscop...

  6. Progress in bionic information processing techniques for an electronic nose based on olfactory models

    Institute of Scientific and Technical Information of China (English)

    LI Guang; FU Jun; ZHANG Jia; ZHENG JunBao

    2009-01-01

    As a novel bionic analytical technique, an electronic nose, inspired by the mechanism of the biological olfactory system and integrated with modern sensing technology, electronic technology and pattern recognition technology, has been widely used in many areas. Moreover, recent basic research findings in biological olfaction combined with computational neuroscience promote its development both in methodology and application. In this review, the basic information processing principle of biological olfaction and artificial olfaction are summarized and compared, and four olfactory models and their applications to electronic noses are presented. Finally, a chaotic olfactory neural network is detailed and the utilization of several biologically oriented learning rules and its spatiotemporal dynamic prop-ties for electronic noses are discussed. The integration of various phenomena and their mechanisms for biological olfaction into an electronic nose context for information processing will not only make them more bionic, but also perform better than conventional methods. However, many problems still remain, which should be solved by further cooperation between theorists and engineers.

  7. Why genetic information processing could have a quantum basis

    Indian Academy of Sciences (India)

    Apoorva Patel

    2001-06-01

    Living organisms are not just random collections of organic molecules. There is continuous information processing going on in the apparent bouncing around of molecules of life. Optimization criteria in this information processing can be searched for using the laws of physics. Quantum dynamics can explain why living organisms have 4 nucleotide bases and 20 amino acids, as optimal solutions of the molecular assembly process. Experiments should be able to tell whether evolution indeed took advantage of quantum dynamics or not.

  8. Basics for sensorimotor information processing: some implications for learning.

    OpenAIRE

    Thierry eHasbroucq; Franck eVidal

    2015-01-01

    AbstractIn sensorimotor activities, learning requires efficient information processing; whether in car driving, sport activities or human-machine interactions. Several factors may affect the efficiency of such processing: they may be extrinsic (i.e. task-related) on intrinsic (i.e. subjects-related). The effects of these factors are intimately related to the structure of human information processing. In the present article we will focus on some of them, which are poorly taken into account, ev...

  9. Information flow and simulation support in the product development process

    OpenAIRE

    Johansson, Henrik; Larsson, Tobias

    1998-01-01

    This paper consists of a case study of the product development process at Indexator AB, manufacturer of rotators for heavy equipment. The process has been studied concerning the information flow and computer support in the engineering design department and its interacting departments. It is shown that the company has a clear view of how information flows and which computer tools they use in the different parts of the processes. The advantage of using computer tools for analysis and planning i...

  10. The self-regulation of information processing and decision making

    OpenAIRE

    Bieleke, Maik

    2015-01-01

    The present thesis investigates whether people can strategically regulate their information processing (Research Papers I and II), and the effects of strategic information processing on decision making (Research Paper III). These topics are addressed from the perspective of the self-regulation strategy of if-then planning (also referred to as implementation intentions).The first research paper tested the hypothesis that if-then planning enhances perceptual processing. Two experiments were bas...

  11. Concept of Biological Progress and Information as Indication and Measure of Ontic Growth

    Directory of Open Access Journals (Sweden)

    Tonci Kokic

    2004-12-01

    Full Text Available The history of the idea of biological progress shows that it is not a selfexplanatory category, so a clear definition is required. Biological progress exists if: (1 “more progressive” is defined as “more complex” – in that case evolution is synonymous with progress, i.e. development from simple to complex, from homogeneous to heterogeneous; (2 we perceive the expression “more progressive” as more successful in relation to the environment, in these terms some groups in the history of life were more progressive because/so that they survived, while others were retrogressive or less progressive because/so that they died out; on the other hand, within their ecological niches, certain forms of life (species are perfectly adapted to their environment as long as it is stable (along these lines, mammals are no more progressive than bacteria; (3 we take the span or reach of a potential adaptation of populations as a measure (in which case differences exist. However, there is no active, innovative problem solving in relation to the environment either with plants or animals – only the variability mechanism / selection is in place, automatism, instinct. In the light of the above-mentioned biological criteria, man is the most complex living creature by his constitution (central nervous system, he is the least dependent on the environment and can be innovative in relation to the environment. Man is the only living creature capable of establishing an active relationship with the environment through his special tool – culture. Considering the level of organization and quantity of information, the mammal genome is more progressive than the bacterium genome, while the human genome comprises most information which makes man the most progressive living thing. We can talk about biological progress if we define progressiveness as advancement toward complexity of organisation, but sometimes the simplification of structure enables survival. It seems

  12. Subjectivity: A Case of Biological Individuation and an Adaptive Response to Informational Overflow

    Science.gov (United States)

    Jonkisz, Jakub

    2016-01-01

    The article presents a perspective on the scientific explanation of the subjectivity of conscious experience. It proposes plausible answers for two empirically valid questions: the ‘how’ question concerning the developmental mechanisms of subjectivity, and the ‘why’ question concerning its function. Biological individuation, which is acquired in several different stages, serves as a provisional description of how subjective perspectives may have evolved. To the extent that an individuated informational space seems the most efficient way for a given organism to select biologically valuable information, subjectivity is deemed to constitute an adaptive response to informational overflow. One of the possible consequences of this view is that subjectivity might be (at least functionally) dissociated from consciousness, insofar as the former primarily facilitates selection, the latter action. PMID:27555835

  13. Conjoint Management of Business Processes and Information Technologies

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    Information technologies have reached the stage where their usefulness is assessed by how they enable organizations to act smarter, faster, more efficiently and more creatively. Business value, rather than by technology artifacts themselves, is created by the ways information technologies enable...... and improve business processes. As a consequence, there is a growing need to address managerial aspects of the relationships between information technologies and business processes. The aim of this PhD study is to investigate how the practice of conjoint management of business processes and information...... technologies can be supported and improved. The study is organized into five research papers and this summary. Each paper addresses a different aspect of conjoint management of business processes and information technologies, i.e. problem development and managerial practices on software...

  14. Quantum information processing in nanostructures Quantum optics; Quantum computing

    CERN Document Server

    Reina-Estupinan, J H

    2002-01-01

    Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...

  15. Gain control in molecular information processing: lessons from neuroscience

    International Nuclear Information System (INIS)

    Statistical properties of environments experienced by biological signaling systems in the real world change, which necessitates adaptive responses to achieve high fidelity information transmission. One form of such adaptive response is gain control. Here, we argue that a certain simple mechanism of gain control, understood well in the context of systems neuroscience, also works for molecular signaling. The mechanism allows us to transmit more than 1 bit (on or off) of information about the signal independent of the signal variance. It does not require additional molecular circuitry beyond that already present in many molecular systems, and in particular, it does not depend on existence of feedback loops. The mechanism provides a potential explanation for abundance of ultrasensitive response curves in biological regulatory networks. (paper)

  16. Towards BioDBcore: a community-defined information specification for biological databases.

    Science.gov (United States)

    Gaudet, Pascale; Bairoch, Amos; Field, Dawn; Sansone, Susanna-Assunta; Taylor, Chris; Attwood, Teresa K; Bateman, Alex; Blake, Judith A; Bult, Carol J; Cherry, J Michael; Chisholm, Rex L; Cochrane, Guy; Cook, Charles E; Eppig, Janan T; Galperin, Michael Y; Gentleman, Robert; Goble, Carole A; Gojobori, Takashi; Hancock, John M; Howe, Douglas G; Imanishi, Tadashi; Kelso, Janet; Landsman, David; Lewis, Suzanna E; Karsch Mizrachi, Ilene; Orchard, Sandra; Ouellette, B F Francis; Ranganathan, Shoba; Richardson, Lorna; Rocca-Serra, Philippe; Schofield, Paul N; Smedley, Damian; Southan, Christopher; Tan, Tin W; Tatusova, Tatiana; Whetzel, Patricia L; White, Owen; Yamasaki, Chisato

    2011-01-01

    The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases. PMID:21205783

  17. Biological information of Taunayia bifasciata (Siluriformes: Heptapteridae): a threatened and unknown catfish

    OpenAIRE

    Giulianna Rondineli; Alberto Luciano Carmassi; Francisco Manoel de Souza Braga

    2011-01-01

    Taunayia bifasciata (Eigenmann & Norris, 1900) is a small catfish that inhabits headwater streams of the Tietê and Paraíba do Sul river basins, southeastern Brazil, being restricted to the Atlantic rain forest. The species is found on lists of threatened species of Brazil and the state of São Paulo. Despite that, there is no literature information about the biology of the species. In the present study we endeavored to collect data on the biology of T. bifasciata. A total of 37 specimens were ...

  18. Removal of reactive blue 19 from wastewaters by physicochemical and biological processes - a review

    International Nuclear Information System (INIS)

    The developments for the removal of reactive blue 19 dye (RB 19) by various physicochemical methods such as sonolysis, photo catalysis, electrochemical, ozonolysis, adsorption, hydrolysis and biological methods like microbial degradation, bio sorption, chemical and biological reductive decolorisation has been presented. It was found that none of the individual physical and chemical technique can be used in wastewater treatment with good economics and high energy efficiency. For example, the application of adsorption method is restricted as adsorbent materials requires frequent regenerations; ozonolysis and photo catalysis processes can efficiently decolorize and degrade the dye but these face operational difficulties are not cost effective. Similarly the performance of biological treatment processes is required to enhance by developing efficient strains of bacteria, fungi. The comparison of physiochemical and biological treatment of RB 19 dye suggested that biological treatment of RB 19 dye is comparatively cost-effective process. However, the integrated approach can be used to decolorize and degrade the dye by combining both physicochemical and biological processes. (author)

  19. Sources of Information as Determinants of Product and Process Innovation

    Science.gov (United States)

    2016-01-01

    In this paper we use a panel of manufacturing firms in Spain to examine the extent to which they use internal and external sources of information (customers, suppliers, competitors, consultants and universities) to generate product and process innovation. Our results show that, although internal sources are influential, external sources of information are key to achieve innovation performance. These results are in line with the open innovation literature because they show that firms that are opening up their innovation process and that use different information sources have a greater capacity to generate innovations. We also find that the importance of external sources of information varies depending on the type of innovation (product or process) considered. To generate process innovation, firms mainly rely on suppliers while, to generate product innovation, the main contribution is from customers. The potential simultaneity between product and process innovation is also taken into consideration. We find that the generation of both types of innovation is not independent. PMID:27035456

  20. Sources of Information as Determinants of Product and Process Innovation.

    Science.gov (United States)

    Gómez, Jaime; Salazar, Idana; Vargas, Pilar

    2016-01-01

    In this paper we use a panel of manufacturing firms in Spain to examine the extent to which they use internal and external sources of information (customers, suppliers, competitors, consultants and universities) to generate product and process innovation. Our results show that, although internal sources are influential, external sources of information are key to achieve innovation performance. These results are in line with the open innovation literature because they show that firms that are opening up their innovation process and that use different information sources have a greater capacity to generate innovations. We also find that the importance of external sources of information varies depending on the type of innovation (product or process) considered. To generate process innovation, firms mainly rely on suppliers while, to generate product innovation, the main contribution is from customers. The potential simultaneity between product and process innovation is also taken into consideration. We find that the generation of both types of innovation is not independent. PMID:27035456

  1. Multiscale Analysis of Information Dynamics for Linear Multivariate Processes

    CERN Document Server

    Faes, Luca; Stramaglia, Sebastiano; Nollo, Giandomenico; Stramaglia, Sebastiano

    2016-01-01

    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using state-space (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale infor...

  2. Information processing and routing in wireless sensor networks

    CERN Document Server

    Yu, Yang; Krishnamachari, Bhaskar

    2006-01-01

    This book presents state-of-the-art cross-layer optimization techniques for energy-efficient information processing and routing in wireless sensor networks. Besides providing a survey on this important research area, three specific topics are discussed in detail - information processing in a collocated cluster, information transport over a tree substrate, and information routing for computationally intensive applications. The book covers several important system knobs for cross-layer optimization, including voltage scaling, rate adaptation, and tunable compression. By exploring tradeoffs of en

  3. Splash, pop, sizzle: Information processing with phononic computing

    Directory of Open Access Journals (Sweden)

    Sophia R. Sklan

    2015-05-01

    Full Text Available Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic.

  4. Splash, pop, sizzle: Information processing with phononic computing

    International Nuclear Information System (INIS)

    Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. 

  5. The Trichotomy of Processes: a philosophical basis for information systems

    Directory of Open Access Journals (Sweden)

    George Widmeyer

    2003-11-01

    Full Text Available The principle of trichotomy from the American philosopher Charles S. Peirce can be used to categorize processes into the triad of transactional, relational, and informational. The usefulness of these categories is explicated by a comparison with structuration theory and control theory, and elaborated with a consideration of democracy in a knowledge economy. These three example applications of the process triad show the generality of the conceptual categories and provide a natural way of bringing ideas from social and ethical theories into information systems design. Modeling the world and understanding business applications through the use of the Trichotomy of Processes should facilitate the development of more valuable information systems.

  6. Process system of radiometric and magnetometric aerial information

    International Nuclear Information System (INIS)

    The author has been working first in the National Institute of Nuclear Energy (Mexico) and then in URAMEX (Uranio Mexicano) since 1975 to 1983, integrated to radiometric and magnetometric aerial prospecting projects in computerized processing of information aspects. During this period the author participated in the work out of computing systems, information processing and mathematical procedures definition for the geophysical reduction of the calibration equipment data. With cumulated experience, in this thesis are presented aspects concerning to management and operation of computerized processing of information systems. Operation handbooks of the majority of modules are presented. Program lists are not included. (Author)

  7. Respirometry applied for biological nitrogen removal process; Aplicacion de la respirometria al tratamiento biologico para la eliminacion del nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2004-07-01

    In waste water treatment plants, the Biological Nitrogen Removal (BNR) has acquired a fundamental importance. The BNR processes are Nitrification ( aerobic) and Denitrification (anoxic). Since both processes are carried on living microorganisms, a lack of their bioactivity information might cause serious confusion about their control criteria and following up purposes. For this reason, the Re spirometry applied to those processes has reached an important role by getting an essential information in a timely manner through respiration rate measurements in static and dynamic modes and applications such as AUR (Ammonium Uptake Rate), Nitrification Capacity. RBCOD (Readily Biodegradable COD) as well as AUR related to SRT (Sludge age), RBCOD related to NUR (Specific Nitrate Uptake Rate) and others. By other side in this article we have introduced a not very well known applications related to denitrification, about the methanol acclimatization and generated bioactivity. (Author) 6 refs.

  8. Science-based information processing in the process control of power stations

    International Nuclear Information System (INIS)

    Through the application of specialized systems, future-orientated information processing integrates the sciences of processes, control systems, process control strategies, user behaviour and ergonomics. Improvements in process control can be attained, inter alia, by the preparation of the information contained (e.g. by suppressing the flow of signals and replacing it with signals which are found on substance) and also by an ergonomic representation of the study of the process. (orig.)

  9. Present and perspective of enhanced biological phosphorus removal process; Seibutsugakuteki rin jokyoho no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [National Inst. of Bioscience and Human-Technology, Tsukuba (Japan)

    1997-02-05

    Biological phosphorus removal process utilizing anaerobic and aerobic conditions, mechanism of phosphorus removal, and microbes relating to phosphorus removal are outlined, and future problems are discussed. By mixing waste water and sludge under anaerobic condition followed by treatment under aerobic condition, phosphorus content in sludge increases to enable biological phosphorus removal. More microbes with high polyphosphorus accumulating performance are acquired by the anaerobic/aerobic process than other microbes with the result of their preferential increase, and the process has high phosphorus removal characteristic than the general treatment process. Microbes relating to phosphorus removal, immobilization of polyphosphate accumulating microbes, and phosphorus acquiring and releasing characteristics of immobilized mycelium are discussed. Application of gel entrapped immobilized mycelium to phosphorus removal and problems in biological phosphorus removing methods are described. 18 refs., 12 figs.

  10. Crosstalk between endophytes and a plant host within information-processing networks

    Directory of Open Access Journals (Sweden)

    Kozyrovska N. O.

    2013-05-01

    Full Text Available Plants are heavily populated by pro- and eukaryotic microorganisms and represent therefore the tremendous complexity as a biological system. This system exists as an information-processing entity with rather complex processes of communication, occurring throughout the individual plant. The plant cellular information-proces- sing network constitutes the foundation for processes like growth, defense, and adaptation to the environment. Up to date, the molecular mechanisms, underlying perception, transfer, analysis, and storage of the endogenous and environmental information within the plant, remain to be fully understood. The associated microorganisms and their investment in the information conditioning are often ignored. Endophytes as plant partners are indispen- sable integrative part of the plant system. Diverse endophytic microorganisms comprise «normal» microbiota that plays a role in plant immunity and helps the plant system to survive in the environment (providing assistance in defense, nutrition, detoxification etc.. The role of endophytic microbiota in the processing of information may be presumed, taking into account a plant-microbial co-evolution and empirical data. Since the literature are be- ginning to emerge on this topic, in this article, I review key works in the field of plant-endophytes interactions in the context of information processing and represent the opinion on their putative role in plant information web under defense and the adaptation to changed conditions.

  11. Operation and control of SBR processes for enhanced biological nutrient removal from wastewater

    OpenAIRE

    Puig Broch, Sebastià

    2008-01-01

    In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with ...

  12. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  13. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    OpenAIRE

    Naresh eSinghal; Octavio ePerez-Garcia

    2016-01-01

    Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes...

  14. Biological and Physiological Markers of Tactile Sensorial Processing in Healthy Newborns

    OpenAIRE

    Gonçalves, MG; Caldeira-da-Silva, P

    2012-01-01

    The main objective of this review is to provide a descriptive analysis of the biological and physiological markers of tactile sensorial processing in healthy, full-term newborns. Research articles were selected according to the following study design criteria: (a) tactile stimulation for touch sense as an independent variable; (b) having at least one biological or physiological variable as a dependent variable; and (c) the group of participants were characterized as full-term and healthy newb...

  15. Towards a Brain-inspired Information Processing System: Modelling and Analysis of Synaptic Dynamics

    OpenAIRE

    El-Laithy, Karim

    2012-01-01

    Biological neural systems (BNS) in general and the central nervous system (CNS) specifically exhibit a strikingly efficient computational power along with an extreme flexible and adaptive basis for acquiring and integrating new knowledge. Acquiring more insights into the actual mechanisms of information processing within the BNS and their computational capabilities is a core objective of modern computer science, computational sciences and neuroscience. Among the main reasons of...

  16. Molecular and Supramolecular Information Processing From Molecular Switches to Unconventional Computing

    CERN Document Server

    Katz, Evgeny

    2012-01-01

    Edited by a renowned and much cited chemist, this book covers the whole span of molecular computers that are based on non-biological systems. The contributions by all the major scientists in the field provide an excellent overview of the latest developments in this rapidly expanding area. A must-have for all researchers working on this very hot topic. Perfectly complements Biomolecular Information Processing, also by Prof. Katz, and available as a two-volume set.

  17. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    International Nuclear Information System (INIS)

    The purpose of this project is to provide a source of information on biological and health effects of radionuclides and ionizing radiation in an easy to use format. Reported work is made up of two distinct parts: data sheets for selected radionuclides and a web file. Data sheets: Specific radiation data sheets provide an overview of the properties, the environmental behaviour, the different pathways of human exposure and the biological and health consequences of selected radionuclides. Radionuclides that have been selected are those commonly dealt with in nuclear industry (and in other areas such as medicine) and released to the environment or naturally occurring (plutonium, tritium, carbon 14). Data sheets corresponding to the different radionuclides are based on the main sources of scientific information in dosimetry, epidemiology, radiobiology and radiation protection. These data sheets are intended for radiation protection specialists and physicians. They include: main physical and chemical characteristics, main radiation protection data: dose coefficients (public, workers), dose limits sources, total released estimate (nuclear industry, atmospheric tests, main pathway of human exposure and biological behaviour, biological and health effects, medical supervision, treatment a list of the main references, appendix providing accurate information. Web file: http://www-dsv.cea.fr/doc/carmin_ext/fond.php This web file provides a source of information on biological and health effects of ionizing radiation and biological basic knowledge of radiation protection. Available for consultation via Internet, compiled information provides, in a same file, subjects as varied as biological mechanisms, ionizing radiations action, biological and health effects, risk assessment This file is mainly intended to assist in informing and training of non-specialist readership (students, teaching on radiation protection basic knowledge. This electronic document is divided in three

  18. Unveiling the mystery of visual information processing in human brain

    CERN Document Server

    Diamant, Emanuel

    2008-01-01

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. ...

  19. Physics Colloquium: The optical route to quantum information processing

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, Quai Ernest Ansermet CH-1211 Geneva 4 Monday 11 April 2011 17h00 - Ecole de Physique, Auditoire Stückelberg The optical route to quantum information processing Prof. Terry Rudolph/Imperial College, London Photons are attractive as carriers of quantum information both because they travel, and can thus transmit information, but also because of their good coherence properties and ease in undergoing single-qubit manipulations. The main obstacle to their use in information processing is inducing an effective interaction between them in order to produce entanglement. The most promising approach in photon-based information processing architectures is so-called measurement-based quantum computing. This relies on creating upfront a multi-qubit highly entangled state (the cluster state) which has the remarkable property that, once prepared, it can be used to perform quantum computation by making only single qubit measurements. In this talk I will discuss generically the...

  20. Finite-Time Approach to Microeconomic and Information Exchange Processes

    Directory of Open Access Journals (Sweden)

    Serghey A. Amelkin

    2009-07-01

    Full Text Available Finite-time approach allows one to optimize regimes of processes in macrosystems when duration of the processes is restricted. Driving force of the processes is difference of intensive variables: temperatures in thermodynamics, values in economics, etc. In microeconomic systems two counterflow fluxes appear due to the only driving force. They are goods and money fluxes. Another possible case is two fluxes with the same direction. The processes of information exchange can be described by this formalism.

  1. Integrating clinical and biological information in a shanghai biobank: an introduction to the sample repository and information sharing platform project.

    Science.gov (United States)

    Cui, Wenbin; Zheng, Peiyong; Yang, Jiahong; Zhao, Rong; Gao, Jiechun; Yu, Guangjun

    2015-02-01

    Biobanks are important resources and central tools for translational medicine, which brings scientific research outcomes to clinical practice. The key purpose of biobanking in translational medicine and other medical research is to provide biological samples that are integrated with clinical information. In 2008, the Shanghai Municipal Government launched the "Shanghai Tissue Bank" in an effort to promote research in translational medicine. Now a sharing service platform has been constructed to integrate clinical practice and biological information that can be used in diverse medical and pharmaceutical research studies. The platform collects two kinds of data: sample data and clinical data. The sample data are obtained from the hospital biobank management system, and mainly include the donors' age, gender, marital status, sample source, sample type, collection time, deposit time, and storage method. The clinical data are collected from the "Hospital-Link" system (a medical information sharing system that connects 23 tertiary hospitals in Shanghai). The main contents include donors' corresponding medication information, test reports, inspection reports, and hospital information. As of the end of September 2014, the project has a collection of 16,020 donors and 148,282 samples, which were obtained from 12 medical institutions, and automatically acquired donors' corresponding clinical data from the "Hospital-Link" system for 6830 occurrences. This project will contribute to scientific research at medical institutions in Shanghai, and will also support the development of the biopharmaceutical industry. In this article, we will describe the significance, the construction phases, the application prospects, and benefits of the sample repository and information sharing service platform. PMID:25686046

  2. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    Science.gov (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually. PMID:15533022

  3. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes.

    Science.gov (United States)

    Arellano-González, Miguel Ángel; González, Ignacio; Texier, Anne-Claire

    2016-08-15

    In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of -0.40V vs Ag/AgCl(s)/KCl(sat), achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO2 and N2 as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes. PMID:27131458

  4. Ion-trap quantum information processing: experimental status

    OpenAIRE

    Kielpinski, D.

    2008-01-01

    Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex m...

  5. An Ecological Model for the Processing of Symbolic Information.

    Science.gov (United States)

    Bierschenk, Bernhard

    1982-01-01

    Cognitive model of processing symbolic information abstracted from verbal expressions should consider running text, not scattered sentences. A valid abstraction of information structures should be based on explicit encoding of intentionality and valuation. A model must cope with empirical context and novelty instead of truth-values in…

  6. Informal Learning in the Workplace: Key Activities and Processes

    Science.gov (United States)

    Cunningham, John; Hillier, Emilie

    2013-01-01

    Purpose: The purpose of this study is to define characteristics and processes that enhance informal learning in a public sector workplace. Design/methodology/approach: Based on interviews and questionnaires, the authors solicited examples of informal learning practices that 40 supervisors experienced during their careers. The examples were content…

  7. Critique of Fault-Tolerant Quantum Information Processing

    OpenAIRE

    Alicki, Robert

    2013-01-01

    This is a chapter in a book \\emph{Quantum Error Correction} edited by D. A. Lidar and T. A. Brun, and published by Cambridge University Press (2013)\\\\ (http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction)\\\\ presenting the author's view on feasibility of fault-tolerant quantum information processing.

  8. Marketing for Special Libraries and Information Centers: The Positioning Process.

    Science.gov (United States)

    Sterngold, Arthur

    1982-01-01

    The positioning process of marketing used by special libraries and information centers involves two key decisions from which other decisions are derived: to which user groups marketing programs and services will be directed; and which information needs will be served. Two cases are discussed and a bibliography is provided. (EJS)

  9. Reshaping the Enterprise through an Information Architecture and Process Reengineering.

    Science.gov (United States)

    Laudato, Nicholas C.; DeSantis, Dennis J.

    1995-01-01

    The approach used by the University of Pittsburgh (Pennsylvania) in designing a campus-wide information architecture and a framework for reengineering the business process included building consensus on a general philosophy for information systems, using pattern-based abstraction techniques, applying data modeling and application prototyping, and…

  10. Production management information system in wood processing and furniture manufacture

    Directory of Open Access Journals (Sweden)

    Tomislav Grladinović

    2007-11-01

    Full Text Available Introduction of a production management information system is one of the ways that could help the management to increase its efficiency. It should enable the monitoring of the whole business of a firm through co-ordination in the process of collecting and using information.

  11. On-line analytical processing with conceptual information systems

    OpenAIRE

    Stumme, Gerd

    1998-01-01

    A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).

  12. Human Development VII: A Spiral Fractal Model of Fine Structure of Physical Energy Could Explain Central Aspects of Biological Information, Biological Organization and Biological Creativity

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2006-01-01

    Full Text Available In this paper we have made a draft of a physical fractal essence of the universe, a sketch of a new cosmology, which we believe to lay at the root of our new holistic biological paradigm. We present the fractal roomy spiraled structures and the energy-rich dancing “infinite strings” or lines of the universe that our hypothesis is based upon. The geometric language of this cosmology is symbolic and both pre-mathematical and pre-philosophical. The symbols are both text and figures, and using these we step by step explain the new model that at least to some extent is able to explain the complex informational system behind morphogenesis, ontogenesis, regeneration and healing. We suggest that it is from this highly dynamic spiraled structure that organization of cells, organs, and the wholeness of the human being including consciousness emerge. The model of ““dancing fractal spirals” carries many similarities to premodern cultures descriptions of the energy of the life and universe. Examples are the Native American shamanistic descriptions of their perception of energy and the old Indian Yogis descriptions of the life-energy within the body and outside. Similar ideas of energy and matter are found in the modern superstring theories. The model of the informational system of the organism gives new meaning to Bateson’s definition of information: “A difference that makes a difference”, and indicates how information-directed self-organization can exist on high structural levels in living organisms, giving birth to their subjectivity and consciousness.

  13. Modeling Units of Assessment for Sharing Assessment Process Information: towards an Assessment Process Specification

    NARCIS (Netherlands)

    Miao, Yongwu; Sloep, Peter; Koper, Rob

    2009-01-01

    Miao, Y., Sloep, P. B., & Koper, R. (2008). Modeling Units of Assessment for Sharing Assessment Process Information: towards an Assessment Process Specification. Presentation at the ICWL 2008 conference. August, 20, 2008, Jinhua, China.

  14. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications.

    Science.gov (United States)

    Dreuw, Andreas

    2006-11-13

    With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented. PMID:17009357

  15. THE MECHANISM OF INTERACTION OF EXTERNAL ELECTROMAGNETIC FIELDS ON THE PROCESSES THAT STIMULATE THE ACTIVITY OF BIOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    Kurzin N. N.

    2015-04-01

    Full Text Available For explaining the regulatory mechanisms of biological the methods of classical biology, chemistry and physics are clearly inadequate, since the structure and function of these mechanisms are determined by the motion of the electron clouds in conjugated molecules. This "movement" can lead eventually to a complex organization called life only if they are subject to certain static laws and, therefore, may eventually be known in all the complexity of their relationships. Biological objects, resulting in the evolution of the environment, are like a part of that environment. Information stored in the seed, based in its deployment on energy and material resources of the environment. Moreover, in the process of development body derives more information from the environment. Nature has the extreme complexity and diversity. Examples include a huge variety of organisms, the complexity of atomic processes, the structure of the solar system and the stellar galaxies. There are four types of different interactions with the help of which we describe all physical phenomena. Today, it seems to us that all the various manifestations of the nature of elementary particles are reduced to the action between them of these four kinds of forces. The most famous of these are the gravitational Zion and electromagnetic forces, which are directly manifested in the world around us. Gravity allows us to stay on the Earth and allows planets to stay in their orbits. Electromagnetic interactions of electrons inside atoms and molecules cause all known chemical and physical properties of ordinary solids, liquids and gases and, in addition, are the basis of all of the processes occurring in living organisms. Research in the field of magneto proved that the biological systems are selectively susceptible to the action of electromagnetic fields as a function of their intensity, exposure time and frequency

  16. Biological, ecological, conservation and legal information for all species and subspecies of Australian bird

    OpenAIRE

    Garnett, Stephen T.; Duursma, Daisy E.; Ehmke, Glenn; Guay, Patrick-Jean; Stewart, Alistair; Szabo, Judit K.; Weston, Michael A; Bennett, Simon; Crowley, Gabriel M.; Drynan, David; Dutson, Guy; Fitzherbert, Kate; Donald C Franklin

    2015-01-01

    We introduce a dataset of biological, ecological, conservation and legal information for every species and subspecies of Australian bird, 2056 taxa or populations in total. Version 1 contains 230 fields grouped under the following headings: Taxonomy & nomenclature, Phylogeny, Australian population status, Conservation status, Legal status, Distribution, Morphology, Habitat, Food, Behaviour, Breeding, Mobility and Climate metrics. It is envisaged that the dataset will be updated periodically w...

  17. Research on rural sewage treatment using biological-ecological coupling process

    OpenAIRE

    Shi, Chang; Zhang, Jing; Liu, Chun; Zaixing LI; Gen WU; Yang, Jingliang

    2016-01-01

    Developing low-investment, low-energy consumption and low-maintenance sewage treatment process is important for sewage treatment in rural areas. An upflow anaerobic filter (UAF) without energy consumption and a subsurface flow wetland (SFW) are utilized as a biological-ecological coupling process to treat rural domestic sewage. The effect of the coupling process on treatment performance of domestic sewage under different hydraulic retention time (HRT) is investigated. The removal of nitrogen ...

  18. An ontology-based approach to systems biology literature retrieval and processing

    OpenAIRE

    Lourenço, Anália; Simões, Alberto; Almeida, J. J.; Rocha, Miguel; Rocha, I; Ferreira, E. C.

    2007-01-01

    This paper details the SysBio Explorer, a Systems Biology Literature Retrieval and Processing Framework, whose aim relies on the automatic inference of regulatory and metabolic networks based on biomedical literature. The SysBio Explorer does not focus on any organism or problem in particular and encompasses a number of processing and analysis techniques. It works over full-text documents, applying Natural Language Processing techniques and using biomedical dictionaries and ontologies togethe...

  19. Design and application of calorimeters for monitoring biological processes in stirred tank bioreactors

    OpenAIRE

    Regestein, Lars

    2013-01-01

    Developing and improving online monitoring techniques for processes is always a matter of interest for industrial and research applications. Independent of kind and complexity of the reaction, measuring the heat generation (calorimetry) is a universal tool for process monitoring. Therefore, two new calorimetric measurement techniques (chip calorimeter and reactor calorimeter) for process monitoring in stirred tank reactors were developed, validated and applied to several biological systems. ...

  20. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  1. Using natural language processing techniques to inform research on nanotechnology

    OpenAIRE

    Lewinski, Nastassja A.; McInnes, Bridget T.

    2015-01-01

    Literature in the field of nanotechnology is exponentially increasing with more and more engineered nanomaterials being created, characterized, and tested for performance and safety. With the deluge of published data, there is a need for natural language processing approaches to semi-automate the cataloguing of engineered nanomaterials and their associated physico-chemical properties, performance, exposure scenarios, and biological effects. In this paper, we review the different informatics m...

  2. Development of technical information processing system(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jee Hoh; Kim, Tae Hwan; Choi, Kwang; Chung, Hyun Sook; Keum, Jong Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    This project is to establish high-quality information circulation system by developing serials-control system to improve serials management from ordering to distributing and availability on R and D and to advance in quality of information service needed in R and D by fast retrieval and providing of research information with CD-Net. The results of the project are as follows. 1. Serials management process which covers from ordering to distributing have higher efficiency by development of subscription information system. 2. Systematic control on each issue of serials is achieved by development of serials checking system. 3. It is possible to provide vol. and no. information of issue received currently to researchers promptly by improvement of serials holding information system. 4. Retrieval of research information contained in various CD-ROM DB throughout KAERI-NET is possible by research on construction methods of CD-Net. 2 figs, 25 refs. (Author).

  3. Development of technical information processing system(VI)

    International Nuclear Information System (INIS)

    This project is to establish high-quality information circulation system by developing serials-control system to improve serials management from ordering to distributing and availability on R and D and to advance in quality of information service needed in R and D by fast retrieval and providing of research information with CD-Net. The results of the project are as follows. 1. Serials management process which covers from ordering to distributing have higher efficiency by development of subscription information system. 2. Systematic control on each issue of serials is achieved by development of serials checking system. 3. It is possible to provide vol. and no. information of issue received currently to researchers promptly by improvement of serials holding information system. 4. Retrieval of research information contained in various CD-ROM DB throughout KAERI-NET is possible by research on construction methods of CD-Net. 2 figs, 25 refs. (Author)

  4. In Vivo Bioluminescent Imaging (BLI: Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    Directory of Open Access Journals (Sweden)

    Steven Ripp

    2010-12-01

    Full Text Available In vivo bioluminescent imaging (BLI is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.

  5. An Integrated Model of Emotion Processes and Cognition in Social Information Processing.

    Science.gov (United States)

    Lemerise, Elizabeth A.; Arsenio, William F.

    2000-01-01

    Interprets literature on contributions of social cognitive and emotion processes to children's social competence in the context of an integrated model of emotion processes and cognition in social information processing. Provides neurophysiological and functional evidence for the centrality of emotion processes in personal-social decision making.…

  6. 40 CFR 68.65 - Process safety information.

    Science.gov (United States)

    2010-07-01

    ... paragraph (b): Material Safety Data Sheets meeting the requirements of 29 CFR 1910.1200(g) may be used to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Process safety information. 68.65... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.65 Process...

  7. China’s First Multilingual Information Processing Base Launched

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Wuhan China Multilingual Information Processing Base officially opened recently at the Wuhan Eastlake Hi-Tech Innovation Center. In accordance with the country’s strategy on service outsourcing and the international translation service industry, Wuhan began to put its development plan for a multilingual data processing base into practice.

  8. Picture This: Processes Prompted by Graphics in Informational Text

    Science.gov (United States)

    Norman, Rebecca R.

    2010-01-01

    Verbal protocols have provided literacy researchers with a strong understanding of what processes readers (both adults and children) use as they read narrative and informational text. Little is known, however, about the comprehension processes that are prompted by the graphics in these texts. This study of nine second graders used verbal protocol…

  9. IMPROVING THE QUALITY OF MAINTENANCE PROCESSES USING INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Zora Arsovski

    2008-06-01

    Full Text Available In essence, process of maintaining equipment is a support process, because it indirectly contributes to operational ability of the production process necessary for the supply chain of the new value. Taking into account increased levels of automatization and quality, this proces s becomes more and more significant and for some branches of industry, even crucial. Due to the fact that the quality of the entire process is more and more dependent on the maintenance process, these processes must be carefully designed and effectively im plemented. There are various techniques and approaches at our disposal, such as technical, logistical and intensive application of the information - communication technologies. This last approach is presented in this work. It begins with organizational goa ls, especially quality objectives. Then, maintenance processes and integrated information system structures are defined. Maintenance process quality and improvement processes are defined using a set of performances, with a special emphasis placed on effectiveness and quality economics. At the end of the work, information system for improving maintenance economics is structured. Besides theoretical analysis, work also presents results authors obtained analyzing food industry, metal processing industry an d building materials industry.

  10. Real-time information and processing system for radiation protection

    International Nuclear Information System (INIS)

    The real-time information and processing system has as main task to record, collect, process and transmit the radiation level and weather data, being proposed for radiation protection, environmental monitoring around nuclear facilities and for civil defence. Such a system can offer information in order to provide mapping, data base, modelling and communication and to assess the consequences of nuclear accidents. The system incorporates a number of stationary or mobile radiation monitoring equipment, weather parameter measuring station, a GIS-based information processing center and the communication network, all running on a real-time operating system. It provides the automatic data collection on-line and off-line, remote diagnostic, advanced presentation techniques, including a graphically oriented executive support, which has the ability to respond to an emergency by geographical representation of the hazard zones on the map.The system can be integrated into national or international environmental monitoring systems, being based on local intelligent measuring and transmission units, simultaneous processing and data presentation using a real-time operating system for PC and geographical information system (GIS). Such an integrated system is composed of independent applications operating under the same computer, which is capable to improve the protection of the population and decision makers efforts, updating the remote GIS data base. All information can be managed directly from the map by multilevel data retrieving and presentation by using on-line dynamic evolution of the events, environment information, evacuation optimization, image and voice processing

  11. International seminar on safeguards information reporting and processing. Extended synopses

    International Nuclear Information System (INIS)

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  12. The processing and evaluation of new information for strengthened safeguards

    International Nuclear Information System (INIS)

    Information has been a cornerstone of international safeguards since its early years. Under a strengthened safeguards system, as outlined by the Protocol additional to the Safeguards Agreement, governments will be submitting more information on nuclear and nuclear-related activities in their countries. IAEA inspectors will have greater access to facilities and will have at their disposal an increased flow of information, both from States, and from open and other sources. Evaluation of information submitted and collected will precede any request for complementary access to facilities and locations in States, party to the Protocol. The entire process will both provide for more effective and efficient safeguards

  13. Social anxiety and information processing biases: An integrated theoretical perspective.

    Science.gov (United States)

    Peschard, Virginie; Philippot, Pierre

    2016-06-01

    Models of anxiety disorders posit that information processing biases towards threat may result from an imbalance between top-down attentional control processes and bottom-up attentional processes, such that anxiety could reduce the influence of the former and increase the influence of the latter. However, researchers have recently pointed to limitations of the top-down/bottom-up terminology and outlined the additional contribution of memory processes to attention guidance. The goal of this paper is to provide bridges between recent findings from cognitive psychology and anxiety disorders research. We first provide an integrative overview of the processes influencing the content of working memory, including the availability of attentional control, and the strengths of task goals, stimulus salience, selection history and long-term memory. We then illustrate the interest of this formulation to the study of information processing biases in anxiety disorders, with a specific focus on social anxiety. PMID:25864371

  14. Information Processing Bias in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Weber, Darren L

    2008-01-01

    This review considers theory and evidence for abnormal information processing in post-traumatic stress disorder (PTSD). Cognitive studies have indicated sensitivity in PTSD for traumatic information, more so than general emotional information. These findings were supported by neuroimaging studies that identify increased brain activity during traumatic cognition, especially in affective networks (including the amygdala, orbitofrontal and anterior cingulate cortex). In theory, it is proposed that traumatic cognition may interfere with neutral cognition and there is evidence of abnormal neutral stimulus processing in PTSD. Firstly, PTSD patients perform poorly on a variety of neuropsychology tasks that involve attention and memory for neutral information. The evidence from event-related potentials and functional neuroimaging also indicates abnormal results in PTSD during neutral stimulus processing. The research evidence generally provides support for theories of trauma sensitivity and abnormal neutral stimulus processing in PTSD. However, there is only tentative evidence that trauma cognition concurrently interferes with neutral cognition. There is even some evidence that traumatic or novelty arousal processes can increase the capacity for attentive processing, thereby enhancing cognition for neutral stimulus information. Research on this topic has not yet fully explored the mechanisms of interaction between traumatic and neutral content in the cognitive dynamics of PTSD. PMID:19639038

  15. A metatheory integrating social, biological and technological factors in information behavior research

    Directory of Open Access Journals (Sweden)

    Leon James

    2014-06-01

    Full Text Available A metatheory is presented and diagrammed as an integrated conceptual framework for information seeking and use. It represents the symbiotic relationship between users and the technological environment. Receiving and adapting to information is achieved through each user’s biological satisficing procedures defined by group information practices, namely, noticing information, appraising it and evaluating it. Information use is achieved through optimizing procedures, namely, activating goal-setting intentions, constructing a plan and executing it through acting upon the technological environment to attain one’s goals. Evidence is given by listing a variety of information seeking behaviors that others have identified in their review of the literature, then showing how each element fits within the model, as well as by analyzing the interpretive discourse of college students while engaged in carrying out assigned information tasks. Each discourse segment in the samples was categorized as either an affective, cognitive or sensorimotor procedure carried out by the user, and transcribed as a string or sequence. This code sequence was then compared with the sequence produced when the model’s mapping is followed. Every discourse sample inspected contained the six categories specified by the model. The metatheory is suitable for providing a common framework for discussing various areas of information behavior research.

  16. Information-Processing and Perceptions of Control: How Attribution Style Affects Task-Relevant Processing

    Science.gov (United States)

    Yeigh, Tony

    2007-01-01

    This study investigated the effects of perceived controllability on information processing within Weiner's (1985, 1986) attributional model of learning. Attributional style was used to identify trait patterns of controllability for 37 university students. Task-relevant feedback on an information-processing task was then manipulated to test for…

  17. Basic disturbances of information processing in psychosis prediction

    Directory of Open Access Journals (Sweden)

    Mitja eBodatsch

    2013-08-01

    Full Text Available The basic symptoms (BS approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term ‘basic symptoms’ denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of information processing, revealed by fMRI and EEG as characteristics of the at-risk state of psychosis. Furthermore, since high-risk studies employing UHR criteria revealed non-conversion rates commonly exceeding 50%, thus warranting approaches that increase specificity, the potential contribution of neural information processing disturbances to psychosis prediction is reviewed. In summary, the at-risk state seems to be associated with information processing disturbances. Moreover, fMRI investigations suggested that disturbances of language processing domains might be a characteristic of the prodromal state. Neurophysiological studies revealed that disturbances of sensory processing may assist psychosis prediction in allowing for a quantification of risk in terms of magnitude and time. The latter finding represents a significant advancement since an estimation of the time to event has not yet been achieved by clinical approaches. Some evidence suggests a close relationship between self-experienced BS and neural information processing. With regard to future research, the relationship between neural information processing disturbances and different clinical risk concepts warrants further investigations. Thereby,a possible time sequence in the prodromal phase might be of particular interest.

  18. Hierarchical process memory: memory as an integral component of information processing.

    Science.gov (United States)

    Hasson, Uri; Chen, Janice; Honey, Christopher J

    2015-06-01

    Models of working memory (WM) commonly focus on how information is encoded into and retrieved from storage at specific moments. However, in the majority of real-life processes, past information is used continuously to process incoming information across multiple timescales. Considering single-unit, electrocorticography, and functional imaging data, we argue that (i) virtually all cortical circuits can accumulate information over time, and (ii) the timescales of accumulation vary hierarchically, from early sensory areas with short processing timescales (10s to 100s of milliseconds) to higher-order areas with long processing timescales (many seconds to minutes). In this hierarchical systems perspective, memory is not restricted to a few localized stores, but is intrinsic to information processing that unfolds throughout the brain on multiple timescales. PMID:25980649

  19. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  20. Whole process reclamation and utilization of wastes produced in the biological fermentation industry

    Institute of Scientific and Technical Information of China (English)

    YAN Ling-jun; LI Da-peng; MA Fang; Chein-chi Chang; XU Shan-wen; QIU Shan

    2008-01-01

    Wastes yielded in the vintage process and the biological fermentation of itaconic acid and sodium gluconate of a winery in Shandong,such as grain stillage,melon lees,cornstarch protein residues,itaconic acid mother liquid,itaconic acid mycelium and sodium gluconate mycelium,were studied.Hish-activity biological protein feed,foliar fertilizer and irrigation fertilizer were generated from these wastes by applying biological/microbial technologies.Meanwhile,a whole set of technological pathways Was put forward.As a result,the optimal economical and social benefits can be obtained with low natural resource consumption and environmental costs by converting wastes into useful matters.In conclusion,through the utilization of limited resources in the whole process of reclamation and utilization of wastes,the harmony promotion Can be achieved between the economic system and the natural ecosystem.

  1. QUALITY OF ACCOUNTING INFORMATION TO OPTIMIZE THE DECISIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    Miculescu Marius Nicolae

    2012-12-01

    Full Text Available This article provides information on business and therefore need managers to obtain information relevant accounting, reliable, clear, accurate and lowest costs to optimize decision making. This need derives from the current economic environment. The survival of organizations in a competitive environment, to which they must adapt, is conditioned by obtaining accounting information which should be qualitative, opportune, vital, and in a short time. This information is related to patrimony, analytical results, the market (dynamics, dimensions, and structure, and relationships with business partners, competitors, suppliers. Therefore focus more intensely on the quality of accounting information. Definition of quality of accounting information but leave the boundaries and features of accounting communication process and aims to determine \\\\\\"quality criteria\\\\\\" or \\\\\\"qualitative characteristics\\\\\\" to develop a measurement tool. Note that the reviewliterature was found that the normalization and accounting dotrine, criteria for definition of quality of accounting infornation are not identical, their selection and ranking is different. Theory and practice also identifies the fact that information itself is worthless. Instead it is valuable once it is used in a decisional process. Thus, the economic value of the accounting information depends on the earnings obtained after making a decision, diminished by information cost. To be more specific, it depends on the table or on the implemented decision tree, on the informational cost and on the optimal condition established by the decision maker (due to the fact that producing accounting information implies costs which are often considerable and profits arise only form shares. The problem of convergence between content and interpretation of information sent by users also take, and the quality of information to be intelligible. In this case, those who use, say users should have sufficient

  2. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2015-12-01

    Full Text Available Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L. These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

  3. The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

    1998-09-01

    A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

  4. Information processing systems, reasoning modules, and reasoning system design methods

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E.; Greitzer, Frank L.; Hampton, Shawn D.

    2016-08-23

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  5. Information processing systems, reasoning modules, and reasoning system design methods

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E.; Greitzer, Frank L.; Hampton, Shawn D.

    2015-08-18

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  6. Information processing systems, reasoning modules, and reasoning system design methods

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E; Greitzer, Frank L; Hampton, Shawn D

    2014-03-04

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  7. Technology of the Information Software for Supporting Composite Processes

    CERN Document Server

    Samojlov, V N

    2000-01-01

    The structure-functional model of feedback is proposed for a technological process. The information model is constructed for forming the structure-pithy characteristics of functioning objects, and the systematic model is developed for complex investigations of complex processes. Basis principles and criteria of efficiency estimations for formation and stable development of complex processes are formulated. The generalized three-level information model is developed and classified for formation of stable development of complex systems. The procedures for constructing type algorithms "measurement", "evaluation", "making a decision" by the three-level of methodology, technology, and technological process are elaborated. The system of procedures of establishing the correspondence between three levels of the model, unified by a complex of purposed up functions of "object - system - process", is built up.

  8. Trends in fluorescence imaging and related techniques to unravel biological information

    OpenAIRE

    Haustein, Elke; Schwille, Petra

    2007-01-01

    Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both ...

  9. Mathematical Models of Visual Information Processing in the Human Brain and Applications to Image Processing

    OpenAIRE

    Arai, Hitoshi

    2013-01-01

    In this lecture I give a survey of joint works of Hitoshi Arai and Shinobu Arai. The main purpose of our study is to construct mathematical models of visual information processing in the brain, and to give applications to image processing. On the past few decades, several studies have been made on mathematical models of visual information processing in the human brain. Our new models are constructed by using simple pinwheel framelets ([4]) and pinwheel framelets ([6]), which are a new class o...

  10. Human Development V: Biochemistry Unable to Explain the Emergence of Biological Form (Morphogenesis and Therefore a New Principle as Source of Biological Information is Needed

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2006-01-01

    Full Text Available Today's biomedicine builds on the conviction that biochemistry can explain the creation of the body, its anatomy and physiology. Unfortunately there are still deep mysteries strangely “fighting back” when we try to define and understand the organism and its creation in the ontogenesis as emerging from biochemistry. In analysing this from a theoretical perspective using a mathematical model focusing on the noise in complex chemical systems we argue that evolving biological structure cannot in principle be a product of chemistry. In this paper we go through the chemical gradient model and argue that this is not able to explain the ontogenesis. We discuss the used gradients as information carriers in chemical self-organizing systems and argue that by use of the “Turing structures” we are only able to modelling the mostly simple biological systems. The bio-chemical model is only able to model simple organization but not to explain the complexity of biological phenomena. We conclude that we seemingly have presented a formal proof (a NO-GO theorem that the self-organizing chemical systems that are using chemical gradients are not able to explain complex biological matters as the ontogenesis. We need a fundamentally new, information-carrying principle to understand biological information and biological order.

  11. Motion as a source of environmental information: A fresh view on biological motion computation by tiny brains

    Directory of Open Access Journals (Sweden)

    Martin Egelhaaf

    2014-10-01

    Full Text Available Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly aerobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (‘optic flow’ to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a deficiency of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and – in many behavioral contexts – less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.

  12. Nature's longest threads new frontiers in the mathematics and physics of information in biology

    CERN Document Server

    Sreekantan, B V

    2014-01-01

    Organisms endowed with life show a sense of awareness, interacting with and learning from the universe in and around them. Each level of interaction involves transfer of information of various kinds, and at different levels. Each thread of information is interlinked with the other, and woven together, these constitute the universe — both the internal self and the external world — as we perceive it. They are, figuratively speaking, Nature's longest threads. This volume reports inter-disciplinary research and views on information and its transfer at different levels of organization by reputed scientists working on the frontier areas of science. It is a frontier where physics, mathematics and biology merge seamlessly, binding together specialized streams such as quantum mechanics, dynamical systems theory, and mathematics. The topics would interest a broad cross-section of researchers in life sciences, physics, cognition, neuroscience, mathematics and computer science, as well as interested amateurs, familia...

  13. An Information System to Support and Monitor Clinical Trial Process

    Directory of Open Access Journals (Sweden)

    Daniela Luzi

    2013-01-01

    Full Text Available The demand of transparency of clinical research results, the need of accelerating the process oftransferring innovation in the daily medical practice as well as assuring patient safety and product efficacymake it necessary to extend the functionality of traditional trial registries. These new systems shouldcombine different functionalities to track the information exchange, support collaborative work, manageregulatory documents and monitor the entire clinical investigation (CIV lifecycle. This is the approachused to develop MEDIS, a Medical Device Information System, described in this paper under theperspective of the business process, and the underlining architecture. Moreover, MEDIS was designed onthe basis of Health Level 7 (HL7 v.3 standards and methodology to make it interoperable with similarregistries, but also to facilitate information exchange between different health information systems.

  14. Diffusion processes of fragmentary information on scale-free networks

    Science.gov (United States)

    Li, Xun; Cao, Lang

    2016-05-01

    Compartmental models of diffusion over contact networks have proven representative of real-life propagation phenomena among interacting individuals. However, there is a broad class of collective spreading mechanisms departing from compartmental representations, including those for diffusive objects capable of fragmentation and transmission unnecessarily as a whole. Here, we consider a continuous-state susceptible-infected-susceptible (SIS) model as an ideal limit-case of diffusion processes of fragmentary information on networks, where individuals possess fractions of the information content and update them by selectively exchanging messages with partners in the vicinity. Specifically, we incorporate local information, such as neighbors' node degrees and carried contents, into the individual partner choice, and examine the roles of a variety of such strategies in the information diffusion process, both qualitatively and quantitatively. Our method provides an effective and flexible route of modulating continuous-state diffusion dynamics on networks and has potential in a wide array of practical applications.

  15. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering

    OpenAIRE

    Velis, C.A.; Longhurst, Philip J.; Drew, Gillian H; Smith, Richard; Pollard, Simon J. T.

    2009-01-01

    Biodrying is a variation of aerobic decomposition, used within mechanical–biological treatment (MBT) plants to dry and partially stabilise residual municipal waste. Biodrying MBT plants can produce a high quality solid recovered fuel (SRF), high in biomass content. Here, process objectives, operating principles, reactor designs, parameters for process monitoring and control, and their effect on biodried output quality are critically examined. Within the biodrying reactors, w...

  16. Treatment of Textile Wastewater by Combining Biological Processes and Advanced Oxidation

    OpenAIRE

    Punzi, Marisa

    2015-01-01

    Treatment of textile wastewater is challenging because the water contains toxic compounds that have low biodegradability. Dyes, detergents, surfactants, biocides and more are used to improve the textile process and to make the clothes resistant to physical, chemical and biological agents. New technologies have been developed in the last decades and in particular Advanced Oxidation Processes (AOPs) have shown considerable potential for treatment of industrial effluents. These pr...

  17. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H. T.

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  18. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump.

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H T

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems. PMID:26172671

  19. [Postdonation information: the French fourth hemovigilance sub-process].

    Science.gov (United States)

    Py, J-Y; Sandid, I; Jbilou, S; Dupuis, M; Adda, R; Narbey, D; Djoudi, R

    2014-11-01

    Postdonation information is the knowledge of information about the donor or his donation, occurring after it, which challenges quality or safety of the blood products stemming from this or other donations. Classical hemovigilance sub-processes concerning donors or recipients adverse events do not cover this topic. France is just about to make it official as a fourth sub-process. Less formal management of postdonation information is already set up for more than ten years. French data of the year 2013 are presented, including the regional notification level and the national reporting one. A significant level of heterogeneity is observed as for other hemovigilance sub-processes. It is mainly due to subjective rather than objective differences in risk appreciation. A real consensual work is expected about it in the future. PMID:25282491

  20. Basic information processing in children with Pervasive Developmental Disorders

    DEFF Research Database (Denmark)

    Madsen, Gitte

    to 12 months. Schizophrenia is characterised by disturbances in the brain’s processing of information. One example of information processing is the brain’s ability to gate or filter out stimuli, the so-called “filter function”. Psychophysiological studies have shown, that patients with schizophrenia...... have reduced sensory motor gating measured by”P50 suppression” and reduced”pre-pulse inhibition of the startle reflex” (PPI). Aims: 1. To compare basic information processing in children with PDD and a group of healthy controls. 2. To investigate whether it is possible, on the basis of outcomes...... of the psychophysiological tests, to differentiate sub-groups within the spectrum of PDD. 3. To compare potential subgroup within the spectrum of PDD with known schizophrenic subgroups. Material and methodology: A case-control study consisting of two groups of children 8-12 years old matched as to age and gender: 1...

  1. Information processing theory in the early design stages

    DEFF Research Database (Denmark)

    Cash, Philip; Kreye, Melanie

    2014-01-01

    Developing appropriate theory is one of the main challenges facing engineering design (Cross, 2007). Theory helps to both explain design activity but also support greater research impact in the domain. It is useful for gaining a more comprehensive understanding of design activity and developing...... suggestions for improvements and support. One theory that may be particularly applicable to the early design stages is Information Processing Theory (IPT) as it is linked to the design process with regard to the key concepts considered. IPT states that designers search for information if they perceive...... uncertainty with regard to the knowledge necessary to solve a design challenge. They then process this information and compare if the new knowledge they have gained covers the previous knowledge gap. In engineering design, uncertainty plays a key role, particularly in the early design stages which has been...

  2. Information processing in the CNS: a supramolecular chemistry?

    Science.gov (United States)

    Tozzi, Arturo

    2015-10-01

    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of

  3. An Empirical Test of the Information Processing Theory

    OpenAIRE

    Honggeng Zhou

    2011-01-01

    According to the propositions in the information processing theory, this study tests the relationship between task uncertainty and three organizational design strategies, i.e., creation of lateral relationships, investment in information systems, and creation of self-contained tasks. Data from 125 North American manufacturing firms are used and business environment uncertainty is employed to measure task uncertainty. Sourcing practice and delivery practice measure the creation of lateral rela...

  4. The emergence of the physical world from information processing

    OpenAIRE

    Whitworth, B.

    2010-01-01

    This paper links the conjecture that the physical world is a virtual reality to the findings of modern physics. What is usually the subject of science fiction is here proposed as a scientific theory open to empirical evaluation. We know from physics how the world behaves, and from computing how information behaves, so whether the physical world arises from ongoing information processing is a question science can evaluate. A prima facie case for the virtual reality conjecture is presented. If ...

  5. Limbic and cortical information processing in the nucleus accumbens

    OpenAIRE

    Goto, Yukiori; Grace, Anthony A.

    2008-01-01

    The nucleus accumbens regulates goal-directed behaviors by integrating information from limbic structures and the prefrontal cortex. Here, we review recent studies in an attempt to provide an integrated view of the control of information processing in the nucleus accumbens in terms of the regulation of goal-directed behaviors and how disruption of these functions might underlie the pathological states in drug addiction and other psychiatric disorders. We propose a model that could account for...

  6. Basic disturbances of information processing in psychosis prediction

    OpenAIRE

    MitjaBodatsch

    2013-01-01

    The basic symptoms (BS) approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term ‘basic symptoms’ denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of inform...

  7. Basic Disturbances of Information Processing in Psychosis Prediction

    OpenAIRE

    Bodatsch, Mitja; Klosterkötter, Joachim; Müller, Ralf; Ruhrmann, Stephan

    2013-01-01

    The basic symptoms (BS) approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term “basic symptoms” denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of inform...

  8. Accounting information system and management’s decision making process

    OpenAIRE

    Farhad Hanifi; Asgar Taleei

    2015-01-01

    In this paper, we address the management’s decision making process and examine the effect of accounting information system (AIS) in PARS GARMA holding organization in making sound and effective decisions and inform the reader on how AIS influences on the management decisions in 6 major perspectives including quality, accuracy, economic, validity, speed and on time concepts. The major source of data to this research is primary data through the administration of questionnaires. Regression and c...

  9. How Cognitive Plasticity Resolves the Brain's Information Processing Dilemma

    OpenAIRE

    Diankun Gong; Weiyi Ma; Kendrick, Keith M.; Qingqing Hu; Dezhong Yao

    2013-01-01

    A key unresolved question in cognitive science is whether the brain uses asynchronous or synchronous patterns of information transmission. Using an auditory learning task combined with electrophysiological recordings, we reveal for the first time that cognitive plasticity during learning transforms an asynchronous into a synchronous transmission pattern to achieve rapid, error-free performance. We also present a new model showing how the brain may resolve its information processing and transm...

  10. The Impact of the Informational Technologies on the Audit Process

    OpenAIRE

    Mihaela TULVINSCHI; Marian SOCOLIUC

    2010-01-01

    Most of the economical entities, including small &middle enterprises, are based on informational technologies torecord and edit the economical operations. As a result of theimpressive progress in this domain, even the companies with arelatively simple activity use computers with informationalprograms for their accounting processes. As they evolve, theeconomical entities perfect their informational technologysystems in order to answer to the increasing need forinformation. In present, using co...

  11. An Information System for Streamlining Software Development Process

    OpenAIRE

    NALBANT, Serkan

    2004-01-01

    In this paper an information system to be employed by software development organizations is proposed, which automates software development process. The proposed system aims to lower cost, improve schedule performance and enhance quality of the software projects by the means of automation and unifying of operational information. The characteristics of the proposed system are described. Furthermore, its use is illustrated via the explanation of an exemplary software system called PACE...

  12. Business Process driven solutions for innovative enterprise information systems

    OpenAIRE

    Taglino, Francesco; Lezoche, Mario

    2008-01-01

    Existing limitations and problems in the current life-cycle of software applications will encourage new development paradigms. New technological trends, aiming at responding to current needs, such as flexibility, dynamicity, scalability, will certainly drive the envisaged changes. In this paper, possible solutions for the development and maintenance of innovative enterprise information systems (IS) are outlined. In particular, it will be argued about business process driven approach to inform...

  13. Information Technologies in Culture and Education: Image Processing Issues

    OpenAIRE

    Aleksey Iosifovich Vinokur

    2015-01-01

    One of the most important applications of information technologies in culture and education is content creation by digitizing objects of material culture (MCO). This content is named digital heritage. Rather large databases have been created. Digital heritage processing means for the purpose of culture and education are developed and are being developed. Works regarding digitization and development of software and information systems of digital heritage of various applications is carried out ...

  14. Quantum information processing and quantum logic: toward mutual illumination

    OpenAIRE

    Barnum, Howard

    2002-01-01

    Quantum information and computation may serve as a source of useful axioms and ideas for the quantum logic/quantum structures project of characterizing and classifying types of physical theories, including quantum mechanics and classical mechanics. The axiomatic approach of quantum structures may help isolate what aspects of quantum mechanics are responsible for what aspects of its greater-than-classical information processing power, and whether more general physical theories may escape some ...

  15. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  16. Evaluation of EMG processing techniques using Information Theory

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2010-11-01

    Full Text Available Abstract Background Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. Methods These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV, RMS values, variance values (VAR and difference absolute mean value (DAMV. EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation, abduction and adduction movements and inter-electrode distance were also analyzed. Results Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Conclusions Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

  17. Learning to rank for information retrieval and natural language processing

    CERN Document Server

    Li, Hang

    2014-01-01

    Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on its problems recently, and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, major approaches, theories, applications, and future work.The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as tw

  18. Active Cellular Mechanics and Information Processing in the Living Cell

    Science.gov (United States)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  19. Photonic crystal chips for optical communications and quantum information processing

    Science.gov (United States)

    Englund, Dirk; Fushman, Ilya; Faraon, Andrei; Ellis, Bryan; Vučković, Jelena

    2008-08-01

    We discuss recent our recent progress on functional photonic crystals devices and circuits for classical and quantum information processing. For classical applications, we have demonstrated a room-temperature-operated, low threshold, nanocavity laser with pulse width in the picosecond regime; and an all-optical switch controlled with 60 fJ pulses that shows switching time on the order of tens of picoseconds. For quantum information processing, we discuss the promise of quantum networks on multifunctional photonic crystals chips. We also discuss a new coherent probing technique of quantum dots coupled to photonic crystal nanocavities and demonstrate amplitude and phase nonlinearities realized with control beams at the single photon level.

  20. Quantum information processing with finite resources mathematical foundations

    CERN Document Server

    Tomamichel, Marco

    2016-01-01

    This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigation possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. F...

  1. Industrial and agricultural process heat information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  2. Information Flow in the Launch Vehicle Design/Analysis Process

    Science.gov (United States)

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.

    1999-01-01

    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  3. The Impact of the Informational Technologies on the Audit Process

    Directory of Open Access Journals (Sweden)

    Mihaela TULVINSCHI

    2010-01-01

    Full Text Available Most of the economical entities, including small &middle enterprises, are based on informational technologies torecord and edit the economical operations. As a result of theimpressive progress in this domain, even the companies with arelatively simple activity use computers with informationalprograms for their accounting processes. As they evolve, theeconomical entities perfect their informational technologysystems in order to answer to the increasing need forinformation. In present, using complex network environments ofcertain centralized informational technologies functions iswidely spread within the economical entities. As a consequence,the audit mission adapts itself to the requirements of theinformational technologies systems.

  4. Biological removal of methanol from process condensate for the purpose of reclamation

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ming; YANG Min; ZHANG Yu; GAO Meng-chun; ZHANG Jing

    2004-01-01

    The biological removal of methanol from condensate of ammonia manufacturing processes for the purpose of reclamation using contact type reactor was studied. Methanol of 60 mg/L was removed completely under an HRT of 1.12 h. Optimal inorganic nutrient dose was determined on evaluating methanol removal performance and dehydrogenase activities (DHA) under different nutrition doses. The optimal inorganic nutrient dose only gave an increase of conductivity of ca. 10 μs/cm2 in the effluent on treating synthetic condensate containing methanol of 30 mg/L. The results demonstrated that biological removal of methanol was effective for the purpose of recovering the methanol-bearing condensate.

  5. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates.Biological occurrence of simultaneous nitrification and denitrifieation was verified in the aspect of nitrogen mass balance and alkalinity.The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate.In each experimental run the floe sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.

  6. How to Build a Course in Mathematical–Biological Modeling: Content and Processes for Knowledge and Skill

    OpenAIRE

    Hoskinson, Anne-Marie

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical–biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity to build both content and process learning of mathematical models, the modeling process, and the cooperative process. There was little guidance fro...

  7. Biclustering with Flexible Plaid Models to Unravel Interactions between Biological Processes.

    Science.gov (United States)

    Henriques, Rui; Madeira, Sara C

    2015-01-01

    Genes can participate in multiple biological processes at a time and thus their expression can be seen as a composition of the contributions from the active processes. Biclustering under a plaid assumption allows the modeling of interactions between transcriptional modules or biclusters (subsets of genes with coherence across subsets of conditions) by assuming an additive composition of contributions in their overlapping areas. Despite the biological interest of plaid models, few biclustering algorithms consider plaid effects and, when they do, they place restrictions on the allowed types and structures of biclusters, and suffer from robustness problems by seizing exact additive matchings. We propose BiP (Biclustering using Plaid models), a biclustering algorithm with relaxations to allow expression levels to change in overlapping areas according to biologically meaningful assumptions (weighted and noise-tolerant composition of contributions). BiP can be used over existing biclustering solutions (seizing their benefits) as it is able to recover excluded areas due to unaccounted plaid effects and detect noisy areas non-explained by a plaid assumption, thus producing an explanatory model of overlapping transcriptional activity. Experiments on synthetic data support BiP's efficiency and effectiveness. The learned models from expression data unravel meaningful and non-trivial functional interactions between biological processes associated with putative regulatory modules. PMID:26357312

  8. Automated business processes in outbound logistics: An information system perspective

    DEFF Research Database (Denmark)

    Tambo, Torben

    2010-01-01

    This article analyses the potentials and possibilities of changing outbound logistics from highly labour intensive on the information processing side to a more or less fully automated solution. Automation offers advantages in terms of direct labour cost reduction as well as indirect cost reduction...... process alignment with a highly standardised outbound logistics although serving a vast range of customers and countries. Expressing a number of compliance requirements and associated business processes outlines the design criteria for the information system. Implementation of this design with bespoke ERP...... is not a matter of whether the system can or cannot, but a matter of making a technological and economical best fit. Along the formal implementation issues there is a parallel process focused on a mutuality between IT teams, business users, management and external stakeholders in offering relevant...

  9. Quantum information process with nanometre precession ion implantation

    International Nuclear Information System (INIS)

    The spin state of a single nitrogen-vacancy centre in diamond is one of the most attractive candidate for quantum information processing because of its long spin coherence time. Further more coupling (magnetic dipole) between the spins are required for scalable quantum computing (2-qbit operation). This process requires a high implantation positioning accuracy and nitrogen free clean diamond (<0.1 ppm nitrogen concentration). Here we report recent progress towards single ion implantation within nanometre scale accuracies. (orig.)

  10. Adoption process of information technology (IT) innovations in organizations

    OpenAIRE

    Abdul Hameed, Mumtaz

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Several models have been developed for understanding and predicting innovation adoption in organizations and literature has identified several factors that impact the adoption and implementation of Information Technology (IT). This research examines the process of adoption of IT innovations in organizations. The study explores the processes involved in the adoption of IT and verifies the key ...

  11. Advanced Information Processing System - Fault detection and error handling

    Science.gov (United States)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  12. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    Directory of Open Access Journals (Sweden)

    Janna Hastings

    Full Text Available Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA.

  13. The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Science.gov (United States)

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA). PMID:21991315

  14. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review.

    Science.gov (United States)

    Karle, Marc; Vashist, Sandeep Kumar; Zengerle, Roland; von Stetten, Felix

    2016-07-27

    The last decade has witnessed tremendous advances in employing microfluidic solutions enabling Continuous Processing and Monitoring of Biological Samples (CPMBS), which is an essential requirement for the control of bio-processes. The microfluidic systems are superior to the traditional inline sensors due to their ability to implement complex analytical procedures, such as multi-step sample preparation, and enabling the online measurement of parameters. This manuscript provides a backgound review of microfluidic approaches employing laminar flow, hydrodynamic separation, acoustophoresis, electrophoresis, dielectrophoresis, magnetophoresis and segmented flow for the continuous processing and monitoring of biological samples. The principles, advantages and limitations of each microfluidic approach are described along with its potential applications. The challenges in the field and the future directions are also provided. PMID:27251944

  15. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  16. Using Information and Communication Technology (ICT) to the Maximum: Learning and Teaching Biology with Limited Digital Technologies

    Science.gov (United States)

    Van Rooy, Wilhelmina S.

    2012-01-01

    Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes…

  17. Future Information Processing Technology--1983, Computer Science and Technology.

    Science.gov (United States)

    Kay, Peg, Ed.; Powell, Patricia, Ed.

    Developed by the Institute for Computer Sciences and Technology and the Defense Intelligence Agency with input from other federal agencies, this detailed document contains the 1983 technical forecast for the information processing industry through 1997. Part I forecasts the underlying technologies of hardware and software, discusses changes in the…

  18. Information Processing in Adolescents with Bipolar I Disorder

    Science.gov (United States)

    Whitney, Jane; Joormann, Jutta; Gotlib, Ian H.; Kelley, Ryan G.; Acquaye, Tenah; Howe, Meghan; Chang, Kiki D.; Singh, Manpreet K.

    2012-01-01

    Background: Cognitive models of bipolar I disorder (BD) may aid in identification of children who are especially vulnerable to chronic mood dysregulation. Information-processing biases related to memory and attention likely play a role in the development and persistence of BD among adolescents; however, these biases have not been extensively…

  19. Cooper Screening of Information Processing (C-SIP). Administrator's Manual.

    Science.gov (United States)

    Cooper, Richard

    This document is designed to assist individuals administering the Cooper Screening of Information Processing (C-SIP), which is intended as a diagnostic teaching tool that allows teachers or others to determine, in a conversational setting, whether a person manifests any common characteristics of learning problems. After a brief introduction, a…

  20. Risk Informed Design as Part of the Systems Engineering Process

    Science.gov (United States)

    Deckert, George

    2010-01-01

    This slide presentation reviews the importance of Risk Informed Design (RID) as an important feature of the systems engineering process. RID is based on the principle that risk is a design commodity such as mass, volume, cost or power. It also reviews Probabilistic Risk Assessment (PRA) as it is used in the product life cycle in the development of NASA's Constellation Program.