WorldWideScience

Sample records for biological imaging system

  1. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  2. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  3. Comparison of cytological image analysis systems in biological dosimetry

    International Nuclear Information System (INIS)

    Roy, L.; Delbos, M.; Paillole, N.; Durand, V.; Voisin, P.

    2003-01-01

    In biological dosimetry the reference technique is based on the scoring of dicentrics and centric rings induced by ionizing radiation. This article tends to present some image analysis systems used in biological dosimetry to help aberration detection. The presented systems are: the CYTOGEN from IMSTAR society, the CYTOSCAN (APPLIED IMAGING) and the METAFER (METASYSTEM). All 3 systems do not present similar functionalities but offer different way of automation. Some functionalities of these systems are compared. The systems can assist operators on 3 major points: (1) an automatic metaphase finder, in this case, the time benefic ranges from 2 to 4 when compared to manual scoring; (2) a specific tool to help manual scoring of aberrations, this provide an easier scoring and a better stability of the results; (3) the automatic detection of dicentrics, very useful in case of population triage. In this case, the dose has to be established very quickly, on a large population. However, the precision on the dose can be reduced compared to individual dose estimation. Some uncertainties on the detection of dicentric are acceptable and dicentric detection can be automated. Time benefic is then very important as 300 cells can be analyzed in half an hour (METAFER) against 25 when the metaphase finder is used alone. However, only 50% of the dicentrics are detected therefore it would be interesting to increase the efficiency of the detection. The use of the FISH technique could allow a better detection of dicentrics, the first results are promising (90% of centromeres correctly detected) but more experiments are required to evaluate the time benefit. (authors)

  4. Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems

    Science.gov (United States)

    Lebedev, Artem Y.; Cheprakov, Andrei V.; Sakadžić, Sava; Boas, David A.; Wilson, David F.; Vinogradov, Sergei A.

    2009-01-01

    Oxygen levels in biological systems can be measured by the phosphorescence quenching method using probes with controllable quenching parameters and defined biodistributions. We describe a general approach to the construction of phosphorescent nanosensors with tunable spectral characteristics, variable degrees of quenching, and a high selectivity for oxygen. The probes are based on bright phosphorescent Pt and Pd complexes of porphyrins and symmetrically π-extended porphyrins (tetrabenzoporphyrins and tetranaphthoporphyrins). π-Extension of the core macrocycle allows tuning of the spectral parameters of the probes in order to meet the requirements of a particular imaging application (e.g., oxygen tomography versus planar microscopic imaging). Metalloporphyrins are encapsulated into poly(arylglycine) dendrimers, which fold in aqueous environments and create diffusion barriers for oxygen, making it possible to regulate the sensitivity and the dynamic range of the method. The periphery of the dendrimers is modified with poly(ethylene glycol) residues, which enhance the probe’s solubility, diminish toxicity, and help prevent interactions of the probes with the biological environment. The probe’s parameters were measured under physiological conditions and shown to be unaffected by the presence of biomacromolecules. The performance of the probes was demonstrated in applications, including in vivo microscopy of vascular pO2 in the rat brain. PMID:20072726

  5. Investigation and imaging of noncentrosymmetric macromolecules in biological systems

    Science.gov (United States)

    Wang, Mingshi

    We have investigated the molecular origins of second order optical nonlinear effects in proteins with sum frequency generation vibrational spectroscopy. We have focused our investigation on two protein structures, poly-gamma-benzyl-L-glutamate (PBLG), a synthetic single helical protein, and collagen, an extracellular triple helical protein. We have found that the second order nonlinearity in PBLG arises from the collective contribution of amide A and amide I groups that are organized in a noncentrosymmetric manner by hydrogen bonding. In contrast, in the case of collagen, the second order nonlinear effects are due to (1) achiral contribution from the methylene groups associated with Fermi resonance between the fundamental symmetric stretch and the bending overtone of methylene, and (2) a chiral contribution by an intramolecular helical arrangement of carbonyl and peptide groups. We have used polarization modulated second harmonic generation and sum frequency generation imaging to investigate the spatial distribution of molecules in protein films and biological structures. We introduce a new image processing approach, spectral moment invariants, which quantifies texture in images. We then use the spectral moment invariants to discriminate between normal and damaged collageneous tissue imaged by polarization modulated second harmonic generation imaging. A detailed experimental study has been performed on spinal disk injuries, and it has been shown that the quantification of tissue disorder with spectral moment invariants correlates well with the degree of tissue deterioration. This finding demonstrates the potential clinical application of polarization modulated second harmonic imaging to detect extracellular related diseases.

  6. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  7. MCT-based SWIR hyperspectral imaging system for evaluation of biological samples

    Science.gov (United States)

    Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...

  8. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...

  9. Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system

    Science.gov (United States)

    A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...

  10. Pseudorandom numbers: evolutionary models in image processing, biology, and nonlinear dynamic systems

    Science.gov (United States)

    Yaroslavsky, Leonid P.

    1996-11-01

    We show that one can treat pseudo-random generators, evolutionary models of texture images, iterative local adaptive filters for image restoration and enhancement and growth models in biology and material sciences in a unified way as special cases of dynamic systems with a nonlinear feedback.

  11. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    Science.gov (United States)

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  12. Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  13. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  14. High-resolution all-optical photoacoustic imaging system for remote interrogation of biological specimens

    Science.gov (United States)

    Sampathkumar, Ashwin

    2014-05-01

    Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.

  15. Pixel Perfect: a real-time image processing system for biology

    Energy Technology Data Exchange (ETDEWEB)

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Budge, Scott E.; Sowa, Marianne B.

    2005-09-16

    Scientific visioning systems often rely upon pixel-perfect precision to produce meaningful data. Cutting-edge equipment used in the study of cell signaling is no exception; proper image alignment is critical for successful experiments. Biologists at Pacific Northwest National Laboratory put together a special multi-spectral confocal microscope that was capable of producing live images of cells and proteins in two simultaneous spectral channels. But there was a problem: the dual images resembled poorly registered Sunday comics and were unusable. This article describes how the biologists worked with programmers to fix the difficulty and make the microscope a truly useful and unique device.

  16. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    Directory of Open Access Journals (Sweden)

    Isaac Nuñez

    Full Text Available The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here

  17. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    Science.gov (United States)

    Nuñez, Isaac; Matute, Tamara; Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy; Federici, Fernán

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under

  18. Handheld hyperspectral imager system for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  19. Development of a portable 3CCD camera system for multispectral imaging of biological samples.

    Science.gov (United States)

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S

    2014-10-27

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples.

  20. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    Directory of Open Access Journals (Sweden)

    Hoyoung Lee

    2014-10-01

    Full Text Available Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples.

  1. Synthesis and Calibration of Phosphorescent Nanoprobes for Oxygen Imaging in Biological Systems

    Science.gov (United States)

    Sinks, Louise E.; Roussakis, Emmanuel; Esipova, Tatiana V.; Vinogradov, Sergei A.

    2010-01-01

    Oxygen measurement by phosphorescence quenching [1, 2] consists of the following steps: 1) the probe is delivered into the medium of interest (e.g. blood or interstitial fluid); 2) the object is illuminated with light of appropriate wavelength in order to excite the probe into its triplet state; 3) the emitted phosphorescence is collected, and its time course is analyzed to yield the phosphorescence lifetime, which is converted into the oxygen concentration (or partial pressure, pO2). The probe must not interact with the biological environment and in some cases to be 4) excreted from the medium upon the measurement completion. Each of these steps imposes requirements on the molecular design of the phosphorescent probes, which constitute the only invasive component of the measurement protocol. Here we review the design of dendritic phosphorescent nanosensors for oxygen measurements in biological systems. The probes consist of Pt or Pd porphyrin-based polyarylglycine (AG) dendrimers, modified peripherally with polyethylene glycol (PEG's) residues. For effective two-photon excitation, termini of the dendrimers may be modified with two-photon antenna chromophores, which capture the excitation energy and channel it to the triplet cores of the probes via intramolecular FRET (Förster Resonance Energy Transfer). We describe the key photophysical properties of the probes and present detailed calibration protocols. PMID:20200497

  2. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  4. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    OpenAIRE

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to ac...

  5. Imaging cleared intact biological systems at a cellular level by 3DISCO.

    Science.gov (United States)

    Ertürk, Ali; Lafkas, Daniel; Chalouni, Cecile

    2014-07-07

    Tissue clearing and subsequent imaging of transparent organs is a powerful method to analyze fluorescently labeled cells and molecules in 3D, in intact organs. Unlike traditional histological methods, where the tissue of interest is sectioned for fluorescent imaging, 3D imaging of cleared tissue allows examination of labeled cells and molecules in the entire specimen. To this end, optically opaque tissues should be rendered transparent by matching the refractory indices throughout the tissue. Subsequently, the tissue can be imaged at once using laser-scanning microscopes to obtain a complete high-resolution 3D image of the specimen. A growing list of tissue clearing protocols including 3DISCO, CLARITY, Sca/e, ClearT2, and SeeDB provide new ways for researchers to image their tissue of interest as a whole. Among them, 3DISCO is a highly reproducible and straightforward method, which can clear different types of tissues and can be utilized with various microscopy techniques. This protocol describes this straightforward procedure and presents its various applications. It also discusses the limitations and possible difficulties and how to overcome them.

  6. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  7. Nonlinear spectral imaging of biological tissues

    Science.gov (United States)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  8. Purchase of a PhosphorImager System for plant biology research. Final progress report, July 1992--July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, A.O.

    1993-10-01

    Eight DOE supported plant biologists at the University of California-Berkeley were awarded funds ($163,000) for purchase of a Phosphorlmager System to improve the speed, sensitivity, resolution, and quantitation of radioactive data processing and analysis. These funds were used to purchase a Molecular Dynamics Phosphorlmager System consisting of the phosphorlmager, a densitometer, and high resolution storage phosphor screens that have extremely high trapping and storage capacity for energy emitted from isotopes used for biological research such as {sup 32}P, {sup 14}C, {sup 35}S, and {sup 125}I. Software provided with the package permits analysis of the data in several unique ways that are not currently feasible With other methods for analysis. The University of California has purchased additional computer hardware (A MacIntosh Quadra 800 Computer) and has upgraded an IBM computer Mod6l PS2-486 linked with on-line and on off-line workstations via ethernet systems for analysis of data. Data files can also be converted to a TIFF format suitable for graphic analysis and image production on the MacIntosh computer. The system is providing unique advantages for quantitation of data over extremely wide ranges of isotope levels and provides the ability to analyze and manipulate data over wide ranges of sensitivity not previously available with previously used methods of isotope quantitation.

  9. Microholographic imaging of biological samples

    International Nuclear Information System (INIS)

    Haddad, W.S.; Cullen, D.; Solem, J.C.; Longworth, J.W.; McPherson, A.; Boyer, K.; Rhodes, C.K.

    1990-01-01

    A camera system suitable for x-ray microholography has been constructed. Visible light Fourier transform microholograms of biological samples and other test targets have been recorded and reconstructed digitally using a glycerol microdrop as a reference wave source. Current results give a resolution of ∼4 - 10 λ with λ = 514.5 nm. 11 refs., 1 fig

  10. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  11. Teaching systems biology.

    Science.gov (United States)

    Alves, R; Vilaprinyo, E; Sorribas, A

    2011-03-01

    Advances in systems biology are increasingly dependent upon the integration of various types of data and different methodologies to reconstruct how cells work at the systemic level. Thus, teams with a varied array of expertise and people with interdisciplinary training are needed. So far this training was thought to be more productive if aimed at the Masters or PhD level. At this level, multiple specialised and in-depth courses on the different subject matters of systems biology are taught to already well-prepared students. This approach is mostly based on the recognition that systems biology requires a wide background that is hard to find in undergraduate students. Nevertheless, and given the importance of the field, the authors argue that exposition of undergraduate students to the methods and paradigms of systems biology would be advantageous. Here they present and discuss a successful experiment in teaching systems biology to third year undergraduate biotechnology students at the University of Lleida in Spain. The authors' experience, together with that from others, argues for the adequateness of teaching systems biology at the undergraduate level. [Includes supplementary material].

  12. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  13. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    Science.gov (United States)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  14. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.

    2016-01-01

    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  15. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  16. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  17. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.

    2010-01-01

    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  18. Femtosecond diffractive imaging of biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Marvin Seibert, M; Boutet, Sebastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R N C; TImneanu, Nicusor; Caleman, Carl; Hajdu, Janos [Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala (Sweden); Bogan, Michael J [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Barty, Anton; Hau-Riege, Stefan; Frank, Matthias; Benner, Henry [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lee, Joanna Y [Department of Biology, Stanford University, Stanford, CA 94305 (United States); Marchesini, Stefano [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shaevitz, Joshua W [150 Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544 (United States); Fletcher, Daniel A [Bioengineering and Biophysics, University of California, Berkeley, CA 94720 (United States); Bajt, Sasa [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Andersson, Inger [Department of Molecular Biology, Swedish University of Agricultural Sciences, Husargatan 3, Box 590, SE-751 24 Uppsala (Sweden); Chapman, Henry N, E-mail: marvin@xray.bmc.uu.s, E-mail: janos@xray.bmc.uu.s [Center for Free-Electron Laser Science, University of Hamburg and DESY, Notkestrasse 85, Hamburg (Germany)

    2010-10-14

    In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 A during the pulse.

  19. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  20. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high resolution. In

  1. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  2. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  3. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  4. Mechanics of bioinspired imaging systems

    OpenAIRE

    Zhengwei Li; Yu Wang; Jianliang Xiao

    2016-01-01

    Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artifi...

  5. Wide-field time-domain fluorescence lifetime imaging microscopy (FLIM): Molecular snapshots of metabolic function in biological systems

    Science.gov (United States)

    Sud, Dhruv

    2008-12-01

    Steady-state fluorescence imaging is routinely employed to obtain physiological information but is susceptible to artifacts such as absorption and photobleaching. FLIM provides an additional source of contrast oblivious to these but is affected by factors such as pH, gases, and temperature. Here we focused on developing a resolution-enhanced FLIM system for quantitative oxygen sensing. Oxygen is one of the most critical components of metabolic machinery and affects growth, differentiation, and death. FLIM-based oxygen sensing provides a valuable tool for biologists without the need of alternate technologies. We also developed novel computational approaches to improve spatial resolution of FLIM images, extending its potential for thick tissue studies. We designed a wide-field time-domain UV-vis-NIR FLIM system with high temporal resolution (50 ps), large temporal dynamic range (750 ps -- 1 mus), short data acquisition/processing times (15 s) and noise-removal capability. Lifetime calibration of an oxygen-sensitive, ruthenium dye (RTDP) enabled in vivo oxygen level measurements (resolution = 8 muM, range = 1 -- 300 muM). Combining oxygen sensing with endogenous imaging allowed for the study of two key molecules (NADH and oxygen) consumed at the termini of the oxidative phosphorylation pathway in Barrett's adenocarcinoma columnar (SEG-1) cells and Esophageal normal squamous cells (HET-1). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells. We performed FLIM studies in microfluidic bioreactors seeded with mouse myoblasts. For these systems, oxygen concentrations play an important role in cell behavior and gene expression. Oxygen levels decreased with increasing cell densities and were consistent with simulated model outcomes. In single bioreactor loops, FLIM detected spatial heterogeneity in oxygen levels as high as 20%. We validated our calibration

  6. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  7. The Physics behind Systems Biology

    Directory of Open Access Journals (Sweden)

    Radde Nicole E.

    2016-12-01

    Full Text Available Systems Biology is a young and rapidly evolving research field, which combines experimental techniques and mathematical modeling in order to achieve a mechanistic understanding of processes underlying the regulation and evolution of living systems. Systems Biology is often associated with an Engineering approach: The purpose is to formulate a data-rich, detailed simulation model that allows to perform numerical (‘in silico’ experiments and then draw conclusions about the biological system. While methods from Engineering may be an appropriate approach to extending the scope of biological investigations to experimentally inaccessible realms and to supporting data-rich experimental work, it may not be the best strategy in a search for design principles of biological systems and the fundamental laws underlying Biology. Physics has a long tradition of characterizing and understanding emergent collective behaviors in systems of interacting units and searching for universal laws. Therefore, it is natural that many concepts used in Systems Biology have their roots in Physics. With an emphasis on Theoretical Physics, we will here review the ‘Physics core’ of Systems Biology, show how some success stories in Systems Biology can be traced back to concepts developed in Physics, and discuss how Systems Biology can further benefit from its Theoretical Physics foundation.

  8. Design and implementation of optical imaging and sensor systems for characterization of deep-sea biological camouflage

    Science.gov (United States)

    Haag, Justin Mathew

    The visual ecology of deep-sea animals has long been of scientific interest. In the open ocean, where there is no physical structure to hide within or behind, diverse strategies have evolved to solve the problem of camouflage from a potential predator. Simulations of specific predator-prey scenarios have yielded estimates of the range of possible appearances that an animal may exhibit. However, there is a limited amount of quantitative information available related to both animal appearance and the light field at mesopelagic depths (200 m to 1000 m). To mitigate this problem, novel optical instrumentation, taking advantage of recent technological advances, was developed and is described in this dissertation. In the first half of this dissertation, the appearance of mirrored marine animals is quantitatively evaluated. A portable optical imaging scatterometer was developed to measure angular reflectance, described by the bidirectional reflectance distribution function (BRDF), of biological specimens. The instrument allows for BRDF capture from samples of arbitrary size, over a significant fraction of the reflectance hemisphere. Multiple specimens representing two species of marine animals, collected at mesopelagic depths, were characterized using the scatterometer. Low-dimensional parametric models were developed to simplify use of the data sets, and to validate the BRDF method. Results from principal component analysis confirm that BRDF measurements can be used to study intra- and interspecific variability of mirrored marine animal appearance. Collaborative efforts utilizing the BRDF data sets to develop physically-based scattering models are underway. In the second half of this dissertation, another key part of the deep-sea biological camouflage problem is examined. Two underwater radiometers, capable of low-light measurements, were developed to address the lack of available information related to the deep-sea light field. Quantitative comparison of spectral

  9. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  10. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  11. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  12. Biological Imaging Capability in the ABRS Facility on ISS

    Science.gov (United States)

    Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.

    2010-01-01

    This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.

  13. Pattern recognition software and techniques for biological image analysis.

    Directory of Open Access Journals (Sweden)

    Lior Shamir

    2010-11-01

    Full Text Available The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.

  14. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  15. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  16. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  17. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  18. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  19. Mechanics of bioinspired imaging systems

    Directory of Open Access Journals (Sweden)

    Zhengwei Li

    2016-01-01

    Full Text Available Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.

  20. Systems Biology and Livestock Science

    NARCIS (Netherlands)

    Pas, te M.F.W.; Woelders, H.; Bannink, A.

    2011-01-01

    Systems Biology is an interdisciplinary approach to the study of life made possible through the explosion of molecular data made available through the genome revolution and the simultaneous development of computational technologies that allow us to interpret these large data sets. Systems Biology

  1. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  2. Nonlinear spectral imaging of biological tissues

    NARCIS (Netherlands)

    Palero, J.A.

    2007-01-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal.

  3. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  4. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  5. Advanced biologically plausible algorithms for low-level image processing

    Science.gov (United States)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  6. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  7. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  8. Systems biology of human atherosclerosis.

    Science.gov (United States)

    Shalhoub, Joseph; Sikkel, Markus B; Davies, Kerry J; Vorkas, Panagiotis A; Want, Elizabeth J; Davies, Alun H

    2014-01-01

    Systems biology describes a holistic and integrative approach to understand physiology and pathology. The "omic" disciplines include genomics, transcriptomics, proteomics, and metabolic profiling (metabonomics and metabolomics). By adopting a stance, which is opposing (yet complimentary) to conventional research techniques, systems biology offers an overview by assessing the "net" biological effect imposed by a disease or nondisease state. There are a number of different organizational levels to be understood, from DNA to protein, metabolites, cells, organs and organisms, even beyond this to an organism's context. Systems biology relies on the existence of "nodes" and "edges." Nodes are the constituent part of the system being studied (eg, proteins in the proteome), while the edges are the way these constituents interact. In future, it will be increasingly important to collaborate, collating data from multiple studies to improve data sets, making them freely available and undertaking integrative analyses.

  9. Text mining for systems biology.

    Science.gov (United States)

    Fluck, Juliane; Hofmann-Apitius, Martin

    2014-02-01

    Scientific communication in biomedicine is, by and large, still text based. Text mining technologies for the automated extraction of useful biomedical information from unstructured text that can be directly used for systems biology modelling have been substantially improved over the past few years. In this review, we underline the importance of named entity recognition and relationship extraction as fundamental approaches that are relevant to systems biology. Furthermore, we emphasize the role of publicly organized scientific benchmarking challenges that reflect the current status of text-mining technology and are important in moving the entire field forward. Given further interdisciplinary development of systems biology-orientated ontologies and training corpora, we expect a steadily increasing impact of text-mining technology on systems biology in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  11. Compositional Modeling of Biological Systems

    OpenAIRE

    Zámborszky, Judit

    2010-01-01

    Molecular interactions are wired in a fascinating way resulting in complex behavior of bio-logical systems. Theoretical modeling provides us a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological systems calls for conceptual tools that manage the combinatorial explosion of the set of possible interac-tions. A suitable conceptual tool to attack complexity is compositionality, already success-fully used in the process algebra field ...

  12. Histological image classification using biologically interpretable shape-based features

    International Nuclear Information System (INIS)

    Kothari, Sonal; Phan, John H; Young, Andrew N; Wang, May D

    2013-01-01

    Automatic cancer diagnostic systems based on histological image classification are important for improving therapeutic decisions. Previous studies propose textural and morphological features for such systems. These features capture patterns in histological images that are useful for both cancer grading and subtyping. However, because many of these features lack a clear biological interpretation, pathologists may be reluctant to adopt these features for clinical diagnosis. We examine the utility of biologically interpretable shape-based features for classification of histological renal tumor images. Using Fourier shape descriptors, we extract shape-based features that capture the distribution of stain-enhanced cellular and tissue structures in each image and evaluate these features using a multi-class prediction model. We compare the predictive performance of the shape-based diagnostic model to that of traditional models, i.e., using textural, morphological and topological features. The shape-based model, with an average accuracy of 77%, outperforms or complements traditional models. We identify the most informative shapes for each renal tumor subtype from the top-selected features. Results suggest that these shapes are not only accurate diagnostic features, but also correlate with known biological characteristics of renal tumors. Shape-based analysis of histological renal tumor images accurately classifies disease subtypes and reveals biologically insightful discriminatory features. This method for shape-based analysis can be extended to other histological datasets to aid pathologists in diagnostic and therapeutic decisions

  13. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  14. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  16. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  17. Method and apparatus to image biological interactions in plants

    Science.gov (United States)

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  18. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp

    2009-01-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  19. Economic and biological costs of cardiac imaging

    Directory of Open Access Journals (Sweden)

    Picano Eugenio

    2005-05-01

    Full Text Available Abstract Medical imaging market consists of several billion tests per year worldwide. Out of these, at least one third are cardiovascular procedures. Keeping in mind that each test represents a cost, often a risk, and a diagnostic hypothesis, we can agree that every unnecessary and unjustifiable test is one test too many. Small individual costs, risks, and wastes multiplied by billions of examinations per year represent an important population, society and environmental burden. Unfortunately, the appropriateness of cardiac imaging is extra-ordinarily low and there is little awareness in patients and physicians of differential costs, radiological doses, and long term risks of different imaging modalities. For a resting cardiac imaging test, being the average cost (not charges of an echocardiogram equal to 1 (as a cost comparator, the cost of a CT is 3.1x, of a SPECT 3.27x, of a Cardiovascular Magnetic Resonance imaging 5.51x, of a PET 14.03x, and of a right and left heart catheterization 19.96x. For stress cardiac imaging, compared with the treadmill exercise test equal to 1 (as a cost comparator, the cost of stress echocardiography is 2.1x and of a stress SPECT scintigraphy is 5.7x. Biohazards and downstream long-term costs linked to radiation-induced oncogenesis should also be considered. The radiation exposure is absent in echo and magnetic resonance, and corresponds to 500 chest x rays for a sestamibi cardiac stress scan and to 1150 chest x rays for a thallium scan. The corresponding extra-risk in a lifetime of fatal cancer is 1 in 2000 exposed patients for a sestamibi stress and 1 in 1000 for a thallium scan. Increased awareness of economic, biologic, and environmental costs of cardiac imaging will hopefully lead to greater appropriateness, wisdom and prudence from both the prescriber and the practitioner. In this way, the sustainability of cardiac imaging will eventually improve.

  20. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  1. Application of Quantum Dots in Biological Imaging

    Directory of Open Access Journals (Sweden)

    Shan Jin

    2011-01-01

    Full Text Available Quantum dots (QDs are a group of semiconducting nanomaterials with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and so forth. Currently, the major type of QDs is the heavy metal-containing II-IV, IV-VI, or III-V QDs. Silicon QDs and conjugated polymer dots have also been developed in order to lower the potential toxicity of the fluorescent probes for biological applications. Aqueous solubility is the common problem for all types of QDs when they are employed in the biological researches, such as in vitro and in vivo imaging. To circumvent this problem, ligand exchange and polymer coating are proven to be effective, besides synthesizing QDs in aqueous solutions directly. However, toxicity is another big concern especially for in vivo studies. Ligand protection and core/shell structure can partly solve this problem. With the rapid development of QDs research, new elements and new morphologies have been introduced to this area to fabricate more safe and efficient QDs for biological applications.

  2. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  3. Systems biology: the reincarnation of systems theory applied in biology?

    Science.gov (United States)

    Wolkenhauer, O

    2001-09-01

    With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.

  4. Systems biology of cellular rhythms.

    Science.gov (United States)

    Goldbeter, A; Gérard, C; Gonze, D; Leloup, J-C; Dupont, G

    2012-08-31

    Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.

  5. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  6. Radiation interactions with biological systems.

    Science.gov (United States)

    Islam, Muhammad Torequl

    2017-05-01

    The use of radiation, especially ionizing radiation (IR), is currently attracting great attention in the field of medical sciences. However, it should be mentioned that IR has both beneficial and harmful effects in biological systems. This review aims to focus on IR-mediated physiological events in a mechanistic way. Evidence from the databases, mainly from PUBMED and SCIENCE DIRECT were considered. IR directly and/or with their lyses products (indirect) causes oxidative stresses to biological systems. These activities may be localized and systematic. Otherwise, IR-induced non-/multi-targeted effects are also evident. IR in diagnosis and cancer radiotherapy is well-known. Reactive species produced by IR are not only beneficial, but also can exert harmful effects in a biological system such as aging, genetic instability and mutagenicity, membrane lysis and cell death, alteration of enzymatic activity and metabolic events, mitochondrial dysfunction, and even cancer. Additionally, DNA adducts formation, after IR-induced DNA breakage, is a cause of blockage of DNA repair capability with an increase in cellular radiosensitivity. These may allow cellular ruin even at low IR levels. Dependent on the dose, duration of action and quality, IR plays diverse roles in biological systems.

  7. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...

  8. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  9. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  10. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  11. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  12. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  13. [Circadian rhythms and systems biology].

    Science.gov (United States)

    Goldbeter, Albert; Gérard, Claude; Leloup, Jean-Christophe

    2010-01-01

    Cellular rhythms represent a field of choice for studies in system biology. The examples of circadian rhythms and of the cell cycle show how the experimental and modeling approaches contribute to clarify the conditions in which periodic behavior spontaneously arises in regulatory networks at the cellular level. Circadian rhythms originate from intertwined positive and negative feedback loops controlling the expression of several clock genes. Models can be used to address the dynamical bases of physiological disorders related to dysfunctions of the mammalian circadian clock. The cell cycle is driven by a network of cyclin-dependent kinases (Cdks). Modeled in the form of four modules coupled through multiple regulatory interactions, the Cdk network operates in an oscillatory manner in the presence of sufficient amounts of growth factor. For circadian rhythms and the cell cycle, as for other recently observed cellular rhythms, periodic behavior represents an emergent property of biological systems related to their regulatory structure.

  14. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... perspective about the contribution of genes and genetic variants to disease is a key reason 'omics' has failed to deliver the anticipated breakthroughs. We then point out the critical utility of key concepts from physiology like homeostasis, regulated systems and redundancy as major intellectual tools...... common diseases. Finally, we attempt to integrate our critique of reductionism into a broader social framework about so-called translational research in specific and the root causes of common diseases in general. Throughout we offer ideas and suggestions that might be incorporated into the current...

  15. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  16. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  17. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  18. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  19. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  20. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  1. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  2. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  3. Biological object recognition in μ-radiography images

    Science.gov (United States)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  4. Biological object recognition in μ-radiography images

    International Nuclear Information System (INIS)

    Prochazka, A.; Dammer, J.; Benes, J.; Zeman, J.; Weyda, F.; Sopko, V.; Jandejsek, I.

    2015-01-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest

  5. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  6. Biological effects of exposure to magnetic resonance imaging: an overview

    Directory of Open Access Journals (Sweden)

    Formica Domenico

    2004-04-01

    Full Text Available Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.

  7. Raster images vectorization system

    OpenAIRE

    Genytė, Jurgita

    2006-01-01

    The problem of raster images vectorization was analyzed and researched in this work. Existing vectorization systems are quite expensive, the results are inaccurate, and the manual vectorization of a large number of drafts is impossible. That‘s why our goal was to design and develop a new raster images vectorization system using our suggested automatic vectorization algorithm and the way to record results in a new universal vectorial file format. The work consists of these main parts: analysis...

  8. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata

    2011-04-08

    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  9. Porphyrin-magnetite nanoconjugates for biological imaging

    Directory of Open Access Journals (Sweden)

    Conroy Jennifer

    2011-04-01

    Full Text Available Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS. Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent porphyrin magnetic nanoparticle composite (PMNC. Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  10. A compact gamma camera for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  11. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...... does one choose the correct promoter and what are the appropriate methods for reading promoter strength? Furthermore, how fine should the tuning of gene expression be for some specific applications and how can the simultaneous and individual tuning of multiple genes be achieved? Some recent studies...

  12. Decision Making in Biological Systems

    DEFF Research Database (Denmark)

    Tian, Chengzhe

    -dormancy transition is primarily mediated by (p)ppGpp fluctuation. In the second topic, we discuss the transition paths between two stable steady states. We construct a simple model of coupled bistable gene circuits and demonstrate the possibility of bifurcation of transition path in biology. We then construct...... a theory to predict whether a general coupled bistable system exhibits bifurcated path or not and verify the theory through numerical simulation. We also show that a primary function of bifurcated paths is to facilitate transition by lowering the associated action. In the third topic, we discuss...

  13. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  14. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  15. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  16. Preliminary images from an adaptive imaging system

    NARCIS (Netherlands)

    Griffiths, J.A.; Metaxas, M.G.; Pani, S.; Schulerud, H.; Esbrand, C.; Royle, G.J.; Price, B.; Rokvic, T.; Longo, R.; Asimidis, A.; Bletsas, E.; Cavouras, D.; Fant, A.; Gasiorek, P.; Georgiou, H.; Hall, G.; Jones, J.; Leaver, J.; Li, G.; Machin, D.; Manthos, N.; Matheson, J.; Noy, M.; Østby, J.M.; Psomadellis, F.; van der Stelt, P.F.; Theodoridis, S.; Triantis, F.; Turchetta, R.; Venanzi, C.; Speller, R.D.

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and

  17. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  18. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  19. Infrared imaging technology and biological applications.

    Science.gov (United States)

    Kastberger, Gerald; Stachl, Reinhold

    2003-08-01

    Temperature is the most frequently measured physical quantity, second only to time. Infrared (IR) technology has been utilized successfully in astronomy (for a summary,see Hermans-Killam, 2002b) and in industrial and research settings (Gruner, 2002; Madding, 1982, 1989; Wolfe & Zissis, 1993) for decades. However, fairly recent innovations have reduced costs, increased reliability, and resulted in noncontact IR sensors offering mobile, smaller units of measurement (EOI, 2002; Flir, 2000, 2001,2002). The advantages of using IR imaging are (1) rapidity in the millisecond range, facilitating measurement of moving targets, (2) noncontact procedures, allowing measurements of hazardous or physically inaccessible objects, (3) no interference and no energy lost from the target, (4) no risk of contamination, and (5) no mechanical effect on the surface of the object. All these factors have led to IR technology's becoming an area of interest for new kinds of applications and users. In both manufacturing and quality control, temperature plays an important role as an indicator of the condition of a product or a piece of machinery (EOI, 2002; Flir, 2000, 2001, 2002; Raytek, 2002). In medical and veterinary applications, IR thermometry is increasingly used in organ diagnostics, in the evaluation of sports injuries and the progression of therapy, in disease evaluation (e.g, breast cancer, arthritis, and SARS; Flir, 2003), and in injury and inflammation examinations in horses, livestock (Tivey & Banhazi, 2002), and zoo animals (Hermans-Killam, 2002a; Thiesbrummel, 2002). Lastly, physiological expressions of life processes in animals (Kastberger, Winder, & Steindl, 2001; Stabentheiner, Kovac, & Hagmüller, 1995; Stabentheiner, Kovac, & Schmaranzer, 2002; Stabentheiner & Schmarnzer, 1987) and plants (Bermadinger-Stabentheiner & Stabentheiner, 1995) can be monitored. The most recent field in which IR technology has been applied is animal behavior. This article focuses on the practical

  20. Imaging and the new biology: What's wrong with this picture?

    Science.gov (United States)

    Vannier, Michael W.

    2004-05-01

    The Human Genome has been defined, giving us one part of the equation that stems from the central dogma of molecular biology. Despite this awesome scientific achievement, the correspondence between genomics and imaging is weak, since we cannot predict an organism's phenotype from even perfect knowledge of its genetic complement. Biological knowledge comes in several forms, and the genome is perhaps the best known and most completely understood type. Imaging creates another form of biological information, providing the ability to study morphology, growth and development, metabolic processes, and diseases in vitro and in vivo at many levels of scale. The principal challenge in biomedical imaging for the future lies in the need to reconcile the data provided by one or multiple modalities with other forms of biological knowledge, most importantly the genome, proteome, physiome, and other "-ome's." To date, the imaging science community has not set a high priority on the unification of their results with genomics, proteomics, and physiological functions in most published work. Images are relatively isolated from other forms of biological data, impairing our ability to conceive and address many fundamental questions in research and clinical practice. This presentation will explain the challenge of biological knowledge integration in basic research and clinical applications from the standpoint of imaging and image processing. The impediments to progress, isolation of the imaging community, and mainstream of new and future biological science will be identified, so the critical and immediate need for change can be highlighted.

  1. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Adaptable data management for systems biology investigations

    Directory of Open Access Journals (Sweden)

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  3. Adaptable data management for systems biology investigations

    Science.gov (United States)

    Boyle, John; Rovira, Hector; Cavnor, Chris; Burdick, David; Killcoyne, Sarah; Shmulevich, Ilya

    2009-01-01

    Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community. PMID:19265554

  4. Editorial overview : Systems biology for biotechnology

    NARCIS (Netherlands)

    Heinemann, Matthias; Pilpel, Yitzhak

    About 15 years ago, systems biology was introduced as a novel approach to biological research. On the one side, its introduction was a result of the recognition that through solely the reductionist approach, we would ulti- mately not be able to understand how biological systems function as a whole.

  5. Quantitative biological imaging by ptychographic X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus; Kalbfleisch, Sebastian; Beerlink, Andre; Salditt, Tim [Institut fuer Roentgenphysik, Georg-August-Universitaet Goettingen (Germany); Thibault, Pierre; Dierolf, Martin; Pfeiffer, Franz [Department Physik (E17), Technische Universitaet Muenchen, Garching (Germany); Kewish, Cameron M. [Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-07-01

    Mesoscopic structures with specific functions are abundant in many cellular systems and have been well characterized by electron microscopy in the past. However, the quantitative study of the three-dimensional structure and density of subcellular components remains a difficult problem. In this contribution we show how these limitations could be overcome in the future by the application of recently introduced and now rapidly evolving coherent X-ray imaging techniques for quantitative biological imaging on the nanoscale. More specifically, we report on a recent scanning (ptychographic) diffraction experiment on unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiourans using only a pinhole as beam defining optical element. As a result quantitative density projections well below optical resolution have been achieved.

  6. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  7. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  8. Multispectral Panoramic Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  9. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  10. Radiographic imaging system

    International Nuclear Information System (INIS)

    Davis, L. Jr.; Barrett, H.H.

    1979-01-01

    This invention describes a system for imaging a subject, such as a human being, in which there has been injected a contrast agent which absorbs radiation of a predetermined frequency. The system utilizes a source of high energy radiation such as X or gamma radiation. The source is a composite of first and second radiating materials each of which is arranged in a predetermined pattern or code, each pattern having both luminous and dark regions. In one embodiment, the luminous regions of one pattern are in registration with the dark regions of the other pattern, these regions being spaced apart in an alternative embodiment. The characteristic frequencies of radiation emitted by the first and second materials are respectively lower and higher than the predetermined absorption frequency. A detector of radiation is positioned relative to the subject and the source such that radiation propagating through the subject is incident upon the detector. Since the absorption edge of the contrast agent lies between the two characteristic frequencies of radiation, radiation from the second material is preferentially absorbed by the contrast agent with the result that the contrast agent appears to be illuminated by a coded source while the remainder of the subject may be regarded as illuminated essentially by a uniform uncoded source. Imaging is accomplished by a decoding of a detected coded image. Substances within the subject having other absorption frequencies are not imaged since the radiations of both materials are essentially equally absorbed by the subject so that the source appears uncoded

  11. Introducing systems biology for nursing science.

    Science.gov (United States)

    Founds, Sandra A

    2009-07-01

    Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative.

  12. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... computational approaches, about the relation between living and artificial systems, and about the implications of interdisciplinary research for science and society. The entry can be openly accessed at the webpage of the Stanford Encyclopaedia of Philosophy: https://plato.stanford.edu/entries/systems-synthetic-biology/...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...

  13. Partnerships Drive Informatics Solutions for Biological Imaging at Ocean Observatories

    Science.gov (United States)

    Sosik, H. M.; Futrelle, J.; Maffei, A. R.

    2012-12-01

    In the big-data, era informatics-oriented partnerships are needed to achieve improved scientific results and understanding. Our teams' experience shows that formal methodologies to build interdisciplinary partnerships enable us to efficiently produce needed technological innovation. One-on-one partnerships between individual research scientists and informaticists provide a crucial building block for supporting larger, nested partnerships. We present one such partnership as an example. As ocean observatories mature, they produce data at a pace that threatens to overwhelm the capacity of individual researchers to manage and analyze it. Our multi-disciplinary team has addressed these challenges in the context of a study involving very large numbers (~1 billion) of images collected by Imaging FlowCytobot, an automated submersible flow cytometer that continuously images plankton at up to 10hz. These data provide novel insights into coastal ecosystem dynamics, including characterization of biological responses to environmental change and early warning of harmful algal blooms. In contrast with the traditional focus on technology adoption, we have instead emphasized building partnerships between oceanographers and computer scientists. In these partnerships we identify use cases, design solutions, develop prototypes, and refine them until they meet oceanographers' science needs. In doing so we have found that rapid and significant advances do not always require technological innovations, but rather effective communication, focus on science outcomes, and an iterative design and evaluation process. In this work we have adopted a methodology developed in the Tetherless World Constellation at Rensselaer Polytechnic Institute, a framework that has been used for several data-intensive earth science applications. The prototype system produced for Imaging FlowCytobot data provides simple and ubiquitous access to observational data and products via web services and includes a data

  14. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  15. Heart Imaging System

    Science.gov (United States)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  16. Introduction to Network Analysis in Systems Biology

    OpenAIRE

    Ma’ayan, Avi

    2011-01-01

    This Teaching Resource provides lecture notes, slides, and a problem set for a set of three lectures from a course entitled “Systems Biology: Biomedical Modeling.” The materials are from three separate lectures introducing applications of graph theory and network analysis in systems biology. The first lecture describes different types of intracellular networks, methods for constructing biological networks, and different types of graphs used to represent regulatory intracellular networks. The ...

  17. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  18. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  19. Advanced imaging in biology and medicine. Technology, software environments, applications

    International Nuclear Information System (INIS)

    Sensen, Christoph W.; Hallgrimsson, Benedikt

    2009-01-01

    Since the invention of X-Ray technology by Konrad Roentgen in 1895, non-invasive imaging technologies are part of the medical and biological tool kit. Today, quite a number of non-invasive imaging technologies exist, from 4-dimensional Ultrasound to Computer Tomography. Almost every individual is subjected to one or more of these technologies during their lifetime. Destructive imaging approaches such as light- and electron microscopy have benefitted from the development of computing algorithms and digital imaging, making them more and more valuable for the study of biological and medical phenomena. Not only is the number of imaging technologies increasing rapidly, at the same time the strategies and algorithms for image analysis are becoming more and more sophisticated. This book attempts for the first time to provide an overview of the major approaches to biological and medical imaging, the strategies for image analysis and the creation of models, which are based on the results of image analysis. This sets the book aside from the usual monographs, which introduce the reader only to a single technology. Given the broad range of topics covered, this book provides an overview of the field, which is useful for a wide audience, from physicians and biologists to readers who would like to know more about the technology, which is used to derive diagnoses of diseases today. (orig.)

  20. Marine biological data and information management system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.

    Indian National Oceanographic Data Centre (INODC) is engaged in developing a marine biological data and information management system (BIODIMS). This system will contain the information on zooplankton in the water column, zoobenthic biomass...

  1. Systems biology in critical-care nursing.

    Science.gov (United States)

    Schallom, Lynn; Thimmesch, Amanda R; Pierce, Janet D

    2011-01-01

    Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate patients and families on novel testing and therapies. Systems biology is an integrated and holistic view of humans in relationship with the environment. Biomarkers are used to measure the presence and severity of disease and are rapidly expanding in systems biology endeavors. A systems biology approach using predictive, preventive, and participatory involvement is being utilized in a plethora of conditions of critical illness and injury including sepsis, cancer, pulmonary disease, and traumatic injuries.

  2. Plant systems biology: insights, advances and challenges.

    Science.gov (United States)

    Sheth, Bhavisha P; Thaker, Vrinda S

    2014-07-01

    Plants dwelling at the base of biological food chain are of fundamental significance in providing solutions to some of the most daunting ecological and environmental problems faced by our planet. The reductionist views of molecular biology provide only a partial understanding to the phenotypic knowledge of plants. Systems biology offers a comprehensive view of plant systems, by employing a holistic approach integrating the molecular data at various hierarchical levels. In this review, we discuss the basics of systems biology including the various 'omics' approaches and their integration, the modeling aspects and the tools needed for the plant systems research. A particular emphasis is given to the recent analytical advances, updated published examples of plant systems biology studies and the future trends.

  3. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  4. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  5. Dimensionality reduction of bistable biological systems.

    Science.gov (United States)

    Zakharova, A; Nikoloski, Z; Koseska, A

    2013-03-01

    Time hierarchies, arising as a result of interactions between system's components, represent a ubiquitous property of dynamical biological systems. In addition, biological systems have been attributed switch-like properties modulating the response to various stimuli across different organisms and environmental conditions. Therefore, establishing the interplay between these features of system dynamics renders itself a challenging question of practical interest in biology. Existing methods are suitable for systems with one stable steady state employed as a well-defined reference. In such systems, the characterization of the time hierarchies has already been used for determining the components that contribute to the dynamics of biological systems. However, the application of these methods to bistable nonlinear systems is impeded due to their inherent dependence on the reference state, which in this case is no longer unique. Here, we extend the applicability of the reference-state analysis by proposing, analyzing, and applying a novel method, which allows investigation of the time hierarchies in systems exhibiting bistability. The proposed method is in turn used in identifying the components, other than reactions, which determine the systemic dynamical properties. We demonstrate that in biological systems of varying levels of complexity and spanning different biological levels, the method can be effectively employed for model simplification while ensuring preservation of qualitative dynamical properties (i.e., bistability). Finally, by establishing a connection between techniques from nonlinear dynamics and multivariate statistics, the proposed approach provides the basis for extending reference-based analysis to bistable systems.

  6. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  7. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  8. Decarboxylation mechanisms in biological system.

    Science.gov (United States)

    Li, Tingfeng; Huo, Lu; Pulley, Christopher; Liu, Aimin

    2012-08-01

    This review examines the mechanisms propelling cofactor-independent, organic cofactor-dependent and metal-dependent decarboxylase chemistry. Decarboxylation, the removal of carbon dioxide from organic acids, is a fundamentally important reaction in biology. Numerous decarboxylase enzymes serve as key components of aerobic and anaerobic carbohydrate metabolism and amino acid conversion. In the past decade, our knowledge of the mechanisms enabling these crucial decarboxylase reactions has continued to expand and inspire. This review focuses on the organic cofactors biotin, flavin, NAD, pyridoxal 5'-phosphate, pyruvoyl, and thiamin pyrophosphate as catalytic centers. Significant attention is also placed on the metal-dependent decarboxylase mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Introduction to the special issue on molecular imaging in radiation biology.

    Science.gov (United States)

    Humm, John L; Dewhirst, Mark W; Bhujwalla, Zaver M

    2012-04-01

    Molecular imaging is an evolving science that is concerned with the development of novel imaging probes and biomarkers that can be used to non-invasively image molecular and cellular processes. This special issue approaches molecular imaging in the context of radiation research, focusing on biomarkers and imaging methods that provide measurable signals that can assist in the quantification of radiation-induced effects of living systems at the physical, chemical and biological levels. The potential to image molecular changes in response to a radiation insult opens new and exciting opportunities for a more profound understanding of radiation biology, with the possibility of translation of these techniques to radiotherapy practice. This special issue brings together 14 reviews dedicated to the use of molecular imaging in the field of radiation research. The initial three reviews are introductory overviews of the key molecular imaging modalities: magnetic resonance, nuclear and optical. This is followed by 11 reviews each focusing on a specialist area within the field of radiation research. These include: hypoxia and perfusion, tissue metabolism, normal tissue injury, cell death and viability, receptor targeting and nanotechnology, reporter genes, reactive oxygen species (ROS), and biological dosimetry. Over the preceding decade, molecular imaging brought significant new advances to our understanding of every area of radiation biology. This special issue shows us these advances and points to the vibrant future of our field armed with these new capabilities.

  10. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...

  11. Drawing inspiration from biological optical systems

    Science.gov (United States)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  12. Metabolic systems biology: a brief primer.

    Science.gov (United States)

    Edwards, Lindsay M

    2017-05-01

    In the early to mid-20th century, reductionism as a concept in biology was challenged by key thinkers, including Ludwig von Bertalanffy. He proposed that living organisms were specific examples of complex systems and, as such, they should display characteristics including hierarchical organisation and emergent behaviour. Yet the true study of complete biological systems (for example, metabolism) was not possible until technological advances that occurred 60 years later. Technology now exists that permits the measurement of complete levels of the biological hierarchy, for example the genome and transcriptome. The complexity and scale of these data require computational models for their interpretation. The combination of these - systems thinking, high-dimensional data and computation - defines systems biology, typically accompanied by some notion of iterative model refinement. Only sequencing-based technologies, however, offer full coverage. Other 'omics' platforms trade coverage for sensitivity, although the densely connected nature of biological networks suggests that full coverage may not be necessary. Systems biology models are often characterised as either 'bottom-up' (mechanistic) or 'top-down' (statistical). This distinction can mislead, as all models rely on data and all are, to some degree, 'middle-out'. Systems biology has matured as a discipline, and its methods are commonplace in many laboratories. However, many challenges remain, especially those related to large-scale data integration. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  14. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine.

    Science.gov (United States)

    Que, Emily L; Chang, Christopher J

    2010-01-01

    This tutorial review highlights progress in the development of responsive magnetic resonance imaging (MRI) contrast agents for detecting and sensing biologically relevant metal ions. Molecular imaging with bioactivatable MRI indicators offers a potentially powerful methodology for studying the physiology and pathology of metals by capturing dynamic three-dimensional images of living systems for research and clinical applications. This emerging area at the interface of inorganic chemistry and the life sciences offers a broad palette of opportunities for researchers with interests ranging from coordination chemistry and spectroscopy to supramolecular chemistry and molecular recognition to metals in biology and medicine.

  15. Matrix effects in biological mass spectrometry imaging: identification and compensation.

    Science.gov (United States)

    Lanekoff, Ingela; Stevens, Susan L; Stenzel-Poore, Mary P; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model to examine matrix effects in nanospray desorption electrospray ionization MSI (nano-DESI MSI). This is achieved by normalizing the intensity of the sodium and potassium adducts of endogenous phosphatidylcholine (PC) species to the intensity of the corresponding adduct of the PC standard supplied at a constant rate with the nano-DESI solvent. The use of MCAO model with an ischemic region localized to one hemisphere of the brain enables immediate comparison of matrix effects within one ion image. Furthermore, significant differences in sodium and potassium concentrations in the ischemic region in comparison with the healthy tissue allowed us to distinguish between two types of matrix effects. Specifically, we discuss matrix effects originating from variations in alkali metal concentrations and matrix effects originating from variations in the molecular composition of the tissue. Compensation for both types of matrix effects was achieved by normalizing the signals corresponding to endogenous PC to the signals of the standards. This approach, which does not introduce any complexity in sample preparation, efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  16. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  17. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  18. EURASIP journal on bioinformatics & systems biology

    National Research Council Canada - National Science Library

    2006-01-01

    "The overall aim of "EURASIP Journal on Bioinformatics and Systems Biology" is to publish research results related to signal processing and bioinformatics theories and techniques relevant to a wide...

  19. A framework for evolutionary systems biology.

    Science.gov (United States)

    Loewe, Laurence

    2009-02-24

    Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  20. A Philosophical Perspective on Evolutionary Systems Biology.

    Science.gov (United States)

    O'Malley, Maureen A; Soyer, Orkun S; Siegal, Mark L

    2015-03-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB's progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology.

  1. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  2. Potential of biological images for radiation therapy of cancer

    International Nuclear Information System (INIS)

    Ling, C.

    2001-01-01

    Full text: Recent technical advances in 3D conformal and intensity modulated radiotherapy (3DCRT and IMRT) based, on patient-specific CT and MRI images, have the potential of delivering exquisitely conformal dose distributions to the target volume while avoiding critical structures. Emerging clinical results in terms of reducing treatment-related morbidity and increasing local control appear promising. Recent developments in imaging have suggested that biological images may further positively impact cancer diagnosis, characterization and therapy. While in the past radiological images are largely anatomical, the new types of images can provide metabolic, biochemical, physiological, functional and molecular (genotypic and phenotypic) information. For radiation therapy, images that give information about factors (e.g. tumor hypoxia, T pot ) that influence radiosensitivity and treatment outcome can be regarded as radiobiological images. The ability of IMRT to 'paint' (in 2D) or 'sculpt' (in 3D) the dose, and produce exquisitely conformal dose distributions begs the '64 million dollar question' as to how to paint or sculpt, and whether biological imaging may provide the pertinent information. Can this new approach provide 'radiobiological phenotypes' non-invasively, and incrementally improve upon the predictive assays of radiobiological characteristics such as proliferative activity (T pot - the potential doubling time), radiosensitivity (SF 2 - the surviving fraction at a dose of 2 Gy), energy status (relative to sublethal damage repair), pH (a possible surrogate of hypoxia), tumor hypoxia, etc. as prognosticator(s) of radiation treatment outcome. Important for IMRT, the spatial (geometrical) distribution of the radiobiological phenotypes provide the basis for dose distribution design to conform to both the physical (geometrical) and the biological attributes. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  3. Systems biology: leading the revolution in ecotoxicology.

    Science.gov (United States)

    Garcia-Reyero, Natàlia; Perkins, Edward J

    2011-02-01

    The rapid development of new technologies such as transcriptomics, proteomics, and metabolomics (Omics) are changing the way ecotoxicology is practiced. The data deluge has begun with genomes of over 65 different aquatic species that are currently being sequenced, and many times that number with at least some level of transcriptome sequencing. Integrating these top-down methodologies is an essential task in the field of systems biology. Systems biology is a biology-based interdisciplinary field that focuses on complex interactions in biological systems, with the intent to model and discover emergent properties of the system. Recent studies demonstrate that Omics technologies provide valuable insight into ecotoxicity, both in laboratory exposures with model organisms and with animals exposed in the field. However, these approaches require a context of the whole animal and population to be relevant. Powerful approaches using reverse engineering to determine interacting networks of genes, proteins, or biochemical reactions are uncovering unique responses to toxicants. Modeling efforts in aquatic animals are evolving to interrelate the interacting networks of a system and the flow of information linking these elements. Just as is happening in medicine, systems biology approaches that allow the integration of many different scales of interaction and information are already driving a revolution in understanding the impacts of pollutants on aquatic systems. © 2010 SETAC.

  4. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  5. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  6. Central nervous system imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Since its introduction in 1973, computed tomography (CT) of the brain has had a revolutionary impact on neuroradiologic diagnosis. It has largely replaced radionuclide brain imaging as the initial, noninvasive neurologic screening examination. Although conventional radionuclide brain imaging still contributes useful and unique diagnostic information in a few clinical situations, it appears that new technology and applications must be found if nuclear imaging is to play a prominent future role in neurologic diagnosis as it did in the past. One of the main advantages of CT over radionuclide brain imaging at present is CT's ability to demonstrate the size, shape, and position of the cerebral ventricles and subarachnoid spaces. Another important strength of CT is the ability to differentiate ischemic cerebral infarction from intracerebral hemorrhage. The overall sensitivity of CT in detecting intracranial neoplasms is also greater than that of radionuclide brain imaging, and CT is very useful in demonstrating the effects of head trauma. Magnetic resonance imaging appears superior to CT in the evaluation of neurologic disorders. A renewed interest in radionuclide brain imaging has developed because of recent advances in emission computed tomographic imaging. When tracer kinetic models are used, cerebral blood flow (CBF), blood volume, metabolic rate, and glucose and amino acid transport can be measured. Other applications involve investigation of receptor bindings, evaluation of the blood-brain barrier, brain blood-volume measurement, and cisternography

  7. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...

  8. Volume scanning electron microscopy for imaging biological ultrastructure.

    Science.gov (United States)

    Titze, Benjamin; Genoud, Christel

    2016-11-01

    Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre-scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error-prone manual tasks of cutting and handling large numbers of sections, and imaging them one-by-one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z-resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block-face electron microscopy (SBEM), focused ion beam SEM (FIB-SEM) and automated tape-collecting ultramicrotome SEM (ATUM-SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  9. Integrative Systems Biology Visualization with MAYDAY

    Directory of Open Access Journals (Sweden)

    Symonsy Stephan

    2010-12-01

    Full Text Available Visualization is pivotal for gaining insight in systems biology data. As the size and complexity of datasets and supplemental information increases, an efficient, integrated framework for general and specialized views is necessary. MAYDAY is an application for analysis and visualization of general ‘omics’ data. It follows a trifold approach for data visualization, consisting of flexible data preprocessing, highly customizable data perspective plots for general purpose visualization and systems based plots. Here, we introduce two new systems biology visualization tools for MAYDAY. Efficiently implemented genomic viewers allow the display of variables associated with genomic locations. Multiple variables can be viewed using our new track-based ChromeTracks tool. A functional perspective is provided by visualizing metabolic pathways either in KEGG or BioPax format. Multiple options of displaying pathway components are available, including Systems Biology Graphical Notation (SBGN glyphs. Furthermore, pathways can be viewed together with gene expression data either as heatmaps or profiles.

  10. Statistical Model Checking for Biological Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2014-01-01

    Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...... timed automata and most recently hybrid systems using the tool Uppaal SMC. In this paper we enable the application of SMC to complex biological systems, by combining Uppaal SMC with ANIMO, a plugin of the tool Cytoscape used by biologists, as well as with SimBiology®, a plugin of Matlab to simulate...

  11. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  12. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  13. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Zakhidov, E.A.; Zakhidova, M.A.; Kasymdzhanov, M.A.; Kurbanov, S.S.; Nematov, Sh.K.; Khabibullaev, P.K.

    2005-01-01

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  14. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  15. Confocal direct imaging Raman microscope: design and applications in biology

    NARCIS (Netherlands)

    Sijtsema, N.M.; Wouters, Siddi D.; de Grauw, Cees J.; de Grauw, C.J.; Otto, Cornelis; Greve, Jan

    1998-01-01

    A confocal direct imaging Raman microscope (CDIRM) based on two synchronized scanning mirrors, a monochromator, and two charge-coupled device (CCD) cameras has been developed. With this system it is possible to make both Raman spectra of a small measurement volume and images of a larger sample area

  16. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  17. Advances in Small Animal Imaging Systems

    Science.gov (United States)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  18. Advances in Small Animal Imaging Systems

    International Nuclear Information System (INIS)

    Loudos, George K.

    2007-01-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  19. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  20. Nonlinear plasmonic imaging techniques and their biological applications

    Science.gov (United States)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  1. Nonlinear plasmonic imaging techniques and their biological applications

    Directory of Open Access Journals (Sweden)

    Deka Gitanjal

    2016-07-01

    Full Text Available Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics, as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  2. Heavy ion action on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J. [Giessen Univ. (Germany). Zentrum fuer Radiologie; Brend`amour, M. [Giessen Univ. (Germany). Zentrum fuer Radiologie; Stoll, U. [Giessen Univ. (Germany). Zentrum fuer Radiologie

    1996-02-01

    Life is governed by molecular processes, particularly involving the expression and conservation of genetic information. Heavy ions deposit large amount of energy at very small scale comparable to the essential molecular structures of biological systems. This paper illustrates the special aspects of heavy ion radiobiology from a fundamental point of view. After a short summary of the structure and function of biological systems, concentrating on the cell and its constituents, the pattern of energy deposition by heavy ions is discussed. Experimental examples are the induction of molecular changes in deoxyribonucleic acid, cell killing and the formation of mutations. It is shown that a close link exists between the physical parameters and the inactivation of biological functions that is not restricted to direct particle traversals but may also be brought about by the action of far-reaching secondary electrons. (orig.).

  3. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  4. Multilingual system using Internet imaging

    Science.gov (United States)

    Mori, Tadashi; Hata, Yoshitsugu; Iida, Ryouji; Kakugawa, Hirotsugu; Ae, Tadashi; Murakami, Hisae

    2000-12-01

    In these years, multilingual system becomes important, but, most computer environment cannot handle all languages (scripts) in ths world. This paper presents a multilingual imaging system on the Internet. In this system, characters are converted into bitmaps, and therefore, we can display multilingual text on WWW browsers. In order to convert multilingual plain text into bitmap images, we have developed software named ctext2pgm and VFlib. VFlib is a software component to rasterize fonts in various file formats, and ctext2pgm generates bitmap image files form multilingual plain texts. Ctext2pgm is an application program of VFlib, and it supports about 30 languages. We also introduce a language education system for various languages. This is an example of the multilingual system using internet imaging.

  5. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  6. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  7. Radiological/biological/aerosol removal system

    Science.gov (United States)

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  8. Studies on Semantic Systems Chemical Biology

    Science.gov (United States)

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  9. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  10. Nutritional Systems Biology: Definitions and Approaches

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Nielsen, Jens

    2009-01-01

    waiting for a predictive knowledge of genetic variation. It is widely recognized that systems and network biology has the potential to increase our understanding of how nutrition influences metabolic pathways and homeostasis, how this regulation is disturbed in a diet-related disease, and to what extent...... individual genotypes contribute to such diseases....

  11. How do biological systems escape 'chaotic' state?

    Indian Academy of Sciences (India)

    B J Rao

    2018-02-13

    Feb 13, 2018 ... triggering 'escape from homeostasis' (Nijhout et al. 2014) where phenotypes begin to become less stable and eventually turn into fully unstable state, the start of 'chaos' in a system. Therefore, the key to biological designs is to stay close to or within the 'homeostatic plateau' and resist drifting into 'chaos'.

  12. Notions of radiation chemistry in biological systems

    International Nuclear Information System (INIS)

    Mastro, N.L. del.

    1989-10-01

    The present paper examines some aspects of the direct and indirect biological radiation effects: pair formation, free radicals, superoxide ion, hydrogen peroxide, hydroxyl radical, oxygen singlet together with the endogen radioprotector mechanisms of organisms and the ways in which an improved radioresistance of biochemical systems can be achieved. (author) [pt

  13. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe...

  14. Micromechanics of engineered and biological systems

    Indian Academy of Sciences (India)

    Microsystems are good examples of integrated engineered systems of small size. Although this .... In develop- mental biology, the application of controlled forces on growing embryos is shown to help in under- standing ..... Optimization is a useful tool for synthesis. Many optimal synthesis methods have been developed for.

  15. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  16. Airborne Hyperspectral Imaging System

    Science.gov (United States)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  17. Mathematical Modeling of Complex Biological Systems

    OpenAIRE

    Fischer, Hans Peter

    2008-01-01

    To understand complex biological systems such as cells, tissues, or even the human body, it is not sufficient to identify and characterize the individual molecules in the system. It also is necessary to obtain a thorough understanding of the interaction between molecules and pathways. This is even truer for understanding complex diseases such as cancer, Alzheimer’s disease, or alcoholism. With recent technological advances enabling researchers to monitor complex cellular processes on the mole...

  18. Visualizing dimensionality reduction of systems biology data

    OpenAIRE

    Lehrmann, Andreas; Huber, Michael; Polatkan, Aydin C.; Pritzkau, Albert; Nieselt, Kay

    2012-01-01

    One of the challenges in analyzing high-dimensional expression data is the detection of important biological signals. A common approach is to apply a dimension reduction method, such as principal component analysis. Typically, after application of such a method the data is projected and visualized in the new coordinate system, using scatter plots or profile plots. These methods provide good results if the data have certain properties which become visible in the new coordinate system and which...

  19. Semiautomatic digital imaging system for cytogenetic analysis

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Chauhan, P.C.; Bannur, S.V.; Kulgod, S.V.; Chadda, V.K.; Nigam, R.K.

    1999-08-01

    The paper describes a digital image processing system, developed indigenously at BARC for size measurement of microscopic biological objects such as cell, nucleus and micronucleus in mouse bone marrow; cytochalasin-B blocked human lymphocytes in-vitro; numerical counting and karyotyping of metaphase chromosomes of human lymphocytes. Errors in karyotyping of chromosomes by the imaging system may creep in due to lack of well-defined position of centromere or extensive bending of chromosomes, which may result due to poor quality of preparation. Good metaphase preparations are mandatory for precise and accurate analysis by the system. Additional new morphological parameters about each chromosome have to be incorporated to improve the accuracy of karyotyping. Though the experienced cytogenetisist is the final judge; however, the system assists him/her to carryout analysis much faster as compared to manual scoring. Further, experimental studies are in progress to validate different software packages developed for various cytogenetic applications. (author)

  20. Systems biology of vaccination in the elderly.

    Science.gov (United States)

    Duraisingham, Sai S; Rouphael, Nadine; Cavanagh, Mary M; Nakaya, Helder I; Goronzy, Jorg J; Pulendran, Bali

    2013-01-01

    Aging population demographics, combined with suboptimal vaccine responses in the elderly, make the improvement of vaccination strategies in the elderly a developing public health issue. The immune system changes with age, with innate and adaptive cell components becoming increasingly dysfunctional. As such, vaccine responses in the elderly are impaired in ways that differ depending on the type of vaccine (e.g., live attenuated, polysaccharide, conjugate, or subunit) and the mediators of protection (e.g., antibody and/or T cell). The rapidly progressing field of systems biology has been shown to be useful in predicting immunogenicity and offering insights into potential mechanisms of protection in young adults. Future application of systems biology to vaccination in the elderly may help to identify gene signatures that predict suboptimal responses and help to identify more accurate correlates of protection. Moreover, the identification of specific defects may be used to target novel vaccination strategies that improve efficacy in elderly populations.

  1. Hyperspectral Systems Increase Imaging Capabilities

    Science.gov (United States)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  2. Measuring cell identity in noisy biological systems

    Science.gov (United States)

    Birnbaum, Kenneth D.; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty measure dSpec, which measures the effect of noise on specificity. Using global gene expression data from the mouse brain, plant root and human white blood cells, we show that Spec identifies genes with variable expression levels that are nonetheless highly specific of particular cell types. When samples from different individuals are used, dSpec measures genes’ transcriptional plasticity in each cell type. Our approach is broadly applicable to mapped gene expression measurements in stem cell biology, developmental biology, cancer biology and biomarker identification. As an example of such applications, we show that Spec identifies a new class of biomarkers, which exhibit variable expression without compromising specificity. The approach provides a unifying theoretical framework for quantifying specificity in the presence of noise, which is widely applicable across diverse biological systems. PMID:21803789

  3. Effects of Pesticides on Biological Systems

    Directory of Open Access Journals (Sweden)

    Ergul Belge Kurutas

    2003-06-01

    Full Text Available The use of pesticid both in Turkey and other contries is widespread in order to combat against many pests which cause economical damages. However, pesticides in human pass through skin, respiratory or digestive systems and is metabolized by monooxygenase system dependent upon cytocrome P450 in liver. They also give rise to severe decreases cytochrome P450 and amount of "hem" enzyme activites of glucose-6-phosphatase, pyrophosphatase by stimulating lipid peroxidation on hepatic microsomes. In this study effects of pesticides on biological systems will be presented in genaral terms. [Archives Medical Review Journal 2003; 12(3.000: 215-228

  4. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  5. Expert system controlled image display

    International Nuclear Information System (INIS)

    Swett, H.A.; Fisher, P.; Mutalik, P.

    1988-01-01

    Conventional medical expert systems deliver advice as text (a diagnosis, list, recommendation, or discussion). This may be quite useful in some areas of medical decision making but has distinct limitations in such a visually oriented discipline as diagnostic imaging, where decisions often depend on pattern recognition and the appreciation of subtle morphologic features. We are developing an expert system that displays groups of images as part of its intelligent output. This system uses a rule-based strategy to select images for display. They may be displayed because they share a common feature, cluster of features, or clinical history. Such a system may be useful as a diagnostic aid or for continuing medical education. It is likely to have particular value in the setting of picture archiving and communication systems

  6. Optoelectronic system and apparatus for connection to biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Nielson, Gregory N.

    2018-03-06

    The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.

  7. Set membership experimental design for biological systems

    Directory of Open Access Journals (Sweden)

    Marvel Skylar W

    2012-03-01

    Full Text Available Abstract Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This

  8. Interactive radiographic image retrieval system.

    Science.gov (United States)

    Kundu, Malay Kumar; Chowdhury, Manish; Das, Sudeb

    2017-02-01

    Content based medical image retrieval (CBMIR) systems enable fast diagnosis through quantitative assessment of the visual information and is an active research topic over the past few decades. Most of the state-of-the-art CBMIR systems suffer from various problems: computationally expensive due to the usage of high dimensional feature vectors and complex classifier/clustering schemes. Inability to properly handle the "semantic gap" and the high intra-class versus inter-class variability problem of the medical image database (like radiographic image database). This yields an exigent demand for developing highly effective and computationally efficient retrieval system. We propose a novel interactive two-stage CBMIR system for diverse collection of medical radiographic images. Initially, Pulse Coupled Neural Network based shape features are used to find out the most probable (similar) image classes using a novel "similarity positional score" mechanism. This is followed by retrieval using Non-subsampled Contourlet Transform based texture features considering only the images of the pre-identified classes. Maximal information compression index is used for unsupervised feature selection to achieve better results. To reduce the semantic gap problem, the proposed system uses a novel fuzzy index based relevance feedback mechanism by incorporating subjectivity of human perception in an analytic manner. Extensive experiments were carried out to evaluate the effectiveness of the proposed CBMIR system on a subset of Image Retrieval in Medical Applications (IRMA)-2009 database consisting of 10,902 labeled radiographic images of 57 different modalities. We obtained overall average precision of around 98% after only 2-3 iterations of relevance feedback mechanism. We assessed the results by comparisons with some of the state-of-the-art CBMIR systems for radiographic images. Unlike most of the existing CBMIR systems, in the proposed two-stage hierarchical framework, main importance

  9. Elemental and isotopic imaging of biological samples using NanoSIMS.

    Science.gov (United States)

    Kilburn, Matt R; Clode, Peta L

    2014-01-01

    With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.

  10. The Impact of Systems Biology on Bioprocessing

    DEFF Research Database (Denmark)

    Campbell, Kate; Xia, Jianye; Nielsen, Jens

    2017-01-01

    alongside mathematical modeling to characterize and predict cellular physiology. This approach can drive cycles of design, build, test, and learn implemented by metabolic engineers to optimize the cell factory performance. Streamlining of the design phase requires a clearer understanding of metabolism...... and its regulation, which can be achieved using quantitative and integrated omic characterization, alongside more advanced analytical methods. We discuss here the current impact of systems biology and challenges of closing the gap between bioprocessing and more traditional methods of chemical production....

  11. Nutritional systems biology of type 2 diabetes

    OpenAIRE

    Zhao, Y; Barrere-Cain, RE; Yang, X

    2015-01-01

    © 2015, The Author(s). Type 2 diabetes (T2D) has become an increasingly challenging health burden due to its high morbidity, mortality, and heightened prevalence worldwide. Although dietary and nutritional imbalances have long been recognized as key risk factors for T2D, the underlying mechanisms remain unclear. The advent of nutritional systems biology, a field that aims to elucidate the interactions between dietary nutrients and endogenous molecular entities in disease-related tissues, offe...

  12. Modelling and Inference Strategies for Biological Systems

    OpenAIRE

    Palmisano, Alida

    2010-01-01

    For many years, computers have played an important role in helping scientists to store, manipulate, and analyze data coming from many different disciplines. In recent years, however, new technological capabilities and new ways of thinking about the usefulness of computer science is extending the reach of computers from simple analysis of collected data to hypothesis generation. The aim of this work is to provide a contribution in the Computational Systems Biology field. The main purpose of...

  13. Systems biology solutions for biochemical production challenges

    DEFF Research Database (Denmark)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus

    2017-01-01

    characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity......There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics...

  14. Promises and Pitfalls of Metal Imaging in Biology.

    Science.gov (United States)

    New, Elizabeth J; Wimmer, Verena C; Hare, Dominic J

    2018-01-18

    A picture may speak a thousand words, but if those words fail to form a coherent sentence there is little to be learned. As cutting-edge imaging technology now provides us the tools to decipher the multitude of roles played by metals and metalloids in molecular, cellular, and developmental biology, as well as health and disease, it is time to reflect on the advances made in imaging, the limitations discovered, and the future of a burgeoning field. In this Perspective, the current state of the art is discussed from a self-imposed contrarian position, as we not only highlight the major advances made over the years but use them as teachable moments to zoom in on challenges that remain to be overcome. We also describe the steps being taken toward being able to paint a completely undisturbed picture of cellular metal metabolism, which is, metaphorically speaking, the Holy Grail of the discipline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  16. Combining Different Modalities for 3D Imaging of Biological Objects

    CERN Document Server

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  17. An XCT image database system

    International Nuclear Information System (INIS)

    Komori, Masaru; Minato, Kotaro; Koide, Harutoshi; Hirakawa, Akina; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Yamasaki, Tetsuo; Kuwahara, Michiyoshi.

    1984-01-01

    In this paper, an expansion of X-ray CT (XCT) examination history database to XCT image database is discussed. The XCT examination history database has been constructed and used for daily examination and investigation in our hospital. This database consists of alpha-numeric information (locations, diagnosis and so on) of more than 15,000 cases, and for some of them, we add tree structured image data which has a flexibility for various types of image data. This database system is written by MUMPS database manipulation language. (author)

  18. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  19. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  20. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  1. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    GPSR: A Resource for Genomics Proteomics and Systems Biology · Simple Calculation Programs for Biology Immunological Methods · Simple Calculation Programs for Biology Methods in Molecular Biology · Simple Calculation Programs for Biology Other Methods · PowerPoint Presentation · Slide 6 · Slide 7 · Prediction of ...

  2. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  3. Biological Therapy in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Mariana Postal

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototypic inflammatory autoimmune disorder characterized by multisystem involvement and fluctuating disease activity. Symptoms range from rather mild manifestations such as rash or arthritis to life-threatening end-organ manifestations. Despite new and improved therapy having positively impacted the prognosis of SLE, a subgroup of patients do not respond to conventional therapy. Moreover, the risk of fatal outcomes and the damaging side effects of immunosuppressive therapies in SLE call for an improvement in the current therapeutic management. New therapeutic approaches are focused on B-cell targets, T-cell downregulation and costimulatory blockade, cytokine inhibition, and the modulation of complement. Several biological agents have been developed, but this encouraging news is associated with several disappointments in trials and provide a timely moment to reflect on biologic therapy in SLE.

  4. Intellectual system for images restoration

    Science.gov (United States)

    Mardare, Igor

    2005-02-01

    Intelligence systems on basis of artificial neural networks and associative memory allow to solve effectively problems of recognition and restoration of images. However, within analytical technologies there are no dominating approaches of deciding of intellectual problems. Choice of the best technology depends on nature of problem, features of objects, volume of represented information about the object, number of classes of objects, etc. It is required to determine opportunities, preconditions and field of application of neural networks and associative memory for decision of problem of restoration of images and to use their supplementary benefits for further development of intelligence systems.

  5. Army Medical Imaging System - ARMIS

    Science.gov (United States)

    1992-08-08

    Melvin P. Siedband Frank C. Grenzow Craig A. Heilman James R. Gray Huilian Zhang A ... NTtS CFA?•I " U ; J C l A t j. University of Wisconsin _. I e...Medical Imaging System - ARMIS Contract # 6.AUTHOR(S) Melvin P. Siedband James R. Gray DAMDI7-88C-8058 Frank C. Grenzow Huilian Zhang 63807A Craig A...its use is inconsistent to the people who must manage it. The consistency of the Macin- tosh operating system permits easier staff training as imaging

  6. The Groningen image processing system

    International Nuclear Information System (INIS)

    Allen, R.J.; Ekers, R.D.; Terlouw, J.P.

    1985-01-01

    This paper describes an interactive, integrated software and hardware computer system for the reduction and analysis of astronomical images. A short historical introduction is presented before some examples of the astonomical data currently handled by the system are shown. A description is given of the present hardware and software structure. The system is illustrated by describing its appearance to the user, to the applications programmer, and to the system manager. Some quantitative information on the size and cost of the system is given, and its good and bad features are discussed

  7. It's the System, Stupid: How Systems Biology Is Transforming.

    Science.gov (United States)

    2010-01-01

    So far, little is known about systems biology and its potential for changing how we diagnose and treat disease. That will change soon, say the systems experts, who advise payers to begin learning now about how it could make healthcare efficient.

  8. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  9. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  10. Musashi dynamic image processing system

    International Nuclear Information System (INIS)

    Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira

    1992-01-01

    In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)

  11. Monolithic Multiband CMUTs for Photoacoustic Computed Tomography With In Vivo Biological Tissue Imaging.

    Science.gov (United States)

    Pun, Sio Hang; Yu, Yuanyu; Zhang, Jian; Wang, Jiujiang; Cheng, Ching-Hsiang; Lei, Kin Fong; Yuan, Zhen; Mak, Peng Un

    2018-03-01

    Among the biomedical imaging modalities, photoacoustic computed tomography (PACT) was one of the emerging hybrid techniques in recent years. In designing the PACT imaging system, a finite-bandwidth transducer is one of the limited factors for the overall performance. As the target size is inversely proportional to the dominant frequency components of the generated photoacoustic (PA) signal, a broad bandwidth transducer is desired for different scales' imaging. In this paper, a monolithic multiband capacitive micromachined ultrasonic transducer (CMUT) array was designed and fabricated for the reception of the wideband PA signals so as to provide high-resolution images with high-frequency CMUT arrays and present the high signal-to-noise-ratio major structure with low-frequency CMUT arrays. To demonstrate its performance, a phantom experiment was conducted to show and evaluate the various qualities of multiresolution images. In addition, an in vivo mouse model experiment was also carried out for revealing the multiscale PA imaging capability with the multiband CMUTs on biological tissues. From the obtained results, the images from different CMUT arrays could show the structures of the mouse brain in different scales. In addition, the images from the high-frequency CMUT arrays were able to reveal the major blood vasculatures, whereas the images from low-frequency CMUT arrays showed the gross macroscopic anatomy of the brain with higher contrast.

  12. High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Esther K. Kieserman, Chanjae Lee, Ryan S. Gray, Tae Joo Park and John B. Wallingford Corresponding author ([]()). ### INTRODUCTION Embryos of the frog *Xenopus laevis* are an ideal model system for in vivo imaging of dynamic biological processes, from the inner workings of individual cells to the reshaping of tissues during embryogenesis. Their externally developing embryos are more amenable to in vivo analysis than in...

  13. Systems Biology: Impressions from a Newcomer Graduate Student in 2016

    Science.gov (United States)

    Simpson, Melanie Rae

    2016-01-01

    As a newcomer, the philosophical basis of systems biology seems intuitive and appealing, the underlying philosophy being that the whole of a living system cannot be completely understood by the study of its individual parts. Yet answers to the questions "What is systems biology?" and "What constitutes a systems biology approach in…

  14. Biological diversity in the patent system.

    Directory of Open Access Journals (Sweden)

    Paul Oldham

    Full Text Available Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI established by the Global Biodiversity Information Facility (GBIF and Encyclopedia of Life (EOL. We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8-1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on

  15. Biological Diversity in the Patent System

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Forero, Oscar

    2013-01-01

    Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI) established by the Global Biodiversity Information Facility (GBIF) and Encyclopedia of Life (EOL). We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8–1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on Intellectual

  16. System for determining sizes of biological macromolecules

    International Nuclear Information System (INIS)

    Nelson, R.M.; Danby, P.C.

    1987-01-01

    An electrophoresis system for determining the sizes of radiolabelled biological macromolecules is described. It comprises a cell containing an electrophoresis gel and having at least one lane, a voltage source connected across the gel for effecting the movement of macromolecules in the lane, a detector fixed relative to the moving molecules for generating electrical pulses responsive to signals emitted by the radiolabelled molecules; a pulse processor for counting the pulse rate, and a computational device for comparing the pulse rate to a predetermined value. (author)

  17. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... projects three different approaches to using computational toxicology to aid classical toxicological investigations. In project I, we predicted human health effects of five pesticides using publicly available data. We obtained a grouping of the chemical according to their potential human health effects...

  18. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  19. The RTSS Image Generation System

    NARCIS (Netherlands)

    Alvermann, K.; Graeber, S.; Mager, J.W.L.J.; Smith, M.H.

    1996-01-01

    Main market demands for the visual system of a simulator are photorealism and low latency time. RTSS, a general purpose image generation module developed within the European ESPRIT project HAMLET, can meet these demands through the use of High Performance Computing technology. This technology

  20. Imaging Systems in TLE Research

    DEFF Research Database (Denmark)

    Allin, Thomas Højgaard; Neubert, Torsten; Laursen, Steen

    2006-01-01

    documented using the right equipment in the right way. This chapter provides an introduction to the concepts of low light imagers, and how they can be successfully applied in TLE research. As examples, we describe the 2003 and 2004 Spritewatch systems, which integrate low-light cameras with a digital...

  1. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  2. Optical sensors and their applications for probing biological systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina

    biological sample to provide a SERS-template where silver nanoparticles can grow, thus providing a new insight into SERS-based sensors for chemically sensing in-situ plant constituents. Optical manipulation techniques have been used to investigate mechanical properties of soft membrane cells, i.e. mammalian......There is a great interest in exploring and developing new optical sensitive methodologies for probing complex biological systems. In this project we developed non-invasive and sensitive biosensor strategies for studying physiologically relevant chemical and physical properties of plant...... parts of the fresh tissues. The location of the nanoparticles inside some of the tissues was examined via SERS images, collected from Raman signatures of the constituents of the tissues as well as from Raman signatures of a specific pH-sensitive reporter molecule attached to the nanoparticles...

  3. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Van der Putten, W.H.; de Ruiter, P.C.; Struik, P.C.; Thomma, B.P.H.J.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase

  4. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  5. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  6. The use contrast agent for imaging biological samples

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, František; Sopko, V.; Jakůbek, J.

    2011-01-01

    Roč. 6, C01096 (2011), s. 1-7 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /12./. Cambridge, 11.07.2010-15.7.2010] R&D Projects: GA MŠk 2B06005 Grant - others:Research Program(CZ) 6840770029; Research Program(CZ) 6840770040; GA AV ČR(CZ) IAA600550614; GA MŠk(CZ) 2B06007; GA MŠk(CZ) 1PO4LA211; GA MŠk(CZ) LC06041 Program:IA; 2B; LC Institutional research plan: CEZ:AV0Z50070508 Keywords : x-ray radiography and digital radiography (DR) * x-ray detectors * inspections with x-rays Subject RIV: EA - Cell Biology Impact factor: 1.869, year: 2011

  7. EPR imaging of diffusional processes in biologically relevant polymers

    Science.gov (United States)

    Berliner, Lawrence J.; Fujii, Hirotada

    Diffusion processes in biological tissue are important problems for noninvasive investigation. As a model study, this work addresses the diffusion of an electrolyte buffer (Krebs) solution containing a nitroxide spin probe into a cylindrical polyacrylamide gel rod. The nitroxide spin density distribution was imaged at 1.6 GHz in gel cross sections at various time intervals for both homogeneous radial diffusion and inhomogeneous diffusion. A one-dimensional radial diffusion constant was calculated for the nitroxide spin probe, TEMPOL, of 3.7 ± 0.7 × 10 -6 cm 2/s at ambient temperature. The EPR spectrometer, using low-field flat-loop surface coils (H. Nishikawa, H. Fujii, and L. J. Berliner, J. Magn. Reson.62, 79 (1985)), showed minimal dielectric or magnetic losses in sensitity for electrolyte vs nondielectric samples.

  8. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  9. Modeling of Imaging Systems in MATLAB

    Directory of Open Access Journals (Sweden)

    J. Hozman

    2003-12-01

    Full Text Available For many applications in image processing it is necessary to knowmodel of imaging system, which has been used for image data obtain.Knowledge about system can be used for the simulation of an image datain astronomy (telescope and CCD camera, for example in near IR band orwe can treat the compression algorithm as any other imaging system andperform objective image quality measurement.

  10. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  11. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  12. Biological Systems for Hydrogen Photoproduction (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, M. L.

    2012-05-01

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  13. Language Based Techniques for Systems Biology

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    Process calculus is the common denominator for a class of compact, idealised, domain-specific formalisms normally associated with the study of reactive concurrent systems within Computer Science. With the rise of the interactioncentred science of Systems Biology a number of bio-inspired process......), is context insensitive, while the other, a poly-variant analysis (2CFA), is context-sensitive. These analyses compute safe approximations to the set of spatial configurations that are reachable according to a given model. This is useful in the qualitative study of cellular self-organisation and, e.......g., the effects of receptor defects or drug delivery mechanisms. The property of sequential realisability. which is closely related to the function of biochemical pathways, is addressed by a variant of traditional Data Flow Analysis (DFA). This so-called ‘Pathway Analysis’ computes safe approximations to the set...

  14. Spatial Structures and Regulation in Biological Systems

    DEFF Research Database (Denmark)

    Yde, Pernille

    , and the other is the spatial regulation of biological systems, here related to different aspects of the inflammatory response. All systems are studied using computational modelling and mathematical analysis. The first part of the thesis explores different protein aggregation scenarios. In Chapter 1, we consider...... a previously studied and very general aggregation model describing frangible linear filaments. This model is especially relevant for the growth of amyloid fibres, that have been related to a number of serious human diseases, and which are known to grow in an accelerated self-enhanced manner.We derive...... model of the tissue and show how coupled cells are able to function as an excitable medium and propagate waves of high cytokine concentration through the tissue. If the internal regulation in the cells is over-productive, the model predicts a continuous amplification of cytokines, which spans the entire...

  15. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  16. X-ray diffraction imaging of biological cells

    CERN Document Server

    Nakasako, Masayoshi

    2018-01-01

    In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL ex...

  17. Multispectral Panoramic Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  18. Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity

    DEFF Research Database (Denmark)

    Green, Sara; Serban, Maria; Scholl, Raphael

    2018-01-01

    The increasing application of network models to interpret biological systems raises a number of important methodological and epistemological questions. What novel insights can network analysis provide in biology? Are network approaches an extension of or in conflict with mechanistic research...

  19. Systems biology approaches and pathway tools for investigating cardiovascular disease

    NARCIS (Netherlands)

    Wheelock, C.E.; Wheelock, A.M.; Kawashima, S.; Diez, D.; Kanehisa, M.; Erk, M. van; Kleemann, R.; Haeggström, J.Z.; Goto, S.

    2009-01-01

    Systems biology aims to understand the nonlinear interactions of multiple biomolecular components that characterize a living organism. One important aspect of systems biology approaches is to identify the biological pathways or networks that connect the differing elements of a system, and examine

  20. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  1. Promoting Systems Thinking through Biology Lessons

    Science.gov (United States)

    Riess, Werner; Mischo, Christoph

    2010-04-01

    This study's goal was to analyze various teaching approaches within the context of natural science lessons, especially in biology. The main focus of the paper lies on the effectiveness of different teaching methods in promoting systems thinking in the field of Education for Sustainable Development. The following methods were incorporated into the study: special lessons designed to promote systems thinking, a computer-simulated scenario on the topic "ecosystem forest," and a combination of both special lessons and the computer simulation. These groups were then compared to a control group. A questionnaire was used to assess systems thinking skills of 424 sixth-grade students of secondary schools in Germany. The assessment differentiated between a conceptual understanding (measured as achievement score) and a reflexive justification (measured as justification score) of systems thinking. The following control variables were used: logical thinking, grades in school, memory span, and motivational goal orientation. Based on the pretest-posttest control group design, only those students who received both special instruction and worked with the computer simulation showed a significant increase in their achievement scores. The justification score increased in the computer simulation condition as well as in the combination of computer simulation and lesson condition. The possibilities and limits of promoting various forms of systems thinking by using realistic computer simulations are discussed.

  2. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  3. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  4. Biologic targets identified from dynamic 18FDG-PET and implications for image-guided therapy

    International Nuclear Information System (INIS)

    Rusten, Espen; Malinen, Eirik; Roedal, Jan; Bruland, Oeyvind S.

    2013-01-01

    Purpose: The outcome of biologic image-guided radiotherapy depends on the definition of the biologic target. The purpose of the current work was to extract hyper perfused and hypermetabolic regions from dynamic positron emission tomography (D-PET) images, to dose escalate either region and to discuss implications of such image guided strategies. Methods: Eleven patients with soft tissue sarcomas were investigated with D-PET. The images were analyzed using a two-compartment model producing parametric maps of perfusion and metabolic rate. The two image series were segmented and exported to a treatment planning system, and biological target volumes BTV per and BTV met (perfusion and metabolism, respectively) were generated. Dice's similarity coefficient was used to compare the two biologic targets. Intensity-modulated radiation therapy (IMRT) plans were generated for a dose painting by contours regime, where planning target volume (PTV) was planned to 60 Gy and BTV to 70 Gy. Thus, two separate plans were created for each patient with dose escalation of either BTV per or BTV met . Results: BTV per was somewhat smaller than BTV met (209 ±170 cm 3 against 243 ±143 cm 3 , respectively; population-based mean and s.d.). Dice's coefficient depended on the applied margin, and was 0.72 ±0.10 for a margin of 10 mm. Boosting BTV per resulted in mean dose of 69 ±1.0 Gy to this region, while BTV met received 67 ±3.2 Gy. Boosting BTV met gave smaller dose differences between the respective non-boost DVHs (such as D 98 ). Conclusions: Dose escalation of one of the BTVs results in a partial dose escalation of the other BTV as well. If tumor aggressiveness is equally pronounced in hyper perfused and hypermetabolic regions, this should be taken into account in the treatment planning

  5. 3S - Systematic, systemic, and systems biology and toxicology.

    Science.gov (United States)

    Smirnova, Lena; Kleinstreuer, Nicole; Corvi, Raffaella; Levchenko, Andre; Fitzpatrick, Suzanne C; Hartung, Thomas

    2018-01-01

    A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.

  6. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  7. Systems Biology of Metabolism: Annual Review of Biochemistry

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2017-01-01

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology......, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed....

  8. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  9. GEOREFERENCED IMAGE SYSTEM WITH DRONES

    Directory of Open Access Journals (Sweden)

    Héctor A. Pérez-Sánchez

    2017-07-01

    Full Text Available This paper has as general purpose develop and implementation of a system that allows the generation of flight routes for a drone, the acquisition of geographic location information (GPS during the flight and taking photographs of points of interest for creating georeferenced images, same that will be used to generate KML files (Keyhole Markup Language for the representation of geographical data in three dimensions to be displayed on the Google Earth tool.

  10. Imaging systems and materials characterization

    International Nuclear Information System (INIS)

    Murr, L.E.

    2009-01-01

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering

  11. Integrative Systems Biology: Elucidating Complex Traits

    DEFF Research Database (Denmark)

    Pers, Tune Hannes

    Risk-phenotypes and diseases are oen caused by perturbed cellular networks, as biological processes depend on an overwhelming number of heavily intertwined components. e impact of a genetically altered gene may ripple through its molecular neighborhood instead of being confined to the gene...... product itself. My doctoral studies have been focused on the development of integrative approaches to identify systemic risk-modifying and disease-causing patterns. ey have been rooted in the hypothesis that data integration of complementary data sets may yield additional etiologic insights compared...... to analyses conducted within a single type of data. e first line of research presented here outlines two integrative methodologies designed to identify etiological pathways and susceptibility genes. In Paper I, my coworkers and I present an integrative approach that interrogates protein complexes...

  12. Systems Biology and Ecology of Streamlined Bacterioplankton

    Science.gov (United States)

    Giovannoni, S. J.

    2014-12-01

    complex questions hinge on translating gene frequencies into trait based ecological models that reflect the systems biology of cells.

  13. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties

    Science.gov (United States)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison.

  14. Systems biology in practice: concepts, implementation and application

    National Research Council Canada - National Science Library

    Klipp, E

    2005-01-01

    ... approaching systems biology from a different discipline. We see the origin and the methodological foundations for systems biology (1) in the accumulation of detailed biological knowledge with the prospect of utilization in biotechnology and health care, (2) in the emergence of new experimental techniques in genomics and proteomics, (3) in the traditio...

  15. Image and information management system

    Science.gov (United States)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2009-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places ''hot spots'', or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  16. Polarization-sensitive optical coherence tomography for imaging of biological tissues

    Science.gov (United States)

    Chen, Xiaodong; Wang, Yi; Li, Wanhui; Yu, Daoyin

    2006-09-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a new non-contact and non-invasive method for measuring the change of birefringence in biological tissues caused by pathological changes of body. It has great potential in imaging the structural properties of turbid biological media because the polarization state of light backscattered from biological tissues is influenced by the birefringence of fibrous structures. The arrangement is based on a Michelson interferometer with use of quarter-wave plates and polarimeter. Through the detection of light backscattered from biological tissues and reflected from a reference mirror, the optical phase delay between orthogonal polarization compositions propagating in the birefringence media can be measured. PS-OCT is a powerful tool for research of tendon, dentin, lesions, which have strong polarization effective. We in this paper describe the experimental scheme and its mathematical representation, along with the theory of PS-OCT imaging. Besides, we introduce a fiber-based PS-OCT system for measuring the tissue birefringence.

  17. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    Directory of Open Access Journals (Sweden)

    M. Mayer

    2005-07-01

    Full Text Available Many  authors have proposed  that contextualization of reality  is necessary  to teach  Biology, empha- sizing students´ social and  economic realities.   However, contextualization means  more than  this;  it is related  to working with  different kinds of phenomena  and/or objects  which enable  the  expression of scientific concepts.  Thus,  contextualization allows the integration of different contents.  Under this perspective,  the  objectives  of this  work were to articulate different  biology concepts  in order  to de- velop a systemic vision of biology; to establish  relationships with other areas of knowledge and to make concrete the  cell molecular  structure and organization as well as their  implications  on living beings´ environment, using  contextualization.  The  methodology  adopted  in this  work  was based  on three aspects:  interdisciplinarity, contextualization and development of competences,  using energy:  its flux and transformations as a thematic axis and  an approach  which allowed the  interconnection between different situations involving  these  concepts.   The  activities developed  were:  1.   dialectic exercise, involving a movement around  micro and macroscopic aspects,  by using questions  and activities,  sup- ported  by the use of alternative material  (as springs, candles on the energy, its forms, transformations and  implications  in the  biological way (microscopic  concepts;  2, Construction of molecular  models, approaching the concepts of atom,  chemical bonds and bond energy in molecules; 3. Observations de- veloped in Manguezal¨(mangrove swamp  ecosystem (Itapissuma, PE  were used to work macroscopic concepts  (as  diversity  and  classification  of plants  and  animals,  concerning  to  energy  flow through food chains and webs. A photograph register of all activities  along the course plus texts

  18. Programmable temperature control system for biological materials

    Science.gov (United States)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  19. Whole body imaging system mechanism

    International Nuclear Information System (INIS)

    Carman, R.W.; Doherty, E.J.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (U.K.)

  20. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  1. Integrated oceanographic image understanding system

    Science.gov (United States)

    Lybanon, Matthew; Peckinpaugh, Sarah H.; Holyer, Ronald J.; Cambridge, Vivian

    1991-04-01

    A system was assembled to study several aspects of locating ship targets from infrared imagery. The system was either placed on shore sites or installed on an aircraft to collect data on the scene. The primary sensor was an infrared camera which produced images of the scene at standard RS-l70 rates. Requirements that included real time operation dictated the use of a parallel architecture for this task. As no suitable commercial systems were avail able, a custom array of bit slice microprocessors was assembled for the task. Through extensive field tests strengths and limitations of the design have been identified. These lessons are being applied to the development of next generation systems. A gimbal mounted infrared camera with digitization circuitry presents a new 256 by 256 pixel image to the parallel pipelined array of 17 bit slice microprocessors thirty times a second. To extend processor performance beyond the standard commercial microprocessors. two basic bit slice designs were employed. The bit slice machines were highly tuned for the assigned tasks and algorithms. Unfortunately this restricted the desired flexibility to readily examine alternate algorithms. The fundamental architecture concept performed well quickly reducing the large array of data to manageable set of information. Real time operator displays were driven to monitor the progress of each test run. Results of the system operation were stored on video and digi tal recorders permitting more detailed analysis after each test. Non real time data reduction provided many insights into the system operation and to algorithm improvements. Substantial operator interaction. and data interpretation was required greatly slowing the post test analysis phase. Overwhelmed with data, the analysts focused on locating a few data segments of interest. Significant work remains in improving the interfaces between the field data and the powerful laboratory computers. Automation of the data analysis is also needed

  2. Cell wall biology: perspectives from cell wall imaging.

    Science.gov (United States)

    Lee, Kieran J D; Marcus, Susan E; Knox, J Paul

    2011-03-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  3. Space-Ready Advanced Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  4. Design of low noise imaging system

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  5. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  6. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  7. Detector systems for imaging neutron activation analysis

    International Nuclear Information System (INIS)

    Dewaraja, Y.K.; Fleming, R.F.

    1994-01-01

    This paper compares the performance of two imaging detector systems for the new technique of Imaging Neutron Activation Analysis (Imaging NAA). The first system is based on secondary electron imaging, and the second employs a position sensitive charged particle detector for direct localization of beta particles. The secondary electron imaging system has demonstrated a position resolution of 20 μm. The position sensitive beta detector has the potential for higher efficiencies with resolution being a trade off. Results presented show the feasibility of the two imaging methods for different applications of Imaging NAA

  8. Network Reconstruction of Dynamic Biological Systems

    OpenAIRE

    Asadi, Behrang

    2013-01-01

    Inference of network topology from experimental data is a central endeavor in biology, since knowledge of the underlying signaling mechanisms a requirement for understanding biological phenomena. As one of the most important tools in bioinformatics area, development of methods to reconstruct biological networks has attracted remarkable attention in the current decade. Integration of different data types can lead to remarkable improvements in our ability to identify the connectivity of differe...

  9. Wide-field four-channel fluorescence imager for biological applications

    Science.gov (United States)

    Thakur, Madhuri; Melnik, Dmitry; Barnett, Heather; Daly, Kevin; Moran, Christine H.; Chang, Wei-Shun; Link, Stephan; Bucher, Christopher Theodore; Kittrell, Carter; Curl, Robert

    2010-03-01

    A wide-field four-channel fluorescence imager has been developed. The instrument uses four expanded laser beams to image a large section (6 mm×9 mm). An object can be sequentially illuminated with any combination of 408-, 532-, 658-, and 784-nm lasers for arbitrary (down to 1 ms) exposure times for each laser. Just two notch filters block scattered light from all four lasers. The design approach described here offers great flexibility in treatment of objects, very good sensitivity, and a wide field of view at low cost. There appears to be no commercial instrument capable of simultaneous fluorescence imaging of a wide field of view with four-laser excitation. Some possible applications are following events such as flow and mixing in microchannel systems, the transmission of biological signals across a culture, and following simulations of biological membrane diffusion. It can also be used in DNA sequencing by synthesis to follow the progress of the photolytic removal of dye and terminator. Without utilizing its time resolution, it can be used to obtain four independent images of a single tissue section stained with four targeting agents, with each coupled to a different dye matching one of the lasers.

  10. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  11. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  12. Modeling and Simulation Tools: From Systems Biology to Systems Medicine.

    Science.gov (United States)

    Olivier, Brett G; Swat, Maciej J; Moné, Martijn J

    2016-01-01

    Modeling is an integral component of modern biology. In this chapter we look into the role of the model, as it pertains to Systems Medicine, and the software that is required to instantiate and run it. We do this by comparing the development, implementation, and characteristics of tools that have been developed to work with two divergent methodologies: Systems Biology and Pharmacometrics. From the Systems Biology perspective we consider the concept of "Software as a Medical Device" and what this may imply for the migration of research-oriented, simulation software into the domain of human health.In our second perspective, we see how in practice hundreds of computational tools already accompany drug discovery and development at every stage of the process. Standardized exchange formats are required to streamline the model exchange between tools, which would minimize translation errors and reduce the required time. With the emergence, almost 15 years ago, of the SBML standard, a large part of the domain of interest is already covered and models can be shared and passed from software to software without recoding them. Until recently the last stage of the process, the pharmacometric analysis used in clinical studies carried out on subject populations, lacked such an exchange medium. We describe a new emerging exchange format in Pharmacometrics which covers the non-linear mixed effects models, the standard statistical model type used in this area. By interfacing these two formats the entire domain can be covered by complementary standards and subsequently the according tools.

  13. Developing integrated TOF-SIMS/MALDI IMS system in studying biological systems

    Science.gov (United States)

    Wu, Ligang

    Using imaging mass spectrometry (IMS) techniques (including TOF-SIMS and MALDI IMS) to study biological systems is a relatively new concept and quickly gained popularity in recent years. Imaging mass spectrometry is a discovery technology that utilizes a focused ion beam or laser beam to desorb ions from sample surface. By detecting the desorbed ions, the chemical distributions and biological changes of a sample surface can be analyzed. These techniques offer a new analytical imaging approach to investigate biological processes at the cellular and tissue level. In this research, a novel integrated TOF-SIMS/MALDI IMS system as well as IMS based biological-sample-preparation techniques and data-reduction methods are developed. We then demonstrate the power of these techniques in studying different biological systems, including monosaccharides isomers, human breast cancer cell lines, mouse embryo tissues and mouse kidney sections. Using TOF-SIMS and statistical analysis methods, seven monosaccharide isomers are fully differentiated by analyzing their characteristic spectral pattern. In addition, a deep understanding of the fragmentation pathway of these isomers under ion bombardment is gained. In an application of TOF-SIMS to the differentiation of three human breast cancer cell lines, MCF-7, T47D, and MDA-MB-231, we show that principal component analysis (PCA) data reduction of TOF-SIMS spectra can differentiate cellular compartments (cytosol, nuclear and particulate) within the cell types, as well as homogenates from among the three cell lines. In a tissue-specific application, we extend the analytical capabilities of TOF-SIMS and PCA by imaging and differentiating Formalin-fixed paraffin-embedded (FFPE) mouse embryo tissues. We demonstrate reproducible differentiation of six tissue types based on the remaining small molecules after paraffin-embedding and the fragments of the cellular proteins. In a unique study of fresh frozen mouse kidney tissues, both TOF

  14. Stochastic image reconstruction for a dual-particle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, M.C., E-mail: mchamel@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Polack, J.K., E-mail: kpolack@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Poitrasson-Rivière, A., E-mail: alexispr@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Flaska, M., E-mail: mflaska@psu.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 137 Reber Building, University Park, PA 16802 (United States); Clarke, S.D., E-mail: clarkesd@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Pozzi, S.A., E-mail: pozzisa@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Tomanin, A., E-mail: alice.tomanin@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, 21027 Ispra, VA (Italy); Lainsa-Italia S.R.L., via E. Fermi 2749, 21027 Ispra, VA (Italy); Peerani, P., E-mail: paolo.peerani@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, 21027 Ispra, VA (Italy)

    2016-02-21

    Stochastic image reconstruction has been applied to a dual-particle imaging system being designed for nuclear safeguards applications. The dual-particle imager (DPI) is a combined Compton-scatter and neutron-scatter camera capable of producing separate neutron and photon images. The stochastic origin ensembles (SOE) method was investigated as an imaging method for the DPI because only a minimal estimation of system response is required to produce images with quality that is comparable to common maximum-likelihood methods. This work contains neutron and photon SOE image reconstructions for a {sup 252}Cf point source, two mixed-oxide (MOX) fuel canisters representing point sources, and the MOX fuel canisters representing a distributed source. Simulation of the DPI using MCNPX-PoliMi is validated by comparison of simulated and measured results. Because image quality is dependent on the number of counts and iterations used, the relationship between these quantities is investigated.

  15. New imaging systems in nuclear medicine

    International Nuclear Information System (INIS)

    1989-01-01

    PCR-I, an analog coded single ring positron tomograph, demonstrates the concepts of analog coding and the utility of high resolution systems. PCR-I, with a resolution of 4.5mm, has been employed in a series of biological studies using small animals that have been highly successful and will lead to clinical application. The emphasis now is turning to even higher sensitivity instruments in order to provide adequate number of events to populate a volume image. For this purpose, we have designed and are constructing PCR-II, a cylindrical analog coded positron tomograph incorporating 12,800 small detectors coded to 1760 phototubes. The increased sensitivity is achieved by recording all events within a cylindrical source that produce annihilation radiation striking any point on the cylindrical detector. PCR-II is projected to have a sensitivity of 1.6 million counts per second for a 20 centimeter diameter sphere uniformly filled with activity at 1 μCi/cm 3 . This system, with a resolution of 3mm, will approach the limits of sensitivity and resolution for positron tomographs. It is our opinion that this system will revolutionize the concept of positron imaging

  16. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    Science.gov (United States)

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Systems biology: properties of reconstructed networks

    National Research Council Canada - National Science Library

    Palsson, Bernhard

    2006-01-01

    ... between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, Palsson provides problem sets, projects, and PowerPoint slides in an associated web site and keeps the presentation in the book concrete with illustrat...

  18. Stochastic modelling of dynamical systems in biology

    NARCIS (Netherlands)

    Pellin, Danilo

    2017-01-01

    In this thesis two relevant biological problems will be addressed from a statistical modelling perspective. The first regards the study of hematopoiesis, a still not well understood biological process rarely observable in humans due to technical and ethical reasons. Hematopoiesis is responsible for

  19. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Cardiovascular Biology of the Incretin System

    Science.gov (United States)

    Ussher, John R.; Drucker, Daniel J.

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that enhances glucose-stimulated insulin secretion and exerts direct and indirect actions on the cardiovascular system. GLP-1 and its related incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), are rapidly inactivated by the enzyme dipeptidyl peptidase 4 (DPP-4), a key determinant of incretin bioactivity. Two classes of medications that enhance incretin action, GLP-1R agonists and DPP-4 inhibitors, are used for the treatment of type 2 diabetes mellitus (T2DM). We review herein the cardiovascular biology of GLP-1R agonists and DPP-4 inhibitors, including direct and indirect effects on cardiomyocytes, blood vessels, adipocytes, the control of blood pressure and postprandial lipoprotein secretion. Both GLP-1R activation and DPP-4 inhibition exert multiple cardioprotective actions in preclinical models of cardiovascular dysfunction, and short term studies in human subjects appear to demonstrate modest yet beneficial actions on cardiac function in subjects with ischemic heart disease. Incretin-based agents control body weight, improve glycemic control with a low risk of hypoglycemia, decrease blood pressure, inhibit the secretion of intestinal chylomicrons, and reduce inflammation in preclinical studies. Nevertheless, there is limited information on the cardiovascular actions of these agents in patients with diabetes and established cardiovascular disease. Hence, a more complete understanding of the cardiovascular risk:benefit ratio of incretin-based therapies will require completion of long term cardiovascular outcome studies currently underway in patients with T2DM. PMID:22323472

  1. Toward mechanical systems biology in bone.

    Science.gov (United States)

    Trüssel, Andreas; Müller, Ralph; Webster, Duncan

    2012-11-01

    Cyclic mechanical loading is perhaps the most important physiological factor regulating bone mass and shape in a way which balances optimal strength with minimal weight. This bone adaptation process spans multiple length and time scales. Forces resulting from physiological exercise at the organ scale are sensed at the cellular scale by osteocytes, which reside inside the bone matrix. Via biochemical pathways, osteocytes orchestrate the local remodeling action of osteoblasts (bone formation) and osteoclasts (bone resorption). Together these local adaptive remodeling activities sum up to strengthen bone globally at the organ scale. To resolve the underlying mechanisms it is required to identify and quantify both cause and effect across the different scales. Progress has been made at the different scales experimentally. Computational models of bone adaptation have been developed to piece together various experimental observations at the different scales into coherent and plausible mechanisms. However additional quantitative experimental validation is still required to build upon the insights which have already been achieved. In this review we discuss emerging as well as state of the art experimental and computational techniques and how they might be used in a mechanical systems biology approach to further our understanding of the mechanisms governing load induced bone adaptation, i.e., ways are outlined in which experimental and computational approaches could be coupled, in a quantitative manner to create more reliable multiscale models of bone.

  2. Inferring biological structures from super-resolution single molecule images using generative models.

    Directory of Open Access Journals (Sweden)

    Suvrajit Maji

    Full Text Available Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information.

  3. SU-E-I-75: Development of New Biological Fingerprints for Patient Recognition to Identify Misfiled Images in a PACS Server

    International Nuclear Information System (INIS)

    Shimizu, Y; Yoon, Y; Iwase, K; Yasumatsu, S; Matsunobu, Y; Morishita, J

    2015-01-01

    Purpose: We are trying to develop an image-searching technique to identify misfiled images in a picture archiving and communication system (PACS) server by using five biological fingerprints: the whole lung field, cardiac shadow, superior mediastinum, lung apex, and right lower lung. Each biological fingerprint in a chest radiograph includes distinctive anatomical structures to identify misfiled images. The whole lung field was less effective for evaluating the similarity between two images than the other biological fingerprints. This was mainly due to the variation in the positioning for chest radiographs. The purpose of this study is to develop new biological fingerprints that could reduce influence of differences in the positioning for chest radiography. Methods: Two hundred patients were selected randomly from our database (36,212 patients). These patients had two images each (current and previous images). Current images were used as the misfiled images in this study. A circumscribed rectangular area of the lung and the upper half of the rectangle were selected automatically as new biological fingerprints. These biological fingerprints were matched to all previous images in the database. The degrees of similarity between the two images were calculated for the same and different patients. The usefulness of new the biological fingerprints for automated patient recognition was examined in terms of receiver operating characteristic (ROC) analysis. Results: Area under the ROC curves (AUCs) for the circumscribed rectangle of the lung, upper half of the rectangle, and whole lung field were 0.980, 0.994, and 0.950, respectively. The new biological fingerprints showed better performance in identifying the patients correctly than the whole lung field. Conclusion: We have developed new biological fingerprints: circumscribed rectangle of the lung and upper half of the rectangle. These new biological fingerprints would be useful for automated patient identification system

  4. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  5. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  6. Interactive analysis of systems biology molecular expression data

    OpenAIRE

    Prabhakar Sunil; Salt David E; Kane Michael D; Stephenson Alan; Ouyang Qi; Zhang Mingwu; Burgner John; Buck Charles; Zhang Xiang

    2008-01-01

    Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferr...

  7. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  8. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  9. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.; Laskin, Julia

    2017-01-17

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.

  10. Seasonal allergic rhinitis and systems biology-oriented biomarker discovery

    NARCIS (Netherlands)

    Baars, E.W.; Nierop, A.F.M.; Savelkoul, H.F.J.

    2015-01-01

    There is an increasing interest in science and medicine in the systems approach. Instead of the reductionist approach that focuses on the physical and chemical properties of the individual components, systems biology aims to describe, understand, and explain from the complex biological systems

  11. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.; Tsui, B.

    1981-01-01

    A general computer code to simulate the imaging properties of existing and hypothetical imaging systems viewing realistic source distributions within non-uniform media. Such a code allows comparative evaluations of existing and hypothetical systems, and optimization of critical parameters of system design by maximizing the signal-to-noise ratio. To be most useful, such a code allows simulation of conventional scintillation scanners and cameras as well as single-photon and position tomographic systems

  12. Breeding system and pollination biology of the semidomesticated ...

    African Journals Online (AJOL)

    Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae ): Implications for fruit production, selective breeding, and conservation of genetic resources.

  13. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  14. A guide to numerical modelling in systems biology

    CERN Document Server

    Deuflhard, Peter

    2015-01-01

    This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks, and identification of model parameters by means of comparisons...

  15. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  16. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  17. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan

    2015-04-01

    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  18. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  19. Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities

    Science.gov (United States)

    Thimsen, Elijah; Sadtler, Bryce; Berezin, Mikhail Y.

    2017-06-01

    Shortwave infrared radiation (SWIR) is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400-650 nm) and near-infrared (NIR, 700-900 nm) wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a) the effect of the energy gap between the excited and ground state on the quantum efficiency, (b) the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c) the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented.

  20. Shortwave-infrared (SWIR emitters for biological imaging: a review of challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Thimsen Elijah

    2017-06-01

    Full Text Available Shortwave infrared radiation (SWIR is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400–650 nm and near-infrared (NIR, 700–900 nm wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a the effect of the energy gap between the excited and ground state on the quantum efficiency, (b the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented.

  1. A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics

    OpenAIRE

    Somvanshi, Pramod Rajaram; Venkatesh, K. V.

    2013-01-01

    Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level respo...

  2. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    Science.gov (United States)

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-02-16

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  4. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  5. Programming Morphogenesis through Systems and Synthetic Biology.

    Science.gov (United States)

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  7. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  8. Analysis of image plane's Illumination in Image-forming System

    International Nuclear Information System (INIS)

    Duan Lihua; Zeng Yan'an; Zhang Nanyangsheng; Wang Zhiguo; Yin Shiliang

    2011-01-01

    In the detection of optical radiation, the detecting accuracy is affected by optic power distribution of the detector's surface to a large extent. In addition, in the image-forming system, the quality of the image is greatly determined by the uniformity of the image's illumination distribution. However, in the practical optical system, affected by the factors such as field of view, false light and off axis and so on, the distribution of the image's illumination tends to be non uniform, so it is necessary to discuss the image plane's illumination in image-forming systems. In order to analyze the characteristics of the image-forming system at a full range, on the basis of photometry, the formulas to calculate the illumination of the imaging plane have been summarized by the numbers. Moreover, the relationship between the horizontal offset of the light source and the illumination of the image has been discussed in detail. After that, the influence of some key factors such as aperture angle, off-axis distance and horizontal offset on illumination of the image has been brought forward. Through numerical simulation, various theoretical curves of those key factors have been given. The results of the numerical simulation show that it is recommended to aggrandize the diameter of the exit pupil to increase the illumination of the image. The angle of view plays a negative role in the illumination distribution of the image, that is, the uniformity of the illumination distribution can be enhanced by compressing the angle of view. Lastly, it is proved that telecentric optical design is an effective way to advance the uniformity of the illumination distribution.

  9. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  10. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    protein may be used as an efficient sensor in an organic environment via a biomimetic membrane model. The combination of both biomimetic membranes and protein membranes as a signal transduction medium has interesting applications in biology and medicine. It is crucial that the matrix where a protein...

  11. A Systems Approach to Biology (SAB).

    Science.gov (United States)

    Bush, Kenneth H.; And Others

    This pupil's study guide is intended to be used with audio-taped biology modules. Each of the units (on laboratory techniques, plant and animal diversity, chemistry, cells, energy, microbiology, genetics, and development) contains an abstract providing an overview of the unit, the rationale and performance objectives for each module, questions to…

  12. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    Systems biology focuses on obtaining a quantitative description of complete biological systems, even complete cellular function. In this way, it will be possible to perform computer-guided design of novel drugs, advanced therapies for treatment of complex diseases, and to perform in silico design....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... laboratory has access to all the necessary competences. For this reason the Yeast Systems Biology Network (YSBN) has been established. YSBN will coordinate research efforts, in yeast systems biology and, through the recently obtained EU funding for a Coordination Action, it will be possible to set...

  13. Tracing organizing principles: Learning from the history of systems biology

    DEFF Research Database (Denmark)

    Green, Sara; Wolkenhauer, Olaf

    2014-01-01

    With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to “reverse engineer” the functional organization of biological systems using methodologies from mathematics, engineering and computer science while...... taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw...... on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational...

  14. Modeling and simulation of biological systems using SPICE language

    Science.gov (United States)

    Lallement, Christophe; Haiech, Jacques

    2017-01-01

    The article deals with BB-SPICE (SPICE for Biochemical and Biological Systems), an extension of the famous Simulation Program with Integrated Circuit Emphasis (SPICE). BB-SPICE environment is composed of three modules: a new textual and compact description formalism for biological systems, a converter that handles this description and generates the SPICE netlist of the equivalent electronic circuit and NGSPICE which is an open-source SPICE simulator. In addition, the environment provides back and forth interfaces with SBML (System Biology Markup Language), a very common description language used in systems biology. BB-SPICE has been developed in order to bridge the gap between the simulation of biological systems on the one hand and electronics circuits on the other hand. Thus, it is suitable for applications at the interface between both domains, such as development of design tools for synthetic biology and for the virtual prototyping of biosensors and lab-on-chip. Simulation results obtained with BB-SPICE and COPASI (an open-source software used for the simulation of biochemical systems) have been compared on a benchmark of models commonly used in systems biology. Results are in accordance from a quantitative viewpoint but BB-SPICE outclasses COPASI by 1 to 3 orders of magnitude regarding the computation time. Moreover, as our software is based on NGSPICE, it could take profit of incoming updates such as the GPU implementation, of the coupling with powerful analysis and verification tools or of the integration in design automation tools (synthetic biology). PMID:28787027

  15. [From bioinformatics to systems biology: account of the 12th international conference on intelligent systems in molecular biology].

    Science.gov (United States)

    Ivakhno, S S

    2004-01-01

    The paper reviews the 12th International Conference on Intelligent Systems for Molecular Biology/Third European Conference on Computational Biology 2004 that was held in Glasgow, UK, during July 31-August 4. A number of talks, papers and software demos from the conference in bioinformatics, genomics, proteomics, transcriptomics and systems biology are described. Recent applications of liquid chromatography - tandem mass spectrometry, comparative genomics and DNA microarrays are given along with the discussion of bioinformatics curricular in higher education.

  16. Flexible imaging payload for real-time fluorescent biological imaging in parabolic, suborbital and space analog environments

    Science.gov (United States)

    Bamsey, Matthew T.; Paul, Anna-Lisa; Graham, Thomas; Ferl, Robert J.

    2014-10-01

    Fluorescent imaging offers the ability to monitor biological functions, in this case biological responses to space-related environments. For plants, fluorescent imaging can include general health indicators such as chlorophyll fluorescence as well as specific metabolic indicators such as engineered fluorescent reporters. This paper describes the Flex Imager a fluorescent imaging payload designed for Middeck Locker deployment and now tested on multiple flight and flight-related platforms. The Flex Imager and associated payload elements have been developed with a focus on 'flexibility' allowing for multiple imaging modalities and change-out of individual imaging or control components in the field. The imaging platform is contained within the standard Middeck Locker spaceflight form factor, with components affixed to a baseplate that permits easy rearrangement and fine adjustment of components. The Flex Imager utilizes standard software packages to simplify operation, operator training, and evaluation by flight provider flight test engineers, or by researchers processing the raw data. Images are obtained using a commercial cooled CCD image sensor, with light-emitting diodes for excitation and a suite of filters that allow biological samples to be imaged over wavelength bands of interest. Although baselined for the monitoring of green fluorescent protein and chlorophyll fluorescence from Arabidopsis samples, the Flex Imager payload permits imaging of any biological sample contained within a standard 10 cm by 10 cm square Petri plate. A sample holder was developed to secure sample plates under different flight profiles while permitting sample change-out should crewed operations be possible. In addition to crew-directed imaging, autonomous or telemetric operation of the payload is also a viable operational mode. An infrared camera has also been integrated into the Flex Imager payload to allow concurrent fluorescent and thermal imaging of samples. The Flex Imager has been

  17. A NMR Tomographic System for image visualization

    International Nuclear Information System (INIS)

    Paiva, M.S.V. de; Slaets, J.F.W.; Almeida, L.O.B. de

    1989-01-01

    This paper presents some characteristics of a graphics system that is being constructed in the Electronics Instrumentation and Computation Laboratory (LIE) of IFQSC. This system will be used in reconstruction and interpretation of MR tomographic images. A minimum system is at moment being used at our laboratory to visualize MR images. (author) [pt

  18. Low-cost image analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Lassahn, G.D.

    1995-01-01

    The author has developed an Automatic Target Recognition system based on parallel processing using transputers. This approach gives a powerful, fast image processing system at relatively low cost. This system scans multi-sensor (e.g., several infrared bands) image data to find any identifiable target, such as physical object or a type of vegetation.

  19. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  20. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  1. Biological Detection System Technologies Technology and Industrial Base Study. A Primer on Biological Detection Technologies

    National Research Council Canada - National Science Library

    2001-01-01

    .... and Canadian military personnel. In light of these concerns both defense departments have increased efforts to develop and field biological agent detection systems to help protect their military forces and fixed assets...

  2. Scaling for Dynamical Systems in Biology.

    Science.gov (United States)

    Ledder, Glenn

    2017-11-01

    Asymptotic methods can greatly simplify the analysis of all but the simplest mathematical models and should therefore be commonplace in such biological areas as ecology and epidemiology. One essential difficulty that limits their use is that they can only be applied to a suitably scaled dimensionless version of the original dimensional model. Many books discuss nondimensionalization, but with little attention given to the problem of choosing the right scales and dimensionless parameters. In this paper, we illustrate the value of using asymptotics on a properly scaled dimensionless model, develop a set of guidelines that can be used to make good scaling choices, and offer advice for teaching these topics in differential equations or mathematical biology courses.

  3. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  4. Gimbaled multispectral imaging system and method

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  5. Characterization Techniques for Aggregated Nanomaterials in Biological and Environmental Systems

    Science.gov (United States)

    Jeon, Seongho

    Nanoparticles, which are defined as objects with characteristic lengths in the 10--9 -- 10--7 m (nanoscale) size range, are used with increasing frequency in a wide of applications, leading to increases in nanomaterial interactions with biological and environmental systems. There is therefore considerable interest in studying the influence nanomaterials can have when inside the human body or dispersed in the ambient environment. However, nanoparticles persist as homo aggregates or heterogeneous mixtures with organic matters, such as proteins, in biological and environmental systems. A large and growing body of research confirm that nanomaterial morphology as well as the degree of aggregation between nanomaterials influences nanomaterial interactions with their surroundings. Specifically, the structures/morphologies of nanoparticles determine their overall surface areas and corresponding surface reactivity (e.g. their catalytic activity). Nanoparticle transport properties (e.g. diffusion coefficient and extent of cellular uptake) are also determined by both their structures and surface properties. Unfortunately, techniques to characterize nanomaterial size and shape quantitatively, when nanomaterials have complex geometries or persist as aggregates, are lacking. Hydrodynamic sizes of nanoparticles and their aggregates can be inferred by dynamic light scattering (DLS) or nanoparticle tracking analysis (NTA). However, since these techniques are relied on the scattering light intensity properties, sizes of polydisperse sub 30 nm particles cannot be effectively measured in those techniques. For structure inference of aggregated nanomaterials, microscopy images have been used for qualitative visual analysis, but the quantitative morphology analysis technique is yet to be developed. Five studies in this dissertation are hence aimed to develop new techniques to provide improved morphology characterization of aggregated nanomaterials in various biological and environmental

  6. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    Wang et al (2002) generated a code book from training images to segment images ... code book from different categories of training images. The code book then is used to segment ..... Frintrop S, Rome E and Christensen H I 2010 Computational visual attention systems and their cognitive foundations: A Survey. ACM Trans.

  7. A multi-element THz imaging system

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Høgstedt, Lasse; Buron, Jonas Christian Due

    2010-01-01

    We report on a broadband multi-element THz imaging system based on fiber-coupled, integrated photoconductive emitters and detectors. 32 detectors and 32 emitters are arranged in a planar array. Advanced image reconstruction algorithms are employed to reconstruct an object in the imaging plane....

  8. Redefining plant systems biology: from cell to ecosystem.

    Science.gov (United States)

    Keurentjes, Joost J B; Angenent, Gerco C; Dicke, Marcel; Dos Santos, Vítor A P Martins; Molenaar, Jaap; van der Putten, Wim H; de Ruiter, Peter C; Struik, Paul C; Thomma, Bart P H J

    2011-04-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase agricultural productivity while decreasing the ecological footprint. This requires a holistic systems biology approach that couples different aggregation levels while considering the variables that affect these biological systems from cell to community. The challenge is to generate accurate experimental data that can be used together with modelling concepts and techniques that allow experimentally verifying in silico predictions. The coupling of aggregation levels in plant sciences, termed Integral Quantification of Biological Organization (IQ(BiO)), might enhance our abilities to generate new desired plant phenotypes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, Adam D. [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  10. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  12. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  13. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented......This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  14. Adaptive optics for deeper imaging of biological samples.

    Science.gov (United States)

    Girkin, John M; Poland, Simon; Wright, Amanda J

    2009-02-01

    Optical microscopy has been a cornerstone of life science investigations since its first practical application around 400 years ago with the goal being subcellular resolution, three-dimensional images, at depth, in living samples. Nonlinear microscopy brought this dream a step closer, but as one images more deeply the material through which you image can greatly distort the view. By using optical devices, originally developed for astronomy, whose optical properties can be changed in real time, active compensation for sample-induced aberrations is possible. Submicron resolution images are now routinely recorded from depths over 1mm into tissue. Such active optical elements can also be used to keep conventional microscopes, both confocal and widefield, in optimal alignment.

  15. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2008-01-01

    provided a rule-of-thumb criterion for the validation of sample preparation. The fractured freeze-dried cells allowed 3-D SIMS imaging and localization of 13 C 15 N labeled molecules and therapeutic drugs containing an elemental tag. Examples are shown to demonstrate that both diffusible elements and molecules are prone to artifact-induced relocation at subcellular scale if the sample preparation is compromised. The sample preparation is problem dependent and may vary widely between the diverse sample types of biological systems and the type of instrument used for SIMS analysis. The sample preparation, however, must be validated so that SIMS can be applied with confidence in biology and medicine

  16. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Science.gov (United States)

    Chandra, Subhash

    2008-12-01

    provided a rule-of-thumb criterion for the validation of sample preparation. The fractured freeze-dried cells allowed 3-D SIMS imaging and localization of 13C 15N labeled molecules and therapeutic drugs containing an elemental tag. Examples are shown to demonstrate that both diffusible elements and molecules are prone to artifact-induced relocation at subcellular scale if the sample preparation is compromised. The sample preparation is problem dependent and may vary widely between the diverse sample types of biological systems and the type of instrument used for SIMS analysis. The sample preparation, however, must be validated so that SIMS can be applied with confidence in biology and medicine.

  17. A systems biology approach to study systemic inflammation.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2014-01-01

    Systemic inflammation needs a precise control on the sequence and magnitude of occurring events. The high throughput data on the host-pathogen interactions gives us an opportunity to have a glimpse on the systemic inflammation. In this article, a dynamic Candida albicans-zebrafish interactive infectious network is built as an example to demonstrate how systems biology approach can be used to study systematic inflammation. In particular, based on microarray data of C. albicans and zebrafish during infection, the hyphal growth, zebrafish, and host-pathogen intercellular PPI networks were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host. The signaling pathways for morphogenesis and hyphal growth of C. albicans were 2 significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins to gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. This integrated network consisting of intercellular invasion and cellular defense processes during infection can improve medical therapies and facilitate development of new antifungal drugs.

  18. PET imaging for the quantification of biologically heterogeneous tumours: measuring the effect of relative position on image-based quantification of dose-painting targets.

    Science.gov (United States)

    McCall, Keisha C; Barbee, David L; Kissick, Michael W; Jeraj, Robert

    2010-05-21

    Quantitative imaging of tumours represents the foundation of customized therapies and adaptive patient care. As such, we have investigated the effect of patient positioning errors on the reproducibility of images of biologically heterogeneous tumours generated by a clinical PET/CT system. A commercial multi-slice PET/CT system was used to acquire 2D and 3D PET images of a phantom containing multiple spheres of known volumes and known radioactivity concentrations and suspended in an aqueous medium. The spheres served as surrogates for sub-tumour regions of biological heterogeneities with dimensions of 5-15 mm. Between image acquisitions, a motorized-arm was used to reposition the spheres in 1 mm intervals along either the radial or the axial direction. Images of the phantom were reconstructed using typical diagnostic reconstruction techniques, and these images were analysed to characterize and model the position-dependent changes in contrast recovery. A simulation study was also conducted to investigate the effect of patient position on the reproducibility of PET imaging of biologically heterogeneous head and neck (HN) tumours. For this simulation study, we calculated the changes in image intensity values that would occur with changes in the relative position of the patients at the time of imaging. PET images of two HN patients were used to simulate an imaging study that incorporated set-up errors that are typical for HN patients. One thousand randomized positioning errors were investigated for each patient. As a result of the phantom study, a position-dependent trend was identified for measurements of contrast recovery of small objects. The peak contrast recovery occurred at radial and axial positions that coincide with the centre of the image voxel. Conversely, the minimum contrast recovery occurred when the object was positioned at the edges of the image voxel. Changing the position of high contrast spheres by one-half the voxel dimension lead to errors in the

  19. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI for Biological Applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.

  20. Reverse allostasis in biological systems: Minimal conditions and implications.

    Science.gov (United States)

    Rezaei-Ghaleh, Nasrollah; Bakhtiari, Davood; Rashidi, Armin

    2017-08-07

    Biological control systems regulate the behavior of biological systems in a constantly changing environment. Homeostasis is the most widely studied outcome of biological control systems. Homeostatic systems maintain the system in its desired state despite variations in system parameters or the externally-determined input rates of their constituents, i.e. they have zero or near zero steady state error. On the other hand, allostatic systems are not resistant against environmental changes and the steady state level of their controlled variables responds positively to the changes in their input rates. Little is known, however, on the existence and frequency of reverse allostatic systems, where the steady state value of the controlled variable correlates negatively with the input rate of that variable. In the present study, we derive the minimal conditions for the existence and local stability of reverse allostatic systems, and demonstrate in examples of metabolic, pharmacological, pathophysiological and ecological systems that the reverse allostasis requirements are relatively non-stringent and may be satisfied in biological systems more commonly than usually thought. The possible existence of reverse allostatic systems in nature and their counter-intuitive implications in physiological systems, drug treatment, ecosystem management, and biological control are explored and testable predictions are made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Behaviors of tritium in terrestrial biological system

    International Nuclear Information System (INIS)

    Inomata, Tsuyako

    1983-01-01

    The in vivo behaviors of HTO- 3 H in food chain models in experimental animals were described. Of pregnant mice that had ingested HTO and drinking water alone for 19 days, the total 3 H content in the tissue/wet weight was greater by 20% in fetuses and newborns than in mothers, and the proportion of tissue-bound 3 H was 8-24% in mothers and 3% in fetuses. The mean 3 H concentration in the free water in tissues was about 36% of ingested HTO. When only 3 H foods were ingested for 18 days, the total 3 H content in the tissue/wet weight showed no marked difference among the mother, fetuses and newborns, nor did the bound 3 H level show great differences. With respect to the tissue distribution of 3 H, only the incorporation rate by the mother's brain from HTO was satisfactory, whereas in other organs, the mother, fetuses and newborns showed higher incorporation rates from 3 H foods. The ratio of specific radioactivity of soft tissue 3 H in mothers to HTO in drinking water exceeded 1 only for the spleen, but other tissues showed no biological concentration. Again, no biological concentration was observed with 3 H foods. Environmental HTO did not result in biological concentration of 3 H in mother mice that had ingested 3 H foods, but 3 H was rather diluted. Tissues other than the spleen showed similar values of 3 H ingestion from environmental HTO through all routes. However, the proportion of bound 3 H in the total 3 H in the soft tissue was about 1.4-1.6 times that on ingestion of HTO alone. (Chiba, N.)

  2. The common ground of genomics and systems biology

    Science.gov (United States)

    2014-01-01

    The rise of systems biology is intertwined with that of genomics, yet their primordial relationship to one another is ill-defined. We discuss how the growth of genomics provided a critical boost to the popularity of systems biology. We describe the parts of genomics that share common areas of interest with systems biology today in the areas of gene expression, network inference, chromatin state analysis, pathway analysis, personalized medicine, and upcoming areas of synergy as genomics continues to expand its scope across all biomedical fields. PMID:25033072

  3. Noninvasive biological sensor system for detection of drunk driving.

    Science.gov (United States)

    Murata, Kohji; Fujita, Etsunori; Kojima, Shigeyuki; Maeda, Shinitirou; Ogura, Yumi; Kamei, Tsutomu; Tsuji, Toshio; Kaneko, Shigehiko; Yoshizumi, Masao; Suzuki, Nobutaka

    2011-01-01

    Systems capable of monitoring the biological condition of a driver and issuing warnings during instances of drowsiness have recently been studied. Moreover, many researchers have reported that biological signals, such as brain waves, pulsation waves, and heart rate, are different between people who have and have not consumed alcohol. Currently, we are developing a noninvasive system to detect individuals driving under the influence of alcohol by measuring biological signals. We used the frequency time series analysis to attempt to distinguish between normal and intoxicated states of a person as the basis of the sensing system.

  4. Biologically motivated computationally intensive approaches to image pattern recognition

    NARCIS (Netherlands)

    Petkov, Nikolay

    This paper presents some of the research activities of the research group in vision as a grand challenge problem whose solution is estimated to need the power of Tflop/s computers and for which computational methods have yet to be developed. The concerned approaches are biologically motivated, in

  5. Physical methods for investigating structural colours in biological systems

    NARCIS (Netherlands)

    Vukusic, P.; Stavenga, D. G.

    2009-01-01

    Many biological systems are known to use structural colour effects to generate aspects of their appearance and visibility. The study of these phenomena has informed an eclectic group of fields ranging, for example, from evolutionary processes in behavioural biology to micro-optical devices in

  6. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Czech Academy of Sciences Publication Activity Database

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  7. Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson

    Directory of Open Access Journals (Sweden)

    Bullinger Eric

    2006-12-01

    Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.

  8. Interdisciplinary problem-solving: emerging modes in integrative systems biology

    NARCIS (Netherlands)

    MacLeod, Miles Alexander James; Nersessian, Nancy J.

    2016-01-01

    Integrative systems biology is an emerging field that attempts to integrate computation, applied mathematics, engineering concepts and methods, and biological experimentation in order to model large-scale complex biochemical networks. The field is thus an important contemporary instance of an

  9. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    Simple Calculation Programs for Biology Other Methods · PowerPoint Presentation · Slide 6 · Slide 7 · Prediction of B-Cell Epitopes · Slide 9 · Slide 10. Slide 12 · Slide 13 · Limitations of existing web services · GPSR: A Resource for Genomics Proteomics and Systems Biology · Important Information in Manual for Develpers.

  10. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  11. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation.

    Science.gov (United States)

    Zhou, Jie; Lamichhane, Santosh; Sterne, Gabriella; Ye, Bing; Peng, Hanchuan

    2013-10-04

    Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools that can combine and compare various algorithms, and build customizable solution for different biological problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for annotating higher dimensional images that correspond to multiple complicated categories. We develop the BIOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are modularized so that they can be "chained" in a customizable way to form adaptive solution for various problems, and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell biology and neuroscience. BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image classification of two- and three- dimensional images and ROIs. We show, via diverse case studies, that different algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is thus expected to be useful for providing effective and efficient solutions for a variety of biological

  12. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue

    Science.gov (United States)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio

    2005-04-01

    We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

  13. A high brightness probe of polymer nanoparticles for biological imaging

    Science.gov (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  14. Procedures for cryogenic X-ray ptychographic imaging of biological samples.

    Science.gov (United States)

    Yusuf, M; Zhang, F; Chen, B; Bhartiya, A; Cunnea, K; Wagner, U; Cacho-Nerin, F; Schwenke, J; Robinson, I K

    2017-03-01

    Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

  15. Procedures for cryogenic X-ray ptychographic imaging of biological samples

    Directory of Open Access Journals (Sweden)

    M. Yusuf

    2017-03-01

    Full Text Available Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

  16. Genome modularity and synthetic biology: Engineering systems.

    Science.gov (United States)

    Mol, Milsee; Kabra, Ritika; Singh, Shailza

    2018-01-01

    Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spectral selective fluorescence molecular imaging with volume holographic imaging system

    Directory of Open Access Journals (Sweden)

    Yanlu Lv

    2016-03-01

    Full Text Available A compact volume holographic imaging (VHI method that can detect fluorescence objects located in diffusive medium in spectral selective imaging manner is presented. The enlargement of lateral field of view of the VHI system is realized by using broadband illumination and demagnification optics. Each target spectrum of fluorescence emitting from a diffusive medium is probed by tuning the inclination angle of the transmission volume holographic grating (VHG. With the use of the single transmission VHG, fluorescence images with different spectrum are obtained sequentially and precise three-dimensional (3D information of deep fluorescent objects located in a diffusive medium can be reconstructed from these images. The results of phantom experiments demonstrate that two fluorescent objects with a sub-millimeter distance can be resolved by spectral selective imaging.

  18. Advanced millimeter wave imaging systems

    Science.gov (United States)

    Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.

    1980-01-01

    Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.

  19. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  20. Pulsed holographic system for imaging through spatially extended scattering media

    Science.gov (United States)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  1. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    Science.gov (United States)

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  2. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  3. Students' Conceptions of Biological Images as Representational Devices

    Directory of Open Access Journals (Sweden)

    Yolanda Postigo

    2012-01-01

    Full Text Available Este estudio tuvo como objetivo analizar las concepciones de los estudiantes sobre la naturaleza representacional de las imágenes en biología. Las concepciones sobre la relación entre la representación y el referente pueden categorizarse como realista o constructivista. Para tal fin, 171 estudiantes de 12 a 16 años, con y sin instrucción específica en biología, respondieron cuestionarios de escala Likert, con preguntas abiertas y de opción múltiple. En general, los estudiantesmostraron una concepción realista sobre la imagen de una célula. La primacía de los aspectos perceptivos de las imágenes puede explicar estos resultados, así como las dificultades que tienen los estudiantes en su aprendizaje y la necesidad de su instrucción explícita.

  4. How do biological systems escape 'chaotic' state?

    Indian Academy of Sciences (India)

    B J Rao

    2018-02-13

    Feb 13, 2018 ... forward and feedback regulations among several interdependent components of the system, such that the system stays 'quasi- stable' at the expense of constant energy inputs. Homeostasis is revealed in a chair-shaped graphical relationship between environment or genotype (independent variable) and ...

  5. Systems biology approaches to the study of cardiovascular drugs

    NARCIS (Netherlands)

    Nikolsky, Y.; Kleemann, R.

    2010-01-01

    Atherogenic lipids and chronic inflammation drive the development of cardiovascular disorders such as atherosclerosis. Many cardiovascular drugs target the liver which is involved in the formation of lipid and inflammatory risk factors. With robust systems biology tools and comprehensive

  6. Insights from Systems Biology in Physiological Studies: Learning from Context

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Imenez Silva

    2017-06-01

    Full Text Available Systems biology presents an integrated view of biological systems, focusing on the relations between elements, whether functional or evolutionary, and providing a rich framework for the comprehension of life. At the same time, many low-throughput experimental studies are performed without influence from this integrated view, whilst high-throughput experiments use low-throughput results in their validation and interpretation. We propose an inversion in this logic, and ask which benefits could be obtained from a holistic view coming from high-throughput studies―and systems biology in particular―in interpreting and designing low-throughput experiments. By exploring some key examples from the renal and adrenal physiology, we try to show that network and modularity theory, along with observed patterns of association between elements in a biological system, can have profound effects on our ability to draw meaningful conclusions from experiments.

  7. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  9. Bionic models for identification of biological systems

    Science.gov (United States)

    Gerget, O. M.

    2017-01-01

    This article proposes a clinical decision support system that processes biomedical data. For this purpose a bionic model has been designed based on neural networks, genetic algorithms and immune systems. The developed system has been tested on data from pregnant women. The paper focuses on the approach to enable selection of control actions that can minimize the risk of adverse outcome. The control actions (hyperparameters of a new type) are further used as an additional input signal. Its values are defined by a hyperparameter optimization method. A software developed with Python is briefly described.

  10. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  11. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  12. Mathematical aspects of pattern formation in biological systems

    CERN Document Server

    Wei, Juncheng

    2013-01-01

    This monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models.The approach adopted in the monograph is based on the following paradigms:• Examine the existence of spiky steady states in reaction-diffusion systems and select as observabl

  13. Effects of Pesticides on Biological Systems

    OpenAIRE

    Ergul Belge Kurutas; Metin Kilinc

    2003-01-01

    The use of pesticid both in Turkey and other contries is widespread in order to combat against many pests which cause economical damages. However, pesticides in human pass through skin, respiratory or digestive systems and is metabolized by monooxygenase system dependent upon cytocrome P450 in liver. They also give rise to severe decreases cytochrome P450 and amount of "hem" enzyme activites of glucose-6-phosphatase, pyrophosphatase by stimulating lipid peroxidation on hepatic microsomes. In ...

  14. Modified pressure system for imaging egg cracks

    Science.gov (United States)

    Lawrence, Kurt C.; Yoon, Seung Chul; Jones, Deana R.; Heitschmidt, Gerald W.; Park, Bosoon; Windham, William R.

    2008-04-01

    One aspect of grading table eggs is shell checks or cracks. Currently, USDA voluntary regulations require that humans grade a representative sample of all eggs processed. However, as processing plants and packing facilities continue to increase their volume and throughput, human graders are having difficulty matching the pace of the machines. Additionally, some plants also have a problem with micro-cracks that the graders often miss because they are very small and hard to see immediately post-processing but grow and become readily apparent before they reach market. An imaging system was developed to help the grader detect these small micro-cracks. The imaging system utilized one image captured at atmospheric pressure and a second at a slight negative pressure to enhance the crack and make detection much easier. A simple image processing algorithm was then applied to the ratio of these two images and the resulting image, containing both cracked and/or intact eggs were color-coded to simplify identification. The imaging system was capable of imaging 15 eggs in about 3/4 second and the algorithm processing took about another 10 seconds. These times could easily be reduced with a dedicated, multi-threaded computer program. In analyzing 1000 eggs, the system was 99.6% accurate overall with only 0.3% false positives compared to 94.2% accurate overall for the human graders with 1.2% false positives. An international patent on the system was filed and further automation of the system is needed.

  15. An integrated multimodality image-guided robot system for small-animal imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wen-Lin [Department of Radiology, Tzu-Chi University and Radiation Oncology, Buddhist Tzu-Chi General Hospital Hualien, Taiwan (China); Hsin Wu, Tung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Hsu, Shih-Ming [Department of Biomedical Imaging and Radiological Sciences, China Medical University, Taichung, Taiwan (China); Chen, Chia-Lin [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Huang, Yung-Hui, E-mail: yhhuang@isu.edu.tw [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China)

    2011-10-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO{sub 2} probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153{+-}0.042 mm of desired placement; the phantom simulation errors were within 0.693{+-}0.128 mm. In small-animal studies, the pO{sub 2} probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  16. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  17. Primary energy-transformations in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, A.L.

    1980-10-01

    In this paper I shall review the main outlines of current research on the molecular aspects of the primary energy-coupling mechanisms in cells, those carried out by energy-transducing membranes. They include the capture of solar energy by the chloroplast membranes of green plants, used to generate carbohydrates and molecular oxygen from carbon dioxide and water, and the counterpart of photosynthesis, the process of respiration in heterotrophic organisms, in which reduced organic products generated by photosynthesis are oxidized at the expense of dioxygen to form carbon dioxide and water. Although the cycling of dioxygen, carbon dioxide, and organic matter between the plant and animal worlds is well known, it is not generally appreciated that the magnitude of biological energy flux in these cycles is huge compared to the total energy flux in man-made devices. A major consequence is that the concentration of carbon dioxide in the atmosphere has been increasing at a significant rate, at a time when there is also a decrease, at least in some parts of the world, in the counterbalancing utilization of CO/sub 2/ by green plants, due to deforestation. The greenhouse effect of increased atmospheric CO/sub 2/ may not only change the earth's climate, but also may influence the rate of photosynthesis. It is also not generally appreciated that energy flow in the biosphere leads to production of enormous amounts of organic matter potentially useful in furnishing man's energy requirements.

  18. Systems biology of cellular membranes: a convergence with biophysics.

    Science.gov (United States)

    Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini

    2017-09-01

    Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  19. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2006-01-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  20. The application of near-infrared spectra micro-image in the imaging analysis of biology samples

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-07-01

    Full Text Available In this research, suitable imaging methods were used for acquiring single compound images of biology samples of chicken pectorales tissue section, tobacco dry leaf, fresh leaf and plant glandular hair, respectively. The adverse effects caused by the high water content and the thermal effect of near infrared (NIR light were effectively solved during the experiment procedures and the data processing. PCA algorithm was applied to the NIR micro-image of chicken pectorales tissue. Comparing the loading vector of PC3 with the NIR spectrum of dry albumen, the information of PC3 was confirmed to be provided mainly by protein, i.e., the 3rd score image represents the distribution trend of protein mainly. PCA algorithm was applied to the NIR micro-image of tobacco dry leaf. The information of PC2 was confirmed to be provided by carbohydrate including starch mainly. Compared to the 2nd score image of tobacco dry leaf, the compared correlation image with the reference spectrum of starch had the same distribution trend as the 2nd score image. The comparative correlation images with the reference spectra of protein, glucose, fructose and the total plant alkaloid were acquired to confirm the distribution trend of these compounds in tobacco dry leaf respectively. Comparative correlation images of fresh leaf with the reference spectra of protein, starch, fructose, glucose and water were acquired to confirm the distribution trend of these compounds in fresh leaf. Chemimap imaging of plant glandular hair was acquired to show the tubular structure clearly.

  1. Modeling and simulation of biological systems using SPICE language.

    Directory of Open Access Journals (Sweden)

    Morgan Madec

    Full Text Available The article deals with BB-SPICE (SPICE for Biochemical and Biological Systems, an extension of the famous Simulation Program with Integrated Circuit Emphasis (SPICE. BB-SPICE environment is composed of three modules: a new textual and compact description formalism for biological systems, a converter that handles this description and generates the SPICE netlist of the equivalent electronic circuit and NGSPICE which is an open-source SPICE simulator. In addition, the environment provides back and forth interfaces with SBML (System Biology Markup Language, a very common description language used in systems biology. BB-SPICE has been developed in order to bridge the gap between the simulation of biological systems on the one hand and electronics circuits on the other hand. Thus, it is suitable for applications at the interface between both domains, such as development of design tools for synthetic biology and for the virtual prototyping of biosensors and lab-on-chip. Simulation results obtained with BB-SPICE and COPASI (an open-source software used for the simulation of biochemical systems have been compared on a benchmark of models commonly used in systems biology. Results are in accordance from a quantitative viewpoint but BB-SPICE outclasses COPASI by 1 to 3 orders of magnitude regarding the computation time. Moreover, as our software is based on NGSPICE, it could take profit of incoming updates such as the GPU implementation, of the coupling with powerful analysis and verification tools or of the integration in design automation tools (synthetic biology.

  2. The Impact of Nanoparticle Surface Chemistry on Biological Systems

    Science.gov (United States)

    Thorn, Angie Sue Morris

    The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials

  3. Exact image theory for field calculation in layered biological medium

    International Nuclear Information System (INIS)

    Alanen, E.; Lindell, I.V.

    1985-01-01

    A method based on the exact image theory to calculate the near field distribution of a horn antenna in direct contact with the skin is introduced. Being exact, the method is not restricted by parameter values and can be applied in optimization of horn aperture function to produce focus fields in the human body. The method observes the effect of the skin layer and can be applied for an arbitrary aperture function. The optimization is demonstrated with few examples

  4. Photonic Actuation, Sensing, and Imaging of Biological and Soft Matters

    OpenAIRE

    Ota, Sadao

    2013-01-01

    This dissertation extensively investigates applications of optics in bioresearch and introduces a series of developments in novel optical technology. The developed techniques include optics-based particle manipulation; nanophotonic, device-based gas-sensing; and optical imaging.Fine control and the inherently remote capability of light technologies allow for enormous potential in every facet of modern advanced technologies. By exploiting these advantages and employing the observable photons a...

  5. Modeling life the mathematics of biological systems

    CERN Document Server

    Garfinkel, Alan; Guo, Yina

    2017-01-01

    From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...

  6. Hydroxyapatite crystal deposition disease: imaging aspects and biological behavior

    International Nuclear Information System (INIS)

    D'Aquino, Danilo Olavarria; Pinto, Alexandre de Lavra; Costa, Mauro Jose Brandao da; Fanelli, Vania A.; Abud, Lucas Giansante

    2005-01-01

    Objective: to demonstrate, using imaging methods (x-ray, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US), the phases of hydroxyapatite crystal deposition disease in joints, particularly in the shoulder, from the silent phase to the intra-osseous migration of calcifications and radiologic follow-up examinations showing complete remission after physical therapy. Material and method: we evaluated 27 joints (25 shoulders, one hip and one elbow) of patients followed-up with radiographs. Patients extremely symptomatic and refractory to treatment were referred to MRI or US. Results: total remission of calcifications was observed in 15 joints after treatment - 14 shoulders and one elbow. In two joint, migration of the calcification to bone was observed: one to the bursa subdeltoidea, one to biceps tendon, one to subcoracoid recess and one to the interior of the infra spinal muscle. In two cases MRI and CT scans showed a high inflammatory process triggered by the disease. Conclusion: hydroxyapatite crystal deposition disease affects multiple joints and can vary from asymptomatic to extremely symptomatic. Imaging methods show all phases of the disease, including the migratory phase. In general, the use of x-ray is enough for the diagnosis and follow-up. MRI and CT provide a more accurate diagnosis in the active phase of the disease. In this paper, remission was seen with physiotherapy (iontophoresis) in 55% of the cases. (author)

  7. Amoxicillin in a biological water recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Morse, A.; Jackson, A.; Rainwater, K. [Texas Tech Univ., Water Resources Center, Lubbock, Texas (United States); Pickering, K. [Johnson Space Center, NASA, Houston, Texas (United States)

    2002-06-15

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO{sub 3}{sup -} and NO{sub 2}{sup -} as the e{sup -} acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities

  8. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  9. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  11. Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Directory of Open Access Journals (Sweden)

    Ezio Bartocci

    2016-01-01

    Full Text Available As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.

  12. Design Criteria For Networked Image Analysis System

    Science.gov (United States)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  13. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  14. Advanced image display systems in radiology

    International Nuclear Information System (INIS)

    Wendler, T.

    1987-01-01

    Advanced image display systems for the fully digital diagnostic imaging departments of the future will be far more than simple replacements of the traditional film-viewing equipment. The new capabilities of very high resolution and highly dynamic displays offer a userfriendly and problem-oriented way of image interpretation. Advanced harware-, software- and human-machine interaction-concepts have been outlined. A scenario for a future way of handling and displaying images, reflecting a new image viewing paradigm in radiology is sketched which has been realized in an experimental image workstation model in the laboratory which, despite its technical complexity, offers a consistent strategy for fast and convenient interaction with image objects. The perspective of knowledge based techniques for workstation control software with object-oriented programming environments and user- and task-adaptive behavior leads to more advanced display properties and a new quality of userfriendliness. 2 refs.; 5 figs

  15. Micromechanics of engineered and biological systems

    Indian Academy of Sciences (India)

    Here, the structural deforma- tion interacts nonlinearly with the static electric field ensuing between electrical conductors and dielectrics. As has been argued well in the litera- ture, electrostatic force scales vary favourably at the microscale and therefore numerous micro- systems devices use this. Many such devices are.

  16. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  17. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...... effects resulting in the perturbation of different proteins associated to particular diseases (e.g., cryptorchidism) were evaluated....

  18. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  19. Towards Engineering Biological Systems in a Broader Context.

    Science.gov (United States)

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  1. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  2. Advances in study of molecular imaging reporte gene systems

    International Nuclear Information System (INIS)

    Wu Tao; An Rui

    2010-01-01

    The use of molecular imaging reporter gene systems has allowed gene therapy to move from the laboratory to the clinical application, which provides methodology to monitor the expression of therapeutic gene noninvasively and achieve quantitative outcome in vivo. Recently, the radionuclide reporter gene still is the focus many studies, but MRI and optical reporter gene have gradually played a important part in reporter gene systems. On the basis of combination of multi-subject, for example applied chemistry and molecular biology, more and more new modified reporter genes and molecular probes have spread out. This paper mainly introduces the advantages and disadvantages of reporter gene system and development trends. (authors)

  3. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  4. High resolution computational on-chip imaging of biological samples using sparsity constraint (Conference Presentation)

    Science.gov (United States)

    Rivenson, Yair; Wu, Chris; Wang, Hongda; Zhang, Yibo; Ozcan, Aydogan

    2017-03-01

    Microscopic imaging of biological samples such as pathology slides is one of the standard diagnostic methods for screening various diseases, including cancer. These biological samples are usually imaged using traditional optical microscopy tools; however, the high cost, bulkiness and limited imaging throughput of traditional microscopes partially restrict their deployment in resource-limited settings. In order to mitigate this, we previously demonstrated a cost-effective and compact lens-less on-chip microscopy platform with a wide field-of-view of >20-30 mm^2. The lens-less microscopy platform has shown its effectiveness for imaging of highly connected biological samples, such as pathology slides of various tissue samples and smears, among others. This computational holographic microscope requires a set of super-resolved holograms acquired at multiple sample-to-sensor distances, which are used as input to an iterative phase recovery algorithm and holographic reconstruction process, yielding high-resolution images of the samples in phase and amplitude channels. Here we demonstrate that in order to reconstruct clinically relevant images with high resolution and image contrast, we require less than 50% of the previously reported nominal number of holograms acquired at different sample-to-sensor distances. This is achieved by incorporating a loose sparsity constraint as part of the iterative holographic object reconstruction. We demonstrate the success of this sparsity-based computational lens-less microscopy platform by imaging pathology slides of breast cancer tissue and Papanicolaou (Pap) smears.

  5. Research Update: Interfacing ultrasmall metal nanoclusters with biological systems

    Science.gov (United States)

    Shang, Li; Nienhaus, G. Ulrich

    2017-05-01

    Metal nanoclusters (NCs), a new type of nanomaterial with unique physicochemical properties, show great potential in many biomedical applications. Understanding their behavior in the complex biological environment is critical not only for designing highly efficient NC-based nanomedicines but also for elucidating the biological impact (e.g., toxicity) of these emerging nanomaterials. In this review, we give an overview of recent progress in exploring interactions of metal NCs with biological systems, including protein adsorption onto NCs, NC interactions with cells, and also the in vivo behavior of NCs. We also discuss the biological responses to the interactions, key parameters defining the interactions, and current challenges in the exploration of NCs in the complex biological environment.

  6. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    Abstract. Multimedia information retrieval systems continue to be an active research area in the world of huge and voluminous data. The paramount challenge is to translate or convert a visual query from a human and find similar images or videos in large digital collection. In this paper, a technique of region based image.

  7. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  8. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  9. Biological basis of tumor imaging with radiolabeled glucose analogs

    International Nuclear Information System (INIS)

    Rasey, J.S.; Krohn, K.A.; Nelson, N.; Grunbaum, Z.; Link, J.

    1984-01-01

    Accelerated tumor glycolysis may form the basis for nuclear imaging of tumors with gamma or positron labeled glucose analogs: /sup 18/F-fluorodeoxy-glucose (FDG) or /sup 11/C-deoxyglucose (DG). FDG may be preferable because it crosses some cell membranes more readily than DG, while the latter is a better substrate for glucose hexokinase, the enzyme which phosphorylates the analog to an intermediate trapped in the cell. /sup 14/C-DG and /sup 3/H-FDG were compared in biodistribution studies in C3H mice bearing RIF-1 tumors. The two compounds are cleared very similarly from the blood. At times up to 60 min after injection, tumor, brain, and heart concentrated more /sup 3/H-FDG than /sup 14/C-DG, while liver concentrated more /sup 14/C-DG. Tumor:blood and tumor:liver ratios were higher for /sup 3/H-FDG than for /sup 14/C-DG while tumor:lung ratios were similar. These factors are critical to imaging primary tumors or metastases in these common target organs. Because /sup 18/F-FDG and /sup 3/H-FDG are labeled in different positions, the former is being investigated to see if it retains the superiority of the tritiated compound. Because glycolysis is radioresistant, irradiated and control RIF-1 tumors are being compared to determine if doomed as well as surviving cells will readily concentrate glucose analogs

  10. Photopolymers: Radiation-curable imaging systems

    International Nuclear Information System (INIS)

    Monroe, B.M.

    1992-01-01

    Photopolymers can be viewed as a special type of radiation-curable system. In these systems, irradiation can be carried out in bulk to produce uniform physical property changes in the coating. By far the greatest utility for these materials has been derived from imagewise exposure, in which the physical property changes that occur on exposure are used for imaging purposes. This chapter is limited to free radical-initiated photopolymer imaging systems, that is, systems that involve the free radical-initiated polymerization of vinyl monomers. Further, the discussion is limited to those systems that contain a preformed polymer, or binder, in addition to the monomer and initiator system. Applications of photopolymer imaging systems of this type will be described in the final section of this chapter. 228 refs., 1 tab

  11. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram

    2006-01-01

    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  12. Systematic integration of experimental data and models in systems biology.

    Science.gov (United States)

    Li, Peter; Dada, Joseph O; Jameson, Daniel; Spasic, Irena; Swainston, Neil; Carroll, Kathleen; Dunn, Warwick; Khan, Farid; Malys, Naglis; Messiha, Hanan L; Simeonidis, Evangelos; Weichart, Dieter; Winder, Catherine; Wishart, Jill; Broomhead, David S; Goble, Carole A; Gaskell, Simon J; Kell, Douglas B; Westerhoff, Hans V; Mendes, Pedro; Paton, Norman W

    2010-11-29

    The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system.

  13. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  14. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    Science.gov (United States)

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Self-adaptive iris image acquisition system

    Science.gov (United States)

    Dong, Wenbo; Sun, Zhenan; Tan, Tieniu; Qiu, Xianchao

    2008-03-01

    Iris image acquisition is the fundamental step of the iris recognition, but capturing high-resolution iris images in real-time is very difficult. The most common systems have small capture volume and demand users to fully cooperate with machines, which has become the bottleneck of iris recognition's application. In this paper, we aim at building an active iris image acquiring system which is self-adaptive to users. Two low resolution cameras are co-located in a pan-tilt-unit (PTU), for face and iris image acquisition respectively. Once the face camera detects face region in real-time video, the system controls the PTU to move towards the eye region and automatically zooms, until the iris camera captures an clear iris image for recognition. Compared with other similar works, our contribution is that we use low-resolution cameras, which can transmit image data much faster and are much cheaper than the high-resolution cameras. In the system, we use Haar-like cascaded feature to detect faces and eyes, linear transformation to predict the iris camera's position, and simple heuristic PTU control method to track eyes. A prototype device has been established, and experiments show that our system can automatically capture high-quality iris image in the range of 0.6m×0.4m×0.4m in average 3 to 5 seconds.

  16. Sampling system for in vivo ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jorgen Arendt; Mathorne, Jan

    1991-01-01

    Newly developed algorithms for processing medical ultrasound images use the high frequency sampled transducer signal. This paper describes demands imposed on a sampling system suitable for acquiring such data and gives details about a prototype constructed. It acquires full clinical images at a s...... at a sampling frequency of 20 MHz with a resolution of 12 bits. The prototype can be used for real time image processing. An example of a clinical in vivo image is shown and various aspects of the data acquisition process are discussed....

  17. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    . The simulated results are compared with the experimental data, and it is found that the Euler method is the most simple end efficient method for the stochastic growth model considered. Estimation of the parameters of the growth model is based on the stochastic Kalman filter and a continuous Markov process......The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... been developed. Their properties and the relationship between them are discussed. The evolution of a dynamic system or process is usually of great practical interest. In order to simulate the evolution of the process, alternative methods are used to get numerical solutions. In this study, Euler...

  18. Nuclear magnetic resonance studies of biological systems

    International Nuclear Information System (INIS)

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T 1 relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by 31 P NMR

  19. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  20. Polarization sensitive optical frequency domain imaging system for endobronchial imaging

    NARCIS (Netherlands)

    Li, J.; Feroldi, Fabio; de Lange, J.; Daniels, J.M.A.; Grünberg, K.; de Boer, J.F.

    2015-01-01

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to

  1. Four-Mirror Freeform Reflective Imaging Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Central Objectives: The research involves a revelation of the solution space for revolutionary families of four-mirror freeform reflective imaging systems. A...

  2. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  3. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  4. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  5. Shimadzu magnetic resonance imaging system, SMT-50

    International Nuclear Information System (INIS)

    Oikawa, Shiro; Nishida, Takayuki; Fujio, Yasuo

    1986-01-01

    The magnetic resonance imaging (MRI) system, as a new modality of medical imaging, has already been put to practical applications on many clinical sites, through which a lot of clinical data has been accumulated. It can offer a powerful new probe of internal anatomy of the human body and its functions. Now that the MRI has established its effectiveness in diagnosis, a really practical MRI system which features high efficiency and economical design with high patient throughput is strongly called for. Introduced in this article is a superconductive magnet MRI system, SMT-50, operating at 5000 Gauss. It has realized an excellent diagnostic capability with such functions as multi-slice multi-echo imaging, high sensitive, surface coil technique and so on. High resolution image display (1024 x 1024 pixcel) unit and separate console system (viewing console and scanning console) will assist high patient throughput. The outline of the SMT-50 and its clinical data are reported here. (author)

  6. Fiber Optic Communication System For Medical Images

    Science.gov (United States)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  7. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  8. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  9. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  10. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  11. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  12. Modeling of Biological Intelligence for SCM System Optimization

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  13. Biological image construction by using Raman radiation and Pca: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez E, J. C. [IPN, Unidad Profesional Interdisciplinaria de Ingenieria, Campus Guanajuato, Av. Mineral de Valenciana 200, Col. Fracc. Industrial Puerto Interior, 36275 Silao, Guanajuato (Mexico); Cordova F, T. [Universidad de Guanajuato, DIC, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Hugo R, V., E-mail: jcmartineze@ipn.mx [Universidad de Guadalajara, Centro Universitario de Tonala, Morelos No. 180, 69584 Tonala, Jalisco (Mexico)

    2015-10-15

    Full text: In the last years, the Raman spectroscopy (Rs) technique has had some applications in the study and analysis of biological samples, due to it is able to detect concentrations or presence of certain organic and inorganic compounds of medical interest. In this work, raw data were obtained through measurements in selected points on a square regions in order to detect specific organic / inorganic compounds on biological samples. Gold nano stars samples were prepared and coated with membrane markers (CD 10+ and CD 19+) and diluted in leukemic B lymphocytes. Each data block was evaluated independently by the method of principal component analysis (Pca) in order to find representative dimensionless values (Cp) for each Raman spectrum in a specific coordinate. Each Cp was normalized in a range of 0-255 in order to generate a representative image of 8 bits of the region under study. Data acquisition was performed with Raman microscopy system Renishaw in Via in the range of 550 to 1700 cm-1 with a 785 nm laser source, with a power of 17 m W and 15 s of exposure time were used for each spectrum. In preliminary results could detect the presence of molecular markers CD 10+ and CD 19+ with gold nano stars and discrimination between both markers. The results suggest conducting studies with specific concentrations organic and inorganic materials. (Author)

  14. Short summary of multispectral imaging systems

    Science.gov (United States)

    Slater, P. N.

    1983-01-01

    This paper summarizes a survey of over 40 multispectral imaging systems that have been used during the past decade for earth resources studies from aircraft or spacecraft, or are presently in the proposal or design and development stage. In addition, some short wave infrared systems are described including a recent NASA suggestion for a research remote sensing system for the 1990's.

  15. A high throughput spectral image microscopy system

    Science.gov (United States)

    Gesley, M.; Puri, R.

    2018-01-01

    A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.

  16. Imaging Systemic Dysfunction in Parkinson's Disease.

    Science.gov (United States)

    Borghammer, Per; Knudsen, Karoline; Brooks, David J

    2016-06-01

    Parkinson's disease is now widely recognized to be a multisystem disorder affecting the brain and peripheral autonomic nerves. Extensive pathology is present in both the sympathetic and parasympathetic nervous system and the intrinsic gastrointestinal plexuses in patients. Autonomic pathology and symptoms such as constipation can predate the clinical diagnosis by years or decades. Imaging studies have contributed greatly to our understanding of Parkinson's disease but focused primarily on imaging cerebral pathology. However, given the importance of understanding the nature, chronology, and functional consequences of peripheral pathology, there has been renewed interest in imaging peripheral organs in Parkinson's disease. Suitable imaging tools can be divided into two types: radiotracer studies that directly estimate loss of sympathetic or parasympathetic nerve terminals, and imaging modalities to quantitate dysphagia, gastric emptying, esophageal and intestinal transit times, and anorectal dyssynergia. In this review, we summarize current knowledge about peripheral imaging in Parkinson's disease.

  17. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

    1984-04-01

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57 Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240 Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  18. Hepatocellular carcinoma: a systems biology perspective

    Directory of Open Access Journals (Sweden)

    Lorenza Alice D'alessandro

    2013-02-01

    Full Text Available Hepatocellular carcinomas (HCC have different etiology and heterogenic genomic alterations lead to high complexity. The molecular features of HCC have largely been studied by gene expression and proteome profiling focusing on the correlations between the expression of specific markers and clinical data. Integration of the increasing amounts of data in databases has facilitated the link of genomic and proteomic profiles of HCC to disease state and clinical outcome. Despite the current knowledge, specific molecular markers remain to be identified and new strategies are required to establish novel targeted therapies. In the last years, mathematical models reconstructing gene and protein networks based on experimental data of HCC have been developed providing powerful tools to predict candidate interactions and potential targets for therapy. Furthermore, the combination of dynamic and logical mathematical models with quantitative data allows detailed mechanistic insights into system properties. To address effects at the organ level, mathematical models reconstructing the three-dimensional organization of liver lobules were developed. In the future, integration of different modeling approaches capturing the effects at the cellular up to the organ level is required to address the complex properties of HCC and to enable the discovery of new targets for HCC prevention or treatment.

  19. Systems Biology of lactic acid bacteria: a critical review.

    NARCIS (Netherlands)

    Teusink, B.; Bachmann, H.; Molenaar, D.

    2011-01-01

    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation

  20. Structural Systems Biology Evaluation of Metabolic Thermotolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Chang, Roger L.; Andrews, Kathleen; Kim, Donghyuk

    2013-01-01

    Improve the System A "systems biology" approach may clarify, for example, how particular proteins determine sensitivity of bacteria to extremes of temperature. Chang et al. (p. 1220) integrated information on protein structure with a model of metabolism, thus associating the protein structure of ...

  1. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  2. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  3. Reliability demonstration of imaging surveillance systems

    International Nuclear Information System (INIS)

    Sheridan, T.F.; Henderson, J.T.; MacDiarmid, P.R.

    1979-01-01

    Security surveillance systems which employ closed circuit television are being deployed with increasing frequency for the protection of property and other valuable assets. A need exists to demonstrate the reliability of such systems before their installation to assure that the deployed systems will operate when needed with only the scheduled amount of maintenance and support costs. An approach to the reliability demonstration of imaging surveillance systems which employ closed circuit television is described. Failure definitions based on industry television standards and imaging alarm assessment criteria for surveillance systems are discussed. Test methods which allow 24 hour a day operation without the need for numerous test scenarios, test personnel and elaborate test facilities are presented. Existing reliability demonstration standards are shown to apply which obviate the need for elaborate statistical tests. The demonstration methods employed are shown to have applications in other types of imaging surveillance systems besides closed circuit television

  4. Breast imaging and reporting data system (BIRADS): magnetic resonance imaging.

    Science.gov (United States)

    Tardivon, Anne A; Athanasiou, Alexandra; Thibault, Fabienne; El Khoury, Carl

    2007-02-01

    This article reviews the technical aspects and interpretation criteria in breast MR imaging based on the first edition of breast imaging and reporting data system (BIRADS) published by the American College of Radiology (ACR) in 2003. In a second article, practical cases will be proposed for training the readers. The major aims of using this lexicon are: first to use a logical and standardized description of MR lesions, secondly to obtain a structured MR report with a clear final impression (BIRADS assessment categories), and thirdly to help comparison between different clinical studies based on similar breast MRI terminology.

  5. Breast imaging and reporting data system (BIRADS): Magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tardivon, Anne A. [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France)]. E-mail: anne.tardivon@curie.net; Athanasiou, Alexandra [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France); Thibault, Fabienne [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France); El Khoury, Carl [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France)

    2007-02-15

    This article reviews the technical aspects and interpretation criteria in breast MR imaging based on the first edition of breast imaging and reporting data system (BIRADS) published by the American College of Radiology (ACR) in 2003. In a second article, practical cases will be proposed for training the readers. The major aims of using this lexicon are: first to use a logical and standardized description of MR lesions, secondly to obtain a structured MR report with a clear final impression (BIRADS assessment categories), and thirdly to help comparison between different clinical studies based on similar breast MRI terminology.

  6. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  7. Preparation and biological evaluation of multifunctional PLGA-nanoparticles designed for photoacoustic imaging.

    Science.gov (United States)

    Kohl, Yvonne; Kaiser, Christian; Bost, Wolfgang; Stracke, Frank; Fournelle, Marc; Wischke, Christian; Thielecke, Hagen; Lendlein, Andreas; Kratz, Karl; Lemor, Robert

    2011-04-01

    Nanoparticulate contrast agents for molecular imaging have attracted widespread interest for diagnostic applications with high resolution in medicine. Here we introduce polymer-based multifunctional nanoparticles exhibiting a near-infrared absorption in the range of the Nd:YAG laser wavelength of 1064 nm as a novel resorbable photoacoustic (PA) contrast system and report about their biological evaluation. Submicron-sized spherical nanoparticles with a high encapsulation efficiency (>87%) were created by incorporation of near-infrared dyes (IR5/IR26) in poly[(rac-lactide)-co-glycolide] (PLGA) with 50 mol% glycolide content via a specific spray-drying process in good yield (>75%). Subsequent application of a centrifugation protocol produced two different size fractions with diameters in the ranges 445-540 nm and 253-305 nm; these were further used for investigation of PA properties and cytotoxic effects. The prepared PLGA nanoparticles exhibited PA properties using a Nd:YAG laser-based system. After exposure of particle concentrations up to 10 μg·ml(-1) for 2 days no effects on viability, mitochondrial activity and proliferation, and cell death of human hepatocarcinoma cells and monkey kidney cells were observed. The excellent PA properties in combination with the positive biological results qualify the dye-loaded PLGA particles as promising candidates for a resorbable PA contrast system. Photoacoustics (PA), a new modality, in which laser light is shined into tissue and absorbed by inherent proteins or synthetic particles is reflected back and received as ultrasound. This technique was shown to be effective with an erodible polymer particle containing near infrared dyes. In vitro, the PA properties of the PLGA particles persisted for 2 days in cell culture. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    Science.gov (United States)

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  9. Visual computing scientific visualization and imaging systems

    CERN Document Server

    2014-01-01

    This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and ot...

  10. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  11. Using views of Systems Biology Cloud: application for model building.

    Science.gov (United States)

    Ruebenacker, Oliver; Blinov, Michael

    2011-03-01

    A large and growing network ("cloud") of interlinked terms and records of items of Systems Biology knowledge is available from the web. These items include pathways, reactions, substances, literature references, organisms, and anatomy, all described in different data sets. Here, we discuss how the knowledge from the cloud can be molded into representations (views) useful for data visualization and modeling. We discuss methods to create and use various views relevant for visualization, modeling, and model annotations, while hiding irrelevant details without unacceptable loss or distortion. We show that views are compatible with understanding substances and processes as sets of microscopic compounds and events respectively, which allows the representation of specializations and generalizations as subsets and supersets respectively. We explain how these methods can be implemented based on the bridging ontology Systems Biological Pathway Exchange (SBPAX) in the Systems Biology Linker (SyBiL) we have developed.

  12. Continuum analysis of biological systems conserved quantities, fluxes and forces

    CERN Document Server

    Suraishkumar, G K

    2014-01-01

    This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation; and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their applica...

  13. Learning (from) the errors of a systems biology model.

    Science.gov (United States)

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-02-11

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

  14. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  15. Brain and nervous system (image)

    Science.gov (United States)

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  16. Imaging system design and image interpolation based on CMOS image sensor

    Science.gov (United States)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  17. Standards, Data Exchange and Intellectual Property Rights in Systems Biology

    DEFF Research Database (Denmark)

    van Zimmeren, Esther; Rutz, Berthold; Minssen, Timo

    2016-01-01

    and qualitative data on biological processes and activities in much greater volumes, velocity, variety and veracity. The skilful integration of multiple heterogeneous data sets allows scientists to model and predict biological processes. SysBio’s interdisciplinary nature requires data, models and other research...... we provided a number of recommendations for a variety of stakeholders. The current article offers some deeper reflections about the interface between IPRs, standards and data exchange in Systems Biology resulting from an Expert Meeting funded by another ERA-Net, ERASysAPP. The meeting brought...... assets to be formatted and described in standard ways to enable exchange and reuse of high quality data. This allows a more effective utilisation of the enormous potential that rests in “big data” analysis. Finally, SysBio is often closely linked to or provides the foundation for Synthetic Biology (Syn...

  18. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure

    2016-01-01

    function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material...... internationally. We believe that one of the overriding goals of any Systems Biology education should be a student’s ability to phrase and communicate research questions in such a manner that they can be solved by the integration of experiments and modelling, as well as to communicate and collaborate productively...

  19. Advances in Structural Biology and the Application to Biological Filament Systems.

    Science.gov (United States)

    Popp, David; Koh, Fujiet; Scipion, Clement P M; Ghoshdastider, Umesh; Narita, Akihiro; Holmes, Kenneth C; Robinson, Robert C

    2018-02-27

    Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  20. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages...

  1. Coded aperture imaging using imperfect detector systems

    International Nuclear Information System (INIS)

    Byard, K.; Ramsden, D.

    1994-01-01

    The imaging properties of a gamma-ray telescope which employs a coded aperture in conjunction with a modular detection plane has been investigated. Gaps in the detection plane, which arise as a consequence of the design of the position sensitive detector used, produce artifacts in the deconvolved images which reduce the signal to noise ratio for the detection of point sources. The application of an iterative image processing algorithm is shown to restore the image quality to that expected from an ideal detector. The efficiency of image processing has enabled its subsequent application to a general coded aperture system in order to gain a significant improvement in the field of view without compromising the angular resolution. (orig.)

  2. Development of shearographic imaging system

    Science.gov (United States)

    Das-Gupta, D. K.; Doughty, K.; Farrington, S. M.

    1985-09-01

    Since the submission of the First Periodic Report no significant progress in these laboratories was made until the delivery of a 50 mW. helium-neon laser from Spectra Physics together with a spatial filtering unit. The present report gives details of the adopted experimental arrangements and also includes photographs of the shearographic fringes obtained for a number of displacements of a stainless steel sample. The basic arrangement for image shearing is shown in schematic form. In our arrangement the 1 degree optical wedge covering half the field was mounted in the filter-holder of a Toyo-View Model 45E Plate camera fitted with a 150 mm. f5.6 compound lens. The test samples employed in the present work were stainless steel discs of 0.15mm. thickness and 80 mm. diameter. One surface of the disc was sprayed matt white using a cellulose-based can of automobile touch-up paint in order to increase the reflectivity of the sample surface. Also drawn on this white surface were two fine intersecting lines, one in the horizontal plane and the other in the vertical plane. The sample was mounted on a block of aluminum which had a central cut-out through a point force could be applied.

  3. Teaching the physics of medical imaging: an active learning approach involving imaging of biological tissue

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pihl, Michael Johannes; Lonsdale, Markus Nowak

    2008-01-01

    Introduction to medical imaging is an experimentally oriented course in the physics of medical imaging, where the students record, process and analyse 3D data of an unknown piece of formalin fixed animal tissue embedded in agar in order to estimate the tissue types present. Planar X-ray, CT, MRI......, ultrasound and SPECT/PET images are recorded, showing the tissue in very different ways. In order for the students to estimate the tissue type, they need to study the physical principles of the imaging modalities. The “true” answer is subsequently revealed by slicing the tissue....

  4. Collaborative Systems Biology Projects for the Military Medical Community.

    Science.gov (United States)

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts

  5. Combining multiset resolution and segmentation for hyperspectral image analysis of biological tissues.

    Science.gov (United States)

    Piqueras, S; Krafft, C; Beleites, C; Egodage, K; von Eggeling, F; Guntinas-Lichius, O; Popp, J; Tauler, R; de Juan, A

    2015-06-30

    Hyperspectral images can provide useful biochemical information about tissue samples. Often, Fourier transform infrared (FTIR) images have been used to distinguish different tissue elements and changes caused by pathological causes. The spectral variation between tissue types and pathological states is very small and multivariate analysis methods are required to describe adequately these subtle changes. In this work, a strategy combining multivariate curve resolution-alternating least squares (MCR-ALS), a resolution (unmixing) method, which recovers distribution maps and pure spectra of image constituents, and K-means clustering, a segmentation method, which identifies groups of similar pixels in an image, is used to provide efficient information on tissue samples. First, multiset MCR-ALS analysis is performed on the set of images related to a particular pathology status to provide basic spectral signatures and distribution maps of the biological contributions needed to describe the tissues. Later on, multiset segmentation analysis is applied to the obtained MCR scores (concentration profiles), used as compressed initial information for segmentation purposes. The multiset idea is transferred to perform image segmentation of different tissue samples. Doing so, a difference can be made between clusters associated with relevant biological parts common to all images, linked to general trends of the type of samples analyzed, and sample-specific clusters, that reflect the natural biological sample-to-sample variability. The last step consists of performing separate multiset MCR-ALS analyses on the pixels of each of the relevant segmentation clusters for the pathology studied to obtain a finer description of the related tissue parts. The potential of the strategy combining multiset resolution on complete images, multiset segmentation and multiset local resolution analysis will be shown on a study focused on FTIR images of tissue sections recorded on inflamed and non

  6. Expert System for ASIC Imaging

    Science.gov (United States)

    Gupta, Shri N.; Arshak, Khalil I.; McDonnell, Pearse; Boyce, Conor; Duggan, Andrew

    1989-07-01

    With the developments in the techniques of artificial intelligence over the last few years, development of advisory, scheduling and similar class of problems has become very convenient using tools such as PROLOG. In this paper an expert system has been described which helps lithographers and process engineers in several ways. The methodology used is to model each work station according to its input, output and control parameters, combine these work stations in a logical sequence based on past experience and work out process schedule for a job. In addition, all the requirements vis-a-vis a particular job parameters are converted into decision rules. One example is the exposure time, develop time for a wafer with different feature sizes would be different. This expert system has been written in Turbo Prolog. By building up a large number of rules, one can tune the program to any facility and use it for as diverse applications as advisory help, trouble shooting etc. Leitner (1) has described an advisory expert system that is being used at National Semiconductor. This system is quite different from the one being reported in the present paper. The approach is quite different for one. There is stress on job flow and process for another.

  7. Highly Protable Airborne Multispectral Imaging System

    Science.gov (United States)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  8. Numerical simulation of imaging laser radar system

    Science.gov (United States)

    Han, Shaokun; Lu, Bo; Jiang, Ming; Liu, Xunliang

    2008-03-01

    Rational and effective design of imaging laser radar systems is the key of imaging laser radar system research. Design must fully consider the interrelationship between various parameters. According to the parameters, choose suitable laser, detector and other components. To use of mathematical modeling and computer simulation is an effective imaging laser radar system design methods. This paper based on the distance equation, using the detection statistical methods, from the laser radar range coverage, detection probability, false-alarm rate, SNR to build the laser radar system mathematical models. In the process of setting up the mathematical models to fully consider the laser, atmosphere, detector and other factors on the performance that is to make the models be able to respond accurately the real situation. Based on this using C# and Matlab designed a simulation software.

  9. Harnessing systems biology approaches to engineer functional microvascular networks.

    Science.gov (United States)

    Sefcik, Lauren S; Wilson, Jennifer L; Papin, Jason A; Botchwey, Edward A

    2010-06-01

    Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.

  10. Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Chang, Ching-Wei

    The quantitative understanding of cellular and molecular responses in living cells is important for many reasons, including identifying potential molecular targets for treatments of diseases like cancer. Fluorescence lifetime imaging microscopy (FLIM) can quantitatively measure these responses in living cells by producing spatially resolved images of fluorophore lifetime, and has advantages over intensity-based measurements. However, in live-cell microscopy applications using high-intensity light sources such as lasers, maintaining biological viability remains critical. Although high-speed, time-gated FLIM significantly reduces light delivered to live cells, making measurements at low light levels remains a challenge affecting quantitative FLIM results. We can significantly improve both accuracy and precision in gated FLIM applications. We use fluorescence resonance energy transfer (FRET) with fluorescent proteins to detect molecular interactions in living cells: the use of FLIM, better fluorophores, and temperature/CO2 controls can improve live-cell FRET results with higher consistency, better statistics, and less non-specific FRET (for negative control comparisons, p-value = 0.93 (physiological) vs. 9.43E-05 (non-physiological)). Several lifetime determination methods are investigated to optimize gating schemes. We demonstrate a reduction in relative standard deviation (RSD) from 52.57% to 18.93% with optimized gating in an example under typical experimental conditions. We develop two novel total variation (TV) image denoising algorithms, FWTV ( f-weighted TV) and UWTV (u-weighted TV), that can achieve significant improvements for real imaging systems. With live-cell images, they improve the precision of local lifetime determination without significantly altering the global mean lifetime values (high-light cases (RSD = 12.76% at total photon counts (TC) = 100 vs. RSD = 23.03% at TC = 400). Therefore, high-intensity excitation of living cells can be avoided

  11. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  12. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    Science.gov (United States)

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  13. Image of Synthetic Biology and Nanotechnology: A Survey among University Students

    Directory of Open Access Journals (Sweden)

    Christian Ineichen

    2017-09-01

    Full Text Available This study explores the image of synthetic biology and nanotechnology in comparison to agricultural biotechnology and communication technology by examining spontaneous associations with, and deliberate evaluations of, these technologies by university students. Data were collected through a self-completion online questionnaire by students from two universities in Switzerland. The survey aimed to capture implicit associations, explicit harm-benefit evaluations and views on regulation. The data suggest overall positive associations with emerging technologies. While positive associations were most pronounced for nanotechnology, agricultural biotechnology was attributed with the least favorable associations. In contrast to its positive result in the association task, respondents attributed a high harm potential for nanotechnology. Associations attributed to synthetic biology were demonstrated to be more positive than for agricultural biotechnology, however, not as favorable as for nanotechnology. Contrary to the evaluations of nanotechnology, the benefit-examples of synthetic biology were evaluated particularly positively. Accordingly, the investigated technologies enjoy different esteem, with synthetic biology and nanotechnology both showing a more “exciting” image. Even though, the image of nanotechnology was demonstrated to be more pronounced it was also more heterogeneous across tasks while agricultural biotechnology remains contested. For all technologies, the predominant spontaneous concerns pertain to risks rather than an immoral nature inherent to these technologies. Our data suggest that harm-benefit analyses reveal only one aspect of the attitude toward emerging technologies. Survey questions addressing spontaneous associations with these technologies are a valuable addition for our picture of the image of emerging technologies.

  14. Breast-Dedicated Radionuclide Imaging Systems.

    Science.gov (United States)

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    Science.gov (United States)

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  16. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  17. A High-Resolution Tile-Based Approach for Classifying Biological Regions in Whole-Slide Histopathological Images.

    Science.gov (United States)

    Hoffman, R A; Kothari, S; Phan, J H; Wang, M D

    Computational analysis of histopathological whole slide images (WSIs) has emerged as a potential means for improving cancer diagnosis and prognosis. However, an open issue relating to the automated processing of WSIs is the identification of biological regions such as tumor, stroma, and necrotic tissue on the slide. We develop a method for classifying WSI portions (512x512-pixel tiles) into biological regions by (1) extracting a set of 461 image features from each WSI tile, (2) optimizing tile-level prediction models using nested cross-validation on a small (600 tile) manually annotated tile-level training set, and (3) validating the models against a much larger (1.7x10 6 tile) data set for which ground truth was available on the whole-slide level. We calculated the predicted prevalence of each tissue region and compared this prevalence to the ground truth prevalence for each image in an independent validation set. Results show significant correlation between the predicted (using automated system) and reported biological region prevalences with p < 0.001 for eight of nine cases considered.

  18. Direct imaging of biological sulfur dioxide derivatives in vivo using a two-photon phosphorescent probe.

    Science.gov (United States)

    Li, Guanying; Chen, Yu; Wang, Jinquan; Wu, Jingheng; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-09-01

    Sulfur dioxide (SO2) and its derivatives sulfite and bisulfite play important roles in biological systems. However, in vivo detection of sulfite/bisulfite remains challenging. In this study, we developed a dinuclear Ir(III) complex (Ir4) as a two-photon phosphorescent probe for sulfite and bisulfite. Ir4 selectively and rapidly responded, with high sensitivity, to sulfite/bisulfite over other bio-related ions and molecules. One-photon and two-photon microscopy images revealed that Ir4 preferentially targeted mitochondria and was capable of imaging biological sulfite/bisulfite levels in vitro and in vivo. In situ sulfite generation in Caenorhabditis elegans was visualized by two-photon excitation real-time imaging. Finally, Ir4 was employed to monitor sulfite distribution in rat brain and other tissues. This study is the first report of the direct visualization of SO2 derivatives in vivo. These results provide new insights into the biological importance of SO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm.

    Science.gov (United States)

    Vargas, Hebert Alberto; Grimm, Jan; F Donati, Olivio; Sala, Evis; Hricak, Hedvig

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. • Advanced imaging techniques allow direct visualisation of molecular interactions in prostate cancer. • MRI/PET, optical and Cerenkov imaging facilitate the translation of molecular biology. • Multiple compounds targeting PSMA expression are currently undergoing clinical translation. • Other targets (e.g., PSA, prostate-stem cell antigen, GRPR) are in development.

  20. Quantification of scanning ion conductance microscopy resolution for biological imaging with double barrel-ion channel probes

    Science.gov (United States)

    Weber, Anna E.

    Scanning ion conductance microscopy (SICM) is a scanning probe microscopy technique with far-reaching capabilities, from imaging of biological systems to characterization of electrochemical processes. However, without a reliable method for quantification of SICM lateral resolution, the technique's progression from esoteric instrument to laboratory necessity will be stalled. A method was developed which quantifies, for the first time, SICM resolution using laboratory techniques. Whereas previously described SICM resolution studies have relied on time consuming data processing, data simulations, or subjective reasoning, the method described here is the first to systematically test effects of probe size and sample feature with respect to resolution under experimental conditions. Lateral resolution below the size of the probe opening was achieved, and has been shown to be dependent on a number of factors, such as probe-surface distance. Quantifiable resolution is important for multiple SICM measurements, most notably those of biological nature. Here, a new SICM platform is described that has exciting possibilities, but will require precise knowledge of resolution for biological utility. Termed ion-channel probe SICM (ICP-SICM), a lipid bilayer is prepared across the pipette opening and an ion channel is reconstituted into the bilayer. Simultaneous imaging and sensing can be achieved with this platform, and ion transport across a cellular bilayer can be monitored and quantified in real time. Building upon a previously published study, a double barrel probe has been prepared with an open barrel for topographic imaging and probe control, and an ICP barrel for biological sensing. Paired with the resolution determining technique, there are implications for unprecedented studies on biological substrates.